Sample records for jnk-dependent epithelial neoplasia

  1. The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity.

    PubMed

    Yasin, Hannah W R; van Rensburg, Samuel H; Feiler, Christina E; Johnson, Ruth I

    2016-02-15

    Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. TRX-ASK1-JNK signaling regulation of cell density-dependent cytotoxicity in cigarette smoke-exposed human bronchial epithelial cells.

    PubMed

    Lee, Yong Chan; Chuang, Chun-Yu; Lee, Pak-Kei; Lee, Jin-Soo; Harper, Richart W; Buckpitt, Alan B; Wu, Reen; Oslund, Karen

    2008-05-01

    Cigarette smoke is a major environmental air pollutant that injures airway epithelium and incites subsequent diseases including chronic obstructive pulmonary disease. The lesion that smoke induces in airway epithelium is still incompletely understood. Using a LIVE/DEAD cytotoxicity assay, we observed that subconfluent cultures of bronchial epithelial cells derived from both human and monkey airway tissues and an immortalized normal human bronchial epithelial cell line (HBE1) were more susceptible to injury by cigarette smoke extract (CSE) and by direct cigarette smoke exposure than cells in confluent cultures. Scraping confluent cultures also caused an enhanced cell injury predominately in the leading edge of the scraped confluent cultures by CSE. Cellular ATP levels in both subconfluent and confluent cultures were drastically reduced after CSE exposure. In contrast, GSH levels were significantly reduced only in subconfluent cultures exposed to smoke and not in confluent cultures. Western blot analysis demonstrated ERK activation in both confluent and subconfluent cultures after CSE. However, activation of apoptosis signal-regulating kinase 1 (ASK1), JNK, and p38 were demonstrated only in subconfluent cultures and not in confluent cultures after CSE. Using short interfering RNA (siRNA) to JNK1 and JNK2 and a JNK inhibitor, we attenuated CSE-mediated cell death in subconfluent cultures but not with an inhibitor of the p38 pathway. Using the tetracycline (Tet)-on inducible approach, overexpression of thioredoxin (TRX) attenuated CSE-mediated cell death and JNK activation in subconfluent cultures. These results suggest that the TRX-ASK1-JNK pathway may play a critical role in mediating cell density-dependent CSE cytotoxicity.

  3. Hippo signaling promotes JNK-dependent cell migration.

    PubMed

    Ma, Xianjue; Wang, Hongxiang; Ji, Jiansong; Xu, Wenyan; Sun, Yihao; Li, Wenzhe; Zhang, Xiaoping; Chen, Juxiang; Xue, Lei

    2017-02-21

    Overwhelming studies show that dysregulation of the Hippo pathway is positively correlated with cell proliferation, growth, and tumorigenesis. Paradoxically, the detailed molecular roles of the Hippo pathway in cell invasion remain debatable. Using a Drosophila invasion model in wing epithelium, we show herein that activated Hippo signaling promotes cell invasion and epithelial-mesenchymal transition through JNK, as inhibition of JNK signaling dramatically blocked Hippo pathway activation-induced matrix metalloproteinase 1 expression and cell invasion. Furthermore, we identify bantam -Rox8 modules as essential components downstream of Yorkie in mediating JNK-dependent cell invasion. Finally, we confirm that YAP (Yes-associated protein) expression negatively regulates TIA1 (Rox8 ortholog) expression and cell invasion in human cancer cells. Together, these findings provide molecular insights into Hippo pathway-mediated cell invasion and also raise a noteworthy concern in therapeutic interventions of Hippo-related cancers, as simply inhibiting Yorkie or YAP activity might paradoxically accelerate cell invasion and metastasis.

  4. JNK-associated scattered growth of YD-10B oral squamous carcinoma cells while maintaining the epithelial phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gayoung; Kim, Hyun-Man

    Cell scattering of epithelial carcinoma cancer cells is one of the critical event in tumorigenesis. Cells losing epithelial cohesion detach from aggregated epithelial cell masses and may migrate to fatal organs through metastasis. The present study investigated the molecular mechanism by which squamous cell carcinoma cells grow scattered at the early phase of transformation while maintaining the epithelial phenotype. We studied YD-10B cells, which are established from human oral squamous cell carcinoma, because the cells grow scattered without the development of E-cadherin junctions (ECJs) under routine culture conditions despite the high expression of functional E-cadherin. The functionality of their E-cadherinmore » was demonstrated in that YD-10B cells developed ECJs, transiently or persistently, when they were cultured on substrates coated with a low amount of fibronectin or to confluence. The phosphorylation of JNK was up-regulated in YD-10B cells compared with that in human normal oral keratinocyte cells or human squamous cell carcinoma cells, which grew aggregated along with well-organized ECJs. The suppression of JNK activity induced the aggregated growth of YD-10B cells concomitant with the development of ECJs. These results indicate for the first time that inherently up-regulated JNK activity induces the scattered growth of the oral squamous cell carcinoma cells through down-regulating the development of ECJ despite the expression of functional E-cadherin, a hallmark of the epithelial phenotype. - Highlights: • JNK dissociates YD-10B oral squamous cell carcinoma cells. • JNK suppresses the development of E-cadherin junctions of oral carcinoma cells. • Suppression of JNK activity reverses the scattered growth of oral carcinoma cells.« less

  5. The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1

    PubMed Central

    Kadrmas, Julie L.; Smith, Mark A.; Clark, Kathleen A.; Pronovost, Stephen M.; Muster, Nemone; Yates, John R.; Beckerle, Mary C.

    2004-01-01

    Cell adhesion and migration are dynamic processes requiring the coordinated action of multiple signaling pathways, but the mechanisms underlying signal integration have remained elusive. Drosophila embryonic dorsal closure (DC) requires both integrin function and c-Jun amino-terminal kinase (JNK) signaling for opposed epithelial sheets to migrate, meet, and suture. Here, we show that PINCH, a protein required for integrin-dependent cell adhesion and actin–membrane anchorage, is present at the leading edge of these migrating epithelia and is required for DC. By analysis of native protein complexes, we identify RSU-1, a regulator of Ras signaling in mammalian cells, as a novel PINCH binding partner that contributes to PINCH stability. Mutation of the gene encoding RSU-1 results in wing blistering in Drosophila, demonstrating its role in integrin-dependent cell adhesion. Genetic interaction analyses reveal that both PINCH and RSU-1 antagonize JNK signaling during DC. Our results suggest that PINCH and RSU-1 contribute to the integration of JNK and integrin functions during Drosophila development. PMID:15596544

  6. Calcium/Ask1/MKK7/JNK2/c-Src signalling cascade mediates disruption of intestinal epithelial tight junctions by dextran sulfate sodium.

    PubMed

    Samak, Geetha; Chaudhry, Kamaljit K; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2015-02-01

    Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-Jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca(2+) concentration, and depletion of intracellular Ca(2+) by 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM) or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of apoptosis signal-regulated kinase 1 (Ask1) or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased tyrosine phosphorylation of occludin, zonula occludens-1 (ZO-1), E-cadherin and β-catenin. SP600125 abrogated DSS-induced tyrosine phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto-phosphorylation of c-Src. The present study demonstrates that Ca(2+)/Ask1/MKK7/JNK2/cSrc signalling cascade mediates DSS-induced tight

  7. Volumetric imaging of oral epithelial neoplasia by MPM-SHGM: epithelial connective tissue interface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pal, Rahul; Yang, Jinping; Qiu, Suimin; Resto, Vicente; McCammon, Susan; Vargas, Gracie

    2016-03-01

    The majority of oral cancers are comprised of oral squamous cell carcinoma in which neoplastic epithelial cells invade across the epithelial connective tissue interface (ECTI). Invasion is preceded by a multi-component process including epithelial hyperproliferation, loss of cell polarity, and remodeling of the extracellular matrix. Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia. In particular, volumetric imaging by these methods can reveal aspects of the 3D microstructure that are not possible by other methods and which could both further our understanding of neoplastic transformation and be explored for development of diagnostic approaches in this disease having only 55% 5-year survival rate. MPAM-SHG were applied to reveal the 3D structure of the critical ECTI interface that plays an integral part toward invasion. Epithelial dysplasia was induced in an established hamster model. MPAM-SHGM was applied to lesion sites, using 780 nm excitation (450-600nm emission) for autofluroescence of cellular and extracellular components; 840 nm using 420 nm bandpass filter for SHG. The ECTI surface was identified as the interface at which SHG signal began following the epithelium and was modeled as a 3D surface using Matlab. ECTI surface area and cell features at sites of epithelial expansion where ECTI was altered were measured; Imaged sites were biopsied and processed for histology. ROC analysis using ECTI image metrics indicated the ability to delineate normal from neoplasia with high sensitivity and specificity and it is noteworthy that inflammation did not significantly alter diagnostic potential of MPAM-SHGM .

  8. JNK-1 Inhibition Leads to Antitumor Activity in Ovarian Cancer

    PubMed Central

    Vivas-Mejia, Pablo; Benito, Juliana Maria; Fernandez, Ariel; Han, Hee-Dong; Mangala, Lingegowda; Rodriguez-Aguayo, Cristian; Chavez-Reyes, Arturo; Lin, Yvonne G.; Nick, Alpa M.; Stone, Rebecca L.; Kim, Hye Sun; Claret, Francois-Xavier; Bornmann, William; Hennessy, Bryan TJ.; Sanguino, Angela; Peng, Zhengong; Sood, Anil K.; Lopez-Berestein, Gabriel

    2011-01-01

    Purpose To demonstrate the functional, clinical and biological significance of JNK-1 in ovarian carcinoma. Experimental Design Analysis of the impact of JNK on 116 epithelial ovarian cancers was conducted. The role of JNK in vitro and in experimental models of ovarian cancer was assessed. We studied the role of WBZ_4, a novel JNK inhibitor redesigned from imatinib based on targeting wrapping defects, in cell lines and in experimental models of ovarian cancer. Results We found a significant association of pJNK with progression free survival in the 116 epithelial ovarian cancers obtained at primary debulking therapy. WBZ_4 led to cell growth inhibition and increased apoptosis in a dose dependent fashion in four ovarian cancer cell lines. In vivo, while imatinib had no effect on tumor growth, WBZ_4 inhibited tumor growth in orthotopic murine models of ovarian cancer. The anti-tumor effect was further increased in combination with docetaxel. Silencing of JNK-1 with systemically administered siRNA led to significantly reduced tumor weights as compared to non-silencing siRNA controls, indicating that indeed the antitumor effects observed were due to JNK-1 inhibition. Conclusions These studies identify JNK-1 as an attractive therapeutic target in ovarian carcinoma and that the re-designed WBZ_4 compound should be considered for further clinical development. PMID:20028751

  9. PI3-K/Akt/JNK/NF-κB is essential for MMP-9 expression and outgrowth in human limbal epithelial cells on intact amniotic membrane.

    PubMed

    Cheng, Ching-Yi; Hsieh, Hsi-Lung; Hsiao, Li-Der; Yang, Chuen-Mao

    2012-07-01

    Matrix metalloproteinase-9 (MMP-9) plays an important role in the outgrowth of expanded human limbal epithelial cells on intact amniotic membranes (AM). The mechanisms of MMP-9 expression and cell outgrowth remain unknown. Here, we demonstrated that MMP-9 is preferentially expressed at the leading edge of limbal epithelial outgrowth. Treatment with the inhibitors of PI3-K (LY294002), Akt (SH-5), MEK1/2 (U0126), and JNK1/2 (SP600125) attenuated the outgrowth area, indicating that PI3-K/Akt, p42/p44 MAPK, and JNK1/2 are involved in the outgrowth of intact AM-expanded limbal epithelial cells. However, MMP-9 expression at both transcriptional and translational levels was attenuated by treatment with SP600125, LY294002, or SH-5, not by U0126 and SB202190, suggesting that JNK1/2 and PI3-K/Akt participate in MMP-9 expression. Moreover, NF-κB phosphorylation and nuclear translocation was especially noted at the leading edge, which was attenuated by treatment with SP600125 or LY294002. Helenalin, a selective NF-κB inhibitor, reduced both the limbal epithelial outgrowth and MMP-9 expression. Finally, the data reveal that PI3-K/Akt is an upstream component of the JNK1/2 pathway in MMP-9 expression. Thus, both MAPKs and PI3-K/Akt are required for limbal epithelial outgrowth on intact AM, only the PI3-K/Akt/JNK is essential for MMP-9 expression mediated through activation of transcriptional factor NF-κB in this model. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. JNK1/2-dependent phosphorylation of angulin-1/LSR is required for the exclusive localization of angulin-1/LSR and tricellulin at tricellular contacts in EpH4 epithelial sheet.

    PubMed

    Nakatsu, Daiki; Kano, Fumi; Taguchi, Yuki; Sugawara, Taichi; Nishizono, Takashi; Nishikawa, Kiyotaka; Oda, Yukako; Furuse, Mikio; Murata, Masayuki

    2014-07-01

    Tricellular tight junctions (tTJs) are specialized structural variants of tight junctions within tricellular contacts of an epithelial sheet and comprise several transmembrane proteins including lipolysis-stimulated lipoprotein receptor (angulin-1/LSR) and tricellulin. To elucidate the mechanism of its formation, we carried out stepwise screening of kinase inhibitors followed by RNAi screening to identify kinases that regulate intracellular localization of angulin-1/LSR to the tTJs using a fluorescence image-based screen. We found that the activity of JNK1 and JNK2, but not JNK3, was required for the exclusive localization of angulin-1/LSR at the tTJs. Based on a bioinformatics approach, we estimated the potential phosphorylation site of angulin-1/LSR by JNK1 to be serine 288 and experimentally confirmed that JNK1 directly phosphorylates angulin-1/LSR at this site. We found that JNK2 was also involved in the phosphorylation of angulin-1/LSR. Furthermore, GFP-tagged angulin-1/LSR(S288A), in which serine 288 was substituted by alanine, was observed to be dispersed to bicellular junctions, indicating that phosphorylation of Ser288 is crucial for the exclusive localization of angulin-1/LSR and tricellulin at tTJs. Our fluorescence image-based screening for kinases inhibitor or siRNAs combined with the phosphorylation site prediction could become a versatile and useful tool to elucidate the mechanisms underlying the maintenance of tTJs regulated by kinase networks. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  11. Combining large area fluorescence with multiphoton microscopy for improved detection of oral epithelial neoplasia (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pal, Rahul; Yang, Jinping; Qiu, Suimin; McCammon, Susan; Resto, Vicente; Vargas, Gracie

    2016-03-01

    Volumetric Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia representing the complex microstructural organization of mucosa, potentially providing high specificity for detection of neoplasia, but is limited by small imaging area. Large area fluorescence methods on the other hand show high sensitivity appropriate for screening but are hampered by low specificity. In this study, we apply MPAM-SHGM following guidance from large area fluorescence, by either autofluorescence or a targeted metabolic fluorophore, as a potentially clinically viable approach for detection of oral neoplasia. Sites of high neoplastic potentially were identified by large area red/green autofluorescence or by a fluorescently labelled deoxy-glucose analog, 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) to highlight areas of high glucose uptake across the buccal pouch of a hamster model for OSCC. Follow-up MPAM-SHGM was conducted on regions of interests (ROIs) to assess whether microscopy would reveal microscopic features associated with neoplasia to confirm or exclude large area fluorescence findings. Parameters for analysis included cytologic metrics, 3D epithelial connective tissue interface metrics (MPAM-SHGM) and intensity of fluorescence (widefield). Imaged sites were biopsied and processed for histology and graded by a pathologist. A small sample of human ex vivo tissues were also imaged. A generalized linear model combining image metrics from large area fluorescence and volumetric MPAM-SHGM indicated the ability to delineate normal and inflammation from neoplasia.

  12. PARP1-mediated necrosis is dependent on parallel JNK and Ca2+/calpain pathways

    PubMed Central

    Douglas, Diana L.; Baines, Christopher P.

    2014-01-01

    ABSTRACT Poly(ADP-ribose) polymerase-1 (PARP1) is a nuclear enzyme that can trigger caspase-independent necrosis. Two main mechanisms for this have been proposed: one involving RIP1 and JNK kinases and mitochondrial permeability transition (MPT), the other involving calpain-mediated activation of Bax and mitochondrial release of apoptosis-inducing factor (AIF). However, whether these two mechanisms represent distinct pathways for PARP1-induced necrosis, or whether they are simply different components of the same pathway has yet to be tested. Mouse embryonic fibroblasts (MEFs) were treated with either N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) or β-Lapachone, resulting in PARP1-dependent necrosis. This was associated with increases in calpain activity, JNK activation and AIF translocation. JNK inhibition significantly reduced MNNG- and β-Lapachone-induced JNK activation, AIF translocation, and necrosis, but not calpain activation. In contrast, inhibition of calpain either by Ca2+ chelation or knockdown attenuated necrosis, but did not affect JNK activation or AIF translocation. To our surprise, genetic and/or pharmacological inhibition of RIP1, AIF, Bax and the MPT pore failed to abrogate MNNG- and β-Lapachone-induced necrosis. In conclusion, although JNK and calpain both contribute to PARP1-induced necrosis, they do so via parallel mechanisms. PMID:25052090

  13. Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia

    PubMed Central

    Egawa, Nagayasu; Egawa, Kiyofumi; Griffin, Heather; Doorbar, John

    2015-01-01

    Papillomaviruses have evolved over many millions of years to propagate themselves at specific epithelial niches in a range of different host species. This has led to the great diversity of papillomaviruses that now exist, and to the appearance of distinct strategies for epithelial persistence. Many papillomaviruses minimise the risk of immune clearance by causing chronic asymptomatic infections, accompanied by long-term virion-production with only limited viral gene expression. Such lesions are typical of those caused by Beta HPV types in the general population, with viral activity being suppressed by host immunity. A second strategy requires the evolution of sophisticated immune evasion mechanisms, and allows some HPV types to cause prominent and persistent papillomas, even in immune competent individuals. Some Alphapapillomavirus types have evolved this strategy, including those that cause genital warts in young adults or common warts in children. These strategies reflect broad differences in virus protein function as well as differences in patterns of viral gene expression, with genotype-specific associations underlying the recent introduction of DNA testing, and also the introduction of vaccines to protect against cervical cancer. Interestingly, it appears that cellular environment and the site of infection affect viral pathogenicity by modulating viral gene expression. With the high-risk HPV gene products, changes in E6 and E7 expression are thought to account for the development of neoplasias at the endocervix, the anal and cervical transformation zones, and the tonsilar crypts and other oropharyngeal sites. A detailed analysis of site-specific patterns of gene expression and gene function is now prompted. PMID:26193301

  14. JNK signalling is necessary for a Wnt- and stem cell-dependent regeneration programme

    PubMed Central

    Tejada-Romero, Belen; Carter, Jean-Michel; Mihaylova, Yuliana; Neumann, Bjoern; Aboobaker, A. Aziz

    2015-01-01

    Regeneration involves the integration of new and old tissues in the context of an adult life history. It is clear that the core conserved signalling pathways that orchestrate development also play central roles in regeneration, and further study of conserved signalling pathways is required. Here we have studied the role of the conserved JNK signalling cascade during planarian regeneration. Abrogation of JNK signalling by RNAi or pharmacological inhibition blocks posterior regeneration and animals fail to express posterior markers. While the early injury-induced expression of polarity markers is unaffected, the later stem cell-dependent phase of posterior Wnt expression is not established. This defect can be rescued by overactivation of the Hh or Wnt signalling pathway to promote posterior Wnt activity. Together, our data suggest that JNK signalling is required to establish stem cell-dependent Wnt expression after posterior injury. Given that Jun is known to be required in vertebrates for the expression of Wnt and Wnt target genes, we propose that this interaction may be conserved and is an instructive part of planarian posterior regeneration. PMID:26062938

  15. c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3.

    PubMed

    Velden, Jos L J van der; Alcorn, John F; Guala, Amy S; Badura, Elsbeth C H L; Janssen-Heininger, Yvonne M W

    2011-04-01

    Transforming growth factor (TGF)-β1 is a key mediator of lung remodeling and fibrosis. Epithelial cells are both a source of and can respond to TGF-β1 with epithelial-to-mesenchymal transition (EMT). We recently determined that TGF-β1-induced EMT in lung epithelial cells requires the presence of c-Jun N-terminal kinase (JNK) 1. Because TGF-β1 signals via Smad complexes, the goal of the present study was to determine the impact of JNK1 on phosphorylation of Smad3 and Smad3-dependent transcriptional responses in lung epithelial cells. Evaluation of JNK1-deficient lung epithelial cells demonstrated that TGF-β1-induced terminal phosphorylation of Smad3 was similar, whereas phosphorylation of mitogen-activated protein kinase sites in the linker regions of Smad3 was diminished, in JNK1-deficient cells compared with wild-type cells. In comparison to wild-type Smad3, expression of a mutant Smad3 in which linker mitogen-activated protein kinase sites were ablated caused a marked attenuation in JNK1 or TGF-β1-induced Smad-binding element transcriptional activity, and expression of plasminogen activator inhibitor-1, fibronectin-1, high-mobility group A2, CArG box-binding factor-A, and fibroblast-specific protein-1, genes critical in the process of EMT. JNK1 enhanced the interaction between Smad3 and Smad4, which depended on linker phosphorylation of Smad3. Conversely, Smad3 with phosphomimetic mutations in the linker domain further enhanced EMT-related genes and proteins, even in the absence of JNK1. Finally, we demonstrated a TGF-β1-induced interaction between Smad3 and JNK1. Collectively, these results demonstrate that Smad3 phosphorylation in the linker region and Smad transcriptional activity are directly or indirectly controlled by JNK1, and provide a putative mechanism whereby JNK1 promotes TGF-β1-induced EMT.

  16. Human amniotic epithelial stem cells promote wound healing by facilitating migration and proliferation of keratinocytes via ERK, JNK and AKT signaling pathways.

    PubMed

    Zhao, Bin; Liu, Jia-Qi; Zheng, Zhao; Zhang, Jun; Wang, Shu-Yue; Han, Shi-Chao; Zhou, Qin; Guan, Hao; Li, Chao; Su, Lin-Lin; Hu, Da-Hai

    2016-07-01

    Wound healing is a highly orchestrated physiological process consisting in a complex interaction of cellular and biochemical events. Human amniotic epithelial stem cells (HAESCs) have been shown to be an attractive resource for wound healing because they are primitive stem cells. However, the exact effects of amnion-derived stem cells on the migration or proliferation of keratinocytes and their potential mechanism are not fully understood. We have found that HAESCs accelerate the migration of keratinocytes and induce a remarkable increase in the activity of phospho-ERK, phospho-JNK, and phospho-AKT, the blockade of which by their specific inhibitors significantly inhibits migration induced by HAESC-conditioned medium (CM). Furthermore, the co-culture of keratinocytes with HAESCs up-regulates the expression levels of cell proliferation proteins Cyclin D1, Cyclin D3 and Mdm2. In vivo animal experiments have shown that HAESC-CM improves wound healing, whereas blockade with ERK, JNK and AKT inhibitors significantly impairs wound healing. Taken together, these results reveal, for the first time, that HAESCs promote wound healing by facilitating the migration and proliferation of keratinocytes via ERK, JNK and AKT signaling pathways and might be a potential therapy in skin wound healing.

  17. Angiotensin II stimulates calcium-dependent activation of c-Jun N-terminal kinase.

    PubMed Central

    Zohn, I E; Yu, H; Li, X; Cox, A D; Earp, H S

    1995-01-01

    In GN4 rat liver epithelial cells, angiotensin II (Ang II) and other agonists which activate phospholipase C stimulate tyrosine kinase activity in a calcium-dependent, protein kinase C (PKC)-independent manner. Since Ang II also produces a proliferative response in these cells, we investigated downstream signaling elements traditionally linked to growth control by tyrosine kinases. First, Ang II, like epidermal growth factor (EGF), stimulated AP-1 binding activity in a PKC-independent manner. Because increases in AP-1 can reflect induction of c-Jun and c-Fos, we examined the activity of the mitogen-activated protein (MAP) kinase family members Erk-1 and -2 and the c-Jun N-terminal kinase (JNK), which are known to influence c-Jun and c-Fos transcription. Ang II stimulated MAP kinase (MAPK) activity but only approximately 50% as effectively as EGF; again, these effects were independent of PKC. Ang II also produced a 50- to 200-fold activation of JNK in a PKC-independent manner. Unlike its smaller effect on MAPK, Ang II was approximately four- to sixfold more potent in activating JNK than EGF was. Although others had reported a lack of calcium ionophore-stimulated JNK activity in lymphocytes and several other cell lines, we examined the role of calcium in GN4 cells. The following results suggest that JNK activation in rat liver epithelial cells is at least partially Ca(2+) dependent: (i) norepinephrine and vasopressin hormones that increase inositol 1,4,5-triphosphate stimulated JNK; (ii) both thapsigargin, a compound that produces an intracellular Ca(2+) signal, and Ca(2+) ionophores stimulated a dramatic increase in JNK activity (up to 200-fold); (iii) extracellular Ca(2+) chelation with ethylene glycol tetraacetic acid (EGTA) inhibited JNK activation by ionophore and intracellular chelation with 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl-ester (BAPTA-AM) partially inhibited JNK activation by Ang II or thapsigargin; and (iv) JNK

  18. Salmonella enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway.

    PubMed

    Lin, Zhijie; Zhang, Yong-Guo; Xia, Yinglin; Xu, Xiulong; Jiao, Xinan; Sun, Jun

    2016-12-23

    Salmonella pathogenesis studies to date have focused on Salmonella typhimurium, and the pathogenesis of a second major serotype, Salmonella enteritidis, is poorly understood. Salmonella spp. possess effector proteins that display biochemical activities and modulate host functions. Here, we generated a deletion mutant of the effector AvrA, S.E-AvrA - , and a plasmid-mediated complementary strain, S.E-AvrA - /pAvrA + (S.E-AvrA + ), in S. Enteritidis. Using in vitro and in vivo infection models, we showed that AvrA stabilizes epithelial tight junction (TJ) proteins, such as ZO-1, in human intestinal epithelial cells. Transepithelial electrical resistance was significantly higher in cells infected with S.E-AvrA + than in cells infected with S.E-AvrA - Inhibition of the JNK pathway suppresses the disassembly of TJ proteins; we found that enteritidis AvrA inhibited JNK activity in cells infected with wild type or S.E-AvrA + strains. Therefore, Enteritidis AvrA-induced ZO-1 stability is achieved via suppression of the JNK pathway. Furthermore, the S.E-AvrA - strain led to enhanced bacterial invasion, both in vitro and in vivo Taken together, our data reveal a novel role for AvrA in S. Enteritidis: Enteritidis AvrA stabilizes intestinal TJs and attenuates bacterial invasion. The manipulation of JNK activity and TJs in microbial-epithelial interactions may be a novel therapeutic approach for the treatment of infectious diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Salmonella enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway*

    PubMed Central

    Lin, Zhijie; Zhang, Yong-Guo; Xia, Yinglin; Xu, Xiulong; Jiao, Xinan

    2016-01-01

    Salmonella pathogenesis studies to date have focused on Salmonella typhimurium, and the pathogenesis of a second major serotype, Salmonella enteritidis, is poorly understood. Salmonella spp. possess effector proteins that display biochemical activities and modulate host functions. Here, we generated a deletion mutant of the effector AvrA, S.E-AvrA−, and a plasmid-mediated complementary strain, S.E-AvrA−/pAvrA+ (S.E-AvrA+), in S. Enteritidis. Using in vitro and in vivo infection models, we showed that AvrA stabilizes epithelial tight junction (TJ) proteins, such as ZO-1, in human intestinal epithelial cells. Transepithelial electrical resistance was significantly higher in cells infected with S.E-AvrA+ than in cells infected with S.E-AvrA−. Inhibition of the JNK pathway suppresses the disassembly of TJ proteins; we found that enteritidis AvrA inhibited JNK activity in cells infected with wild type or S.E-AvrA+ strains. Therefore, Enteritidis AvrA-induced ZO-1 stability is achieved via suppression of the JNK pathway. Furthermore, the S.E-AvrA− strain led to enhanced bacterial invasion, both in vitro and in vivo. Taken together, our data reveal a novel role for AvrA in S. Enteritidis: Enteritidis AvrA stabilizes intestinal TJs and attenuates bacterial invasion. The manipulation of JNK activity and TJs in microbial-epithelial interactions may be a novel therapeutic approach for the treatment of infectious diseases. PMID:27875307

  20. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling

    PubMed Central

    2011-01-01

    Background Epithelial neoplasias are associated with alterations in cell polarity and excessive cell proliferation, yet how these neoplastic properties are related to one another is still poorly understood. The study of Drosophila genes that function as neoplastic tumor suppressors by regulating both of these properties has significant potential to clarify this relationship. Results Here we show in Drosophila that loss of Scribbled (Scrib), a cell polarity regulator and neoplastic tumor suppressor, results in impaired Hippo pathway signaling in the epithelial tissues of both the eye and wing imaginal disc. scrib mutant tissue overgrowth, but not the loss of cell polarity, is dependent upon defective Hippo signaling and can be rescued by knockdown of either the TEAD/TEF family transcription factor Scalloped or the transcriptional coactivator Yorkie in the eye disc, or reducing levels of Yorkie in the wing disc. Furthermore, loss of Scrib sensitizes tissue to transformation by oncogenic Ras-Raf signaling, and Yorkie-Scalloped activity is required to promote this cooperative tumor overgrowth. The inhibition of Hippo signaling in scrib mutant eye disc clones is not dependent upon JNK activity, but can be significantly rescued by reducing aPKC kinase activity, and ectopic aPKC activity is sufficient to impair Hippo signaling in the eye disc, even when JNK signaling is blocked. In contrast, warts mutant overgrowth does not require aPKC activity. Moreover, reducing endogenous levels of aPKC or increasing Scrib or Lethal giant larvae levels does not promote increased Hippo signaling, suggesting that aPKC activity is not normally rate limiting for Hippo pathway activity. Epistasis experiments suggest that Hippo pathway inhibition in scrib mutants occurs, at least in part, downstream or in parallel to both the Expanded and Fat arms of Hippo pathway regulation. Conclusions Loss of Scrib promotes Yorkie/Scalloped-dependent epithelial tissue overgrowth, and this is also

  1. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation.

    PubMed

    Du, Shaobo; Han, Biao; Li, Kang; Zhang, Xuan; Sha, Xueli; Gao, Lan

    2017-01-01

    Lycium barbarum polysaccharides (LBPs) have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB-) induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE) cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2 , and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH 2 -terminal kinase (JNK) triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  2. Is endoscopic forceps biopsy enough for a definitive diagnosis of gastric epithelial neoplasia?

    PubMed

    Lee, Chang Kyun; Chung, Il-Kwun; Lee, Suck-Ho; Kim, Sang Pil; Lee, Sae Hwan; Lee, Tae Hoon; Kim, Hong-Soo; Park, Sang-Heum; Kim, Sun-Joo; Lee, Ji-Hye; Cho, Hyun Deuk; Oh, Mee-Hye

    2010-09-01

    Endoscopic forceps biopsy (EFB) as the primary histological diagnosis of gastric epithelial neoplasia (GEN) is debated in the era of endoscopic resection (ER). Our aim was to investigate the diagnostic reliability of EFB in patients with GEN compared with ER specimens as the reference standard for the final diagnosis in a large consecutive series. This was a cross-sectional retrospective study at a tertiary-referral center. A total of 354 consecutive patients with 397 GENs underwent ER (endoscopic mucosal resection or endoscopic submucosal dissection). Discrepancy rates between the histological results from EFB and ER specimens were assessed. Discrepancies that could affect patient outcome or clinical care were considered major. The overall histological discrepancy rate between EFB and ER specimens was 44.5% (95% confidence interval [CI], 39.7-49.5%) among the enrolled patients. The overall discrepancy rate was significantly higher in the intraepithelial neoplasia (IEN) group than in the carcinoma group (49.8% vs 25.6%, P < 0.001). The major discrepancy rate was also significantly higher in the IEN group than in the carcinoma group (36.6% vs 7.0%, P < 0.001). In subgroup analysis of the IEN group, a major histological discrepancy rate of 33.6% (70/208) for low-grade and 42.7% (44/103) for high-grade IEN was found, respectively. Endoscopic forceps biopsy was insufficient for a definitive diagnosis and therapeutic planning in patients with GEN. ER should be considered as not only definitive treatment but also a procedure for a precise histological diagnosis for lesions initially assessed as GEN by forceps biopsy specimens.

  3. Peroxiredoxin 2 regulates PGF2α-induced corpus luteum regression in mice by inhibiting ROS-dependent JNK activation.

    PubMed

    Park, Sun-Ji; Kim, Jung-Hak; Kim, Tae-Shin; Lee, Sang-Rae; Park, Jeen-Woo; Lee, Seunghoon; Kim, Jin-Man; Lee, Dong-Seok

    2017-07-01

    Luteal regression is a natural and necessary event to regulate the reproductive process in all mammals. Prostaglandin F2α (PGF2α) is the main factor that causes functional and structural regression of the corpus luteum (CL). It is well known that PGF2α-mediated ROS generation is closely involved in luteal regression. Peroxiredoxin 2 (Prx2) as an antioxidant enzyme plays a protective role against oxidative stress-induced cell death. However, the effect of Prx2 on PGF2α-induced luteal regression has not been reported. Here, we investigated the role of Prx2 in functional and structural CL regression induced by PGF2α-mediated ROS using Prx2-deficient (-/-) mice. We found that PGF2α-induced ROS generation was significantly higher in Prx2-/- MEF cells compared with that in wild-type (WT) cells, which induced apoptosis by activating JNK-mediated apoptotic signaling pathway. Also, PGF2α treatment in the CL derived from Prx2-/- mice promoted the reduction of steroidogenic enzyme expression and the activation of JNK and caspase3. Compared to WT mice, serum progesterone levels and luteal expression of steroidogenic enzymes decreased more rapidly whereas JNK and caspase3 activations were significantly increased in Prx2-/- mice injected with PGF2α. However, the impaired steroidogenesis and PGF2α-induced JNK-dependent apoptosis were rescued by the addition of the antioxidant N-acetyl-L-cysteine (NAC). This is the first study to demonstrate that Prx2 deficiency ultimately accelerated the PGF2α-induced luteal regression through activation of the ROS-dependent JNK pathway. These findings suggest that Prx2 plays a crucial role in preventing accelerated luteal regression via inhibition of the ROS/JNK pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Differentiating vulvar intraepithelial neoplasia from nonneoplastic epithelial disorders. The toluidine blue test.

    PubMed

    Joura, E A; Zeisler, H; Lösch, A; Sator, M O; Müllauer-Ertl, S

    1998-08-01

    To determine the effectiveness of the toluidine blue test in the differentiation of vulvar intraepithelial neoplasia (VIN) and nonneoplastic epithelial disorders (NNEDs). This retrospective clinical study included all women with VIN (n = 24) and NNED (n = 72) referred to a vulvar clinic at a university hospital during a two-year period. Vulvoscopy, staining of vulvar epithelium with 1% toluidine blue and punch biopsy were performed. Vulvar epithelium demonstrated toluidine blue staining in 100% of the patients with VIN 3, in 83% of women with VIN 1-2, in 50% of the women with squamous cell hyperplasia and in 10% of the women with lichen sclerosus. The differences in staining between the groups were statistically significant (P < .001). The sensitivity of toluidine blue staining for the detection of VIN was 92%; the negative predictive value 96% in teh investigated cohort. The specificity for strong staining was 88%. The toluidine blue test is an inexpensive and reliable method of separating VIN from hyperplastic NNED areas and choosing a biopsy site on the vulva.

  5. NEOPLASIA IN SNAKES AT ZOO ATLANTA DURING 1992-2012.

    PubMed

    Page-Karjian, Annie; Hahne, Megan; Leach, Kate; Murphy, Hayley; Lock, Brad; Rivera, Samuel

    2017-06-01

    A retrospective study was conducted to review neoplasia of captive snakes in the Zoo Atlanta collection from 1992 to 2012. Of 255 snakes that underwent necropsy and histopathologic examination at Zoo Atlanta during the study period, 37 were observed with neoplasia at necropsy. In those 37 snakes, 42 neoplastic lesions of 18 primary cell types were diagnosed. Thirty-five of those neoplasms (83.3%) were malignant, and of those, 19 were of mesenchymal origin, whereas 14 were of epithelial origin. The median annual rate of neoplasia at necropsy was 12.5% (interquartile range = 2.8-19.5%) over the 21-yr study period. The mean estimated age at death for snakes with neoplasia was 13.2 yr (range, 1-24 yr). Investigating the incidence and clinical significance of neoplasia in captive snakes is vital for developing effective preventative and treatment regimes.

  6. JIP1-Mediated JNK Activation Negatively Regulates Synaptic Plasticity and Spatial Memory.

    PubMed

    Morel, Caroline; Sherrin, Tessi; Kennedy, Norman J; Forest, Kelly H; Avcioglu Barutcu, Seda; Robles, Michael; Carpenter-Hyland, Ezekiel; Alfulaij, Naghum; Standen, Claire L; Nichols, Robert A; Benveniste, Morris; Davis, Roger J; Todorovic, Cedomir

    2018-04-11

    The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JNK-interacting protein 1 (JIP1) scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDAR currents, increased NMDAR-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDAR-mediated synaptic plasticity and learning. SIGNIFICANCE STATEMENT The results of this study demonstrate that c-Jun N-terminal kinase (JNK) activation induced by the JNK-interacting protein 1 (JIP1) scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study identifies JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDAR-dependent synaptic plasticity and memory. Copyright © 2018 the authors 0270-6474/18/383708-21$15.00/0.

  7. Crosstalk between Fas and JNK determines lymphocyte apoptosis after ionizing radiation.

    PubMed

    Praveen, Koganti; Saxena, Nandita

    2013-06-01

    Radiation simultaneously activate Fas and JNK pathway in lymphocytes but their precise interaction is not clearly understood. Activation of Fas pathway is required for radiation induced apoptosis, however induction of JNK pathway may or may not contribute in apoptosis. Here we report that Fas, Fas associated death domain and total JNK are activated in a dose- and time-dependent radiation exposure. A biphasic pattern of phospho-JNK was found at lower doses (1 and 2 Gy), however at higher doses of radiation phospho-JNK was continuously activated. Interestingly, Fas ligand expression remained biphasic at all the doses of radiation. Our results suggest that the Fas pathway is the major player in radiation-induced apoptosis, with JNK playing a contributory role. We also observed that Fas ligand expression by radiation is dependent on JNK activation. We also propose that radiation activates JNK pathway, but sustained activation is required for maximal induction of apoptosis at later times. Our findings define a mechanism for crosstalk between JNK and Fas pathway in radiation-induced apoptosis, which may lead to the development of new therapeutic strategies.

  8. Tumoral Versus Flat Intraepithelial Neoplasia of Pancreatobiliary Tract, Gallbladder, and Ampulla of Vater.

    PubMed

    Jang, Kee-Taek; Ahn, Sangjeong

    2016-05-01

    -The identification of a precursor lesion is important to understanding the histopathologic and genetic alterations in carcinogenesis. There are a plethora of terminologies that describe precursor lesions of the pancreatobiliary tract, ampulla of Vater, and gallbladder. The current terminologies for precursor lesions may make it difficult to understand the tumor biology. Here, we propose the concept of tumoral and flat intraepithelial neoplasia to improve our understanding of precursor lesions of many epithelial organs, including the pancreatobiliary tract, ampulla of Vater, and gallbladder. -To understand the dichotomous pattern of tumoral and flat intraepithelial neoplasia in carcinogenesis of pancreatobiliary tract, ampulla of Vater, and gallbladder. -Review of relevant literatures indexed in PubMed. -Tumoral intraepithelial neoplasia presents as an intraluminal or intraductal, mass-forming, polypoid lesion or a macroscopic, visible, cystic lesion without intracystic papillae. Microscopically, tumoral intraepithelial neoplasia shows various proportions of papillary and tubular architecture, often with a mixed pattern, such as papillary, tubular, and papillary-tubular. The malignant potential depends on the degree of dysplasia and the cell phenotype of the epithelium. Flat intraepithelial neoplasia presents as a flat or superficial, spreading, mucosal lesion that is frequently accompanied by an invasive carcinoma. Tumoral and flat intraepithelial neoplasias are not homogeneous entities and may exhibit histopathologic spectrum changes and different genetic profiles. Although intraepithelial neoplasia showed a dichotomous pattern in the tumoral versus flat types, they can coexist. Tumoral and flat intraepithelial neoplasia can be interpreted as part of a spectrum of changes in the carcinogenesis pathway of each organ.

  9. Drosophila MOF regulates DIAP1 and induces apoptosis in a JNK dependent pathway.

    PubMed

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Koteswara Rao, G; Bag, Indira; Bhadra, Utpal; Pal-Bhadra, Manika

    2016-03-01

    Histone modulations have been implicated in various cellular and developmental processes where in Drosophila Mof is involved in acetylation of H4K16. Reduction in the size of larval imaginal discs is observed in the null mutants of mof with increased apoptosis. Deficiency involving Hid, Reaper and Grim [H99] alleviated mof (RNAi) induced apoptosis in the eye discs. mof (RNAi) induced apoptosis leads to activation of caspases which is suppressed by over expression of caspase inhibitors like P35 and Diap1 clearly depicting the role of caspases in programmed cell death. Also apoptosis induced by knockdown of mof is rescued by JNK mutants of bsk and tak1 indicating the role of JNK in mof (RNAi) induced apoptosis. The adult eye ablation phenotype produced by ectopic expression of Hid, Rpr and Grim, was restored by over expression of Mof. Accumulation of Mof at the Diap1 promoter 800 bp upstream of the transcription start site in wild type larvae is significantly higher (up to twofolds) compared to mof (1) mutants. This enrichment coincides with modification of histone H4K16Ac indicating an induction of direct transcriptional up regulation of Diap1 by Mof. Based on these results we propose that apoptosis triggered by mof (RNAi) proceeds through a caspase-dependent and JNK mediated pathway.

  10. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen Ngoc, Tam Dan; Son, Young-Ok; Lim, Shin-Saeng

    2012-03-15

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G{sub 2}/M phase. The addition of NaFmore » induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53

  11. In-vivo nonlinear optical microscopy (NLOM) of epithelial-connective tissue interface (ECTI) reveals quantitative measures of neoplasia in hamster oral mucosa.

    PubMed

    Pal, Rahul; Yang, Jinping; Ortiz, Daniel; Qiu, Suimin; Resto, Vicente; McCammon, Susan; Vargas, Gracie

    2015-01-01

    The epithelial-connective tissue interface (ECTI) plays an integral role in epithelial neoplasia, including oral squamous cell carcinoma (OSCC). This interface undergoes significant alterations due to hyperproliferating epithelium that supports the transformation of normal epithelium to precancers and cancer. We present a method based on nonlinear optical microscopy to directly assess the ECTI and quantify dysplastic alterations using a hamster model for oral carcinogenesis. Neoplastic and non-neoplastic normal mucosa were imaged in-vivo by both multiphoton autofluorescence microscopy (MPAM) and second harmonic generation microscopy (SHGM) to obtain cross-sectional reconstructions of the oral epithelium and lamina propria. Imaged sites were biopsied and processed for histopathological grading and measurement of ECTI parameters. An ECTI shape parameter was calculated based on deviation from the linear geometry (ΔLinearity) seen in normal mucosa was measured using MPAM-SHGM and histology. The ECTI was readily visible in MPAM-SHGM and quantitative shape analysis showed ECTI deformation in dysplasia but not in normal mucosa. ΔLinearity was significantly (p < 0.01) higher in dysplasia (0.41±0.24) than normal (0.11±0.04) as measured in MPAM-SHGM and results were confirmed in histology which showed similar trends in ΔLinearity. Increase in ΔLinearity was also statistically significant for different grades of dysplasia. In-vivo ΔLinearity measurement alone from microscopy discriminated dysplasia from normal tissue with 87.9% sensitivity and 97.6% specificity, while calculations from histology provided 96.4% sensitivity and 85.7% specificity. Among other quantifiable architectural changes, a progressive statistically significant increase in epithelial thickness was seen with increasing grade of dysplasia. MPAM-SHGM provides new noninvasive ways for direct characterization of ECTI which may be used in preclinical studies to investigate the role of this interface in

  12. TGF-beta and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions.

    PubMed

    Mori, Shigeo; Matsuzaki, Koichi; Yoshida, Katsunori; Furukawa, Fukiko; Tahashi, Yoshiya; Yamagata, Hideo; Sekimoto, Go; Seki, Toshihito; Matsui, Hirofumi; Nishizawa, Mikio; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2004-09-23

    Although hepatocyte growth factor (HGF) can act synergistically or antagonistically with transforming growth factor-beta (TGF-beta) signaling, molecular mechanism of their crosstalk remains unknown. Using antibodies which selectively distinguished receptor-regulated Smads (R-Smads) phosphorylated at linker regions from those at C-terminal regions, we herein showed that either HGF or TGF-beta treatment of normal stomach-origin cells activated the JNK pathway, thereafter inducing endogenous R-Smads phosphorylation at linker regions. However, the phosphorylation at their C-terminal regions was not induced by HGF treatment. The activated JNK could directly phosphorylate R-Smads in vitro at the same sites that were phosphorylated in response to TGF-beta or HGF in vivo. Thus, the linker regions of R-Smads were the common phosphorylation sites for HGF and TGF-beta signaling pathways. The phosphorylation induced by simultaneous treatment with HGF and TGF-beta allowed R-Smads to associate with Smad4 and to translocate into the nucleus. JNK pathway involved HGF and TGF-beta-mediated infiltration potency since a JNK inhibitor SP600125 caused the reduction of invasive capacity induced by HGF and TGF-beta signals. Moreover, a combined treatment with HGF and TGF-beta led to a potent increase in plasminogen activator inhibitor type 1 transcriptional activity through Smad3 phosphorylation at the linker region. In contrast, HGF treatment reduced TGF-beta-dependent activation of p15INK4B promoter, in which Smad3 phosphorylation at the C-terminal region was involved. In conclusion, HGF and TGF-beta transmit the signals through JNK-mediated R-Smads phosphorylation at linker regions.

  13. Dual p38/JNK Mitogen Activated Protein Kinase Inhibitors Prevent Ozone-Induced Airway Hyperreactivity in Guinea Pigs

    PubMed Central

    Verhein, Kirsten C.; Salituro, Francesco G.; Ledeboer, Mark W.; Fryer, Allison D.; Jacoby, David B.

    2013-01-01

    Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinase (JNK) are MAPK family members that are activated by cellular stress and inflammation. To test the contribution of both p38 and JNK MAPK to ozone-induced airway hyperreactivity, guinea pigs were pretreated with dual p38 and JNK MAPK inhibitors (30 mg/kg, ip) 60 minutes before exposure to 2 ppm ozone or filtered air for 4 hours. One day later airway reactivity was measured in anesthetized animals. Ozone caused airway hyperreactivity one day post-exposure, and blocking p38 and JNK MAPK completely prevented ozone-induced airway hyperreactivity. Blocking p38 and JNK MAPK also suppressed parasympathetic nerve activity in air exposed animals, suggesting p38 and JNK MAPK contribute to acetylcholine release by airway parasympathetic nerves. Ozone inhibited neuronal M2 muscarinic receptors and blocking both p38 and JNK prevented M2 receptor dysfunction. Neutrophil influx into bronchoalveolar lavage was not affected by MAPK inhibitors. Thus p38 and JNK MAPK mediate ozone-induced airway hyperreactivity through multiple mechanisms including prevention of neuronal M2 receptor dysfunction. PMID:24058677

  14. Efavirenz and 8-hydroxyefavirenz induce cell death via a JNK- and BimEL-dependent mechanism in primary human hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bumpus, Namandje N., E-mail: nbumpus1@jhmi.edu

    Chronic use of efavirenz (EFV) has been linked to incidences of hepatotoxicity in patients receiving EFV to treat HIV-1. While recent studies have demonstrated that EFV stimulates hepatic cell death a role for the metabolites of efavirenz in this process has yet to be examined. In the present study, incubation of primary human hepatocytes with synthetic 8-hydroxyEFV (8-OHEFV), which is the primary metabolite of EFV, resulted in cell death, caspase-3 activation and reactive oxygen species formation. The metabolite exerted these effects at earlier time points and using lower concentrations than were required for the parent compound. In addition, pharmacological inhibitionmore » of cytochrome P450-dependent metabolism of EFV using 1-aminobenzotriazole markedly decreased reactive oxygen species formation and cell death. Treatment of primary human hepatocytes with EFV and 8-OHEFV also stimulated phosphorylation of c-Jun N-terminal kinase (JNK) as well as phosphorylation of the JNK substrate c-Jun. Further, the mRNA and protein expression of an isoform of Bim (Bcl-2 interacting mediator of cell death) denoted as BimEL, which is proapoptotic and has been shown to be modulated by JNK, was increased. Inhibition of JNK using SP600125 prevented the EFV- and 8-OHEFV-mediated cell death. Silencing of Bim using siRNA transfected into hepatocytes also prevented cell death resulting from 8-OHEFV-treatment. These data suggest that the oxidative metabolite 8-OHEFV is a more potent inducer of hepatic cell death than the parent compound EFV. Further, activation of the JNK signaling pathway and BimEL mRNA expression appear to be required for EFV- and 8-OHEFV-mediated hepatocyte death. -- Highlights: Black-Right-Pointing-Pointer 8-Hydroxyefavirenz is a more potent stimulator of cell death than efavirenz. Black-Right-Pointing-Pointer Efavirenz and 8-hydroxyefavirenz increase JNK activity and BimEL mRNA expression. Black-Right-Pointing-Pointer JNK and Bim are required for efavirenz- and

  15. Molybdenum induces pancreatic β-cell dysfunction and apoptosis via interdependent of JNK and AMPK activation-regulated mitochondria-dependent and ER stress-triggered pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tsung-Yuan; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Yen, Cheng-Chieh

    2016-03-01

    Molybdenum (Mo), a well-known toxic environmental and industrial pollutant, causes adverse health effects and diseases in humans and has received attention as a potential risk factor for DM. However, the roles of Mo in the mechanisms of the toxicological effects in pancreatic β-cells are mostly unclear. In this study, the results revealed dysfunction of insulin secretion and apoptosis in the pancreatic β-cell-derived RIN-m5F cells and the isolated mouse islets in response to Mo. These effects were accompanied by a mitochondria-dependent apoptotic signals including a decreased in the MMP, an increase in cytochrome c release, and the activation of caspase cascadesmore » and PARP. In addition, ER stress was triggered as indicated by several key molecules of the UPR. Furthermore, exposure to Mo induced the activation of ERK1/2, JNK, AMPKα, and GSK3-α/β. Pretreatment with specific pharmacological inhibitors (in RIN-m5F cells and isolated mouse islets) of JNK (SP600125) and AMPK (Compound C) or transfection with si-RNAs (in RIN-m5F cells) specific to JNK and AMPKα effectively prevented the Mo-induced apoptosis and related signals, but inhibitors of ERK1/2 and GSK3-α/β (PD98059 and LiCl, respectively) did not reverse the Mo-induced effects. Additionally, both the inhibitors and specific si-RNAs could suppress the Mo-induced phosphorylation of JNK and AMPKα each other. Taken together, these results suggest that Mo exerts its cytotoxicity on pancreatic β-cells by inducing dysfunction and apoptosis via interdependent JNK and AMPK activation downstream-regulated mitochondrial-dependent and ER stress-triggered apoptosis pathways. - Highlights: • Molybdenum (Mo) induces pancreatic β-cell dysfunction and apoptosis. • Mo causes β-cell death via mitochondria-dependent caspase cascades signals. • ER stress-triggered apoptotic pathway also regulates Mo-induced β-cell death. • Interdependent of JNK and AMPK activation involves in Mo-induced β-cell apoptosis.« less

  16. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress.

    PubMed

    Kant, Shashi; Standen, Claire L; Morel, Caroline; Jung, Dae Young; Kim, Jason K; Swat, Wojciech; Flavell, Richard A; Davis, Roger J

    2017-09-19

    Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH 2 -terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Two consecutive microtubule-based epithelial seaming events mediate dorsal closure in the scuttle fly Megaselia abdita.

    PubMed

    Fraire-Zamora, Juan Jose; Jaeger, Johannes; Solon, Jérôme

    2018-03-14

    Evolution of morphogenesis is generally associated with changes in genetic regulation. Here, we report evidence indicating that dorsal closure, a conserved morphogenetic process in dipterans, evolved as the consequence of rearrangements in epithelial organization rather than signaling regulation. In Drosophila melanogaster , dorsal closure consists of a two-tissue system where the contraction of extraembryonic amnioserosa and a JNK/Dpp-dependent epidermal actomyosin cable result in microtubule-dependent seaming of the epidermis. We find that dorsal closure in Megaselia abdita, a three-tissue system comprising serosa, amnion and epidermis, differs in morphogenetic rearrangements despite conservation of JNK/Dpp signaling. In addition to an actomyosin cable, M. abdita dorsal closure is driven by the rupture and contraction of the serosa and the consecutive microtubule-dependent seaming of amnion and epidermis. Our study indicates that the evolutionary transition to a reduced system of dorsal closure involves simplification of the seaming process without changing the signaling pathways of closure progression. © 2018, Fraire-Zamora et al.

  18. Two consecutive microtubule-based epithelial seaming events mediate dorsal closure in the scuttle fly Megaselia abdita

    PubMed Central

    Jaeger, Johannes

    2018-01-01

    Evolution of morphogenesis is generally associated with changes in genetic regulation. Here, we report evidence indicating that dorsal closure, a conserved morphogenetic process in dipterans, evolved as the consequence of rearrangements in epithelial organization rather than signaling regulation. In Drosophila melanogaster, dorsal closure consists of a two-tissue system where the contraction of extraembryonic amnioserosa and a JNK/Dpp-dependent epidermal actomyosin cable result in microtubule-dependent seaming of the epidermis. We find that dorsal closure in Megaselia abdita, a three-tissue system comprising serosa, amnion and epidermis, differs in morphogenetic rearrangements despite conservation of JNK/Dpp signaling. In addition to an actomyosin cable, M. abdita dorsal closure is driven by the rupture and contraction of the serosa and the consecutive microtubule-dependent seaming of amnion and epidermis. Our study indicates that the evolutionary transition to a reduced system of dorsal closure involves simplification of the seaming process without changing the signaling pathways of closure progression. PMID:29537962

  19. JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer

    PubMed Central

    Song, Wenqiang; Ma, Yufang; Wang, Jialiang; Brantley-Sieders, Dana; Chen, Jin

    2014-01-01

    Recent genome-wide analyses in human lung cancer revealed that EPHA2 receptor tyrosine kinase is overexpressed in non-small cell lung cancer (NSCLC), and high levels of EPHA2 correlate with poor clinical outcome. However, the mechanistic basis for EPHA2-mediated tumor promotion in lung cancer remains poorly understood. Here we show that the JNK/c-JUN signaling mediates EPHA2-dependent tumor cell proliferation and motility. A screen of phospho-kinase arrays revealed a decrease in phospho-c-JUN levels in EPHA2 knockdown cells. Knockdown of EPHA2 inhibited p-JNK and p-c-JUN levels in approximately 50% of NSCLC lines tested. Treatment of parental cells with SP600125, a JNK inhibitor, recapitulated defects in EPHA2-deficient tumor cells; whereas constitutively activated JNK mutants were sufficient to rescue phenotypes. Knockdown of EPHA2 also inhibited tumor formation and progression in xenograft animal models in vivo. Furthermore, we investigated the role of EPHA2 in cancer stem-like cells. RNAi-mediated depletion of EPHA2 in multiple NSCLC lines decreased the ALDH positive cancer stem-like population and tumor spheroid formation in suspension. Depletion of EPHA2 in sorted ALDH positive populations markedly inhibited tumorigenicity in nude mice. Furthermore, analysis of a human lung cancer tissue microarray revealed a significant, positive association between EPHA2 and ALDH expression, indicating an important role for EPHA2 in human lung cancer stem-like cells. Collectively, these studies revealed a critical role of JNK signaling in EPHA2-dependent lung cancer cell proliferation and motility and a role for EPHA2 in cancer stem-like cell function, providing evidence for EPHA2 as a potential therapeutic target in NSCLC. PMID:24607842

  20. Polycomb Repressive Complex 2 Enacts Wnt Signaling in Intestinal Homeostasis and Contributes to the Instigation of Stemness in Diseases Entailing Epithelial Hyperplasia or Neoplasia.

    PubMed

    Oittinen, Mikko; Popp, Alina; Kurppa, Kalle; Lindfors, Katri; Mäki, Markku; Kaikkonen, Minna U; Viiri, Keijo

    2017-02-01

    Canonical Wnt/β-catenin signaling regulates the homeostasis of intestinal epithelium by controlling the balance between intestinal stem cell self-renewal and differentiation but epigenetic mechanisms enacting the process are not known. We hypothesized that epigenetic regulator, Polycomb Repressive Complex-2 (PRC2), is involved in Wnt-mediated epithelial homeostasis on the crypt-villus axis and aberrancies therein are implicated both in celiac disease and in intestinal malignancies. We found that PRC2 establishes repressive crypt and villus specific trimethylation of histone H3 lysine 27 (H3K27me3) signature on genes responsible for, for example, nutrient transport and cell killing in crypts and, for example, proliferation and differentiation in mature villi, suggesting that PRC2 facilitates the Wnt-governed intestinal homeostasis. When celiac patients are on gluten-containing diet PRC2 is out-of-bounds active and consequently its target genes were found affected in intestinal epithelium. Significant set of effective intestinal PRC2 targets are also differentially expressed in colorectal adenoma and carcinomas. Our results suggest that PRC2 gives rise and maintains polar crypt and villus specific H3K27me3 signatures. As H3K27me3 is a mark enriched in developmentally important genes, identified intestinal PRC2 targets are possibly imperative drivers for enterocyte differentiation and intestinal stem cell maintenance downstream to Wnt-signaling. Our work also elucidates the mechanism sustaining the crypt hyperplasia in celiac disease and suggest that PRC2-dependent fostering of epithelial stemness is a common attribute in intestinal diseases in which epithelial hyperplasia or neoplasia prevails. Finally, this work demonstrates that in intestine PRC2 represses genes having both pro-stemness and pro-differentiation functions, fact need to be considered when designing epigenetic therapies including PRC2 as a drug target. Stem Cells 2017;35:445-457. © 2016 Alpha

  1. Orbital neoplasia in 23 dogs.

    PubMed

    Kern, T J

    1985-03-01

    Medical records of 23 dogs with histologically documented orbital neoplasia and admitted to the New York State College of Veterinary Medicine between 1975 and 1984 were reviewed. Almost all (91%) of the tumors were classified as malignant; 74% of the tumors arose as primary neoplasms within the orbit. Eleven tumor types of connective tissue, bone, epithelial, and hemolymphatic origin were represented. The typically afflicted dog was purebred, female, and middle-aged. Review of this series confirmed the clinical impression that orbital neoplasms in dogs are aggressive malignancies with poor long-term prognosis.

  2. The role of human papillomavirus vaccines in cervical neoplasia.

    PubMed

    Stern, P L; Faulkner, R; Veranes, E C; Davidson, E J

    2001-10-01

    Cervical cancer is the second most common cause of cancer-related death in women, in some developing countries accounting for the highest cancer mortality. The evidence for the association of high-risk human papillomavirus types with the aetiology of cervical neoplasia is firmly established, human papillomavirus being detected in virtually all cervical cancers. The risk of progression of precursor cervical intra-epithelial neoplasia lesions is associated with persistence of human papillomavirus infection. One strategy for the management of cervical neoplasia worldwide could be the development of prophylactic and/or therapeutic human papillomavirus vaccines. This chapter will discuss the natural history of human papillomavirus infection, viral immunity and the clinical course of resultant disease as the background to the effective design and use of human papillomavirus vaccines for protection or therapy. The progress of ongoing phase I and II clinical trials for several different vaccine preparations and the challenges for establishing their future use will be discussed. Copyright 2001 Harcourt Publishers Ltd.

  3. Indirubin Treatment of Lipopolysaccharide-Induced Mastitis in a Mouse Model and Activity in Mouse Mammary Epithelial Cells.

    PubMed

    Lai, Jin-Lun; Liu, Yu-Hui; Peng, Yong-Chong; Ge, Pan; He, Chen-Fei; Liu, Chang; Chen, Ying-Yu; Guo, Ai-Zhen; Hu, Chang-Min

    2017-01-01

    Indirubin is a Chinese medicine extracted from indigo and known to be effective for treating chronic myelogenous leukemia, neoplasia, and inflammatory disease. This study evaluated the in vivo anti-inflammatory activity of indirubin in a lipopolysaccharide- (LPS-) induced mouse mastitis model. The indirubin mechanism and targets were evaluated in vitro in mouse mammary epithelial cells. In the mouse model, indirubin significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia, milk stasis and local tissue necrosis, and neutrophil infiltration. Indirubin significantly decreased myeloperoxidase activity and downregulated the production of tumor necrosis factor- α , interleukin-1 β (IL-1 β ), and IL-6 caused by LPS. In vitro, indirubin inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner. It also downregulated LPS-induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF- κ B) P65 protein and inhibitor of kappa B. In addition to its effect on the NF- κ B signaling pathway, indirubin suppressed the mitogen-activated protein kinase (MAPK) signaling by inhibiting phosphorylation of extracellular signal-regulated kinase (ERK), P38, and c-jun NH2-terminal kinase (JNK). Indirubin improved LPS-induced mouse mastitis by suppressing TLR4 and downstream NF- κ B and MAPK pathway inflammatory signals and might be a potential treatment of mastitis and other inflammatory diseases.

  4. Protective Role of Taurine against Arsenic-Induced Mitochondria-Dependent Hepatic Apoptosis via the Inhibition of PKCδ-JNK Pathway

    PubMed Central

    Das, Joydeep; Ghosh, Jyotirmoy; Manna, Prasenjit; Sil, Parames C.

    2010-01-01

    Background Oxidative stress-mediated hepatotoxic effect of arsenic (As) is mainly due to the depletion of glutathione (GSH) in liver. Taurine, on the other hand, enhances intracellular production of GSH. Little is known about the mechanism of the beneficial role of taurine in As-induced hepatic pathophysiology. Therefore, in the present study we investigated its beneficial role in As-induced hepatic cell death via mitochondria-mediated pathway. Methodology/Principal Findings Rats were exposed to NaAsO2 (2 mg/kg body weight for 6 months) and the hepatic tissue was used for oxidative stress measurements. In addition, the pathophysiologic effect of NaAsO2 (10 µM) on hepatocytes was evaluated by determining cell viability, mitochondrial membrane potential and ROS generation. As caused mitochondrial injury by increased oxidative stress and reciprocal regulation of Bcl-2, Bcl-xL/Bad, Bax, Bim in association with increased level of Apaf-1, activation of caspase 9/3, cleavage of PARP protein and ultimately led to apoptotic cell death. In addition, As markedly increased JNK and p38 phosphorylation with minimal disturbance of ERK. Pre-exposure of hepatocytes to a JNK inhibitor SP600125 prevented As-induced caspase-3 activation, ROS production and loss in cell viability. Pre-exposure of hepatocytes to a p38 inhibitor SB2035, on the other hand, had practically no effect on these events. Besides, As activated PKCδ and pre-treatment of hepatocytes with its inhibitor, rottlerin, suppressed the activation of JNK indicating that PKCδ is involved in As-induced JNK activation and mitochondrial dependent apoptosis. Oral administration of taurine (50 mg/kg body weight for 2 weeks) both pre and post to NaAsO2 exposure or incubation of the hepatocytes with taurine (25 mM) were found to be effective in counteracting As-induced oxidative stress and apoptosis. Conclusions/Significance Results indicate that taurine treatment improved As-induced hepatic damages by inhibiting PKCδ-JNK

  5. JNK1 Inhibition Attenuates Hypoxia-Induced Autophagy and Sensitizes to Chemotherapy.

    PubMed

    Vasilevskaya, Irina A; Selvakumaran, Muthu; Roberts, David; O'Dwyer, Peter J

    2016-08-01

    Inhibition of hypoxia-induced stress signaling through JNK potentiates the effects of oxaliplatin. The JNK pathway plays a role in both autophagy and apoptosis; therefore, it was determined how much of the effect of JNK inhibition on oxaliplatin sensitivity is dependent on its effect on autophagy. We studied the impact of JNK isoform downregulation in the HT29 colon adenocarcinoma cell line on hypoxia- and oxaliplatin-induced responses. Electron microscopic analyses demonstrated that both oxaliplatin- and hypoxia-induced formations of autophagosomes were reduced significantly in HT29 cells treated with the JNK inhibitor SP600125. The role of specific JNK isoforms was defined using HT29-derived cell lines stably expressing dominant-negative constructs for JNK1 and JNK2 (HTJ1.3 and HTJ2.2, respectively). These cell lines demonstrated that functional JNK1 is required for hypoxia-induced autophagy and that JNK2 does not substitute for it. Inhibition of autophagy in HTJ1.3 cells also coincided with enhancement of intrinsic apoptosis. Analysis of Bcl2-family proteins revealed hyperphosphorylation of Bcl-XL in the HTJ1.3 cell line, but this did not lead to the expected dissociation from Beclin 1. Consistent with this, knockdown of Bcl-XL in HT29 cells did not significantly affect the induction of autophagy, but abrogated hypoxic resistance to oxaliplatin due to the faster and more robust activation of apoptosis. These data suggest that balance between autophagy and apoptosis is shifted toward apoptosis by downregulation of JNK1, contributing to oxaliplatin sensitization. These findings further support the investigation of JNK inhibition in colorectal cancer treatment. Mol Cancer Res; 14(8); 753-63. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. MKP-7, a JNK phosphatase, blocks ERK-dependent gene activation by anchoring phosphorylated ERK in the cytoplasm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masuda, Kouhei; Katagiri, Chiaki; Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo

    2010-03-05

    MAPK phosphatase-7 (MKP-7) was identified as a JNK-specific phosphatase. However, despite its high specificity for JNK, MKP-7 interacts also with ERK. We previously showed that as a physiological consequence of their interaction, activated ERK phosphorylates MKP-7 at Ser-446, and stabilizing MKP-7. In the present study, we analyzed MKP-7 function in activation of ERK. A time-course experiment showed that both MKP-7 and its phosphatase-dead mutant prolonged mitogen-induced ERK phosphorylation, suggesting that MKP-7 functions as a scaffold for ERK. An important immunohistological finding was that nuclear translocation of phospho-ERK following PMA stimulation was blocked by co-expressed MKP-7 and, moreover, that phospho-ERK co-localizedmore » with MKP-7 in the cytoplasm. Reporter gene analysis indicated that MKP-7 blocks ERK-mediated transcription. Overall, our data indicate that MKP-7 down-regulates ERK-dependent gene expression by blocking nuclear accumulation of phospho-ERK.« less

  7. Disruption of the Cdc42/Par6/aPKC or Dlg/Scrib/Lgl Polarity Complex Promotes Epithelial Proliferation via Overlapping Mechanisms.

    PubMed

    Schimizzi, Gregory V; Maher, Meghan T; Loza, Andrew J; Longmore, Gregory D

    2016-01-01

    The establishment and maintenance of apical-basal polarity is a defining characteristic and essential feature of functioning epithelia. Apical-basal polarity (ABP) proteins are also tumor suppressors that are targeted for disruption by oncogenic viruses and are commonly mutated in human carcinomas. Disruption of these ABP proteins is an early event in cancer development that results in increased proliferation and epithelial disorganization through means not fully characterized. Using the proliferating Drosophila melanogaster wing disc epithelium, we demonstrate that disruption of the junctional vs. basal polarity complexes results in increased epithelial proliferation via distinct downstream signaling pathways. Disruption of the basal polarity complex results in JNK-dependent proliferation, while disruption of the junctional complex primarily results in p38-dependent proliferation. Surprisingly, the Rho-Rok-Myosin contractility apparatus appears to play opposite roles in the regulation of the proliferative phenotype based on which polarity complex is disrupted. In contrast, non-autonomous Tumor Necrosis Factor (TNF) signaling appears to suppress the proliferation that results from apical-basal polarity disruption, regardless of which complex is disrupted. Finally we demonstrate that disruption of the junctional polarity complex activates JNK via the Rho-Rok-Myosin contractility apparatus independent of the cortical actin regulator, Moesin.

  8. DISTINCT FUNCTIONS OF JNK AND C-JUN IN OXIDANT-INDUCED HEPATOCYTE DEATH

    PubMed Central

    Amir, Muhammad; Liu, Kun; Zhao, Enpeng; Czaja, Mark J.

    2013-01-01

    Overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling is a central mechanism of hepatocyte injury and death including that from oxidative stress. However, the functions of JNK and c-Jun are still unclear, and this pathway also inhibits hepatocyte death. Previous studies of menadione-induced oxidant stress demonstrated that toxicity resulted from sustained JNK/c-Jun activation as death was blocked by the c-Jun dominant negative TAM67. To further delineate the function of JNK/c-Jun signaling in hepatocyte injury from oxidant stress, the effects of direct JNK inhibition on menadione-induced death were examined. In contrast to the inhibitory effect of TAM67, pharmacological JNK inhibition by SP600125 sensitized the rat hepatocyte cell line RALA255-10G to death from menadione. SP600125 similarly sensitized mouse primary hepatocytes to menadione toxicity. Death from SP600125/menadione was c-Jun dependent as it was blocked by TAM67, but independent of c-Jun phosphorylation. Death occurred by apoptosis and necrosis and activation of the mitochondrial death pathway. Short hairpin RNA knockdowns of total JNK or JNK2 sensitized to death from menadione, whereas a jnk1 knockdown was protective. Jnk2 null mouse primary hepatocytes were also sensitized to menadione death. JNK inhibition magnified decreases in cellular ATP content and β-oxidation induced by menadione. This effect mediated cell death as chemical inhibition of β-oxidation also sensitized cells to death from menadione, and supplementation with the β-oxidation substrate oleate blocked death. Components of the JNK/c-Jun signaling pathway have opposing functions in hepatocyte oxidant stress with JNK2 mediating resistance to cell death and c-Jun promoting death. PMID:22644775

  9. Enhanced IL-1{beta}-induced IL-8 production in cystic fibrosis lung epithelial cells is dependent of both mitogen-activated protein kinases and NF-{kappa}B signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muselet-Charlier, Celine; Universite Pierre et Marie Curie-Paris 6, Paris, UMR-S719, F-75012; Roque, Telma

    2007-06-01

    Transcription nuclear factor-{kappa}B (NF-{kappa}B) is hyperactivated in cystic fibrosis (CF) lung epithelial cells, and participates in exaggerated IL-8 production in the CF lung. We recently found that rapid activation of NF-{kappa}B occurred in a CF lung epithelial IB3-1 cell line (CF cells) upon IL-1{beta} stimulation, which was not observed in its CFTR-corrected lung epithelial S9 cell line (corrected cells). To test whether other signaling pathways such as that of mitogen-activated protein kinases (MAPKs) could be involved in IL-1{beta}-induced IL-8 production of CF cells, we investigated ERK1/2, JNK, and p38MAP signaling compared to NF-{kappa}B. Within 30 min, exposure to IL-1{beta} causedmore » high activation of NF-{kappa}B, ERK1/2, p38MAP but not JNK in CF cells compared to corrected cells. Treatment of IL-1{beta}-stimulated CF cells with a series of chemical inhibitors of NF-{kappa}B, ERK1/2, and p38MAP, when used separately, reduced slightly IL-8 production. However, when used together, these inhibitors caused a blockade in IL-1{beta}-induced IL-8 production in CF cells. Understanding of the cross-talk between NF-{kappa}B and MAPKs signaling in CF lung epithelial cells may help in developing new therapeutics to reduce lung inflammation in patients with CF.« less

  10. VEGF elicits epithelial-mesenchymal transition (EMT) in prostate intraepithelial neoplasia (PIN)-like cells via an autocrine loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Moreno, Oscar; Lecanda, Jon; Green, Jeffrey E.

    2010-02-15

    Vascular endothelial growth factor (VEGF) is overexpressed during the transition from prostate intraepithelial neoplasia (PIN) to invasive carcinoma. We have mimicked such a process in vitro using the PIN-like C3(1)/Tag-derived Pr-111 cell line, which expresses low levels of VEGF and exhibits very low tumorigenicity in vivo. Elevated expression of VEGF164 in Pr-111 cells led to a significant increase in tumorigenicity, invasiveness, proliferation rates and angiogenesis. Moreover, VEGF164 induced strong changes in cell morphology and cell transcriptome through an autocrine mechanism, with changes in TGF-beta1- and cytoskeleton-related pathways, among others. Further analysis of VEGF-overexpressing Pr-111 cells or following exogenous addition ofmore » recombinant VEGF shows acquisition of epithelial-mesenchymal transition (EMT) features, with an increased expression of mesenchymal markers, such as N-cadherin, Snail1, Snail2 (Slug) and vimentin, and a decrease in E-cadherin. Administration of VEGF led to changes in TGF-beta1 signaling, including reduction of Smad7 (TGF-beta inhibitory Smad), increase in TGF-betaR-II, and translocation of phospho-Smad3 to the nucleus. Our results suggest that increased expression of VEGF in malignant cells during the transition from PIN to invasive carcinoma leads to EMT through an autocrine loop, which would promote tumor cell invasion and motility. Therapeutic blockade of VEGF/TGF-beta1 in PIN lesions might impair not only tumor angiogenesis, but also the early dissemination of malignant cells outside the epithelial layer.« less

  11. β1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation.

    PubMed

    Sayeed, Aejaz; Lu, Huimin; Liu, Qin; Deming, David; Duffy, Alexander; McCue, Peter; Dicker, Adam P; Davis, Roger J; Gabrilovich, Dmitry; Rodeck, Ulrich; Altieri, Dario C; Languino, Lucia R

    2016-08-16

    Radiation therapy is an effective cancer treatment modality although tumors invariably become resistant. Using the transgenic adenocarcinoma of mouse prostate (TRAMP) model system, we report that a hypofractionated radiation schedule (10 Gy/day for 5 consecutive days) effectively blocks prostate tumor growth in wild type (β1wt /TRAMP) mice as well as in mice carrying a conditional ablation of β1 integrins in the prostatic epithelium (β1pc-/- /TRAMP). Since JNK is known to be suppressed by β1 integrins and mediates radiation-induced apoptosis, we tested the effect of SP600125, an inhibitor of c-Jun amino-terminal kinase (JNK) in the TRAMP model system. Our results show that SP600125 negates the effect of radiation on tumor growth in β1pc-/- /TRAMP mice and leads to invasive adenocarcinoma. These effects are associated with increased focal adhesion kinase (FAK) expression and phosphorylation in prostate tumors in β1pc-/- /TRAMP mice. In marked contrast, radiation-induced tumor growth suppression, FAK expression and phosphorylation are not altered by SP600125 treatment of β1wt /TRAMP mice. Furthermore, we have reported earlier that abrogation of insulin-like growth factor receptor (IGF-IR) in prostate cancer cells enhances the sensitivity to radiation. Here we further explore the β1/IGF-IR crosstalk and report that β1 integrins promote cell proliferation partly by enhancing the expression of IGF-IR. In conclusion, we demonstrate that β1 integrin-mediated inhibition of JNK signaling modulates tumor growth rate upon hypofractionated radiation.

  12. Novel mechanism of JNK pathway activation by adenoviral E1A

    PubMed Central

    Morrison, Helen; Pospelova, Tatiana V.; Pospelov, Valery A.; Herrlich, Peter

    2014-01-01

    The adenoviral oncoprotein E1A influences cellular regulation by interacting with a number of cellular proteins. In collaboration with complementary oncogenes, E1A fully transforms primary cells. As part of this action, E1A inhibits transcription of c-Jun:Fos target genes while promoting that of c-Jun:ATF2-dependent genes including jun. Both c-Jun and ATF2 are hyperphosphorylated in response to E1A. In the current study, E1A was fused with the ligand binding domain of the estrogen receptor (E1A-ER) to monitor the immediate effect of E1A activation. With this approach we now show that E1A activates c-Jun N-terminal kinase (JNK), the upstream kinases MKK4 and MKK7, as well as the small GTPase Rac1. Activation of the JNK pathway requires the N-terminal domain of E1A, and, importantly, is independent of transcription. In addition, it requires the presence of ERM proteins. Downregulation of signaling components upstream of JNK inhibits E1A-dependent JNK/c-Jun activation. Taking these findings together, we show that E1A activates the JNK/c-Jun signaling pathway upstream of Rac1 in a transcription-independent manner, demonstrating a novel mechanism of E1A action. PMID:24742962

  13. Epithelial alterations adjacent to invasive squamous carcinoma of the vulva.

    PubMed

    Gómez Rueda, N; García, A; Vighi, S; Belardi, M G; Cardinal, L; di Paola, G

    1994-07-01

    The slides of 64 vulvectomy specimens from vulvar squamous carcinoma were reviewed in order to study the histopathologic changes adjacent to the neoplasia. Normal epithelium was found in 7 cases (11%) and epithelial alterations adjacent to carcinoma in 59 (89%). The epithelial alterations found were: nonneoplastic epithelial disorder (NNDV) in 38 cases (59%) and vulvar intraepithelial neoplasia (VIN) in 19 (30%). The distribution of NNDV was: 20 cases of epithelial hyperplasia (EH) (31%), 6 of lichen sclerosus (9%) and 12 of the mixed type (19%). Sixteen cases of VIN 3 (25%) were undifferentiated, and three cases were differentiated VIN. Eighteen of 19 VIN cases were associated with NNDV, and 8 cases of undifferentiated VIN were associated with human papillomavirus infection. There was no apparent relationship between the associated lesions and tumor size, depth of invasion, lymph node metastases and clinical stage. Nevertheless, we found a significantly higher frequency of associated lesions in poorly differentiated tumors (P > .01). The most important finding was a high association between EH (50%) and VIN (30%) with carcinoma. VIN cases were almost always (95%) associated with EH.

  14. Neuroprotective Effects of the Absence of JNK1 or JNK3 Isoforms on Kainic Acid-Induced Temporal Lobe Epilepsy-Like Symptoms.

    PubMed

    de Lemos, Luisa; Junyent, Felix; Camins, Antoni; Castro-Torres, Rubén Darío; Folch, Jaume; Olloquequi, Jordi; Beas-Zarate, Carlos; Verdaguer, Ester; Auladell, Carme

    2018-05-01

    The activation of c-Jun-N-terminal kinases (JNK) pathway has been largely associated with the pathogenesis and the neuronal death that occur in neurodegenerative diseases. Altogether, this justifies why JNKs have become a focus of screens for new therapeutic strategies. The aim of the present study was to identify the role of the different JNK isoforms (JNK1, JNK2, and JNK3) in apoptosis and inflammation after induction of brain damage. To address this aim, we induced excitotoxicity in wild-type and JNK knockout mice (jnk1 -/- , jnk2 -/- , and jnk3 -/- ) via an intraperitoneal injection of kainic acid, an agonist of glutamic-kainate-receptors, that induce status epilepticus.Each group of animals was divided into two treatments: a single intraperitoneal dose of saline solution, used as a control, and a single intraperitoneal dose (30 mg/kg) of kainic acid. Our results reported a significant decrease in neuronal degeneration in the hippocampus of jnk1 -/- and jnk3 -/- mice after kainic acid treatment, together with reduced or unaltered expression of several apoptotic genes compared to WT treated mice. In addition, both jnk1 -/- and jnk3 -/- mice exhibited a reduction in glial reactivity, as shown by the lower expression of inflammatory genes and a reduction of JNK phosphorylation. In addition, in jnk3 -/- mice, the c-Jun phosphorylation was also diminished.Collectively, these findings provide compelling evidence that the absence of JNK1 or JNK3 isoforms confers neuroprotection against neuronal damage induced by KA and evidence, for the first time, the implication of JNK1 in excitotoxicity. Accordingly, JNK1 and/or JNK3 are promising targets for the prevention of cell death and inflammation during epileptogenesis.

  15. ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis

    PubMed Central

    Shi, Y; Nikulenkov, F; Zawacka-Pankau, J; Li, H; Gabdoulline, R; Xu, J; Eriksson, S; Hedström, E; Issaeva, N; Kel, A; Arnér, E S J; Selivanova, G

    2014-01-01

    Rescue of the p53 tumor suppressor is an attractive cancer therapy approach. However, pharmacologically activated p53 can induce diverse responses ranging from cell death to growth arrest and DNA repair, which limits the efficient application of p53-reactivating drugs in clinic. Elucidation of the molecular mechanisms defining the biological outcome upon p53 activation remains a grand challenge in the p53 field. Here, we report that concurrent pharmacological activation of p53 and inhibition of thioredoxin reductase followed by generation of reactive oxygen species (ROS), result in the synthetic lethality in cancer cells. ROS promote the activation of c-Jun N-terminal kinase (JNK) and DNA damage response, which establishes a positive feedback loop with p53. This converts the p53-induced growth arrest/senescence to apoptosis. We identified several survival oncogenes inhibited by p53 in JNK-dependent manner, including Mcl1, PI3K, eIF4E, as well as p53 inhibitors Wip1 and MdmX. Further, we show that Wip1 is one of the crucial executors downstream of JNK whose ablation confers the enhanced and sustained p53 transcriptional response contributing to cell death. Our study provides novel insights for manipulating p53 response in a controlled way. Further, our results may enable new pharmacological strategy to exploit abnormally high ROS level, often linked with higher aggressiveness in cancer, to selectively kill cancer cells upon pharmacological reactivation of p53. PMID:24413150

  16. Tumor suppressor roles of CENP-E and Nsl1 in Drosophila epithelial tissues.

    PubMed

    Clemente-Ruiz, Marta; Muzzopappa, Mariana; Milán, Marco

    2014-01-01

    Depletion of spindle assembly checkpoint (SAC) genes in Drosophila epithelial tissues leads to JNK-dependent programmed cell death and additional blockade of the apoptotic program drives tumorigenesis. A recent report proposes that chromosomal instability (CIN) is not the driving force in the tumorigenic response of the SAC-deficient tissue, and that checkpoint proteins exert a SAC-independent tumor suppressor role. This notion is based on observations that the depletion of CENP-E levels or prevention of Bub3 from binding to the kinetochore in Drosophila tissues unable to activate the apoptotic program induces CIN but does not cause hyperproliferation. Here we re-examined this proposal. In contrast to the previous report, we observed that depletion of CENP-E or Nsl1-the latter mediating kinetochore targeting of Bub3-in epithelial tissues unable to activate the apoptotic program induces significant levels of aneuploidy and drives tumor-like growth. The induction of the JNK transcriptional targets Wingless, a mitogenic molecule, and MMP1, a matrix metaloproteinase 1 involved in basement membrane degradation was also observed in these tumors. An identical response of the tissue was previously detected upon depletion of several SAC genes or genes involved in spindle assembly, chromatin condensation, and cytokinesis, all of which have been described to cause CIN. All together, these results reinforce the role of CIN in driving tumorigenesis in Drosophila epithelial tissues and question the proposed SAC-independent roles of checkpoint proteins in suppressing tumorigenesis. Differences in aneuploidy rates might explain the discrepancy between the previous report and our results.

  17. Stathmin Mediates Hepatocyte Resistance to Death from Oxidative Stress by down Regulating JNK

    PubMed Central

    Zhao, Enpeng; Amir, Muhammad; Lin, Yu; Czaja, Mark J.

    2014-01-01

    Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK). The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth. PMID:25285524

  18. Pathway-specific effect of caffeine on protection against UV irradiation-induced apoptosis in corneal epithelial cells.

    PubMed

    Wang, Ling; Lu, Luo

    2007-02-01

    To define the role of molecular interaction between the UV-induced JNK (c-Jun N-terminal kinase) cascade and corneal epithelial cell apoptosis and protection against apoptosis by caffeine. Rabbit and human corneal epithelial cells were cultured in DMEM/F12 medium containing 10% FBS and 5 microg/mL insulin at 37 degrees C in 5% CO(2). DNA fragmentation and ethidium bromide/acridine orange (EB/AO) nuclear staining were performed to detect cell death. Western blot, immunoprecipitation, and kinase assays were used to measure UV-induced mitogen-activated protein (MAP) kinase activity. UV irradiation-induced apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and MAKK4 (SEK1) upstream from JNK was caffeine sensitive. Caffeine (1,3,7-trimethylxanthine), an agent that is one of the most popular additions to food consumed in the world and a potential enhancer of chemotherapy, effectively protected corneal epithelial cells against apoptosis by its specific effect on the JNK cascade. Theophylline (1,3-dimethylxanthine) exhibited an effect similar to that of caffeine on prevention of UV irradiation-induced apoptosis. However, alterations of either intracellular cAMP or Ca(2+) levels did not alter the effect of caffeine on the JNK signaling pathway. In addition, the blockade of PI3K-like kinases by wortmannin had no impact on the protective effect of caffeine against UV irradiation-induced apoptosis, suggesting that the protective effect of caffeine acts through a specific mechanism involving UV irradiation-induced activation of ASK1 and SEK1. In contrast, caffeine had no effects on melphalan-, hyperosmotic stress-, or IL-1beta-induced activation of the JNK signaling pathway in these cells. UV irradiation stress-induced activation of the ASK1-SEK1-JNK signaling pathway leading to apoptosis is a caffeine-sensitive process, and caffeine, as a multifunctional agent in cells, can specifically interact with the pathway to protect against apoptosis.

  19. Disruption of the Cdc42/Par6/aPKC or Dlg/Scrib/Lgl Polarity Complex Promotes Epithelial Proliferation via Overlapping Mechanisms

    PubMed Central

    Schimizzi, Gregory V.; Maher, Meghan T.; Loza, Andrew J.; Longmore, Gregory D.

    2016-01-01

    The establishment and maintenance of apical-basal polarity is a defining characteristic and essential feature of functioning epithelia. Apical-basal polarity (ABP) proteins are also tumor suppressors that are targeted for disruption by oncogenic viruses and are commonly mutated in human carcinomas. Disruption of these ABP proteins is an early event in cancer development that results in increased proliferation and epithelial disorganization through means not fully characterized. Using the proliferating Drosophila melanogaster wing disc epithelium, we demonstrate that disruption of the junctional vs. basal polarity complexes results in increased epithelial proliferation via distinct downstream signaling pathways. Disruption of the basal polarity complex results in JNK-dependent proliferation, while disruption of the junctional complex primarily results in p38-dependent proliferation. Surprisingly, the Rho-Rok-Myosin contractility apparatus appears to play opposite roles in the regulation of the proliferative phenotype based on which polarity complex is disrupted. In contrast, non-autonomous Tumor Necrosis Factor (TNF) signaling appears to suppress the proliferation that results from apical-basal polarity disruption, regardless of which complex is disrupted. Finally we demonstrate that disruption of the junctional polarity complex activates JNK via the Rho-Rok-Myosin contractility apparatus independent of the cortical actin regulator, Moesin. PMID:27454609

  20. Activation of MAP kinases by hexavalent chromium, manganese and nickel in human lung epithelial cells.

    PubMed

    Tessier, Daniel M; Pascal, Laura E

    2006-12-01

    Epidemiological studies indicate that workers who perform welding operations are at increased risk for bronchitis, siderosis, occupational asthma and lung cancer due to fume exposure. Welding fumes are a complex chemical mixture, and the metal composition is hypothesized to be an etiological factor in respiratory disease due to this exposure. In the present study, human lung epithelial cells in vitro responded to hexavalent chromium, manganese and nickel over a concentration range of 0.2-200 microM with a significant increase in intracellular phosphoprotein (a measure of stress response pathway activation). The mitogen-activated protein kinases ERK1/2, SAPK/JNK and p38 were activated via phosphorylation following 1-h exposures. Hexavalent chromium up-regulated p-38 phosphorylation 23-fold and SAPK/JNK phosphorylation 17-fold, with a comparatively modest 4-fold increase in ERK1/2 phosphorylation. Manganese caused a two- to four-fold increase in SAPK/JNK and ERK 1/2 phosphorylation, with no observed effects on p38 kinase. Nickel caused increased (two-fold) phosphorylation of ERK 1/2 only, and was not cytotoxic over the tested concentration range. The observed effects of welding fume metals on cellular signaling in lung epithelium demonstrate a potentially significant interplay between stress-response signaling (p38 and SAPK/JNK) and anti-apototic signaling (ERK 1/2) that is dependant on the specific metal or combination of metals involved.

  1. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals.

    PubMed

    Richardson, Rebecca; Metzger, Manuel; Knyphausen, Philipp; Ramezani, Thomas; Slanchev, Krasimir; Kraus, Christopher; Schmelzer, Elmon; Hammerschmidt, Matthias

    2016-06-15

    Re-epithelialization of cutaneous wounds in adult mammals takes days to complete and relies on numerous signalling cues and multiple overlapping cellular processes that take place both within the epidermis and in other participating tissues. Re-epithelialization of partial- or full-thickness skin wounds of adult zebrafish, however, is extremely rapid and largely independent of the other processes of wound healing. Live imaging after treatment with transgene-encoded or chemical inhibitors reveals that re-epithelializing keratinocytes repopulate wounds by TGF-β- and integrin-dependent lamellipodial crawling at the leading edges of the epidermal tongue. In addition, re-epithelialization requires long-range epithelial rearrangements, involving radial intercalations, flattening and directed elongation of cells - processes that are dependent on Rho kinase, JNK and, to some extent, planar cell polarity within the epidermis. These rearrangements lead to a massive recruitment of keratinocytes from the adjacent epidermis and make re-epithelialization independent of keratinocyte proliferation and the mitogenic effect of FGF signalling, which are only required after wound closure, allowing the epidermis outside the wound to re-establish its normal thickness. Together, these results demonstrate that the adult zebrafish is a valuable in vivo model for studying and visualizing the processes involved in cutaneous wound closure, facilitating the dissection of direct from indirect and motogenic from mitogenic effects of genes and molecules affecting wound re-epithelialization. © 2016. Published by The Company of Biologists Ltd.

  2. Both internalization and AIP1 association are required for tumor necrosis factor receptor 2-mediated JNK signaling.

    PubMed

    Ji, Weidong; Li, Yonghao; Wan, Ting; Wang, Jing; Zhang, Haifeng; Chen, Hong; Min, Wang

    2012-09-01

    The proinflammtory cytokine tumor necrosis factor (TNF), primarily via TNF receptor 1 (TNFR1), induces nuclear factor-κB (NF-κB)-dependent cell survival, and c-Jun N-terminal kinase (JNK) and caspase-dependent cell death, regulating vascular endothelial cell (EC) activation and apoptosis. However, signaling by the second receptor, TNFR2, is poorly understood. The goal of this study was to dissect how TNFR2 mediates NF-κB and JNK signaling in vascular EC, and its relevance to in vivo EC function. We show that TNFR2 contributes to TNF-induced NF-κB and JNK signaling in EC as TNFR2 deletion or knockdown reduces the TNF responses. To dissect the critical domains of TNFR2 that mediate the TNF responses, we examine the activity of TNFR2 mutant with a specific deletion of the TNFR2 intracellular region, which contains conserved domain I, domain II, domain III, and 2 TNFR-associated factor-2-binding sites. Deletion analyses indicate that different sequences on TNFR2 have distinct roles in NF-κB and JNK activation. Specifically, deletion of the TNFR-associated factor-2-binding sites (TNFR2-59) diminishes the TNFR2-mediated NF-κB, but not JNK activation; whereas, deletion of domain II or domain III blunts TNFR2-mediated JNK but not NF-κB activation. Interestingly, we find that the TNFR-associated factor-2-binding sites ensure TNFR2 on the plasma membrane, but the di-leucine LL motif within the domain II and aa338-355 within the domain III are required for TNFR2 internalization as well as TNFR2-dependent JNK signaling. Moreover, domain III of TNFR2 is responsible for association with ASK1-interacting protein-1, a signaling adaptor critical for TNF-induced JNK signaling. While TNFR2 containing the TNFR-associated factor-2-binding sites prevents EC cell death, a specific activation of JNK without NF-κB activation by TNFR2-59 strongly induces caspase activation and EC apoptosis. Our data reveal that both internalization and ASK1-interacting protein-1 association are

  3. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia.

    PubMed

    Srigley, John R; Delahunt, Brett; Eble, John N; Egevad, Lars; Epstein, Jonathan I; Grignon, David; Hes, Ondrej; Moch, Holger; Montironi, Rodolfo; Tickoo, Satish K; Zhou, Ming; Argani, Pedram

    2013-10-01

    The classification working group of the International Society of Urological Pathology consensus conference on renal neoplasia was in charge of making recommendations regarding additions and changes to the current World Health Organization Classification of Renal Tumors (2004). Members of the group performed an exhaustive literature review, assessed the results of the preconference survey and participated in the consensus conference discussion and polling activities. On the basis of the above inputs, there was consensus that 5 entities should be recognized as new distinct epithelial tumors within the classification system: tubulocystic renal cell carcinoma (RCC), acquired cystic disease-associated RCC, clear cell (tubulo) papillary RCC, the MiT family translocation RCCs (in particular t(6;11) RCC), and hereditary leiomyomatosis RCC syndrome-associated RCC. In addition, there are 3 rare carcinomas that were considered as emerging or provisional new entities: thyroid-like follicular RCC; succinate dehydrogenase B deficiency-associated RCC; and ALK translocation RCC. Further reports of these entities are required to better understand the nature and behavior of these highly unusual tumors. There were a number of new concepts and suggested modifications to the existing World Health Organization 2004 categories. Within the clear cell RCC group, it was agreed upon that multicystic clear cell RCC is best considered as a neoplasm of low malignant potential. There was agreement that subtyping of papillary RCC is of value and that the oncocytic variant of papillary RCC should not be considered as a distinct entity. The hybrid oncocytic chromophobe tumor, which is an indolent tumor that occurs in 3 settings, namely Birt-Hogg-Dubé Syndrome, renal oncocytosis, and as a sporadic neoplasm, was placed, for the time being, within the chromophobe RCC category. Recent advances related to collecting duct carcinoma, renal medullary carcinoma, and mucinous spindle cell and tubular RCC

  4. Flat epithelial atypia of the breast.

    PubMed

    Lerwill, Melinda F

    2008-04-01

    Flat epithelial atypia is a presumably neoplastic alteration of terminal duct-lobular units that is characterized by the replacement of the native luminal epithelium by ductal cells demonstrating low-grade cytologic atypia. The atypical cells maintain a "flat" pattern of growth without evidence of architectural atypicality. Morphologic, immunohistochemical, and molecular investigations support that flat epithelial atypia represents an early step in the evolution of low-grade ductal carcinomas. It is frequently seen in association with atypical ductal hyperplasia, low-grade ductal carcinoma in situ, invasive tubular carcinoma, and lobular neoplasia. The risk for subsequent breast carcinoma remains to be defined, but flat epithelial atypia likely represents a nonobligate precursor with an extended time course to progression. Certain benign alterations may superficially mimic its appearance; careful attention to cytologic and architectural characteristics can help one distinguish these unrelated entities from flat epithelial atypia.

  5. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships

    PubMed Central

    Zeke, András; Misheva, Mariya

    2016-01-01

    SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  6. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships.

    PubMed

    Zeke, András; Misheva, Mariya; Reményi, Attila; Bogoyevitch, Marie A

    2016-09-01

    The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Cyanidin-3-glucoside Alleviates 4-Hydroxyhexenal-Induced NLRP3 Inflammasome Activation via JNK-c-Jun/AP-1 Pathway in Human Retinal Pigment Epithelial Cells.

    PubMed

    Jin, Xiaolu; Wang, Chengtao; Wu, Wei; Liu, Tingting; Ji, Baoping; Zhou, Feng

    2018-01-01

    Recently, the NLRP3 inflammasome activation in the eyes has been known to be associated with the pathogenesis of age-related macular degeneration. The aim of this study was to investigate the protective effects of cyanidin-3-glucoside (C3G), an important anthocyanin with great potential for preventing eye diseases, against 4-hydroxyhexenal- (HHE-) induced inflammatory damages in human retinal pigment epithelial cells, ARPE-19. We noticed that C3G pretreatment to the ARPE-19 cells rescued HHE-induced antiproliferative effects. Cell apoptosis ratio induced by HHE was also decreased by C3G, measured by flow cytometry. The activation of NLRP3 inflammasome induced by HHE was found with increases of caspase-1 activity, proinflammatory cytokine releases (IL-1 β and IL-18), and NLRP3 inflammasome-related gene expressions (NLRP3, IL-1 β , IL-18, and caspase-1). The C3G showed potent inhibitive effects on these NLRP3 inflammasome activation hallmarks induced by HHE. Moreover, we noticed that the C3G's pretreatment leads to a delayed and a decreased JNK activation in HHE-challenged ARPE-19 cells. Finally, using a luciferase reporter gene assay system, we demonstrated that HHE-induced activation protein- (AP-) 1 transcription activity was abolished by C3G pretreatment in a dose-dependent manner. Taken together, these data showed that HHE leads to inflammatory damages to ARPE-19 cells while C3G has great protective effects, highlighting future potential applications of C3G against AMD-associated inflammation.

  8. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling

    PubMed Central

    Vin, Harina; Ojeda, Sandra S; Ching, Grace; Leung, Marco L; Chitsazzadeh, Vida; Dwyer, David W; Adelmann, Charles H; Restrepo, Monica; Richards, Kristen N; Stewart, Larissa R; Du, Lili; Ferguson, Scarlett B; Chakravarti, Deepavali; Ehrenreiter, Karin; Baccarini, Manuela; Ruggieri, Rosamaria; Curry, Jonathan L; Kim, Kevin B; Ciurea, Ana M; Duvic, Madeleine; Prieto, Victor G; Ullrich, Stephen E; Dalby, Kevin N; Flores, Elsa R; Tsai, Kenneth Y

    2013-01-01

    Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001 PMID:24192036

  9. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches.

    PubMed

    Seki, Ekihiro; Brenner, David A; Karin, Michael

    2012-08-01

    c-Jun-N-terminal kinase (JNK) is a mitogen-activated protein kinase family member that is activated by diverse stimuli, including cytokines (such as tumor necrosis factor and interleukin-1), reactive oxygen species (ROS), pathogens, toxins, drugs, endoplasmic reticulum stress, free fatty acids, and metabolic changes. Upon activation, JNK induces multiple biologic events through the transcription factor activator protein-1 and transcription-independent control of effector molecules. JNK isozymes regulate cell death and survival, differentiation, proliferation, ROS accumulation, metabolism, insulin signaling, and carcinogenesis in the liver. The biologic functions of JNK are isoform, cell type, and context dependent. Recent studies using genetically engineered mice showed that loss or hyperactivation of the JNK pathway contributes to the development of inflammation, fibrosis, cancer growth, and metabolic diseases that include obesity, hepatic steatosis, and insulin resistance. We review the functions and pathways of JNK in liver physiology and pathology and discuss findings from preclinical studies with JNK inhibitors. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Time-and Concentration-Dependent Cytotoxicity of Ricin in Human Lung Epithelial Cells

    DTIC Science & Technology

    2007-07-01

    lectin, ricin communis agglutinin, which is not directly cytotoxic but does have an affinity for red blood cells and can lead to agglutination and...Time- and Concentration-Dependent Cytotoxicity of Ricin in Human Lung Epithelial Cells Sharmaine Ramasamy and David Proll Human...Disease Control (CDC) Select Agent List. Using human small airway epithelial cells , this is the first study to investigate the time- and dose-dependent

  11. Autophagy blockade sensitizes the anticancer activity of CA-4 via JNK-Bcl-2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangling; Luo, Peihua; Wang, Jincheng

    Combretastatin A-4 (CA-4) has already entered clinical trials of solid tumors over ten years. However, the limited anticancer activity and dose-dependent toxicity restrict its clinical application. Here, we offered convincing evidence that CA-4 induced autophagy in various cancer cells, which was demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Interestingly, CA-4-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5 and Beclin 1). The enhanced anticancer activity of CA-4 andmore » 3-MA was further confirmed in the SGC-7901 xenograft tumor model. These findings suggested that CA-4-elicited autophagic response played a protective role that impeded the eventual cell death while autophagy inhibition was expected to improve chemotherapeutic efficacy of CA-4. Meanwhile, CA-4 treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor or JNK siRNA inhibited autophagy but promoted CA-4-induced apoptosis, indicating a key requirement of JNK-Bcl-2 pathway in the activation of autophagy by CA-4. We also identified that pretreatment of Bcl-2 inhibitor (ABT-737) could significantly enhance anticancer activity of CA-4 due to inhibition of autophagy. Taken together, our data suggested that the JNK-Bcl-2 pathway was considered as the critical regulator of CA-4-induced protective autophagy and a potential drug target for chemotherapeutic combination. - Highlights: • Autophagy inhibition could be a potential for combretastatin A-4 antitumor efficacy. • The JNK-Bcl-2 pathway plays a critical role in CA-4-induced autophagy. • ABT-737 enhances CA-4 anticancer activity due to inhibition of autophagy.« less

  12. Ultra Fine Particles from Diesel Engines Induce Vascular Oxidative Stress via JNK Activation

    PubMed Central

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2011-01-01

    Exposure of particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultra fine particles (UFP) from diesel vehicle engines have been shown to be pro-atherogenic in apoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induced vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intra-cellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O2·-) production in human aortic endothelial cells (HAEC). Flow cytometry (FACS) showed that UFP increased MitoSOX Red intensity specific for mitochondrial superoxide. Protein carbonyl content is increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated hemeoxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pre-treatment with antioxidant, N-acetyl cysteine (NAC), significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP stimulated O2·- production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation play an important role in UFP-induced oxidative stress and stress response gene expression. PMID:19154785

  13. Neoplasia: The Second Decade

    PubMed Central

    Rehemtulla, Alnawaz

    2008-01-01

    This issue marks the end of the 10-year anniversary of Neoplasia where we have seen exciting growth in both number of submitted and published articles in Neoplasia. Neoplasia was first published in 1999. During the past 10 years, Neoplasia has dynamically adapted to the needs of the cancer research community as technologies have advanced. Neoplasia is currently providing access to articles through PubMed Central to continue to facilitate rapid broad-based dissemination of published findings to the scientific community through an Open Access model. This has in part helped Neoplasia to achieve an improved impact factor this past year, demonstrating that the manuscripts published by Neoplasia are of great interest to the overall cancer research community. This past year, Neoplasia received a record number of articles for review and has had a 21% increase in the number of published articles. PMID:19048110

  14. Variable effects of the mitoK(ATP) channel modulators diazoxide and 5-HD in ATP-depleted renal epithelial cells.

    PubMed

    Nilakantan, Vani; Liang, Huanling; Mortensen, Jordan; Taylor, Erin; Johnson, Christopher P

    2010-02-01

    The role of mitochondrial K(ATP) (mitoK(ATP)) channels in renal ischemia-reperfusion injury is controversial with studies showing both protective and deleterious effects. In this study, we compared the effects of the putative mitoK(ATP) opener, diazoxide, and the mitoK(ATP) blocker, 5-hydroxydecanoate (5-HD) on cytotoxicity and apoptosis in tubular epithelial cells derived from rat (NRK-52E) and pig (LLC-PK1) following in vitro ischemic injury. Following ATP depletion-recovery, there was a significant increase in cytotoxicity in both NRK cells and LLC-PK1 cells although NRK cells were more sensitive to the injury. Diazoxide treatment attenuated cytotoxicity in both cell types and 5-HD treatment-increased cytotoxicity in the sensitive NRK cells in a superoxide-dependant manner. The protective effect of diazoxide was also reversed in the presence of 5-HD in ATP-depleted NRK cells. The ATP depletion-mediated increase in superoxide was enhanced by both diazoxide and 5-HD with the effect being more pronounced in the cells undergoing 5-HD treatment. Further, ATP depletion-induced activation of caspase-3 was decreased by diazoxide in NRK cells. In order to determine the signaling pathways involved in apoptosis, we examined the activation of Erk and JNK in ATP-depleted NRK cells. Diazoxide-activated Erk in ATP-depleted cells, but did not have any effect on JNK activation. In contrast, 5-HD did not impact Erk levels but increased JNK activation even under controlled conditions. Further, the use of a JNK inhibitor with 5-HD reversed the deleterious effects of 5-HD. This study demonstrates that in cells that are sensitive to ATP depletion-recovery, mitoK(ATP) channels protect against ATP depletion-mediated cytotoxicity and apoptosis through Erk- and JNK-dependant mechanisms.

  15. Mangiferin inhibits lipopolysaccharide-induced production of interleukin-6 in human oral epithelial cells by suppressing toll-like receptor signaling.

    PubMed

    Li, Hao; Wang, Qi; Chen, Xinmin; Ding, Yi; Li, Wei

    2016-11-01

    Oral epithelial cells have currently been found to play an important role in inflammatory modulation in periodontitis. Mangiferin is a natural glucosylxanthone with anti-inflammatory activity. The aim of this study was to investigate the regulatory effect of mangiferin on lipopolysaccharide (LPS)-induced production of proinflammatory cytokine interleukin-6 (IL-6) in oral epithelial cells and the underlying mechanisms. The levels of LPS-induced IL-6 production in OKF6/TERT-2 oral keratinocytes were detected using enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor (TLR) 2 and TLR4 was determined using western blot analysis. And the phosphorylation of TLR downstream nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) was examined using cell-based protein phosphorylation ELISA kits. We found that mangiferin reduced LPS-upregulated IL-6 production in OKF6/TERT-2 cells. Additionally, mangiferin inhibited LPS-induced TLR2 and TLR4 overexpression, and suppressed the phosphorylation of NF-κB, p38 MAPK and JNK. Moreover, mangiferin repressed IL-6 production and TLR signaling activation in a dose-dependent manner after 24h treatment. Mangiferin decreases LPS-induced production of IL-6 in human oral epithelial cells by suppressing TLR signaling, and this glucosylxanthone may have potential for the treatment of periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Arachidonic acid induces macrophage cell cycle arrest through the JNK signaling pathway.

    PubMed

    Shen, Ziying; Ma, Yunqing; Ji, Zhonghao; Hao, Yang; Yan, Xuan; Zhong, Yuan; Tang, Xiaochun; Ren, Wenzhi

    2018-02-09

    Arachidonic acid (AA) has potent pro-apoptotic effects on cancer cells at a low concentration and on macrophages at a very high concentration. However, the effects of AA on the macrophage cell cycle and related signaling pathways have not been fully investigated. Herein we aim to observe the effect of AA on macrophages cell cycle. AA exposure reduced the viability and number of macrophages in a dose- and time-dependent manner. The reduction in RAW264.7 cell viability was not caused by apoptosis, as indicated by caspase-3 and activated caspase-3 detection. Further research illustrated that AA exposure induced RAW264.7 cell cycle arrested at S phase, and some cell cycle-regulated proteins were altered accordingly. Moreover, JNK signaling was stimulated by AA, and the stimulation was partially reversed by a JNK signaling inhibitor in accordance with cell cycle-related factors. In addition, nuclear and total Foxo1/3a and phosphorylated Foxo1/3a were elevated by AA in a dose- and time-dependent manner, and this elevation was suppressed by the JNK signaling inhibitor. Our study demonstrated that AA inhibits macrophage viability by inducing S phase cell cycle arrest. The JNK signaling pathway and the downstream FoxO transcription factors are involved in AA-induced RAW264.7 cell cycle arrest.

  17. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain

    PubMed Central

    Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R.; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong

    2009-01-01

    Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, TNF-α transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-α/JNK pathway. MCP-1 upregulation by TNF-α was dose-dependently inhibited by the JNK inhibitors SP600125 and D-JNKI-1. Spinal injection of TNF-α produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Further, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase (ERK) in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous excitatory synaptic currents (sEPSCs) but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Taken together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes following JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management. PMID:19339605

  18. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain.

    PubMed

    Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong

    2009-04-01

    Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.

  19. Discrepancy between endoscopic forceps biopsy and endoscopic resection in gastric epithelial neoplasia.

    PubMed

    Lim, Hyun; Jung, Hwoon-Yong; Park, Young Soo; Na, Hee Kyong; Ahn, Ji Yong; Choi, Ji Young; Lee, Jeong Hoon; Kim, Mi-Young; Choi, Kwi-Sook; Kim, Do Hoon; Choi, Kee Don; Song, Ho June; Lee, Gin Hyug; Kim, Jin-Ho

    2014-04-01

    Endoscopic forceps biopsy (EFB) is a major diagnostic procedure for gastric epithelial neoplasia (GEN). However, discrepancy between the result of EFB and endoscopic resection (ER) is not uncommon. Thus, there is controversy over whether specimens obtained by EFB are optimal for diagnosis of GEN. We investigated the discrepancy between EFB and ER in the diagnosis of GEN. A total of 1,850 GEN cases were histologically diagnosed with EFB, including 954 low-grade dysplasias (LGDs), 315 high-grade dysplasias (HGDs), and 581 carcinomas. Following diagnosis with EFB, all patients were treated with ER. We retrospectively reviewed the pathologic findings and patient characteristics and analyzed predictors for the discrepancy between the two procedures (largest diameter, number of biopsy fragments, number of biopsy fragments/largest diameter, location, macroscopic type, color, surface unevenness, and erosion). The overall discrepancy rate between EFB and ER was 31.7 % (587/1,850). Among the discordant group, 440 (23.9 %) cases showed a higher grade of disease after ER; 229 of the 954 LGDs (24.0 %) were diagnosed as HGD or carcinoma, 166 of the 315 HGDs (52.7 %) as carcinoma, and 45 of the 581 differentiated carcinomas (7.7 %) as undifferentiated carcinoma. In the LGD group with EFB, the largest diameter (≥1.8 cm; P < 0.001), surface unevenness (P = 0.014), and depressed macroscopic type (P < 0.001) were factors associated with discrepancy. In the carcinoma group with EFB, flat macroscopic type (P = 0.043) was the only significant factor. In the HGD group with EFB, there were no significant factors for discrepancy. EFB can be insufficient for diagnosing GENs, and ER can be considered not only as treatment but also as a diagnostic modality in GEN. It is especially pertinent to all cases of HGD regardless of their endoscopic features and to cases of LGDs with the largest lesion diameter ≥1.8 cm, surface unevenness, or a depressed macroscopic type.

  20. Mitotic and apoptotic activity in colorectal neoplasia.

    PubMed

    Kohoutova, Darina; Pejchal, Jaroslav; Bures, Jan

    2018-05-18

    Colorectal cancer (CRC) is third most commonly diagnosed cancer worldwide. The aim of the prospective study was to evaluate mitosis and apoptosis of epithelial cells at each stage of colorectal neoplasia. A total of 61 persons were enrolled into the study: 18 patients with non-advanced colorectal adenoma (non-a-A), 13 patients with advanced colorectal adenoma (a-A), 13 patients with CRC and 17 controls: individuals with normal findings on colonoscopy. Biopsy samples were taken from pathology (patients) and healthy mucosa (patients and healthy controls). Samples were formalin-fixed paraffin-embedded and stained with haematoxylin-eosin. Mitotic and apoptotic activity were evaluated in lower and upper part of the crypts and in the superficial compartment. Apoptotic activity was also assessed using detection of activated caspase-3. In controls, mitotic activity was present in lower part of crypts, accompanied with low apoptotic activity. Mitotic and apoptotic activity decreased (to almost zero) in upper part of crypts. In superficial compartment, increase in apoptotic activity was observed. Transformation of healthy mucosa into non-a-A was associated with significant increase of mitotic activity in lower and upper part of the crypts and with significant increase of apoptotic activity in all three compartments; p < 0.05. Transformation of non-a-A into a-A did not lead to any further significant increase in apoptotic activity, but was related to significant increase in mitotic activity in upper part of crypts and superficial compartment. A significant decrease in apoptotic activity was detected in all three comparments of CRC samples compared to a-A; p < 0.05. No differences in mitotic and apoptotic activity between biopsies in healthy controls and biopsy samples from healthy mucosa in patients with colorectal neoplasia were observed. Detection of activated caspase-3 confirmed the above findings in apoptotic activity. Significant dysregulation of mitosis and apoptosis

  1. LASER treatment for women with high-grade vaginal intraepithelial neoplasia: A propensity-matched analysis on the efficacy of ablative versus excisional procedures.

    PubMed

    Bogani, Giorgio; Ditto, Antonino; Martinelli, Fabio; Mosca, Lavinia; Chiappa, Valentina; Rossetti, Diego; Leone Roberti Maggiore, Umberto; Sabatucci, Ilaria; Lorusso, Domenica; Raspagliesi, Francesco

    2018-05-14

    To investigate the long-term effectiveness of LASER treatment in women affected by high-grade vaginal intra-epithelial neoplasia. Data of consecutive women treated for high-grade vaginal intra-epithelial neoplasia were retrieved. Efficacy and long-term effectiveness of ablative and excisional procedures were tested using a propensity-matched algorithm. Risk of recurrence over the time was assessed using Kaplan-Meier and Cox models. Overall, 204 patients met the inclusion criteria. LASER ablation and exicision were performed in 169 (82.8%) and 35 (17.2%) patients. A total of 41 (20%) patients developed high-grade vaginal intraepithelial neoplasia at a median follow-up of 65 (range, 6-120) months. We observed that only HPV persistence (HR: 2.37 [95%CI:1.03, 5.42]; P = 0.04) was associated with the risk of recurrence at multivariate analysis. Seven (3.4%) invasive cancers of the lower genital tract were observed in our population. Considering the efficacy of type of procedure (after we applied the propensity-matched analysis), we observed that type of procedure did not influence persistence of HPV infection (22.8% after excision and 15.7% after ablation; P = 0.424). Similarly, recurrence (17.1% vs. 18.6%; P = 1.00) and lower genital tract (2.8% vs. 1.4%; P = 1.00) rates were similar between groups. Women affected by high-grade vaginal intra-epithelial neoplasia are at high risk of recurrence. LASER ablation seems to be equivalent to excision in term of long-term effectiveness. Lasers Surg. Med. 9999:1-7, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  2. TNF-α Decreases VEGF Secretion in Highly Polarized RPE Cells but Increases It in Non-Polarized RPE Cells Related to Crosstalk between JNK and NF-κB Pathways

    PubMed Central

    Terasaki, Hiroto; Kase, Satoru; Shirasawa, Makoto; Otsuka, Hiroki; Hisatomi, Toshio; Sonoda, Shozo; Ishida, Susumu; Ishibashi, Tatsuro; Sakamoto, Taiji

    2013-01-01

    Asymmetrical secretion of vascular endothelial growth factor (VEGF) by retinal pigment epithelial (RPE) cells in situ is critical for maintaining the homeostasis of the retina and choroid. VEGF is also involved in the development and progression of age-related macular degeneration (AMD). We studied the effect of tumor necrosis factor-α (TNF-α) on the secretion of VEGF in polarized and non-polarized RPE cells (P-RPE cells and N-RPE cells, respectively) in culture and in situ in rats. A subretinal injection of TNF-α caused a decrease in VEGF expression and choroidal atrophy. Porcine RPE cells were seeded on Transwell™ filters, and their maturation and polarization were confirmed by the asymmetrical VEGF secretion and trans electrical resistance. Exposure to TNF-α decreased the VEGF secretion in P-RPE cells but increased it in N-RPE cells in culture. TNF-α inactivated JNK in P-RPE cells but activated it in N-RPE cells, and TNF-α activated NF-κB in P-RPE cells but not in N-RPE cells. Inhibition of NF-κB activated JNK in both types of RPE cells indicating crosstalk between JNK and NF-κB. TNF-α induced the inhibitory effects of NF-κB on JNK in P-RPE cells because NF-κB is continuously inactivated. In N-RPE cells, however, it was not evident because NF-κB was already activated. The basic activation pattern of JNK and NF-κB and their crosstalk led to opposing responses of RPE cells to TNF-α. These results suggest that VEGF secretion under inflammatory conditions depends on cellular polarization, and the TNF-α-induced VEGF down-regulation may result in choroidal atrophy in polarized physiological RPE cells. TNF-α-induced VEGF up-regulation may cause neovascularization by non-polarized or non-physiological RPE cells. PMID:23922887

  3. A sestrin-dependent Erk/Jnk/p38 MAPK activation complex inhibits immunity during ageing

    PubMed Central

    Lanna, Alessio; Gomes, Daniel C O; Muller-Durovic, Bojana; McDonnell, Thomas; Escors, David; Gilroy, Derek W; Lee, Jun Hee; Karin, Michael; Akbar, Arne N

    2016-01-01

    Mitogen activated protein kinases (MAPKs) including Erk, Jnk and p38 regulate diverse cellular functions, and are thought to be controlled by independent upstream activation cascades. Here we show that the sestrins bind to and co-ordinate simultaneous Erk, Jnk and p38 MAPK activation in T lymphocytes within a new immune-inhibitory complex (sestrin-MAPK Activation Complex; sMAC). Whereas sestrin ablation resulted in broad reconstitution of immune function in stressed T cells, inhibition of individual MAPKs only allowed partial functional recovery. T cells from old humans and mice were more likely to form the sMAC, and disruption of this complex restored antigen-specific functional responses in these cells. Correspondingly, sestrin deficiency or simultaneous inhibition of all three MAPKs enhanced vaccine responsiveness in old mice. Thus, disruption of sMAC provides a foundation for rejuvenating immunity during ageing. PMID:28114291

  4. Flat Epithelial Atypia of the Breast.

    PubMed

    Collins, Laura C

    2009-06-01

    Lesions of the breast characterized by enlarged terminal duct lobular units lined by columnar epithelial cells are being encountered increasingly in breast biopsy specimens. Some of these lesions feature cuboidal to columnar epithelial cells in which the lining cells exhibit cytologic atypia. The role of these lesions (recently designated "flat epithelial atypia" [FEA]) in breast tumor progression is still emerging. FEA commonly coexists with well-developed examples of atypical ductal hyperplasia, low-grade ductal carcinoma in situ, lobular neoplasia, and tubular carcinoma. These findings and those of recent genetic studies suggest that FEA is a neoplastic lesion that may represent a precursor to or the earliest morphologic manifestation of ductal carcinoma in situ. Additional studies are needed to better understand the biologic nature and clinical significance of these lesions. Copyright © 2009 Elsevier Inc. All rights reserved.

  5. CpG Island Methylator Phenotype-High Colorectal Cancers and Their Prognostic Implications and Relationships with the Serrated Neoplasia Pathway

    PubMed Central

    Rhee, Ye-Young; Kim, Kyung-Ju; Kang, Gyeong Hoon

    2017-01-01

    The concept of a CpG island methylator phenotype (CIMP) was first introduced by Toyota and Issa to describe a subset of colorectal cancers (CRCs) with concurrent hypermethylation of multiple CpG island loci. The concept of CIMP as a molecular carcinogenesis mechanism was consolidated by the identification of the serrated neoplasia pathway, in which CIMP participates in the initiation and progression of serrated adenomas. Distinct clinicopathological and molecular features of CIMP-high (CIMP-H) CRCs have been characterized, including proximal colon location, older age of onset, female preponderance, and frequent associations of high-level microsatellite instability and BRAF mutations. CIMP-H CRCs arise in sessile or traditional serrated adenomas and thus tend to display the morphological characteristics of serrated adenomas, including epithelial serration, vesicular nuclei, and abundant cytoplasm. Both the frequent association of CIMP and poor prognosis and different responses of CRCs to adjuvant therapy depending on CIMP status indicate clinical implications. In this review, we present an overview of the literature documenting the relevant findings of CIMP-H CRCs and their relationships with the serrated neoplasia pathway. PMID:27885175

  6. CpG Island Methylator Phenotype-High Colorectal Cancers and Their Prognostic Implications and Relationships with the Serrated Neoplasia Pathway.

    PubMed

    Rhee, Ye-Young; Kim, Kyung-Ju; Kang, Gyeong Hoon

    2017-01-15

    The concept of a CpG island methylator phenotype (CIMP) was first introduced by Toyota and Issa to describe a subset of colorectal cancers (CRCs) with concurrent hypermethylation of multiple CpG island loci. The concept of CIMP as a molecular carcinogenesis mechanism was consolidated by the identification of the serrated neoplasia pathway, in which CIMP participates in the initiation and progression of serrated adenomas. Distinct clinicopathological and molecular features of CIMP-high (CIMP-H) CRCs have been characterized, including proximal colon location, older age of onset, female preponderance, and frequent associations of high-level microsatellite instability and BRAF mutations. CIMP-H CRCs arise in sessile or traditional serrated adenomas and thus tend to display the morphological characteristics of serrated adenomas, including epithelial serration, vesicular nuclei, and abundant cytoplasm. Both the frequent association of CIMP and poor prognosis and different responses of CRCs to adjuvant therapy depending on CIMP status indicate clinical implications. In this review, we present an overview of the literature documenting the relevant findings of CIMP-H CRCs and their relationships with the serrated neoplasia pathway.

  7. JNK: bridging the insulin signaling and inflammatory pathway.

    PubMed

    Liu, Gang; Rondinone, Cristina M

    2005-10-01

    Obesity and insulin resistance are strongly associated with systemic markers of inflammation and endoplasmic reticulum stress. c-Jun N-terminal kinases (JNK) are activated by inflammatory cytokines and have a key role in beta-cell apoptosis and in negative regulation of insulin signaling. JNK1-deficient mice are protected from diet-induced obesity and insulin resistance, while genetically obese mice with targeted mutations in JNK1 are leaner and have reduced insulin and blood glucose levels. These studies validate JNK as a link between inflammation and metabolic diseases and as a promising drug target. This review highlights recent advances in small-molecule inhibitors of JNK that have also been targeted for other diseases with an inflammatory component such as stroke, rheumatoid arthritis, and Alzheimer's and Parkinson's diseases.

  8. The JNK inhibitor XG-102 protects against TNBS-induced colitis.

    PubMed

    Reinecke, Kirstin; Eminel, Sevgi; Dierck, Franziska; Roessner, Wibke; Kersting, Sabine; Chromik, Ansgar Michael; Gavrilova, Olga; Laukevicience, Ale; Leuschner, Ivo; Waetzig, Vicki; Rosenstiel, Philip; Herdegen, Thomas; Sina, Christian

    2012-01-01

    The c-Jun N-terminal kinase (JNK)-inhibiting peptide D-JNKI-1, syn. XG-102 was tested for its therapeutic potential in acute inflammatory bowel disease (IBD) in mice. Rectal instillation of the chemical irritant trinitrobenzene sulfonic acid (TNBS) provoked a dramatic acute inflammation in the colon of 7-9 weeks old mice. Coincident subcutaneous application of 100 µg/kg XG-102 significantly reduced the loss of body weight, rectal bleeding and diarrhoea. After 72 h, the end of the study, the colon was removed and immuno-histochemically analysed. XG-102 significantly reduced (i) pathological changes such as ulceration or crypt deformation, (ii) immune cell pathology such as infiltration and presence of CD3- and CD68-positive cells, (iii) the production of tumor necrosis factor (TNF)-α in colon tissue cultures from TNBS-treated mice, (iv) expression of Bim, Bax, FasL, p53, and activation of caspase 3, (v) complexation of JNK2 and Bim, and (vi) expression and activation of the JNK substrate and transcription factor c-Jun. A single application of subcutaneous XG-102 was at least as effective or even better depending on the outcome parameter as the daily oral application of sulfasalazine used for treatment of IBD.The successful and substantial reduction of the severe, TNBS-evoked intestinal damages and clinical symptoms render the JNK-inhibiting peptide XG-102 a powerful therapeutic principle of IBD.

  9. A novel immunocompetent murine model for Candida albicans-promoted oral epithelial dysplasia

    PubMed Central

    DWIVEDI, P. P.; MALLYA, S.; DONGARI-BAGTZOGLOU, A.

    2009-01-01

    Candida albicans is a common opportunistic pathogen found in the oral mucosa. Clinical observations indicate a significant positive association between oral Candida carriage or infection and oral epithelial dysplasia/neoplasia. The aim of this study was to test whether C. albicans is able to promote epithelial dysplasia or carcinoma in a mouse model of infection where a carcinogen (4 Nitroquinoline 1-oxide [4NQO]) was used as initiator of neoplasia. Mice were divided into four groups: group 1 received 4NQO alone; group 2 received 4NQO followed by C. albicans (ATCC 90234); group 3 received vehicle dimethyl sulfoxide (DMSO) followed by C. albicans and group 4 was untreated. Although 4NQO treated mice did not develop oral lesions, mice exposed to both 4NQO and C. albicans developed oral dysplastic lesions 19 weeks after exposure to 4NQO. Mice challenged with C. albicans only developed hyperplastic lesions. The expression of Ki-67 and p16, two cell-cycle associated proteins that are frequently deregulated in oral dysplasia/neoplasia, was also tested in these lesions. Ki-67 and p16 expression increased from normal to hyperplastic to dysplastic mucosa and was highest in the group exposed to both 4NQO and C. albicans. In conclusion, we showed that C. albicans plays a role in the promotion of oral dysplasia in a mouse model of infection when 4NQO was used as initiator of oral neoplasia. PMID:18608888

  10. Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notcovich, Cintia; Laboratorio de Farmacologia de Receptores, Catedra de Quimica Medicinal, Departamento de Farmacologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires; Diez, Federico

    2010-02-01

    It is well established that histamine modulates cell proliferation through the activation of the histamine H1 receptor (H1R), a G protein-coupled receptor (GPCR) that is known to couple to phospholipase C (PLC) activation via Gq. In the present study, we aimed to determine whether H1R activation modulates Rho GTPases, well-known effectors of Gq/G{sub 11}-coupled receptors, and whether such modulation influences cell proliferation. Experiments were carried out in CHO cells stably expressing H1R (CHO-H1R). By using pull-down assays, we found that both histamine and a selective H1R agonist activated Rac and RhoA in a time- and dose-dependent manner without significant changesmore » in the activation of Cdc42. Histamine response was abolished by the H1R antagonist mepyramine, RGS2 and the PLC inhibitor U73122, suggesting that Rac and RhoA activation is mediated by H1R via Gq coupling to PLC stimulation. Histamine caused a marked activation of serum response factor activity via the H1R, as determined with a serum-responsive element (SRE) luciferase reporter, and this response was inhibited by RhoA inactivation with C3 toxin. Histamine also caused a significant activation of JNK which was inhibited by expression of the Rac-GAP {beta}2-chimaerin. On the other hand, H1R-induced ERK1/2 activation was inhibited by U73122 but not affected by C3 or {beta}2-chimaerin, suggesting that ERK1/2 activation was dependent on PLC and independent of RhoA or Rac. [{sup 3}H]-Thymidine incorporation assays showed that both histamine and the H1R agonist inhibited cell proliferation in a dose-dependent manner and that the effect was independent of RhoA but partially dependent on JNK and Rac. Our results reveal that functional coupling of the H1R to Gq-PLC leads to the activation of RhoA and Rac small GTPases and suggest distinct roles for Rho GTPases in the control of cell proliferation by histamine.« less

  11. Stepwise radical endoscopic resection for eradication of Barrett's oesophagus with early neoplasia in a cohort of 169 patients.

    PubMed

    Pouw, Roos E; Seewald, Stefan; Gondrie, Joep J; Deprez, Pierre H; Piessevaux, Hubert; Pohl, Heiko; Rösch, Thomas; Soehendra, Nib; Bergman, Jacques J

    2010-09-01

    Endoscopic resection is safe and effective to remove early neoplasia (ie,high-grade intra-epithelial neoplasia/early cancer) in Barrett's oesophagus. To prevent metachronous lesions during follow-up, the remaining Barrett's oesophagus can be removed by stepwise radical endoscopic resection (SRER). The aim was to evaluate the combined experience in four tertiary referral centres with SRER to eradicate Barrett's oesophagus with early neoplasia. Retrospective cohort study. Four tertiary referral centres. 169 patients (151 males, age 64 years (IQR 57-71), Barrett's oesophagus 3 cm (IQR 2-5)) with early neoplasia in Barrett's oesophagus < or = 5 cm, without deep submucosal infiltration or lymph node metastases, treated by SRER between January 2000 and September 2006. Endoscopic resection every 4-8 weeks, until complete endoscopic and histological eradication of Barrett's oesophagus and neoplasia. According to intention-to-treat analysis complete eradication of all neoplasia and all intestinal metaplasia by the end of the treatment phase was reached in 97.6% (165/169) and 85.2% (144/169) of patients, respectively. One patient had progression of neoplasia during treatment and died of metastasised adenocarcinoma (0.6%). After median follow-up of 32 months (IQR 19-49), complete eradication of neoplasia and intestinal metaplasia was sustained in 95.3% (161/169) and 80.5% (136/169) of patients, respectively. Acute, severe complications occurred in 1.2% of patients, and 49.7% of patients developed symptomatic stenosis. SRER of Barrett's oesophagus < or = 5 cm containing early neoplasia appears to be an effective treatment modality with a low rate of recurrent lesions during follow-up. The procedure, however, is technically demanding and is associated with oesophageal stenosis in half of the patients.

  12. Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett's-associated neoplasia.

    PubMed

    Thekkek, Nadhi; Lee, Michelle H; Polydorides, Alexandros D; Rosen, Daniel G; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2015-05-01

    Current imaging tools are associated with inconsistent sensitivity and specificity for detection of Barrett's-associated neoplasia. Optical imaging has shown promise in improving the classification of neoplasia in vivo. The goal of this pilot study was to evaluate whether in vivo vital dye fluorescence imaging (VFI) has the potential to improve the accuracy of early-detection of Barrett's-associated neoplasia. In vivo endoscopic VFI images were collected from 65 sites in 14 patients with confirmed Barrett's esophagus (BE), dysplasia, oresophageal adenocarcinoma using a modular video endoscope and a high-resolution microendoscope(HRME). Qualitative image features were compared to histology; VFI and HRME images show changes in glandular structure associated with neoplastic progression. Quantitative image features in VFI images were identified for objective image classification of metaplasia and neoplasia, and a diagnostic algorithm was developed using leave-one-out cross validation. Three image features extracted from VFI images were used to classify tissue as neoplastic or not with a sensitivity of 87.8% and a specificity of 77.6% (AUC = 0.878). A multimodal approach incorporating VFI and HRME imaging can delineate epithelial changes present in Barrett's-associated neoplasia. Quantitative analysis of VFI images may provide a means for objective interpretation of BE during surveillance.

  13. Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: First in-human results

    PubMed Central

    Sturm, Matthew B.; Joshi, Bishnu P.; Lu, Shaoying; Piraka, Cyrus; Khondee, Supang; Elmunzer, B. Joseph; Kwon, Richard S.; Beer, David G.; Appelman, Henry; Turgeon, D. Kim; Wang, Thomas D.

    2013-01-01

    Esophageal adenocarcinoma is rising rapidly in incidence, and usually develops from Barrett’s esophagus, a precursor condition commonly found in patients with chronic acid reflux. Pre-malignant lesions are challenging to detect on conventional screening endoscopy because of their flat appearance. Molecular changes can be used to improve detection of early neoplasia. We have developed a peptide that binds specifically to high-grade dysplasia and adenocarcinoma. We first applied the peptide ex vivo to esophageal specimens from 17 patients to validate specific binding. Next, we performed confocal endomicroscopy in vivo in 25 human subjects after topical peptide administration and found 3.8-fold greater fluorescence intensity for esophageal neoplasia compared with Barrett’s esophagus and squamous epithelium with 75% sensitivity and 97% specificity. No toxicity was attributed to the peptide in either animal or patient studies. Therefore, our first-in-humans results show that this targeted imaging agent is safe, and may be useful for guiding tissue biopsy and for early detection of esophageal neoplasia and potentially other cancers of epithelial origin, such as bladder, colon, lung, pancreas, and stomach. PMID:23658246

  14. A Quantitative RNAi Screen for JNK Modifiers Identifies Pvr as a Novel Regulator of Drosophila Immune Signaling

    PubMed Central

    Bond, David; Foley, Edan

    2009-01-01

    Drosophila melanogaster responds to gram-negative bacterial challenges through the IMD pathway, a signal transduction cassette that is driven by the coordinated activities of JNK, NF-κB and caspase modules. While many modifiers of NF-κB activity were identified in cell culture and in vivo assays, the regulatory apparatus that determines JNK inputs into the IMD pathway is relatively unexplored. In this manuscript, we present the first quantitative screen of the entire genome of Drosophila for novel regulators of JNK activity in the IMD pathway. We identified a large number of gene products that negatively or positively impact on JNK activation in the IMD pathway. In particular, we identified the Pvr receptor tyrosine kinase as a potent inhibitor of JNK activation. In a series of in vivo and cell culture assays, we demonstrated that activation of the IMD pathway drives JNK-dependent expression of the Pvr ligands, Pvf2 and Pvf3, which in turn act through the Pvr/ERK MAP kinase pathway to attenuate the JNK and NF-κB arms of the IMD pathway. Our data illuminate a poorly understood arm of a critical and evolutionarily conserved innate immune response. Furthermore, given the pleiotropic involvement of JNK in eukaryotic cell biology, we believe that many of the novel regulators identified in this screen are of interest beyond immune signaling. PMID:19893628

  15. Fluoxetine a novel anti-hepatitis C virus agent via ROS-, JNK-, and PPARβ/γ-dependent pathways.

    PubMed

    Young, Kung-Chia; Bai, Chyi-Huey; Su, Hui-Chen; Tsai, Pei-Ju; Pu, Chien-Yu; Liao, Chao-Sheng; Lin, Yu-Min; Lai, Hsin-Wen; Chong, Lee-Won; Tsai, Yau-Sheng; Tsao, Chiung-Wen

    2014-10-01

    More than 20% of chronic hepatitis C (CHC) patients receiving interferon-alpha (IFN-α)-based anti-hepatitis C virus (HCV) therapy experienced significant depression, which was relieved by treatment with fluoxetine. However, whether and how fluoxetine affected directly the anti-HCV therapy remained unclear. Here, we demonstrated that fluoxetine inhibited HCV infection and blocked the production of reactive oxygen species (ROS) and lipid accumulation in Huh7.5 cells. Fluoxetine facilitated the IFN-α-mediated antiviral actions via activations of signal transducer and activator of transcription (STAT)-1 and c-Jun amino-terminal kinases (JNK). Alternatively, fluoxetine elevated peroxisome proliferator-activated receptor (PPAR) response element activity under HCV infection. The inhibitory effects of fluoxetine on HCV infection and lipid accumulation, but not production of ROS, were partially reversed by the PPAR-β, -γ, and JNK antagonists. Furthermore, fluoxetine intervention to the IFN-α-2b regimen facilitated to reduce HCV titer and alanine transaminase level for CHC patients. Therefore, fluoxetine intervention to the IFN-α-2b regimen improved the efficacy of anti-HCV treatment, which might be related to blockades of ROS generation and lipid accumulation and activation of host antiviral JNK/STAT-1 and PPARβ/γ signals. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Linking JNK Activity to the DNA Damage Response

    PubMed Central

    Picco, Vincent

    2013-01-01

    The activity of c-Jun N-terminal kinase (JNK) was initially described as ultraviolet- and oncogene-induced kinase activity on c-Jun. Shortly after this initial discovery, JNK activation was reported for a wider variety of DNA-damaging agents, including γ-irradiation and chemotherapeutic compounds. As the DNA damage response mechanisms were progressively uncovered, the mechanisms governing the activation of JNK upon genotoxic stresses became better understood. In particular, a recent set of papers links the physical breakage in DNA, the activation of the transcription factor NF-κB, the secretion of TNF-α, and an autocrine activation of the JNK pathway. In this review, we will focus on the pathway that is initiated by a physical break in the DNA helix, leading to JNK activation and the resultant cellular consequences. The implications of these findings will be discussed in the context of cancer therapy with DNA-damaging agents. PMID:24349633

  17. Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition

    PubMed Central

    McCoy, Erica L.; Iwanaga, Ritsuko; Jedlicka, Paul; Abbey, Nee-Shamo; Chodosh, Lewis A.; Heichman, Karen A.; Welm, Alana L.; Ford, Heide L.

    2009-01-01

    Six1 is a developmentally regulated homeoprotein with limited expression in most normal adult tissues and frequent misexpression in a variety of malignancies. Here we demonstrate, using a bitransgenic mouse model, that misexpression of human Six1 in adult mouse mammary gland epithelium induces tumors of multiple histological subtypes in a dose-dependent manner. The neoplastic lesions induced by Six1 had an in situ origin, showed diverse differentiation, and exhibited progression to aggressive malignant neoplasms, as is often observed in human carcinoma of the breast. Strikingly, the vast majority of Six1-induced tumors underwent an epithelial-mesenchymal transition (EMT) and expressed multiple targets of activated Wnt signaling, including cyclin D1. Interestingly, Six1 and cyclin D1 coexpression was found to frequently occur in human breast cancers and was strongly predictive of poor prognosis. We further show that Six1 promoted a stem/progenitor cell phenotype in the mouse mammary gland and in Six1-driven mammary tumors. Our data thus provide genetic evidence for a potent oncogenic role for Six1 in mammary epithelial neoplasia, including promotion of EMT and stem cell–like features. PMID:19726883

  18. Low humidity environmental challenge causes barrier disruption and cornification of the mouse corneal epithelium via a c-jun N-terminal kinase 2 (JNK2) pathway.

    PubMed

    Pelegrino, F S A; Pflugfelder, S C; De Paiva, C S

    2012-01-01

    Patients with tear dysfunction often experience increased irritation symptoms when subjected to drafty and/or low humidity environmental conditions. The purpose of this study was to investigate the effects of low humidity stress (LHS) on corneal barrier function and expression of cornified envelope (CE) precursor proteins in the epithelium of C57BL/6 and c-jun N-terminal kinase 2 (JNK2) knockout (KO) mice. LHS was induced in both strains by exposure to an air draft for 15 (LHS15D) or 30 days (LHS30D) at a relative humidity <30%RH. Nonstressed (NS) mice were used as controls. Oregon-green-dextran uptake was used to measure corneal barrier function. Levels of small proline-rich protein (SPRR)-2, involucrin, occludin, and MMP-9 were evaluated by immunofluorescent staining in cornea sections. Wholemount corneas immunostained for occludin were used to measure mean apical cell area. Gelatinase activity was evaluated by in situ zymography. Expression of MMP, CE and inflammatory cytokine genes was evaluated by qPCR. C57BL/6 mice exposed to LHS15D showed corneal barrier dysfunction, decreased apical corneal epithelial cell area, higher MMP-9 expression and gelatinase activity and increased involucrin and SPRR-2 immunoreactivity in the corneal epithelium compared to NS mice. JNK2KO mice were resistant to LHS-induced corneal barrier disruption. MMP-3,-9,-13, IL-1α, IL-1β, involucrin and SPRR-2a RNA transcripts were significantly increased in C57BL/6 mice at LHS15D, while no change was noted in JNK2KO mice. LHS is capable of altering corneal barrier function, promoting pathologic alteration of the TJ complex and stimulating production of CE proteins by the corneal epithelium. Activation of the JNK2 signaling pathway contributes to corneal epithelial barrier disruption in LHS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Using optical markers of nondysplastic rectal epithelial cells to identify patients with ulcerative colitis-associated neoplasia.

    PubMed

    Bista, Rajan K; Brentnall, Teresa A; Bronner, Mary P; Langmead, Christopher J; Brand, Randall E; Liu, Yang

    2011-12-01

    Current surveillance guidelines for patients with long-standing ulcerative colitis (UC) recommend repeated colonoscopy with random biopsies, which is time-consuming, discomforting, and expensive. A less invasive strategy is to identify neoplasia by analyzing biomarkers from the more accessible rectum to predict the need for a full colonoscopy. The goal of this pilot study was to evaluate whether optical markers of rectal mucosa derived from a novel optical technique, partial-wave spectroscopic microscopy (PWS), could identify UC patients with high-grade dysplasia (HGD) or cancer (CA) present anywhere in their colon. Banked frozen nondysplastic mucosal rectal biopsies were used from 28 UC patients (15 without dysplasia and 13 with concurrent HGD or CA). The specimen slides were made using a touch prep method and underwent PWS analysis. We divided the patients into two groups: 13 as a training set and an independent 15 as a validation set. We identified six optical markers, ranked by measuring the information gain with respect to the outcome of cancer. The most effective markers were selected by maximizing the cross-validated training accuracy of a Naive Bayes classifier. The optimal classifier was applied to the validation data yielding 100% sensitivity and 75% specificity. Our results indicate that the PWS-derived optical markers can accurately predict UC patients with HGD/CA through assessment of rectal epithelial cells. By aiming for high sensitivity, our approach could potentially simplify the surveillance of UC patients and improve overall resource utilization by identifying patients with HGD/CA who should proceed with colonoscopy. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  20. Neurotensin-induced Proinflammatory Signaling in Human Colonocytes Is Regulated by β-Arrestins and Endothelin-converting Enzyme-1-dependent Endocytosis and Resensitization of Neurotensin Receptor 1*

    PubMed Central

    Law, Ivy Ka Man; Murphy, Jane E.; Bakirtzi, Kyriaki; Bunnett, Nigel W.; Pothoulakis, Charalabos

    2012-01-01

    The neuropeptide/hormone neurotensin (NT) mediates intestinal inflammation and cell proliferation by binding of its high affinity receptor, neurotensin receptor-1 (NTR1). NT stimulates IL-8 expression in NCM460 human colonic epithelial cells by both MAP kinase- and NF-κB-dependent pathways. Although the mechanism of NTR1 endocytosis has been studied, the relationship between NTR1 intracellular trafficking and inflammatory signaling remains to be elucidated. In the present study, we show that in NCM460 cells exposed to NT, β-arrestin-1 (βARR1), and β-arrestin-2 (βARR2) translocate to early endosomes together with NTR1. Endothelin-converting enzyme-1 (ECE-1) degrades NT in acidic conditions, and its activity is crucial for NTR1 recycling. Pretreatment of NCM460 cells with the ECE-1 inhibitor SM19712 or gene silencing of βARR1 or βARR2 inhibits NT-stimulated ERK1/2 and JNK phosphorylation, NF-κB p65 nuclear translocation and phosphorylation, and IL-8 secretion. Furthermore, NT-induced cell proliferation, but not IL-8 transcription, is attenuated by the JNK inhibitor, JNK(AII). Thus, NTR1 internalization and recycling in human colonic epithelial cells involves βARRs and ECE-1, respectively. Our results also indicate that βARRs and ECE-1-dependent recycling regulate MAP kinase and NF-κB signaling as well as cell proliferation in human colonocytes in response to NT. PMID:22416137

  1. Neurotensin-induced proinflammatory signaling in human colonocytes is regulated by β-arrestins and endothelin-converting enzyme-1-dependent endocytosis and resensitization of neurotensin receptor 1.

    PubMed

    Law, Ivy Ka Man; Murphy, Jane E; Bakirtzi, Kyriaki; Bunnett, Nigel W; Pothoulakis, Charalabos

    2012-04-27

    The neuropeptide/hormone neurotensin (NT) mediates intestinal inflammation and cell proliferation by binding of its high affinity receptor, neurotensin receptor-1 (NTR1). NT stimulates IL-8 expression in NCM460 human colonic epithelial cells by both MAP kinase- and NF-κB-dependent pathways. Although the mechanism of NTR1 endocytosis has been studied, the relationship between NTR1 intracellular trafficking and inflammatory signaling remains to be elucidated. In the present study, we show that in NCM460 cells exposed to NT, β-arrestin-1 (βARR1), and β-arrestin-2 (βARR2) translocate to early endosomes together with NTR1. Endothelin-converting enzyme-1 (ECE-1) degrades NT in acidic conditions, and its activity is crucial for NTR1 recycling. Pretreatment of NCM460 cells with the ECE-1 inhibitor SM19712 or gene silencing of βARR1 or βARR2 inhibits NT-stimulated ERK1/2 and JNK phosphorylation, NF-κB p65 nuclear translocation and phosphorylation, and IL-8 secretion. Furthermore, NT-induced cell proliferation, but not IL-8 transcription, is attenuated by the JNK inhibitor, JNK(AII). Thus, NTR1 internalization and recycling in human colonic epithelial cells involves βARRs and ECE-1, respectively. Our results also indicate that βARRs and ECE-1-dependent recycling regulate MAP kinase and NF-κB signaling as well as cell proliferation in human colonocytes in response to NT.

  2. Inhibition of IFN-γ-dependent antiviral airway epithelial defense by cigarette smoke

    PubMed Central

    2010-01-01

    Background Although individuals exposed to cigarette smoke are more susceptible to respiratory infection, the effects of cigarette smoke on lung defense are incompletely understood. Because airway epithelial cell responses to type II interferon (IFN) are critical in regulation of defense against many respiratory viral infections, we hypothesized that cigarette smoke has inhibitory effects on IFN-γ-dependent antiviral mechanisms in epithelial cells in the airway. Methods Primary human tracheobronchial epithelial cells were first treated with cigarette smoke extract (CSE) followed by exposure to both CSE and IFN-γ. Epithelial cell cytotoxicity and IFN-γ-induced signaling, gene expression, and antiviral effects against respiratory syncytial virus (RSV) were tested without and with CSE exposure. Results CSE inhibited IFN-γ-dependent gene expression in airway epithelial cells, and these effects were not due to cell loss or cytotoxicity. CSE markedly inhibited IFN-γ-induced Stat1 phosphorylation, indicating that CSE altered type II interferon signal transduction and providing a mechanism for CSE effects. A period of CSE exposure combined with an interval of epithelial cell exposure to both CSE and IFN-γ was required to inhibit IFN-γ-induced cell signaling. CSE also decreased the inhibitory effect of IFN-γ on RSV mRNA and protein expression, confirming effects on viral infection. CSE effects on IFN-γ-induced Stat1 activation, antiviral protein expression, and inhibition of RSV infection were decreased by glutathione augmentation of epithelial cells using N-acetylcysteine or glutathione monoethyl ester, providing one strategy to alter cigarette smoke effects. Conclusions The results indicate that CSE inhibits the antiviral effects of IFN-γ, thereby presenting one explanation for increased susceptibility to respiratory viral infection in individuals exposed to cigarette smoke. PMID:20504369

  3. Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett’s-associated neoplasia

    PubMed Central

    Thekkek, Nadhi; Lee, Michelle H.; Polydorides, Alexandros D.; Rosen, Daniel G.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2015-01-01

    Abstract. Current imaging tools are associated with inconsistent sensitivity and specificity for detection of Barrett’s-associated neoplasia. Optical imaging has shown promise in improving the classification of neoplasia in vivo. The goal of this pilot study was to evaluate whether in vivo vital dye fluorescence imaging (VFI) has the potential to improve the accuracy of early-detection of Barrett’s-associated neoplasia. In vivo endoscopic VFI images were collected from 65 sites in 14 patients with confirmed Barrett’s esophagus (BE), dysplasia, or esophageal adenocarcinoma using a modular video endoscope and a high-resolution microendoscope (HRME). Qualitative image features were compared to histology; VFI and HRME images show changes in glandular structure associated with neoplastic progression. Quantitative image features in VFI images were identified for objective image classification of metaplasia and neoplasia, and a diagnostic algorithm was developed using leave-one-out cross validation. Three image features extracted from VFI images were used to classify tissue as neoplastic or not with a sensitivity of 87.8% and a specificity of 77.6% (AUC=0.878). A multimodal approach incorporating VFI and HRME imaging can delineate epithelial changes present in Barrett’s-associated neoplasia. Quantitative analysis of VFI images may provide a means for objective interpretation of BE during surveillance. PMID:25950645

  4. Pathophysiology of ocular surface squamous neoplasia

    PubMed Central

    Gichuhi, Stephen; Ohnuma, Shin-ichi; Sagoo, Mandeep S.; Burton, Matthew J.

    2014-01-01

    The incidence of ocular surface squamous neoplasia (OSSN) is strongly associated with solar ultraviolet (UV) radiation, HIV and human papilloma virus (HPV). Africa has the highest incidence rates in the world. Most lesions occur at the limbus within the interpalpebral fissure particularly the nasal sector. The nasal limbus receives the highest intensity of sunlight. Limbal epithelial crypts are concentrated nasally and contain niches of limbal epithelial stem cells in the basal layer. It is possible that these are the progenitor cells in OSSN. OSSN arises in the basal epithelial cells spreading towards the surface which resembles the movement of corneo-limbal stem cell progeny before it later invades through the basement membrane below. UV radiation damages DNA producing pyrimidine dimers in the DNA chain. Specific CC → TT base pair dimer transformations of the p53 tumour-suppressor gene occur in OSSN allowing cells with damaged DNA past the G1-S cell cycle checkpoint. UV radiation also causes local and systemic photoimmunosuppression and reactivates latent viruses such as HPV. The E7 proteins of HPV promote proliferation of infected epithelial cells via the retinoblastoma gene while E6 proteins prevent the p53 tumour suppressor gene from effecting cell-cycle arrest of DNA-damaged and infected cells. Immunosuppression from UV radiation, HIV and vitamin A deficiency impairs tumour immune surveillance allowing survival of aberrant cells. Tumour growth and metastases are enhanced by; telomerase reactivation which increases the number of cell divisions a cell can undergo; vascular endothelial growth factor for angiogenesis and matrix metalloproteinases (MMPs) that destroy the intercellular matrix between cells. Despite these potential triggers, the disease is usually unilateral. It is unclear how HPV reaches the conjunctiva. PMID:25447808

  5. Clarifying CB2 receptor-dependent and independent effects of THC on human lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarafian, Theodore; Montes, Cindy; Harui, Airi

    ATP loss, did not increase cell migration. Moreover, CB2R-transduced cells displayed higher {psi}{sub m} than did control cells. Since both {psi}{sub m} and chemotaxis are regulated by intracellular signaling, we investigated the effects of THC on the activation of multiple signaling pathways. Serum exposure activated several signaling events of which phosphorylation of I{kappa}B-{alpha} and JNK was regulated in a CB2R- and THC-dependent manner. We conclude that airway epithelial cells are sensitive to both CB2R-dependent and independent effects mediated by THC.« less

  6. Genetic inhibition of JNK3 ameliorates spinal muscular atrophy.

    PubMed

    Genabai, Naresh K; Ahmad, Saif; Zhang, Zhanying; Jiang, Xiaoting; Gabaldon, Cynthia A; Gangwani, Laxman

    2015-12-15

    Mutation of the Survival Motor Neuron 1 (SMN1) gene causes spinal muscular atrophy (SMA), an autosomal recessive neurodegenerative disorder that occurs in early childhood. Degeneration of spinal motor neurons caused by SMN deficiency results in progressive muscle atrophy and death in SMA. The molecular mechanism underlying neurodegeneration in SMA is unknown. No treatment is available to prevent neurodegeneration and reduce the burden of illness in SMA. We report that the c-Jun NH2-terminal kinase (JNK) signaling pathway mediates neurodegeneration in SMA. The neuron-specific isoform JNK3 is required for neuron degeneration caused by SMN deficiency. JNK3 deficiency reduces degeneration of cultured neurons caused by low levels of SMN. Genetic inhibition of JNK pathway in vivo by Jnk3 knockout results in amelioration of SMA phenotype. JNK3 deficiency prevents the loss of spinal cord motor neurons, reduces muscle degeneration, improves muscle fiber thickness and muscle growth, improves motor function and overall growth and increases lifespan of mice with SMA that shows a systemic rescue of phenotype by a SMN-independent mechanism. JNK3 represents a potential (non-SMN) therapeutic target for the treatment of SMA. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    PubMed

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  8. WNT5A-JNK regulation of vascular insulin resistance in human obesity

    PubMed Central

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2017-01-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. PMID:27688298

  9. Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Nico; Lam, Sylvia; Carraro, Anita; Korbelik, Jagoda; Miller, Dianne M.; McAlpine, Jessica N.; Lee, Marette; Kienle, Alwin; MacAulay, Calum

    2016-06-01

    A fiber optic imaging approach is presented using structured illumination for quantification of almost pure epithelial backscattering. We employ multiple spatially modulated projection patterns and camera-based reflectance capture to image depth-dependent epithelial scattering. The potential diagnostic value of our approach is investigated on cervical ex vivo tissue specimens. Our study indicates a strong backscattering increase in the upper part of the cervical epithelium caused by dysplastic microstructural changes. Quantization of relative depth-dependent backscattering is confirmed as a potentially useful diagnostic feature for detection of precancerous lesions in cervical squamous epithelium.

  10. TAK1 regulates NF-{Kappa}B and AP-1 activation in airway epithelial cells following RSV infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Nilay; Liu Tianshuang; Garofalo, Roberto P.

    2011-09-30

    Respiratory syncytial virus (RSV) is the most common cause of epidemic respiratory diseases in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-{kappa}B (NF-{kappa}B) and AP-1. In this study, we have investigated the signaling pathway leading to activation of these two transcription factors in response to RSV infection. Our results show that IKK{beta} plays a key role in viral-induced NF-{kappa}B activation, while JNK regulates AP-1-dependent gene transcription, as demonstrated by using kinase inactive proteins and chemical inhibitors of the two kinases.more » Inhibition of TAK1 activation, by overexpression of kinase inactive TAK1 or using cells lacking TAK1 expression, significantly reduced RSV-induced NF-{kappa}B and AP-1 nuclear translocation and DNA-binding activity, as well as NF-{kappa}B-dependent gene expression, identifying TAK1 as an important upstream signaling molecule regulating RSV-induced NF-{kappa}B and AP-1 activation. - Highlights: > IKK{beta} is a major kinase involved in RSV-induced NF-{kappa}B activation. > JNK regulates AP-1-dependent gene transcription in RSV infection. > TAK1 is a critical upstream signaling molecule for both pathways in infected cells.« less

  11. JNK3-Mediated Apoptotic Cell Death in Primary Dopaminergic Neurons

    PubMed Central

    Choi, Won-Seok; Klintworth, Heather M.; Xia, Zhengui

    2012-01-01

    Investigation of mechanisms responsible for dopaminergic neuron death is critical for understanding the pathogenesis of Parkinson’s disease, yet this is often quite challenging technically. Here, we describe detailed methods for culturing primary mesencephalic dopaminergic neurons and examining the activation of c-Jun N-terminal protein Kinase (JNK) in these cultures. We utilized immunocytochemistry and computerized analysis to quantify the number of surviving dopaminergic neurons and JNK activation in dopaminergic neurons. TUNEL staining was used to quantify apoptotic cell death. siRNA was used to specifically inhibit JNK3, the neural specific isoform of JNK. Our data implicate the activation of JNK3 in rotenone-induced dopaminergic neuron apoptosis. PMID:21815073

  12. JNK Activation Contributes to Oxidative Stress-Induced Parthanatos in Glioma Cells via Increase of Intracellular ROS Production.

    PubMed

    Zheng, Linjie; Wang, Chen; Luo, Tianfei; Lu, Bin; Ma, Hongxi; Zhou, Zijian; Zhu, Dong; Chi, Guangfan; Ge, Pengfei; Luo, Yinan

    2017-07-01

    Parthanatos is a form of PARP-1-dependent programmed cell death. The induction of parthanatos is emerging as a new strategy to kill gliomas which are the most common type of primary malignant brain tumor. Oxidative stress is thought to be a critical factor triggering parthanatos, but its underlying mechanism is poorly understood. In this study, we used glioma cell lines and H 2 O 2 to investigate the role of JNK in glioma cell parthanatos induced by oxidative stress. We found that exposure to H 2 O 2 not only induced intracellular accumulation of ROS but also resulted in glioma cell death in a concentration- and incubation time-dependent manner, which was accompanied with cytoplasmic formation of PAR polymer, expressional upregulation of PARP-1, mitochondrial depolarization, and AIF translocation to nucleus. Pharmacological inhibition of PARP-1 with 3AB or genetic knockdown of its level with siRNA rescued glioma cell death, as well as suppressed cytoplasmic accumulation of PAR polymer and nuclear translocation of AIF, which were consistent with the definition of parthanatos. Moreover, the phosphorylated level of JNK increased markedly with the extension of H 2 O 2 exposure time. Either attenuation of intracellular ROS with antioxidant NAC or inhibition of JNK phosphorylation with SP600125 or JNK siRNA could significantly prevent H 2 O 2 -induced parthanatos in glioma cells. Additionally, inhibition of JNK with SP600125 alleviated intracellular accumulation of ROS and attenuated mitochondrial generation of superoxide. Thus, we demonstrated that JNK activation contributes to glioma cell parthanatos caused by oxidative stress via increase of intracellular ROS generation.

  13. Phosphorylation of Glutathione S-Transferase P1 (GSTP1) by Epidermal Growth Factor Receptor (EGFR) Promotes Formation of the GSTP1-c-Jun N-terminal kinase (JNK) Complex and Suppresses JNK Downstream Signaling and Apoptosis in Brain Tumor Cells*

    PubMed Central

    Okamura, Tatsunori; Antoun, Gamil; Keir, Stephen T.; Friedman, Henry; Bigner, Darell D.; Ali-Osman, Francis

    2015-01-01

    Under normal physiologic conditions, the glutathione S-transferase P1 (GSTP1) protein exists intracellularly as a dimer in reversible equilibrium with its monomeric subunits. In the latter form, GSTP1 binds to the mitogen-activated protein kinase, JNK, and inhibits JNK downstream signaling. In tumor cells, which frequently are characterized by constitutively high GSTP1 expression, GSTP1 undergoes phosphorylation by epidermal growth factor receptor (EGFR) at tyrosine residues 3, 7, and 198. Here we report on the effect of this EGFR-dependent GSTP1 tyrosine phosphorylation on the interaction of GSTP1 with JNK, on the regulation of JNK downstream signaling by GSTP1, and on tumor cell survival. Using in vitro and in vivo growing human brain tumors, we show that tyrosine phosphorylation shifts the GSTP1 dimer-monomer equilibrium to the monomeric state and facilitates the formation of the GSTP1-JNK complex, in which JNK is functionally inhibited. Targeted mutagenesis and functional analysis demonstrated that the increased GSTP1 binding to JNK results from phosphorylation of the GSTP1 C-terminal Tyr-198 by EGFR and is associated with a >2.5-fold decrease in JNK downstream signaling and a significant suppression of both spontaneous and drug-induced apoptosis in the tumor cells. The findings define a novel mechanism of regulatory control of JNK signaling that is mediated by the EGFR/GSTP1 cross-talk and provides a survival advantage for tumors with activated EGFR and high GSTP1 expression. The results lay the foundation for a novel strategy of dual EGFR/GSTP1 for treating EGFR+ve, GSTP1 expressing GBMs. PMID:26429914

  14. Phosphorylation of Glutathione S-Transferase P1 (GSTP1) by Epidermal Growth Factor Receptor (EGFR) Promotes Formation of the GSTP1-c-Jun N-terminal kinase (JNK) Complex and Suppresses JNK Downstream Signaling and Apoptosis in Brain Tumor Cells.

    PubMed

    Okamura, Tatsunori; Antoun, Gamil; Keir, Stephen T; Friedman, Henry; Bigner, Darell D; Ali-Osman, Francis

    2015-12-25

    Under normal physiologic conditions, the glutathione S-transferase P1 (GSTP1) protein exists intracellularly as a dimer in reversible equilibrium with its monomeric subunits. In the latter form, GSTP1 binds to the mitogen-activated protein kinase, JNK, and inhibits JNK downstream signaling. In tumor cells, which frequently are characterized by constitutively high GSTP1 expression, GSTP1 undergoes phosphorylation by epidermal growth factor receptor (EGFR) at tyrosine residues 3, 7, and 198. Here we report on the effect of this EGFR-dependent GSTP1 tyrosine phosphorylation on the interaction of GSTP1 with JNK, on the regulation of JNK downstream signaling by GSTP1, and on tumor cell survival. Using in vitro and in vivo growing human brain tumors, we show that tyrosine phosphorylation shifts the GSTP1 dimer-monomer equilibrium to the monomeric state and facilitates the formation of the GSTP1-JNK complex, in which JNK is functionally inhibited. Targeted mutagenesis and functional analysis demonstrated that the increased GSTP1 binding to JNK results from phosphorylation of the GSTP1 C-terminal Tyr-198 by EGFR and is associated with a >2.5-fold decrease in JNK downstream signaling and a significant suppression of both spontaneous and drug-induced apoptosis in the tumor cells. The findings define a novel mechanism of regulatory control of JNK signaling that is mediated by the EGFR/GSTP1 cross-talk and provides a survival advantage for tumors with activated EGFR and high GSTP1 expression. The results lay the foundation for a novel strategy of dual EGFR/GSTP1 for treating EGFR+ve, GSTP1 expressing GBMs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Proteolytic Inhibition of Salmonella enterica Serovar Typhimurium-Induced Activation of the Mitogen-Activated Protein Kinases ERK and JNK in Cultured Human Intestinal Cells

    PubMed Central

    Mynott, Tracey L.; Crossett, Ben; Prathalingam, S. Radhika

    2002-01-01

    Bromelain, a mixture of cysteine proteases from pineapple stems, blocks signaling by the mitogen-activated protein (MAP) kinases extracellular regulated kinase 1 (ERK-1) and ERK-2, inhibits inflammation, and protects against enterotoxigenic Escherichia coli infection. In this study, we examined the effect of bromelain on Salmonella enterica serovar Typhimurium infection, since an important feature of its pathogenesis is its ability to induce activation of ERK-1 and ERK-2, which leads to internalization of bacteria and induction of inflammatory responses. Our results show that bromelain dose dependently blocks serovar Typhimurium-induced ERK-1, ERK-2, and c-Jun NH2-terminal kinase (JNK) activation in Caco-2 cells. Bromelain also blocked signaling induced by carbachol and anisomycin, pharmacological MAP kinase agonists. Despite bromelain inhibition of serovar Typhimurium-induced MAP kinase signaling, it did not prevent subsequent invasion of the Caco-2 cells by serovar Typhimurium or alter serovar Typhimurium -induced decreases in resistance across Caco-2 monolayers. Surprisingly, bromelain also did not block serovar Typhimurium-induced interleukin-8 (IL-8) secretion but synergized with serovar Typhimurium to enhance IL-8 production. We also found that serovar Typhimurium does not induce ERK phosphorylation in Caco-2 cells in the absence of serum but that serovar Typhimurium-induced invasion and decreases in monolayer resistance are unaffected. Collectively, these data indicate that serovar Typhimurium-induced invasion of Caco-2 cells, changes in the resistance of epithelial cell monolayers, and IL-8 production can occur independently of the ERK and JNK signaling pathways. Data also confirm that bromelain is a novel inhibitor of MAP kinase signaling pathways and suggest a novel role for proteases as inhibitors of signal transduction pathways in intestinal epithelial cells. PMID:11748167

  16. Epithelial Integrity Is Maintained by a Matriptase-Dependent Proteolytic Pathway

    PubMed Central

    List, Karin; Kosa, Peter; Szabo, Roman; Bey, Alexandra L.; Wang, Chao Becky; Molinolo, Alfredo; Bugge, Thomas H.

    2009-01-01

    A pericellular proteolytic pathway initiated by the transmembrane serine protease matriptase plays a critical role in the terminal differentiation of epidermal tissues. Matriptase is constitutively expressed in multiple other epithelia, suggesting a putative role of this membrane serine protease in general epithelial homeostasis. Here we generated mice with conditional deletion of the St14 gene, encoding matriptase, and show that matriptase indeed is essential for the maintenance of multiple types of epithelia in the mouse. Thus, embryonic or postnatal ablation of St14 in epithelial tissues of diverse origin and function caused severe organ dysfunction, which was often associated with increased permeability, loss of tight junction function, mislocation of tight junction-associated proteins, and generalized epithelial demise. The study reveals that the homeostasis of multiple simple and stratified epithelia is matriptase-dependent, and provides an important animal model for the exploration of this membrane serine protease in a range of physiological and pathological processes. PMID:19717635

  17. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Mingxiang, E-mail: yu.mingxiang@zs-hospital.sh.cn; Chen, Xianying; Lv, Chaoyang

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with bothmore » bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.« less

  18. Blockade of the spinal BDNF-activated JNK pathway prevents the development of antiretroviral-induced neuropathic pain.

    PubMed

    Sanna, Maria Domenica; Ghelardini, Carla; Galeotti, Nicoletta

    2016-06-01

    Although antiretroviral agents have been used successfully in suppressing viral production, they have also been associated with a number of side effects. The antiretroviral toxic neuropathy induces debilitating and extremely difficult to treat pain syndromes that often lead to discontinuation of antiretroviral therapy. Due to the critical need for the identification of novel therapeutic targets to improve antiretroviral neuropathic pain management, we investigated the role of the JNK signalling pathway in the mechanism of antiretroviral painful neuropathy. Mice were exposed to zalcitabine (2',3'-dideoxycytidine, ddC) and stavudine (2',3'-didehydro-3'-deoxythymidine, d4T) that induced a persistent mechanical allodynia and a transient cold allodynia. Treatment with the JNK blocker SP600125 before antiretroviral administration abolished mechanical hypersensitivity with no effect on thermal response. A robust spinal JNK overphosphorylation was observed on post-injection day 1 and 3, along with a JNK-dependent increase in p-c-Jun and ATF3 protein levels. Co-immunoprecipitation experiments showed the presence of a heterodimeric complex between ATF3 and c-Jun indicating that these transcription factors can act together to regulate transcription through heterodimerization. A rise in BDNF and caspase-3 protein levels was detected on day 1 and BDNF sequestration prevented both caspase-3 and p-JNK increase. These data suggest that BDNF plays a role in the early stages of ddC-induced allodynia by promoting apoptotic events and the activation of a hypernociceptive JNK-mediated pathway. We illustrated the activation of a BDNF-mediated JNK pathway involved in the early events responsible for the promotion of neuropathic pain, leading to a better knowledge of the mechanisms involved in the antiretroviral neuropathy. JNK blockade prevents antiretroviral-induced pain hypersensitivity. This may represent a potential prophylactic treatment of neuropathic pain to improve antiretroviral

  19. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK) activation correlates with the analgesic effects of ketamine in neuropathic pain

    PubMed Central

    2011-01-01

    Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL)-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK), a member of mitogen-activated protein kinase (MAPK) family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS)-induced phosphorylated JNK (pJNK) expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain. PMID:21255465

  20. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    PubMed

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Mitochondrial JNK activation triggers autophagy and apoptosis and aggravates myocardial injury following ischemia/reperfusion.

    PubMed

    Xu, Jie; Qin, Xinghua; Cai, Xiaoqing; Yang, Lu; Xing, Yuan; Li, Jun; Zhang, Lihua; Tang, Ying; Liu, Jiankang; Zhang, Xing; Gao, Feng

    2015-02-01

    c-Jun N-terminal kinase (JNK) is a stress-activated mitogen-activated protein kinase that plays a central role in initiating apoptosis in disease conditions. Recent studies have shown that mitochondrial JNK signaling is partly responsible for ischemic myocardial dysfunction; however, the underlying mechanism remains unclear. Here we report for the first time that activation of mitochondrial JNK, rather than JNK localization on mitochondria, induces autophagy and apoptosis and aggravates myocardial ischemia/reperfusion injury. Myocardial ischemia/reperfusion induced a dominant increase of mitochondrial JNK phosphorylation, while JNK mitochondrial localization was reduced. Treatment with Tat-SabKIM1, a retro-inverso peptide which blocks JNK interaction with mitochondria, decreased mitochondrial JNK activation without affecting JNK mitochondrial localization following reperfusion. Tat-SabKIM1 treatment reduced Bcl2-regulated autophagy, cytochrome c-mediated apoptosis and myocardial infarct size. Notably, selective inhibition of mitochondrial JNK activation using Tat-SabKIM1 produced a similar infarct size-reducing effect as inhibiting universal JNK activation with JNK inhibitor SP600125. Moreover, insulin-treated animals exhibited significantly dampened mitochondrial JNK activation accompanied by reduced infarct size and diminished autophagy and apoptosis following reperfusion. Taken together, these findings demonstrate that mitochondrial JNK activation, rather than JNK mitochondrial localization, induces autophagy and apoptosis and exacerbates myocardial ischemia/reperfusion injury. Insulin selectively inhibits mitochondrial JNK activation, contributing to insulin cardioprotection against myocardial ischemic/reperfusion injury. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion

    PubMed Central

    Shanware, Naval P.; Bray, Kevin; Eng, Christina H.; Wang, Fang; Follettie, Maximillian; Myers, Jeremy; Fantin, Valeria R.; Abraham, Robert T.

    2014-01-01

    The non-essential amino acid, glutamine, exerts pleiotropic effects on cell metabolism, signalling and stress resistance. Here we demonstrate that short-term glutamine restriction triggers an endoplasmic reticulum (ER) stress response that leads to production of the pro-inflammatory chemokine, interleukin-8 (IL-8). Glutamine deprivation-induced ER stress triggers colocalization of autophagosomes, lysosomes and the Golgi into a subcellular structure whose integrity is essential for IL-8 secretion. The stimulatory effect of glutamine restriction on IL-8 production is attributable to depletion of tricarboxylic acid cycle intermediates. The protein kinase, mTOR, is also colocalized with the lysosomal membrane clusters induced by glutamine deprivation, and inhibition of mTORC1 activity abolishes both endomembrane reorganization and IL-8 secretion. Activated mTORC1 elicits IL8 gene expression via the activation of an IRE1-JNK signalling cascade. Treatment of cells with a glutaminase inhibitor phenocopies glutamine restriction, suggesting that these results will be relevant to the clinical development of glutamine metabolism inhibitors as anticancer agents. PMID:25254627

  3. Agaricus blazei Extract Induces Apoptosis through ROS-Dependent JNK Activation Involving the Mitochondrial Pathway and Suppression of Constitutive NF-κB in THP-1 Cells

    PubMed Central

    Kim, Mun-Ock; Moon, Dong-Oh; Jung, Jin Myung; Lee, Won Sup; Choi, Yung Hyun; Kim, Gi-Young

    2011-01-01

    Agaricus blazei is widely accepted as a traditional medicinal mushroom, and it has been known to exhibit immunostimulatory and anti-cancer activity. However, the apoptotic mechanism in cancer cells is poorly understood. In this study, we have investigated whether A. blazei extract (ABE) exerts antiproliferative and apoptotic effects in human leukemic THP-1 cells. We observed that ABE-induced apoptosis is associated with the mitochondrial pathway, which is mediated by reactive oxygen species (ROS) generation and prolonged c-Jun N-terminal kinase (JNK) activation. In addition, the ABE treatment resulted in the accumulation of cytochrome c in the cytoplasm, an increase in caspase activity, and an upregulation of Bax and Bad. With those results in mind, we found that ABE decreases constitutive NF-κB activation and NF-κB-regulated gene products such as IAP-1 and -2. We concluded that ABE induces apoptosis with ROS-dependent JNK activation and constitutive activated NF-κB inhibition in THP-1 cells. PMID:19861509

  4. Ras promotes cell survival by antagonizing both JNK and Hid signals in the Drosophila eye.

    PubMed

    Wu, Yue; Zhuang, Yuan; Han, Min; Xu, Tian; Deng, Kejing

    2009-10-20

    Programmed cell death, or apoptosis, is a fundamental physiological process during normal development or in pathological conditions. The activation of apoptosis can be elicited by numerous signalling pathways. Ras is known to mediate anti-apoptotic signals by inhibiting Hid activity in the Drosophila eye. Here we report the isolation of a new loss-of-function ras allele, rasKP, which causes excessive apoptosis in the Drosophila eye. This new function is likely to be mediated through the JNK pathway since the inhibition of JNK signalling can significantly suppress rasKP-induced apoptosis, whereas the removal of hid only weakly suppresses the phenotype. Furthermore, the reduction of JNK signalling together with the expression of the baculovirus caspase inhibitor p35, which blocks Hid activity, strongly suppresses the rasKP cell death. In addition, we find a strong correlation between rasKP-induced apoptosis in the eye disc and the activation of JNK signalling. In the Drosophila eye, Ras may protect cells from apoptosis by inhibiting both JNK and Hid activities. Surprisingly, reducing Ras activity in the wing, however, does not cause apoptosis but rather affects cell and organ size. Thus, in addition to its requirement for cell viability, Ras appears to mediate different biological roles depending on the developmental context and on the level of its expression.

  5. Downregulation of Ras C-terminal processing by JNK inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouri, Wataru; Department of Neurosurgery, Yamagata University School of Medicine, Yamagata 990-9585; Biology Division, National Cancer Center Research Institute, Tokyo 104-0045

    2008-06-27

    After translation, Ras proteins undergo a series of modifications at their C-termini. This post-translational C-terminal processing is essential for Ras to become functional, but it remains unknown whether and how Ras C-terminal processing is regulated. Here we show that the C-terminal processing and subsequent plasma membrane localization of H-Ras as well as the activation of the downstream signaling pathways by H-Ras are prevented by JNK inhibition. Conversely, JNK activation by ultraviolet irradiation resulted in promotion of C-terminal processing of H-Ras. Furthermore, increased cell density promoted C-terminal processing of H-Ras most likely through an autocrine/paracrine mechanism, which was also blocked undermore » JNK-inhibited condition. Ras C-terminal processing was sensitive to JNK inhibition in the case of H- and N-Ras but not K-Ras, and in a variety of cell types. Thus, our results suggest for the first time that Ras C-terminal processing is a regulated mechanism in which JNK is involved.« less

  6. Surgery for cervical intraepithelial neoplasia

    PubMed Central

    Martin-Hirsch, Pierre PL; Paraskevaidis, Evangelos; Bryant, Andrew; Dickinson, Heather O; Keep, Sarah L

    2014-01-01

    Background Cervical intraepithelial neoplasia (CIN) is the most common pre-malignant lesion. Atypical squamous changes occur in the transformation zone of the cervix with mild, moderate or severe changes described by their depth (CIN 1, 2 or 3). Cervical intraepithelial neoplasia is treated by local ablation or lower morbidity excision techniques. Choice of treatment depends on the grade and extent of the disease. Objectives To assess the effectiveness and safety of alternative surgical treatments for CIN. Search methods We searched the Cochrane Gynaecological Cancer Group Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library), MEDLINE and EMBASE (up to April 2009). We also searched registers of clinical trials, abstracts of scientific meetings and reference lists of included studies. Selection criteria Randomised controlled trials (RCTs) of alternative surgical treatments in women with cervical intraepithelial neoplasia. Data collection and analysis Two review authors independently abstracted data and assessed risks of bias. Risk ratios that compared residual disease after the follow-up examination and adverse events in women who received one of either laser ablation, laser conisation, large loop excision of the transformation zone (LLETZ), knife conisation or cryotherapy were pooled in random-effects model meta-analyses. Main results Twenty-nine trials were included. Seven surgical techniques were tested in various comparisons. No significant differences in treatment failures were demonstrated in terms of persistent disease after treatment. Large loop excision of the transformation zone appeared to provide the most reliable specimens for histology with the least morbidity. Morbidity was lower than with laser conisation, although the trials did not provide data for every outcome measure. There were not enough data to assess the effect on morbidity when compared with laser ablation. Authors’ conclusions The evidence

  7. Embryoid body attachment to reconstituted basement membrane induces a genetic program of epithelial differentiation via jun N-terminal kinase signaling.

    PubMed

    Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L

    2010-09-01

    Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration.

    PubMed

    Xiang, Jinyi; Bandura, Jennifer; Zhang, Peng; Jin, Yinhua; Reuter, Hanna; Edgar, Bruce A

    2017-05-09

    Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair.

  9. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration

    PubMed Central

    Xiang, Jinyi; Bandura, Jennifer; Zhang, Peng; Jin, Yinhua; Reuter, Hanna; Edgar, Bruce A.

    2017-01-01

    Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair. PMID:28485389

  10. Evolving concepts in the management of lobular neoplasia.

    PubMed

    Anderson, Benjamin O; Calhoun, Kristine E; Rosen, Eric L

    2006-05-01

    Lobular neoplasia broadly defines the spectrum of changes within the lobule, ranging from atypical lobular hyperplasia (ALH) to lobular carcinoma in situ (LCIS). This continuum of lesions is associated with an increased risk for developing subsequent invasive breast cancer, with the magnitude of that risk corresponding to the degree of proliferative change. The associated risk for developing invasive breast cancer after a diagnosis of lobular neoplasia is multicentric, bilateral, and equal in both breasts. Lobular neoplasia itself may transform into invasive carcinoma, although the frequency of this occurrence is unknown. Thus, lobular neoplasia is a risk factor for invasive breast cancer and may be a precursor lesion in unusual circumstances. The management of ALH and LCIS depends on the setting in which they are encountered. When ALH and LCIS are diagnosed after core needle breast biopsy, wire localization for surgical excision is required for definitive diagnosis because rates of histologic underestimation approach those of atypical ductal hyperplasia (ADH). When diagnosed on surgical biopsy, ALH and LCIS generally do not require further intervention, even when present at a surgical margin. However, bilateral breast cancer risk must be considered, especially when patients have a family history of breast cancer. In selected situations, bilateral prophylactic mastectomy with or without reconstruction may be considered when atypical hyperplasia or LCIS is diagnosed. Although this reduces risk for developing subsequent breast carcinoma by 90%, patients selected for prophylactic mastectomy represent a small subgroup of lobular neoplasia patients and generally have other risk factors, such as strong family history or evidence of genetic predisposition.

  11. Protective effect of Ginkgo biloba leaves extract, EGb761, on endotoxin-induced acute lung injury via a JNK- and Akt-dependent NFκB pathway.

    PubMed

    Lee, Chien-Ying; Yang, Jiann-Jou; Lee, Shiuan-Shinn; Chen, Chun-Jung; Huang, Yi-Chun; Huang, Kuang-Hua; Kuan, Yu-Hsiang

    2014-07-09

    Acute lung injury (ALI) is a clinical syndrome mainly caused by Gram-negative bacteria which is still in need of an effective therapeutic medicine. EGb761, an extract of Ginkgo biloba leaves, has several bioeffects including anti-inflammation, cardioprotection, neuroprotection, and free radical scavenging. Preadministration of EGb761 inhibited lipopolysaccharide (LPS)-induced histopathological changes and exchange of arterial blood gas. In addition, LPS-induced expression of proinflammatory mediators, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, macrophage inflammatory protein (MIP)-2, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were suppressed by EGb761. The activation of nuclear factor (NF)κB, a transcription factor of proinflammatory mediators, and phosphorylation of IκB, an inhibitor of NFκB, were also reduced by EGb761. Furthermore, we found the inhibitory concentration of EGb761 on phosphorylation of JNK and Akt was less than those of ERK and p38 MAPK. In conclusion, EGb761 is a potential protective agent for ALI, possibly via downregulating the JNK- and Akt-dependent NFκB activation pathway.

  12. Using Optical Markers of Non-dysplastic Rectal Epithelial Cells to Identify Patients With Ulcerative Colitis (UC) - Associated Neoplasia

    PubMed Central

    Bista, Rajan K.; Brentnall, Teresa A.; Bronner, Mary P.; Langmead, Christopher J.; Brand, Randall E.; Liu, Yang

    2011-01-01

    BACKGROUND Current surveillance guidelines for patients with long-standing ulcerative colitis (UC) recommend repeated colonoscopy with random biopsies, which is time-consuming, discomforting and expensive. A less invasive strategy is to identify neoplasia by analyzing biomarkers from the more accessible rectum to predict the need for a full colonoscopy. The goal of this pilot study is to evaluate whether optical markers of rectal mucosa derived from a novel optical technique – partial-wave spectroscopic microscopy (PWS) could identify UC patients with high-grade dysplasia (HGD) or cancer (CA) present anywhere in their colon. METHODS Banked frozen non-dysplastic mucosal rectal biopsies were used from 28 UC patients (15 without dysplasia and 13 with concurrent HGD or CA). The specimen slides were made using a touch prep method and underwent PWS analysis. We divided the patients into two groups: 13 as a training set and an independent 15 as a validation set. RESULTS We identified six optical markers, ranked by measuring the information gain with respect to the outcome of cancer. The most effective markers were selected by maximizing the cross validated training accuracy of a Naive Bayes classifier. The optimal classifier was applied to the validation data yielding 100% sensitivity and 75% specificity. CONCLUSIONS Our results indicate that the PWS-derived optical markers can accurately predict UC patients with HGD/CA through assessment of rectal epithelial cells. By aiming for a high sensitivity, our approach could potentially simplify the surveillance of UC patients and improve overall resource utilization by identifying patients with HGD/CA who should proceed with colonoscopy. PMID:21351200

  13. Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer.

    PubMed

    Yuan, Fang; Xu, Zhigang; Yang, Mingzhen; Wei, Quanfang; Zhang, Yi; Yu, Jin; Zhi, Yi; Liu, Yang; Chen, Zhiwen; Yang, Jin

    2013-01-01

    Human DNA polymerase iota (pol ι) possesses high error-prone DNA replication features and performs translesion DNA synthesis. It may be specialized and strictly regulated in normal mammalian cells. Dysregulation of pol ι may contribute to the acquisition of a mutator phenotype. However, there are few reports describing the transcription regulatory mechanism of pol ι, and there is controversy regarding its role in carcinogenesis. In this study, we performed the deletion and point-mutation experiment, EMSA, ChIP, RNA interference and western blot assay to prove that c-Jun activated by c-Jun N-terminal kinase (JNK) regulates the transcription of pol ι in normal and cancer cells. Xeroderma pigmentosum group C protein (XPC) and ataxia-telangiectasia mutated related protein (ATR) promote early JNK activation in response to DNA damage and consequently enhance the expression of pol ι, indicating that the novel role of JNK signal pathway is involved in DNA damage response. Furthermore, associated with elevated c-Jun activity, the overexpression of pol ι is positively correlated with the clinical tumor grade in 97 bladder cancer samples and may contribute to the hypermutagenesis. The overexpressed pol ι-involved mutagenesis is dependent on JNK/c-Jun pathway in bladder cancer cells identifying by the special mutation spectra. Our results support the conclusion that dysregulation of pol ι by JNK/c-Jun is involved in carcinogenesis and offer a novel understanding of the role of pol ι or c-Jun in mutagenesis.

  14. Overexpressed DNA Polymerase Iota Regulated by JNK/c-Jun Contributes to Hypermutagenesis in Bladder Cancer

    PubMed Central

    Yuan, Fang; Xu, Zhigang; Yang, Mingzhen; Wei, Quanfang; Zhang, Yi; Yu, Jin; Zhi, Yi; Liu, Yang; Chen, Zhiwen; Yang, Jin

    2013-01-01

    Human DNA polymerase iota (pol ι) possesses high error-prone DNA replication features and performs translesion DNA synthesis. It may be specialized and strictly regulated in normal mammalian cells. Dysregulation of pol ι may contribute to the acquisition of a mutator phenotype. However, there are few reports describing the transcription regulatory mechanism of pol ι, and there is controversy regarding its role in carcinogenesis. In this study, we performed the deletion and point-mutation experiment, EMSA, ChIP, RNA interference and western blot assay to prove that c-Jun activated by c-Jun N-terminal kinase (JNK) regulates the transcription of pol ι in normal and cancer cells. Xeroderma pigmentosum group C protein (XPC) and ataxia-telangiectasia mutated related protein (ATR) promote early JNK activation in response to DNA damage and consequently enhance the expression of pol ι, indicating that the novel role of JNK signal pathway is involved in DNA damage response. Furthermore, associated with elevated c-Jun activity, the overexpression of pol ι is positively correlated with the clinical tumor grade in 97 bladder cancer samples and may contribute to the hypermutagenesis. The overexpressed pol ι-involved mutagenesis is dependent on JNK/c-Jun pathway in bladder cancer cells identifying by the special mutation spectra. Our results support the conclusion that dysregulation of pol ι by JNK/c-Jun is involved in carcinogenesis and offer a novel understanding of the role of pol ι or c-Jun in mutagenesis. PMID:23922701

  15. Gasdermin C is induced by ultraviolet light and contributes to MMP-1 expression via activation of ERK and JNK pathways.

    PubMed

    Kusumaningrum, Novi; Lee, Dong Hun; Yoon, Hyun-Sun; Kim, Yeon Kyung; Park, Chi-Hyun; Chung, Jin Ho

    2018-05-01

    Ultraviolet (UV) radiation plays important roles in various skin diseases including premature aging and cancer. UV has been shown to regulate the expressions of many genes including matrix metalloproteinases (MMPs). Gasdermin C (GSDMC) belongs to Gasdermin family and is known to be expressed in the epithelial cells of many tissues including the skin. However, the functions of GSDMC remain poorly understood. We aimed to investigate the role of GSDMC in UV-induced MMP-1, MMP-3, and MMP-9 expressions in human skin keratinocytes. Primary human skin keratinocytes and an immortalized human skin keratinocyte cell line (HaCaT cells) were irradiated with UV. Knockdown and overexpression of GSDMC were performed to study the effect of GSDMC. The mRNA and protein levels were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. We found that GSDMC expression is increased by UV irradiation in human skin keratinocytes. Further studies showed that GSDMC expression is increased at relatively late time points after UV irradiation and that this GSDMC induction plays important roles in the expressions of MMP-1, but not of MMP-3 and MMP-9, and the activations of ERK and JNK induced by UV. In addition, we found that overexpression of GSDMC increases the MMP-1 expression and the activities of ERK and JNK and that GSDMC-induced MMP-1 expression is suppressed by inhibition of ERK or JNK activities. Our results suggest that GSDMC is increased by UV radiation and contributes to UV-induced MMP-1 expression through the activation of ERK and JNK pathways. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  16. Risk of metachronous neoplasia on surveillance colonoscopy in young patients with colorectal neoplasia.

    PubMed

    Kim, Hyun Gun; Cho, Young-Seok; Cha, Jae Myung; Shin, Jeong Eun; Kim, Kyeong Ok; Yang, Hyo-Joon; Koo, Hoon Sup; Joo, Young-Eun; Boo, Sun-Jin

    2018-03-01

    Few prior reports exist that address the appropriate colonoscopy surveillance interval for individuals <50 years old. We compared the risk of metachronous neoplasia between younger (20-49 years) and older (50-54 years) cohorts. This multicenter retrospective cohort study compared the incidence of metachronous neoplasia in younger and older cohorts according to baseline risk stratification. Subjects were eligible if they underwent their first colonoscopy between June 2006 and May 2010 and had at least 1 or more surveillance colonoscopy up to June 2015. Among a total of 10,477 subjects who underwent baseline colonoscopy, 9722 were eligible after excluding 755 subjects. Of those 9722 subjects, 43% underwent surveillance colonoscopy. In the baseline high-risk adenoma group (n = 840), the 3-year risk of metachronous advanced neoplasia was 10.7% in the younger patients on screening colonoscopy and 8.9% in the older patients (P > .1). In the baseline low-risk adenoma group (n = 1869), the 5-year risk of metachronous advanced neoplasia was 4.9% in the younger patients on screening colonoscopy and 5.1% in the older patients (P > .1). Similarly, in the baseline no neoplasia group (n = 7013), the 5-year risk of metachronous advanced neoplasia was 4.1% in the younger patients on screening colonoscopy and 5.6% in the older patients (P > .1). Considering the similar risk of metachronous advanced neoplasia in younger and older individuals, we suggest a 3-year surveillance interval for high-risk adenoma and a 5-year surveillance interval for low-risk adenoma in young individuals without a strong family history. Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  17. Inhibition of JNK Sensitizes Hypoxic Colon Cancer Cells to DNA Damaging Agents

    PubMed Central

    Vasilevskaya, Irina A.; Selvakumaran, Muthu; Hierro, Lucia Cabal; Goldstein, Sara R.; Winkler, Jeffrey D.; O'Dwyer, Peter J.

    2015-01-01

    Purpose We showed previously that in HT29 colon cancer cells, modulation of hypoxia-induced stress signaling affects oxaliplatin cytotoxicity. To further study the significance of hypoxia-induced signaling through JNK, we set out to investigate how modulation of kinase activities influences cellular responses of hypoxic colon cancer cells to cytotoxic drugs. Experimental design In a panel of cell lines we investigated effects of pharmacological and molecular inhibition of JNK on sensitivity to oxaliplatin, SN-38 and 5-FU. Combination studies for the drugs and JNK inhibitor CC-401 were carried out in vitro and in vivo. Results Hypoxia-induced JNK activation was associated with resistance to oxaliplatin. CC-401 in combination with chemotherapy demonstrates synergism in colon cancer cell lines, though synergy is not always hypoxia-specific. A more detailed analysis focused on HT29 and SW620 (responsive), and HCT116 (non-responsive) lines. In HT29 and SW620 cells CC-401 treatment results in greater DNA damage in the sensitive cells. In vivo, potentiation of bevacizumab, oxaliplatin, and the combination by JNK inhibition was confirmed in HT29-derived mouse xenografts, where tumor growth delay was greater in the presence of CC-401. Finally, stable introduction of a dominant negative JNK1, but not JNK2, construct into HT29 cells rendered them more sensitive to oxaliplatin under hypoxia, suggesting differing input of JNK isoforms in cellular responses to chemotherapy. Conclusions These findings demonstrate that signaling through JNK is a determinant of response to therapy in colon cancer models, and support the testing of JNK inhibition to sensitize colon tumors in the clinic. PMID:26023085

  18. The effect of menadione on glutathione S-transferase A1 (GSTA1): c-Jun N-terminal kinase (JNK) complex dissociation in human colonic adenocarcinoma Caco-2 cells.

    PubMed

    Adnan, Humaira; Antenos, Monica; Kirby, Gordon M

    2012-10-02

    Glutathione S-transferases (GSTs) act as modulators of mitogen-activated protein kinase signal transduction pathways via a mechanism involving protein-protein interactions. We have demonstrated that GSTA1 forms complexes with JNK and modifies JNK activation during cellular stress, but the factors that influence complex association and dissociation are unknown. We hypothesized that menadione causes dissociation of GSTA1-JNK complexes, activates JNK, and the consequences of menadione exposure depend on GSTA1 expression. We demonstrate that menadione causes GSTA1-JNK dissociation and JNK activation in preconfluent Caco-2 cells, whereas postconfluent cells are resistant to this effect. Moreover, preconfluent cells are more sensitive than postconfluent cells to menadione-induced cytotoxicity. Activation of JNK is transient since removal of menadione causes GSTA1 to re-associate with JNK reducing cytotoxicity. Over-expression and knockdown of GSTA1 did not alter JNK activation by menadione or sensitivity to menadione-induced cytotoxicity. These results indicate that GSTA1-JNK complex integrity does not affect the ability of menadione to activate JNK. N-acetyl cysteine prevents GSH depletion and blocks menadione-induced complex dissociation, JNK activation and inhibits menadione-induced cytotoxicity. JNK activation and inhibits menadione-induced cytotoxicity. The data suggest that the mechanism of menadione-induced JNK activation involves the production of reactive oxygen species, likely superoxide anion, and intracellular GSH levels play an important role in preventing GSTA1-JNK complex dissociation, subsequent JNK activation and induction of cytotoxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. The MAP kinase JNK2 mediates cigarette smoke-induced arterial thrombosis.

    PubMed

    Breitenstein, Alexander; Stämpfli, Simon F; Reiner, Martin F; Shi, Yi; Keller, Stephan; Akhmedov, Alexander; Schaub Clerigué, Ariane; Spescha, Remo D; Beer, Hans-Jürg; Lüscher, Thomas F; Tanner, Felix C; Camici, Giovanni G

    2017-01-05

    Despite public awareness of its deleterious effects, smoking remains a major cause of death. Indeed, it is a risk factor for atherothrombotic complications and in line with this, the introduction of smoking ban in public areas reduced smoking-associated cardiovascular complications. Nonetheless, smoking remains a major concern, and molecular mechanisms by which it causes cardiovascular disease are not known. Peripheral blood monocytes from healthy smokers displayed increased JNK2 and tissue factor (TF) gene expression compared to non-smokers (n=15, p<0.05). Similarly, human aortic endothelial cells exposed to cigarette smoke total particulate matter (CS-TPM) revealed increased TF expression mediated by JNK2 (n=4; p<0.05). Wild-type and JNK2 -/- mice were exposed to cigarette smoke for two weeks after which arterial thrombosis was investigated. Wild-type mice exposed to smoke displayed reduced time to thrombotic arterial occlusion (n=8; p<0.05) and increased tissue factor activity (n=7; p<0.05) as compared to wild-type controls (n=6), while JNK2 -/- mice exposed to smoke maintained an unaltered thrombotic potential (n=8; p=NS) and tissue factor activity (n=8) comparable to that of JNK2 -/- and wild-type controls (n=6; p=NS). Smoking caused an increased production of reactive oxygen species (ROS) in wild-type but not in JNK2 -/- mice (n=7; p<0.05 for wild-type mice and n=5-6; p=NS for JNK2 -/- mice). In conclusion, the MAP kinase JNK2 mediates cigarette smoke-induced TF activation, arterial thrombosis and ROS production. These results underscore a major role of JNK2 in smoke-mediated thrombus formation and may offer an attractive target to prevent smoke-related thrombosis in those subjects which do not manage quitting.

  20. JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling

    PubMed Central

    Almuedo-Castillo, María; Crespo, Xenia; Seebeck, Florian; Bartscherer, Kerstin; Salò, Emili; Adell, Teresa

    2014-01-01

    Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun–NH2–kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal. PMID:24922054

  1. [Practical problems in breast screening. Columnar cell lesions including flat epithelial atypia and lobular neoplasia].

    PubMed

    Nährig, J

    2008-11-01

    Columnar cell lesions (CCL) and lobular neoplasia (LN) are encountered with increasing frequency in breast screening biopsies. CCLs are frequently associated with microcalcifications, whereas LN is an incidental finding in most cases. Flat epithelia atypia (FEA) the atypical variant of CLL, LN and atypical ductal hyperplasia (ADH) are frequently associated lesions. Molecular genetic studies of CCL, ductal carcinoma in situ (DCIS) and low grade invasive carcinomas revealed similar chromosomal alterations supporting the assumption that CCLs are neoplastic proliferations. The frequent association of FEA together with well differentiated invasive carcinomas provides further evidence of this concept. There is no internationally accepted classification of CCLs at present. CDH1-gene mutations are the cardinal feature of LN and invasive lobular carcinoma. In immunohistochemically CDH1-positive cases, alternative genetic alterations of the CDH1 pathway can lead to functional loss of CDH1. In our opinion morphologically and immunohistochemically hybrid lesions may represent this group of lobular lesions. Recent follow-up data suggest a higher rate of ipsilateral carcinomas in patients with previously diagnosed LN. It is currently an open question whether FEA and LN are members of a common family of intralobular proliferations, which are non-obligatory precursors of a low nuclear grade breast neoplasia family.

  2. Smad3 phosphoisoform-mediated signaling during sporadic human colorectal carcinogenesis.

    PubMed

    Matsuzaki, K

    2006-06-01

    Transforming growth factor-beta (TGF-beta) signaling occurring during human colorectal carcinogenesis involves a shift in TGF-beta function, reducing the cytokine's antiproliferative effect, while increasing actions that promote invasion and metastasis. TGF-beta signaling involves phosphorylation of Smad3 at serine residues 208 and 213 in the linker region and serine residues 423 and 425 in the C-terminal region. Exogenous TGF-beta activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), changing unphosphorylated Smad3 to its phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker phosphorylated Smad3 (pSmad3L). Either pSmad3C or pSmad3L oligomerizes with Smad4, and translocates into nuclei. While the TbetaRI/pSmad3C pathway inhibits growth of normal epithelial cells in vivo, JNK/pSmad3L-mediated signaling promotes tumor cell invasion and extracellular matrix synthesis by activated mesenchymal cells. Furthermore, hepatocyte growth factor signaling interacts with TGF-beta to activate the JNK/pSmad3L pathway, accelerating nuclear transport of cytoplasmic pSmad3L. This reduces accessibility of unphosphorylated Smad3 to membrane-anchored TbetaRI, preventing Smad3C phosphorylation, pSmad3C-mediated transcription, and antiproliferative effects of TGF-beta on epithelial cells. As neoplasia progresses from normal colorectal epithelium through adenoma to invasive adenocarcinoma with distant metastasis, nuclear pSmad3L gradually increases while pSmad3C decreases. The shift from TbetaRI/pSmad3C-mediated to JNK/pSmad3L-mediated signaling is a major mechanism orchestrating a complex transition of TGF-beta signaling during sporadic human colorectal carcinogenesis. This review summarizes the recent understanding of Smad3 phosphoisoform-mediated signaling, particularly 'cross-talk' between Smad3 and JNK pathways that cooperatively promote oncogenic activities. Understanding of these actions should help to develop more effective

  3. c-Jun localizes to the nucleus independent of its phosphorylation by and interaction with JNK and vice versa promotes nuclear accumulation of JNK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreck, Ilona; Al-Rawi, Marco; Mingot, Jose-Manuel

    2011-04-22

    Highlights: {yields} HSP70, Ku70 and 80 as well as importin 8 are novel interactors of c-Jun. {yields} Nuclear accumulation of c-Jun does not require its functions as a transcription factor. {yields} Nuclear accumulation of c-Jun does not require the interaction with its kinase JNK. {yields} Nuclear accumulation of JNK is regulated by interaction with c-Jun. -- Abstract: In order to activate gene expression, transcription factors such as c-Jun have to reside in the nucleus. The abundance of c-Jun in the nucleus correlates with the activity of its target genes. As a consequence of excessive c-Jun activation, cells undergo apoptosis ormore » changes in differentiation whereas decreased c-Jun function can reduce proliferation. In the present study we addressed how nuclear accumulation of the transcription factor c-Jun is regulated. First, we analyzed which functions of c-Jun are required for efficient nuclear accumulation. Mutants of c-Jun deficient in dimerization or DNA-binding show no defect in nuclear transport. Furthermore, c-Jun import into the nucleus of living cells occurred when the c-Jun phosphorylation sites were mutated as well in cells that lack the major c-Jun kinase, JNK, suggesting that c-Jun transport into the nucleus does not require JNK signaling. Conversely, however, binding of c-Jun seemed to enhance nuclear accumulation of JNK. In order to identify proteins that might be relevant for the nuclear translocation of c-Jun we searched for novel binding partners by a proteomic approach. In addition to the heat shock protein HSP70 and the DNA damage repair factors Ku70 and 80, we isolated human importin 8 as a novel interactor of c-Jun. Interaction of Imp 8 with c-Jun in human cells was confirmed by co-immunoprecipitation experiments. Nuclear accumulation of c-Jun does not require its functions as a transcription factor or the interaction with its kinase JNK. Interestingly, nuclear accumulation of JNK is regulated by interaction with c-Jun. Unraveling

  4. Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway.

    PubMed

    Horvath, Gabor; Schmid, Nathalie; Fragoso, Miryam A; Schmid, Andreas; Conner, Gregory E; Salathe, Matthias; Wanner, Adam

    2007-01-01

    Most inhaled beta(2)-adrenergic agonist and anticholinergic bronchodilators have low lipid solubility because of their transient or permanent positive net charge at physiologic pH. Airway absorption of these cationic drugs is incompletely understood. We examined carrier-mediated mechanisms of cationic drug uptake by human airway epithelia. Airway tissues and epithelial cells, obtained from lung donors without preexisting lung disease, were evaluated for organic cation transporter expression by quantitative RT-PCR and immunofluorescence. For in vitro functional studies on primary airway epithelial cells, uptake of the cationic fluorophore 4-[4-(dimethylamino)-styryl]-N-methylpyridinium (ASP+) was characterized. Quantitative RT-PCR analysis demonstrated high mRNA levels for two polyspecific organic cation/carnitine transporters, OCTN1 and OCTN2, in human airway epithelia. Immunofluorescence of human airway sections confirmed OCTN1/2 protein expression, with a predominant localization to the apical portion of epithelial cells. Primary airway epithelial cells showed a carrier-mediated, temperature-sensitive and saturable uptake of ASP(+). Seventy-five to eighty percent of ASP(+) uptake was inhibited by L-carnitine, an OCTN2-carried zwitterion. The uptake was pH dependent, with approximately 3-fold lower rates at acidic (pH 5.7) than at alkaline (pH 8.2) extracellular pH. Albuterol and formoterol inhibited ASP(+) uptake, suggesting that all these molecules are carried by the same transport mechanism. These findings demonstrate the existence and functional role of a pH-dependent organic cation uptake machinery, namely OCTN1 and OCTN2, in human airway epithelia. We suggest that epithelial OCTN1/2 are involved in the delivery of inhaled cationic bronchodilators to the airway tissue.

  5. Role of JNK isoforms in the kainic acid experimental model of epilepsy and neurodegeneration.

    PubMed

    Auladell, Carme; de Lemos, Luisa; Verdaguer, Ester; Ettcheto, Miren; Busquets, Oriol; Lazarowski, Alberto; Beas-Zarate, Carlos; Olloquequi, Jordi; Folch, Jaume; Camins, Antoni

    2017-01-01

    Chemoconvulsants that induce status epilepticus in rodents have been widely used over the past decades due to their capacity to reproduce with high similarity neuropathological and electroencephalographic features observed in patients with temporal lobe epilepsy (TLE). Kainic acid  is one of the most used chemoconvulsants in experimental models. KA administration mainly induces neuronal loss in the hippocampus. We focused the present review inthe c-Jun N-terminal kinase-signaling pathway (JNK), since it has been shown to play a key role in the process of neuronal death following KA activation. Among the three isoforms of JNK (JNK1, JNK2, JNK3), JNK3 is widely localized in the majority of areas of the hippocampus, whereas JNK1 levels are located exclusively in the CA3 and CA4 areas and in dentate gyrus. Disruption of the gene encoding JNK3 in mice renders neuroprotection to KA, since these animals showed a reduction in seizure activity and a diminution in hippocampal neuronal apoptosis. In light of this, JNK3 could be a promising subcellular target for future therapeutic interventions in epilepsy.

  6. IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia.

    PubMed

    Gosmann, Christina; Mattarollo, Stephen R; Bridge, Jennifer A; Frazer, Ian H; Blumenthal, Antje

    2014-09-01

    Persistent infection with high-risk human papillomaviruses (HPV) causes epithelial hyperplasia that can progress to cancer and is thought to depend on immunosuppressive mechanisms that prevent viral clearance by the host. IL-17 is a cytokine with diverse functions in host defense and in the pathology of autoimmune disorders, chronic inflammatory diseases, and cancer. We analyzed biopsies from patients with HPV-associated cervical intraepithelial neoplasia grade 2/3 and murine skin displaying HPV16 E7 protein-induced epithelial hyperplasia, which closely models hyperplasia in chronic HPV lesions. Expression of IL-17 and IL-23, a major inducer of IL-17, was elevated in both human HPV-infected and murine E7-expressing lesions. Using a skin-grafting model, we demonstrated that IL-17 in HPV16 E7 transgenic skin grafts inhibited effective host immune responses against the graft. IL-17 was produced by CD3(+) T cells, predominantly CD4(+) T cells in human, and CD4(+) and γδ T cells in mouse hyperplastic lesions. IL-23 and IL-1β, but not IL-18, induced IL-17 production in E7 transgenic skin. Together, these findings demonstrate an immunosuppressive role for IL-17 in HPV-associated epithelial hyperplasia and suggest that blocking IL-17 in persistent viral infection may promote antiviral immunity and prevent progression to cancer. Copyright © 2014 by The American Association of Immunologists, Inc.

  7. Glabridin induces apoptosis and cell cycle arrest in oral cancer cells through the JNK1/2 signaling pathway.

    PubMed

    Chen, Chang-Tai; Chen, Yi-Tzu; Hsieh, Yi-Hsien; Weng, Chia-Jui; Yeh, Jung-Chun; Yang, Shun-Fa; Lin, Chiao-Wen; Yang, Jia-Sin

    2018-06-01

    Glabridin, a flavonoid extracted from licorice (Glycyrrhiza glabra), possesses various biological properties, including anticancer activities. However, the effect of glabridin on oral cancer cell apoptosis and the underlying molecular mechanisms has not been elucidated. In this study, we demonstrated that glabridin treatment significantly inhibits cell proliferation in human oral cancer SCC-9 and SAS cell lines. Flow cytometric assays demonstrated that glabridin induced several features of apoptosis, such as sub-G1 phase cell increase and phosphatidylserine externalization. Furthermore, glabridin induced apoptosis dose-dependently in SCC-9 cells through caspase-3, -8, and -9 activation and poly (ADP-ribose) polymerase cleavage. Moreover, glabridin increased the phosphorylation of the extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase (JNK) pathways in a dose-dependent manner. Moreover, the inhibition of the JNK1/2 inhibitor significantly reversed the glabridin-induced activation of the caspase pathway. In conclusion, our findings suggest that glabridin induces oral cancer cell apoptosis through the JNK1/2 pathway and is a potential therapeutic agent for oral cancer. © 2018 Wiley Periodicals, Inc.

  8. The basics of epithelial-mesenchymal transition.

    PubMed

    Kalluri, Raghu; Weinberg, Robert A

    2009-06-01

    The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.

  9. Fluid Shear Stress-Induced JNK Activity Leads to Actin Remodeling for Cell Alignment

    PubMed Central

    Mengistu, Meron; Brotzman, Hannah; Ghadiali, Samir; Lowe-Krentz, Linda

    2012-01-01

    Fluid shear stress (FSS) exerted on endothelial cell surfaces induces actin cytoskeleton remodeling through mechanotransduction. This study was designed to determine whether FSS activates Jun N-terminal kinase (JNK), to examine the spatial and temporal distribution of active JNK relative to the actin cytoskeleton in endothelial cells exposed to different FSS conditions, and to evaluate the effects of active JNK on actin realignment. Exposure to 15 and 20 dyn/cm2 FSS induced higher activity levels of JNK than the lower 2 and 4 dyn/cm2 flow conditions. At the higher FSS treatments, JNK activity increased with increasing exposure time, peaking 30 minutes after flow onset with an 8-fold activity increase compared to cells in static culture. FSS-induced phospho-JNK co-localized with actin filaments at cell peripheries, as well as with stress fibers. Pharmacologically blocking JNK activity altered FSS-induced actin structure and distribution as a response to FSS. Our results indicate that FSS-induced actin remodeling occurs in three phases, and that JNK plays a role in at least one, suggesting that this kinase activity is involved in mechanotransduction from the apical surface to the actin cytoskeleton in endothelial cells. PMID:20626006

  10. JNK1 regulates histone acetylation in trigeminal neurons following chemical stimulation

    PubMed Central

    Wu, Jing; Zhang, Xuan; Nauta, Haring J; Lin, Qing; Li, Junfa; Fang, Li

    2008-01-01

    Trigeminal nerve fibers in nasal and oral cavities are sensitive to various environmental hazardous stimuli, which trigger many neurotoxic problems such as chronic migraine headache and trigeminal irritated disorders. However, the role of JNK kinase cascade and its epigenetic modulation of histone remodeling in trigeminal ganglion (TG) neurons activated by environmental neurotoxins remains unknown. Here we investigated the role of JNK/c-Jun cascade in the regulation of acetylation of H3 histone in TG neurons following in vitro stimulation by a neuro-inflammatory agent, mustard oil (MO). We found that MO stimulation elicited JNK/c-Jun pathway significantly by enhancing phospho-JNK1, phospho-c-Jun expression, and c-Jun activity, which were correlated with an elevated acetylated H3 histone in TG neurons. However, increases in phospho-c-Jun and c-Jun activity were significantly blocked by a JNK inhibitor, SP600125. We also found that altered H3 histone remodeling, assessed by H3 acetylation in triggered TG neurons, was reduced by SP600125. The study suggests that the activated JNK signaling in regulation of histone remodeling may contribute to neuro-epigentic changes in peripheral sensory neurons following environmental neurotoxic exposure. PMID:18822271

  11. Activation of JNK and IRE1 is critically involved in tanshinone I-induced p62 dependent autophagy in malignant pleural mesothelioma cells: implication of p62 UBA domain

    PubMed Central

    Yoon, Sangwook; Won, Gunho; Kim, Chang Geun; Jung, Ji Hoon; Kim, Sung-Hoon

    2017-01-01

    The aim of present study is to elucidate autophagic mechanism of tanshinone I (Tan I) in H28 and H2452 mesothelioma cells. Herein, Tan I exerted cytotoxicity with autophagic features of autophagy protein 5 (ATG5)/ microtubule-associated protein 1A/1B-light chain 3II (LC3 II) activation, p62/sequestosome 1 (SQSTM1) accumulation and increased number of LC3II punctae, acridine orange-stained cells and autophagic vacuoles. However, 3-methyladenine (3MA) and NH4Cl increased cytotoxicity in Tan I treated H28 cells. Furthermore, autophagy flux was enhanced in Tan I-treated H28 cells transfected by RFP-GFP-LC3 constructs, with colocalization of GFP-LC3 punctae with LAMP1 or Lysotracker. Interestingly, C-terminal UBA domain is required for Tan 1 induced aggregation of p62 in H28 cells. Notably, Tan I upregulated CCAAT-enhancer-binding protein homologous protein (CHOP), inositol-requiring protein-1 (IRE1) and p-c-Jun N-terminal kinase (p-JNK), but silencing of IRE1 or p62 and JNK inhibitor SP600125 blocked the LC3II accumulation in Tan I-treated H28 cells. Overall, these findings demonstrate that Tan I exerts antitumor activity through a compromise between apoptosis and p62/SQSTM1-dependent autophagy via activation of JNK and IRE 1 in malignant mesothelioma cells. PMID:28212571

  12. Activation of JNK and IRE1 is critically involved in tanshinone I-induced p62 dependent autophagy in malignant pleural mesothelioma cells: implication of p62 UBA domain.

    PubMed

    Lee, Jihyun; Sohn, Eun Jung; Yoon, Sangwook; Won, Gunho; Kim, Chang Geun; Jung, Ji Hoon; Kim, Sung-Hoon

    2017-04-11

    The aim of present study is to elucidate autophagic mechanism of tanshinone I (Tan I) in H28 and H2452 mesothelioma cells. Herein, Tan I exerted cytotoxicity with autophagic features of autophagy protein 5 (ATG5)/ microtubule-associated protein 1A/1B-light chain 3II (LC3 II) activation, p62/sequestosome 1 (SQSTM1) accumulation and increased number of LC3II punctae, acridine orange-stained cells and autophagic vacuoles. However, 3-methyladenine (3MA) and NH4Cl increased cytotoxicity in Tan I treated H28 cells. Furthermore, autophagy flux was enhanced in Tan I-treated H28 cells transfected by RFP-GFP-LC3 constructs, with colocalization of GFP-LC3 punctae with LAMP1 or Lysotracker. Interestingly, C-terminal UBA domain is required for Tan 1 induced aggregation of p62 in H28 cells. Notably, Tan I upregulated CCAAT-enhancer-binding protein homologous protein (CHOP), inositol-requiring protein-1 (IRE1) and p-c-Jun N-terminal kinase (p-JNK), but silencing of IRE1 or p62 and JNK inhibitor SP600125 blocked the LC3II accumulation in Tan I-treated H28 cells. Overall, these findings demonstrate that Tan I exerts antitumor activity through a compromise between apoptosis and p62/SQSTM1-dependent autophagy via activation of JNK and IRE 1 in malignant mesothelioma cells.

  13. c-Jun N-terminal kinase 3 (JNK3) Mediates Paraquat- and Rotenone-Induced Dopaminergic Neuron Death

    PubMed Central

    Choi, Won Seok; Abel, Glen; Klintworth, Heather; Flavell, Richard A.; Xia, Zhengui

    2011-01-01

    Mechanistic studies underlying dopaminergic neuron death may identify new drug targets for the treatment of Parkinson disease (PD). Epidemiological studies have linked pesticide exposure to increased risk for sporadic PD. Here, we investigated the role of c-Jun N-terminal kinase 3 (JNK3), a neural-specific JNK isoform, in dopaminergic neuron death induced by the pesticides rotenone and paraquat. The role of JNK3 was evaluated using RNA silencing and gene deletion to block JNK3 signaling. Using an antibody that recognizes all isoforms of activated JNKs, we found that paraquat and rotenone stimulate JNK phosphorylation in primary cultured dopaminergic neurons. In cultured neurons transfected with Jnk3-specific siRNA and in neurons from Jnk3−/− mice, JNK phosphorylation was nearly abolished, suggesting that JNK3 is the main JNK isoform activated in dopaminergic neurons by these pesticides. Paraquat- and rotenone-induced death of dopaminergic neurons was also significantly reduced by Jnk3 siRNA or Jnk3 gene deletion and deletion of the Jnk3 gene completely attenuated paraquat-induced dopaminergic neuron death and motor-deficits in vivo. Our data identify JNK3 as a common and critical mediator of dopaminergic neuron death induced by paraquat and rotenone, suggesting that it is a potential drug target for PD treatment. PMID:20418776

  14. Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurones.

    PubMed

    Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J

    2004-03-01

    Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.

  15. Effect of JNK inhibitor SP600125 on hair cell regeneration in zebrafish (Danio rerio) larvae

    PubMed Central

    Sun, Shaoyang; Wang, Xu; Li, Wenyan; Li, Huawei

    2016-01-01

    The c-Jun amino-terminal kinase (JNK) proteins are a subgroup of the mitogen-activated protein kinase family. They play a complex role in cell proliferation, survival, and apoptosis. Here, we report a novel role of JNK signalling in hair cell regeneration. We eliminated hair cells of 5-day post-fertilization zebrafish larvae using neomycin followed by JNK inhibition with SP600125. JNK inhibition strongly decreased the number of regenerated hair cells in response to neomycin damage. These changes were associated with reduced proliferation. JNK inhibition also increased cleaved caspase-3 activity and induced apoptosis in regenerating neuromasts. Finally, JNK inhibition with SP600125 decreased the expression of genes related to Wnt. Over-activation of the Wnt signalling pathway partly rescued the hair cell regeneration defects induced by JNK inhibition. Together, our findings provide novel insights into the function of JNK and show that JNK inhibition blocks hair cell regeneration by controlling the Wnt signalling pathway. PMID:27438150

  16. JNK pathway activation is controlled by Tao/TAOK3 to modulate ethanol sensitivity.

    PubMed

    Kapfhamer, David; King, Ian; Zou, Mimi E; Lim, Jana P; Heberlein, Ulrike; Wolf, Fred W

    2012-01-01

    Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.

  17. Adhesion- and stress-related adaptation of glioma radiochemoresistance is circumvented by β1 integrin/JNK co-targeting.

    PubMed

    Vehlow, Anne; Klapproth, Erik; Storch, Katja; Dickreuter, Ellen; Seifert, Michael; Dietrich, Antje; Bütof, Rebecca; Temme, Achim; Cordes, Nils

    2017-07-25

    Resistance of cancer stem-like and cancer tumor bulk cells to radiochemotherapy and destructive infiltration of the brain fundamentally influence the treatment efficiency to cure of patients suffering from Glioblastoma (GBM). The interplay of adhesion and stress-related signaling and activation of bypass cascades that counteract therapeutic approaches remain to be identified in GBM cells. We here show that combined inhibition of the adhesion receptor β1 integrin and the stress-mediator c-Jun N-terminal kinase (JNK) induces radiosensitization and blocks invasion in stem-like and patient-derived GBM cultures as well as in GBM cell lines. In vivo, this treatment approach not only significantly delays tumor growth but also increases median survival of orthotopic, radiochemotherapy-treated GBM mice. Both, in vitro and in vivo, effects seen with β1 integrin/JNK co-inhibition are superior to the monotherapy. Mechanistically, the in vitro radiosensitization provoked by β1 integrin/JNK targeting is caused by defective DNA repair associated with chromatin changes, enhanced ATM phosphorylation and prolonged G2/M cell cycle arrest. Our findings identify a β1 integrin/JNK co-dependent bypass signaling for GBM therapy resistance, which might be therapeutically exploitable.

  18. Domain Specificity of MAP3K Family Members, MLK and Tak1, for JNK Signaling in Drosophila

    PubMed Central

    Stronach, Beth; Lennox, Ashley L.; Garlena, Rebecca A.

    2014-01-01

    A highly diverse set of protein kinases functions as early responders in the mitogen- and stress-activated protein kinase (MAPK/SAPK) signaling pathways. For instance, humans possess 14 MAPK kinase kinases (MAP3Ks) that activate Jun kinase (JNK) signaling downstream. A major challenge is to decipher the selective and redundant functions of these upstream MAP3Ks. Taking advantage of the relative simplicity of Drosophila melanogaster as a model system, we assessed MAP3K signaling specificity in several JNK-dependent processes during development and stress response. Our approach was to generate molecular chimeras between two MAP3K family members, the mixed lineage kinase, Slpr, and the TGF-β activated kinase, Tak1, which share 32% amino acid identity across the kinase domain but otherwise differ in sequence and domain structure, and then test the contributions of various domains for protein localization, complementation of mutants, and activation of signaling. We found that overexpression of the wild-type kinases stimulated JNK signaling in alternate contexts, so cells were capable of responding to both MAP3Ks, but with distinct outcomes. Relative to wild-type, the catalytic domain swaps compensated weakly or not at all, despite having a shared substrate, the JNK kinase Hep. Tak1 C-terminal domain-containing constructs were inhibitory in Tak1 signaling contexts, including tumor necrosis factor-dependent cell death and innate immune signaling; however, depressing antimicrobial gene expression did not necessarily cause phenotypic susceptibility to infection. These same constructs were neutral in the context of Slpr-dependent developmental signaling, reflecting differential subcellular protein localization and by inference, point of activation. Altogether, our findings suggest that the selective deployment of a particular MAP3K can be attributed in part to its inherent sequence differences, cellular localization, and binding partner availability. PMID:24429281

  19. Oncostatin M Mediates STAT3-Dependent Intestinal Epithelial Restitution via Increased Cell Proliferation, Decreased Apoptosis and Upregulation of SERPIN Family Members

    PubMed Central

    Beigel, Florian; Friedrich, Matthias; Probst, Corina; Sotlar, Karl; Göke, Burkhard; Diegelmann, Julia; Brand, Stephan

    2014-01-01

    Objective Oncostatin M (OSM) is produced by activated T cells, monocytes, and dendritic cells and signals through two distinct receptor complexes consisting of gp130 and LIFR (I) or OSMR-β and gp130 (II), respectively. Aim of this study was to analyze the role of OSM in intestinal epithelial cells (IEC) and intestinal inflammation. Methods OSM expression and OSM receptor distribution was analyzed by PCR and immunohistochemistry experiments, signal transduction by immunoblotting. Gene expression studies were performed by microarray analysis and RT-PCR. Apoptosis was measured by caspases-3/7 activity. IEC migration and proliferation was studied in wounding and water soluble tetrazolium assays. Results The IEC lines Caco-2, DLD-1, SW480, HCT116 and HT-29 express mRNA for the OSM receptor subunits gp130 and OSMR-β, while only HCT116, HT-29 and DLD-1 cells express LIFR mRNA. OSM binding to its receptor complex activates STAT1, STAT3, ERK-1/2, SAPK/JNK-1/2, and Akt. Microarray analysis revealed 79 genes that were significantly up-regulated (adj.-p≤0.05) by OSM in IEC. Most up-regulated genes belong to the functional categories “immunity and defense” (p = 2.1×10−7), “apoptosis” (p = 3.7×10−4) and “JAK/STAT cascade” (p = 3.4×10−6). Members of the SERPIN gene family were among the most strongly up-regulated genes. OSM significantly increased STAT3- and MEK1-dependent IEC cell proliferation (p<0.05) and wound healing (p = 3.9×10−5). OSM protein expression was increased in colonic biopsies of patients with active inflammatory bowel disease (IBD). Conclusions OSM promotes STAT3-dependent intestinal epithelial cell proliferation and wound healing in vitro. Considering the increased OSM expression in colonic biopsy specimens of patients with active IBD, OSM upregulation may modulate a barrier-protective host response in intestinal inflammation. Further in vivo studies are warranted to elucidate the exact role of OSM in intestinal

  20. Interleukin-1 Acts via the JNK-2 Signaling Pathway to Induce Aggrecan Degradation by Human Chondrocytes.

    PubMed

    Ismail, Heba M; Yamamoto, Kazuhiro; Vincent, Tonia L; Nagase, Hideaki; Troeberg, Linda; Saklatvala, Jeremy

    2015-07-01

    Aggrecan enables articular cartilage to bear load and resist compression. Aggrecan loss occurs early in osteoarthritis and rheumatoid arthritis and can be induced by inflammatory cytokines such as interleukin-1 (IL-1). IL-1 induces cleavage of specific aggrecans characteristic of the ADAMTS proteinases. The aim of this study was to identify the intracellular signaling pathways by which IL-1 causes aggrecan degradation by human chondrocytes and to investigate how aggrecanase activity is controlled by chondrocytes. We developed a cell-based assay combining small interfering RNA (siRNA)-induced knockdown with aggrecan degradation assays. Human articular chondrocytes were overlaid with bovine aggrecan after transfection with siRNAs against molecules of the IL-1 signaling pathway. After IL-1 stimulation, released aggrecan fragments were detected with AGEG and ARGS neoepitope antibodies. Aggrecanase activity and tissue inhibitor of metalloproteinases 3 levels were measured by enzyme-linked immunosorbent assay. Low-density lipoprotein receptor-related protein 1 (LRP-1) shedding was analyzed by Western blotting. ADAMTS-5 is a major aggrecanase in human chondrocytes, regulating aggrecan degradation in response to IL-1. The tumor necrosis factor receptor-associated 6 (TRAF-6)/transforming growth factor β-activated kinase 1 (TAK-1)/MKK-4 signaling axis is essential for IL-1-induced aggrecan degradation, while NF-κB is not. Of the 3 MAPKs (ERK, p38, and JNK), only JNK-2 showed a significant role in aggrecan degradation. Chondrocytes constitutively secreted aggrecanase, which was continuously endocytosed by LRP-1, keeping the extracellular level of aggrecanase low. IL-1 induced aggrecanase activity in the medium in a JNK-2-dependent manner, possibly by reducing aggrecanase endocytosis, because IL-1 caused JNK-2-dependent shedding of LRP-1. The signaling axis TRAF-6/TAK-1/MKK-4/JNK-2 mediates IL-1-induced aggrecanolysis. The level of aggrecanase is controlled by its

  1. Proton induces apoptosis of hypoxic tumor cells by the p53-dependent and p38/JNK MAPK signaling pathways.

    PubMed

    Lee, Kheun Byeol; Kim, Kye-Ryung; Huh, Tae-Lin; Lee, You Mie

    2008-12-01

    Tumor hypoxia is a main obstacle for radiation therapy. To investigate whether exposure to a proton beam can overcome radioresistance in hypoxic tumor cells, three kinds of cancer cells, Lewis lung carcinoma (LLC) cells, hepatoma HepG2 and Molt-4 leukemia cells, were treated with a proton beam (35 MeV, 1, 2, 5, 10 Gy) in the presence or absence of hypoxia. Cell death rates were determined 72 h after irradiation. Hypoxic cells exposed to the proton beam underwent a typical apoptotic program, showing condensed nuclei, fragmented DNA ladders, and poly-ADP-ribose polymerase (PARP) cleavage. Fluorescence-activated cell sorter analysis revealed a significant increase in Annexin-V-positive cells. Cells treated with the proton beam and hypoxia displayed increased expression of p53, p21 and Bax, but decreased levels of phospho-Rb, Bcl-2 and XIAP, as well as activated caspase-9 and -3. The proton beam with hypoxia induced cell death in wild-type HCT116 cells, but not in a p53 knockout cell line, demonstrating a requirement for p53. As reactive oxygen species (ROS) were also significantly increased, apoptosis could also be abolished by treatment with the anti-oxidant N-acetyl cysteine (NAC). P38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) were activated by the treatment, and their respective DN mutants restored the cell death induced by either proton therapy alone or with hypoxia. In conclusion, proton beam treatment did not differently regulate cancer cell apoptosis either in normoxic or hypoxic conditions via a p53-dependent mechanism and by the activation of p38/JNK MAPK pathways through ROS.

  2. JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage.

    PubMed

    Becattini, Barbara; Zani, Fabio; Breasson, Ludovic; Sardi, Claudia; D'Agostino, Vito Giuseppe; Choo, Min-Kyung; Provenzani, Alessandro; Park, Jin Mo; Solinas, Giovanni

    2016-09-01

    Obesity and insulin resistance are associated with oxidative stress, which may be implicated in the progression of obesity-related diseases. The kinase JNK1 has emerged as a promising drug target for the treatment of obesity and type 2 diabetes. JNK1 is also a key mediator of the oxidative stress response, which can promote cell death or survival, depending on the magnitude and context of its activation. In this article, we describe a study in which the long-term effects of JNK1 inactivation on glucose homeostasis and oxidative stress in obese mice were investigated for the first time. Mice lacking JNK1 (JNK1(-/-)) were fed an obesogenic high-fat diet (HFD) for a long period. JNK1(-/-) mice fed an HFD for the long term had reduced expression of antioxidant genes in their skin, more skin oxidative damage, and increased epidermal thickness and inflammation compared with the effects in control wild-type mice. However, we also observed that the protection from obesity, adipose tissue inflammation, steatosis, and insulin resistance, conferred by JNK1 ablation, was sustained over a long period and was paralleled by decreased oxidative damage in fat and liver. We conclude that compounds targeting JNK1 activity in brain and adipose tissue, which do not accumulate in the skin, may be safer and most effective.-Becattini, B., Zani, F., Breasson, L., Sardi, C., D'Agostino, V. G., Choo, M.-K., Provenzani, A., Park, J. M., Solinas, G. JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage. © FASEB.

  3. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Teng, E-mail: tengyu33@yahoo.com; Ji, Jiang; Guo, Yong-li

    2013-11-08

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen speciesmore » (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.« less

  4. Flavonoids from Engineered Tomatoes Inhibit Gut Barrier Pro-inflammatory Cytokines and Chemokines, via SAPK/JNK and p38 MAPK Pathways

    PubMed Central

    Tomlinson, Matthew L.; Butelli, Eugenio; Martin, Cathie; Carding, Simon R.

    2017-01-01

    Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids. PMID:29326940

  5. Flavonoids from Engineered Tomatoes Inhibit Gut Barrier Pro-inflammatory Cytokines and Chemokines, via SAPK/JNK and p38 MAPK Pathways.

    PubMed

    Tomlinson, Matthew L; Butelli, Eugenio; Martin, Cathie; Carding, Simon R

    2017-01-01

    Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids.

  6. Asthmatic airway smooth muscle CXCL10 production: mitogen-activated protein kinase JNK involvement

    PubMed Central

    Alrashdan, Yazan A.; Alkhouri, Hatem; Chen, Emily; Lalor, Daniel J.; Poniris, Maree; Henness, Sheridan; Brightling, Christopher E.; Burgess, Janette K.; Armour, Carol L.; Ammit, Alaina J.

    2012-01-01

    CXCL10 (IP10) is involved in mast cell migration to airway smooth muscle (ASM) bundles in asthma. We aimed to investigate the role of cytokine-induced MAPK activation in CXCL10 production by ASM cells from people with and without asthma. Confluent growth-arrested ASM cells were treated with inhibitors of the MAPKs ERK, p38, and JNK and transcription factor NF-κB, or vehicle, and stimulated with IL-1β, TNF-α, or IFN-γ, alone or combined (cytomix). CXCL10 mRNA and protein, JNK, NF-κB p65 phosphorylation, and Iκ-Bα protein degradation were assessed using real-time PCR, ELISA, and immunoblotting, respectively. Cytomix, IL-1β, and TNF-α induced CXCL10 mRNA expression more rapidly in asthmatic than nonasthmatic ASM cells. IL-1β and/or TNF-α combined with IFN-γ synergistically increased asthmatic ASM cell CXCL10 release. Inhibitor effects were similar in asthmatic and nonasthmatic cells, but cytomix-induced release was least affected, with only JNK and NF-κB inhibitors halving it. Notably, JNK phosphorylation was markedly less in asthmatic compared with nonasthmatic cells. However, in both, the JNK inhibitor SP600125 reduced JNK phosphorylation and CXCL10 mRNA levels but did not affect CXCL10 mRNA stability or Iκ-Bα degradation. Together, the JNK and NF-κB inhibitors completely inhibited their CXCL10 release. We concluded that, in asthmatic compared with nonasthmatic ASM cells, JNK activation was reduced and CXCL10 gene expression was more rapid following cytomix stimulation. However, in both, JNK activation did not regulate early events leading to NF-κB activation. Thus JNK and NF-κB provide independent therapeutic targets for limiting CXCL10 production and mast cell migration to the ASM in asthma. PMID:22387292

  7. Asthmatic airway smooth muscle CXCL10 production: mitogen-activated protein kinase JNK involvement.

    PubMed

    Alrashdan, Yazan A; Alkhouri, Hatem; Chen, Emily; Lalor, Daniel J; Poniris, Maree; Henness, Sheridan; Brightling, Christopher E; Burgess, Janette K; Armour, Carol L; Ammit, Alaina J; Hughes, J Margaret

    2012-05-15

    CXCL10 (IP10) is involved in mast cell migration to airway smooth muscle (ASM) bundles in asthma. We aimed to investigate the role of cytokine-induced MAPK activation in CXCL10 production by ASM cells from people with and without asthma. Confluent growth-arrested ASM cells were treated with inhibitors of the MAPKs ERK, p38, and JNK and transcription factor NF-κB, or vehicle, and stimulated with IL-1β, TNF-α, or IFN-γ, alone or combined (cytomix). CXCL10 mRNA and protein, JNK, NF-κB p65 phosphorylation, and Iκ-Bα protein degradation were assessed using real-time PCR, ELISA, and immunoblotting, respectively. Cytomix, IL-1β, and TNF-α induced CXCL10 mRNA expression more rapidly in asthmatic than nonasthmatic ASM cells. IL-1β and/or TNF-α combined with IFN-γ synergistically increased asthmatic ASM cell CXCL10 release. Inhibitor effects were similar in asthmatic and nonasthmatic cells, but cytomix-induced release was least affected, with only JNK and NF-κB inhibitors halving it. Notably, JNK phosphorylation was markedly less in asthmatic compared with nonasthmatic cells. However, in both, the JNK inhibitor SP600125 reduced JNK phosphorylation and CXCL10 mRNA levels but did not affect CXCL10 mRNA stability or Iκ-Bα degradation. Together, the JNK and NF-κB inhibitors completely inhibited their CXCL10 release. We concluded that, in asthmatic compared with nonasthmatic ASM cells, JNK activation was reduced and CXCL10 gene expression was more rapid following cytomix stimulation. However, in both, JNK activation did not regulate early events leading to NF-κB activation. Thus JNK and NF-κB provide independent therapeutic targets for limiting CXCL10 production and mast cell migration to the ASM in asthma.

  8. Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis

    PubMed Central

    Huang, Fang; Liu, Qiaoyun; Xie, Shujun; Xu, Jian; Huang, Bo; Wu, Yihua; Xia, Dajing

    2016-01-01

    Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS) production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP). Further, pretreatment with antioxidant N-acetylcysteine (NAC) effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway. PMID:27322250

  9. Icariin attenuates angiotensin II-induced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen species-dependent JNK and p38 pathways

    PubMed Central

    ZHOU, HENG; YUAN, YUAN; LIU, YUAN; DENG, WEI; ZONG, JING; BIAN, ZHOU-YAN; DAI, JIA; TANG, QI-ZHU

    2014-01-01

    Icariin, the major active component isolated from plants of the Epimedium family, has been reported to have potential protective effects on the cardiovascular system. However, it is not known whether icariin has a direct effect on angiotensin II (Ang II)-induced cardiomyocyte enlargement and apoptosis. In the present study, embryonic rat heart-derived H9c2 cells were stimulated by Ang II, with or without icariin administration. Icariin treatment was found to attenuate the Ang II-induced increase in mRNA expression levels of hypertrophic markers, including atrial natriuretic peptide and B-type natriuretic peptide, in a concentration-dependent manner. The cell surface area of Ang II-treated H9c2 cells also decreased with icariin administration. Furthermore, icariin repressed Ang II-induced cell apoptosis and protein expression levels of Bax and cleaved-caspase 3, while the expression of Bcl-2 was increased by icariin. In addition, 2′,7′-dichlorofluorescein diacetate incubation revealed that icariin inhibited the production of intracellular reactive oxygen species (ROS), which were stimulated by Ang II. Phosphorylation of c-Jun N-terminal kinase (JNK) and p38 in Ang II-treated H9c2 cells was blocked by icariin. Therefore, the results of the present study indicated that icariin protected H9c2 cardiomyocytes from Ang II-induced hypertrophy and apoptosis by inhibiting the ROS-dependent JNK and p38 pathways. PMID:24940396

  10. Systems-level identification of PKA-dependent signaling in epithelial cells.

    PubMed

    Isobe, Kiyoshi; Jung, Hyun Jun; Yang, Chin-Rang; Claxton, J'Neka; Sandoval, Pablo; Burg, Maurice B; Raghuram, Viswanathan; Knepper, Mark A

    2017-10-17

    G protein stimulatory α-subunit (G αs )-coupled heptahelical receptors regulate cell processes largely through activation of protein kinase A (PKA). To identify signaling processes downstream of PKA, we deleted both PKA catalytic subunits using CRISPR-Cas9, followed by a "multiomic" analysis in mouse kidney epithelial cells expressing the G αs -coupled V2 vasopressin receptor. RNA-seq (sequencing)-based transcriptomics and SILAC (stable isotope labeling of amino acids in cell culture)-based quantitative proteomics revealed a complete loss of expression of the water-channel gene Aqp2 in PKA knockout cells. SILAC-based quantitative phosphoproteomics identified 229 PKA phosphorylation sites. Most of these PKA targets are thus far unannotated in public databases. Surprisingly, 1,915 phosphorylation sites with the motif x-(S/T)-P showed increased phosphooccupancy, pointing to increased activity of one or more MAP kinases in PKA knockout cells. Indeed, phosphorylation changes associated with activation of ERK2 were seen in PKA knockout cells. The ERK2 site is downstream of a direct PKA site in the Rap1GAP, Sipa1l1, that indirectly inhibits Raf1. In addition, a direct PKA site that inhibits the MAP kinase kinase kinase Map3k5 (ASK1) is upstream of JNK1 activation. The datasets were integrated to identify a causal network describing PKA signaling that explains vasopressin-mediated regulation of membrane trafficking and gene transcription. The model predicts that, through PKA activation, vasopressin stimulates AQP2 exocytosis by inhibiting MAP kinase signaling. The model also predicts that, through PKA activation, vasopressin stimulates Aqp2 transcription through induction of nuclear translocation of the acetyltransferase EP300, which increases histone H3K27 acetylation of vasopressin-responsive genes (confirmed by ChIP-seq).

  11. Irsogladine maleate regulates gap junctional intercellular communication-dependent epithelial barrier in human nasal epithelial cells.

    PubMed

    Miyata, Ryo; Nomura, Kazuaki; Kakuki, Takuya; Takano, Ken-Ichi; Kohno, Takayuki; Konno, Takumi; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi

    2015-04-01

    The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18β-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.

  12. Protective effect of resveratrol against nigrostriatal pathway injury in striatum via JNK pathway.

    PubMed

    Li, Dan; Liu, Nan; Zhao, Liang; Tong, Lei; Kawano, Hitoshi; Yan, Hong-Jing; Li, Hong-Peng

    2017-01-01

    Nigrostriatal pathway injury is one of the traumatic brain injury models that usually lead to neurological dysfunction or neuron necrosis. Resveratrol-induced benefits have recently been demonstrated in several models of neuronal degeneration diseases. However, the protective properties of resveratrol against neurodegeneration have not been explored definitely. Thus, we employ the nigrostriatal pathway injury model to mimic the insults on the brain. Resveratrol decreased the p-ERK expression and increased the p-JNK expression compared to the DMSO group, but not alter the p38 MAPK proteins around the lesion site by Western blot. Prior to the injury, mice were infused with resveratrol intracerebroventricularly with or without JNK-IN-8, a specific c-JNK pathway inhibitor for JNK1, JNK2 and JNK4. The study assessed modified improved neurological function score (mNSS) and beam/walking test, the level of inflammatory cytokines IL-1β, IL-6 and TNF-α, and striatal expression of Bax and Bcl-2 proteins associated with neuronal apoptosis. The results revealed that resveratrol exerted a neuroprotective effect as shown by the improved mNSS and beam latency, anti-inflammatory effects as indicated by the decreased level of IL-1β, TNF-α and IL-6. Furthermore, resveratrol up-regulated the protein expression of p-JNK and Bcl-2, down-regulated the expression of Bax and the number of Fluoro-Jade C (FJC) positive neurons. However, these advantages of resveratrol were abolished by JNK-IN-8 treatment. Overall, we demonstrated that resveratrol treatment attenuates the nigrostriatal pathway injury-induced neuronal apoptosis and inflammation via activation of c-JNK signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis

    PubMed Central

    Fukata, Masayuki; Shang, Limin; Santaolalla, Rebeca; Sotolongo, John; Pastorini, Cristhine; España, Cecilia; Ungaro, Ryan; Harpaz, Noam; Cooper, Harry S.; Elson, Greg; Kosco-Vilbois, Marie; Zaias, Julia; Perez, Maria T.; Mayer, Lloyd; Vamadevan, Arunan S.; Lira, Sergio A.; Abreu, Maria T.

    2010-01-01

    Chronic intestinal inflammation culminates in cancer and a link to TLR4 has been suggested by our observation that TLR4 deficiency prevents colitis-associated neoplasia. In the current study, we address the effect of the aberrant activation of epithelial TLR4 on induction of colitis and colitis-associated tumor development. We take a translational approach to address the consequences of increased TLR signaling in the intestinal mucosa. Mice transgenic for a constitutively-active TLR4 under the intestine-specific villin promoter (villin-TLR4 mice) were treated with DSS for acute colitis and azoxymethane-dextran sulfate sodium. TLR4 expression was analyzed by immunohistochemistry in colonic tissue from patients with ulcerative colitis and ulcerative colitis associated cancer. The effect of an antagonist TLR4 Ab was tested in prevention of colitis-associated neoplasia in the AOM-DSS model. Villin-TLR4 mice were highly susceptible to both acute colitis and colitis-associated neoplasia. Villin-TLR4 mice had increased epithelial expression of COX-2 and mucosal PGE2 production at baseline. Increased severity of colitis in villin-TLR4 mice was characterized by enhanced expression of inflammatory mediators and increased neutrophilic infiltration. In human UC samples, TLR4 expression was upregulated in almost all CAC and progressively increases with grade of dysplasia. As a proof of principle, a TLR4/MD-2 antagonist antibody inhibited colitis-associated neoplasia in the mouse model. Our results show that regulation of TLR's can affect the outcome of both acute colitis and its consequences—cancer. Targeting TLR4 and other TLR's may ultimately play a role in prevention or treatment of colitis-associated cancer. PMID:21674704

  14. Activation of the Jnk signaling pathway by a dual-specificity phosphatase, JSP-1

    PubMed Central

    Shen, Yu; Luche, Ralf; Wei, Bo; Gordon, Marcia L.; Diltz, Curtis D.; Tonks, Nicholas K.

    2001-01-01

    The mitogen-activated protein kinases (MAPKs) are integral to the mechanisms by which cells respond to physiological stimuli, such as growth factors, hormones, and cytokines, and to a wide variety of environmental stresses. The MAPKs, which are stimulated by phosphorylation of a TXY motif in their activation loop, are components of signal transduction cascades in which sequential activation of protein kinases culminates in their activation and their subsequent phosphorylation of various effector proteins that mediate the physiological response. MAPKs are also subject to dephosphorylation and inactivation, both by enzymes that recognize the residues of the TXY motif independently and by dual specificity phosphatases, which dephosphroylate both Tyr and Ser/Thr residues. We report the identification and characterization of a novel dual specificity phosphatase. Contrary to expectation, this broadly expressed enzyme did not inactivate MAPKs in transient cotransfection assays but instead displayed the capacity to function as a selective activator of the MAPK Jnk, hence the name, Jnk Stimulatory Phosphatase-1 (JSP-1). This study illustrates a new aspect of the regulation of MAPK-dependent signal transduction and raises the possibility that JSP-1 may offer a different perspective to the study of various inflammatory and proliferative disorders associated with dysfunctional Jnk signaling. PMID:11717427

  15. Activation of the Jnk signaling pathway by a dual-specificity phosphatase, JSP-1.

    PubMed

    Shen, Y; Luche, R; Wei, B; Gordon, M L; Diltz, C D; Tonks, N K

    2001-11-20

    The mitogen-activated protein kinases (MAPKs) are integral to the mechanisms by which cells respond to physiological stimuli, such as growth factors, hormones, and cytokines, and to a wide variety of environmental stresses. The MAPKs, which are stimulated by phosphorylation of a TXY motif in their activation loop, are components of signal transduction cascades in which sequential activation of protein kinases culminates in their activation and their subsequent phosphorylation of various effector proteins that mediate the physiological response. MAPKs are also subject to dephosphorylation and inactivation, both by enzymes that recognize the residues of the TXY motif independently and by dual specificity phosphatases, which dephosphroylate both Tyr and Ser/Thr residues. We report the identification and characterization of a novel dual specificity phosphatase. Contrary to expectation, this broadly expressed enzyme did not inactivate MAPKs in transient cotransfection assays but instead displayed the capacity to function as a selective activator of the MAPK Jnk, hence the name, Jnk Stimulatory Phosphatase-1 (JSP-1). This study illustrates a new aspect of the regulation of MAPK-dependent signal transduction and raises the possibility that JSP-1 may offer a different perspective to the study of various inflammatory and proliferative disorders associated with dysfunctional Jnk signaling.

  16. Dihydroartemisinin induces endothelial cell anoikis through the activation of the JNK signaling pathway

    PubMed Central

    Zhang, Jiao; Guo, Ling; Zhou, Xia; Dong, Fengyun; Li, Liqun; Cheng, Zuowang; Xu, Yinghua; Liang, Jiyong; Xie, Qi; Liu, Ju

    2016-01-01

    Angiogenesis is required for the growth and metastasis of solid tumors. The anti-malarial agent dihydroartemisinin (DHA) demonstrates potent anti-angiogenic activity, but the underlying molecular mechanisms are not yet fully understood. During the process of angiogenesis, endothelial cells migrating from existing capillaries may undergo programmed cell death after detaching from the extracellular matrix, a process that is defined as anchorage-dependent apoptosis or anoikis. In the present study, DHA-induced cell death was compared in human umbilical vein endothelial cells (HUVECs) cultured in suspension and attached to culture plates. In suspended HUVECs, the cell viability was decreased and apoptosis was increased with the treatment of 50 µM DHA for 5 h, while the same treatment did not affect the attached HUVECs. In addition, 50 µM DHA increased the phosphorylation of c-Jun N-terminal kinase (JNK) in suspended HUVECs, but not in attached HUVECs, for up to 5 h of treatment. The JNK inhibitor, SP600125, reversed DHA-induced cell death in suspended HUVECs, suggesting that the JNK pathway may mediate DHA-induced endothelial cell anoikis. The data from the present study indicates a novel mechanism for understanding the anti-angiogenic effects of DHA, which may be used as a component for chemotherapy. PMID:27602117

  17. Mu opioid receptor stimulation activates c-Jun N-terminal kinase 2 by distinct arrestin-dependent and independent mechanisms.

    PubMed

    Kuhar, Jamie Rose; Bedini, Andrea; Melief, Erica J; Chiu, Yen-Chen; Striegel, Heather N; Chavkin, Charles

    2015-09-01

    G protein-coupled receptor desensitization is typically mediated by receptor phosphorylation by G protein-coupled receptor kinase (GRK) and subsequent arrestin binding; morphine, however, was previously found to activate a c-Jun N-terminal kinase (JNK)-dependent, GRK/arrestin-independent pathway to produce mu opioid receptor (MOR) inactivation in spinally-mediated, acute anti-nociceptive responses [Melief et al.] [1]. In the current study, we determined that JNK2 was also required for centrally-mediated analgesic tolerance to morphine using the hotplate assay. We compared JNK activation by morphine and fentanyl in JNK1(-/-), JNK2(-/-), JNK3(-/-), and GRK3(-/-) mice and found that both compounds specifically activate JNK2 in vivo; however, fentanyl activation of JNK2 was GRK3-dependent, whereas morphine activation of JNK2 was GRK3-independent. In MOR-GFP expressing HEK293 cells, treatment with either arrestin siRNA, the Src family kinase inhibitor PP2, or the protein kinase C (PKC) inhibitor Gö6976 indicated that morphine activated JNK2 through an arrestin-independent Src- and PKC-dependent mechanism, whereas fentanyl activated JNK2 through a Src-GRK3/arrestin-2-dependent and PKC-independent mechanism. This study resolves distinct ligand-directed mechanisms of JNK activation by mu opioid agonists and understanding ligand-directed signaling at MOR may improve opioid therapeutics. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Cav-1 promotes atherosclerosis by activating JNK-associated signaling.

    PubMed

    Wang, Dong-Xia; Pan, Yong-Quan; Liu, Bing; Dai, Li

    2018-05-07

    The objective of the study is to calculate the role and underlying the molecular mechanisms of caveolin-1 (Cav-1) in atherosclerosis (AS). Cav-1 was mainly expressed in the endothelial cells of atherosclerotic lesions in both human patients and apolipoprotein E deficient (ApoE -/- ) mice. Cav-1 deficiency (Cav-1 -/- ) attenuated high-fat diet (HFD)-induced atherosclerotic lesions in ApoE -/- mice, supported by the reduced aortic plaques. Cav-1 -/- reduced the macrophage content and decreased the release of inflammation-related cytokines or chemokine in serum or abdominal aortas, accompanied with the inactivation of inhibitor κB kinase κ (IKKβ)/p65/IκBα signaling pathway. Also, the activity of mitogen-activated protein kinases 7/c-Jun-N-terminal kinase (MKK7/JNK) signaling was decreased by Cav-1 -/- . In addition, oxidative stress induced by HFD in ApoE -/- mice was alleviated by Cav-1 -/- . In response to HFD, Cav-1 -/- markedly reduced triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDLC) and very low-density lipoprotein-cholesterol (VLDLC) in serum of HFD-fed ApoE -/- mice, whereas enhanced high-density lipoprotein-cholesterol (HDLC) contents. Consistent with these findings, haematoxylin and eosin (H&E) and Oil Red O staining showed fewer lipid droplets in the liver of Cav-1-deficient mice. Further, real time-quantitative PCR (RT-qPCR) analysis indicated that Cav-1 -/- alleviated dyslipidemia both in liver and abdominal aortas of ApoE -/- mice fed with HFD. Cav-1 inhibition-induced attenuation of inflammatory response, oxidative stress and dyslipidemia were confirmed in vitro using mouse vascular smooth muscle cells (VSMCs) treated with ox-LDL. Surprisingly, the processes regulated by Cav-1-knockdown could be abolished through promoting JNK activation in ox-LDL-treated VSMCs. In conclusion, Cav-1 expression could promote HFD-induced AS in a JNK-dependent manner. Copyright © 2018. Published by Elsevier Inc.

  19. Immunohistochemical localization of human papilloma virus in conjunctival neoplasias: A retrospective study

    PubMed Central

    Sharma, Anjana; Panda, Anita

    2007-01-01

    Background: The extent of association of human papilloma virus (HPV) in human conjunctival neoplasias has been debated in studies originating from different parts of the world, but no substantial evidence has been generated on Indian subjects. This prompted us to carry out a retrospective study on conjunctival neoplasias diagnosed over the past 12 years. Materials and Methods: Histopathological and immunohistochemical analysis of 65 specimens of ocular neoplasias and 30 normal controls diagnosed between 1991 and 2002 at a tertiary eye care hospital, was undertaken. Formalin-fixed, paraffin-embedded tissues were reviewed for confirming histopathological diagnosis, presence of koilocytosis and changes related to actinic keratosis. Immunohistochemical analysis was done using HPV-specific monoclonal antibodies. Clinicopathological correlation and the association of HPV antigen with the histopathological features were performed. Results: Out of the 65 cases analyzed, 35 were papillomas and 30 were ocular surface squamous neoplasias (OSSN). The mean age was 48 years with a male preponderance. Histologically, koilocytosis was observed in 17.1% of papillomas and 36.6% of OSSN. Actinic keratosis was present in 33% of OSSN. Immunohistochemically 17.1% conjunctival papillomas stained positive for HPV antigen, all cases of OSSN were negative for HPV. There was no correlation between koilocytosis or actinic keratosis and the detection of HPV antigen. Conclusions: The association between HPV and conjunctival neoplasias is variable in different geographical areas and also depends on the methods of detection used. This study warrants the need for applying more advanced techniques at a molecular level to determine the possible etiology of HPV in conjunctival neoplasias among Asian-Indians. PMID:17699945

  20. The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis.

    PubMed

    Mayer, Christine; Bierhoff, Holger; Grummt, Ingrid

    2005-04-15

    Cells respond to a variety of extracellular and intracellular forms of stress by down-regulating rRNA synthesis. We have investigated the mechanism underlying stress-dependent inhibition of RNA polymerase I (Pol I) transcription and show that the Pol I-specific transcription factor TIF-IA is inactivated upon stress. Inactivation is due to phosphorylation of TIF-IA by c-Jun N-terminal kinase (JNK) at a single threonine residue (Thr 200). Phosphorylation at Thr 200 impairs the interaction of TIF-IA with Pol I and the TBP-containing factor TIF-IB/SL1, thereby abrogating initiation complex formation. Moreover, TIF-IA is translocated from the nucleolus into the nucleoplasm. Substitution of Thr 200 by valine as well as knock-out of Jnk2 prevent inactivation and translocation of TIF-IA, leading to stress-resistance of Pol I transcription. Our data identify TIF-IA as a downstream target of the JNK pathway and suggest a critical role of JNK2 to protect rRNA synthesis against the harmful consequences of cellular stress.

  1. JNK1 Mediates Lipopolysaccharide-Induced CD14 and SR-AI Expression and Macrophage Foam Cell Formation.

    PubMed

    An, Dong; Hao, Feng; Hu, Chen; Kong, Wei; Xu, Xuemin; Cui, Mei-Zhen

    2017-01-01

    Foam cell formation is the key process in the development of atherosclerosis. The uptake of oxidized low-density lipoprotein (oxLDL) converts macrophages into foam cells. We recently reported that lipopolysaccharide (LPS)-induced foam cell formation is regulated by CD14 and scavenger receptor AI (SR-AI). In this study, we employed pharmaceutical and gene knockdown approaches to determine the upstream molecular mediators, which control LPS-induced foam cell formation. Our results demonstrated that the specific c-Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, but neither the specific inhibitor of extracellular signaling-regulated kinase (ERK) kinase MEK1/2, U0126, nor the specific inhibitor of p38 MAPK, SB203580, significantly blocks LPS-induced oxLDL uptake, suggesting that the JNK pathway is the upstream mediator of LPS-induced oxLDL uptake/foam cell formation. To address whether JNK pathway mediates LPS-induced oxLDL uptake is due to JNK pathway-regulated CD14 and SR-AI expression, we assessed whether the pharmaceutical inhibitor of JNK influences LPS-induced expression of CD14 and SR-AI. Our results indicate that JNK pathway mediates LPS-induced CD14 and SR-AI expression. To conclusively address the isoform role of JNK family, we depleted JNK isoforms using the JNK isoform-specific siRNA. Our data showed that the depletion of JNK1, but not JNK2 blocked LPS-induced CD14/SR-AI expression and foam cell formation. Taken together, our results reveal for the first time that JNK1 is the key mediator of LPS-induced CD14 and SR-AI expression in macrophages, leading to LPS-induced oxLDL uptake/foam cell formation. We conclude that the novel JNK1/CD14/SR-AI pathway controls macrophage oxLDL uptake/foam cell formation.

  2. p16INK4A expression as biomarker for HPV 16-related vulvar neoplasias.

    PubMed

    Riethdorf, Sabine; Neffen, Eduardo F; Cviko, Aida; Löning, Thomas; Crum, Christopher P; Riethdorf, Lutz

    2004-12-01

    Up-regulation of p16INK4A is associated with high-risk human papillomavirus (HPV) in preinvasive and invasive cervical neoplasia. However, its expression in vulvar carcinomas, which have a diverse pathogenesis, has not been extensively studied. One hundred seventy-seven vulvar intraepithelial neoplasms (VIN), squamous cell carcinomas (SCC), and benign squamous epithelia were analyzed for p16 expression. RNA/RNA in situ hybridization was used to detect HPV 16 E6/E7 transcripts in 112. Ninety-five percent of VIN 3 and basaloid or warty SCCs (76/80) and 4% of keratinizing SCC (2/48) were moderately to strongly immunopositive for p16, which localized to nucleus and cytoplasm; 52/58 analyzed (90%) contained HPV 16 transcripts. The positive predictive value (PPV) of moderate to strong diffuse p16 immunostaining and HPV positivity for the diagnosis of VIN 3 and of basaloid or warty SCC was 97% and 95%, respectively. Conversely, 94% of keratinizing SCC contained heterogeneous staining, and when present, it was strictly cytoplasmic and frequently localized to the cells at the epithelial-stromal interface. Benign squamous epithelia were p16 negative, with the exception of lichen sclerosus, which contained focal and heterogeneously p16 positive in 42%. As in the cervix, intense diffuse p16 expression supports an HPV-related neoplastic process in vulvar neoplasia, irrespective of the level of differentiation. Up-regulation of p16 at the epithelial-stromal interface in HPV negative keratinizing SCCs is consistent with an HPV-independent response to alterations associated with invasion. These disparate patterns of p16 expression underscore 2 different mechanisms for p16 expression in HPV-related and HPV-unrelated vulvar carcinomas.

  3. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS–Ca{sup 2+}–JNK mitochondrial pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao

    Highlights: • EPA evoked ROS formation, [Ca{sup 2+}]{sub c} accumulation, the opening of MPTP and the phosphorylation of JNK. • EPA-induced [Ca{sup 2+}]{sub c} elevation was depended on production of ROS. • EPA-induced ROS generation, [Ca{sup 2+}]{sub c} increase, and JNK activated caused MPTP opening. • The apoptosis induced by EPA was related to release of cytochrome C through the MPTP. • EPA induced HepG2 cells apoptosis through ROS–Ca{sup 2+}–JNK mitochondrial pathways. - Abstract: Eicosapentaenoic acid (EPA), a well-known dietary n−3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancermore » cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca{sup 2+}]{sub c} accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca{sup 2+}]{sub c} generation, moreover, generation of ROS, overload of mitochondrial [Ca{sup 2+}]{sub c}, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through

  4. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance.

    PubMed

    Chakraborty, Jayashree B; Mahato, Sanjit K; Joshi, Kalpana; Shinde, Vaibhav; Rakshit, Srabanti; Biswas, Nabendu; Choudhury Mukherjee, Indrani; Mandal, Labanya; Ganguly, Dipyaman; Chowdhury, Avik A; Chaudhuri, Jaydeep; Paul, Kausik; Pal, Bikas C; Vinayagam, Jayaraman; Pal, Churala; Manna, Anirban; Jaisankar, Parasuraman; Chaudhuri, Utpal; Konar, Aditya; Roy, Siddhartha; Bandyopadhyay, Santu

    2012-01-01

    Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings. © 2011 Japanese Cancer Association.

  5. JNK1 induces hedgehog signaling from stellate cells to accelerate liver regeneration in mice.

    PubMed

    Langiewicz, Magda; Graf, Rolf; Humar, Bostjan; Clavien, Pierre A

    2018-04-28

    To improve outcomes of two-staged hepatectomies for large/multiple liver tumors, portal vein ligation (PVL) has been combined with parenchymal transection (associating liver partition and portal vein ligation for staged hepatectomy [coined ALPPS]) to greatly accelerate liver regeneration. In a novel ALPPS mouse model, we have reported paracrine Indian hedgehog (IHH) signaling from stellate cells as an early contributor to augmented regeneration. Here, we sought to identify upstream regulators of IHH. ALPPS in mice was compared against PVL and additional control surgeries. Potential IHH regulators were identified through in silico mining of transcriptomic data. c-Jun N-terminal kinase (JNK1 [Mapk8]) activity was reduced through SP600125 to evaluate its effects on IHH signaling. Recombinant IHH was injected after JNK1 diminution to substantiate their relationship during accelerated liver regeneration. Transcriptomic analysis linked Ihh to Mapk8. JNK1 upregulation after ALPPS was validated and preceded the IHH peak. On immunofluorescence, JNK1 and IHH co-localized in alpha-smooth muscle actin-positive non-parenchymal cells. Inhibition of JNK1 prior to ALPPS surgery reduced liver weight gain to PVL levels and was accompanied by downregulation of hepatocellular proliferation and the IHH-GLI1-CCND1 axis. In JNK1-inhibited mice, recombinant IHH restored ALPPS-like acceleration of regeneration and re-elevated JNK1 activity, suggesting the presence of a positive IHH-JNK1 feedback loop. JNK1-mediated induction of IHH paracrine signaling from hepatic stellate cells is essential for accelerated regeneration of parenchymal mass. The JNK1-IHH axis is a mechanism unique to ALPPS surgery and may point to therapeutic alternatives for patients with insufficient regenerative capacity. Associating liver partition and portal vein ligation for staged hepatectomy (so called ALPPS), is a new two-staged approach to hepatectomy, which induces an unprecedented acceleration of liver

  6. HER2-induced metastasis is mediated by AKT/JNK/EMT signaling pathway in gastric cancer

    PubMed Central

    Choi, Yiseul; Ko, Young San; Park, Jinju; Choi, Youngsun; Kim, Younghoon; Pyo, Jung-Soo; Jang, Bo Gun; Hwang, Douk Ho; Kim, Woo Ho; Lee, Byung Lan

    2016-01-01

    AIM To investigated the relationships between HER2, c-Jun N-terminal kinase (JNK) and protein kinase B (AKT) with respect to metastatic potential of HER2-positive gastric cancer (GC) cells. METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining were used in cell culture experiments. RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility. CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC. PMID:27895401

  7. Renal Epithelial Cyst Formation and Enlargement in vitro: Dependence on cAMP

    NASA Astrophysics Data System (ADS)

    Mangoo-Karim, Roberto; Uchic, Marie; Lechene, Claude; Grantham, Jared J.

    1989-08-01

    Cysts, a common abnormality of kidneys, are collections of urine-like fluid enclosed by a continuous layer of epithelial cells. Renal cysts derive from nephrons and collecting ducts and progressively enlarge as a consequence of epithelial proliferation and transepithelial fluid secretion. The initiation of cyst formation and the factors that control cyst enlargement are unknown. We used an in vitro model of renal cysts to explore the role of the cAMP signal transduction system in the formation and expansion of cysts. MDCK cells, cultured in hydrated-collagen gel, produced polarized monolayered epithelial cysts when intracellular cAMP was increased by prostaglandin E1, arginine vasopressin, cholera toxin, forskolin, or 8-bromoadenosine 3',5'-cyclic monophosphate. All agonists were potentiated by 3-isobutyl-1-methylxanthine, a nucleotide phosphodiesterase inhibitor. The cell proliferation component of cyst enlargement was accelerated by cAMP agonists, as shown by the increased growth of MDCK cells in subconfluent monolayers. The fluid secretion component, reflected by the transepithelial movement of fluid across polarized monolayers of MDCK cells grown on permeable supports, was stimulated by cAMP agonists in the basolateral medium. Chloride levels were higher in the cyst fluid and the secreted fluid than in the bathing medium. We conclude that the development of MDCK cysts is dependent on cAMP. This signal transduction system may be an important modulator of epithelial cell proliferation and transepithelial fluid secretion in the kidney.

  8. Phloretin induces apoptosis in H-Ras MCF10A human breast tumor cells through the activation of p53 via JNK and p38 mitogen-activated protein kinase signaling.

    PubMed

    Kim, Mi-Sung; Kwon, Jung Yeon; Kang, Nam Joo; Lee, Ki Won; Lee, Hyong Joo

    2009-08-01

    Mutations in Ras play a critical role in the development of human cancers, including breast cancer. We investigated the possible antiproliferative effects of the naturally occurring dihydrochalcone phloretin [2',4',6'-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on H-Ras-transformed MCF10A human breast epithelial (H-Ras MCF10A) cells. Phloretin suppressed H-Ras MCF10A cell proliferation in a dose-dependent manner and induced nuclear condensation in the cells, indicating that phloretin-induced cell death occurs mainly via the induction of apoptosis. Prominent upregulation of p53 and Bax and cleavage of poly (ADP)-ribose polymerase were also detected in the phloretin-treated cells. Finally, phloretin markedly increased caspase-3 activity as well as JNK and p38 mitogen-activated protein kinase signaling. Our findings suggest that the phloretin-induced apoptosis of breast tumor cells contributes to the chemopreventive potential of phloretin against breast cancer.

  9. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.

    PubMed

    Ermilov, Alexandre N; Kumari, Archana; Li, Libo; Joiner, Ariell M; Grachtchouk, Marina A; Allen, Benjamin L; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2016-11-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste

  10. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling

    PubMed Central

    Mistretta, Charlotte M.

    2016-01-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste

  11. Is the outcome at surgery different when flat epithelial atypia and lobular neoplasia are found in association at biopsy?

    PubMed

    El Khoury, Mona; Sanchez, Lilia Maria; Lalonde, Lucie; Trop, Isabelle; David, Julie; Mesurolle, Benoît

    2017-04-01

    To assess the impact on the final outcome at surgery of flat epithelial atypia (FEA) when found concomitantly with lobular neoplasia (LN) in biopsy specimens compared with pure biopsy-proven FEA. The approval from the institutional review board of the CHUM (Centre Hospitalier Universitaire de Montréal) was obtained. A retrospective review of our database between 2009 and 2013 identified 81 females (mean age 54 years, range 38-90 years) with 81 FEA biopsy-proven lesions. These were pure or associated with LN only in 59/81 (73%) and 22/81 (27%) cases, respectively. Overall, 57/81 (70%) patients underwent surgery and 24/81 (30%) patients underwent mammographic surveillance with a mean follow-up of 36 months. FEA presented more often as microcalcifications in 68/81 (84%) patients and were mostly amorphous in 49/68 (72%). After excluding radio pathologically discordant cases, pure FEA proved to be malignant at surgery in 1/41 (2%; 95% confidence interval 0.06-12.9). There was no statistically significant difference in the upgrade to malignancy whether FEA lesions were pure or associated to LN at biopsy (p = 0.4245); however, when paired in biopsy specimens, these lesions were more frequently associated with atypical ductal hyperplasia (ADH) at surgery than with pure FEA (p = 0.012). Our results show a 2% upgrade rate to malignancy of pure FEA lesions. When FEA is found in association with LN at biopsy, surgical excision yields more frequently ADH than pure FEA thus warranting close surveillance or even surgical excision. Advances in knowledge: The association of LN with FEA at biopsy was more frequently associated with ADH at surgery than with pure FEA. If a biopsy-proven FEA lesion is deemed concordant with the imaging finding, when paired with LN at biopsy, careful surveillance or even surgical excision is suggested.

  12. Endothelial Dysfunction in Human Diabetes is mediated by Wnt5a-JNK Signaling

    PubMed Central

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G.; Fetterman, Jessica L.; Linder, Erika A.; Berk, Brittany D.; Masaki, Nobuyuki; Weisbrod, Robert M.; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J.; Walsh, Kenneth; Hamburg, Naomi M.

    2016-01-01

    Objectives Endothelial dysfunction is linked to insulin resistance, inflammatory activation and increased cardiovascular risk in diabetes mellitus; however the mechanisms remain incompletely understood. Recent studies have identified pro-inflammatory signaling of Wnt5a through JNK as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. Approach We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in from 85 subjects with Type 2 diabetes mellitus (n=42) and age- and sex-matched non-diabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Results Endothelial cells from patients with diabetes displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes. In endothelial cells from non-diabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In HAECs, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Conclusions Our findings demonstrate that non-canonical Wnt5a signaling and JNK activity contributes to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes. PMID:26800561

  13. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    PubMed

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart

  14. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    PubMed

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  15. Notch-dependent epithelial fold determines boundary formation between developmental fields in the Drosophila antenna.

    PubMed

    Ku, Hui-Yu; Sun, Y Henry

    2017-07-01

    Compartment boundary formation plays an important role in development by separating adjacent developmental fields. Drosophila imaginal discs have proven valuable for studying the mechanisms of boundary formation. We studied the boundary separating the proximal A1 segment and the distal segments, defined respectively by Lim1 and Dll expression in the eye-antenna disc. Sharp segregation of the Lim1 and Dll expression domains precedes activation of Notch at the Dll/Lim1 interface. By repressing bantam miRNA and elevating the actin regulator Enable, Notch signaling then induces actomyosin-dependent apical constriction and epithelial fold. Disruption of Notch signaling or the actomyosin network reduces apical constriction and epithelial fold, so that Dll and Lim1 cells become intermingled. Our results demonstrate a new mechanism of boundary formation by actomyosin-dependent tissue folding, which provides a physical barrier to prevent mixing of cells from adjacent developmental fields.

  16. Notch-dependent epithelial fold determines boundary formation between developmental fields in the Drosophila antenna

    PubMed Central

    2017-01-01

    Compartment boundary formation plays an important role in development by separating adjacent developmental fields. Drosophila imaginal discs have proven valuable for studying the mechanisms of boundary formation. We studied the boundary separating the proximal A1 segment and the distal segments, defined respectively by Lim1 and Dll expression in the eye-antenna disc. Sharp segregation of the Lim1 and Dll expression domains precedes activation of Notch at the Dll/Lim1 interface. By repressing bantam miRNA and elevating the actin regulator Enable, Notch signaling then induces actomyosin-dependent apical constriction and epithelial fold. Disruption of Notch signaling or the actomyosin network reduces apical constriction and epithelial fold, so that Dll and Lim1 cells become intermingled. Our results demonstrate a new mechanism of boundary formation by actomyosin-dependent tissue folding, which provides a physical barrier to prevent mixing of cells from adjacent developmental fields. PMID:28708823

  17. Smad4 inhibits cell migration via suppression of JNK activity in human pancreatic carcinoma PANC-1 cells.

    PubMed

    Zhang, Xueying; Cao, Junxia; Pei, Yujun; Zhang, Jiyan; Wang, Qingyang

    2016-05-01

    Smad4 is a common Smad and is a key downstream regulator of the transforming growth factor-β signaling pathway, in which Smad4 often acts as a potent tumor suppressor and functions in a highly context-dependent manner, particularly in pancreatic cancer. However, little is known regarding whether Smad4 regulates other signaling pathways involved in pancreatic cancer. The present study demonstrated that Smad4 downregulates c-Jun N-terminal kinase (JNK) activity using a Smad4 loss-of-function or gain-of-function analysis. Additionally, stable overexpression of Smad4 clearly affected the migration of human pancreatic epithelioid carcinoma PANC-1 cells, but did not affect cell growth. In addition, the present study revealed that upregulation of mitogen-activated protein kinase phosphatase-1 is required for the reduction of JNK activity by Smad4, leading to a decrease in vascular endothelial growth factor expression and inhibiting cell migration. Overall, the present findings indicate that Smad4 may suppress JNK activation and inhibit the tumor characteristics of pancreatic cancer cells.

  18. The Ste20 Family Kinases MAP4K4, MINK1, and TNIK Converge to Regulate Stress-Induced JNK Signaling in Neurons.

    PubMed

    Larhammar, Martin; Huntwork-Rodriguez, Sarah; Rudhard, York; Sengupta-Ghosh, Arundhati; Lewcock, Joseph W

    2017-11-15

    The c-Jun- N -terminal kinase (JNK) signaling pathway regulates nervous system development, axon regeneration, and neuronal degeneration after acute injury or in chronic neurodegenerative disease. Dual leucine zipper kinase (DLK) is required for stress-induced JNK signaling in neurons, yet the factors that initiate DLK/JNK pathway activity remain poorly defined. In the present study, we identify the Ste20 kinases MAP4K4, misshapen-like kinase 1 (MINK1 or MAP4K6) and TNIK Traf2- and Nck-interacting kinase (TNIK or MAP4K7), as upstream regulators of DLK/JNK signaling in neurons. Using a trophic factor withdrawal-based model of neurodegeneration in both male and female embryonic mouse dorsal root ganglion neurons, we show that MAP4K4, MINK1, and TNIK act redundantly to regulate DLK activation and downstream JNK-dependent phosphorylation of c-Jun in response to stress. Targeting MAP4K4, MINK1, and TNIK, but not any of these kinases individually, is sufficient to protect neurons potently from degeneration. Pharmacological inhibition of MAP4Ks blocks stabilization and phosphorylation of DLK within axons and subsequent retrograde translocation of the JNK signaling complex to the nucleus. These results position MAP4Ks as important regulators of the DLK/JNK signaling pathway. SIGNIFICANCE STATEMENT Neuronal degeneration occurs in disparate circumstances: during development to refine neuronal connections, after injury to clear damaged neurons, or pathologically during disease. The dual leucine zipper kinase (DLK)/c-Jun- N -terminal kinase (JNK) pathway represents a conserved regulator of neuronal injury signaling that drives both neurodegeneration and axon regeneration, yet little is known about the factors that initiate DLK activity. Here, we uncover a novel role for a subfamily of MAP4 kinases consisting of MAP4K4, Traf2- and Nck-interacting kinase (TNIK or MAP4K7), and misshapen-like kinase 1 (MINK1 or MAP4K6) in regulating DLK/JNK signaling in neurons. Inhibition of

  19. Yersinia enterocolitica-Induced Interleukin-8 Secretion by Human Intestinal Epithelial Cells Depends on Cell Differentiation

    PubMed Central

    Schulte, Ralf; Autenrieth, Ingo B.

    1998-01-01

    In response to bacterial entry epithelial cells up-regulate expression and secretion of various proinflammatory cytokines, including interleukin-8 (IL-8). We studied Yersinia enterocolitica O:8-induced IL-8 secretion by intestinal epithelial cells as a function of cell differentiation. For this purpose, human T84 intestinal epithelial cells were grown on permeable supports, which led to the formation of tight monolayers of polarized intestinal epithelial cells. To analyze IL-8 secretion as a function of cell differentiation, T84 monolayers were infected from the apical or basolateral side at different stages of differentiation. Both virulent (plasmid-carrying) and nonvirulent (plasmid-cured) Y. enterocolitica strains invaded nondifferentiated T84 cells from the apical side. Yersinia invasion into T84 cells was followed by secretion of IL-8. After polarized differentiation of T84 cells Y. enterocolitica was no longer able to invade from the apical side or to induce IL-8 secretion by T84 cells. However, Y. enterocolitica invaded and induced IL-8 secretion by polarized T84 cells after infection from the basolateral side. Basolateral invasion required the presence of the Yersinia invasion locus, inv, suggesting β1 integrin-mediated cell invasion. After basolateral infection, Yersinia-induced IL-8 secretion was not strictly dependent on cell invasion. Thus, although the plasmid-carrying Y. enterocolitica strain did not significantly invade T84 cells, it induced significant IL-8 secretion. Taken together, these data show that Yersinia-triggered IL-8 secretion by intestinal epithelial cells depends on cell differentiation and might be induced by invasion as well as by basolateral adhesion, suggesting that invasion is not essential for triggering IL-8 production. Whether IL-8 secretion is involved in the pathogenesis of Yersinia-induced abscess formation in Peyer’s patch tissue remains to be shown. PMID:9488416

  20. Tobacco smoke induces epithelial barrier dysfunction via receptor EphA2 signaling.

    PubMed

    Nasreen, Najmunnisa; Khodayari, Nazli; Sriram, Peruvemba S; Patel, Jawaharlal; Mohammed, Kamal A

    2014-06-15

    Erythropoietin-producing human hepatocellular carcinoma (Eph) receptors are the largest family of receptor tyrosine kinases (RTKs) that mediate various cellular and developmental processes. The degrees of expression of these key molecules control the cell-cell interactions. Although the role of Eph receptors and their ligand Ephrins is well studied in developmental processes, their function in tobacco smoke (TS)-induced epithelial barrier dysfunction is unknown. We hypothesized that TS may induce permeability in bronchial airway epithelial cell (BAEpC) monolayer by modulating receptor EphA2 expression, actin cytoskeleton, adherens junction, and focal adhesion proteins. Here we report that in BAEpCs, acute TS exposure significantly upregulated EphA2 and EphrinA1 expression, disrupted the actin filaments, decreased E-cadherin expression, and increased protein permeability, whereas the focal adhesion protein paxillin was unaffected. Silencing the receptor EphA2 expression with silencing interference RNA (siRNA) significantly attenuated TS-induced hyperpermeability in BAEpCs. In addition, when BAEpC monolayer was transfected with EphA2-expressing plasmid and treated with recombinant EphrinA1, the transepithelial electrical resistance decreased significantly. Furthermore, TS downregulated E-cadherin expression and induced hyperpermeability across BAEpC monolayer in a Erk1/Erk2, p38, and JNK MAPK-dependent manner. TS induced hyperpermeability in BAEpC monolayer by targeting cell-cell adhesions, and interestingly cell-matrix adhesions were unaffected. The present data suggest that TS causes significant damage to the BAEpCs via induction of EphA2 and downregulation of E-cadherin. Induction of EphA2 in the BAEpCs exposed to TS may be an important signaling event in the pathogenesis of TS-induced epithelial injury.

  1. Protective Effects of Astaxanthin on ConA-Induced Autoimmune Hepatitis by the JNK/p-JNK Pathway-Mediated Inhibition of Autophagy and Apoptosis

    PubMed Central

    Liu, Tong; Wang, Junshan; Dai, Weiqi; Wang, Fan; Zheng, Yuanyuan; Chen, Kan; Li, Sainan; Abudumijiti, Huerxidan; Zhou, Zheng; Wang, Jianrong; Lu, Wenxia; Zhu, Rong; Yang, Jing; Zhang, Huawei; Yin, Qin; Wang, Chengfen; Zhou, Yuqing; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2015-01-01

    Objective Astaxanthin, a potent antioxidant, exhibits a wide range of biological activities, including antioxidant, atherosclerosis and antitumor activities. However, its effect on concanavalin A (ConA)-induced autoimmune hepatitis remains unclear. The aim of this study was to investigate the protective effects of astaxanthin on ConA-induced hepatitis in mice, and to elucidate the mechanisms of regulation. Materials and Methods Autoimmune hepatitis was induced in in Balb/C mice using ConA (25 mg/kg), and astaxanthin was orally administered daily at two doses (20 mg/kg and 40 mg/kg) for 14 days before ConA injection. Levels of serum liver enzymes and the histopathology of inflammatory cytokines and other maker proteins were determined at three time points (2, 8 and 24 h). Primary hepatocytes were pretreated with astaxanthin (80 μM) in vitro 24 h before stimulation with TNF-α (10 ng/ml). The apoptosis rate and related protein expression were determined 24 h after the administration of TNF-α. Results Astaxanthin attenuated serum liver enzymes and pathological damage by reducing the release of inflammatory factors. It performed anti-apoptotic effects via the descending phosphorylation of Bcl-2 through the down-regulation of the JNK/p-JNK pathway. Conclusion This research firstly expounded that astaxanthin reduced immune liver injury in ConA-induced autoimmune hepatitis. The mode of action appears to be downregulation of JNK/p-JNK-mediated apoptosis and autophagy. PMID:25761053

  2. Cell-Specific Imd-NF-κB Responses Enable Simultaneous Antibacterial Immunity and Intestinal Epithelial Cell Shedding upon Bacterial Infection.

    PubMed

    Zhai, Zongzhao; Boquete, Jean-Philippe; Lemaitre, Bruno

    2018-05-03

    Intestinal infection triggers potent immune responses to combat pathogens and concomitantly drives epithelial renewal to maintain barrier integrity. Current models propose that epithelial renewal is primarily driven by damage caused by reactive oxygen species (ROS). Here we found that in Drosophila, the Imd-NF-κB pathway controlled enterocyte (EC) shedding upon infection, via a mechanism independent of ROS-associated apoptosis. Mechanistically, the Imd pathway synergized with JNK signaling to induce epithelial cell shedding specifically in the context of bacterial infection, requiring also the reduced expression of the transcription factor GATAe. Furthermore, cell-specific NF-κB responses enabled simultaneous production of antimicrobial peptides (AMPs) and epithelial shedding in different EC populations. Thus, the Imd-NF-κB pathway is central to the intestinal antibacterial response by mediating both AMP production and the maintenance of barrier integrity. Considering the similarities between Drosophila Imd signaling and mammalian TNFR pathway, our findings suggest the existence of an evolutionarily conserved genetic program in immunity-induced epithelial shedding. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: links to cognitive decline

    PubMed Central

    Gourmaud, Sarah; Paquet, Claire; Dumurgier, Julien; Pace, Clarisse; Bouras, Constantin; Gray, Françoise; Laplanche, Jean-Louis; Meurs, Eliane F.; Mouton-Liger, François; Hugon, Jacques

    2015-01-01

    Background Alzheimer disease is characterized by cognitive decline, senile plaques of β-amyloid (Aβ) peptides, neurofibrillary tangles composed of hyperphosphorylated τ proteins and neuronal loss. Aβ and τ are useful markers in the cerebrospinal fluid (CSF). C-Jun N-terminal kinases (JNKs) are serine-threonine protein kinases activated by phosphorylation and involved in neuronal death. Methods In this study, Western blots, enzyme-linked immunosorbent assay and histological approaches were used to assess the concentrations of Aβ, τ and JNK isoforms in postmortem brain tissue samples (10 Alzheimer disease and 10 control) and in CSF samples from 30 living patients with Alzheimer disease and 27 controls with neurologic disease excluding Alzheimer disease. Patients with Alzheimer disease were followed for 1–3 years and assessed using Mini–Mental State Examination scores. Results The biochemical and morphological results showed a significant increase of JNK3 and phosphorylated JNK levels in patients with Alzheimer disease, and JNK3 levels correlated with Aβ42 levels. Confocal microscopy revealed that JNK3 was associated with Aβ in senile plaques. The JNK3 levels in the CSF were significantly elevated in patients with Alzheimer disease and correlated statistically with the rate of cognitive decline in a mixed linear model. Limitations The study involved different samples grouped into 3 small cohorts. Evaluation of JNK3 in CSF was possible only with immunoblot analysis. Conclusion We found that JNK3 levels are increased in brain tissue and CSF from patients with Alzheimer disease. The finding that increased JNK3 levels in CSF could reflect the rate of cognitive decline is new and merits further investigation. PMID:25455349

  4. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner

    PubMed Central

    Hughes, K. R.; Harnisch, L. C.; Alcon-Giner, C.; Mitra, S.; Wright, C. J.; Ketskemety, J.

    2017-01-01

    Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi—a process termed ‘cell shedding’. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes. PMID:28123052

  5. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner.

    PubMed

    Hughes, K R; Harnisch, L C; Alcon-Giner, C; Mitra, S; Wright, C J; Ketskemety, J; van Sinderen, D; Watson, A J M; Hall, L J

    2017-01-01

    Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi-a process termed 'cell shedding'. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes. © 2017 The Authors.

  6. Management of flat epithelial atypia on breast core biopsy may be individualized based on correlation with imaging studies.

    PubMed

    Calhoun, Benjamin C; Sobel, Amy; White, Richard L; Gromet, Matt; Flippo, Teresa; Sarantou, Terry; Livasy, Chad A

    2015-05-01

    Flat epithelial atypia of the breast commonly co-exists with atypical ductal hyperplasia, lobular neoplasia, and indolent forms of invasive carcinomas such as tubular carcinoma. Most patients with pure flat epithelial atypia on core biopsy undergo surgical excision to evaluate for carcinoma in the adjacent breast tissue. Studies to date have reported varying upgrade rates with most recommending follow-up excision. These studies have often lacked detailed radiographic correlation, central review by breast pathologists and information regarding the biology of the carcinomas identified upon excision. In this study, we report the frequency of upgrade to invasive carcinoma or ductal carcinoma in situ in excision specimens following a diagnosis of pure flat epithelial atypia on core biopsy. Radiographic correlation is performed for each case and grade/receptor status of detected carcinomas is reported. Seventy-three (73) core biopsies containing pure flat epithelial atypia were identified from our files, meeting inclusion criteria for the study. In the subsequent excision biopsies, five (7%) cases contained invasive carcinoma or ductal carcinoma in situ and seventeen (23%) contained atypical ductal hyperplasia or lobular neoplasia. All of the ductal carcinoma in situ cases with estrogen receptor results were estrogen receptor positive and intermediate grade. The invasive tumors were small (pT1a) hormone receptor-positive, HER2-negative, low-grade invasive ductal or tubular carcinomas with negative sentinel lymph-node biopsies. No upgrades were identified in the 14 patients who had all of their calcifications removed by the stereotactic core biopsy. Our rate of upgrade to carcinoma, once cases with discordant imaging are excluded, is at the lower end of the range reported in the literature. Given the low upgrade rate and indolent nature of the carcinomas associated with flat epithelial atypia, case management may be individualized based on clinical and radiographic

  7. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway

    PubMed Central

    Vernia, Santiago; Cavanagh-Kyros, Julie; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Davis, Roger J.

    2013-01-01

    The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway. PMID:24186979

  8. Long Non-Coding RNA CASC2 Improves Diabetic Nephropathy by Inhibiting JNK Pathway.

    PubMed

    Yang, Huihui; Kan, Quan E; Su, Yong; Man, Hua

    2018-06-11

    It's known that long non-coding RNA CASC2 overexpression inhibit the JNK pathway in some disease models, while JNK pathway activation exacerbates diabetic nephropathy. Therefore we speculate that long non-coding RNA CASC2 can improve diabetic nephropathy by inhibiting JNK pathway. Thus, our study was carried out to investigate the involvement of CASC2 in diabetic nephropathy. We found that serum level of CASC2 was significantly lower in diabetic nephropathy patients than in normal people, and serum level of CASC2 showed no significant correlations with age, gender, alcohol consumption and smoking habits, but was correlated with course of disease. ROC curve analysis showed that serum level of CASC2 could be used to accurately predict diabetic nephropathy. Diabetes mellitus has many complications. This study also included a series of complications of diabetes, such as diabetic retinopathy, diabetic ketoacidosis, diabetic foot infections and diabetic cardiopathy, while serum level of CASC2 was specifically reduced in diabetic nephropathy. CASC2 expression level decreased, while JNK1 phosphorylation level increased in mouse podocyte cells treated with high glucose. CASC2 overexpression inhibited apoptosis of podocyte cells and reduced phosphorylation level of JNK1. We conclude that long non-coding RNA CASC2 may improve diabetic nephropathy by inhibiting JNK pathway. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Hit-to-lead optimization and kinase selectivity of imidazo[1,2-a]quinoxalin-4-amine derived JNK1 inhibitors.

    PubMed

    Li, Bei; Cociorva, Oana M; Nomanbhoy, Tyzoon; Weissig, Helge; Li, Qiang; Nakamura, Kai; Liyanage, Marek; Zhang, Melissa C; Shih, Ann Y; Aban, Arwin; Hu, Yi; Cajica, Julia; Pham, Lan; Kozarich, John W; Shreder, Kevin R

    2013-09-15

    As the result of a rhJNK1 HTS, the imidazo[1,2-a]quinoxaline 1 was identified as a 1.6 μM rhJNK1 inhibitor. Optimization of this compound lead to AX13587 (rhJNK1 IC50=160 nM) which was co-crystallized with JNK1 to identify key molecular interactions. Kinase profiling against 125+ kinases revealed AX13587 was an inhibitor of JNK, MAST3, and MAST4 whereas its methylene homolog AX14373 (native JNK1 IC50=47 nM) was a highly specific JNK inhibitor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. [HPV type 33-associated penile intraepithelial neoplasia (PIN)].

    PubMed

    Wahl, R U; Knückel, R; Megahed, M

    2009-12-01

    For appoximately 6 month a 69-year old man had been suffering from an itching scaly skin change of the penis. Virological and histological examinations confirmed the diagnosis of an intraepithelial neoplasia induced by an infection with human papillomavirus (HPV) type 33. HPV type 33 is comparatively rarely detected in intraepithelial neoplasia. In anogenital lesions intraepithelial neoplasia should be considered and confirmed via histological and virological examinations.

  11. Activation of ERK and JNK signaling pathways by mycotoxin citrinin in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.-H.; Yu, F.-Y.; Wang, L.-T.

    2009-06-15

    Mycotoxin citrinin (CTN) is commonly found in foods and feeds that are contaminated/inoculated with Penicillium, Aspergillus and Monascus species. The exposure of human embryonic kidney (HEK293) and HeLa cells to CTN resulted in a dose-dependent increase in the phosphorylation of two major mitogen-activated protein kinases (MAPKs), ERK1/2 and JNK. In HEK293 cultures, the administering of CTN increased both the mRNA and protein levels of egr-1, c-fos and c-jun genes; additionally, the ERK1/2 pathway contributed to the upregulation of Egr-1 and c-Fos protein expression. CTN treatment also induced the transcription activity of Egr-1 and AP-1 proteins, as evidenced by luciferase reportermore » assays. Bioinformatic analyses indicated two genes Gadd45{beta} and MMP3 have Egr-1 and AP-1 response elements in their promoters, respectively. Furthermore, co-exposure of HEK293 cells to CTN and MAPK pathway inhibitors demonstrated that CTN increased the levels of Gadd45{beta} mRNA through ERK1/2 signaling pathway and up-regulated the MMP3 transcripts majorly via JNK pathway. Finally, CTN-triggered caspase 3 activity was significantly reduced in the presence of MAPK inhibitors. Our results suggest that CTN positively regulates ERK1/2 and JNK pathways as well as their downstream effectors in human cells; activated MAPK pathways are also involved in CTN-induced apoptosis.« less

  12. Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation.

    PubMed Central

    Cavigelli, M; Dolfi, F; Claret, F X; Karin, M

    1995-01-01

    Growth factors induce c-fos transcription by stimulating phosphorylation of transcription factor TCF/Elk-1, which binds to the serum response element (SRE). Under such conditions Elk-1 could be phosphorylated by the mitogen-activated protein kinases (MAPKs) ERK1 and ERK2. However, c-fos transcription and SRE activity are also induced by stimuli, such as UV irradiation and activation of the protein kinase MEKK1, that cause only an insignificant increase in ERK1/2 activity. However, both of these stimuli strongly activate two other MAPKs, JNK1 and JNK2, and stimulate Elk-1 transcriptional activity and phosphorylation. We find that the JNKs are the predominant Elk-1 activation domain kinases in extracts of UV-irradiated cells and that immunopurified JNK1/2 phosphorylate Elk-1 on the same major sites recognized by ERK1/2, that potentiate its transcriptional activity. Finally, we show that UV irradiation, but not serum or phorbol esters, stimulate translocation of JNK1 to the nucleus. As Elk-1 is most likely phosphorylated while bound to the c-fos promoter, these results suggest that UV irradiation and MEKK1 activation stimulate TCF/Elk-1 activity through JNK activation, while growth factors induce c-fos through ERK activation. Images PMID:8846788

  13. Mechanisms of disease: epithelial-mesenchymal transition and back again: does cellular plasticity fuel neoplastic progression?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissell, Mina J; Turley, Eva A.; Veiseh, Mandana

    2008-02-13

    Epithelial-mesenchymal transition (EMT) is a conversion that facilitates organ morphogenesis and tissue remodeling in physiological processes such as embryonic development and wound healing. A similar phenotypic conversion is also detected in fibrotic diseases and neoplasia, which is associated with disease progression. EMT in cancer epithelial cells often seems to be an incomplete and bi-directional process. In this Review, we discuss the phenomenon of EMT as it pertains to tumor development, focusing on exceptions to the commonly held rule that EMT promotes invasion and metastasis. We also highlight the role of the RAS-controlled signaling mediators, ERK1, ERK2 and PI3-kinase, as microenvironmentalmore » responsive regulators of EMT.« less

  14. Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells.

    PubMed

    Nomura, Kazuaki; Obata, Kazufumi; Keira, Takashi; Miyata, Ryo; Hirakawa, Satoshi; Takano, Ken-ichi; Kohno, Takayuki; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi

    2014-02-18

    Pseudomonas aeruginosa causes chronic respiratory disease, and the elastase enzyme that it produces increases the permeability of airway epithelial cells owing to the disruption of tight junctions. P. aeruginosa is also implicated in prolonged chronic rhinosinusitis. However, the effects of P. aeruginosa elastase (PE) against the barrier formed by human nasal epithelial cells (HNECs) remain unknown. To investigate the mechanisms involved in the disruption of tight junctions by PE in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were used. The hTERT-HNECs were pretreated with inhibitors of various signal transduction pathways, PKC, MAPK, p38MAPK, PI3K, JNK, NF-κB, EGF receptor, proteasome, COX1 and COX2 before treatment with PE. Some cells were pretreated with siRNA and agonist of protease activated receptor-2 (PAR-2) before treatment with PE. Expression and structures of tight junctions were determined by Western blotting, real-time PCR, immunostaining and freeze-fracture. Transepithelial electrical resistance (TER) was examined as the epithelial barrier function. PE treatment transiently disrupted the epithelial barrier and downregulated the transmembrane proteins claudin-1 and -4, occludin, and tricellulin, but not the scaffold PDZ-expression proteins ZO-1 and -2 and adherens junction proteins E-cadherin and β-catenin. The transient downregulation of tight junction proteins was controlled via distinct signal transduction pathways such as the PKC, MAPK, PI3K, p38 MAPK, JNK, COX-1 and -2, and NF-κB pathways. Furthermore, treatment with PE transiently decreased PAR-2 expression, which also regulated the expression of the tight junction proteins. Treatment with a PAR-2 agonist prevented the downregulation of the tight junction proteins after PE treatment in HNECs. PE transiently disrupts tight junctions in HNECs and downregulates PAR-2. The transient disruption of tight junctions by PE might occur repeatedly

  15. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera)

    PubMed Central

    Snell, Terry W.; Johnston, Rachel K.; Rabeneck, Brett; Zipperer, Cody; Teat, Stephanie

    2014-01-01

    The TOR kinase pathway is central in modulating aging in a variety of animal models. The target of rapamycin (TOR) integrates a complex network of signals from growth conditions, nutrient availability, energy status, and physiological stresses and matches an organism’s growth rate to the resource environment. Important problems remaining are to identify the pathways that interact with TOR and characterize them as additive or synergistic. One of the most versatile stress sensors in metazoans is the Jun-N-terminal Kinase (JNK) signalling pathway. JNK is an evolutionarily conserved stress-activated protein kinase that is induced by a range of stressors, including UV irradiation, reactive oxygen species, DNA damage, heat, and bacterial antigens. JNK is thought to interact with the TOR pathway, but its effects on TOR are poorly understood. We used the rotifer Brachionus manjavacas as a model animal to probe the regulation of TOR and JNK pathways and explore their interaction. The effect of various chemical inhibitors was examined in life table and stressor challenge experiments. A survey of 12 inhibitors revealed two, rapamycin and JNK inhibitor, that significantly extended lifespan of B. manjavacas. At 1 μM concentration, exposure to rapamycin or JNK inhibitor extended mean rotifer lifespan by 35% and maximum lifespan by 37%. Exposure to both rapamycin and JNK inhibitor simultaneously extended mean rotifer lifespan 65% more than either alone. Exposure to a combination of rapamycin and JNK inhibitors conveyed greater protection to starvation, UV and osmotic stress than either inhibitor alone. RNAi knockdown of TOR and JNK gene expression was investigated for its ability to extend rotifer lifespan. RNAi knockdown of the TOR gene resulted in 29% extension of mean lifespan compared to control and knockdown of the JNK gene resulted in 51% mean lifespan extension. In addition to lifespan, we quantified mitochondria activity using the fluorescent marker Mitotracker and

  16. Tangeretin suppresses IL-1beta-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells.

    PubMed

    Chen, Kuan-Hung; Weng, Meng-Shih; Lin, Jen-Kun

    2007-01-15

    Tangeretin (5,6,7,8,4'-pentamethoxyflavone) is a polymethoxylated flavonoid concentrated in the peel of citrus fruits. Recent studies have shown that tangeretin exhibits anti-proliferative, anti-invasive, anti-metastatic, and antioxidant activities. However, the anti-inflammatory properties of tangeretin are unclear. In this study, we examine the effects of tangeretin and its structure-related compound, nobiletin, on the expression of cyclooxygenases-2 (COX-2) in human lung epithelial carcinoma cells, A549, and human non-small cell lung carcinoma cells, H1299. Tangeretin exerts a much better inhibitory activity than nobiletin against IL-1beta-induced production of COX-2 in A549 cells, and it effectively represses the constitutively expressed COX-2 in H1299. RT-PCR was used to investigate the transcriptional inhibition of COX-2 by tangeretin. COX-2 mRNA was rapidly induced by IL-1beta in 3h and markedly suppressed by tangeretin. IL-1beta-induced the activation of ERK, p38 MAPK, JNK, and AKT in A549 cells. COX-2 expression in response to IL-1beta was attenuated by pretreatment with SB203580, SP600125, and LY294002, but not with PD98059, suggesting the involvement of p38 MAPK, JNK, and PI3K in this response. Pretreatment of cells with tangeretin inhibited IL-1beta-induced p38 MAPK, JNK, and AKT phosphorylation and the downstream activation of NF-kappaB. These results may reveal that the tangeretin inhibition of IL-1beta-induced COX-2 expression in A549 cells is, at least in part, mediated through suppression of NF-kappaB transcription factor as well as through suppression of the signaling proteins of p38 MAPK, JNK, and PI3K, but not of ERK.

  17. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence.

    PubMed

    Gupta, Rajeev; Ghosh, Subhendu

    2017-06-01

    Voltage-Dependent Anion Channel (VDAC) phosphorylated by c-Jun N-terminal Kinase-3 (JNK3) was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  18. Sodium Octanoate Modulates the Innate Immune Response of Bovine Mammary Epithelial Cells through the TLR2/P38/JNK/ERK1/2 Pathway: Implications during Staphylococcus aureus Internalization.

    PubMed

    Alva-Murillo, Nayeli; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2017-01-01

    Bovine mammary epithelial cells (bMECs) contribute to mammary gland defense against invading pathogens, such as Staphylococcus aureus (intracellular facultative), which is recognized by TLR2. In a previous report, we showed that sodium octanoate [NaO, a medium chain fatty acid (C8)] induces (0.25 mM) or inhibits (1 mM) S. aureus internalization into bMECs and differentially regulates the innate immune response (IIR). However, the molecular mechanisms have not been described, which was the aim of this study. The results showed that α5β1 integrin membrane abundance (MA) was increased in 0.25 mM NaO-treated cells, but TLR2 or CD36 MA was not modified. When these receptors were blocked individually, 0.25 mM NaO-increased S. aureus internalization was notably reduced. Interestingly, in this condition, the IIR of the bMECs was impaired because MAPK (p38, JNK, and ERK1/2) phosphorylation and the activation of transcription factors related to these pathways were decreased. In addition, the 1 mM NaO treatment induced TLR2 MA, but neither the integrin nor CD36 MA was modified. The reduction in S. aureus internalization induced by 1 mM NaO was increased further when TLR2 was blocked. In addition, the phosphorylation levels of the MAPKs increased, and 13 transcriptional factors related to the IIR were slightly activated (CBF, CDP, c-Myb, AP-1, Ets-1/Pea-3, FAST-1, GAS/ISRE, AP-2, NFAT-1, OCT-1, RAR/DR-5, RXR/DR-1, and Stat-3). Moreover, the 1 mM NaO treatment up-regulated gene expression of IL-8 and RANTES and secretion of IL-1β. Notably, when 1 mM NaO-treated bMECs were challenged with S. aureus , the gene expression of IL-8 and IL-10 increased, while IL-1β secretion was reduced. In conclusion, our results showed that α5β1 integrin, TLR2 and CD36 are involved in 0.25 mM NaO-increased S. aureus internalization in bMECs. In addition, 1 mM NaO activates bMECs via the TLR2 signaling pathways (p38, JNK, and ERK1/2), which improves IIR before S. aureus invasion. Additionally

  19. High-Dose Fluoride Impairs the Properties of Human Embryonic Stem Cells via JNK Signaling.

    PubMed

    Fu, Xin; Xie, Fang-Nan; Dong, Ping; Li, Qiu-Chen; Yu, Guang-Yan; Xiao, Ran

    2016-01-01

    Fluoride is a ubiquitous natural substance that is often used in dental products to prevent dental caries. The biphasic actions of fluoride imply that excessive systemic exposure to fluoride can cause harmful effects on embryonic development in both animal models and humans. However, insufficient information is available on the effects of fluoride on human embryonic stem cells (hESCs), which is a novel in vitro humanized model for analyzing the embryotoxicities of chemical compounds. Therefore, we investigated the effects of sodium fluoride (NaF) on the proliferation, differentiation and viability of H9 hESCs. For the first time, we showed that 1 mM NaF did not significantly affect the proliferation of hESCs but did disturb the gene expression patterns of hESCs during embryoid body (EB) differentiation. Higher doses of NaF (2 mM and above) markedly decreased the viability and proliferation of hESCs. The mode and underlying mechanism of high-dose NaF-induced cell death were further investigated by assessing the sub-cellular morphology, mitochondrial membrane potential (MMP), caspase activities, cellular reactive oxygen species (ROS) levels and activation of mitogen-activated protein kinases (MAPKs). High-dose NaF caused the death of hESCs via apoptosis in a caspase-mediated but ROS-independent pathway, coupled with an increase in the phospho-c-Jun N-terminal kinase (p-JNK) levels. Pretreatment with a p-JNK-specific inhibitor (SP600125) could effectively protect hESCs from NaF-induced cell death in a concentration- and time-dependent manner. These findings suggest that NaF might interfere with early human embryogenesis by disturbing the specification of the three germ layers as well as osteogenic lineage commitment and that high-dose NaF could cause apoptosis through a JNK-dependent pathway in hESCs.

  20. Tannic acid attenuates TGF-β1-induced epithelial-to-mesenchymal transition by effectively intervening TGF-β signaling in lung epithelial cells.

    PubMed

    Pattarayan, Dhamotharan; Sivanantham, Ayyanar; Krishnaswami, Venkateshwaran; Loganathan, Lakshmanan; Palanichamy, Rajaguru; Natesan, Subramanian; Muthusamy, Karthikeyan; Rajasekaran, Subbiah

    2018-03-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and an irreversible lung disorder characterized by the accumulation of fibroblasts and myofibroblasts in the extracellular matrix. The transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) is thought to be one of the possible sources for a substantial increase in the number of fibroblasts/myofibroblasts in IPF lungs. Tannic acid (TA), a natural dietary polyphenolic compound has been shown to possess diverse pharmacological effects. However, whether TA can inhibit TGF-β1-mediated EMT in lung epithelial cells remains enigmatic. Both the human adenocarcinomic alveolar epithelial (A549) and normal bronchial epithelial (BEAS-2B) cells were treated with TGF-β1 with or without TA. Results showed that TA addition, markedly inhibited TGF-β1-induced EMT as assessed by reduced expression of N-cadherin, type-1-collagen, fibronectin, and vimentin. Furthermore, TA inhibited TGF-β1-induced cell proliferation through inducing cell cycle arrest at G0/G1 phase. TGF-β1-induced increase in the phosphorylation of Smad (Smad2 and 3), Akt as well as that of mitogen activated protein kinase (ERK1/2, JNK1/2, and p38) mediators was effectively inhibited by TA. On the other hand, TA reduced the TGF-β1-induced increase in TGF-β receptors expression. Using molecular docking approach, FTIR, HPLC and Western blot analyses, we further identified the direct binding of TA to TGF-β1. Finally, we conclude that TA might directly interact with TGF-β1, thereby repressing TGF-β signaling and subsequent EMT process in lung epithelial cells. Further animal studies are needed to clarify its potential therapeutic benefit in pulmonary fibrosis. © 2017 Wiley Periodicals, Inc.

  1. Evaluation of DNA Single and Double Strand Breaks in Women with Cervical Neoplasia Based on Alkaline and Neutral Comet Assay Techniques

    PubMed Central

    Cortés-Gutiérrez, Elva I.; Hernández-Garza, Fernando; García-Pérez, Jorge O.; Dávila-Rodríguez, Martha I.; Aguado-Barrera, Miguel E.; Cerda-Flores, Ricardo M.

    2012-01-01

    A hospital-based unmatched case-control study was performed in order to determine the relation of DNA single (ssb) and double (dsb) strand breaks in women with and without cervical neoplasia. Cervical epithelial cells of 30 women: 10 with low grade squamous intraepithelial lesions (LG-SIL), 10 with high-grade SIL (HG-SIL), and 10 without cervical lesions were evaluated using alkaline and neutral comet assays. A significant increase in global DNA damage (ssb + dsb) and dsb was observed in patients with HG-SIL (48.90 ± 12.87 and 23.50 ± 13.91), patients with LG-SIL (33.60 ± 14.96 and 11.20 ± 5.71), and controls (21.70 ± 11.87 and 5.30 ± 5.38; resp.). Pearson correlation coefficient reveled a strong relation between the levels ssb and dsb (r2 = 0.99, P = 0.03, and r2 = 0.94, P = 0.16, resp.) and progression of neoplasia. The increase of dsb damage in patients with HG-SIL was confirmed by DNA breakage detection-FISH (DBD-FISH) on neutral comets. Our results argue in favor of a real genomic instability in women with cervical neoplasia, which was strengthened by our finding of a higher proportion of DNA dsb. PMID:23093842

  2. Epithelial atypia in biopsies performed for microcalcifications. Practical considerations about 2,833 serially sectioned surgical biopsies with a long follow-up

    PubMed Central

    MacGrogan, Gaëtan; Mathoulin-Pélissier, Simone; Vincent-Salomon, Anne; Soubeyran, Isabelle; Picot, Véronique; Coindre, Jean-Michel; Mauriac, Louis

    2007-01-01

    This study analyzes the occurrence of epithelial atypia in 2,833 serially sectioned surgical breast biopsies (SB) performed for microcalcifications (median number of blocks per SB:26) and the occurrence of subsequent cancer after an initial diagnosis of epithelial atypia (median follow-up 160 months). Epithelial atypia (flat epithelial atypia, atypical ductal hyperplasia, and lobular neoplasia) were found in 971 SB, with and without a concomitant cancer in 301 (31%) and 670 (69%) SB, respectively. Thus, isolated epithelial atypia were found in 670 out of the 2,833 SB (23%). Concomitant cancers corresponded to ductal carcinomas in situ and micro-invasive (77%), invasive ductal carcinomas not otherwise specified (15%), invasive lobular carcinomas (4%), and tubular carcinomas (4%). Fifteen out of the 443 patients with isolated epithelial atypia developed a subsequent ipsilateral (n = 14) and contralateral (n = 1) invasive cancer. The high slide rating might explain the high percentages of epithelial atypia and concomitant cancers and the low percentage of subsequent cancer after a diagnosis of epithelial atypia as a single lesion. Epithelial atypia could be more a risk marker of concomitant than subsequent cancer. PMID:17551752

  3. Epithelial atypia in biopsies performed for microcalcifications. practical considerations about 2,833 serially sectioned surgical biopsies with a long follow-up.

    PubMed

    de Mascarel, Isabelle; MacGrogan, Gaëtan; Mathoulin-Pélissier, Simone; Vincent-Salomon, Anne; Soubeyran, Isabelle; Picot, Véronique; Coindre, Jean-Michel; Mauriac, Louis

    2007-07-01

    This study analyzes the occurrence of epithelial atypia in 2,833 serially sectioned surgical breast biopsies (SB) performed for microcalcifications (median number of blocks per SB:26) and the occurrence of subsequent cancer after an initial diagnosis of epithelial atypia (median follow-up 160 months). Epithelial atypia (flat epithelial atypia, atypical ductal hyperplasia, and lobular neoplasia) were found in 971 SB, with and without a concomitant cancer in 301 (31%) and 670 (69%) SB, respectively. Thus, isolated epithelial atypia were found in 670 out of the 2,833 SB (23%). Concomitant cancers corresponded to ductal carcinomas in situ and micro-invasive (77%), invasive ductal carcinomas not otherwise specified (15%), invasive lobular carcinomas (4%), and tubular carcinomas (4%). Fifteen out of the 443 patients with isolated epithelial atypia developed a subsequent ipsilateral (n = 14) and contralateral (n = 1) invasive cancer. The high slide rating might explain the high percentages of epithelial atypia and concomitant cancers and the low percentage of subsequent cancer after a diagnosis of epithelial atypia as a single lesion. Epithelial atypia could be more a risk marker of concomitant than subsequent cancer.

  4. Animal models of pituitary neoplasia

    PubMed Central

    Lines, K.E.; Stevenson, M.; Thakker, R.V.

    2016-01-01

    Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies. PMID:26320859

  5. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche.

    PubMed

    Davis, Hayley; Irshad, Shazia; Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John

    2015-01-01

    Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.

  6. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jiamin

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 andmore » P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.« less

  7. Amyloid precursor protein modulates Nav1.6 sodium channel currents through a Go-coupled JNK pathway.

    PubMed

    Li, Shao; Wang, Xi; Ma, Quan-Hong; Yang, Wu-Lin; Zhang, Xiao-Gang; Dawe, Gavin S; Xiao, Zhi-Cheng

    2016-12-23

    Amyloid precursor protein (APP), commonly associated with Alzheimer's disease, also marks axonal degeneration. In the recent studies, we demonstrated that APP aggregated at nodes of Ranvier (NORs) in myelinated central nervous system (CNS) axons and interacted with Nav1.6. However, the physiological function of APP remains unknown. In this study, we described reduced sodium current densities in APP knockout hippocampal neurons. Coexpression of APP or its intracellular domains containing a VTPEER motif with Na v 1.6 sodium channels in Xenopus oocytes resulted in an increase in peak sodium currents, which was enhanced by constitutively active Go mutant and blocked by a dominant negative mutant. JNK and CDK5 inhibitor attenuated increases in Nav1.6 sodium currents induced by overexpression of APP. Nav1.6 sodium currents were increased by APPT668E (mutant Thr to Glu) and decreased by T668A (mutant Thr to ALa) mutant, respectively. The cell surface expression of Nav1.6 sodium channels in the white matter of spinal cord and the spinal conduction velocity is decreased in APP, p35 and JNK3 knockout mice. Therefore, APP modulates Nav1.6 sodium channels through a Go-coupled JNK pathway, which is dependent on phosphorylation of APP at Thr668.

  8. Amyloid precursor protein modulates Nav1.6 sodium channel currents through a Go-coupled JNK pathway

    PubMed Central

    Li, Shao; Wang, Xi; Ma, Quan-Hong; Yang, Wu-lin; Zhang, Xiao-Gang; Dawe, Gavin S.; Xiao, Zhi-Cheng

    2016-01-01

    Amyloid precursor protein (APP), commonly associated with Alzheimer’s disease, also marks axonal degeneration. In the recent studies, we demonstrated that APP aggregated at nodes of Ranvier (NORs) in myelinated central nervous system (CNS) axons and interacted with Nav1.6. However, the physiological function of APP remains unknown. In this study, we described reduced sodium current densities in APP knockout hippocampal neurons. Coexpression of APP or its intracellular domains containing a VTPEER motif with Nav1.6 sodium channels in Xenopus oocytes resulted in an increase in peak sodium currents, which was enhanced by constitutively active Go mutant and blocked by a dominant negative mutant. JNK and CDK5 inhibitor attenuated increases in Nav1.6 sodium currents induced by overexpression of APP. Nav1.6 sodium currents were increased by APPT668E (mutant Thr to Glu) and decreased by T668A (mutant Thr to ALa) mutant, respectively. The cell surface expression of Nav1.6 sodium channels in the white matter of spinal cord and the spinal conduction velocity is decreased in APP, p35 and JNK3 knockout mice. Therefore, APP modulates Nav1.6 sodium channels through a Go-coupled JNK pathway, which is dependent on phosphorylation of APP at Thr668. PMID:28008944

  9. Activation of the HMGB1-RAGE axis upregulates TH expression in dopaminergic neurons via JNK phosphorylation.

    PubMed

    Kim, Soo Jeong; Ryu, Min Jeong; Han, Jeongsu; Jang, Yunseon; Kim, Jungim; Lee, Min Joung; Ryu, Ilhwan; Ju, Xianshu; Oh, Eungseok; Chung, Woosuk; Kweon, Gi Ryang; Heo, Jun Young

    2017-11-04

    The derangement of tyrosine hydroxylase (TH) activity reduces dopamine synthesis and is implicated in the pathogenesis of Parkinson's disease. However, the extracellular modulator and intracellular regulatory mechanisms of TH have yet to be identified. Recently, high-mobility group box 1 (HMGB1) was reported to be actively secreted from glial cells and is regarded as a mediator of dopaminergic neuronal loss. However, the mechanism for how HMGB1 affects TH expression, particularly through the receptor for advanced glycation endproducts (RAGE), has not yet been investigated. We found that recombinant HMGB1 (rHMGB1) upregulates TH mRNA expression via simultaneous activation of JNK phosphorylation, and this induction of TH expression is blocked by inhibitors of RAGE and JNK. To investigate how TH expression levels change through the HMGB1-RAGE axis as a result of MPP + toxicity, we co-treated SN4741 dopaminergic cells with MPP + and rHMGB1. rHMGB1 blocked the reduction of TH mRNA following MPP + treatment without altering cell survival rates. Our results suggest that HMGB1 upregulates TH expression to maintain dopaminergic neuronal function via activating RAGE, which is dependent on JNK phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Transforming growth factor-β1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts.

    PubMed

    Jablonska, Ewa; Markart, Philipp; Zakrzewicz, Dariusz; Preissner, Klaus T; Wygrecka, Malgorzata

    2010-04-09

    Coagulation factor XII (FXII) is a liver-derived serine protease involved in fibrinolysis, coagulation, and inflammation. The regulation of FXII expression is largely unknown. Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that has been linked to several pathological processes, including tissue fibrosis by modulating procoagulant and fibrinolytic activities. This study investigated whether TGF-beta1 may regulate FXII expression in human lung fibroblasts. Treatment of human lung fibroblasts with TGF-beta1 resulted in a time-dependent increase in FXII production, activation of p44/42, p38, JNK, and Akt, and phosphorylation and translocation into the nucleus of Smad3. However, TGF-beta1-induced FXII expression was repressed only by the JNK inhibitor and JNK and Smad3 antisense oligonucleotides but not by MEK, p38, or phosphoinositide 3-kinase blockers. JNK inhibition had no effect on TGF-beta1-induced Smad3 phosphorylation, association with Smad4, and its translocation into the nucleus but strongly suppressed Smad3-DNA complex formation. FXII promoter analysis revealed that the -299/+1 region was sufficient for TGF-beta1 to induce FXII expression. Sequence analysis of this region detected a potential Smad-binding element at position -272/-269 (SBE-(-272/-269)). Chromatin immunoprecipitation and streptavidin pulldown assays demonstrated TGF-beta1-dependent Smad3 binding to SBE-(-272/-269). Mutation or deletion of SBE-(-272/-269) substantially reduced TGF-beta1-mediated activation of the FXII promoter. Clinical relevance was demonstrated by elevated FXII levels and its co-localization with fibroblasts in the lungs of patients with acute respiratory distress syndrome. Our results show that JNK/Smad3 pathway plays a critical role in TGF-beta1-induced FXII expression in human lung fibroblasts and implicate its possible involvement in pathological conditions characterized by elevated TGF-beta1 levels.

  11. Pregnancy outcomes after chemotherapy for trophoblastic neoplasia.

    PubMed

    Garcia, Mila Trementosa; Lin, Lawrence Hsu; Fushida, Koji; Francisco, Rossana Pulcineli Vieira; Zugaib, Marcelo

    2016-12-01

    The successful development of chemotherapy enabled a fertilitysparing treatment for patients with trophoblastic neoplasia. After disease remission, the outcome of a subsequent pregnancy becomes a great concern for these women. To analyze existing studies in the literature that describe the reproductive outcomes of patients with trophoblastic neoplasia treated with chemotherapy. Systematic review was performed searching for articles on Medline/ Pubmed, Lilacs and Cochrane Library databases, using the terms "gestational trophoblastic disease" and "pregnancy outcome". A total of 18 articles were included. No evidence of decreased fertility after chemotherapy for trophoblastic neoplasia was observed. The abortion rates in patients who conceived within 6 months after chemotherapy was higher compared to those who waited longer. Some studies showed increased rates of stillbirth and repeat hydatidiform moles. Only one work showed increased congenital abnormalities. The pregnancies conceived after chemotherapy for trophoblastic neoplasia should be followed with clinical surveillance due to higher rates of some pregnancy complications. However, studies in the literature provide reassuring data about reproductive outcomes of these patients.

  12. Activation of the EGFR/p38/JNK Pathway by Mitochondrial-Derived Hydrogen Peroxide Contributes To Oxygen-induced Contraction Of Ductus Arteriosus

    PubMed Central

    Hong, Zhigang; Cabrera, Jésus A; Mahapatra, Saswati; Kutty, Shelby; Weir, E. Kenneth; Archer, Stephen L.

    2014-01-01

    Oxygen-induced contraction of the ductus arteriosus (DA) involves a mitochondrial oxygen-sensor, which signals pO2 in the DA smooth muscle cell (DASMC) by increasing production of diffusible hydrogen peroxide (H2O2). H2O2 stimulates vasoconstriction by regulating ion channels and rho kinase, leading to calcium influx and calcium sensitization. Because epidermal growth factor receptor (EGFR) signaling is also redox regulated and participates in oxygen sensing and vasoconstriction in other systems, we explored the role of the EGFR and its signaling cascade (p38 and JNK) in DA contraction. Experiments were performed in DA rings isolated from full-term New Zealand White rabbits and human DASMC. In human DASMCs increasing pO2 from hypoxia to normoxia (40 to 100 mmHg) significantly increased cytosolic calcium, p<0.01. This normoxic rise in intracellular calcium was mimicked by EGF and inhibited by EGFR siRNA. In DA rings, EGF caused contraction whilst the specific EGFR inhibitor (AG1478) and the tyrosine kinase inhibitors (genistein or tyrphostin A23) selectively attenuated oxygen-induced contraction (p <0.01). Conversely, orthovanadate, a tyrosine phosphatase inhibitor known to activate EGFR signaling, caused dose-dependent contraction of hypoxic DA and superimposed increases in oxygen caused minimal additional contraction. Ansomycin, an activator of EGFR’s downstream kinases, p38 and JNK, caused DA contraction; conversely, oxygen-induced DA contraction was blocked by inhibitors of p38 MAPK (SB203580) or JNK (JNK inhibitor II). O2-induced phosphorylation of EGFR occurred within 5-minutes of increasing pO2 and was inhibited by mitochondrial-targeted overexpression of catalase. AG1478 prevented the oxygen-induced p38 and JNK phosphorylation. In conclusion, O2-induced EGFR transactivation initiates p38/JNK-mediated increases in cytosolic calcium and contributes to DA contraction. The EGFR/p38/JNK pathway is regulated by mitochondrial redox signaling and is a promising

  13. Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease.

    PubMed

    Hama, Taketsugu; Nakanishi, Koichi; Sato, Masashi; Mukaiyama, Hironobu; Togawa, Hiroko; Shima, Yuko; Miyajima, Masayasu; Nozu, Kandai; Nagao, Shizuko; Takahashi, Hisahide; Sako, Mayumi; Iijima, Kazumoto; Yoshikawa, Norishige; Suzuki, Hiroyuki

    2017-12-01

    Cystic epithelia acquire mesenchymal-like features in polycystic kidney disease (PKD). In this phenotypic alteration, it is well known that transforming growth factor (TGF)-β/Smad3 signaling is involved; however, there is emerging new data on Smad3 phosphoisoforms: Smad3 phosphorylated at linker regions (pSmad3L), COOH-terminal regions (pSmad3C), and both (pSmad3L/C). pSmad3L/C has a pathological role in colorectal cancer. Mesenchymal phenotype-specific cell responses in the TGF-β/Smad3 pathway are implicated in carcinomas. In this study, we confirmed mesenchymal features and examined Smad3 phosphoisoforms in the cpk mouse, a model of autosomal recessive PKD. Kidney sections were stained with antibodies against mesenchymal markers and domain-specific phospho-Smad3. TGF-β, pSmad3L, pSmad3C, JNK, cyclin-dependent kinase (CDK) 4, and c-Myc were evaluated by Western blotting. Cophosphorylation of pSmad3L/C was assessed by immunoprecipitation. α-Smooth muscle actin, which indicates mesenchymal features, was expressed higher in cpk mice. pSmad3L expression was increased in cpk mice and was predominantly localized in the nuclei of tubular epithelial cells in cysts; however, pSmad3C was equally expressed in both cpk and control mice. Levels of pSmad3L, JNK, CDK4, and c-Myc protein in nuclei were significantly higher in cpk mice than in controls. Immunoprecipitation showed that Smad3 was cophosphorylated (pSmad3L/C) in cpk mice. Smad3 knockout/ cpk double-mutant mice revealed amelioration of cpk abnormalities. These findings suggest that upregulating c-Myc through the JNK/CDK4-dependent pSmad3L pathway may be key to the pathophysiology in cpk mice. In conclusion, a qualitative rather than a quantitative abnormality of the TGF-β/Smad3 pathway is involved in PKD and may be a target for disease-specific intervention. Copyright © 2017 the American Physiological Society.

  14. Reactive oxygen species mediate nitric oxide production through ERK/JNK MAPK signaling in HAPI microglia after PFOS exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Cheng; Nie, Xiaoke; Zhang, Yan

    2015-10-15

    Perfluorooctane sulfonate (PFOS), an emerging persistent contaminant that is commonly encountered during daily life, has been shown to exert toxic effects on the central nervous system (CNS). However, the molecular mechanisms underlying the neurotoxicity of PFOS remain largely unknown. It has been widely acknowledged that the inflammatory mediators released by hyper-activated microglia play vital roles in the pathogenesis of various neurological diseases. In the present study, we examined the impact of PFOS exposure on microglial activation and the release of proinflammatory mediators, including nitric oxide (NO) and reactive oxidative species (ROS). We found that PFOS exposure led to concentration-dependent NOmore » and ROS production by rat HAPI microglia. We also discovered that there was rapid activation of the ERK/JNK MAPK signaling pathway in the HAPI microglia following PFOS treatment. Moreover, the PFOS-induced iNOS expression and NO production were attenuated after the inhibition of ERK or JNK MAPK by their corresponding inhibitors, PD98059 and SP600125. Interestingly, NAC, a ROS inhibitor, blocked iNOS expression, NO production, and activation of ERK and JNK MAPKs, which suggested that PFOS-mediated microglial NO production occurs via a ROS/ERK/JNK MAPK signaling pathway. Finally, by exposing SH-SY5Y cells to PFOS-treated microglia-conditioned medium, we demonstrated that NO was responsible for PFOS-mediated neuronal apoptosis. - Highlights: • PFOS exposure induced expression of iNOS and production of NO in HAPI microglia. • PFOS induced the production of ROS in HAPI microglia. • ERK/JNK MAPK pathways were activated following PFOS exposure in HAPI microglia. • NO released by HAPI microglia participated in the apoptosis of SH-SY5Y cells.« less

  15. Epithelial neoplasia coincides with exacerbated injury and fibrotic response in the lungs of Gprc5a-knockout mice following silica exposure

    PubMed Central

    Zhong, Shuangshuang; Song, Hongyong; Sun, Beibei; Zhou, Binhua P.; Deng, Jiong; Han, Baohui

    2015-01-01

    Exposure to crystalline silica is suggested to increase the risk for a variety of lung diseases, including fibrosis and lung cancer. However, epidemiological evidences for the exposure-risk relationship are ambiguous and conflicting, and experimental study from a reliable animal model to explore the relationship is lacking. We reasoned that a mouse model that is sensitive to both lung injury and tumorigenesis would be appropriate to evaluate the exposure-risk relationship. Previously, we showed that, Gprc5a−/− mice are susceptible to both lung tumorigenesis and endotoxin-induced acute lung injury. In this study, we investigated the biological consequences in Gprc5a−/− mouse model following silica exposure. Intra-tracheal administration of fine silica particles in Gprc5a−/− mice resulted in more severe lung injury and pulmonary inflammation than in wild-type mice. Moreover, an enhanced fibrogenic response, including EMT-like characteristics, was induced in the lungs of Gprc5a−/− mice compared to those from wild-type ones. Importantly, increased hyperplasia or neoplasia coincided with silica-induced tissue injury and fibrogenic response in lungs from Gprc5a−/− mice. Consistently, expression of MMP9, TGFβ1 and EGFR was significantly increased in lungs from silica-treated Gprc5a−/− mice compared to those untreated or wild-type ones. These results suggest that, the process of tissue repair coincides with tissue damages; whereas persistent tissue damages leads to abnormal repair or neoplasia. Thus, silica-induced pulmonary inflammation and injury contribute to increased neoplasia development in lungs from Gprc5a−/− mouse model. PMID:26447616

  16. Low molecular weight components of pollen alter bronchial epithelial barrier functions.

    PubMed

    Blume, Cornelia; Swindle, Emily J; Gilles, Stefanie; Traidl-Hoffmann, Claudia; Davies, Donna E

    2015-01-01

    The bronchial epithelium plays a key role in providing a protective barrier against many environmental substances of anthropogenic or natural origin which enter the lungs during breathing. Appropriate responses to these agents are critical for regulation of tissue homeostasis, while inappropriate responses may contribute to disease pathogenesis. Here, we compared epithelial barrier responses to different pollen species, characterized the active pollen components and the signaling pathways leading to epithelial activation. Polarized bronchial cells were exposed to extracts of timothy grass (Phleum pratense), ragweed (Ambrosia artemisifolia), mugwort (Artemisia vulgaris), birch (Betula alba) and pine (Pinus sylvestris) pollens. All pollen species caused a decrease in ionic permeability as monitored trans-epithelial electrical resistance (TER) and induced polarized release of mediators analyzed by ELISA, with grass pollen showing the highest activity. Ultrafiltration showed that the responses were due to components <3kDa. However, lipid mediators, including phytoprostane E1, had no effect on TER, and caused only modest induction of mediator release. Reverse-phase chromatography separated 2 active fractions: the most hydrophilic maximally affected cytokine release whereas the other only affected TER. Inhibitor studies revealed that JNK played a more dominant role in regulation of barrier permeability in response to grass pollen exposure, whereas ERK and p38 controlled cytokine release. Adenosine and the flavonoid isorhamnetin present in grass pollen contributed to the overall effect on airway epithelial barrier responses. In conclusion, bronchial epithelial barrier functions are differentially affected by several low molecular weight components released by pollen. Furthermore, ionic permeability and innate cytokine production are differentially regulated.

  17. Visceral adipose tissue and leptin increase colonic epithelial tight junction permeability via a RhoA-ROCK-dependent pathway.

    PubMed

    Le Dréan, Gwenola; Haure-Mirande, Vianney; Ferrier, Laurent; Bonnet, Christian; Hulin, Philippe; de Coppet, Pierre; Segain, Jean-Pierre

    2014-03-01

    Proinflammatory cytokines produced by immune cells play a central role in the increased intestinal epithelial permeability during inflammation. Expansion of visceral adipose tissue (VAT) is currently considered a consequence of intestinal inflammation. Whether VAT per se plays a role in early modifications of intestinal barrier remains unknown. The aim of this study was to demonstrate the direct role of adipocytes in regulating paracellular permeability of colonic epithelial cells (CECs). We show in adult rats born with intrauterine growth retardation, a model of VAT hypertrophy, and in rats with VAT graft on the colon, that colonic permeability was increased without any inflammation. This effect was associated with altered expression of tight junction (TJ) proteins occludin and ZO-1. In coculture experiments, adipocytes decreased transepithelial resistance (TER) of Caco-2 CECs and induced a disorganization of ZO-1 on TJs. Intraperitoneal administration of leptin to lean rats increased colonic epithelial permeability and altered ZO-1 expression and organization. Treatment of HT29-19A CECs with leptin, but not adiponectin, dose-dependently decreased TER and altered TJ and F-actin cytoskeleton organization through a RhoA-ROCK-dependent pathway. Our data show that adipocytes and leptin directly alter TJ function in CECs and suggest that VAT could impair colonic epithelial barrier.

  18. Expression and proliferation profiles of PKC, JNK and p38MAPK in physiologically stretched human bladder smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wazir, Romel; Luo, De-Yi; Dai, Yi

    2013-08-30

    Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%,more » 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P < 0.05) and apoptotic cell death rate decreased from 16.4 ± 0.21% (control) to 4.5 ± 0.13% (P < 0.05) applied at 0.1 Hz. Expression of PKC was upregulated with slight increase in JNK and no change in p38MAPK after application of stretch. Inhibition had effects on proliferation (1.075 ± 0.024, P < 0.05 GF109203X); (1.418 ± 0.021, P > 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs.« less

  19. Cigarette smoke induced urocystic epithelial mesenchymal transition via MAPK pathways.

    PubMed

    Yu, Dexin; Geng, Hao; Liu, Zhiqi; Zhao, Li; Liang, Zhaofeng; Zhang, Zhiqiang; Xie, Dongdong; Wang, Yi; Zhang, Tao; Min, Jie; Zhong, Caiyun

    2017-01-31

    Cigarette smoke has been shown to be a major risk factor for bladder cancer. Epithelial-mesenchymal transition (EMT) is a crucial process in cancer development. The role of MAPK pathways in regulating cigarette smoke-triggered urocystic EMT remains to be elucidated. Human normal urothelial cells and BALB/c mice were used as in vitro and in vivo cigarette smoke exposure models. Exposure of human normal urothelial cells to cigarette smoke induced morphological change, enhanced migratory and invasive capacities, reduced epithelial marker expression and increased mesenchymal marker expression, along with the activation of MAPK pathways. Moreover, we revealed that ERK1/2 and p38 inhibitors, but rather JNK inhibitor, effectively attenuated cigarette smoke-induced urocystic EMT. Importantly, the regulatory function of ERK1/2 and p38 pathways in cigarette smoke-triggered urocystic EMT was further confirmed in mice exposed to CS for 12 weeks. These findings could provide new insight into the molecular mechanisms of cigarette smoke-associated bladder cancer development as well as its potential intervention.

  20. Atypical epithelial hyperplasia of the breast: state of the art.

    PubMed

    Dion, Ludivine; Racin, Adelaïde; Brousse, Susie; Beltjens, Françoise; Cauchois, Aurélie; Levêque, Jean; Coutant, Charles; Lavoué, Vincent

    2016-09-01

    Atypical epithelial hyperplasia (AEH) of the breast is considered benign histological lesions with breast cancer risk. This review focuses on clinical signification and management of AEH that remains controversial. A review of published studies was performed using medline database. In this review, we fully describe the current evidence available. In particular, we describe 1) data from immunohistochemistry and molecular studies that suggest AEH is a precursor of breast cancer; 2) epidemiological studies demonstrate low rate of breast cancer in women with AEH; 3) surgical excision is necessary after diagnosis of AEH, such as lobular carcinoma in situ or atypical ductal hyperplasia, on core needle biopsy; 4) although current recommendations are evolving to fewer (if not no) excisions for flat epithelial with atypia and classic lobular neoplasia found on percutaneous biopsy (without radiologic indications for excision). Expert commentary: HEA management steel need prospective evidences, but recent retrospective data give some clue for less invasive management for some of HEA.

  1. JNK-Interacting Protein 3 Mediates the Retrograde Transport of Activated c-Jun N-Terminal Kinase and Lysosomes

    PubMed Central

    Drerup, Catherine M.; Nechiporuk, Alex V.

    2013-01-01

    Retrograde axonal transport requires an intricate interaction between the dynein motor and its cargo. What mediates this interaction is largely unknown. Using forward genetics and a novel in vivo imaging approach, we identified JNK-interacting protein 3 (Jip3) as a direct mediator of dynein-based retrograde transport of activated (phosphorylated) c-Jun N-terminal Kinase (JNK) and lysosomes. Zebrafish jip3 mutants (jip3nl7) displayed large axon terminal swellings that contained high levels of activated JNK and lysosomes, but not other retrograde cargos such as late endosomes and autophagosomes. Using in vivo analysis of axonal transport, we demonstrated that the terminal accumulations of activated JNK and lysosomes were due to a decreased frequency of retrograde movement of these cargos in jip3nl7, whereas anterograde transport was largely unaffected. Through rescue experiments with Jip3 engineered to lack the JNK binding domain and exogenous expression of constitutively active JNK, we further showed that loss of Jip3–JNK interaction underlies deficits in pJNK retrograde transport, which subsequently caused axon terminal swellings but not lysosome accumulation. Lysosome accumulation, rather, resulted from loss of lysosome association with dynein light intermediate chain (dynein accessory protein) in jip3nl7, as demonstrated by our co-transport analyses. Thus, our results demonstrate that Jip3 is necessary for the retrograde transport of two distinct cargos, active JNK and lysosomes. Furthermore, our data provide strong evidence that Jip3 in fact serves as an adapter protein linking these cargos to dynein. PMID:23468645

  2. Is the outcome at surgery different when flat epithelial atypia and lobular neoplasia are found in association at biopsy?

    PubMed Central

    Sanchez, Lilia Maria; Lalonde, Lucie; Trop, Isabelle; David, Julie; Mesurolle, Benoît

    2017-01-01

    Objective: To assess the impact on the final outcome at surgery of flat epithelial atypia (FEA) when found concomitantly with lobular neoplasia (LN) in biopsy specimens compared with pure biopsy-proven FEA. Methods: The approval from the institutional review board of the CHUM (Centre Hospitalier Universitaire de Montréal) was obtained. A retrospective review of our database between 2009 and 2013 identified 81 females (mean age 54 years, range 38–90 years) with 81 FEA biopsy-proven lesions. These were pure or associated with LN only in 59/81 (73%) and 22/81 (27%) cases, respectively. Overall, 57/81 (70%) patients underwent surgery and 24/81 (30%) patients underwent mammographic surveillance with a mean follow-up of 36 months. Results: FEA presented more often as microcalcifications in 68/81 (84%) patients and were mostly amorphous in 49/68 (72%). After excluding radio pathologically discordant cases, pure FEA proved to be malignant at surgery in 1/41 (2%; 95% confidence interval 0.06–12.9). There was no statistically significant difference in the upgrade to malignancy whether FEA lesions were pure or associated to LN at biopsy (p = 0.4245); however, when paired in biopsy specimens, these lesions were more frequently associated with atypical ductal hyperplasia (ADH) at surgery than with pure FEA (p = 0.012). Conclusion: Our results show a 2% upgrade rate to malignancy of pure FEA lesions. When FEA is found in association with LN at biopsy, surgical excision yields more frequently ADH than pure FEA thus warranting close surveillance or even surgical excision. Advances in knowledge: The association of LN with FEA at biopsy was more frequently associated with ADH at surgery than with pure FEA. If a biopsy-proven FEA lesion is deemed concordant with the imaging finding, when paired with LN at biopsy, careful surveillance or even surgical excision is suggested. PMID:28118035

  3. bFGF Regulates PI3-Kinase-Rac1-JNK Pathway and Promotes Fibroblast Migration in Wound Healing

    PubMed Central

    Kanazawa, Shigeyuki; Fujiwara, Toshihiro; Matsuzaki, Shinsuke; Shingaki, Kenta; Taniguchi, Manabu; Miyata, Shingo; Tohyama, Masaya; Sakai, Yasuo; Yano, Kenji; Hosokawa, Ko; Kubo, Tateki

    2010-01-01

    Fibroblast proliferation and migration play important roles in wound healing. bFGF is known to promote both fibroblast proliferation and migration during the process of wound healing. However, the signal transduction of bFGF-induced fibroblast migration is still unclear, because bFGF can affect both proliferation and migration. Herein, we investigated the effect of bFGF on fibroblast migration regardless of its effect on fibroblast proliferation. We noticed involvement of the small GTPases of the Rho family, PI3-kinase, and JNK. bFGF activated RhoA, Rac1, PI3-kinase, and JNK in cultured fibroblasts. Inhibition of RhoA did not block bFGF-induced fibroblast migration, whereas inhibition of Rac1, PI3-kinase, or JNK blocked the fibroblast migration significantly. PI3-kinase-inhibited cells down-regulated the activities of Rac1 and JNK, and Rac1-inhibited cells down-regulated JNK activity, suggesting that PI3-kinase is upstream of Rac1 and that JNK is downstream of Rac1. Thus, we concluded that PI3-kinase, Rac1, and JNK were essential for bFGF-induced fibroblast migration, which is a novel pathway of bFGF-induced cell migration. PMID:20808927

  4. Multiphoton imaging of low grade, high grade intraepithelial neoplasia and intramucosal invasive cancer of esophagus

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jiang, Liwei; Kang, Deyong; Wu, Xuejing; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, Jiangbo; Chen, Jianxin

    2017-04-01

    Esophageal squamous cell carcinoma (ESCC) is devastating because of its aggressive lymphatic spread and clinical course. It is believed to occur through low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial neoplasia (HGIN), and intramucosal invasive cancer (IMC) before transforming to submucosal cancer. In particular, these early lesions (LGIN, HGIN and IMC), which involve no lymph node nor distant metastasis, can be cured by endoscopic treatment. Therefore, early identification of these lesions is important so as to offer a curative endoscopic resection, thus slowing down the development of ESCC. In this work, spectral information and morphological features of the normal esophageal mucosa are first studied. Then, the morphological changes of LGIN, HGIN and IMC are described. Lastly, quantitative parameters are also extracted by calculating the nuclear-to-cytoplasmic ratio of epithelial cells and the pixel density of collagen in the lamina propria. These results show that multiphoton microscopy (MPM) has the ability to identify normal esophageal mucosa, LGIN, HGIN and IMC. With the development of multiphoton endoscope systems for in vivo imaging, combined with a laser ablation system, MPM has the potential to provide immediate pathologic diagnosis and curative treatment of ESCC before the transformation to submucosal cancer in the future.

  5. SCF/C-Kit/JNK/AP-1 Signaling Pathway Promotes Claudin-3 Expression in Colonic Epithelium and Colorectal Carcinoma.

    PubMed

    Wang, Yaxi; Sun, Tingyi; Sun, Haimei; Yang, Shu; Li, Dandan; Zhou, Deshan

    2017-04-06

    Claudin-3 is a major protein of tight junctions (TJs) in the intestinal epithelium and is critical for maintaining cell-cell adhesion, barrier function, and epithelium polarity. Recent studies have shown high claudin-3 levels in several solid tumors, but the regulation mechanism of claudin-3 expression remains poorly understood. In the present study, colorectal cancer (CRC) tissues, HT-29 and DLD-1 CRC cell lines, CRC murine model (C57BL/6 mice) and c-kit loss-of-function mutant mice were used. We demonstrated that elevated claudin-3 levels were positively correlated with highly expressed c-kit in CRC tissues based upon analysis of protein expression. In vitro, claudin-3 expression was clearly increased in CRC cells by overexpressed c-kit or stimulated by exogenous recombinant human stem cell factor (rhSCF), while significantly decreased by the treatment with c-kit or c-Jun N-terminal kinase (JNK) inhibitors. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay showed that SCF/c-kit signaling significantly promoted activator protein-1 (AP-1) binding with CLDN-3 promoter and enhanced its transcription activity. Furthermore, decreased expression of claudin-3 was obtained in the colonic epithelium from the c-Kit loss-of-function mutant mice. In conclusion, SCF/c-kit-JNK/AP-1 signaling pathway significantly promoted claudin-3 expression in colonic epithelium and CRC, which could contribute to epithelial barrier function maintenance and to CRC development.

  6. Nonthermal Plasma Induces Apoptosis in ATC Cells: Involvement of JNK and p38 MAPK-Dependent ROS

    PubMed Central

    Lee, Sei Young; Kang, Sung Un; Kim, Kang Il; Kang, Sam; Shin, Yoo Seob; Chang, Jae Won; Yang, Sang Sik; Lee, Keunho; Lee, Jong-Soo; Moon, Eunpyo

    2014-01-01

    Purpose To determine the effects of nonthermal plasma (NTP) induced by helium (He) alone or He plus oxygen (O2) on the generation of reactive oxygen species (ROS) and cell death in anaplastic thyroid cancer cells. Materials and Methods NTP was generated in He alone or He plus O2 blowing through a nozzle by applying a high alternating current voltage to the discharge electrodes. Optical emission spectroscopy was used to identify various excited plasma species. The apoptotic effect of NTP on the anaplastic thyroid cancer cell lines, such as HTH83, U-HTH 7, and SW1763, was verified with annexin V/propidium staining and TUNEL assay. ROS formation after NTP treatment was identified with fluorescence-activated cell sorting with DCFDA staining. The mitogen-activated protein kinase pathways and caspase cascade were investigated to evaluate the molecular mechanism involved and cellular targets of plasma. Results NTP induced significant apoptosis in all three cancer cell lines. The plasma using He and O2 generated more O2-related species, and increased apoptosis and intracellular ROS formation compared with the plasma using He alone. NTP treatment of SW1763 increased the expression of phosphor-JNK, phosphor-p38, and caspase-3, but not phosphor-ERK. Apoptosis of SW1763 as well as expressions of elevated phosphor-JNK, phosphor-p38, and caspase-3 induced by NTP were effectively inhibited by intracellular ROS scavengers. Conclusion NTP using He plus O2 induced significant apoptosis in anaplastic cancer cell lines through intracellular ROS formation. This may represent a new promising treatment modality for this highly lethal disease. PMID:25323903

  7. Nutlin-3 induces HO-1 expression by activating JNK in a transcription-independent manner of p53.

    PubMed

    Choe, Yun-Jeong; Lee, Sun-Young; Ko, Kyung Won; Shin, Seok Joon; Kim, Ho-Shik

    2014-03-01

    A recent study reported that p53 can induce HO-1 by directly binding to the putative p53 responsive element in the HO-1 promoter. In this study, we report that nutlin-3, a small molecule antagonist of HDM2, induces the transcription of HO-1 in a transcription-independent manner of p53. Nutlin-3 induced HO-1 expression at the level of transcription in human cancer cells such as U2OS and RKO cells. This induction of HO-1 did not occur in SAOS cells in which p53 was mutated and was prevented by knocking down the p53 protein using p53 siRNA transfection, but not by PFT-α, an inhibitor of the transcriptional activity of p53. Accompanying HO-1 expression, nutlin-3 stimulated the accumulation of ROS and the phosphorylation of MAPKs such as JNK, p38 MAPK and ERK1/2. Nutlin-3-induced HO-1 expression was suppressed by TEMPO, a ROS scavenger, and chemical inhibitors of JNK and p38 MAPK but not ERK1/2. In addition, nutlin‑3-induced phosphorylation of JNK but not p38 MAPK was inhibited by TEMPO. Notably, the levels of nutlin-3-induced ROS were correlated with the mitochondrial translocation of p53 and this induction was prevented by PFT-μ, an inhibitor of the mitochondrial translocation of p53. Consistent with the effect of the ROS scavenger and MAPK inhibitors, PFT-μ reduced HO-1 expression and the phosphorylation of JNK induced by nutlin-3. In the experiments of analyzing cell death, the knockdown of HO-1 augmented nutlin-3-induced apoptosis. Collectively, these results suggest that nutlin-3 induces HO-1 expression via the activation of both JNK which is dependent on ROS generated by p53 translocated to the mitochondria and p38 MAPK which appears to be stimulated by a ROS-independent mechanism, and this HO-1 induction may inhibit nutlin-3-induced apoptosis, constituting a negative feedback loop of p53-induced apoptosis.

  8. Increased level of apoptosis in rat brains and SH-SY5Y cells exposed to excessive fluoride--a mechanism connected with activating JNK phosphorylation.

    PubMed

    Liu, Yan-Jie; Guan, Zhi-Zhong; Gao, Qin; Pei, Jin-Jing

    2011-07-28

    In order to reveal the mechanism of the brain injury induced by chronic fluorosis, the levels of apoptosis and c-Jun N-terminal kinases (JNK) in brains of rats and SH-SY5Y cells exposed to different concentrations of sodium fluoride (NaF) were detected. The dental fluorosis and fluoride contents in blood, urine and bones of rats were measured to evaluate the exhibition of fluorosis. The apoptotic death rate was measured by flow cytometry and the expression of JNK at protein level by Western blotting. The results showed that as compared with controls, the apoptotic death rate was obviously increased in brains of the rats exposed to high-fluoride (50ppm) for 6 months with a concentration dependent manner, but no significant change for 3 months. In SH-SY5Y cells treated with high concentration (50ppm) of fluoride, the increased apoptotic death rate was obviously observed as compared to controls. In addition, the expressions of phospho-JNK at protein level were raised by 20.5% and 107.6%, respectively, in brains of the rats exposed to low-fluoride (5ppm) and high-fluoride for 6 months; while no significant changes were found between the rats exposed to fluoride and the controls for 3 months. The protein level of phospho-JNK was also increased in SH-SY5Y cells exposed to high-fluoride. There were no changes of total-JNK both in the rats and in the SH-SY5Y cells exposed to excessive fluoride as compared to controls. When SH-SY5Y cells were singly treated with SP600125, an inhibitor of phospho-JNK, the decreased expression of phospho-JNK, but no apoptosis, was detected. Interestingly, after JNK phosphorylation in the cultured cells was inhibited by SP600125, the treatment with high-fluoride did not induce the increase of apoptosis. In addition, there was a positive correlation between the expression of phospho-JNK and the apoptotic death rate in rat brains or SH-SY5Y cells treated with high-fluoride. The results indicated that exposure to excessive fluoride resulted in

  9. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latchoumycandane, Calivarathan; Seah, Quee Ming; Tan, Rachel C.H.

    2006-11-15

    Leflunomide, a disease-modifying anti-rheumatic drug, protects against T-cell-mediated liver injury by poorly understood mechanisms. The active metabolite of leflunomide, A77 1726 (teriflunomide) has been shown to inhibit stress-activated protein kinases (JNK pathway), which are key regulators of mitochondria-mediated cell death. Therefore, we hypothesized that leflunomide may protect from drugs that induce the mitochondrial permeability transition (mPT) by blocking the JNK signaling pathway. To this end, we exposed cultured immortalized human hepatocytes (HC-04) to the standard protoxicant drug acetaminophen (APAP), which induces CsA-sensitive mPT-mediated cell death. We determined the effects of leflunomide on the extent of APAP-induced hepatocyte injury and themore » upstream JNK-mediated mitochondrial signaling pathways. We found that leflunomide or A77 1726 concentration-dependently protected hepatocytes from APAP (1 mM)-induced mitochondrial permeabilization and lethal cell injury. This was not due to proximal inhibition of CYP-catalyzed APAP bioactivation to its thiol-reactive metabolite. Instead, we demonstrate that leflunomide (20 {mu}M) inhibited the APAP-induced early (3 h) activation (phosphorylation) of JNK1/2, thus inhibiting phosphorylation of the anti-apoptotic protein Bcl-2 and preventing P-Bcl-2-mediated induction of the mPT. This greatly attenuated mitochondrial cytochrome c release, which we used as a marker for mitochondrial permeabilization. The specific JNK2 inhibitor SP600125 similarly protected from APAP-induced cell death. In conclusion, these findings are consistent with our hypothesis that leflunomide protects from protoxicant-induced hepatocyte injury by inhibiting JNK signaling and preventing mPT induction.« less

  10. Spontaneous neoplasia in four captive greater hedgehog tenrecs (Setifer setosus).

    PubMed

    Khoii, Mina K; Howerth, Elizabeth W; Burns, Roy B; Carmichael, K Paige; Gyimesi, Zoltan S

    2008-09-01

    Little information is available about diseases and pathology of species within the family Tenrecidae, including the greater hedgehog tenrec (Setifer setosus), a Madagascan insectivore. This report summarizes necropsy and histopathologic findings of neoplasia in four captive greater hedgehog tenrecs. Although only four animals are included in this report, neoplasia seems to be a common and significant source of morbidity and mortality in greater hedgehog tenrecs. Types of neoplasia identified include a thyroid follicular-solid carcinoma, two urinary bladder transitional cell carcinomas, uterine endometrial polyps, and multicentric B-cell lymphoma. Due to small sample size, no etiology could be determined, but genetics, viral infection, pesticide treatment, nutrition, or other environmental factors might contribute to the development of neoplasia in this species. This is the first report of neoplasia in greater hedgehog tenrecs.

  11. Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways

    PubMed Central

    Okada, Seiko F.; Ribeiro, Carla M. P.; Sesma, Juliana I.; Seminario-Vidal, Lucia; Abdullah, Lubna H.; van Heusden, Catharina; Lazarowski, Eduardo R.

    2013-01-01

    ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)–associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling–promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca2+ chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca2+-dependent vesicular mechanisms not associated with mucin granule secretion. PMID:23763446

  12. Anthrapyrazolone analogues intercept inflammatory JNK signals to moderate endotoxin induced septic shock

    NASA Astrophysics Data System (ADS)

    Prasad, Karothu Durga; Trinath, Jamma; Biswas, Ansuman; Sekar, Kanagaraj; Balaji, Kithiganahalli N.; Guru Row, Tayur N.

    2014-11-01

    Severe sepsis or septic shock is one of the rising causes for mortality worldwide representing nearly 10% of intensive care unit admissions. Susceptibility to sepsis is identified to be mediated by innate pattern recognition receptors and responsive signaling pathways of the host. The c-Jun N-terminal Kinase (JNK)-mediated signaling events play critical role in bacterial infection triggered multi-organ failure, cardiac dysfunction and mortality. In the context of kinase specificities, an extensive library of anthrapyrazolone analogues has been investigated for the selective inhibition of c-JNK and thereby to gain control over the inflammation associated risks. In our comprehensive biochemical characterization, it is observed that alkyl and halogen substitution on the periphery of anthrapyrazolone increases the binding potency of the inhibitors specifically towards JNK. Further, it is demonstrated that hydrophobic and hydrophilic interactions generated by these small molecules effectively block endotoxin-induced inflammatory genes expression in in vitro and septic shock in vivo, in a mouse model, with remarkable efficacies. Altogether, the obtained results rationalize the significance of the diversity oriented synthesis of small molecules for selective inhibition of JNK and their potential in the treatment of severe sepsis.

  13. Hot biopsy forceps vs. endoscopic ultrasonography in determining the depth of gastric epithelial neoplasia: a simple novel method to decide whether or not to perform endoscopic submucosal dissection.

    PubMed

    Huikai, Li; Enqiang, Linghu

    2013-01-01

    It is of vital importance to determine the depth of lesions to be treated by endoscopic submucosal dissection. This study aimed to compare the accuracy of using hot biopsy forceps method with endoscopic ultrasonography for determination of the depth of gastric epithelial neoplasia. Hot biopsy forceps method and/or endoscopic ultrasonography were used to determine the depth of lesions in 27 patients. With hot biopsy forceps method, we assumed a lesion completely lifted up by a hot biopsy forceps to be confined to the mucosal layer, and one partly lifted up to be located beyond the mucosal layer. The accuracy of hot biopsy forceps method and endoscopic ultrasonography in determining the depth of lesions were compared. Of the 27 patients, 25 underwent endoscopic submucosal dissection and 2 underwent surgery. The total accuracy of hot biopsy forceps method in determining the depth of lesions was 92.6% and that of endoscopic ultrasonography was 81.8%. Overestimation of hot biopsy forceps method and endoscopic ultrasonography were 3.7% vs. 13.6%, respectively. The sensitivity and the specificity of hot biopsy forceps method were 95.5% and 80.0% and those of EUS were 83.3% and 75.0%. Hot biopsy forceps method has a trend towards higher accuracy and lower overestimation than endoscopic ultrasonography.

  14. Feedback amplification loop drives malignant growth in epithelial tissues.

    PubMed

    Muzzopappa, Mariana; Murcia, Lada; Milán, Marco

    2017-08-29

    Interactions between cells bearing oncogenic mutations and the surrounding microenvironment, and cooperation between clonally distinct cell populations, can contribute to the growth and malignancy of epithelial tumors. The genetic techniques available in Drosophila have contributed to identify important roles of the TNF-α ligand Eiger and mitogenic molecules in mediating these interactions during the early steps of tumor formation. Here we unravel the existence of a tumor-intrinsic-and microenvironment-independent-self-reinforcement mechanism that drives tumor initiation and growth in an Eiger-independent manner. This mechanism relies on cell interactions between two functionally distinct cell populations, and we present evidence that these cell populations are not necessarily genetically different. Tumor-specific and cell-autonomous activation of the tumorigenic JNK stress-activated pathway drives the expression of secreted signaling molecules and growth factors to delaminating cells, which nonautonomously promote proliferative growth of the partially transformed epithelial tissue. We present evidence that cross-feeding interactions between delaminating and nondelaminating cells increase each other's sizes and that these interactions can explain the unlimited growth potential of these tumors. Our results will open avenues toward our molecular understanding of those social cell interactions with a relevant function in tumor initiation in humans.

  15. Magnolol inhibits LPS-induced inflammatory response in uterine epithelial cells : magnolol inhibits LPS-induced inflammatory response.

    PubMed

    Luo, Jia; Xu, Yanwen; Zhang, Minfang; Gao, Ling; Fang, Cong; Zhou, Canquan

    2013-10-01

    Endometritis is an inflammation of the uterine lining that is commonly initiated at parturition. The uterine epithelial cells play an important role in defending against invading pathogens. Magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, has been shown to have anti-inflammatory effects. The aim of this study was to investigate the anti-inflammatory effect of magnolol in modifying lipopolysaccharide (LPS)-induced signal pathways in mouse uterine epithelial cells. We found that magnolol inhibited TNF-α and IL-6 production in LPS-stimulated mouse uterine epithelial cells. We also found that magnolol inhibited LPS-induced NF-κB activation, IκBα degradation, phosphorylation of ERK, JNK, and P38. Furthermore, magnolol could significantly inhibit the expression of TLR4 stimulating by LPS. These results suggest that magnolol exerts an anti-inflammatory property by downregulating the expression of TLR4 upregulated by LPS, thereby attenuating TLR4-mediated NF-κB and MAPK signaling and the release of pro-inflammatory cytokines. These findings suggest that magnolol may be a therapeutic agent against endometritis.

  16. PPARδ inhibits UVB-induced secretion of MMP-1 through MKP-7-mediated suppression of JNK signaling.

    PubMed

    Ham, Sun A; Kang, Eun S; Lee, Hanna; Hwang, Jung S; Yoo, Taesik; Paek, Kyung S; Park, Chankyu; Kim, Jin-Hoi; Lim, Dae-Seog; Seo, Han G

    2013-11-01

    In the present study, we investigated the role of peroxisome proliferator-activated receptor (PPAR) δ in modulating matrix-degrading metalloproteinases and other mechanisms underlying photoaging processes in the skin. In human dermal fibroblasts (HDFs), activation of PPARδ by its specific ligand GW501516 markedly attenuated UVB-induced secretion of matrix metalloproteinase (MMP)-1, concomitant with decreased generation of reactive oxygen species. These effects were significantly reduced in the presence of PPARδ small interfering RNA and GSK0660. Furthermore, c-Jun N-terminal kinase (JNK), but not p38 or extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-1 secretion in HDFs exposed to UVB. PPARδ-mediated messenger RNA stabilization of mitogen-activated protein kinase phosphatase (MKP)-7 was responsible for the GW501516-mediated inhibition of JNK signaling. Inhibition of UVB-induced secretion of MMP-1 by PPARδ was associated with the restoration of types I and III collagen to levels approaching those in cells not exposed to UVB. Finally, in HR-1 hairless mice exposed to UVB, administration of GW501516 significantly reduced wrinkle formation and skin thickness, downregulated MMP-1 and JNK phosphorylation, and restored the levels of MKP-7, types I and III collagen. These results suggest that PPARδ-mediated inhibition of MMP-1 secretion prevents some effects of photoaging and maintains the integrity of skin by inhibiting the degradation of the collagenous extracellular matrix.

  17. Aberrant Notch1-dependent effects on glomerular parietal epithelial cells promotes collapsing focal segmental glomerulosclerosis with progressive podocyte loss.

    PubMed

    Ueno, Toshiharu; Kobayashi, Namiko; Nakayama, Makiko; Takashima, Yasutoshi; Ohse, Takamoto; Pastan, Ira; Pippin, Jeffrey W; Shankland, Stuart J; Uesugi, Noriko; Matsusaka, Taiji; Nagata, Michio

    2013-06-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is a progressive kidney disease characterized by glomerular collapse with epithelial hyperplasia. Here we used a transgenic mouse model of cFSGS with immunotoxin-induced podocyte-specific injury to determine the role for Notch signaling in its pathogenesis. The mice exhibited progressive loss of podocytes and severe proteinuria concomitant with histological features of cFSGS. Hyperplastic epithelium was negative for genetic podocyte tags, but positive for the parietal epithelial cell marker claudin-1, and expressed Notch1, Jagged1, and Hes1 mRNA and protein. Enhanced Notch mRNA expression induced by transforming growth factor-β1 in cultured parietal epithelial cells was associated with mesenchymal markers (α-smooth muscle actin, vimentin, and Snail1). Notch inhibition in vitro suppressed these phenotypic transcripts and Notch-dependent cell migration. Moreover, Notch inhibition in vivo significantly decreased parietal epithelial cell lesions but worsened proteinuria and histopathology in our cFSGS model. Thus, aberrant Notch1-mediated parietal epithelial cell migration with phenotypic changes appears to underlie the pathogenesis of cFSGS. Parietal epithelial cell hyperplasia may also represent an adaptive response to compensate for a disrupted filtration barrier with progressive podocyte loss.

  18. JNK1 inhibition by Licochalcone A leads to neuronal protection against excitotoxic insults derived of kainic acid.

    PubMed

    Busquets, Oriol; Ettcheto, Miren; Verdaguer, Ester; Castro-Torres, Ruben D; Auladell, Carme; Beas-Zarate, Carlos; Folch, Jaume; Camins, Antoni

    2018-03-15

    The mitogen-activated protein kinase family (MAPK) is an important group of enzymes involved in cellular responses to diverse external stimuli. One of the members of this family is the c-Jun-N-terminal kinase (JNK). The activation of the JNK pathway has been largely associated with the pathogenesis that occurs in epilepsy and neurodegeneration. Kainic acid (KA) administration in rodents is an experimental approach that induces status epilepticus (SE) and replicates many of the phenomenological features of human temporal lobe epilepsy (TLE). Recent studies in our group have evidenced that the absence of the JNK1 gene has neuroprotective effects against the damage induced by KA, as it occurs with the absence of JNK3. The aim of the present study was to analyse whether the pharmacological inhibition of JNK1 by Licochalcone A (Lic-A) had similar effects and if it may be considered as a new molecule for the treatment of SE. In order to achieve this objective, animals were pre-treated with Lic-A and posteriorly administered with KA as a model for TLE. In addition, a comparative study with KA was performed between wild type pre-treated with Lic-A and single knock-out transgenic mice for the Jnk1 -/- gene. Our results showed that JNK1 inhibition by Lic-A, previous to KA administration, caused a reduction in the convulsive pattern. Furthermore, it reduced phosphorylation levels of the JNK, as well as its activity. In addition, Lic-A prevented hippocampal neuronal degeneration, increased pro-survival anti-apoptotic mechanisms, reduced pro-apoptotic biomarkers, decreased cellular stress and neuroinflammatory processes. Thus, our results suggest that inhibition of the JNK1 by Lic-A has neuroprotective effects and that; it could be a new potential approach for the treatment of SE and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A randomized trial to determine the diagnostic accuracy of conventional vs. jumbo forceps biopsy of gastric epithelial neoplasias before endoscopic submucosal dissection; open-label study.

    PubMed

    Jeon, Hyo Keun; Ryu, Ho Yoel; Cho, Mee Yon; Kim, Hyun-Soo; Kim, Jae Woo; Park, Hong Jun; Kim, Moon Young; Baik, Soon Koo; Kwon, Sang Ok; Park, Su Yeon; Won, Sung Ho

    2014-10-01

    Larger biopsy specimens or increasing the number of biopsies may improve the diagnostic accuracy of gastric epithelial neoplasia (GEN). The aims of this study was to compare the diagnostic accuracies between conventional and jumbo forceps biopsy of GEN before endoscopic submucosal dissection (ESD) and to confirm that increasing the number of biopsies is useful for the diagnosis of GEN. The concordance rate between EFB and ESD specimens was not significantly different between the two groups [83.1 % (54/65) in JG vs. 79.1 % (53/67) in CG]. On multivariate analyses, two or four EFBs significantly increased the cumulating concordance rate [coefficients; twice: 5.1 (P = 0.01), four times: 5.9 (P = 0.02)]. But, the concordance rate was decreased in high grade dysplasia (coefficient -40.32, P = 0.006). One hundred and sixty GENs from 148 patients were randomized into two groups and finally 67 GENs in 61 patients and 65 GENs in 63 patients were allocated to the conventional group (CG) or jumbo group (JG), respectively. Four endoscopic forceps biopsy (EFB) specimens were obtained from each lesion with conventional (6.8 mm) forceps or jumbo (8 mm) forceps. The histological concordance rate between 4 EFB specimens and ESD specimens was investigated in the two groups. Before ESD, the diagnostic accuracy of GENs was significantly increased not by the use of jumbo forceps biopsy but by increasing the number of biopsies.

  20. The flavonoid quercetin induces apoptosis and inhibits JNK activation in intimal vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Vizcaino, Francisco; Bishop-Bailley, David; Lodi, Federica

    Quercetin, the most abundant dietary flavonol, exerts vasodilator, anti-hypertensive, and anti-atherogenic effects and reduces the vascular remodelling associated with elevated blood pressure. Here, we have compared the effects of quercetin in intimal- and medial-type rat vascular smooth muscle cells (VSMC) in culture. After 48 h, quercetin reduced the viability of a polyclonal intimal-type cell line derived from neonatal aorta but not of a medial-type cell line derived from adult aorta. These differential effects were similar in both proliferating and quiescent VSMC. Quercetin also preferentially reduced the viability of intimal-type over medial-type VSMC in primary cultures derived from balloon-injured carotid arteries.more » The effects of quercetin on cell viability were mainly dependent upon induction of apoptosis, as demonstrated by nuclear condensation and fragmentation, and were unrelated to PPAR{gamma}, pro-oxidant effects or nitric oxide. The expression of MAPKs (ERK, p38, and JNK) and ERK phosphorylation were not different between intimal- and medial-type VSMC. p38 phosphorylation was negligible in both cell types. Medial-type showed a weak JNK phosphorylation while this was markedly increased in intimal-type cells. Quercetin reduced JNK phosphorylation but had no consistent effect on ERK phosphorylation. In conclusion, quercetin preferentially produced apoptosis in intimal-type compared to medial-type VSMC. This might play a role in the anti-atherogenic and anti-hypertensive effects of quercetin.« less

  1. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH

  2. Activation of Tax protein by c-Jun-N-terminal kinase is not dependent on the presence or absence of the early growth response-1 gene product.

    PubMed

    Parra, Eduardo; Gutierréz, Luís; Ferreira, Jorge

    2016-02-01

    The Tax protein of human T cell leukemia virus type 1 plays a major role in the pathogenesis of adult T cell leukemia (ATL), an aggressive neoplasia of CD4+ T cells. In the present study, we investigated whether the EGR-1 pathway is involved in the regulation of Tax-induced JNK expression in human Jurkat T cells transfected to express the Tax protein in the presence or absence of PMA or ionomycin. Overexpression of EGR-1 in Jurkat cells transfected to express Tax, promoted the activation of several genes, with the most potent being those that contained AP-1 (Jun/c-Fos), whereas knockdown of endogenous EGR-1 by small interfering RNA (siRNA) somewhat reduced Tax-mediated JNK-1 transcription. Additionally, luciferase-based AP-1 and NF-κB reporter gene assays demonstrated that inhibition of EGR-1 expression by an siRNA did not affect the transcriptional activity of a consensus sequence of either AP-1 or NF-κB. On the other hand, the apoptosis assay, using all-trans retinoic acid (ATRA) as an inducer of apoptosis, confirmed that siRNA against EGR-1 failed to suppress ATRA-induced apoptosis in Jurkat and Jurkat-Tax cells, as noted by the low levels of both DEVDase activity and DNA fragmentation, indicating that the induction of apoptosis by ATRA was Egr-1-independent. Finally, our data showed that activation of Tax by JNK-1 was not dependent on the EGR-1 cascade of events, suggesting that EGR-1 is important but not a determinant for the activity for Tax-induced proliferation of Jurkat cells.

  3. Effects of Curcumin on Tobacco Smoke-induced Hepatic MAPK Pathway Activation and Epithelial-Mesenchymal Transition In Vivo.

    PubMed

    Liang, Zhaofeng; Wu, Rui; Xie, Wei; Xie, Chunfeng; Wu, Jieshu; Geng, Shanshan; Li, Xiaoting; Zhu, Mingming; Zhu, Weiwei; Zhu, Jianyun; Huang, Cong; Ma, Xiao; Xu, Wenrong; Zhong, Caiyun; Han, Hongyu

    2017-08-01

    Tobacco smoke is a major risk factor for hepatic cancer. Epithelial-mesenchymal transition (EMT) induced by tobacco smoke is crucially involved in the initiation and development of cancer. Mitogen-activated protein kinase (MAPK) pathways play important roles in tobacco smoke-associated carcinogenesis including EMT process. The chemopreventive effect of curcumin supplementation against cancers has been reported. In this study, we investigated the effects of tobacco smoke on MAPK pathway activation and EMT alterations, and then the preventive effect of curcumin was examined in the liver of BALB/c mice. Our results indicated that exposure of mice to tobacco smoke for 12 weeks led to activation of ERK1/2, JNK, p38 and ERK5 pathways as well as activator protein-1 (AP-1) proteins in liver tissue. Exposure of mice to tobacco smoke reduced the hepatic mRNA and protein expression of the epithelial markers, while the hepatic mRNA and protein levels of the mesenchymal markers were increased. Treatment of curcumin effectively attenuated tobacco smoke-induced activation of ERK1/2 and JNK MAPK pathways, AP-1 proteins and EMT alterations in the mice liver. Our data suggested the protective effect of curcumin in tobacco smoke-triggered MAPK pathway activation and EMT in the liver of BALB/c mice, thus providing new insights into the chemoprevention of tobacco smoke-associated hepatic cancer. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Ultrathin endoscopy versus high-resolution endoscopy for diagnosing superficial gastric neoplasia.

    PubMed

    Toyoizumi, Hirobumi; Kaise, Mitsuru; Arakawa, Hiroshi; Yonezawa, Jin; Yoshida, Yukinaga; Kato, Masayuki; Yoshimura, Noboru; Goda, Ken-ichi; Tajiri, Hisao

    2009-08-01

    Ultrathin endoscopy (UTE) is an acceptable and cost-effective alternative to EGD with the patient under sedation, although the diagnostic accuracy of UTE is not well established. To compare the diagnostic accuracy of UTE and high-resolution endoscopy (HRE) for superficial gastric neoplasia. Prospective comparative study. Academic center. Patients with or without superficial gastric neoplasia underwent peroral UTE and HRE, back-to-back in a random order while under standard sedation. The procedures were performed by 2 endoscopists who were blinded to the clinical information. The rate of missed lesions and misdiagnosis, sensitivity, and specificity for the diagnosis of gastric neoplasia when using pathology as the reference standard. In total, 126 lesions (41 superficial gastric neoplasias, 85 nonneoplastic lesions) were recorded in 57 enrolled patients. For the diagnosis of gastric neoplasia, the sensitivity of UTE (58.5%) was significantly (P = .021) lower than that of HRE (78%), and the specificity of UTE (91.8%) was significantly (P = .014) lower than that of HRE (100%). The rate of missed lesions and misdiagnosis of gastric neoplasias when using UTE (41.5%) was significantly (P > .001) higher than that of HRE (22.0%). The corresponding rate of neoplasias at the proximal portion (fornix and corpus) when using UTE (29%) was significantly (P = .002) higher than that of HRE (7.2%), although the rates of neoplasias at the distal portion (angulus and antrum) were comparable for UTE and HRE. Small sample numbers in an enriched population. The diagnostic accuracy of UTE is significantly lower than that of HRE for superficial gastric neoplasia, and this difference is particularly striking for neoplasias in the proximal stomach. For UTE to be used as an alternative modality, improvements in optical quality and the incorporation of additional procedures, including close-range observations and chromoendoscopy, are required to enhance visualization.

  5. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV{sub XS}; 400 {mu}g/ml), UV-irradiated virus (CIV{sub UV}; 10 {mu}g/ml) and CVPE (CIV protein extract; 10 {mu}g/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 {mu}g/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i.more » CIV{sub UV} or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV{sub UV} particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV{sub UV}, CIV{sub XS} or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family

  6. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways.

    PubMed

    Min, Jie; Huang, Kenan; Tang, Hua; Ding, Xinyu; Qi, Chen; Qin, Xiong; Xu, Zhifei

    2015-12-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose‑dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC.

  7. Modeling human endothelial cell transformation in vascular neoplasias

    PubMed Central

    Wen, Victoria W.; MacKenzie, Karen L.

    2013-01-01

    Endothelial cell (EC)-derived neoplasias range from benign hemangioma to aggressive metastatic angiosarcoma, which responds poorly to current treatments and has a very high mortality rate. The development of treatments that are more effective for these disorders will be expedited by insight into the processes that promote abnormal proliferation and malignant transformation of human ECs. The study of primary endothelial malignancy has been limited by the rarity of the disease; however, there is potential for carefully characterized EC lines and animal models to play a central role in the discovery, development and testing of molecular targeted therapies for vascular neoplasias. This review describes molecular alterations that have been identified in EC-derived neoplasias, as well as the processes that underpin the immortalization and tumorigenic conversion of ECs. Human EC lines, established through the introduction of defined genetic elements or by culture of primary tumor tissue, are catalogued and discussed in relation to their relevance as models of vascular neoplasia. PMID:24046386

  8. Diabetes Mellitus and Colorectal Neoplasia.

    PubMed

    Acevedo, Alejandro; Diaz, Yaritza; Perez, Cynthia M; Garau, Maria; Baron, John; Cruz-Correa, Marcia

    2012-11-01

    Many studies have provided evidence for an association between obesity, physical inactivity, and western diet as risk factors for colorectal cancer (CRC). Few studies directly address the association between type 2 Diabetes Mellitus (DM) and the risk of colorectal lesions at specific anatomic locations. 2,663 subjects with a previous history of adenoma(s) and removal of all current adenomas at study entry were followed for a mean time of three years across three different chemoprevention clinical trials. The primary endpoint was colorectal adenoma recurrence and number of lesions during the treatment phase; the secondary endpoints were presence of advanced colorectal neoplasia (CRN) and location of CRN. Using log linear regression, the effect of DM status on the relative risk (RR) of CRN recurrence, advanced CRN, and location of CRN was assessed. DM status was not significantly associated with incidence of colorectal adenomas, incidence of advanced colorectal lesions, or left-sided colorectal neoplastic lesions. Subjects with DM had a marginally increased risk of right-sided (p= 0.06) colorectal adenomas and a significant increased risk of multiple right-sided adenomas (p=0.03) in the unadjusted model; this association was not significant after adjusting for age and other potential confounders (RR=1.22, 95% CI: 0.85-1.76). We did not observe a statistically significant increased risk in CRN recurrence for overall neoplasia, advanced neoplasia or location of neoplasia in individuals with DM compared to non-DM individuals. However, given the patterns observed in this investigation, future studies with longer follow-up time and longer DM exposure, incorporating objective measurements of type 2 DM might help elucidate the risk of CRN among individuals with DM.

  9. Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells

    PubMed Central

    2014-01-01

    Background Pseudomonas aeruginosa causes chronic respiratory disease, and the elastase enzyme that it produces increases the permeability of airway epithelial cells owing to the disruption of tight junctions. P. aeruginosa is also implicated in prolonged chronic rhinosinusitis. However, the effects of P. aeruginosa elastase (PE) against the barrier formed by human nasal epithelial cells (HNECs) remain unknown. Methods To investigate the mechanisms involved in the disruption of tight junctions by PE in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were used. The hTERT-HNECs were pretreated with inhibitors of various signal transduction pathways, PKC, MAPK, p38MAPK, PI3K, JNK, NF-κB, EGF receptor, proteasome, COX1 and COX2 before treatment with PE. Some cells were pretreated with siRNA and agonist of protease activated receptor-2 (PAR-2) before treatment with PE. Expression and structures of tight junctions were determined by Western blotting, real-time PCR, immunostaining and freeze-fracture. Transepithelial electrical resistance (TER) was examined as the epithelial barrier function. Results PE treatment transiently disrupted the epithelial barrier and downregulated the transmembrane proteins claudin-1 and -4, occludin, and tricellulin, but not the scaffold PDZ-expression proteins ZO-1 and -2 and adherens junction proteins E-cadherin and β-catenin. The transient downregulation of tight junction proteins was controlled via distinct signal transduction pathways such as the PKC, MAPK, PI3K, p38 MAPK, JNK, COX-1 and -2, and NF-κB pathways. Furthermore, treatment with PE transiently decreased PAR-2 expression, which also regulated the expression of the tight junction proteins. Treatment with a PAR-2 agonist prevented the downregulation of the tight junction proteins after PE treatment in HNECs. Conclusions PE transiently disrupts tight junctions in HNECs and downregulates PAR-2. The transient disruption of tight

  10. Arf Suppresses Hepatic Vascular Neoplasia in a Carcinogen-Exposed Murine Model

    PubMed Central

    Busch, Stephanie E; Gurley, Kay E; Moser, Russell D; Kemp, Christopher J

    2013-01-01

    Hepatic haemangiosarcoma is a deadly malignancy whose aetiology remains poorly understood. Inactivation of the CDKN2A locus, which houses the ARF and p16INK4a tumour suppressor genes, is a common event in haemangiosarcoma patients, but the precise role of ARF in vascular tumourigenesis is unknown. To determine the extent to which ARF suppresses vascular neoplasia, we examined the incidence of hepatic vascular lesions in Arf-deficient mice exposed to the carcinogen urethane (i.p. 1 mg/g). Loss of Arf resulted in elevated morbidity and increased the incidence of both haemangiomas and incipient haemangiosarcomas. Suppression of vascular lesion development by ARF was heavily dependent on both Arf gene-dosage and the genetic strain of the mouse. Trp53-deficient mice also developed hepatic vascular lesions after exposure to urethane, suggesting that ARF signals through a p53-dependent pathway to inhibit the development of hepatic haemangiosarcoma. Our findings provide strong evidence that inactivation of Arf is a causative event in vascular neoplasia and suggest that the ARF pathway may be a novel molecular target for therapeutic intervention in haemangiosarcoma patients. PMID:22430984

  11. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside of the crypt base stem cell niche

    PubMed Central

    Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John

    2015-01-01

    Hereditary mixed polyposis syndrome (HMPS) is characterised by the development of mixed morphology colorectal tumours and is caused by a 40 kb duplication that results in aberrant epithelial expression of the mesenchymal Bone Morphogenetic Protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell-fate, that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem-cell properties in Lgr5 negative (non-expressing) progenitor cells that have exited the stem-cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem-cell is not the sole cell-of-origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic pre-malignant lesions with a hitherto unknown pathogenesis and these lesions can be considered the sporadic equivalents of HMPS polyps. PMID:25419707

  12. Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma.

    PubMed

    Saha, Manujendra N; Jiang, Hua; Yang, Yijun; Zhu, Xiaoyun; Wang, Xiaoming; Schimmer, Aaron D; Qiu, Lugui; Chang, Hong

    2012-01-01

    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK

  13. Targeting p53 via JNK Pathway: A Novel Role of RITA for Apoptotic Signaling in Multiple Myeloma

    PubMed Central

    Saha, Manujendra N.; Jiang, Hua; Yang, Yijun; Zhu, Xiaoyun; Wang, Xiaoming; Schimmer, Aaron D.; Qiu, Lugui; Chang, Hong

    2012-01-01

    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK

  14. Involvement of JNK and NF-κB pathways in lipopolysaccharide (LPS)-induced BAG3 expression in human monocytic cells.

    PubMed

    Wang, Hua-Qin; Meng, Xin; Liu, Bao-Qin; Li, Chao; Gao, Yan-Yan; Niu, Xiao-Fang; Li, Ning; Guan, Yifu; Du, Zhen-Xian

    2012-01-01

    Lipopolysaccharide (LPS) is an outer-membrane glycolipid component of Gram-negative bacteria known for its fervent ability to activate monocytic cells and for its potent proinflammatory capabilities. Bcl-2-associated athanogene 3 (BAG3) is a survival protein that has been shown to be stimulated during cell response to stressful conditions, such as exposure to high temperature, heavy metals, proteasome inhibition, and human immunodeficiency virus 1 (HIV-1) infection. In addition, BAG3 regulates replication of Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) replication, suggesting that BAG3 could participate in the host response to infection. In the current study, we found that LPS increased the expression of BAG3 in a dose- and time-dependent manner. Actinomycin D completely blocked the LPS-induced BAG3 accumulation, as well as LPS activated the proximal promoter of BAG3 gene, supported that the induction by LPS occurred at the level of gene transcription. LPS-induced BAG3 expression was blocked by JNK or NF-κB inhibition, suggesting that JNK and NF-κB pathways participated in BAG3 induction by LPS. In addition, we also found that induction of BAG3 was implicated in monocytic cell adhesion to extracellular matrix induced by LPS. Overall, the data support that BAG3 is induced by LPS via JNK and NF-κB-dependent signals, and involved in monocytic cell-extracellular matrix interaction, suggesting that BAG3 may have a role in the host response to LPS stimulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Improvement of liver injury and survival by JNK2 and iNOS deficiency in liver transplants from cardiac death mice.

    PubMed

    Liu, Qinlong; Rehman, Hasibur; Krishnasamy, Yasodha; Schnellmann, Rick G; Lemasters, John J; Zhong, Zhi

    2015-07-01

    Inclusion of liver grafts from cardiac death donors (CDD) would increase the availability of donor livers but is hampered by a higher risk of primary non-function. Here, we seek to determine mechanisms that contribute to primary non-function of liver grafts from CDD with the goal to develop strategies for improved function and outcome, focusing on c-Jun-N-terminal kinase (JNK) activation and mitochondrial depolarization, two known mediators of graft failure. Livers explanted from wild-type, inducible nitric oxide synthase knockout (iNOS(-/-)), JNK1(-/-) or JNK2(-/-) mice after 45-min aorta clamping were implanted into wild-type recipients. Mitochondrial depolarization was detected by intravital confocal microscopy in living recipients. After transplantation of wild-type CDD livers, graft iNOS expression and 3-nitrotyrosine adducts increased, but hepatic endothelial NOS expression was unchanged. Graft injury and dysfunction were substantially higher in CDD grafts than in non-CDD grafts. iNOS deficiency and inhibition attenuated injury and improved function and survival of CDD grafts. JNK1/2 and apoptosis signal-regulating kinase-1 activation increased markedly in wild-type CDD grafts, which was blunted by iNOS deficiency. JNK inhibition and JNK2 deficiency, but not JNK1 deficiency, decreased injury and improved function and survival of CDD grafts. Mitochondrial depolarization and binding of phospho-JNK2 to Sab, a mitochondrial protein linked to the mitochondrial permeability transition, were higher in CDD than in non-CDD grafts. iNOS deficiency, JNK inhibition and JNK2 deficiency all decreased mitochondrial depolarization and blunted ATP depletion in CDD grafts. JNK inhibition and deficiency did not decrease 3-nitrotyrosine adducts in CDD grafts. The iNOS-JNK2-Sab pathway promotes CDD graft failure via increased mitochondrial depolarization, and is an attractive target to improve liver function and survival in CDD liver transplantation recipients. Copyright © 2015

  16. The mechanism by which MEK/ERK regulates JNK and p38 activity in polyamine depleted IEC-6 cells during apoptosis

    PubMed Central

    Bavaria, Mitul N.; Jin, Shi; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Polyamine-depletion inhibited apoptosis by activating ERK1/2, while, preventing JNK1/2 activation. MKP-1 knockdown by SiRNA increased ERK1/2, JNK1/2, and p38 phosphorylation and apoptosis. Therefore, we predicted that polyamines might regulate MKP1 via MEK/ERK and thereby apoptosis. We examined the role of MEK/ERK in the regulation of MKP1 and JNK, and p38 activities and apoptosis. Inhibition of MKP-1 activity with a pharmacological inhibitor, sanguinarine (SA), increased JNK1/2, p38, and ERK1/2 activities without causing apoptosis. However, pre-activation of these kinases by SA significantly increased camptothecin (CPT)-induced apoptosis suggesting different roles for MAPKs during survival and apoptosis. Inhibition of MEK1 activity prevented the expression of MKP-1 protein and augmented CPT-induced apoptosis, which correlated with increased activities of JNK1/2, caspases, and DNA fragmentation. Polyamine depleted cells had higher levels of MKP-1 protein and decreased JNK1/2 activity and apoptosis. Inhibition of MEK1 prevented MKP-1 expression and increased JNK1/2 and apoptosis. Phospho-JNK1/2, phospho-ERK2, MKP-1, and the catalytic subunit of protein phosphatase 2A (PP2Ac) formed a complex in response to TNF/CPT. Inactivation of PP2Ac had no effect on the association of MKP-1 and JNK1. However, inhibition of MKP-1 activity decreased the formation of the MKP-1, PP2Ac and JNK complex. Following inhibition by SA, MKP-1 localized in the cytoplasm, while basal and CPT-induced MKP-1 remained in the nuclear fraction. These results suggest that nuclear MKP-1 translocates to the cytoplasm, binds phosphorylated JNK and p38 resulting in dephosphorylation and decreased activity. Thus, MEK/ERK activity controls the levels of MKP-1 and, thereby, regulates JNK activity in polyamine-depleted cells. PMID:24253595

  17. Rosuvastatin Attenuates CD40L-Induced Downregulation of Extracellular Matrix Production in Human Aortic Smooth Muscle Cells via TRAF6-JNK-NF-κB Pathway

    PubMed Central

    Wang, Xiao-Lin; Zhou, Yuan-Li; Sun, Wei; Li, Li

    2016-01-01

    CD40L and statins exhibit pro-inflammatory and anti-inflammatory effects, respectively. They are both pleiotropic and can regulate extracellular matrix (ECM) degeneration in an atherosclerotic plaque. Statins can decrease both the CD40 expression and the resulting inflammation. However, the effects of CD40L and stains on atherosclerotic plaque ECM production and the underlying mechanisms are not well established. Moreover, prolyl-4-hydroxylase α1 (P4Hα1) is involved in collagen synthesis but its correlations with CD40L and statins are unknown. In the present study, CD40L suppressed P4Hα1 expression in human aortic smooth muscle cells (HASMCs) in a dose- and time-dependent manner, with insignificant changes in MMP2 expression and negative enzymatic activity of MMP9. CD40L increased TRAF6 expression, JNK phosphorylation, NF-κB nuclear translocation as well as DNA binding. Furthermore, silencing TRAF6, JNK or NF-κB genes abolished CD40L-induced suppression of P4Hα1. Lower NF-κB nuclear import rates were observed when JNK or TRAF6 silenced HASMCs were stimulated with CD40L compared to HASMCs with active JNK or TRAF6. Together, these results indicate that CD40L suppresses P4Hα1 expression in HASMCs by activating the TRAF6-JNK- NF-κB pathway. We also found that rosuvastatin inhibits CD40L-induced activation of the TRAF6-JNK- NF-κB pathway, thereby significantly rescuing the CD40L stimulated P4Hα1 inhibition. The results from this study will help find potential targets for stabilizing vulnerable atherosclerotic plaques. PMID:27120457

  18. Whole cigarette smoke increased the expression of TLRs, HBDs, and proinflammory cytokines by human gingival epithelial cells through different signaling pathways.

    PubMed

    Semlali, Abdelhabib; Witoled, Chmielewski; Alanazi, Mohammed; Rouabhia, Mahmoud

    2012-01-01

    The gingival epithelium is becoming known as a regulator of the oral innate immune responses to a variety of insults such as bacteria and chemicals, including those chemicals found in cigarette smoke. We investigated the effects of whole cigarette smoke on cell-surface-expressed Toll-like receptors (TLR)-2, -4 and -6, human β-defensin (HBD) and proinflammatory cytokine expression and production in primary human gingival epithelial cells. Whole cigarette smoke was shown to increase TLR2, TLR4 and TLR6 expression. Cigarette smoke led to ERK1/2, p38 and JNK phosphorylation in conjunction with nuclear factor-κB (NFκB) translocation into the nucleus. TLR expression following cigarette smoke exposure was down regulated by the use of ERK1/2, p38, JNK MAP kinases, and NFκB inhibitors, suggesting the involvement of these signaling pathways in the cellular response against cigarette smoke. Cigarette smoke also promoted HBD2, HBD3, IL-1β, and IL-6 expression through the ERK1/2 and NFκB pathways. Interestingly, the modulation of TLR, HBD, and cytokine expression was maintained long after the gingival epithelial cells were exposed to smoke. By promoting TLR, HBDs, and proinflammatory cytokine expression and production, cigarette smoke may contribute to innate immunity dysregulation, which may have a negative effect on human health.

  19. Whole Cigarette Smoke Increased the Expression of TLRs, HBDs, and Proinflammory Cytokines by Human Gingival Epithelial Cells through Different Signaling Pathways

    PubMed Central

    Semlali, Abdelhabib; Witoled, Chmielewski; Alanazi, Mohammed; Rouabhia, Mahmoud

    2012-01-01

    The gingival epithelium is becoming known as a regulator of the oral innate immune responses to a variety of insults such as bacteria and chemicals, including those chemicals found in cigarette smoke. We investigated the effects of whole cigarette smoke on cell-surface-expressed Toll-like receptors (TLR)-2, −4 and −6, human β-defensin (HBD) and proinflammatory cytokine expression and production in primary human gingival epithelial cells. Whole cigarette smoke was shown to increase TLR2, TLR4 and TLR6 expression. Cigarette smoke led to ERK1/2, p38 and JNK phosphorylation in conjunction with nuclear factor-κB (NFκB) translocation into the nucleus. TLR expression following cigarette smoke exposure was down regulated by the use of ERK1/2, p38, JNK MAP kinases, and NFκB inhibitors, suggesting the involvement of these signaling pathways in the cellular response against cigarette smoke. Cigarette smoke also promoted HBD2, HBD3, IL-1β, and IL-6 expression through the ERK1/2 and NFκB pathways. Interestingly, the modulation of TLR, HBD, and cytokine expression was maintained long after the gingival epithelial cells were exposed to smoke. By promoting TLR, HBDs, and proinflammatory cytokine expression and production, cigarette smoke may contribute to innate immunity dysregulation, which may have a negative effect on human health. PMID:23300722

  20. Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of interaction sites

    PubMed Central

    Song, Xiufeng; Gurevich, Eugenia V.; Gurevich, Vsevolod V.

    2008-01-01

    Arrestins are multi-functional regulators of G protein-coupled receptors. Receptor-bound arrestins interact with >30 remarkably diverse proteins and redirect the signaling to G protein-independent pathways. The functions of free arrestins are poorly understood, and the interaction sites of the non-receptor arrestin partners are largely unknown. In this study, we show that cone arrestin, the least studied member of the family, binds c-Jun N-terminal kinase (JNK3) and Mdm2 and regulates their subcellular distribution. Using arrestin mutants with increased or reduced structural flexibility, we demonstrate that arrestin in all conformations binds JNK3 comparably, whereas Mdm2 preferentially binds cone arrestin ‘frozen’ in the basal state. To localize the interaction sites, we expressed separate N- and C-domains of cone and rod arrestins and found that individual domains bind JNK3 and remove it from the nucleus as efficiently as full-length proteins. Thus, the arrestin binding site for JNK3 includes elements in both domains with the affinity of partial sites on individual domains sufficient for JNK3 relocalization. N-domain of rod arrestin binds Mdm2, which localizes its main interaction site to this region. Comparable binding of JNK3 and Mdm2 to four arrestin subtypes allowed us to identify conserved residues likely involved in these interactions. PMID:17680991

  1. Distinguishing rhinitis and nasal neoplasia by radiography.

    PubMed

    Russo, M; Lamb, C R; Jakovljevic, S

    2000-01-01

    To compare the incidence of radiographic signs in dogs with rhinitis and primary nasal neoplasia and to assess the performance of observers for distinguishing these conditions, the nasal radiographs of 72 dogs with either rhinitis (n = 42) or primary nasal neoplasia (n = 30) were examined by two independent observers using custom-designed forms to record their interpretations. Rhinitis was associated with a higher incidence of focal or multifocal lesions, localised soft tissue opacities, lucent foci, and a lack of frontal sinus involvement. Neoplasia was associated with soft tissue opacities and loss of turbinate detail that affected the entire ipsilateral nasal cavity, signs of invasion of the bones surrounding the nasal cavity, and soft tissue/fluid opacities within the ipsilateral frontal sinus. The signs with the highest positive predictive value (PPV) for rhinitis were absence of frontal sinus lesions and lucent foci in nasal cavity (PPV of each 82%), and invasion of surrounding bones for neoplasia (PPV 88%). There were no significant differences in the position of the lesion within the nasal cavity, incidence of unilateral versus bilateral lesions, calcified lesions, or absence of teeth. There was moderate agreement between observers about the diagnosis (kappa 0.59). Areas (SE) under ROC curves were 0.94 (0.03) and 0.96 (0.03) for observers A and B, respectively (not significantly different; P = 0.68). These results indicate a high accuracy for radiologists examining dogs with nasal diseases. Differentiation of rhinitis and nasal neoplasia should be based on finding combinations of radiologic signs that together have a high PPV. Differences in interpretation between experienced observers in this study suggest that certain signs are potential sources of error.

  2. Excessive L-cysteine induces vacuole-like cell death by activating endoplasmic reticulum stress and mitogen-activated protein kinase signaling in intestinal porcine epithelial cells.

    PubMed

    Ji, Yun; Wu, Zhenlong; Dai, Zhaolai; Sun, Kaiji; Zhang, Qing; Wu, Guoyao

    2016-01-01

    High intake of dietary cysteine is extremely toxic to animals and the underlying mechanism remains largely unknown. This study was conducted to test the hypothesis that excessive L-cysteine induces cell death by activating endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) signaling in intestinal porcine epithelial cells. Jejunal enterocytes were cultured in the presence of 0-10 mmol/L L-cysteine. Cell viability, morphologic alterations, mRNA levels for genes involved in ER stress, protein abundances for glucose-regulated protein 78, C/EBP homologous protein (CHOP), alpha subunit of eukaryotic initiation factor-2 (eIF2α), extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal protein kinase (JNK1/2) were determined. The results showed that L-cysteine (5-10 mmol/L) reduced cell viability (P < 0.05) and led to vacuole-like cell death in intestinal porcine epithelial cells. These adverse effects of L-cysteine were not affected by the autophagy inhibitor 3-methyladenine. The protein abundances for CHOP, phosphorylated (p)-eIF2α, p-JNK1/2, p-p38 MAPK, and the spliced form of XBP-1 mRNA were enhanced (P < 0.05), whereas those for p-ERK1/2 were reduced (P < 0.05). Collectively, excessive L-cysteine induces vacuole-like cell death via the activation of ER stress and MAPK signaling in small intestinal epithelial cells. These signaling pathways may be potential targets for developing effective strategies to prevent the toxicity of dietary cysteine.

  3. Sexually transmitted agents and cervical neoplasia in Colombia and Spain.

    PubMed

    de Sanjosé, S; Muñoz, N; Bosch, F X; Reimann, K; Pedersen, N S; Orfila, J; Ascunce, N; González, L C; Tafur, L; Gili, M

    1994-02-01

    Case-control studies of cervical intra-epithelial neoplasia grade III (CIN III) and of invasive cervical cancer were carried out in Spain and Colombia to assess the relationship between cervical cancer and 6 common sexually transmitted agents (STAs). The CIN-III studies included 525 cases and 512 controls matched for age and for the place of recruitment; the invasive-cancer studies included 373 histologically confirmed cases of squamous-cell carcinoma and 387 age-stratified controls selected randomly from the populations that generated the cases. Antibodies to Chlamydia trachomatis, Neisseria gonorrhoeae, Treponema pallidum, herpes simplex virus type II (HSV-2) and cytomegalovirus (CMV) were tested in 88% of the women. Cervical scrapes were examined for HPV DNA in 63% of the women using a polymerase-chain-reaction assay (PCR). Among controls, the highest antibody prevalence was to CMV (96.5%), followed by HSV-2 (31.4%) and C. trachomatis (23.3%). For all STAs, the sero-prevalence was markedly higher in Colombia than in Spain both for cases and for controls. After adjustment for the presence of HPV DNA, C. trachomatis was the only STA associated with CIN III in both countries; Spain and Colombia. In both countries, the risk of CIN III increased with increasing of C. trachomatis antibody titers. Among Spanish women, an increase in risk of invasive carcinoma was found for those with antibodies to N. gonorrhoeae; those with antibodies to HSV-2 and those with antibodies to C. trachomatis. These associations were present only in HPV-DNA-negative women. Among HPV-DNA-positive women, none of the STAs considered were associated with cervical neoplasia. Our findings could be interpreted as indicating that past infections with HSV-2, N. gonorrhoeae and C. trachomatis are surrogate markers of HPV, but because HPV DNA may have escaped detection, we cannot exclude that these STAs are also of separate etiological significance.

  4. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins

    PubMed Central

    Chappell, Alfred E.; Bunz, Michael; Smoll, Eric; Dong, Hui; Lytle, Christian; Barrett, Kim E.; McCole, Declan F.

    2018-01-01

    Reactive oxygen species (ROS) are key mediators in a number of inflammatory conditions, including inflammatory bowel disease (IBD). ROS, including hydrogen peroxide (H2O2), modulate intestinal epithelial ion transport and are believed to contribute to IBD-associated diarrhea. Intestinal crypt fluid secretion, driven by electrogenic Cl− secretion, hydrates and sterilizes the crypt, thus reducing bacterial adherence. Here, we show that pathophysiological concentrations of H2O2 inhibit Ca2+-dependent Cl− secretion across T84 colonic epithelial cells by elevating cytosolic Ca2+, which contributes to activation of two distinct signaling pathways. One involves recruitment of the Ca2+-responsive kinases, Src and Pyk-2, as well as extracellular signal-regulated kinase (ERK). A separate pathway recruits p38 MAP kinase and phosphoinositide 3-kinase (PI3-K) signaling. The ion transport response to Ca2+-dependent stimuli is mediated in part by K+ efflux through basolateral K+ channels and Cl− uptake by the Na+-K+-2Cl− cotransporter, NKCC1. We demonstrate that H2O2 inhibits Ca2+-dependent basolateral K+ efflux and also inhibits NKCC1 activity independently of inhibitory effects on apical Cl− conductance. Thus, we have demonstrated that H2O2 inhibits Ca2+-dependent Cl− secretion through multiple negative regulatory signaling pathways and inhibition of specific ion transporters. These findings increase our understanding of mechanisms by which inflammation disturbs intestinal epithelial function and contributes to intestinal pathophysiology.—Chappell, A. E., Bunz, M., Smoll, E., Dong, H., Lytle, C., Barrett, K. E., McCole, D. F. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins. FASEB J. 22, 000–000 (2008) PMID:18211955

  5. Blockage of JNK pathway enhances arsenic trioxide-induced apoptosis in human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.-S., E-mail: huanghs@mail.ncku.edu.t; Liu, Z.-M.; Hong, D.-Y.

    2010-04-15

    Arsenic is well known as a carcinogen predisposing humans to some severe diseases and also as an effective medicine for treating acute promyelocytic leukemia, syphilis, and psoriasis. Multiple active mechanisms, including cell cycle arrest and apoptosis, have been proposed in therapy; however, the opposing effects of arsenic remain controversial. Our previous study found that arsenic trioxide (ATO)-induced activation of p21{sup WAF1/CIP1} (p21) led to A431 cell death through the antagonistic effects of the signaling of ERK1/2 and JNK1. In the current study, the inhibitory effects of JNK1 on ATO-induced p21 expression were explored. Over-expression of JNK1 in A431 cells couldmore » inhibit p21 expression, which was associated with HDAC1 and TGIF. Using the GST pull-down assay and fluorescence resonance energy transfer analysis, N-terminal domain (amino acids 1-108) of TGIF, critical to its binding with c-Jun, was found. Using reporter assays, requirement of the C-terminal domain (amino acids 138-272) of TGIF to suppress ATO-induced p21 expression was observed. Thus, the domains of TGIF that carried out its inhibitory effects on p21 were identified. Finally, treatment with JNK inhibitor SP600125 could enhance ATO-induced apoptosis of HaCaT keratinocytes by using flow cytometry.« less

  6. Dihydromyricetin alleviates carbon tetrachloride-induced acute liver injury via JNK-dependent mechanism in mice.

    PubMed

    Xie, Jun; Liu, Jie; Chen, Tu-Ming; Lan, Qing; Zhang, Qing-Yu; Liu, Bin; Dai, Dong; Zhang, Wei-Dong; Hu, Li-Ping; Zhu, Run-Zhi

    2015-05-14

    To assess the effects of dihydromyricetin (DHM) as a hepatoprotective candidate in reducing hepatic injury and accelerating hepatocyte proliferation after carbon tetrachloride (CCl4) treatment. C57 BL/6 mice were used in this study. Mice were orally administered with DHM (150 mg/kg) for 4 d after CCl4 treatment. Serum and liver tissue samples were collected on days 1, 2, 3, 5 and 7 after CCl4 treatment. The anti-inflammatory effect of DHM was assessed directly by hepatic histology detection and indirectly by serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, and superoxide dismutase (SOD). Inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α), were detected using ELISA kits. Proliferating cell nuclear antigen (PCNA) staining was used to evaluate the role of DHM in promoting hepatocyte proliferation. Hepatocyte apoptosis was measured by TUNEL assay. Furthermore, apoptosis proteins Caspases-3, 6, 8, and 9 were detected by Western blot. SP600125 were used to confirm whether DHM regulated liver regeneration through JNK/TNF-α pathways. DHM showed a strong anti-inflammatory effect on CCl4-induced liver injury in mice. DHM could significantly decrease serum ALT, AST, IL-1β, IL-6 and TNF-α and increase serum albumin, SOD and liver SOD compared to the control group after CCl4 treatment (P < 0.05). PCNA results indicated that DHM could significantly increase the number of PCNA positive cells compared to the control (348.9 ± 56.0 vs 107.1 ± 31.4, P < 0.01). TUNEL assay showed that DHM dramatically reduced the number of apoptotic cells after CCl4 treatment compared to the control (365.4 ± 99.4 vs 90.5 ± 13.8, P < 0.01). Caspase activity detection showed that DHM could reduce the activities of Caspases- 8, 3, 6 and 9 compared to the control (P < 0.05). The results of Western blot showed that DHM increased the expression of JNK and decreased TNF-α expression. However, DHM could not affect

  7. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways

    PubMed Central

    MIN, JIE; LI, XU; HUANG, KENAN; TANG, HUA; DING, XINYU; QI, CHEN; QIN, XIONG; XU, ZHIFEI

    2015-01-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose-dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC. PMID:26503828

  8. Clonidine Induces Apoptosis of Human Corneal Epithelial Cells through Death Receptors-Mediated, Mitochondria-Dependent Signaling Pathway.

    PubMed

    Fan, Dan; Fan, Ting-Jun

    2017-03-01

    Clonidine, an α2-adrenoreceptor agonist, is an anti-glaucoma drug clinically used in many developing countries, and its abuse might damage the cornea and impair human vision. However, its cytotoxicity and precise mechanisms need to be elucidated. Herein, we investigated the cytotoxicity of clonidine and its underlying mechanisms, using an in vitro model of human corneal epithelial (HCEP) cells and an in vivo model of cat corneas, respectively. HCEP cells were treated with various doses of clonidine for 1-28 h, resulting in abnormal morphology, decline of cell viability and G1 phase arrest in a time- and/or dose-dependent manner. Moreover, clonidine treatment induced elevation of plasma membrane permeability, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation in HCEP cells. Furthermore, we found that clonidine treatment resulted in activated caspase-2, -3, -8, and -9, disruption of the mitochondrial transmembrane potential, downregulation of Bcl-2, and upregulation of Bad, cytoplasmic cytochrome c and apoptosis inducing factor, suggesting that clonidine-induced apoptosis is triggered through Fas/TNFR1 death receptors and Bcl-2 family proteins-mediated mitochondria-dependent pathways. Finally, our in vivo results displayed that 0.25% clonidine could induce DNA fragmentation of cat corneal epithelial cells. In summary, our findings suggest that clonidine above 1/32 of its clinical therapeutic dosage is cytotoxic to corneal epithelial cells by inducing cell apoptosis both in vitro and in vivo, and its pro-apoptotic effect on HCEP cells is triggered by a Fas/TNFR1 death receptors-mediated, mitochondria-dependent signaling pathway. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion.

    PubMed

    Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G

    2002-10-01

    Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.

  10. Molecular architecture of the fruit fly's airway epithelial immune system.

    PubMed

    Wagner, Christina; Isermann, Kerstin; Fehrenbach, Heinz; Roeder, Thomas

    2008-09-29

    Airway epithelial cells not only constitute a physical barrier, but also the first line of defence against airborne pathogens. At the same time, they are constantly exposed to reactive oxygen species. Therefore, airway epithelia cells have to possess a sophisticated innate immune system and a molecular armamentarium to detoxify reactive oxygen species. It has become apparent that deregulation of epithelial innate immunity is a major reason for the development of chronic inflammatory lung diseases. To elucidate the molecular architecture of the innate immune system of airway epithelial cells, we choose the fruit fly Drosophila melanogaster as a model, because it has the simplest type of airways, consisting of epithelial cells only. Elucidating the structure of the innate immune system of this "airway epithelial cell culture" might enable us to understand why deregulatory processes in innate immune signalling cascades lead to long lasting inflammatory events. All airway epithelial cells of the fruit fly are able to launch an immune response. They contain only one functional signal transduction pathway that converges onto NF-kappaB factors, namely the IMD-pathway, which is homologous to the TNF-alpha receptor pathway. Although vital parts of the Toll-pathway are missing, dorsal and dif, the NF-kappaB factors dedicated to this signalling system, are present. Other pathways involved in immune regulation, such as the JNK- and the JAK/STAT-pathway, are completely functional in these cells. In addition, most peptidoglycan recognition proteins, representing the almost complete collection of pattern recognition receptors, are part of the epithelial cells equipment. Potential effector molecules are different antimicrobial peptides and lysozymes, but also transferrin that can inhibit bacterial growth through iron-depletion. Reactive oxygen species can be inactivated through the almost complete armamentarium of enzymatic antioxidants that has the fly to its disposal. The innate

  11. Secondary intracranial neoplasia in the dog: 177 cases (1986-2003).

    PubMed

    Snyder, J M; Lipitz, L; Skorupski, K A; Shofer, F S; Van Winkle, T J

    2008-01-01

    This study investigates the frequency, location, and clinical findings associated with 177 secondary brain tumors in dogs. Secondary intracranial neoplasia is more common than primary intracranial neoplasia in dogs during the time period studied, and hemangiosarcoma (HSA) is the most common secondary intracranial tumor. One hundred and seventy-seven client-owned dogs presented to the Matthew J. Ryan Veterinary Hospital between 1986 and 2003. Medical records were searched for a diagnosis of intracranial neoplasia in dogs who underwent complete postmortem examination. Of these dogs, those with a diagnosis of primary intracranial neoplasia were excluded. Of the 177 secondary brain tumors, 51 (29%) were HSAs, 44 (25%) were pituitary tumors, 21 (12%) were lymphosarcomas, and 21 (12%) were metastatic carcinomas. The average age at diagnosis was 9.6 +/- 3.0 years. Most tumors were located in the cerebrum, and a mentation change was the most common presenting clinical sign. On postmortem examination, the same tumor that was in the brain was also present in the lung in 84 cases (47%), in the kidney in 62 cases (35%), and in the heart in 55 cases (31%). Secondary intracranial neoplasia in dogs was more common than primary intracranial neoplasia during the time period studied. Many of these dogs had related disease in other body systems that was apparent on diagnostic tests such as thoracic radiography.

  12. Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells

    PubMed Central

    Lee, Jonghyeob; Snyder, Emily R.; Liu, Yinghua; Gu, Xueying; Wang, Jing; Flowers, Brittany M.; Kim, Yoo Jung; Park, Sangbin; Szot, Gregory L.; Hruban, Ralph H.; Longacre, Teri A.; Kim, Seung K.

    2017-01-01

    Development of systems that reconstitute hallmark features of human pancreatic intraepithelial neoplasia (PanINs), the precursor to pancreatic ductal adenocarcinoma, could generate new strategies for early diagnosis and intervention. However, human cell-based PanIN models with defined mutations are unavailable. Here, we report that genetic modification of primary human pancreatic cells leads to development of lesions resembling native human PanINs. Primary human pancreas duct cells harbouring oncogenic KRAS and induced mutations in CDKN2A, SMAD4 and TP53 expand in vitro as epithelial spheres. After pancreatic transplantation, mutant clones form lesions histologically similar to native PanINs, including prominent stromal responses. Gene expression profiling reveals molecular similarities of mutant clones with native PanINs, and identifies potential PanIN biomarker candidates including Neuromedin U, a circulating peptide hormone. Prospective reconstitution of human PanIN development from primary cells provides experimental opportunities to investigate pancreas cancer development, progression and early-stage detection. PMID:28272465

  13. ZN2+-INDUCED IL-8 EXPRESSION INVOLVES AP-1, JNK, AND ERK ACTIVITIES IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Exposure to zinc-laden particulate matter (PM) in ambient and occupational settings has been associated with proinflammatory responses in the lung. IL-8 is an important proinflammatory cytokine in the human lung and is induced in human airway epithelial cells exposed to zin...

  14. Outcomes of adrenal-sparing surgery or total adrenalectomy in phaeochromocytoma associated with multiple endocrine neoplasia type 2: an international retrospective population-based study.

    PubMed

    Castinetti, Frederic; Qi, Xiao-Ping; Walz, Martin K; Maia, Ana Luiza; Sansó, Gabriela; Peczkowska, Mariola; Hasse-Lazar, Kornelia; Links, Thera P; Dvorakova, Sarka; Toledo, Rodrigo A; Mian, Caterina; Bugalho, Maria Joao; Wohllk, Nelson; Kollyukh, Oleg; Canu, Letizia; Loli, Paola; Bergmann, Simona R; Biarnes Costa, Josefina; Makay, Ozer; Patocs, Attila; Pfeifer, Marija; Shah, Nalini S; Cuny, Thomas; Brauckhoff, Michael; Bausch, Birke; von Dobschuetz, Ernst; Letizia, Claudio; Barczynski, Marcin; Alevizaki, Maria K; Czetwertynska, Malgorzata; Ugurlu, M Umit; Valk, Gerlof; Plukker, John T M; Sartorato, Paola; Siqueira, Debora R; Barontini, Marta; Szperl, Malgorzata; Jarzab, Barbara; Verbeek, Hans H G; Zelinka, Tomas; Vlcek, Petr; Toledo, Sergio P A; Coutinho, Flavia L; Mannelli, Massimo; Recasens, Monica; Demarquet, Lea; Petramala, Luigi; Yaremchuk, Svetlana; Zabolotnyi, Dmitry; Schiavi, Francesca; Opocher, Giuseppe; Racz, Karoly; Januszewicz, Andrzej; Weryha, Georges; Henry, Jean-Francois; Brue, Thierry; Conte-Devolx, Bernard; Eng, Charis; Neumann, Hartmut P H

    2014-05-01

    The prevention of medullary thyroid cancer in patients with multiple endocrine neoplasia type 2 syndrome has demonstrated the ability of molecular diagnosis and prophylactic surgery to improve patient outcomes. However, the other major neoplasia associated with multiple endocrine neoplasia type 2, phaeochromocytoma, is not as well characterised in terms of occurrence and treatment outcomes. In this study, we aimed to systematically characterise the outcomes of management of phaeochromocytoma associated with multiple endocrine neoplasia type 2. This multinational observational retrospective population-based study compiled data on patients with multiple endocrine neoplasia type 2 from 30 academic medical centres across Europe, the Americas, and Asia. Patients were included if they were carriers of germline pathogenic mutations of the RET gene, or were first-degree relatives with histologically proven medullary thyroid cancer and phaeochromocytoma. We gathered clinical information about patients'RET genotype, type of treatment for phaeochromocytoma (ie, unilateral or bilateral operations as adrenalectomy or adrenal-sparing surgery, and as open or endoscopic operations), and postoperative outcomes (adrenal function, malignancy, and death). The type of surgery was decided by each investigator and the timing of surgery was patient driven. The primary aim of our analysis was to compare disease-free survival after either adrenal-sparing surgery or adrenalectomy. 1210 patients with multiple endocrine neoplasia type 2 were included in our database, 563 of whom had phaeochromocytoma. Treatment was adrenalectomy in 438 (79%) of 552 operated patients, and adrenal-sparing surgery in 114 (21%). Phaeochromocytoma recurrence occurred in four (3%) of 153 of the operated glands after adrenal-sparing surgery after 6-13 years, compared with 11 (2%) of 717 glands operated by adrenalectomy (p=0.57). Postoperative adrenal insufficiency or steroid dependency developed in 292 (86%) of 339

  15. Human papillomavirus is associated with the frequent detection of warty and basaloid high-grade neoplasia of the vulva and cervical neoplasia among immunocompromised women.

    PubMed

    Petry, K U; Köchel, H; Bode, U; Schedel, I; Niesert, S; Glaubitz, M; Maschek, H; Kühnle, H

    1996-01-01

    A total of 158 women who either HIV-infected or under iatrogenic immunosuppression were examined regularly during a 4-year period to evaluate if certain vulvar neoplasms and cervical neoplasia have similar associated risk factors. Patients with CIN were matched prospectively with immunocompetent controls with CIN. Forty-eight cervical lesions were detected among patients, including 2 invasive carcinoma and 15 CIN-3 lesions, compared to 11 vulvar lesions, including 2 invasive carcinoma and 7 VIN-3 lesions. Women who have more than five life-time partners were more likely to have HPV-DNA positive cervical swabs and vulvar scrapes as well as cervical and/or vulvar neoplasia. Compared to 2.7% of controls 15.2% of patients with CIN had coexisting high-grade lesions of the vulva. With 1 exception all patients with vulvar neoplasia either suffered from symptomatic immunodeficiency or received immunosuppressive drugs for more than 10 years. Except for 1 VIN-3 lesions, all vulvar neoplasms were associated with HPV-DNA types 16, 31, and/or 33. Six of nine patients as well as the 2 controls with coexisting vulvar and cervical neoplasia had the same HPV-type associated with both lesions. All vulvar lesions were classified as either "warty" or "basaloid". In conclusion cervical and bowenoid/basaloid vulvar neoplasia seem to have a similar HPV-related genesis. Malfunction of the cellular immune response appears to be a cofactor in the genesis of HPV-associated neoplasia at both sites.

  16. JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche

    PubMed Central

    Mohammad, H; Marchisella, F; Ortega-Martinez, S; Hollos, P; Eerola, K; Komulainen, E; Kulesskaya, N; Freemantle, E; Fagerholm, V; Savontous, E; Rauvala, H; Peterson, B D; van Praag, H; Coffey, E T

    2018-01-01

    Promoting adult hippocampal neurogenesis is expected to induce neuroplastic changes that improve mood and alleviate anxiety. However, the underlying mechanisms remain largely unknown and the hypothesis itself is controversial. Here we show that mice lacking Jnk1, or c-Jun N-terminal kinase (JNK) inhibitor-treated mice, display increased neurogenesis in adult hippocampus characterized by enhanced cell proliferation and survival, and increased maturation in the ventral region. Correspondingly, anxiety behaviour is reduced in a battery of tests, except when neurogenesis is prevented by AraC treatment. Using engineered retroviruses, we show that exclusive inhibition of JNK in adult-born granule cells alleviates anxiety and reduces depressive-like behaviour. These data validate the neurogenesis hypothesis of anxiety. Moreover, they establish a causal role for JNK in the hippocampal neurogenic niche and anxiety behaviour, and advocate targeting of JNK as an avenue for novel therapies against affective disorders. PMID:27843149

  17. Novel synergistic mechanism for sst2 somatostatin and TNFalpha receptors to induce apoptosis: crosstalk between NF-kappaB and JNK pathways.

    PubMed

    Guillermet-Guibert, J; Saint-Laurent, N; Davenne, L; Rochaix, P; Cuvillier, O; Culler, M D; Pradayrol, L; Buscail, L; Susini, C; Bousquet, C

    2007-02-01

    Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.

  18. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway.

    PubMed

    Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan

    2014-12-01

    Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.

  19. UVC-induced apoptosis in Dubca cells is independent of JNK activation and p53{sup Ser-15} phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chathoth, Shahanas; Thayyullathil, Faisal; Hago, Abdulkader

    2009-06-12

    Ultraviolet C (UVC) irradiation in mammalian cell lines activates a complex signaling network that leads to apoptosis. By using Dubca cells as a model system, we report the presence of a UVC-induced apoptotic pathway that is independent of c-Jun N-terminal kinases (JNKs) activation and p53 phosphorylation at Ser{sup 15}. Irradiation of Dubca cells with UVC results in a rapid JNK activation and phosphorylation of its downstream target c-Jun, as well as, phosphorylation of activating transcription factor 2 (ATF2). Pre-treatment with JNK inhibitor, SP600125, inhibited UVC-induced c-Jun phosphorylation without preventing UVC-induced apoptosis. Similarly, inhibition of UVC-induced p53 phosphorylation did not preventmore » Dubca cell apoptosis, suggesting that p53{sup Ser-15} phosphorylation is not associated with UVC-induced apoptosis signaling. The pan-caspase inhibitor z-VAD-fmk inhibited UVC-induced PARP cleavage, DNA fragmentation, and ultimately apoptosis of Dubca cells. Altogether, our study clearly indicates that UVC-induced apoptosis is independent of JNK and p53 activation in Dubca cells, rather, it is mediated through a caspase dependent pathway. Our findings are not in line with the ascribed critical role for JNKs activation, and downstream phosphorylation of targets such as c-Jun and ATF2 in UVC-induced apoptosis.« less

  20. Advanced Oxidation Protein Products Induce Epithelial-Mesenchymal Transition of Intestinal Epithelial Cells via a PKC δ-Mediated, Redox-Dependent Signaling Pathway.

    PubMed

    Xu, Xiaoping; Sun, Shibo; Xie, Fang; Ma, Juanjuan; Tang, Jing; He, Shuying; Bai, Lan

    2017-07-01

    Epithelial-mesenchymal transition (EMT) has been considered a fundamental mechanism in complications of Crohn's disease (CD), especially intestinal fibrosis. However, the mechanism underlying EMT regulation in intestinal fibrosis remains unclear. This study aimed to investigate the role of advanced oxidation protein products (AOPPs) in the occurrence of intestinal EMT. AOPPs accumulated in CD tissues and were associated with EMT marker expression in fibrotic lesions from CD patients. Challenge with AOPPs induced intestinal epithelial cell (IEC) phenotype transdifferentiation, fibroblast-like phenotype acquisition, and production of extracellular matrix, both in vitro and in vivo. The effect of AOPPs was mainly mediated by a protein kinase C (PKC) δ-mediated redox-dependent pathway, including phosphorylation of PKC δ, recruitment of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, production of reactive oxygen species, and NF-κB p65 activation. Inhibition of AOPP-redox signaling activation effectively blocked AOPP-induced EMT in vitro. Studies performed in normal rats showed that chronic administration of AOPPs triggered the occurrence of EMT in rat intestinal epithelia, accompanied by disruption of intestinal integrity, and by promotion of collagen deposition. These effects could be reversed by inhibition of NADPH oxidase. Innovation and Conclusion: This is the first study to demonstrate that AOPPs triggered the occurrence of EMT in IECs in vitro and in vivo through PKC δ-mediated redox-dependent signaling. Our study identifies the role of AOPPs and, in turn, EMT in intestinal fibrosis and provides novel potential targets for the treatment of intestinal fibrotic diseases. Antioxid. Redox Signal. 27, 37-56.

  1. Endophilin-1 regulates blood-brain barrier permeability via EGFR-JNK signaling pathway.

    PubMed

    Chen, Lin; Liu, Wenjing; Wang, Ping; Xue, Yixue; Su, Qingjie; Zeng, Chaosheng; Shang, Xiuli

    2015-05-05

    Endophilin-1 (Endo1), a multifunctional protein, is essential for synaptic vesicle endocytosis. However, the role and mechanism of endophilin-1 in blood-brain barrier (BBB) function are still unclear. This study was performed to determine whether endophilin-1 regulated BBB permeability via the EGFR-JNK signaling pathway. In the present study, we found that endophilin-1 over-expression in human cerebral microvascular endothelial cell (hCMEC/D3) increased BBB permeability and meanwhile reduced the expression levels of epidermal growth factor receptor (EGFR), phosphorylated c-Jun N-terminal kinase (p-JNK). While endophilin-1 knockdown led to the contrary results. After JNK inhibitor SP600125 was administered to the endophilin-1 silenced hCMEC/D3 cells, the transendothelial electrical resistance (TEER) value was decreased and the permeability coefficient values to 4kDa and 40kDa FITC-dextran were increased. Results observed by Transmission electron microscopy (TEM) showed that tight junctions (TJs) were opened. Moreover, immunofluorescence and Western blot assays revealed the discontinuous distribution of TJ-associated proteins ZO-1, occludin on cell-cell boundaries and a significant decrease in protein expressing levels. Therefore, these results indicated that endophilin-1 positively regulated BBB permeability via the EGFR-JNK signaling pathway in hCMEC/D3 cells, which would provide an experimental basis for further research on endophilin-1 mediated the opening of BBB. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Bornyl caffeate induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways

    PubMed Central

    Yang, Chuan-bin; Pei, Wei-jing; Zhao, Jia; Cheng, Yuan-yuan; Zheng, Xiao-hui; Rong, Jian-hui

    2014-01-01

    Aim: To investigate the effects of bornyl caffeate discovered in several species of plant on human breast cancer cells in vitro and the underlying mechanisms. Methods: Human breast cancer cell line MCF-7 and other tumor cell lines (T47D, HepG2, HeLa, and PC12) were tested. Cell viability was determined using MTT assay, and apoptosis was defined by monitoring the morphology of the nuclei and staining with Annexin V-FITC. Mitochondrial membrane potential (MMP) was measured using JC-1 under fluorescence microscopy. Intracellular reactive oxygen species (ROS) were assessed by flow cytometry. The expression of apoptosis-associated proteins was determined by Western blotting analysis. Results: Bornyl caffeate (10, 25, and 50 μmol/L) suppressed the viability of MCF-7 cells in dose- and time-dependent manners, but neither caffeic acid nor borneol showed cytotoxicity at a concentration of 50 μmol/L. Bornyl caffeate also exerted cytotoxicity to HepG2, Hela, T47D, and PC12 cells. Bornyl caffeate dose-dependently induced apoptosis of MCF-7 cells, increased the expression of Bax and decreased the expression of Bcl-xl, resulting in the disruption of MMP and subsequent activation of caspase-3. Moreover, bornyl caffeate triggered the formation of ROS and activated p38 and c-Jun JNK. In MCF-7 cells, the cytotoxicity of bornyl caffeate was significantly attenuated by SB203580 (p38 inhibitor), SP600125 (JNK inhibitor), z-VAD (pan-caspase inhibitor) or the thiol antioxidant L-NAC. Conclusion: Bornyl caffeate exerts non-selective cytotoxicity against cancer cells of different origin in vitro. The compound induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways. PMID:24335836

  3. Innate Immune Responses to Bacterial Ligands in the Peripheral Human Lung – Role of Alveolar Epithelial TLR Expression and Signalling

    PubMed Central

    Thorley, Andrew J.; Grandolfo, Davide; Lim, Eric; Goldstraw, Peter; Young, Alan; Tetley, Teresa D.

    2011-01-01

    It is widely believed that the alveolar epithelium is unresponsive to LPS, in the absence of serum, due to low expression of TLR4 and CD14. Furthermore, the responsiveness of the epithelium to TLR-2 ligands is also poorly understood. We hypothesised that human alveolar type I (ATI) and type II (ATII) epithelial cells were responsive to TLR2 and TLR4 ligands (MALP-2 and LPS respectively), expressed the necessary TLRs and co-receptors (CD14 and MD2) and released distinct profiles of cytokines via differential activation of MAP kinases. Primary ATII cells and alveolar macrophages and an immortalised ATI cell line (TT1) elicited CD14 and MD2-dependent responses to LPS which did not require the addition of exogenous soluble CD14. TT1 and primary ATII cells expressed CD14 whereas A549 cells did not, as confirmed by flow cytometry. Following LPS and MALP-2 exposure, macrophages and ATII cells released significant amounts of TNFα, IL-8 and MCP-1 whereas TT1 cells only released IL-8 and MCP-1. P38, ERK and JNK were involved in MALP-2 and LPS-induced cytokine release from all three cell types. However, ERK and JNK were significantly more important than p38 in cytokine release from macrophages whereas all three were similarly involved in LPS-induced mediator release from TT1 cells. In ATII cells, JNK was significantly more important than p38 and ERK in LPS-induced MCP-1 release. MALP-2 and LPS exposure stimulated TLR4 protein expression in all three cell types; significantly more so in ATII cells than macrophages and TT1 cells. In conclusion, this is the first study describing the expression of CD14 on, and TLR2 and 4 signalling in, primary human ATII cells and ATI cells; suggesting that differential activation of MAP kinases, cytokine secretion and TLR4 expression by the alveolar epithelium and macrophages is important in orchestrating a co-ordinated response to inhaled pathogens. PMID:21789185

  4. TNF-{alpha} promotes cell survival through stimulation of K{sup +} channel and NF{kappa}B activity in corneal epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-11-15

    Tumor necrosis factor (TNF-{alpha}) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-{alpha} also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-{alpha} stimulation induced activation of a voltage-gated K{sup +} channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-{alpha} on downstream events included NF{kappa}B nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-{alpha} induced increases inmore » p21 expression resulting in partial cell cycle attenuation in the G{sub 1} phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-{alpha}-induced K{sup +} channel activity effectively prevented NF{kappa}B nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-{alpha}. In conclusion, TNF-{alpha} promotes survival of HCE cells through sequential stimulation of K{sup +} channel and NF{kappa}B activities. This response to TNF-{alpha} is dependent on stimulating K{sup +} channel activity because following suppression of K{sup +} channel activity TNF-{alpha} failed to activate NF{kappa}B nuclear translocation and binding to nuclear DNA.« less

  5. Synthesis and SAR of piperazine amides as novel c-jun N-terminal kinase (JNK) inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Youseung; Chen, Weiming; Habel, Jeff

    2009-09-14

    A novel series of c-jun N-terminal kinase (JNK) inhibitors were designed and developed from a high-throughput-screening hit. Through the optimization of the piperazine amide 1, several potent compounds were discovered. The X-ray crystal structure of 4g showed a unique binding mode different from other well known JNK3 inhibitors.

  6. Triptolide suppresses paraquat induced idiopathic pulmonary fibrosis by inhibiting TGFB1-dependent epithelial mesenchymal transition.

    PubMed

    Chen, Hong; Chen, Qun; Jiang, Chun-Ming; Shi, Guang-Yue; Sui, Bo-Wen; Zhang, Wei; Yang, Li-Zhen; Li, Zhu-Ying; Liu, Li; Su, Yu-Ming; Zhao, Wen-Cheng; Sun, Hong-Qiang; Li, Zhen-Zi; Fu, Zhou

    2018-03-01

    Idiopathic pulmonary fibrosis (IPF) and tumor are highly similar to abnormal cell proliferation that damages the body. This malignant cell evolution in a stressful environment closely resembles that of epithelial-mesenchymal transition (EMT). As a popular EMT-inducing factor, TGFβ plays an important role in the progression of multiple diseases. However, the drugs that target TGFB1 are limited. In this study, we found that triptolide (TPL), a Chinese medicine extract, exerts an anti-lung fibrosis effect by inhibiting the EMT of lung epithelial cells. In addition, triptolide directly binds to TGFβ and subsequently increase E-cadherin expression and decrease vimentin expression. In in vivo studies, TPL improves the survival state and inhibits lung fibrosis in mice. In summary, this study revealed the potential therapeutic effect of paraquat induced TPL in lung fibrosis by regulating TGFβ-dependent EMT progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Free Fatty Acids Shift Insulin-induced Hepatocyte Proliferation towards CD95-dependent Apoptosis*

    PubMed Central

    Sommerfeld, Annika; Reinehr, Roland; Häussinger, Dieter

    2015-01-01

    Insulin is known to induce hepatocyte swelling, which triggers via integrins and c-Src kinase an activation of the epidermal growth factor receptor (EGFR) and subsequent cell proliferation (1). Free fatty acids (FFAs) are known to induce lipoapoptosis in liver cells in a c-Jun-NH2-terminal kinase (JNK)-dependent, but death receptor-independent way (2). As non-alcoholic steatohepatitis (NASH) is associated with hyperinsulinemia and increased FFA-blood levels, the interplay between insulin and FFA was studied with regard to hepatocyte proliferation and apoptosis in isolated rat and mouse hepatocytes. Saturated long chain FFAs induced apoptosis and JNK activation in primary rat hepatocytes, but did not activate the CD95 (Fas, APO-1) system, whereas insulin triggered EGFR activation and hepatocyte proliferation. Coadministration of insulin and FFAs, however, abolished hepatocyte proliferation and triggered CD95-dependent apoptosis due to a JNK-dependent association of the activated EGFR with CD95, subsequent CD95 tyrosine phosphorylation and formation of the death-inducing signaling complex (DISC). JNK inhibition restored the proliferative insulin effect in presence of FFAs and prevented EGFR/CD95 association, CD95 tyrosine phosphorylation and DISC formation. Likewise, in presence of FFAs insulin increased apoptosis in hepatocytes from wild type but not from Alb-Cre-FASfl/fl mice, which lack functional CD95. It is concluded that FFAs can shift insulin-induced hepatocyte proliferation toward hepatocyte apoptosis by triggering a JNK signal, which allows activated EGFR to associate with CD95 and to trigger CD95-dependent apoptosis. Such phenomena may contribute to the pathogenesis of NASH. PMID:25548285

  8. Immediate surgical resection of residual microcalcifications after a diagnosis of pure flat epithelial atypia on core biopsy: a word of caution.

    PubMed

    Noël, Jean-Christophe; Buxant, Frédéric; Engohan-Aloghe, Corinne

    2010-12-01

    The entity of pure flat epithelial atypia remains a challenge due to controversy of the surgical management of residual microcalcifications after core needle biopsies. This study aims to assess the morphological data observed in immediate surgical resection specimen of residual microcalcifications after a diagnosis of pure flat epithelial atypia on mammotome core biopsy. Sixty-two mammotome core biopsy with a diagnosis of pure flat epithelial atypia (flat epithelial atypia without associated atypical ductal hyperplasia, in situ and/or invasive carcinoma) were identified. From these 62 cases, 20 presented residual microcalcifications and underwent an immediate surgical excision after mammotome. Of the 20 patients with excised microcalcifications, 8 (40%)cases had residual pure flat epithelial atypia, 4 (20%) cases had atypical ductal hyperplasia, 4 (20%) cases had lobular in situ neoplasia, no lesions were retrieved in 4 (20%) case. None of the patients had either in situ ductal carcinoma and/or invasive carcinoma. Surgical resection of residual microcalcifications after the diagnosis of pure flat epithelial atypia on core needle biopsy remains still a debate. The present study shows no cases of in situ ductal and/or invasive carcinoma on immediate excision of residual microcalcifications after mammotome core biopsies. Copyright © 2009 Elsevier Ltd. All rights reserved.

  9. MarvelD3 couples tight junctions to the MEKK1–JNK pathway to regulate cell behavior and survival

    PubMed Central

    Steed, Emily; Elbediwy, Ahmed; Vacca, Barbara; Dupasquier, Sébastien; Hemkemeyer, Sandra A.; Suddason, Tesha; Costa, Ana C.; Beaudry, Jean-Bernard; Zihni, Ceniz; Gallagher, Ewen; Pierreux, Christophe E.

    2014-01-01

    MarvelD3 is a transmembrane component of tight junctions, but there is little evidence for a direct involvement in the junctional permeability barrier. Tight junctions also regulate signaling mechanisms that guide cell proliferation; however, the transmembrane components that link the junction to such signaling pathways are not well understood. In this paper, we show that MarvelD3 is a dynamic junctional regulator of the MEKK1–c-Jun NH2-terminal kinase (JNK) pathway. Loss of MarvelD3 expression in differentiating Caco-2 cells resulted in increased cell migration and proliferation, whereas reexpression in a metastatic tumor cell line inhibited migration, proliferation, and in vivo tumor formation. Expression levels of MarvelD3 inversely correlated with JNK activity, as MarvelD3 recruited MEKK1 to junctions, leading to down-regulation of JNK phosphorylation and inhibition of JNK-regulated transcriptional mechanisms. Interplay between MarvelD3 internalization and JNK activation tuned activation of MEKK1 during osmotic stress, leading to junction dissociation and cell death in MarvelD3-depleted cells. MarvelD3 thus couples tight junctions to the MEKK1–JNK pathway to regulate cell behavior and survival. PMID:24567356

  10. Oleanolic acid induces p53-dependent apoptosis via the ERK/JNK/AKT pathway in cancer cell lines in prostatic cancer xenografts in mice.

    PubMed

    Kim, Gyeong-Ji; Jo, Hyeon-Ju; Lee, Kwon-Jai; Choi, Jeong Woo; An, Jeung Hee

    2018-05-29

    We evaluated oleanolic acid (OA)-induced anti-cancer activity, apoptotic mechanism, cell cycle status, and MAPK kinase signaling in DU145 (prostate cancer), MCF-7 (breast cancer), U87 (human glioblastoma), normal murine liver cell (BNL CL.2) and human foreskin fibroblast cell lines (Hs 68). The IC50 values for OA-induced cytotoxicity were 112.57 in DU145, 132.29 in MCF-7, and 163.60 in U87 cells, respectively. OA did not exhibit toxicity in BNL CL. 2 and Hs 68 cell lines in our experiments. OA, at 100 µg/mL, increased the number of apoptotic cells to 27.0% in DU145, 27.0% in MCF-7, and 15.7% in U87, when compared to control cells. This enhanced apoptosis was due to increases in p53, cytochrome c, Bax, PARP-1 and caspase-3 expression in DU145, MCF-7 and U87 cell lines. OA-treated DU145 cells were arrested in G2 because of the activation of p-AKT, p-JNK, p21 and p27, and the decrease in p-ERK, cyclin B1 and CDK2 expression; OA-treated MCF-7 cells were arrested in G1 owing to the activation of p-JNK, p-ERK, p21, and p27, and the decrease in p-AKT, cyclin D1, CDK4, cyclin E, and CDK2; and OA-treated U87 cells also exhibited G1 phase arrest caused by the increase in p-ERK, p-JNK, p-AKT, p21, and p27, and the decrease in cyclin D1, CDK4, cyclin E and CDK2. Thus, OA arrested the cell cycle at different phases and induced apoptosis in cancer cells. These results suggested that OA possibly altered the expression of the cell cycle regulatory proteins differently in varying types of cancer.

  11. [Curcumin alleviates early brain injury following subarachnoid hemorrhage in rats by inhibiting JNK/c-Jun signal pathway].

    PubMed

    Li, Xia; Zhu, Ji

    2018-03-01

    Objective To investigate the inhibitory effect of curcumin on early brain injury following subarachnoid hemorrhage (SAH) by inhibiting JNK/ c-Jun signal pathway. Methods Sixty adult male SD rats were randomly divided into four groups: sham operation group (sham group), SAH group, SAH group treated with 100 mg/(kg.d) curcumin and SAH group treated with 200 mg/(kg.d) curcumin, with 15 rats in each group. Endovascular puncture was used to induce SAH model. Nissl staining was used to test whether neurons were broken. TUNEL staining was used to detect apoptosis. Immunohistochemistry was used to investigate the expression of caspase-3. Western blot analysis was used to detect the expressions of p-JNK, JNK, p-c-Jun, c-Jun, and caspase-3. Results Nissl staining indicated the decrease of Nissl bodies in SAH group, but increase of Nissl bodies in SAH group treated with curcumin. TUNEL staining showed that there were more apoptotic neurons in SAH group compared with sham group, while apoptotic neurons decreased after the treatment with curcumin, more obviously in the group treated with 200 mg/(kg.d) curcumin. The expressions of p-JNK, JNK, p-c-Jun, c-Jun, and caspase-3 were up-regulated in SAH group compared with sham group. However, the expressions of those proteins were down-regulated after the treatment with curcumin, especially by higher-dose curcumin treatment. Conclusion Curcumin might suppress early brain injury after SAH by inhibiting JNK/c-Jun signal pathway and neuron apoptosis.

  12. A Novel c-Jun N-terminal Kinase (JNK) Signaling Complex Involved in Neuronal Migration during Brain Development.

    PubMed

    Zhang, Feng; Yu, Jingwen; Yang, Tao; Xu, Dan; Chi, Zhixia; Xia, Yanheng; Xu, Zhiheng

    2016-05-27

    Disturbance of neuronal migration may cause various neurological disorders. Both the transforming growth factor-β (TGF-β) signaling and microcephaly-associated protein WDR62 are important for neuronal migration during brain development; however, the underlying molecular mechanisms involved remain unclear. We show here that knock-out or knockdown of Tak1 (TGFβ-activated kinase 1) and Jnk2 (c-Jun N-terminal kinase 2) perturbs neuronal migration during cortical development and that the migration defects incurred by knock-out and/or knockdown of Tβr2 (type II TGF-β receptor) or Tak1 can be partially rescued by expression of TAK1 and JNK2, respectively. Furthermore, TAK1 forms a protein complex with RAC1 and two scaffold proteins of the JNK pathway, the microcephaly-associated protein WDR62 and the RAC1-interacting protein POSH (plenty of Src homology). Components of the complex coordinate with each other in the regulation of TAK1 as well as JNK activities. We suggest that unique JNK protein complexes are involved in the diversified biological and pathological functions during brain development and pathogenesis of diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. TNFα promotes CAR-dependent migration of leukocytes across epithelial monolayers

    PubMed Central

    Morton, Penny E.; Hicks, Alexander; Ortiz-Zapater, Elena; Raghavan, Swetavalli; Pike, Rosemary; Noble, Alistair; Woodfin, Abigail; Jenkins, Gisli; Rayner, Emma; Santis, George; Parsons, Maddy

    2016-01-01

    Trans-epithelial migration (TEpM) of leukocytes during inflammation requires engagement with receptors expressed on the basolateral surface of the epithelium. One such receptor is Coxsackie and Adenovirus Receptor (CAR) that binds to Junctional Adhesion Molecule-like (JAM-L) expressed on leukocytes. Here we provide the first evidence that efficient TEpM of monocyte-derived THP-1 cells requires and is controlled by phosphorylation of CAR. We show that TNFα acts in a paracrine manner on epithelial cells via a TNFR1-PI3K-PKCδ pathway leading to CAR phosphorylation and subsequent transmigration across cell junctions. Moreover, we show that CAR is hyper-phosphorylated in vivo in acute and chronic lung inflammation models and this response is required to facilitate immune cell recruitment. This represents a novel mechanism of feedback between leukocytes and epithelial cells during TEpM and may be important in controlling responses to pro-inflammatory cytokines in pathological settings. PMID:27193388

  14. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis

    1991-02-01

    CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.

  15. JNK inhibition reduces apoptosis and neovascularization in a murine model of age-related macular degeneration.

    PubMed

    Du, Hongjun; Sun, Xufang; Guma, Monica; Luo, Jing; Ouyang, Hong; Zhang, Xiaohui; Zeng, Jing; Quach, John; Nguyen, Duy H; Shaw, Peter X; Karin, Michael; Zhang, Kang

    2013-02-05

    Age-related macular degeneration (AMD) is the leading cause of registered blindness among the elderly and affects over 30 million people worldwide. It is well established that oxidative stress, inflammation, and apoptosis play critical roles in pathogenesis of AMD. In advanced wet AMD, although, most of the severe vision loss is due to bleeding and exudation of choroidal neovascularization (CNV), and it is well known that vascular endothelial growth factor (VEGF) plays a pivotal role in the growth of the abnormal blood vessels. VEGF suppression therapy improves visual acuity in AMD patients. However, there are unresolved issues, including safety and cost. Here we show that mice lacking c-Jun N-terminal kinase 1 (JNK1) exhibit decreased inflammation, reduced CNV, lower levels of choroidal VEGF, and impaired choroidal macrophage recruitment in a murine model of wet AMD (laser-induced CNV). Interestingly, we also detected a substantial reduction in choroidal apoptosis of JNK1-deficient mice. Intravitreal injection of a pan-caspase inhibitor reduced neovascularization in the laser-induced CNV model, suggesting that apoptosis plays a role in laser-induced pathological angiogenesis. Intravitreal injection of a specific JNK inhibitor decreased choroidal VEGF expression and reduced pathological CNV. These results suggest that JNK1 plays a key role in linking oxidative stress, inflammation, macrophage recruitment apoptosis, and VEGF production in wet AMD and pharmacological JNK inhibition offers a unique and alternative avenue for prevention and treatment of AMD.

  16. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2015-03-01

    1 AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER... Lateral   Sclerosis ”   Final  Report:  Project  Period  Sept  2012-­‐Dec  2014     Personnel  List:     Feng,  Yangbo

  17. Inflammatory signaling pathways induced by Helicobacter pylori in primary human gastric epithelial cells.

    PubMed

    Tran, Cong Tri; Garcia, Magali; Garnier, Martine; Burucoa, Christophe; Bodet, Charles

    2017-02-01

    Inflammatory signaling pathways induced by Helicobacter pylori remain unclear, having been studied mostly on cell-line models derived from gastric adenocarcinoma with potentially altered signaling pathways and nonfunctional receptors. Here, H. pylori-induced signaling pathways were investigated in primary human gastric epithelial cells. Inflammatory response was analyzed on chemokine mRNA expression and production after infection of gastric epithelial cells by H. pylori strains, B128 and B128Δ cagM, a cag type IV secretion system defective strain. Signaling pathway involvement was investigated using inhibitors of epidermal growth factor receptor (EGFR), MAPK, JAK and blocking Abs against TLR2 and TLR4. Inhibitors of EGFR, MAPK and JAK significantly reduced the chemokine mRNA expression and production induced by both H. pylori strains at 3 h and 24 h post-infection. JNK inhibitor reduced chemokine production at 24 h post-infection. Blocking Abs against TLR2 but not TLR4 showed significant reduction of chemokine secretion. Using primary culture of human gastric epithelial cells, our data suggest that H. pylori can be recognized by TLR2, leading to chemokine induction, and that EGFR, MAPK and the JAK/STAT signaling pathways play a key role in the H. pylori-induced CXCL1, CXCL5 and CXCL8 response in a cag pathogenicity island-independent manner.

  18. Activation of VPAC1 receptors by VIP and PACAP-27 in human bronchial epithelial cells induces CFTR-dependent chloride secretion

    PubMed Central

    Dérand, Renaud; Montoni, Alicia; Bulteau-Pignoux, Laurence; Janet, Thierry; Moreau, Bertrand; Muller, Jean-Marc; Becq, Frédéric

    2004-01-01

    In the human airway epithelium, VIP/PACAP receptors are distributed in nerve fibers and in epithelial cells but their role in transepithelial ion transport have not been reported. Here, we show that human bronchial epithelial Calu-3 cells expressed the VPAC1 receptor subtype which shares similar high affinity for VIP and PACAP-27. The stoichiometric binding parameters characterizing the 125I-VIP and 125I-PACAP-27 binding to these receptors were determined. We found that VIP (EC50≈7.6 nM) and PACAP-27 (EC50≈10 nM) stimulated glibenclamide-sensitive and DIDS-insensitive iodide efflux in Calu-3 cells. The protein kinase A (PKA) inhibitor, H-89 and the protein kinase C (PKC) inhibitor, chelerythrine chloride prevented activation by both peptides demonstrating that PKA and PKC are part of the signaling pathway. This profile corresponds to the pharmacological signature of CFTR. In the cystic fibrosis airway epithelial IB3-1 cell lacking functional CFTR but expressing VPAC1 receptors, neither VIP, PACAP-27 nor forskolin stimulated chloride transport. Ussing chamber experiments demonstrated stimulation of CFTR-dependent short-circuit currents by VIP or PACAP-27 applied to the basolateral but not to the apical side of Calu-3 cells monolayers. This study shows the stimulation in human bronchial epithelial cells of CFTR-dependent chloride secretion following activation by VIP and PACAP-27 of basolateral VPAC1 receptors. PMID:14744818

  19. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death.

    PubMed

    Evans, M; Murofushi, T; Tsuda, H; Mikami, Y; Zhao, N; Ochiai, K; Kurita-Ochiai, T; Yamamoto, M; Otsuka, K; Suzuki, N

    2017-06-01

    Bacteria in the dental biofilm surrounding marginal gingival grooves cause periodontal diseases. Numerous bacteria within the biofilm consume nutrients from the gingival crevicular fluid. Furthermore, some gram-negative bacteria in mature dental biofilms produce butyrate. Thus, gingival epithelial cells in close proximity to mature dental biofilms are at risk of both starvation and exposure to butyrate. In the present study, we determined the combined effects of starvation and butyrate exposure on gingival epithelial cell death and the underlying mechanisms. The Ca9-22 cell line was used as an in vitro counterpart of gingival epithelial cells. Cell death was measured as the amount of total DNA in the dead cells using SYTOX Green dye, which penetrates through membranes of dead cells and emits fluorescence when it intercalates into double-stranded DNA. AMP-activated protein kinase (AMPK) activity, the amount of autophagy, and acetylation of histone H3 were determined using western blot. Gene expression levels of microtubule-associated protein 1 light chain 3b (lc3b) were determined using quantitative reverse transcription-polymerase chain reaction. Butyrate-induced cell death occurred in a dose-dependent manner whether cells were starved or fed. However, the induction of cell death was two to four times higher when cells were placed under starvation conditions compared to when they were fed. Moreover, both starvation and butyrate exposure induced AMPK activity and autophagy. While AMPK inactivation resulted in decreased autophagy and butyrate-induced cell death under conditions of starvation, AMPK activation resulted in butyrate-induced cell death when cells were fed. Combined with the results of our previous report, which demonstrated butyrate-induced autophagy-dependent cell death, the results of this study suggest that the combination of starvation and butyrate exposure activates AMPK inducing autophagy and subsequent cell death. Notably, this combination markedly

  20. TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens

    PubMed Central

    McClure, Ryan; Massari, Paola

    2014-01-01

    Toll-like receptor (TLR) signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in human being as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners), their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut, and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling. PMID:25161655

  1. Wnt-dependent epithelial transitions drive pharyngeal pouch formation

    PubMed Central

    Choe, Chong Pyo; Collazo, Andres; Trinh, Le A.; Pan, Luyuan; Moens, Cecilia B.; Crump, J. Gage

    2013-01-01

    SUMMARY The pharyngeal pouches, which form by budding of the foregut endoderm, are essential for segmentation of the vertebrate face. To date, the cellular mechanism and segmental nature of such budding have remained elusive. Here, we find that Wnt11r and Wnt4a from the head mesoderm and ectoderm, respectively, play distinct roles in the segmental formation of pouches in zebrafish. Time-lapse microscopy, combined with mutant and tissue-specific transgenic experiments, reveal requirements of Wnt signaling in two phases of endodermal epithelial transitions. Initially, Wnt11r and Rac1 destabilize the endodermal epithelium to promote the lateral movement of pouch-forming cells. Next, Wnt4a and Cdc42 signaling induce the rearrangement of maturing pouch cells into bilayers through junctional localization of the Alcama immunoglobulin-domain protein, which functions to restabilize adherens junctions. We propose that this dynamic control of epithelial morphology by Wnt signaling may be a common theme for the budding of organ anlagen from the endoderm. PMID:23375584

  2. Arrestin-3-dependent activation of c-Jun N-terminal kinases (JNKs)

    PubMed Central

    Kaoud, Tamer S.; Dalby, Kevin N.; Gurevich, Eugenia V.; Gurevich, Vsevolod V.

    2015-01-01

    Only one out of four arrestin subtypes expressed in mammals, arrestin-3, facilitates the activation of JNK family kinases. Here we describe two different paradigms that allow the elucidation of the mechanisms involved. One is based on reconstitution of signaling modules from purified proteins: arrestin-3, MKK4, MKK7, JNK1, JNK2, and JNK3. The main advantage of this method is that it can unambiguously establish which effects are direct, because only intended purified proteins are present in these assays. The key drawback is that the upstream-most kinases of these cascades, ASK1 or other MAPKKKs, are not available in purified form, limiting reconstitution to incomplete two-kinase modules. The other set of methods analyzes the effects of arrestin-3 on JNK activation in intact cells. In this case, signaling modules include ASK1 and/or other MAPKKKs. However, every cell expresses thousands of different proteins, and their possible effects on the readout cannot be excluded. However, the combination of in vitro reconstitution from purified proteins and cell-based assays enables comprehensive elucidation of the mechanisms of arrestin-3-dependent activation of JNK family kinases. PMID:25737158

  3. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lingzhi; Qiu, Ping; Chen, Bailing

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROSmore » in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.« less

  4. Reversible Smad-dependent signaling between tumor suppression and oncogenesis.

    PubMed

    Sekimoto, Go; Matsuzaki, Koichi; Yoshida, Katsunori; Mori, Shigeo; Murata, Miki; Seki, Toshihito; Matsui, Hirofumi; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2007-06-01

    Cancer cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor-beta (TGF-beta) together with stimulation of its oncogenic activity as in Ras-transformed cells; however, molecular mechanisms remain largely unknown. TGF-beta activates both its type I receptor (TbetaRI) and c-Jun NH2-terminal kinase (JNK), which phosphorylate Smad2 and Smad3 at the COOH-terminal (pSmad2/3C) and linker regions (pSmad2/3L). Here, we report that Ras transformation suppresses TbetaRI-mediated pSmad3C signaling, which involves growth inhibition by down-regulating c-Myc. Instead, hyperactive Ras constitutively stimulates JNK-mediated pSmad2/3L signaling, which fosters tumor invasion by up-regulating plasminogen activator inhibitor-1 and matrix metalloproteinase-1 (MMP-1), MMP-2, and MMP-9. Conversely, selective blockade of linker phosphorylation by a mutant Smad3 lacking JNK-dependent phosphorylation sites results in preserved tumor-suppressive function via pSmad3C in Ras-transformed cells while eliminating pSmad2/3L-mediated invasive capacity. Thus, specific inhibition of the JNK/pSmad2/3L pathway should suppress cancer progression by shifting Smad-dependent signaling from oncogenesis to tumor suppression.

  5. Involvement of PI3K/AKT and MAPK Pathways for TNF-α Production in SiHa Cervical Mucosal Epithelial Cells Infected with Trichomonas vaginalis.

    PubMed

    Yang, Jung-Bo; Quan, Juan-Hua; Kim, Ye-Eun; Rhee, Yun-Ee; Kang, Byung-Hyun; Choi, In-Wook; Cha, Guang-Ho; Yuk, Jae-Min; Lee, Young-Ha

    2015-08-01

    Trichomonas vaginalis; induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in TNF-α production in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased TNF-α production in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, TNF-α production was significantly decreased compared to the control; however, TNF-α reduction patterns were different depending on the type of PI3K/MAPK inhibitors. TNF-α production was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of TNF-α production in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.

  6. Silencing the Snail-dependent RNA splice regulator ESRP1 drives malignant transformation of human pulmonary epithelial cells. | Office of Cancer Genomics

    Cancer.gov

    Epithelial-to-mesenchymal transition (EMT) is organized in cancer cells by a set of key transcription factors, but the significance of this process is still debated including in non-small cell lung cancer (NSCLC). Here we report increased expression of the EMT-inducing transcription factor Snail in premalignant pulmonary lesions, relative to histologically normal pulmonary epithelium. In immortalized human pulmonary epithelial cells and isogenic derivatives, we documented Snail-dependent anchorage-independent growth in vitro and primary tumor growth and metastatic behavior in vivo.

  7. Radiographic findings in cats with intranasal neoplasia or chronic rhinitis: 29 cases (1982-1988).

    PubMed

    O'Brien, R T; Evans, S M; Wortman, J A; Hendrick, M J

    1996-02-01

    To compare radiographic findings and determine useful criteria to differentiate between intranasal neoplasia and chronic rhinitis in cats. Retrospective study. Cats with chronic nasal disease caused by neoplasia (n = 18) or by chronic rhinitis (n = 11). Radiographs were reviewed by 3 radiologists, followed by group review. Diagnosis was determined by intranasal biopsy or necropsy, and specimens were reviewed by a pathologist to confirm cause and histologic diagnosis. Lymphosarcoma was the most common (n = 5) of the 6 histopathologic types in the neoplasia group. Cats in the neoplasia and chronic rhinitis groups had a high prevalence of aggressive radiographic lesions. Prevalence of a facial mass in cats with neoplasia (8/18) versus in those with chronic rhinitis (4/11) and of deviation (9/18 vs 6/11, respectively) or lysis (12/18 vs 7/11) of the nasal septum was similar. However, significantly (P = 0.02) more cats with neoplasia than with chronic rhinitis (13/16 vs 3/7, respectively) had unilateral turbinate destruction/lysis. Additionally, unilateral lateral bone erosion and loss of teeth associated with adjacent intranasal disease were more prevalent in cats with neoplasia (7/8 and 5/18, respectively) than in cats with chronic rhinitis (1/3 and 0/11, respectively). Features that may assist in radiographic diagnosis of neoplasia include the appearance of unilateral aggressive lesions, such as lysis of lateral bones, nasal turbinate destruction, and loss of teeth. Bilaterally symmetric lesions are more suggestive of chronic rhinitis than of neoplasia.

  8. BRD4 mediates NF-κB-dependent epithelial-mesenchymal transition and pulmonary fibrosis via transcriptional elongation

    PubMed Central

    Zhao, Yingxin; Sun, Hong; Zhang, Yueqing; Yang, Jun; Brasier, Allan R.

    2016-01-01

    Chronic epithelial injury triggers a TGF-β-mediated cellular transition from normal epithelium into a mesenchymal-like state that produces subepithelial fibrosis and airway remodeling. Here we examined how TGF-β induces the mesenchymal cell state and determined its mechanism. We observed that TGF-β stimulation activates an inflammatory gene program controlled by the NF-κB/RelA signaling pathway. In the mesenchymal state, NF-κB-dependent immediate-early genes accumulate euchromatin marks and processive RNA polymerase. This program of immediate-early genes is activated by enhanced expression, nuclear translocation, and activating phosphorylation of the NF-κB/RelA transcription factor on Ser276, mediated by a paracrine signal. Phospho-Ser276 RelA binds to the BRD4/CDK9 transcriptional elongation complex, activating the paused RNA Pol II by phosphorylation on Ser2 in its carboxy-terminal domain. RelA-initiated transcriptional elongation is required for expression of the core epithelial-mesenchymal transition transcriptional regulators SNAI1, TWIST1, and ZEB1 and mesenchymal genes. Finally, we observed that pharmacological inhibition of BRD4 can attenuate experimental lung fibrosis induced by repetitive TGF-β challenge in a mouse model. These data provide a detailed mechanism for how activated NF-κB and BRD4 control epithelial-mesenchymal transition initiation and transcriptional elongation in model airway epithelial cells in vitro and in a murine pulmonary fibrosis model in vivo. Our data validate BRD4 as an in vivo target for the treatment of pulmonary fibrosis associated with inflammation-coupled remodeling in chronic lung diseases. PMID:27793799

  9. Dietary habits of colorectal neoplasia patients in comparison to their first-degree relatives.

    PubMed

    Kajzrlikova, Ivana Mikoviny; Vitek, Petr; Chalupa, Josef; Dite, Petr

    2014-05-07

    To compare the dietary habits between colorectal neoplasia patients, their first-degree relatives, and unrelated controls. From July 2008 to April 2011, we collected epidemiological data relevant to colorectal cancer from patients with colorectal neoplasias, their first-degree relatives, and also from a control group consisting of people referred for colonoscopy with a negative family history of colorectal cancer and without evidence of neoplasia after colonoscopic examination. The first-degree relatives were divided into two groups following the colonoscopic examination: (1) patients with neoplasia or (2) patients without neoplasia. Dietary habits of all groups were compared. A χ (2) test was used to assess the association between two dichotomous categorical variables. The study groups consisted of 242 patients with colorectal neoplasias (143 men, 99 women; mean age: 64 ± 12 years) and 160 first-degree relatives (66 men, 94 women; mean age: 48 ± 11 years). Fifty-five of the first-degree relatives were found to have a neoplastic lesion upon colonoscopy, while the remaining 105 were without neoplasia. The control group contained 123 individuals with a negative family history for neoplastic lesions (66 men, 57 women; mean age: 54 ± 12 years). Two hypotheses were tested. In the first, the dietary habits of first-degree relatives with neoplasia were more similar to those of patients with neoplasia, while the dietary habits of first-degree relatives without neoplasia were similar to those of the control group. In the second, no sex-related differences in dietary habits were expected between the particular groups. Indeed, no significant differences were observed in the dietary habits between the groups of patients, controls and first-degree relatives with/without neoplastic lesions. Nevertheless, statistically significant sex-related differences were observed in all groups, wherein women had healthier dietary habits than men. In all groups examined, women had

  10. Resveratrol Inhibits the Epidermal Growth Factor-Induced Migration of Osteoblasts: the Suppression of SAPK/JNK and Akt.

    PubMed

    Kawabata, Tetsu; Tokuda, Haruhiko; Fujita, Kazuhiko; Kainuma, Shingo; Sakai, Go; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Otsuka, Takanobu

    2017-01-01

    Resveratrol is a polyphenol enriched in the skins of grapes and berries, that shows various beneficial effects for human health. In the present study, we investigated the mechanism behind the epidermal growth factor (EGF)-induced migration of osteoblast-like MC3T3-E1 cells, and the effect of resveratrol on this cell migration. The cell migration was examined using Boyden chamber, and phosphorylation of each kinase was analyzed by Western blotting. The EGF-induced migration was suppressed by PD98059, an inhibitor of MEK1/2, as well as SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of SAPK/JNK, and deguelin, an inhibitor of Akt. In contrast, rapamycin, an inhibitor of upstream kinase of p70 S6 kinase, and fasudil, an inhibitor of Rho-kinase, hardly affected the migration. Resveratrol significantly reduced the EGF-induced migration in a dose-dependent manner. SRT1720, an SIRT1 activator, suppressed the migration by EGF. In addition, resveratrol markedly attenuated the EGF-induced phosphorylation of SAPK/JNK and Akt without affecting the phosphorylation of p44/p42 MAP kinase or p38 MAP kinase. The phosphorylation of SAPK/JNK and Akt induced by EGF was down-regulated by SRT1720. Our results strongly suggest that resveratrol reduces the EGF-stimulated migration of osteoblasts via suppression of SAPK and Akt, and that the inhibitory effect of resveratrol is mediated in part via SIRT1. © 2017 The Author(s). Published by S. Karger AG, Basel.

  11. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells

    PubMed Central

    Bolton, Eric C.

    2015-01-01

    The androgen receptor (AR) mediates the developmental, physiologic, and pathologic effects of androgens including 5α-dihydrotestosterone (DHT). However, the mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells are not well understood, though they are central to prostate development, homeostasis, and neoplasia. Here, we identify androgen-responsive genes that restrain cell cycle progression and proliferation of human prostate epithelial cell lines (HPr-1AR and PC3-Lenti-AR), and we investigate the mechanisms through which AR regulates their expression. DHT inhibited proliferation of HPr-1AR and PC3-Lenti-AR, and cell cycle analysis revealed a prolonged G1 interval. In the cell cycle, the G1/S-phase transition is initiated by the activity of cyclin D and cyclin-dependent kinase (CDK) complexes, which relieve growth suppression. In HPr-1AR, cyclin D1/2 and CDK4/6 mRNAs were androgen-repressed, whereas CDK inhibitor, CDKN1A, mRNA was androgen-induced. The regulation of these transcripts was AR-dependent, and involved multiple mechanisms. Similar AR-mediated down-regulation of CDK4/6 mRNAs and up-regulation of CDKN1A mRNA occurred in PC3-Lenti-AR. Further, CDK4/6 overexpression suppressed DHT-inhibited cell cycle progression and proliferation of HPr-1AR and PC3-Lenti-AR, whereas CDKN1A overexpression induced cell cycle arrest. We therefore propose that AR-mediated growth suppression of HPr-1AR involves cyclin D1 mRNA decay, transcriptional repression of cyclin D2 and CDK4/6, and transcriptional activation of CDKN1A, which serve to decrease CDK4/6 activity. AR-mediated inhibition of PC3-Lenti-AR proliferation occurs through a similar mechanism, albeit without down-regulation of cyclin D. Our findings provide insight into AR-mediated regulation of prostate epithelial cell proliferation. PMID:26372468

  12. The effect of distance traveled on disease outcomes in gestational trophoblastic neoplasia.

    PubMed

    Clark, Leslie H; Staley, S Allison; Barber, Emma L; Wysham, Weiya Z; Kim, Kenneth H; Soper, John T

    2016-08-01

    Gestational trophoblastic neoplasia is a rare gynecological malignancy often treated at tertiary referral centers. Patients frequently travel long distances to obtain care for gestational trophoblastic neoplasia, which may affect cancer outcomes in these patients. We examined the association between distance traveled to obtain care and disease burden at time of presentation as well as recurrence. We performed a retrospective cohort analysis of all patients diagnosed with gestational trophoblastic neoplasia from January 1995 to June 2015 at a high-volume tertiary referral center. Patients were included if they met International Federation of Gynecology and Obstetrics 2000 criteria for postmolar gestational trophoblastic neoplasia or had choriocarcinoma, placental-site trophoblastic tumor, or epithelioid trophoblastic tumor. Sixty patients were identified. Disease burden at presentation was examined using both the World Health Organization prognostic score and International Federation of Gynecology and Obstetrics. Patients who traveled more than 50 miles were considered long-distance travelers based on previous literature on the effect of distance traveled on cancer outcomes. Demographic, clinical, and pathological data were obtained by chart review. Bivariable comparisons were performed using the χ(2) test or Fisher exact test for categorical variables. The t test or Wilcoxon rank-sum test was used to compare continuous variables when normally or not normally distributed. Most patients presented at stage I (61%) with low-risk gestational trophoblastic neoplasia (70%). Median distance to care was 40 miles (range, 4-384). Eighteen patients (30%) had no insurance and 42 (70%) had either private or public insurance. Patients traveling more than 50 miles for care were more likely to have high-risk gestational trophoblastic neoplasia (46% vs 19%, P = .03), but there was no difference in recurrence (13% vs 11%, P = .89). Patients with high-risk gestational

  13. The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase.

    PubMed Central

    Cavigelli, M; Li, W W; Lin, A; Su, B; Yoshioka, K; Karin, M

    1996-01-01

    Trivalent arsenic (As3+) is highly carcinogenic, but devoid of known mutagenic activity. Therefore, it is likely to act as a tumor promoter. To understand the molecular basis for the tumor-promoting activity of As3+, we examined its effect on transcription factor AP-1, whose activity is stimulated by several other tumor promoters. We found that As3+, but not As5+, which is toxic but not carcinogenic, is a potent stimulator of AP-1 transcriptional activity and an efficient inducer of c-fos and c-jun gene expression. Induction of c-jun and c-fos transcription by As3+ correlates with activation of Jun kinases (JNKs) and p38/Mpk2, which phosphorylate transcription factors that activate these immediate early genes. No effect on ERK activity was observed. As5+, on the other hand, had a negligible effect on JNK or p38/Mpk2 activity. Biochemical analysis and co-transfection experiments strongly suggest that the primary mechanism by which As3+ stimulates JNK activity involves the inhibition of a constitutive dual-specificity JNK phosphatase. This phosphatase activity appears to be responsible for maintaining low basal JNK activity in non-stimulated cells and its inhibition may lead to tumor promotion through induction of proto-oncogenes such as c-jun and c-fos, and stimulation of AP-1 activity. The same phosphatase may also regulate p38/Mpk2 activity. Images PMID:8947050

  14. [Atypical epithelial hyperplasia of the breast: current state of knowledge and clinical practice].

    PubMed

    Lavoué, V; Bertel, C; Tas, P; Bendavid, C; Rouquette, S; Foucher, F; Audrain, O; Bouriel, C; Levêque, J

    2010-02-01

    The diagnosis of atypical epithelial hyperplasia (AEH) increases with breast cancer screening. AEH is divided in three groups: atypical ductal hyperplasia, columnar cell lesions with atypia, lobular neoplasia. The management of women with AEH is not consensual because of uncertainty about their diagnosis related to the type of the biopsy sampling (core needle biopsy or surgical excision) and their controversial clinical signification between risk marker and true precursor of breast cancer. A systematic review of published studies was performed. Medline baseline interrogation was performed with the following keywords: atypical ductal hyperplasia, columnar cell lesions with atypia, lobular neoplasia, core needle biopsy, breast cancer, precursor lesion, hormonal replacement therapy. For each breast lesion, identified publications (English or French) were assessed for clinical practise in epidemiology, diagnosis and patient management. With immunohistochemistry and molecular studies, AEH seems to be precursor of breast cancer. But, epidemiological studies show low rate of breast cancer in women with AEH. AEH were still classified as risk factor of breast cancer. Because of high rate of breast cancer underestimation, surgical excision is necessary after the diagnosis of AEH at core needle biopsy. Surgical oncology rules and collaboration with radiologist are required for this surgery. A second operation was not required due to involved margins by AEH (except with pleiomorphic lobular neoplasia) because local control of breast cancer seems to be unchanged. Besides, hormonal replacement therapy for patient with AEH is not recommended because of lack of studies about this subject. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  15. Loss of miR-223 and JNK Signaling Contribute to Elevated Stathmin in Malignant Pleural Mesothelioma.

    PubMed

    Birnie, Kimberly A; Yip, Yan Y; Ng, Dominic C H; Kirschner, Michaela B; Reid, Glen; Prêle, Cecilia M; Musk, Arthur W Bill; Lee, Y C Gary; Thompson, Philip J; Mutsaers, Steven E; Badrian, Bahareh

    2015-07-01

    Malignant pleural mesothelioma (MPM) is often fatal, and studies have revealed that aberrant miRNAs contribute to MPM development and aggressiveness. Here, a screen of miRNAs identified reduced levels of miR-223 in MPM patient specimens. Interestingly, miR-223 targets Stathmin (STMN1), a microtubule regulator that has been associated with MPM. However, whether miR-223 regulates STMN1 in MPM and the functions of miR-223 and STMN1 in this disease are yet to be determined. STMN1 is also regulated by c-Jun N-terminal kinase (JNK) signaling, but whether this occurs in MPM and whether miR-223 plays a role are unknown. The relationship between STMN1, miR-223, and JNK was assessed using MPM cell lines, cells from pleural effusions, and MPM tissue. Evidence indicates that miR-223 is decreased in all MPM tissue compared with normal/healthy tissue. Conversely, STMN1 expression was higher in MPM cell lines when compared with primary mesothelial cell controls. Following overexpression of miR-223 in MPM cell lines, STMN1 levels were reduced, cell motility was inhibited, and tubulin acetylation induced. Knockdown of STMN1 using siRNAs led to inhibition of MPM cell proliferation and motility. Finally, miR-223 levels increased while STMN1 was reduced following the re-expression of the JNK isoforms in JNK-null murine embryonic fibroblasts, and STMN1 was reduced in MPM cell lines following the activation of JNK signaling. miR-223 regulates STMN1 in MPM, and both are in turn regulated by the JNK signaling pathway. As such, miR-223 and STMN1 play an important role in regulating MPM cell motility and may be therapeutic targets. ©2015 American Association for Cancer Research.

  16. Sarcopenia is associated with an increased risk of advanced colorectal neoplasia.

    PubMed

    Park, Youn Su; Kim, Ji Won; Kim, Byeong Gwan; Lee, Kook Lae; Lee, Jae Kyung; Kim, Joo Sung; Koh, Seong-Joon

    2017-04-01

    Although sarcopenia is associated with an increased risk for mortality after the curative resection of colorectal cancer, its influence on the development of advanced colonic neoplasia remains unclear. This study included 1270 subjects aged 40 years or older evaluated with first-time screening colonoscopy at Seoul National University Boramae Health Care Center from January 2010 to February 2015. Skeletal muscle mass was measured with a body composition analyzer (direct segmental multifrequency bioelectrical impedance analysis method). Multiple logistic regression analysis was performed to determine whether sarcopenia is associated with advanced colorectal neoplasia. Of 1270 subjects, 139 (10.9%) were categorized into the sarcopenia group and 1131 (89.1%) into the non-sarcopenia group. In the non-sarcopenia group, 55 subjects (4.9%) had advanced colorectal neoplasia. However, in the sarcopenia group, 19 subjects (13.7%) had advanced colorectal neoplasia, including 1 subject with invasive colorectal cancer (0.7%). In addition, subjects with sarcopenia had a higher prevalence of advanced adenoma (P < 0.001) than those without sarcopenia. According to the multiple logistic regression analysis adjusted for variable confounders, age (odds ratio 1.062, 95% confidence interval 1.032-1.093; P < 0.001), male sex (odds ratio 1.749, 95% confidence interval 1.008-3.036; P = 0.047), and sarcopenia (odds ratio 2.347, 95% confidence interval 1.311-4.202; P = 0.004) were associated with an advanced colorectal neoplasia. Sarcopenia is associated with an increased risk of advanced colorectal neoplasia.

  17. Syk-mediated tyrosine phosphorylation of mule promotes TNF-induced JNK activation and cell death.

    PubMed

    Lee, C K; Yang, Y; Chen, C; Liu, J

    2016-04-14

    The transcription factor Miz1 negatively regulates TNF-induced JNK activation and cell death by suppressing TRAF2 K63-polyubiquitination; upon TNF stimulation, the suppression is relieved by Mule/ARF-BP1-mediated Miz1 ubiquitination and subsequent degradation. It is not known how Mule is activated by TNF. Here we report that TNF activates Mule by inducing the dissociation of Mule from its inhibitor ARF. ARF binds to and thereby inhibits the E3 ligase activity of Mule in the steady state. TNF induces tyrosine phosphorylation of Mule, which subsequently dissociates from ARF and becomes activated. Inhibition of Mule phosphorylation by silencing of the Spleen Tyrosine Kinase (Syk) prevents its dissociation from ARF, thereby inhibiting Mule E3 ligase activity and TNF-induced JNK activation and cell death. Our data provides a missing link in TNF signaling pathway that leads to JNK activation and cell death.

  18. Early Molecular Events in Murine Gastric Epithelial Cells Mediated by Helicobacter pylori CagA.

    PubMed

    Banerjee, Aditi; Basu, Malini; Blanchard, Thomas G; Chintalacharuvu, Subba R; Guang, Wei; Lillehoj, Erik P; Czinn, Steven J

    2016-10-01

    Murine models of Helicobacter pylori infection are used to study host-pathogen interactions, but lack of severe gastritis in this model has limited its usefulness in studying pathogenesis. We compared the murine gastric epithelial cell line GSM06 to the human gastric epithelial AGS cell line to determine whether similar events occur when cultured with H. pylori. The lysates of cells infected with H. pylori isolates or an isogenic cagA-deficient mutant were assessed for translocation and phosphorylation of CagA and for activation of stress pathway kinases by immunoblot. Phosphorylated CagA was detected in both cell lines within 60 minutes. Phospho-ERK 1/2 was present within several minutes and distinctly present in GSM06 cells at 60 minutes. Similar results were obtained for phospho-JNK, although the 54 kDa phosphoprotein signal was dominant in AGS, whereas the lower molecular weight band was dominant in GSM06 cells. These results demonstrate that early events in H. pylori pathogenesis occur within mouse epithelial cells similar to human cells and therefore support the use of the mouse model for the study of acute CagA-associated host cell responses. These results also indicate that reduced disease in H. pylori-infected mice may be due to lack of the Cag PAI, or by differences in the mouse response downstream of the initial activation events. © 2016 John Wiley & Sons Ltd.

  19. PLCγ2 promotes apoptosis while inhibits proliferation in rat hepatocytes through PKCD/JNK MAPK and PKCD/p38 MAPK signalling.

    PubMed

    Chen, Xiaoguang; Lv, Qiongxia; Ma, Jun; Liu, Yumei

    2018-02-11

    The PLCG2 (PLCγ2) gene is a member of PLC gene family encoding transmembrane signalling enzymes involved in various biological processes including cell proliferation and apoptosis. Our earlier study indicated that PLCγ2 may be involved in the termination of regeneration of the liver which is mainly composed of hepatocytes, but its exact biological function and molecular mechanism in liver regeneration termination remains unclear. This study aims to examine the role of PLCγ2 in the growth of hepatocytes. A recombinant adenovirus expressing PLCγ2 was used to infect primary rat hepatocytes. PLCγ2 mRNA and protein levels were detected by qRT-PCR and Western blot. The subcellular location of PLCγ2 protein was tested by an immunofluorescence assay. The proliferation of hepatocytes was measured by MTT assay. The cell cycle and apoptosis were analysed by flow cytometry. Caspase-3, -8 and -9 activities were measured by a spectrophotometry method. Phosphorylation levels of PKCD, JNK and p38 in the infected cells were detected by Western blot. The possible mechanism underlying the role of PLCγ2 in hepatocyte growth was also explored by adding a signalling pathway inhibitor. Hepatocyte proliferation was dramatically reduced, while cell apoptosis was remarkably increased. The results demonstrated that PLCγ2 increased the phosphorylation of PKCD, p38 and JNK in rat hepatocytes. After PKCD activity was inhibited by the inhibitor Go 6983, the levels of both p-p38 and p-JNK MAPKs significantly decreased, and PLCγ2-induced cell proliferation inhibition and cell apoptosis were obviously reversed. This study showed that PLCγ2 regulates hepatocyte growth through PKCD-dependently activating p38 MAPK and JNK MAPK pathways; this result was experimentally based on the further exploration of the effect of PLCγ2 on hepatocyte growth in vivo. © 2018 John Wiley & Sons Ltd.

  20. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells

    PubMed Central

    Bhattacharya, Sujoy; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF- /CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner. PMID:24242917

  1. Different signal pathways regulate IL-1β-induced mature and primary miRNA-146a expression in human alveolar epithelial cells.

    PubMed

    Jiang, Xiaoying

    2014-09-01

    It was known that IL-1β-induced rapid expression of miR-146a, which regulated the secretion of inflammatory chemokines in human A549 alveolar epithelial cells. However, little is known about the level of primary miR-146a and the downstream biogenesis of miR-146a in A549 cells. We examined the levels of primary miR-146a and mature miR-146a in A549 cells following treatment with pharmacological inhibitors of IKK-2 (TPCA-1), MEK-1/2 (PD098059), JNK-1/2 (SP600125), p38 MAPK (SB 203580) and PI-3k (LY294002). Our studies showed that exposure to PD98059, TPCA-1 and LY294002 resulted in a dose-dependent reduction in the expression of mature miR-146a while the primary miR-146a expression was not changed by any inhibitor. Western blot showed that IL-1β induced an increase of TRBP at 30 min, following by an extended expression at 24 h compared to the non-IL-1β controls in A549 cells. In conclusion, our studies indicated that miR-146a expression in alveolar epithelial cells was regulated at the post-transcriptional level via a MEK-1/2 and IKK2 pathway, and also for the first time via PI-3k pathway. The longer expression of TRBP following stimulation with IL-1β suggests that TRBP might play a role in the process of regulating the processing of primary miR-146a to mature miR-146a in human alveolar epithelial cells.

  2. Hydraulic fracture during epithelial stretching

    NASA Astrophysics Data System (ADS)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  3. Hydraulic fracture during epithelial stretching

    PubMed Central

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-01-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression maneuvers. After pressure equilibration cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics. PMID:25664452

  4. Genetics of Endocrine and Neuroendocrine Neoplasias (PDQ®)—Health Professional Version

    Cancer.gov

    Genetics of Endocrine and Neuroendocrine Neoplasias discusses inherited syndromes multiple endocrine neoplasia types 1, 2, and 4 (MEN1, MEN2, MEN4), familial pheochromocytoma and paraganglioma, Carney-Stratakis syndrome, and familial nonmedullary thyroid cancer. Learn more in this clinician summary.

  5. Magnolol inhibits tumor necrosis factor-α-induced ICAM-1 expression via suppressing NF-κB and MAPK signaling pathways in human lung epithelial cells.

    PubMed

    Chunlian, Wu; Heyong, Wang; Jia, Xu; Jie, Huang; Xi, Chen; Gentao, Liu

    2014-12-01

    Magnolol is a traditional Chinese medicine from the root and bark of Magnolia officinalis. It has long been used to treat anxiety, cough, headache and allergies, as well as a variety of inflammations. Lung inflammation is a key event in the pathogenesis of asthma and chronic obstructive pulmonary disease. The present study sought to examine the effects of magnolol on tumor necrosis factor (TNF)-α-induced upregulation of intercellular adhesion molecule-1 (ICAM-1), activation of the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathway in cultured human pulmonary epithelial cells, and adhesion of human macrophage-like U937 cells to A549 cells. A549 cells were incubated with magnolol at 25 and 50 μmol/l. Then, 20 ng/ml TNF-α was used to activate the cells. Magnolol inhibited the growth of human pulmonary epithelial A549 cells in a dose- and time-dependent manner. Magnolol suppressed the adhesion of U937 cells to TNF-α-induced A549 cells. In cultured human pulmonary epithelial A549 cells, magnolol decreased TNF-α-induced upregulation of ICAM-1. Magnolol repressed TNF-α-induced activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways in A549 cells by inhibiting phosphorylation of NF-κB, p38, extracellular signal-regulated kinase (ERK) 1/2, and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). These findings support the hypothesis that magnolol inhibits the inflammatory process in lung epithelial A549 cells by suppressing the ICAM-1 and NF-κB and MAPK signaling pathways. Taken together, these results indicate that magnolol offers significant potential as a therapeutic treatment for inflammatory diseases of the lungs including asthma, sepsis, and chronic obstructive pulmonary disease.

  6. Cross-sectional study of anal intraepithelial lesions in women with cervical neoplasia without HIV.

    PubMed

    Heráclio, Sandra A; de Souza, Alex S R; de Souza, Paulo R E; Katz, Leila; Lima Junior, Sergio F; Amorim, Melania M R

    2018-02-01

    To evaluate the prevalence of anal intraepithelial lesions and associated risk factors in women with cervical neoplasia. The present cross-sectional study enrolled patients with intraepithelial or invasive cervical neoplasia who had been referred to the lower genital tract pathology outpatient department of the Instituto de Medicina Integral Prof. Fernando Figueira, Recife, Brazil, between December 1, 2008, and December 31, 2009; patients with HIV infections were excluded. All participants underwent anal cytology and high-resolution anoscopy; sociodemographic and clinical risk factors were identified using multivariate analysis. There were 324 patients included and 37 (11.4%) had anal intraepithelial neoplasia. Factors associated with anal intraepithelial neoplasia in the multivariate analysis were being older than 35 years of age (P=0.002), having completed no more than 4 years of education (P=0.012), anomalous anal cytology (P=0.003), and anomalous high-resolution anoscopy findings (P<0.001); subclinical HPV lesions on vulvoscopy (P=0.057) were not associated with anal intraepithelial neoplasia. The prevalence of anal intraepithelial neoplasia was high among patients with cervical neoplasia who did not have HIV, particularly patients older than 35 years. © 2017 International Federation of Gynecology and Obstetrics.

  7. Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway

    PubMed Central

    Vitorino, Marta; Silva, Ana Cristina; Inácio, José Manuel; Ramalho, José Silva; Gur, Michal; Fainsod, Abraham; Steinbeisser, Herbert; Belo, José António

    2015-01-01

    Protein Kinase Domain Containing, Cytoplasmic (PKDCC) is a protein kinase which has been implicated in longitudinal bone growth through regulation of chondrocytes formation. Nevertheless, the mechanism by which this occurs remains unknown. Here, we identified two new members of the PKDCC family, Pkdcc1 and Pkdcc2 from Xenopus laevis. Interestingly, our knockdown experiments revealed that these two proteins are both involved on blastopore and neural tube closure during gastrula and neurula stages, respectively. In vertebrates, tissue polarity and cell movement observed during gastrulation and neural tube closure are controlled by Wnt/Planar Cell Polarity (PCP) molecular pathway. Our results showed that Pkdcc1 and Pkdcc2 promote the recruitment of Dvl to the plasma membrane. But surprisingly, they revealed different roles in the induction of a luciferase reporter under the control of Atf2 promoter. While Pkdcc1 induces Atf2 expression, Pkdcc2 does not, and furthermore inhibits its normal induction by Wnt11 and Wnt5a. Altogether our data show, for the first time, that members of the PKDCC family are involved in the regulation of JNK dependent Wnt/PCP signaling pathway. PMID:26270962

  8. In vivo and in vitro hyperspectral imaging of cervical neoplasia

    NASA Astrophysics Data System (ADS)

    Wang, Chaojian; Zheng, Wenli; Bu, Yanggao; Chang, Shufang; Tong, Qingping; Zhang, Shiwu; Xu, Ronald X.

    2014-02-01

    Cervical cancer is a prevalent disease in many developing countries. Colposcopy is the most common approach for screening cervical intraepithelial neoplasia (CIN). However, its clinical efficacy heavily relies on the examiner's experience. Spectroscopy is a potentially effective method for noninvasive diagnosis of cervical neoplasia. In this paper, we introduce a hyperspectral imaging technique for noninvasive detection and quantitative analysis of cervical neoplasia. A hyperspectral camera is used to collect the reflectance images of the entire cervix under xenon lamp illumination, followed by standard colposcopy examination and cervical tissue biopsy at both normal and abnormal sites in different quadrants. The collected reflectance data are calibrated and the hyperspectral signals are extracted. Further spectral analysis and image processing works are carried out to classify tissue into different types based on the spectral characteristics at different stages of cervical intraepithelial neoplasia. The hyperspectral camera is also coupled with a lab microscope to acquire the hyperspectral transmittance images of the pathological slides. The in vivo and the in vitro imaging results are compared with clinical findings to assess the accuracy and efficacy of the method.

  9. Immunosignature Differentiation of Non-Infectious Meningoencephalomyelitis and Intracranial Neoplasia in Dogs.

    PubMed

    Lake, Bathilda B; Rossmeisl, John Henry; Cecere, Julie; Stafford, Phillip; Zimmerman, Kurt L

    2018-01-01

    A variety of inflammatory conditions of unknown cause (meningoencephalomyelitis of unknown etiology-MUE) and neoplastic diseases can affect the central nervous system (CNS) of dogs. MUE can mimic intracranial neoplasia both clinically, radiologically and even in some cases, histologically. Serum immunosignature protein microarray assays have been used in humans to identify CNS diseases such as Alzheimer's and neoplasia, and in dogs, to detect lymphoma and its progression. This study evaluated the effectiveness of immunosignature profiles for distinguishing between three cohorts of dogs: healthy, intracranial neoplasia, and MUE. Using the learned peptide patterns for these three cohorts, classification prediction was evaluated for the same groups using a 10-fold cross validation methodology. Accuracy for classification was 100%, as well as 100% specific and 100% sensitive. This pilot study demonstrates that immunosignature profiles may help serve as a minimally invasive tool to distinguish between MUE and intracranial neoplasia in dogs.

  10. Endothelial NOS-dependent activation of c-Jun NH(2)- terminal kinase by oxidized low-density lipoprotein

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Levonen, A. L.; Moellering, D.; Ramachandran, A.; Patel, R. P.; Jo, H.; Darley-Usmar, V. M.

    2001-01-01

    Oxidized low-density lipoprotein (oxLDL) is known to activate a number of signal transduction pathways in endothelial cells. Among these are the c-Jun NH(2)-terminal kinase (JNK), also known as stress-activated protein kinase, and extracellular signal-regulated kinase (ERK). These mitogen-activated protein kinases (MAP kinase) determine cell survival in response to environmental stress. Interestingly, JNK signaling involves redox-sensitive mechanisms and is activated by reactive oxygen and nitrogen species derived from both NADPH oxidases, nitric oxide synthases (NOS), peroxides, and oxidized low-density lipoprotein (oxLDL). The role of endothelial NOS (eNOS) in the activation of JNK in response to oxLDL has not been examined. Herein, we show that on exposure of endothelial cells to oxLDL, both ERK and JNK are activated through independent signal transduction pathways. A key role of eNOS activation through a phosphatidylinositol-3-kinase-dependent mechanism leading to phosphorylation of eNOS is demonstrated for oxLDL-dependent activation of JNK. Moreover, we show that activation of ERK by oxLDL is critical in protection against the cytotoxicity of oxLDL.

  11. Quercetin and rutin as inhibitors of azoxymethanol-induced colonic neoplasia.

    PubMed

    Deschner, E E; Ruperto, J; Wong, G; Newmark, H L

    1991-07-01

    Dietary quercetin (QU) and rutin (RU), phenolic flavonoids commonly found in many fruits and vegetables, were provided to CF1 female mice for 50 weeks to assess the ability of these compounds to inhibit azoxymethanol (AOM)-induced colonic neoplasia. In addition to a control group fed an AIN 76A diet, five other groups received that diet to which was added either 0.1, 0.5 or 2.0% QU and 1.0 or 4.0% RU. Acute studies revealed that, among saline controls, no alteration of any proliferative parameters of colonic epithelial cells was observed among those groups receiving any dose of QU or RU. However, among the AOM-treated mice, both 2% QU and 4% RU significantly reduced hyperproliferation and inhibited the shift of S-phase cells to the middle and upper portion of crypts. Moreover, mice fed these concentrations of QU and RU had significantly fewer AOM-induced focal areas of dysplasia (FADs) than those fed the control diet (0.2 +/- 0.4 and 0.4 +/- 0.5 versus 3.6 +/- 2.3 respectively). Tumors occurred more frequently in the distal half of the colon, regardless of treatment. Compared with controls, mice fed 2% QU had a significantly reduced tumor incidence (25.0% versus 5.9%, P = 0.03). Those fed 4% RU showed only a trend toward inhibition (25% versus 9.7%, P = 0.11). Nevertheless, both 2% QU and 4% RU suppressed tumor multiplicity, i.e. fewer tumors/animal arose in these groups than in the AOM-treated control mice (1.2 versus 2.3, P = 0.005; 1.1 versus 2.3, P = 0.003 respectively). Clearly, QU and RU exhibit significant activity in reducing AOM-induced hyperproliferation of colonic epithelial cells and FAD incidence. This behavior successfully forecast the ability of both flavonoids to suppress tumor multiplicity and ultimately tumor development.

  12. Electroacupuncture attenuates mechanical allodynia by suppressing the spinal JNK1/2 pathway in a rat model of inflammatory pain.

    PubMed

    Du, Jun-Ying; Fang, Jian-Qiao; Liang, Yi; Fang, Jun-Fan

    2014-09-01

    Electroacupuncture (EA) has a substantial analgesic effect on inflammatory pain induced by complete Freund's adjuvant (CFA). The activation of the c-Jun N-terminal kinase 1/2 (JNK1/2) signal transduction pathway in the spinal cord is associated with inflammatory pain. However, the relationship between EA's analgesic effect and the JNK1/2 signal transduction pathway in the inflammatory pain remain unclear. In the present study, we used the established rat model of CFA-induced inflammatory pain to investigate the role of the spinal JNK1/2 pathway in EA-mediated analgesia. We observed a decrease in paw withdrawal thresholds and an increase in paw edema at 1 and 3 days after injecting CFA into the right hindpaw. CFA, 3 days after injection, upregulated expression of phospho-c-Jun N-terminal kinase1/2 (p-JNK1/2) protein and its downstream targets, the transcriptional regulators p-c-Jun and activator protein-1 (AP-1), as well as cyclooxygenase-2 (COX-2) and the transient receptor potential vanilloid 1 (TRPV1). EA significantly alleviated CFA-induced inflammatory pain. In addition, EA reduced p-JNK1/2 protein levels and COX-2 mRNA expressions, a degree of down-regulated p-c-Jun protein level and AP-1 DNA binding activity in the spinal dorsal horn of CFA-administered animals, but it had no effect on TRPV1 mRNA expression. Furthermore, EA and the JNK inhibitor SP600125 synergistically inhibited CFA-induced hyperalgesia and suppressed the COX-2 mRNA expression in the spinal dorsal horn. Our findings indicate that EA alleviates inflammatory pain behavior, at least in part, by reducing COX-2 expression in the spinal cord via the JNK1/2 signaling pathway. Inactivation of the spinal JNK1/2 signal transduction pathway maybe the potential mechanism of EA's antinociception in the inflammatory pain model. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The Role of Photodynamic Therapy in the Treatment of Vulvar Intraepithelial Neoplasia

    PubMed Central

    Tosti, Giulio; Iacobone, Anna Daniela; Preti, Eleonora Petra; Vaccari, Sabina; Barisani, Alessia; Pennacchioli, Elisabetta

    2018-01-01

    Background: vulvar intraepithelial neoplasia is a non-invasive precursor lesion found in 50–70% of patients affected by vulvar squamous cell carcinoma. In the past, radical surgery was the standard treatment for vulvar intraepithelial neoplasia, however, considering the psychological and physical morbidities related to extensive surgery, several less aggressive treatment modalities have been proposed since the late 1970s. Photodynamic therapy is an effective and safe treatment for cutaneous non-melanoma skin cancer, with favorable cosmetic outcomes. Methods: in the present paper, the results of selected studies on photodynamic therapy in the treatment of vulvar intraepithelial neoplasia are reported and discussed. Results: Overall, complete histological response rates ranged between 20% and 67% and symptom response rates ranged between 52% and 89% according to different studies and case series. Conclusions: the real benefit of photodynamic therapy in the setting of vulvar intraepithelial neoplasia lies in its ability to treat multi-focal disease with minimal tissue destruction, preservation of vulvar anatomy and excellent cosmetic outcomes. These properties explain why photodynamic therapy is an attractive option for vulvar intraepithelial neoplasia treatment. PMID:29393881

  14. A score to estimate the likelihood of detecting advanced colorectal neoplasia at colonoscopy

    PubMed Central

    Kaminski, Michal F; Polkowski, Marcin; Kraszewska, Ewa; Rupinski, Maciej; Butruk, Eugeniusz; Regula, Jaroslaw

    2014-01-01

    Objective This study aimed to develop and validate a model to estimate the likelihood of detecting advanced colorectal neoplasia in Caucasian patients. Design We performed a cross-sectional analysis of database records for 40-year-old to 66-year-old patients who entered a national primary colonoscopy-based screening programme for colorectal cancer in 73 centres in Poland in the year 2007. We used multivariate logistic regression to investigate the associations between clinical variables and the presence of advanced neoplasia in a randomly selected test set, and confirmed the associations in a validation set. We used model coefficients to develop a risk score for detection of advanced colorectal neoplasia. Results Advanced colorectal neoplasia was detected in 2544 of the 35 918 included participants (7.1%). In the test set, a logistic-regression model showed that independent risk factors for advanced colorectal neoplasia were: age, sex, family history of colorectal cancer, cigarette smoking (p<0.001 for these four factors), and Body Mass Index (p=0.033). In the validation set, the model was well calibrated (ratio of expected to observed risk of advanced neoplasia: 1.00 (95% CI 0.95 to 1.06)) and had moderate discriminatory power (c-statistic 0.62). We developed a score that estimated the likelihood of detecting advanced neoplasia in the validation set, from 1.32% for patients scoring 0, to 19.12% for patients scoring 7–8. Conclusions Developed and internally validated score consisting of simple clinical factors successfully estimates the likelihood of detecting advanced colorectal neoplasia in asymptomatic Caucasian patients. Once externally validated, it may be useful for counselling or designing primary prevention studies. PMID:24385598

  15. JNK and NADPH Oxidase Involved in Fluoride-Induced Oxidative Stress in BV-2 Microglia Cells

    PubMed Central

    Yan, Ling; Liu, Shengnan; Wang, Chen; Wang, Fei; Song, Yingli; Yan, Nan; Xi, Shuhua; Liu, Ziyou; Sun, Guifan

    2013-01-01

    Excessive fluoride may cause central nervous system (CNS) dysfunction, and oxidative stress is a recognized mode of action of fluoride toxicity. In CNS, activated microglial cells can release more reactive oxygen species (ROS), and NADPH oxidase (NOX) is the major enzyme for the production of extracellular superoxide in microglia. ROS have been characterized as an important secondary messenger and modulator for various mammalian intracellular signaling pathways, including the MAPK pathways. In this study we examined ROS production and TNF-α, IL-1β inflammatory cytokines releasing, and the expression of MAPKs in BV-2 microglia cells treated with fluoride. We found that fluoride increased JNK phosphorylation level of BV-2 cells and pretreatment with JNK inhibitor SP600125 markedly reduced the levels of intracellular O2 ·− and NO. NOX inhibitor apocynin and iNOS inhibitor SMT dramatically decreased NaF-induced ROS and NO generations, respectively. Antioxidant melatonin (MEL) resulted in a reduction in JNK phosphorylation in fluoride-stimulated BV-2 microglia. The results confirmed that NOX and iNOS played an important role in fluoride inducing oxidative stress and NO production and JNK took part in the oxidative stress induced by fluoride and meanwhile also could be activated by ROS in fluoride-treated BV-2 cells. PMID:24072958

  16. Host control of human papillomavirus infection and disease.

    PubMed

    Doorbar, John

    2018-02-01

    Most human papillomaviruses cause inapparent infections, subtly affecting epithelial homeostasis, to ensure genome persistence in the epithelial basal layer. As with conspicuous papillomas, these self-limiting lesions shed viral particles to ensure population level maintenance and depend on a balance between viral gene expression, immune cell stimulation and immune surveillance for persistence. The complex immune evasion strategies, characteristic of high-risk HPV types, also allow the deregulated viral gene expression that underlies neoplasia. Neoplasia occurs at particular epithelial sites where vulnerable cells such as the reserve or cuboidal cells of the cervical transformation zone are found. Beta papillomavirus infection can also predispose an individual with immune deficiencies to the development of cancers. The host control of HPV infections thus involves local interactions between keratinocytes and the adaptive immune response. Effective immune detection and surveillance limits overt disease, leading to HPV persistence as productive microlesions or in a true latent state. Copyright © 2017. Published by Elsevier Ltd.

  17. Microwave ablation for treatment of hepatic neoplasia in five dogs.

    PubMed

    Yang, Toni; Case, J Brad; Boston, Sarah; Dark, Michael J; Toskich, Beau

    2017-01-01

    CASE DESCRIPTION 5 dogs between 9 and 11 years of age were evaluated for treatment of primary (n = 2) or metastatic (3) hepatic neoplasia. CLINICAL FINDINGS Patients were evaluated on an elective (n = 3) or emergency (2) basis. Two dogs with primary hepatic neoplasia were evaluated because of lethargy and inappetence. One dog was referred after an enlarged anal sac was detected via palpation per rectum during a routine physical examination. Two dogs were evaluated on an emergency basis because of lethargy and weakness, and hemoabdomen in the absence of a history of trauma was detected. All 5 dogs underwent thoracic radiography and abdominal ultrasonography, with CT performed in both dogs with primary hepatic neoplasia. All dogs had preoperative evidence of abdominal neoplasia, and none had evidence of thoracic metastasis. TREATMENT AND OUTCOME All dogs underwent ventral midline laparotomy and had diffuse hepatic neoplasia that precluded complete resection. Locoregional treatment with MWA was applied to hepatic lesions (0.5 to 2.5 cm diameter) without procedural complications. Histopathologic diagnoses were biliary adenocarcinoma (n = 1), hemangiosarcoma (2), hepatocellular carcinoma (1), and apocrine gland adenocarcinoma (1). CLINICAL RELEVANCE MWA is being increasingly used as an adjunct in the surgical treatment of human patients with primary and metastatic liver disease. Results of the present small case series suggested that MWA is feasible and potentially effective as an adjunctive treatment for appropriately selected dogs with nonresectable hepatic tumors. Further investigation is indicated.

  18. N-Acetylcysteine Attenuates Ischemia-Reperfusion-Induced Apoptosis and Autophagy in Mouse Liver via Regulation of the ROS/JNK/Bcl-2 Pathway

    PubMed Central

    Xia, Yujing; Dai, Weiqi; Wang, Fan; Shen, Miao; Cheng, Ping; Wang, Junshan; Lu, Jie; Zhang, Yan; Yang, Jing; Zhu, Rong; Zhang, Huawei; Li, Jingjing; Zheng, Yuanyuan; Zhou, Yingqun; Guo, Chuanyong

    2014-01-01

    Background Hepatic ischemia–reperfusion injury (HIRI) remains a pivotal clinical problem after hemorrhagic shock, transplantation, and some types of toxic hepatic injury. Apoptosis and autophagy play important roles in cell death during HIRI. It is also known that N-acetylcysteine (NAC) has significant pharmacologic effects on HIRI including elimination of reactive oxygen species (ROS) and attenuation of hepatic apoptosis. However, the effects of NAC on HIRI-induced autophagy have not been reported. In this study, we evaluated the effects of NAC on autophagy and apoptosis in HIRI, and explored the possible mechanism involved. Methods A mouse model of segmental (70%) hepatic warm ischemia was adopted to determine hepatic injury. NAC (150 mg/kg), a hepatoprotection agent, was administered before surgery. We hypothesized that the mechanism of NAC may involve the ROS/JNK/Bcl-2 pathway. We evaluated the expression of JNK, P-JNK, Bcl-2, Beclin 1 and LC3 by western blotting and immunohistochemical staining. Autophagosomes were evaluated by transmission electron microscopy (TEM). Results We found that ALT, AST and pathological changes were significantly improved in the NAC group. Western blotting analysis showed that the expression levels of Beclin 1 and LC3 were significantly decreased in NAC-treated mice. In addition, JNK, p-JNK, Bax, TNF-α, NF-κB, IL2, IL6 and levels were also decreased in NAC-treated mice. Conclusion NAC can prevent HIRI-induced autophagy and apoptosis by influencing the JNK signal pathway. The mechanism is likely to involve attenuation of JNK and p-JNK via scavenged ROS, an indirect increase in Bcl-2 level, and finally an alteration in the balance of Beclin 1 and Bcl-2. PMID:25264893

  19. JIP3 deficiency attenuates cardiac hypertrophy by suppression of JNK pathway.

    PubMed

    Ma, Qinghua; Liu, Yuxiu; Chen, Lianghua

    2018-06-15

    Pathological cardiac hypertrophy is a leading cause of morbidity and mortality worldwide; however, our understanding of the molecular mechanisms revealing the disease is still unclear. In the present study, we suggested that c-Jun N-terminal kinase (JNK)-interacting protein 3 (JIP3), involved in various cellular processes, played an essential role in regulating pathological cardiac hypertrophy through in vivo and in vitro studies. JIP3 was highly expressed in human hearts with hypertrophic cardiomyopathy (HCM), and in mouse hypertrophic hearts. Following, the wild type (WT) and JIP3-knockout (KO) mice subjected to aortic banding (AB) challenge were used as animal models with cardiac hypertrophy. The results showed that JIP3-KO mice after AB operation exhibited attenuated cardiac function, reduced fibrosis levels and decreased hypertrophic marker proteins, including atrial natriuretic peptides (Anp) and brain/B-type natriuretic peptides (Bnp) and β-myosin heavy chain (β-Mhc). Loss of JIP3 also ameliorated oxidative stress, inflammatory response, apoptosis and endoplasmic reticulum (ER) stress in hearts of mice after AB surgery. Consistently, the expressions of ER stress-related molecules, such as phosphorylated-α-subunit of the eukaryotic initiation factor-2 (eIF2α), glucose-regulated protein (GRP) 78 and C/-EBP homologous protein (CHOP), were markedly decreased by JIP3-deficiency in hearts of AB-operated mice. JNK and its down-streaming signal of p90rsk was highly activated by AB operation in WT mice, while being significantly reversed by JIP3-ablation. Intriguingly, the in vitro results showed that promoting JNK activation by using its activator of anisomycin enhanced AngII-stimulated ER stress, oxidative stress, apoptosis and inflammatory response in cardiomyocytes isolated from WT mice. However, JIP3-KO-attenuated these pathologies was rescued by anisomycin treatment in AngII-incubated cardiomyocytes. Together, the findings indicated that blockage of JIP3

  20. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS-Ca(2+)-JNK mitochondrial pathways.

    PubMed

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao; Cheng, Dai; Ma, Xiaolei; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2015-01-24

    Eicosapentaenoic acid (EPA), a well-known dietary n-3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca(2+)]c accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca(2+)]c generation, moreover, generation of ROS, overload of mitochondrial [Ca(2+)]c, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP and activation of caspase-9 and caspase-3. These results suggest that EPA induces apoptosis through ROS-Ca(2+)-JNK mitochondrial pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells.

    PubMed

    Sun, Wen; Wu, Xiaxia; Gao, Hongwei; Yu, Jie; Zhao, Wenwen; Lu, Jin-Jian; Wang, Jinhua; Du, Guanhua; Chen, Xiuping

    2017-07-01

    Necroptosis is a form of programmed necrosis mediated by signaling complexes with receptor-interacting protein 1 (RIP1) and RIP3 kinases as the main mediators. However, the underlying execution pathways of this phenomenon have yet to be elucidated in detail. In this study, a RIP1/RIP3 complex was formed in 2-methoxy-6-acetyl-7-methyljuglone (MAM)-treated HCT116 and HT29 colon cancer cells. With this formation, mitochondrial reactive oxygen species (ROS) levels increased, mitochondrial depolarization occurred, and ATP concentrations decreased. This process was identified as necroptosis. This finding was confirmed by experiments showing that MAM-induced cell death was attenuated by the pharmacological or genetic blockage of necroptosis signaling, including RIP1 inhibitor necrostatin-1s (Nec-1s) and siRNA-mediated gene silencing of RIP1 and RIP3, but was unaffected by caspase inhibitor z-vad-fmk or necrosis inhibitor 2-(1H-Indol-3-yl)-3-pentylamino-maleimide (IM54). Transmission electron microscopy (TEM) analysis further revealed the ultrastructural features of MAM-induced necroptosis. MAM-induced RIP1/RIP3 complex triggered necroptosis through cytosolic calcium (Ca 2+ ) accumulation and sustained c-Jun N-terminal kinase (JNK) activation. Both calcium chelator BAPTA-AM and JNK inhibitor SP600125 could attenuate necroptotic features, including mitochondrial ROS elevation, mitochondrial depolarization, and ATP depletion. 2-thenoyltrifluoroacetone (TTFA), which is a mitochondrial complex II inhibitor, was found to effectively reverse both MAM induced mitochondrial ROS generation and cell death, indicating the complex II was the ROS-producing site. The essential role of mitochondrial ROS was confirmed by the protective effect of overexpression of manganese superoxide dismutase (MnSOD). MAM-induced necroptosis was independent of TNFα, p53, MLKL, and lysosomal membrane permeabilization. In summary, our study demonstrated that RIP1/RIP3 complex-triggered cytosolic calcium

  2. Involvement of p38 MAPK- and JNK-modulated expression of Bcl-2 and Bax in Naja nigricollis CMS-9-induced apoptosis of human leukemia K562 cells.

    PubMed

    Chen, Ying-Jung; Liu, Wen-Hsin; Kao, Pei-Hsiu; Wang, Jeh-Jeng; Chang, Long-Sen

    2010-06-15

    CMS-9, a phospholipase A(2) (PLA(2)) isolated from Naja nigricollis venom, induced apoptosis of human leukemia K562 cells, characterized by mitochondrial depolarization, modulation of Bcl-2 family members, cytochrome c release and activation of caspases 9 and 3. Moreover, an increase in intracellular Ca2+ concentration and the production of reactive oxygen species (ROS) was noted. Pretreatment with BAPTA-AM (Ca2+ chelator) and N-acetylcysteine (NAC, ROS scavenger) proved that Ca2+ was an upstream event in inducing ROS generation. Upon exposure to CMS-9, activation of p38 MAPK and JNK was observed in K562 cells. BAPTA-AM or NAC abrogated CMS-9-elicited p38 MAPK and JNK activation, and rescued viability of CMS-9-treated K562 cells. SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) suppressed CMS-9-induced dissipation of mitochondrial membrane potential, Bcl-2 down-regulation, Bax up-regulation and increased mitochondrial translocation of Bax. Inactivation of PLA(2) activity reduced drastically the cytotoxicity of CMS-9, and a combination of lysophosphatidylcholine and stearic acid mimicked the cytotoxic effects of CMS-9. Taken together, our data suggest that CMS-9-induced apoptosis of K562 cells is catalytic activity-dependent and is mediated through mitochondria-mediated death pathway triggered by Ca2+/ROS-evoked p38 MAPK and JNK activation. 2010 Elsevier Ltd. All rights reserved.

  3. A score to estimate the likelihood of detecting advanced colorectal neoplasia at colonoscopy.

    PubMed

    Kaminski, Michal F; Polkowski, Marcin; Kraszewska, Ewa; Rupinski, Maciej; Butruk, Eugeniusz; Regula, Jaroslaw

    2014-07-01

    This study aimed to develop and validate a model to estimate the likelihood of detecting advanced colorectal neoplasia in Caucasian patients. We performed a cross-sectional analysis of database records for 40-year-old to 66-year-old patients who entered a national primary colonoscopy-based screening programme for colorectal cancer in 73 centres in Poland in the year 2007. We used multivariate logistic regression to investigate the associations between clinical variables and the presence of advanced neoplasia in a randomly selected test set, and confirmed the associations in a validation set. We used model coefficients to develop a risk score for detection of advanced colorectal neoplasia. Advanced colorectal neoplasia was detected in 2544 of the 35,918 included participants (7.1%). In the test set, a logistic-regression model showed that independent risk factors for advanced colorectal neoplasia were: age, sex, family history of colorectal cancer, cigarette smoking (p<0.001 for these four factors), and Body Mass Index (p=0.033). In the validation set, the model was well calibrated (ratio of expected to observed risk of advanced neoplasia: 1.00 (95% CI 0.95 to 1.06)) and had moderate discriminatory power (c-statistic 0.62). We developed a score that estimated the likelihood of detecting advanced neoplasia in the validation set, from 1.32% for patients scoring 0, to 19.12% for patients scoring 7-8. Developed and internally validated score consisting of simple clinical factors successfully estimates the likelihood of detecting advanced colorectal neoplasia in asymptomatic Caucasian patients. Once externally validated, it may be useful for counselling or designing primary prevention studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Autophagy modulators sensitize prostate epithelial cancer cell lines to TNF-alpha-dependent apoptosis.

    PubMed

    Giampietri, Claudia; Petrungaro, Simonetta; Padula, Fabrizio; D'Alessio, Alessio; Marini, Elettra Sara; Facchiano, Antonio; Filippini, Antonio; Ziparo, Elio

    2012-11-01

    TNF-alpha levels in prostate cancer correlate with the extent of disease and are significantly elevated in the metastatic stage. TNF receptor superfamily controls two distinct signalling cascades, leading to opposite effects, i.e. apoptosis and survival; in prostate cancer TNF-alpha-mediated signalling induces cell survival and resistance to therapy. The apoptosis of prostate epithelial cancer cells LNCaP and PC3 was investigated upon treatment with the autophagy inhibitor 3-methyladenine and the autophagy inducer rapamycin, in combination with TNF-alpha. Cells were exposed to these molecules for 18, 24 and 48 h. Autophagy was assessed via LC3 Western blot analysis; propidium iodide and TUNEL stainings followed by flow cytometry or caspase-8 and caspase-3 activation assays were performed to evaluate apoptosis. TNF-alpha-induced apoptosis was potentiated by 3-methyladenine in the androgen-responsive LNCaP cells, whereas no effect was observed in the androgen-insensitive PC3 cells. Interestingly such pro-apoptosis effect in LNCaP cells was associated with reduced c-Flip levels through proteasomal degradation via increased reactive oxygen species production and p38 activation; such c-Flip reduction was reversed in the presence of either the proteasome inhibitor MG132 or the reactive oxygen species scavenger N-acetyl-cysteine. Conversely in PC3 but not in LNCaP cells, rapamycin stimulated TNF-alpha-dependent apoptosis; such effect was associated with reduced c-Flip promoter activity and FoxO3a activation. We conclude that TNF-alpha-induced apoptosis may be potentiated, in prostate cancer epithelial cells, through autophagy modulators. Increased sensitivity to TNF-alpha-dependent apoptosis correlates with reduced c-Flip levels which are consequent to a post-transcriptional and a transcriptional mechanism in LNCaP and PC3 cells respectively.

  5. Genetics of Endocrine and Neuroendocrine Neoplasias (PDQ®)—Health Professional Version

    Cancer.gov

    Endocrine and neuroendocrine neoplasias may be inherited in syndromes such as multiple endocrine neoplasia types 1 and 2 (MEN1 and MEN2), familial pheochromocytoma and paraganglioma, and Carney-Stratakis syndrome. Learn about the genetics, clinical manifestations, and management of these hereditary cancer syndromes in this expert-reviewed summary.

  6. PKCalpha-mediated ERK, JNK and p38 activation regulates the myogenic program in human rhabdomyosarcoma cells.

    PubMed

    Mauro, Annunziata; Ciccarelli, Carmela; De Cesaris, Paola; Scoglio, Arianna; Bouché, Marina; Molinaro, Mario; Aquino, Angelo; Zani, Bianca Maria

    2002-09-15

    We have previously suggested that PKCalpha has a role in 12-O-Tetradecanoylphorbol-13-acetate (TPA)-mediated growth arrest and myogenic differentiation in human embryonal rhabdomyosarcoma cells (RD). Here, by monitoring the signalling pathways triggered by TPA, we demonstrate that PKCalpha mediates these effects by inducing transient activation of c-Jun N-terminal protein kinases (JNKs) and sustained activation of both p38 kinase and extracellular signal-regulated kinases (ERKs) (all referred to as MAPKs). Activation of MAPKs following ectopic expression of constitutively active PKCalpha, but not its dominant-negative form, is also demonstrated. We investigated the selective contribution of MAPKs to growth arrest and myogenic differentiation by monitoring the activation of MAPK pathways, as well as by dissecting MAPK pathways using MEK1/2 inhibitor (UO126), p38 inhibitor (SB203580) and JNK and p38 agonist (anisomycin) treatments. Growth-arresting signals are triggered either by transient and sustained JNK activation (by TPA and anisomycin, respectively) or by preventing both ERK and JNK activation (UO126) and are maintained, rather than induced, by p38. We therefore suggest a key role for JNK in controlling ERK-mediated mitogenic activity. Notably, sarcomeric myosin expression is induced by both TPA and UO126 but is abrogated by the p38 inhibitor. This finding indicates a pivotal role for p38 in controlling the myogenic program. Anisomycin persistently activates p38 and JNKs but prevents myosin expression induced by TPA. In accordance with this negative role, reactivation of JNKs by anisomycin, in UO126-pre-treated cells, also prevents myosin expression. This indicates that, unlike the transient JNK activation that occurs in the TPA-mediated myogenic process, long-lasting JNK activation supports the growth-arrest state but antagonises p38-mediated myosin expression. Lastly, our results with the MEK inhibitor suggest a key role of the ERK pathway in regulating

  7. HCV upregulates Bim through the ROS/JNK signalling pathway, leading to Bax-mediated apoptosis.

    PubMed

    Deng, Lin; Chen, Ming; Tanaka, Motofumi; Ku, Yonson; Itoh, Tomoo; Shoji, Ikuo; Hotta, Hak

    2015-09-01

    We previously reported that hepatitis C virus (HCV) infection induces Bax-triggered, mitochondrion-mediated apoptosis by using the HCV J6/JFH1 strain and Huh-7.5 cells. However, it was still unclear how HCV-induced Bax activation. In this study, we showed that the HCV-induced activation and mitochondrial accumulation of Bax were significantly attenuated by treatment with a general antioxidant, N-acetyl cysteine (NAC), or a specific c-Jun N-terminal kinase (JNK) inhibitor, SP600125, with the result suggesting that the reactive oxygen species (ROS)/JNK signalling pathway is upstream of Bax activation in HCV-induced apoptosis. We also demonstrated that HCV infection transcriptionally activated the gene for the pro-apoptotic protein Bim and the protein expression of three major splice variants of Bim (BimEL, BimL and BimS). The HCV-induced increase in the Bim mRNA and protein levels was significantly counteracted by treatment with NAC or SP600125, suggesting that the ROS/JNK signalling pathway is involved in Bim upregulation. Moreover, HCV infection led to a marked accumulation of Bim on the mitochondria to facilitate its interaction with Bax. On the other hand, downregulation of Bim by siRNA (small interfering RNA) significantly prevented HCV-mediated activation of Bax and caspase 3. Taken together, these observations suggest that HCV-induced ROS/JNK signalling transcriptionally activates Bim expression, which leads to Bax activation and apoptosis induction.

  8. Phosphoproteomics reveals ALK promote cell progress via RAS/ JNK pathway in neuroblastoma.

    PubMed

    Chen, Kai; Lv, Fan; Xu, Guofeng; Zhang, Min; Wu, Yeming; Wu, Zhixiang

    2016-11-15

    Emerging evidence suggests receptor tyrosine kinase ALK as a promising therapeutic target in neuroblastoma. However, clinical trials reveal that a limited proportion of ALK-positive neuroblastoma patients experience clinical benefits from Crizotinib, a clinically approved specific inhibitor of ALK. The precise molecular mechanisms of aberrant ALK activity in neuroblastoma remain elusive, limiting the clinical application of ALK as a therapeutic target in neuroblastoma. Here, we describe a deep quantitative phosphoproteomic approach in which Crizotinib-treated neuroblastoma cell lines bearing aberrant ALK are used to investigate downstream regulated phosphoproteins. We identified more than 19,500-and quantitatively analyzed approximately 10,000-phosphorylation sites from each cell line, ultimately detecting 450-790 significantly-regulated phosphorylation sites. Multiple layers of bioinformatic analysis of the significantly-regulated phosphoproteins identified RAS/JNK as a downstream signaling pathway of ALK, independent of the ALK variant present. Further experiments demonstrated that ALK/JNK signaling could be inactivated by either ALK- or JNK-specific inhibitors, resulting in cell growth inhibition by induction of cell cycle arrest and cell apoptosis. Our study broadly defines the phosphoproteome in response to ALK inhibition and provides a resource for further clinical investigation of ALK as therapeutic target for the treatment of neuroblastoma.

  9. JNK1 and JNK3 play a significant role in both neuronal apoptosis and necrosis. Evaluation based on in vitro approach using tert-butylhydroperoxide induced oxidative stress in neuro-2A cells and perturbation through 3-aminobenzamide.

    PubMed

    Muthaiah, Vijaya Prakash Krishnan; Michael, Felicia Mary; Palaniappan, Tamilselvi; Rajan, Sridhar Skylab; Chandrasekar, Kirubhanand; Venkatachalam, Sankar

    2017-06-01

    In spinal cord injury (SCI), oxidative stress in the penumbra of the injury site is a characteristic feature. The predominance of necrosis over apoptosis in the ensuing delayed cell death results in progressive waves of necrosis affecting neighboring cells and thus exaggerates the severity of the lesion. Necrosis has been classified into subtypes based on the active molecular players and parthanatos is one among them, which is characterized by the over activation of PARP1 as the pre-mitochondrial event that triggers necrosis. Parthanatos being the necrosis mode reported in SCI, we intended to study the molecular players in the elusive pre-mitochondrial events of PARP1 over activation using an in vitro model. tert-Butylhydroperoxide (tBuOOH) was reported to induce oxidative stress in various cell types including Neuro-2A cells. Using a tailored protocol, a predominantly PARP1 mediated necrotic mode of cell death was obtained in Neuro-2A cells using tBuOOH. By perturbing the progress of necrosis using 3-amniobenzamide, a known PARP1 inhibitor, it was found that JNK1 and JNK3 but not JNK2 were involved in pre-mitochondrial stages of PARP1 mediated cell death. Given that JNK1 and JNK3 play a role in apoptosis also, they may serve as common targets to counter both apoptosis and necrosis. The in vitro model used in the present study may be useful in delineating molecular mechanisms in necrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Multicolor immunofluorescence reveals that p63- and/or K5-positive progenitor cells contribute to normal breast epithelium and usual ductal hyperplasia but not to low-grade intraepithelial neoplasia of the breast.

    PubMed

    Boecker, Werner; Stenman, Göran; Schroeder, Tina; Schumacher, Udo; Loening, Thomas; Stahnke, Lisa; Löhnert, Catharina; Siering, Robert Michael; Kuper, Arthur; Samoilova, Vera; Tiemann, Markus; Korsching, Eberhard; Buchwalow, Igor

    2017-05-01

    We contend that knowledge about the cellular composition of normal breast epithelium is a prerequisite for understanding proliferative breast disease. Against this background, we used multicolor immunofluorescence to study normal breast epithelium and two types of intraepithelial proliferative breast lesion for expression of the p63, basal keratin K5, glandular keratin K8/18, SMA, ER-alpha, and Ki67. We studied eight normal breast epithelium samples, 12 cases of usual ductal hyperplasia, and 33 cases of low-grade intraepithelial neoplasia (9 flat epithelial atypia, 14 low-grade ductal carcinoma in situ and 10 cases of lobular neoplasia). Usual ductal hyperplasia showed striking similarity to normal luminal breast epithelium including p63+ and/or K5+ luminal progenitor cells and the full spectrum of luminal progeny cells. In normal breast epithelium and usual ductal hyperplasia, expression of ER-alpha was associated with lack of expression of the proliferation antigen Ki67. In contrast, we found in both types of low-grade intraepithelial neoplasia robust expression of keratin K8/18 and a positive association between ER-alpha and Ki67 expression. However, these lesions were consistently negative for p63 and/or K5. Our observational study supports the view that usual ductal hyperplasia and low-grade intraepithelial neoplasia are different entities rather than part of a spectrum of the same disease. We propose a new operational model of cell differentiation that may serve to better understand correlations between normal breast epithelium and proliferative breast diseases. From our data we conclude that p63+ and/or K5+ progenitor cells contribute to maintenance of normal epithelium and usual ductal hyperplasia, but not to low-grade intraepithelial neoplasia of the breast.

  11. Malignant Neoplasia of the Sex Skin in 2 Chimpanzees (Pan troglodytes).

    PubMed

    Beck, Amanda P; Magden, Elizabeth R; Buchl, Stephanie J; Baze, Wallace B

    2016-04-01

    This report describes 2 cases of spontaneous malignant neoplasia within the sex skin of aged female chimpanzees. In both cases, the initial presentation resembled nonhealing traumatic wounds to the sex skin, with different degrees of infection, ulceration, and tissue necrosis. Histopathology of the lesions confirmed the diagnosis of squamous cell carcinoma in one case and of adenocarcinoma with metastasis in the other. Advanced age and previous trauma likely contributed to the development of the neoplasias in both cases; long-term sun exposure may also have contributed to the development of the squamous cell carcinoma. To our knowledge, these 2 cases represent the first reports of sex skin neoplasia in chimpanzees.

  12. A central role for vesicle trafficking in epithelial neoplasia: Intracellular highways to carcinogenesis

    PubMed Central

    Goldenring, James R.

    2014-01-01

    Epithelial cell carcinogenesis involves the loss of polarity, alteration of polarized protein presentation, dynamic cell morphology changes, increased proliferation and increased cell motility and invasion. Elements of membrane vesicle trafficking underlie all of these processes. Specific membrane trafficking regulators, including Rab small GTPases, through the coordinated dynamics of intracellular trafficking along cytoskeletal pathways, determine cell surface presentation of proteins and overall function of both differentiated and neoplastic cells. While mutations in vesicle trafficking proteins may not be direct drivers of transformation, elements of the machinery of vesicle movement play critical roles in the phenotypes of neoplastic cells. Therefore, the regulators of membrane vesicle trafficking decisions are critical mediators of the full spectrum of cell physiologies driving cancer cell biology, including initial loss of polarity, invasion and metastasis. Targeting of these fundamental intracellular processes may provide important points for manipulation of cancer cell behaviour. PMID:24108097

  13. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1.

    PubMed

    Randall, Matthew J; Spiess, Page C; Hristova, Milena; Hondal, Robert J; van der Vliet, Albert

    2013-01-01

    Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1-30 μM) resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases such as JNK, and

  14. Apomorphine prevents LPS-induced IL-23 p19 mRNA expression via inhibition of JNK and ATF4 in HAPI cells.

    PubMed

    Hara, Hirokazu; Kimoto, Dai; Kajita, Miho; Takada, Chisato; Kamiya, Tetsuro; Adachi, Tetsuo

    2017-01-15

    Inflammation has been reported to be closely related to exaggeration of cerebral ischemia and neurodegenerative diseases. Microglia, resident immune cells in the central nervous system, can be activated in response to neuronal injury and produce proinflammatory cytokines, resulting in further aggravation of neuronal injury. Interleukin (IL)-23, which consists of p19 and IL-12 p40 subunits, has been shown to be involved in brain injury associated with neuroinflammation. Apomorphine (Apo), a nonselective dopamine receptor agonist, has been used for clinical therapy of Parkinson's disease. Besides the pharmacological effect, Apo is known to have pleiotropic biological functions. In this study, to elucidate the effect of Apo on lipopolysaccharide (LPS)-induced IL-23 p19 mRNA expression in microglial cell line HAPI cells, we pretreated cells with various concentrations of Apo (10 - 30μM) for 8, 16, and 24h, followed by exposure to LPS (100ng/ml). Pretreatment with Apo dose- and time-dependently suppressed the induction of IL-23 p19 mRNA. However, this effect of Apo was exerted independently of dopamine receptors. JNK and ATF4, an endoplasmic reticulum (ER) stress-inducible transcription factor, were involved in expression of LPS-induced IL-23 p19 mRNA. Pretreatment with Apo (30μM) for 24h inhibited LPS-induced activation of JNK and the nuclear accumulation of ATF4. Thapsigargin (Tg), an ER stress inducer, stimulated IL-23 p19 mRNA expression via an ATF4 dependent mechanism. We also found that Apo inhibited Tg-induced ATF4 accumulation and IL-23 p19 mRNA expression. Taken together, our findings suggest that Apo exerts anti-inflammatory effects through inhibition of JNK and ATF4 signaling pathways. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Risk factors for persistent gestational trophoblastic neoplasia.

    PubMed

    Kuyumcuoglu, Umur; Guzel, Ali Irfan; Erdemoglu, Mahmut; Celik, Yusuf

    2011-01-01

    This retrospective study evaluated the risk factors for persistent gestational trophoblastic disease (GTN) and determined their odds ratios. This study included 100 cases with GTN admitted to our clinic. Possible risk factors recorded were age, gravidity, parity, size of the neoplasia, and beta-human chorionic gonadotropin levels (beta-hCG) before and after the procedure. Statistical analyses consisted of the independent sample t-test and logistic regression using the statistical package SPSS ver. 15.0 for Windows (SPSS, Chicago, IL, USA). Twenty of the cases had persistent GTN, and the differences between these and the others cases were evaluated. The size of the neoplasia and histopathological type of GTN had no statistical relationship with persistence, whereas age, gravidity, and beta-hCG levels were significant risk factors for persistent GTN (p < 0.05). The odds ratios (95% confidence interval (CI)) for age, gravidity, and pre- and post-evacuation beta-hCG levels determined using logistic regression were 4.678 (0.97-22.44), 7.315 (1.16-46.16), 2.637 (1.41-4.94), and 2.339 (1.52-3.60), respectively. Patient age, gravidity, and beta-hCG levels were risk factors for persistent GTN, whereas the size of the neoplasia and histopathological type of GTN were not significant risk factors.

  16. Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling.

    PubMed

    Suzuki, Maiko; Bandoski, Cheryl; Bartlett, John D

    2015-12-01

    Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These

  17. Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling

    PubMed Central

    Suzuki, Maiko; Bandoski, Cheryl; Bartlett, John D.

    2015-01-01

    Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These

  18. Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye

    PubMed Central

    Tare, Meghana; Sarkar, Ankita; Bedi, Shimpi; Kango-Singh, Madhuri; Singh, Amit

    2016-01-01

    In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4), an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, cul-4 has been shown to regulate chromatin remodeling, cell cycle and cell division. Genetic characterization of cul-4 in the developing eye revealed that loss-of-function of cul-4 exhibits a reduced eye phenotype. Analysis of twin-spots showed that in comparison with their wild-type counterparts, the cul-4 loss-of-function clones fail to survive. Here we show that cul-4 clones are eliminated by induction of cell death due to activation of caspases. Aberrant activation of signaling pathways is known to trigger cell death in the developing eye. We found that Wingless (Wg) and c-Jun-amino-terminal-(NH2)-Kinase (JNK) signaling are ectopically induced in cul-4 mutant clones, and these signals co-localize with the dying cells. Modulating levels of Wg and JNK signaling by using agonists and antagonists of these pathways demonstrated that activation of Wg and JNK signaling enhances cul-4 mutant phenotype, whereas downregulation of Wg and JNK signaling rescues the cul-4 mutant phenotypes of reduced eye. Here we present evidences to demonstrate that cul-4 is involved in restricting Wg signaling and downregulation of JNK signaling-mediated cell death during early eye development. Overall, our studies provide insights into a novel role of cul-4 in promoting cell

  19. Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway

    PubMed Central

    Zhou, Hongyu; Shen, Tao; Shang, Chaowei; Luo, Yan; Liu, Lei; Yan, Juming; Li, Yan; Huang, Shile

    2014-01-01

    Ciclopirox olamine (CPX), a fungicide, has been demonstrated as a potential anticancer agent. However, the underlying anticancer mechanism is not well understood. Here, we found that CPX induced autophagy in human rhabdomyosarcoma (Rh30 and RD) cells. It appeared that CPX-induced autophagy was attributed to induction of reactive oxygen species (ROS), as N-acetyl-L-cysteine (NAC), a ROS scavenger and antioxidant, prevented this process. Furthermore, we observed that CPX induced activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 MAPK, which was also blocked by NAC. However, only inhibition of JNK (with SP600125) or expression of dominant negative c-Jun partially prevented CPX-induced autophagy, indicating that ROS-mediated activation of JNK signaling pathway contributed to CPX-induced autophagy. Of interest, inhibition of autophagy by chloroquine (CQ) enhanced CPX-induced cell death, indicating that CPX-induced autophagy plays a pro-survival role in human rhabdomyosarcoma cells. Our finding suggests that the combination with autophagy inhibitors may be a novel strategy in potentiating the anticancer activity of CPX for treatment of rhabdomyosarcoma. PMID:25294812

  20. β3-adrenergic receptor activation induces TGFβ1 expression in cardiomyocytes via the PKG/JNK/c-Jun pathway.

    PubMed

    Xu, Zhongcheng; Wu, Jimin; Xin, Junzhou; Feng, Yenan; Hu, Guomin; Shen, Jing; Li, Mingzhe; Zhang, Youyi; Xiao, Han; Wang, Li

    2018-06-05

    In heart failure, the expression of cardiac β 3 -adrenergic receptors (β 3 -ARs) increases. However, the precise role of β 3 -AR signaling within cardiomyocytes remains unclear. Transforming growth factor β1 (TGFβ1) is a crucial cytokine mediating the cardiac remodeling that plays a causal role in the progression of heart failure. Here, we set out to determine the effect of β 3 -AR activation on TGFβ1 expression in rat cardiomyocytes and examine the underlying mechanism. The selective β 3 -AR agonist BRL37344 induced an increase in TGFβ1 expression and the phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun in β 3 -AR-overexpressing cardiomyocytes. Those effects of BRL37344 were suppressed by a β 3 -AR antagonist. Moreover, the inhibition of JNK and c-Jun activity by a JNK inhibitor and c-Jun siRNA blocked the increase in TGFβ1 expression upon β 3 -AR activation. A protein kinase G (PKG) inhibitor also attenuated β 3 -AR-agonist-induced TGFβ1 expression and the phosphorylation of JNK and c-Jun. In conclusion, the β 3 -AR activation in cardiomyocytes increases the expression of TGFβ1 via the PKG/JNK/c-Jun pathway. These results help us further understand the role of β 3 -AR signaling in heart failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies.

    PubMed

    McDougall, Catherine M; Blaylock, Morgan G; Douglas, J Graham; Brooker, Richard J; Helms, Peter J; Walsh, Garry M

    2008-11-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, alphavbeta3, and alphavbeta5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1beta and TNF-alpha were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway

  2. Neoplasia in Turner syndrome. The importance of clinical and screening practices during follow-up.

    PubMed

    Larizza, Daniela; Albanesi, Michela; De Silvestri, Annalisa; Accordino, Giulia; Brazzelli, Valeria; Maffè, Gabriella Carnevale; Calcaterra, Valeria

    2016-05-01

    Turmer syndrome (TS) patients show increased morbidity due to metabolic, autoimmune and cardiovascular disorders. A risk of neoplasia is also reported. Here, we review the prevalence of neoplasia in a cohort of Turner patients. We retrospectively evaluated 87 TS women. Follow-up included periodic ultrasound of the neck, abdominal and pelvic organs, dermatologic evaluation and fecal occult blood test. Karyotype was 45,X in 46 patients. During follow-up, 63 girls were treated with growth hormone, 65 with estro-progestin replacement therapy and 20 with L-thyroxine. Autoimmune diseases were present in 29 TS. A total of 17 neoplasms in 14 out of 87 patients were found. Six skin neoplasia, 3 central nervous system tumors, 3 gonadal neoplasia, 2 breast tumors, 1 hepatocarcinoma, 1 carcinoma of the pancreas and 1 follicular thyroid cancer were detected. Age at tumor diagnosis was higher in 45,X pts than in those with other karyotypes (p = 0.003). Adenomioma gallbladdder (AG) was detected in 15.3% of the patients, with a lower age in girls at diagnosis with an associated neoplasia in comparison with TS without tumors (p = 0.017). No correlation between genetic make up, treatment, associated autoimmune diseases and neoplastia was found. In our TS population an increased neoplasia prevalence was reported. A high prevalence of AG was also noted and it might be indicative of a predisposition to neoplasia. Further studies are needed to define the overall risk for neoplasia, and to determine the role of the loss of the X-chromosome and hormonal therapies. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Activation of c-jun N-terminal kinase upon influenza A virus (IAV) infection is independent of pathogen-related receptors but dependent on amino acid sequence variations of IAV NS1.

    PubMed

    Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina; Ludwig, Stephan

    2014-08-01

    A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that result in the activation

  4. Activation of c-jun N-Terminal Kinase upon Influenza A Virus (IAV) Infection Is Independent of Pathogen-Related Receptors but Dependent on Amino Acid Sequence Variations of IAV NS1

    PubMed Central

    Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R.; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina

    2014-01-01

    ABSTRACT A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. IMPORTANCE Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that

  5. An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias.

    PubMed

    Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-05-01

    PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ER(T) under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors.

  6. An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias

    PubMed Central

    Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-01-01

    SUMMARY PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ERT under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors. PMID:23471917

  7. Glucocorticoid receptors in bronchial epithelial cells in asthma.

    PubMed

    Vachier, I; Chiappara, G; Vignola, A M; Gagliardo, R; Altieri, E; Térouanne, B; Vic, P; Bousquet, J; Godard, P; Chanez, P

    1998-09-01

    The expression of the glucocorticoid receptor (GR) in untreated or in steroid-dependent asthmatic patients is poorly understood. We therefore studied GR mRNA and protein levels in bronchial biopsies obtained from seven untreated asthmatic patients, seven control volunteers, and seven patients with chronic bronchitis. We also studied in bronchial epithelial cells obtained by brushing from 13 untreated asthmatics, 18 steroid-dependent asthmatics, 11 control volunteers, and 12 patients with chronic bronchitis, GR and heat shock protein 90 kD (hsp90) mRNA as well as the immunoreactivity of GR, intercellular adhesion molecule (ICAM-1), and granulocyte macrophage-colony-stimulating factor (GM-CSF). GR mRNA and protein level was similar in all subject groups in both biopsies and bronchial epithelial cells. Hsp90 mRNA level was also similar in all subject groups. ICAM-1 expression was significantly increased in bronchial epithelial cells from untreated asthmatics, but ICAM-1 was not expressed in those from steroid-dependent asthmatic patients. GM-CSF expression was significantly increased in bronchial epithelial cells from untreated and steroid-dependent asthmatic patients. GR expression within the airways is unaltered by oral long-term steroid treatment in asthma, but the expression of some but not all specific markers for asthma is modified by oral steroid.

  8. [Effects of inhibiting the phosphorylation of JNK by absorbed INF-γon the remodeling of nasal mucosa in allergic rhinitis rats].

    PubMed

    Li, Q; Chen, Y L; Ma, Y Y; Zhang, Y D; Sun, C W; You, C P

    2016-07-05

    Objective: To study the role of phosphorylated JNK(c-Jun N-terminal kinase) on nasal mucosa remodeling in allergic rhinitis(AR) rats and the influence of IFN-γon IL-1β,JNK and nasal mucosa remodeling. Method: According to random number table,48 Wistar rats were divided into control group(A group),AR group(B group),IFN-γgroup(C group) and triamcinolone acetonide group(D group).The rats in group B,C and D were sensitized and provocated for inducing AR by intraperitoneal injection of ovalbumin(OVA) and Al(OH)₃.Thirty minutes before intranasally challenged,rats in three groups were administrated by instillation of PBS,IFN-γand triamcinolone acetonide into nasal cavities,while the group A rats were administrated by saline solution.Ten rats in each group were selected to enter the final experiment.The density of IL-1βin serum and nasal lavage fluid were tested by ELISA.The mean absorbance (m A ) of phosphorylated JNK and c-Jun were tested by immunohistochemistry.Western Blot detected the P-JNK level in nasal tissue homogenate. Result: The density of IL-1βin serum and nasal lavage fluid in group C and group D were significantly lower than that of group B ( P <0.01).Immunohistochemistry study showed that the protein expression level of phosphorylated JNK and c-Jun of nasal mucosa were significantly increased in group B,but significantly reduced in group C and group D .The mA of phosphorylated JNK and c-Jun in group B were significantly higher than those in the group C and group D( P <0.01).The Western blot showed that the P-JNK of nasal tissue homogenate in group B was higher than that of group C and group D ( P <0.01). Conclusion: The phosphorylation of JNK played an important role in nasal mucosa remodeling.IFN-γcould inhibit the phosphorylation of JNK and reduce the nasal mucosa remodeling.The mechanisms may be achieved through down-regulation of IL-1β. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  9. MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells.

    PubMed

    Ponnusamy, M P; Lakshmanan, I; Jain, M; Das, S; Chakraborty, S; Dey, P; Batra, S K

    2010-10-21

    The acquisition of invasiveness in ovarian cancer (OC) is accompanied by the process of epithelial-to-mesenchymal transition (EMT). The MUC4 mucin is overexpressed in ovarian tumors and has a role in the invasiveness of OC cells. The present study was aimed at evaluating the potential involvement of MUC4 in the metastasis of OC cells by inducing EMT. Ectopic overexpression of MUC4 in OC cells (SKOV3-MUC4) resulted in morphological alterations along with a decreased expression of epithelial markers (E-cadherin and cytokeratin (CK)-18) and an increased expression of mesenchymal markers (N-cadherin and vimentin) compared with the control cells (SKOV3-vector). Also, pro-EMT transcription factors TWIST1, TWIST2 and SNAIL showed an upregulation in SKOV3-MUC4 cells. We further investigated the pathways upstream of N-cadherin, such as focal adhesion kinase (FAK), MKK7, JNK1/2 and c-Jun, which were also activated in the SKOV3-MUC4 cells compared with SKOV3-vector cells. Inhibition of phospho-FAK (pFAK) and pJNK1/2 decreased N-cadherin expression in the MUC4-overexpressing cells, which further led to a significant decrease in cellular motility. Knockdown of N-cadherin decreased the activation of extracellular signal-regulated kinase-1/2 (ERK1/2), AKT and matrix metalloproteinase 9 (MMP9), and inhibited the motility in the SKOV3-MUC4 cells. Upon in vivo tumorigenesis and metastasis analysis, the SKOV3-MUC4 cells produced significantly larger tumors and demonstrated a higher incidence of metastasis to distance organs (peritoneal wall, colon, intestine, stomach, lymph nodes, liver and diaphragm). Taken together, our study reveals a novel role for MUC4 in inducing EMT through the upregulation of N-cadherin and promoting metastasis of OC cells.

  10. Establishment of immortalized mouse intestinal epithelial cells line and study of effects of Arg-Arg on inflammatory response.

    PubMed

    Zhan, Kang; Jiang, Maocheng; Sui, Yannan; Yan, Kang; Lin, Miao; Zhao, Guoqi

    2017-06-01

    Primary mouse intestinal epithelial cells (MIEs) are not ideal models for long-term culture in vitro and a limited amount of approximate three generations. In addition, the mechanism that arginine-arginine dipeptide (Arg-Arg) regulates mouse intestinal inflammatory response remains unknown. Therefore, the aim of this study was to establish immortal MIEs and study the effects of Arg-Arg on inflammatory response after challenging the MIEs with lipopolysaccharide (LPS) or staphylococcal enterotoxin C (rSEC). Our data showed that immortalized MIEs could be cultured over 100 generations. The immortalized MIEs showed positive reaction against cytokeratine 18 antigen, E-cadherin, and peptide transporters (Pept1) using indirect immunofluorescence. Cytokeratine 18 and Pept1 can be expressed in immortalized MIEs by immunoblotting. Fatty acid-binding proteins (FABPs) and villin known as intestinal epithelial cell functional protein were constitutively expressed in immortalized MIEs. For inflammatory response, these results showed that Arg-Arg can decrease the LPS-induced expression of IL-1β and the rSEC-induced expression of TNF-α; however, it can upregulate the LPS-induced expression of IL-6 and TNF-α and the rSEC-induced expression level of IL-1β. In addition, in the MAPK signaling pathway, pSAPK/JNK and p-Erk1/2 in LPS with Arg-Arg treatment were upregulated than that in LPS treatment. p-p38 in LPS with Arg-Arg treatment was attenuated than that in LPS treatment. pSAPK/JNK and p-p38 in rSEC with Arg-Arg treatment were enhanced than that in rSEC treatment. Conversely, p-Erk1/2 in rSEC with Arg-Arg treatment was attenuated than that in rSEC treatment. These novel findings suggest that Arg-Arg dipeptide plays an important role for regulation of the immunologic balance in mouse intestinal inflammatory response.

  11. Loss of Sirt1 Promotes Prostatic Intraepithelial Neoplasia, Reduces Mitophagy, and Delays Park2 Translocation to Mitochondria

    PubMed Central

    Di Sante, Gabriele; Pestell, Timothy G.; Casimiro, Mathew C.; Bisetto, Sara; Powell, Michael J.; Lisanti, Michael P.; Cordon-Cardo, Carlos; Castillo-Martin, Mireia; Bonal, Dennis M.; Debattisti, Valentina; Chen, Ke; Wang, Liping; He, Xiaohong; McBurney, Michael W.; Pestell, Richard G.

    2016-01-01

    Prostatic intraepithelial neoplasia is a precursor to prostate cancer. Herein, deletion of the NAD+-dependent histone deacetylase Sirt1 induced histological features of prostatic intraepithelial neoplasia at 7 months of age; these features were associated with increased cell proliferation and enhanced mitophagy. In human prostate cancer, lower Sirt1 expression in the luminal epithelium was associated with poor prognosis. Genetic deletion of Sirt1 increased mitochondrial superoxide dismutase 2 (Sod2) acetylation of lysine residue 68, thereby enhancing reactive oxygen species (ROS) production and reducing SOD2 activity. The PARK2 gene, which has several features of a tumor suppressor, encodes an E3 ubiquitin ligase that participates in removal of damaged mitochondria via mitophagy. Increased ROS in Sirt1−/− cells enhanced the recruitment of Park2 to the mitochondria, inducing mitophagy. Sirt1 restoration inhibited PARK2 translocation and ROS production requiring the Sirt1 catalytic domain. Thus, the NAD+-dependent inhibition of SOD2 activity and ROS by SIRT1 provides a gatekeeper function to reduce PARK2-mediated mitophagy and aberrant cell survival. PMID:25529796

  12. The JNK/AP-1 pathway upregulates expression of the recycling endosome rab11a gene in B cells transformed by Theileria.

    PubMed

    Lizundia, Regina; Chaussepied, Marie; Naissant, Bernina; Masse, Guillemette X; Quevillon, Emmanuel; Michel, Fréderique; Monier, Solange; Weitzman, Jonathan B; Langsley, Gordon

    2007-08-01

    Lymphocyte transformation induced by Theileria parasites involves constitutive activation of c-Jun N-terminal kinase (JNK) and the AP-1 transcription factor. We found that JNK/AP-1 activation is associated with elevated levels of Rab11 protein in Theileria-transformed B cells. We show that AP-1 regulates rab11a promoter activity in B cells and that the induction of c-Jun activity in mouse fibroblasts also leads to increased transcription of the endogenous rab11a gene, consistent with it being an AP-1 target. Pharmacological inhibition of the JNK pathway reduced Rab11 protein levels and endosome recycling of transferrin receptor (TfR) and siRNA knockdown of JNK1 and Rab11A levels also reduced TfR surface expression. We propose a model, where activation of the JNK/AP-1 pathway during cell transformation might assure that the regulation of recycling endosomes is co-ordinated with cell-cycle progression. This might be achieved via the simultaneous upregulation of the cell cycle machinery (e.g. cyclin D1) and the recycling endosome regulators (e.g. Rab11A).

  13. Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNK

    PubMed Central

    Budhraja, Amit; Gao, Ning; Zhang, Zhuo; Son, Young-Ok; Cheng, Senping; Wang, Xin; Ding, Songze; Hitron, Andrew; Chen, Gang; Luo, Jia; Shi, Xianglin

    2015-01-01

    In this study, we investigated the functional role of Akt and JNK signaling cascades in apigenin-induced apoptosis in U937 human leukemia cells and anti-leukemic activity of apigenin in vivo. Apigenin-induced apoptosis by inactivation of Akt with a concomitant activation of JNK, Mcl-1 and Bcl-2 down-regulation, cytochrome c release from mitochondria and activation of caspases. Constitutively active myristolated Akt prevented apigenin-induced JNK, caspases activation, and apoptosis. Conversely, LY294002 and a dominant negative construct of Akt potentiated apigenin-induced apoptosis in leukemia cells. Interruption of JNK pathway showed marked reduction in apigenin-induced caspases activation and apoptosis in leukemia cells. Furthermore, in vivo administration of apigenin resulted in attenuation of tumor growth in U937 xenografts accompanied inactivation of Akt and activation of JNK. Attenuation of tumor growth in U937 xenografts by apigenin raises the possibility that apigenin may have clinical implications and can be further tested for incorporating in leukemia treatment regimens. PMID:22084167

  14. LPS-Induced Low-Grade Inflammation Increases Hypothalamic JNK Expression and Causes Central Insulin Resistance Irrespective of Body Weight Changes.

    PubMed

    Rorato, Rodrigo; Borges, Beatriz de Carvalho; Uchoa, Ernane Torres; Antunes-Rodrigues, José; Elias, Carol Fuzeti; Elias, Lucila Leico Kagohara

    2017-07-04

    Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 μg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 μM/5 μL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 μM/5 μL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.

  15. Prolonged duration of isoflurane anesthesia impairs spatial recognition memory through the activation of JNK1/2 in the hippocampus of mice.

    PubMed

    Jiang, Shan; Miao, Bei; Chen, Ying

    2017-05-03

    Postoperative cognitive dysfunction is a frequent complication with surgery and anesthesia, and the underlying mechanism is unclear. Our aim was to investigate the effect of different durations of isoflurane anesthesia on spatial recognition memory and activation of JNK1/2 in the hippocampus of mice. In the present study, adult male mice were anesthetized with isoflurane for different durations (1.5% isoflurane for 1, 2, and 4 h). Spatial recognition memory was determined using spontaneous alternation and two-trial recognition memory in Y-maze at 24 h after anesthesia. The activation of JNK1/2 in the hippocampus was tested using western blot. Mice treated with isoflurane for 4 h showed significantly decreased spontaneous alternations and decreased exploration parameters compared with the no anesthesia group, but this was not observed in mice treated with isoflurane for 1 or 2 h. The protein levels of p-JNK1/2 in the hippocampus were significantly increased at 10 min after isoflurane anesthesia for 1, 2, and 4 h compared with no anesthesia. However, only isoflurane anesthesia for 4 h still increased JNK1/2 and p-JNK1/2 levels at 24 h after anesthesia. We concluded that prolonged duration of isoflurane anesthesia maintained the activation of JNK1/2, which led to memory impairment at 24 h after anesthesia.

  16. Equine orbital neoplasia: a review of 10 cases (1983-1998).

    PubMed Central

    Baptiste, K E; Grahn, B H

    2000-01-01

    The clinical manifestations, laboratory findings, and survival times of 10 horses with orbital neoplasms are reported. In all cases, orbital neoplasms were malignant and locally invasive with no defined surgical circumscribed edges. It was often difficult to identify the primary cell type of the neoplasia in histologic specimens due to the poorly differentiated, anaplastic nature of the majority of cases. All except one horse were eventually euthanized 2 mo to 5 y after diagnosis due to poor response to treatment, metastasis, or unrelenting orbital neoplasia. Mean survival time increased with surgical treatment, but no significant difference was found among no treatment, chemotherapy, surgical mass removal, or exenteration/enucleation. Equine practitioners should be aware of the marked difference in prognosis of orbital neoplasms compared with ocular or localized eyelid neoplasia. Images Figure 1. Figure 2. Figure 3. PMID:10769765

  17. Unregulated smooth-muscle myosin in human intestinal neoplasia.

    PubMed

    Alhopuro, Pia; Phichith, Denis; Tuupanen, Sari; Sammalkorpi, Heli; Nybondas, Miranda; Saharinen, Juha; Robinson, James P; Yang, Zhaohui; Chen, Li-Qiong; Orntoft, Torben; Mecklin, Jukka-Pekka; Järvinen, Heikki; Eng, Charis; Moeslein, Gabriela; Shibata, Darryl; Houlston, Richard S; Lucassen, Anneke; Tomlinson, Ian P M; Launonen, Virpi; Ristimäki, Ari; Arango, Diego; Karhu, Auli; Sweeney, H Lee; Aaltonen, Lauri A

    2008-04-08

    A recent study described a recessive ATPase activating germ-line mutation in smooth-muscle myosin (smmhc/myh11) underlying the zebrafish meltdown (mlt) phenotype. The mlt zebrafish develops intestinal abnormalities reminiscent of human Peutz-Jeghers syndrome (PJS) and juvenile polyposis (JP). To examine the role of MYH11 in human intestinal neoplasia, we searched for MYH11 mutations in patients with colorectal cancer (CRC), PJS and JP. We found somatic protein-elongating frameshift mutations in 55% of CRCs displaying microsatellite instability and in the germ-line of one individual with PJS. Additionally, two somatic missense mutations were found in one microsatellite stable CRC. These two missense mutations, R501L and K1044N, and the frameshift mutations were functionally evaluated. All mutations resulted in unregulated molecules displaying constitutive motor activity, similar to the mutant myosin underlying mlt. Thus, MYH11 mutations appear to contribute also to human intestinal neoplasia. Unregulated MYH11 may affect the cellular energy balance or disturb cell lineage decisions in tumor progenitor cells. These data challenge our view on MYH11 as a passive differentiation marker functioning in muscle contraction and add to our understanding of intestinal neoplasia.

  18. Nitric Oxide Promotes Airway Epithelial Wound Repair through Enhanced Activation of MMP-9

    PubMed Central

    Bove, Peter F.; Wesley, Umadevi V.; Greul, Anne-Katrin; Hristova, Milena; Dostmann, Wolfgang R.; van der Vliet, Albert

    2007-01-01

    The airway epithelium provides a protective barrier against inhaled environmental toxins and microorganisms, and epithelial injury initiates a number of processes to restore its barrier integrity, including activation of matrix metalloproteinases such as MMP-9 (92-kD gelatinase B). Airway epithelial cells continuously produce nitric oxide (NO), which has been linked to cell migration and MMP-9 regulation in several cell types, but the importance of epithelial NO in mediating airway epithelial repair or MMP-9 activation is unknown. Using primary or immortalized human bronchial epithelial cells, we demonstrate that low concentrations of NO promote epithelial cell migration and wound repair in an in vitro wound assay, which was associated with increased localized expression and activation of MMP-9. In addition, in HBE1 cells that were stably transfected with inducible NOS (NOS2), to mimic constitutive epithelial NOS2 expression in vivo, NOS inhibition decreased epithelial wound repair and MMP-9 expression. The stimulatory effects of NO on epithelial wound repair and MMP-9 expression were dependent on cGMP-mediated pathways and were inhibited by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase. Inhibition of cGMP-dependent protein kinase (PKG) attenuated NO-mediated epithelial wound closure, but did not affect MMP-9 expression. However, pharmacologic MMP inhibition and siRNA knockdown of MMP-9 expression demonstrated the contribution of MMP-9 to NO-mediated wound closure. Overall, our results demonstrate that NOS2-derived NO contributes to airway epithelial repair by both PKG-dependent and -independent mechanisms, and involves NO-dependent expression and activation of MMP-9. PMID:16980554

  19. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com; Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536; Yang, Yu-Xiu

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology.more » Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT

  20. Actinobacillus actinomycetemcomitans Y4 capsular polysaccharide induces IL-1β mRNA expression through the JNK pathway in differentiated THP-1 cells

    PubMed Central

    Iwata, T; Mitani, A; Ishihara, Y; Tanaka, S; Yamamoto, G; Kikuchi, T; Naganawa, T; Matsumura, Y; Suga, T; Koide, M; Sobue, T; Suzuki, T; Noguchi, T

    2005-01-01

    Capsular polysaccharide from Actinobacillus actinomycetemcomitans Y4 (Y4 CP) induces bone resorption in a mouse organ culture system and osteoclast formation in mouse bone marrow cultures, as reported in previous studies. We also found that Y4 CP inhibits the release of interleukin (IL)-6 and IL-8 from human gingival fibroblast (HGF). Thus Y4 CP induces various responses in localized tissue and leads to the secretion of several cytokines. However, the effects of Y4 CP on human monocytes/macrophages are still unclear. In this study, THP-1 cells, which are a human monocytic cell line, were stimulated with Y4 CP, and we measured gene expression in inflammatory cytokine and signal transduction pathways. IL-1β and tumour necrosis factor (TNF)-α mRNA were induced from Y4 CP-treated THP-1 cells. IL-1β mRNA expression was increased according to the dose of Y4 CP, and in a time-dependent manner. IL-1β mRNA expression induced by Y4 CP (100 µg/ml) was approximately 7- to 10-fold greater than that in the control by real-time PCR analysis. Furthermore, neither PD98059, a specific inhibitor of extracellular signal-regulated kinase nor SB203580, a specific inhibitor of p38 kinase prevented the IL-1β expression induced by Y4 CP. However, JNK Inhibitor II, a specific inhibitor of c-Jun N-terminal kinase (JNK) prevented the IL-1β mRNA expression induced by Y4 CP in a concentration-dependent manner. These results indicate that Y4 CP-mediated JNK pathways play an important role in the regulation of IL-1β mRNA. Therefore, Y4 CP-transduced signals for IL-1β induction in the antibacterial action of macrophages may provide a therapeutic strategy for periodontitis. PMID:15996190

  1. Secreted phospholipase A2 of Clonorchis sinensis activates hepatic stellate cells through a pathway involving JNK signalling.

    PubMed

    Wu, Yinjuan; Li, Ye; Shang, Mei; Jian, Yu; Wang, Caiqin; Bardeesi, Adham Sameer A; Li, Zhaolei; Chen, Tingjin; Zhao, Lu; Zhou, Lina; He, Ai; Huang, Yan; Lv, Zhiyue; Yu, Xinbing; Li, Xuerong

    2017-03-16

    Secreted phospholipase A2 (sPLA2) is a protein secreted by Clonorchis sinensis and is a component of excretory and secretory products (CsESPs). Phospholipase A2 is well known for its role in liver fibrosis and inhibition of tumour cells. The JNK signalling pathway is involved in hepatic stellate cells (HSCs) activation. Blocking JNK activity with SP600125 inhibits HSCs activation. In a previous study, the protein CssPLA2 was expressed in insoluble inclusion bodies. Therefore, it's necessary to express CssPLA2 in water-soluble form and determine whether the enzymatic activity of CssPLA2 or cell signalling pathways is involved in liver fibrosis caused by clonorchiasis. Balb/C mice were given an abdominal injection of MBP-CssPLA2. Liver sections with HE and Masson staining were observed to detect accumulation of collagen. Western blot of mouse liver was done to detect the activation of JNK signalling pathway. In vitro, HSCs were incubated with MBP-CssPLA2 to detect the activation of HSCs as well as the activation of JNK signalling pathway. The mutant of MBP-CssPLA2 without enzymatic activity was constructed and was also incubated with HSCs to check whether activation of the HSCs was related to the enzymatic activity of MBP-CssPLA2. The recombinant protein MBP-CssPLA2 was expressed soluble and of good enzymatic activity. A mutant of CssPLA2, without enzymatic activity, was also constructed. In vivo liver sections of Balb/C mice that were given an abdominal injection of 50 μg/ml MBP-CssPLA2 showed an obvious accumulation of collagen and a clear band of P-JNK1 could be seen by western blot of the liver tissue. In vitro, MBP-CssPLA2, as well as the mutant, was incubated with HSCs and it was proved that activation of HSCs was related to activation of the JNK signalling pathway instead of the enzymatic activity of MBP-CssPLA2. Activation of HSCs by CssPLA2 is related to the activation of the JNK signalling pathway instead of the enzymatic activity of CssPLA2. This finding

  2. 3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis In Vivo via JNK/p53 Pathways

    PubMed Central

    Liu, Man; Huang, Guoren; Wang, Thomas T.Y.; Sun, Xiangjun; Yu, Liangli (Lucy)

    2016-01-01

    Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) are a group of processing induced food contaminants with nephrotoxicity but the molecular mechanism(s) remains unclear. This study investigated whether and how the JNK/p53 pathway may play a role in the nephrotoxic effect of 3-MCPD esters using 3-MCPD 1-palmitate (MPE) as a probe compound in Sprague Dawley rats. Microarray analysis of the kidney from the Sprague Dawley rats treated with MPE, using Gene Ontology categories and KEGG pathways, revealed that MPE altered mRNA expressions of the genes involved in the mitogen-activated protein kinase (JNK and ERK), p53, and apoptotic signal transduction pathways. The changes in the mRNA expressions were confirmed by qRT-PCR and Western blot analyses and were consistent with the induction of tubular cell apoptosis as determined by histopathological, TUNEL, and immunohistochemistry analyses in the kidneys of the Sprague Dawley rats. Additionally, p53 knockout attenuated the apoptosis, and the apoptosis-related protein bax expression and cleaved caspase-3 activation induced by MPE in the p53 knockout C57BL/6 mice, whereas JNK inhibitor SP600125 but not ERK inhibitor U0126 inhibited MPE-induced apoptosis, supporting the conclusion that JNK/p53 might play a critical role in the tubular cell apoptosis induced by MPE and other 3-MCPD fatty acid esters. PMID:27008853

  3. Nasal Epithelial Cells as Surrogates for Bronchial Epithelial Cells in Airway Inflammation Studies

    PubMed Central

    McDougall, Catherine M.; Blaylock, Morgan G.; Douglas, J. Graham; Brooker, Richard J.; Helms, Peter J.; Walsh, Garry M.

    2008-01-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, αvβ3, and αvβ5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1β and TNF-α were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation. PMID

  4. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weili; Xiao, Linlin; Dong, Chen

    2014-05-09

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cellsmore » Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway.« less

  5. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease.

    PubMed

    Yao, Zhiwen; Yang, Wenhao; Gao, Zhiqiang; Jia, Peng

    2017-04-24

    Amyloid-β (Aβ) oligomers have been accepted as major neurotoxic agents in the therapy of Alzheimer's disease (AD). It has been shown that the activity of nicotinamide adenine dinucleotide (NAD+) is related with the decline of Aβ toxicity in AD. Nicotinamide mononucleotide (NMN), the important precursor of NAD+, is produced during the reaction of nicotinamide phosphoribosyl transferase (Nampt). This study aimed to figure out the potential therapeutic effects of NMN and its underlying mechanisms in APPswe/PS1dE9 (AD-Tg) mice. We found that NMN gave rise to a substantial improvement in behavioral measures of cognitive impairments compared to control AD-Tg mice. In addition, NMN treatment significantly decreased β-amyloid production, amyloid plaque burden, synaptic loss, and inflammatory responses in transgenic animals. Mechanistically, NMN effectively controlled JNK activation. Furthermore, NMN potently progressed nonamyloidogenic amyloid precursor protein (APP) and suppressed amyloidogenic APP by mediating the expression of APP cleavage secretase in AD-Tg mice. Based on our findings, it was suggested that NMN substantially decreases multiple AD-associated pathological characteristically at least partially by the inhibition of JNK activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bruton's tyrosine kinase regulates B cell antigen receptor-mediated JNK1 response through Rac1 and phospholipase C-gamma2 activation.

    PubMed

    Inabe, Kazunori; Miyawaki, Toshio; Longnecker, Richard; Matsukura, Hiroyoshi; Tsukada, Satoshi; Kurosaki, Tomohiro

    2002-03-13

    Bruton's tyrosine kinase (Btk) is essential for B cell development and B cell antigen receptor (BCR) function. Recent studies have shown that Btk plays an important role in BCR-mediated c-Jun NH(2)-terminal kinase (JNK) 1 activation; however, the mechanism by which Btk participates in the JNK1 response remains elusive. Here we show that the BCR-mediated Rac1 activation is significantly inhibited by loss of Btk, while this Rac1 activation is not affected by loss of phospholipase C-gamma2 (PLC-gamma2). Since PLC-gamma2 is also required for BCR-mediated JNK1 response, our results suggest that Btk regulates Rac1 pathway as well as PLC-gamma2 pathway, both of which contribute to the BCR-mediated JNK1 response.

  7. Interleukin-33/ST2 axis promotes epithelial cell transformation and breast tumorigenesis via upregulation of COT activity.

    PubMed

    Kim, J Y; Lim, S-C; Kim, G; Yun, H J; Ahn, S-G; Choi, H S

    2015-09-17

    Cytokines of the interleukin-1 (IL-1) family, such as IL-1α/β and IL-18, have pleiotropic activities in innate and adaptive immune responses in host defense and diseases. Insight into their biological functions helped develop novel therapeutic approaches to treat human inflammatory diseases. IL-33 is an important member of the IL-1 family of cytokines and is a ligand of the ST2 receptor, a member of the IL-1 receptor family. However, the role of the IL-33/ST2 axis in tumor growth and metastasis of breast cancer remains unclear. Here, we demonstrate that IL-33 is a critical tumor promoter during epithelial cell proliferation and tumorigenesis in the breast. IL-33 dose- and time-dependently increased Cancer Osaka Thyroid (COT) phosphorylation via ST2-COT interaction in normal epithelial and breast cancer cells. The IL-33/ST2/COT cascade induced the activation of the MEK-ERK (MEK-extracellular signal-regulated kinase), JNK-cJun (cJun N-terminal kinase-cJun) and STAT3 (signal transducer and activator of transcription 3) signaling pathways, followed by increased AP-1 and stat3 transcriptional activity. When small interfering RNAs of ST2 and COT were introduced into cells, IL-33-induced AP-1 and stat3 activity were significantly decreased, unlike that in the control cells. The inhibition of COT activity resulted in decreased IL-33-induced epithelial cell transformation, and knockdown of IL-33, ST2 and COT in breast cancer cells attenuated tumorigenicity of breast cancer cells. Consistent with these observations, ST2 levels were positively correlated with COT expression in human breast cancer. These findings provide a novel perspective on the role of the IL-33/ST2/COT signaling pathway in supporting cancer-associated inflammation in the tumor microenvironment. Therapeutic approaches that target this pathway may, therefore, effectively inhibit carcinogenesis in the breast.

  8. Endoscopic submucosal dissection for early Barrett's neoplasia.

    PubMed

    Barret, Maximilien; Cao, Dalhia Thao; Beuvon, Frédéric; Leblanc, Sarah; Terris, Benoit; Camus, Marine; Coriat, Romain; Chaussade, Stanislas; Prat, Frédéric

    2016-04-01

    The possible benefit of endoscopic submucosal dissection (ESD) for early neoplasia arising in Barrett's esophagus remains controversial. We aimed to assess the efficacy and safety of ESD for the treatment of early Barrett's neoplasia. All consecutive patients undergoing ESD for the resection of a visible lesion in a Barrett's esophagus, either suspicious of submucosal infiltration or exceeding 10 mm in size, between February 2012 and January 2015 were prospectively included. The primary endpoint was the rate of curative resection of carcinoma, defined as histologically complete resection of adenocarcinomas without poor histoprognostic factors. Thirty-five patients (36 lesions) with a mean age of 66.2 ± 12 years, a mean ASA score of 2.1 ± 0.7, and a mean C4M6 Barrett's segment were included. The mean procedure time was 191 ± 79 mn, and the mean size of the resected specimen was 51.3 ± 23 mm. En bloc resection rate was 89%. Lesions were 12 ± 15 mm in size, and 81% (29/36) were invasive adenocarcinomas, six of which with submucosal invasion. Although R0 resection of carcinoma was 72.4%, the curative resection rate was 66% (19/29). After a mean follow-up of 12.9 ± 9 months, 16 (45.7%) patients had required additional treatment, among whom nine underwent surgical resection, and seven further endoscopic treatments. Metachronous lesions or recurrence of cancer developed during the follow-up period in 17.2% of the patients. The overall complication rate was 16.7%, including 8.3% perforations, all conservatively managed, and no bleeding. The 30-day mortality was 0%. In this early experience, ESD yielded a moderate curative resection rate in Barrett's neoplasia. At present, improvements are needed if ESD is to replace piecemeal endoscopic mucosal resection in the management of Barrett's neoplasia.

  9. Diagnostic accuracy of three biopsy techniques in 117 dogs with intra-nasal neoplasia.

    PubMed

    Harris, B J; Lourenço, B N; Dobson, J M; Herrtage, M E

    2014-04-01

    To determine if nasal biopsies taken at rhinoscopy are more accurate for diagnosing neoplasia than biopsies taken blindly or using advanced imaging for guidance. A retrospective study of 117 dogs with nasal mass lesions that were divided into three groups according to the method of nasal biopsy collection; advanced imaging-guided, rhinoscopy-guided and blind biopsy. Signalment, imaging and rhinoscopic findings, and histopathological diagnosis were compared between groups. The proportion of first attempt biopsies confirming neoplasia were determined for each group. There were no statistically significant differences in the proportion of biopsies that confirmed neoplasia obtained via advanced imaging-guided, rhinoscopy-guided or blind biopsy techniques. In dogs with a high index of suspicion of nasal neoplasia, blind biopsy may be as diagnostic as rhinoscopy-guided biopsy. Repeated biopsies are frequently required for definitive diagnosis. © 2014 British Small Animal Veterinary Association.

  10. Epithelial control of gut-associated lymphoid tissue formation through p38α-dependent restraint of NF-κB signaling

    PubMed Central

    Caballero-Franco, Celia; Guma, Monica; Choo, Min-Kyung; Sano, Yasuyo; Enzler, Thomas; Karin, Michael; Mizoguchi, Atsushi; Park, Jin Mo

    2015-01-01

    The protein kinase p38α mediates cellular responses to environmental and endogenous cues that direct tissue homeostasis and immune responses. Studies of mice lacking p38α in several different cell types have demonstrated that p38α signaling is essential to maintaining the proliferation-differentiation balance in developing and steady-state tissues. The mechanisms underlying these roles involve cell-autonomous control of signaling and gene expression by p38α. Here we show that p38α regulates gut-associated lymphoid tissue (GALT) formation in a non-cell-autonomous manner. From an investigation of mice with intestinal epithelial cell-specific deletion of the p38α gene, we find that p38α serves to limit NF-κB signaling and thereby attenuate GALT-promoting chemokine expression in the intestinal epithelium. Loss of this regulation results in GALT hyperplasia and, in some animals, mucosa-associated B cell lymphoma. These anomalies occur independently of luminal microbial stimuli and are likely driven by direct epithelial-lymphoid interactions. Our study illustrates a novel p38α-dependent mechanism preventing excessive generation of epithelial-derived signals that drive lymphoid tissue overgrowth and malignancy. PMID:26792803

  11. Curcumin suppresses JNK pathway to attenuate BPA-induced insulin resistance in LO2 cells.

    PubMed

    Geng, Shanshan; Wang, Shijia; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Zhu, Jianyun; Jiang, Ye; Yang, Xue; Li, Yuan; Chen, Yue; Wang, Xiaoqian; Meng, Yu; Zhong, Caiyun

    2018-01-01

    To examine whether curcumin has protective effect on insulin resistance induced by bisphenol A (BPA) in LO2 cells and whether this effect was mediated by inhibiting the inflammatory mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) pathways. LO2 cells were stimulated with BPA in the presence or absence of curcumin for 5 days. Glucose consumption, activation of insulin signaling, MAPKs and NF-κB pathways, levels of inflammatory cytokines and MDA production were analyzed. Curcumin prevented BPA-induced reduction of glucose consumption and suppression of insulin signaling pathway, indicating curcumin alleviated BPA-triggered insulin resistance in LO2 cells. mRNA and proteins levels of TNF-α and IL-6, as well as MDA level in LO2 cells treated with BPA were decreased by curcumin. Furthermore, curcumin downregulated the activation of p38, JNK, and NF-κB pathways upon stimulation with BPA. Inhibition of JNK pathway, but not p38 nor NF-κB pathway, improved glucose consumption and insulin signaling in BPA-treated LO2 cells. Curcumin inhibits BPA-induced insulin resistance by suppressing JNK pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Involvement of the Tyr kinase/JNK pathway in carbachol-induced bronchial smooth muscle contraction in the rat.

    PubMed

    Sakai, Hiroyasu; Watanabe, Yu; Honda, Mai; Tsuiki, Rika; Ueda, Yusuke; Nagai, Yuki; Narita, Minoru; Misawa, Miwa; Chiba, Yoshihiko

    2013-05-01

    Tyrosine (Tyr) kinases and mitogen-activated protein kinases have been thought to participate in the contractile response in various smooth muscles. The aim of the current study was to investigate the involvement of the Tyr kinase pathway in the contraction of bronchial smooth muscle. Ring preparations of bronchi isolated from rats were suspended in an organ bath. Isometric contraction of circular smooth muscle was measured. Immunoblotting was used to examine the phosphorylation of c-Jun N-terminal kinasess (JNKs) in bronchial smooth muscle. To examine the role of mitogen-activated protein kinase(s) in bronchial smooth muscle contraction, the effects of MPAK inhibitors were investigated in this study. The contraction induced by carbachol (CCh) was significantly inhibited by pretreatment with selective Tyr kinase inhibitors (genistein and ST638, n = 6, respectively), and a JNK inhibitor (SP600125, n = 6). The contractions induced by high K depolarization (n = 4), orthovanadate (a potent Tyr phosphatase inhibitor) and sodium fluoride (a G protein activator; NaF) were also significantly inhibited by selective Tyr kinase inhibitors and a JNK inhibitor (n = 4, respectively). However, the contraction induced by calyculin-A was not affected by SP600125. On the other hand, JNKs were phosphorylated by CCh (2.2 ± 0,4 [mean±SEM] fold increase). The JNK phosphorylation induced by CCh was significantly inhibited by SP600125 (n = 4). These findings suggest that the Tyr kinase/JNK pathway may play a role in bronchial smooth muscle contraction. Strategies to inhibit JNK activation may represent a novel therapeutic approach for diseases involving airway obstruction, such as asthma and chronic obstructive pulmonary disease.

  13. Comparison of computed tomography and magnetic resonance imaging for the evaluation of canine intranasal neoplasia.

    PubMed

    Drees, R; Forrest, L J; Chappell, R

    2009-07-01

    Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity.

  14. The Proteasome Inhibitor Bortezomib Enhances ATRA-Induced Differentiation of Neuroblastoma Cells via the JNK Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Luo, Peihua; Lin, Meili; Li, Lin; Yang, Bo; He, Qiaojun

    2011-01-01

    Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Differentiated human NBs are associated with better outcome and lower stage; induction of differentiation is considered to be therapeutically advantageous. All-trans retinoic acid (ATRA) has been shown to induce the differentiation of neuroblastoma (NB) cell lines. The proteasome inhibitor bortezomib inhibits cell growth and angiogenesis in NBs. Here, we investigated the synergistic effect between bortezomib and ATRA in inducing NB cell differentiation in different NB cell lines. Bortezomib combined with ATRA had a significantly enhanced antiproliferative effect. This inhibition was characterized by a synergistic increase in neuronal differentiation. At the same time, the combination therapy showed little neuronal toxicity which was assessed in primary cultures of rat cerebellar granule cells by the MTT assay, PI staining. The combination of bortezomib and ATRA triggered increased differentiation through the activation of proteins, including RARα, RARβ, RARγ, p-JNK and p21, compared with ATRA treatment alone. Using JNK inhibitor SP600125 to block JNK-dependent activity, the combination therapy-induced neuronal differentiation was partially attenuated. In addition, p21 shRNA had no effect on the combination therapy-induced neuronal differentiation. The in vivo antitumor activities were examined in human NB cell xenografts and GFP-labeled human NB cell xenografts. Treatment of human NB cell CHP126-bearing nude mice with ATRA plus bortezomib resulted in more significant tumor growth inhibition than mice treated with either drug alone. These findings provide the rationale for the development of a new therapeutic strategy for NB based on the pharmacological combination of ATRA and bortezomib. PMID:22087283

  15. A macrophage NBR1-MEKK3 complex triggers JNK-mediated adipose-tissue inflammation in obesity

    PubMed Central

    Hernandez, Eloy D.; Lee, Sang Jun; Kim, Ji Young; Duran, Angeles; Linares, Juan F.; Yajima, Tomoko; Müller, Timo D.; Tschöp, Matthias H.; Smith, Steven R.; Diaz-Meco, Maria T.; Moscat, Jorge

    2014-01-01

    SUMMARY The c-Jun NH(2)-terminal kinase (JNK) is a critical determinant of obesity-associated inflammation and glucose intolerance. The upstream mechanisms controlling this pathway are still unknown. Here we report that the levels of the PB1 domain-containing adapter NBR1 correlated with the expression of pro-inflammatory molecules in adipose tissue from human patients with metabolic syndrome, suggesting that NBR1 plays a key role in adipose-tissue inflammation. We also show that NBR1 inactivation in the myeloid compartment impairs the function, M1 polarization and chemotactic activity of macrophages, prevents inflammation of adipose tissue, and improves glucose tolerance in obese mice. Furthermore, we demonstrate that an interaction between the PB1 domains of NBR1 and the mitogen-activated kinase kinase 3 (MEKK3) enables the formation of a signaling complex required for the activation of JNK. Together these discoveries identify an NBR1-MEKK3 complex as a key regulator of JNK signaling and adipose-tissue inflammation in obesity. PMID:25043814

  16. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-kappaB-dependent mechanisms.

    PubMed

    Cho, Hyun-Ji; Jeong, Yun-Jeong; Park, Kwan-Kyu; Park, Yoon-Yub; Chung, Il-Kyung; Lee, Kwang-Gill; Yeo, Joo-Hong; Han, Sang-Mi; Bae, Young-Seuk; Chang, Young-Chae

    2010-02-17

    Bee venom has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and for the relief of pain in traditional oriental medicine. The purpose of this study is to elucidate the effects of bee venom on MMP-9 expression and determine possible mechanisms by which bee venom relieves or prevents the expression of MMP-9 during invasion and metastasis of breast cancer cells. We examined the expression and activity of MMP-9 and possible signaling pathway affected in PMA-induced MCF-7 cells. Bee venom was obtained from the National Institute of Agricultural Science and Technology of Korea. Matrigel invasion assay, wound-healing assay, zymography assay, western blot assay, electrophoretic mobility shift assay and luciferase gene assay were used for assessment. Bee venom inhibited cell invasion and migration, and also suppressed MMP-9 activity and expression, processes related to tumor invasion and metastasis, in PMA-induced MCF-7 cells. Bee venom specifically suppressed the phosphorylation of p38/JNK and at the same time, suppressed the protein expression, DNA binding and promoter activity of NF-kappaB. The levels of phosphorylated ERK1/2 and c-Jun did not change. We also investigated MMP-9 inhibition by melittin, apamin and PLA(2), representative single component of bee venom. We confirmed that PMA-induced MMP-9 activity was significantly decreased by melittin, but not by apamin and phospholipase A(2). These data demonstrated that the expression of MMP-9 was abolished by melittin, the main component of bee venom. Bee venom inhibits PMA-induced MMP-9 expression and activity by inhibition of NF-kappaB via p38 MAPK and JNK signaling pathways in MCF-7 cells. These results indicate that bee venom can be a potential anti-metastatic and anti-invasive agent. This useful effect may lead to future clinical research on the anti-cancer properties of bee venom. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cells via the reactive oxygen species-dependent pathway.

    PubMed

    Wu, Jinsheng; Han, Jingli; Hou, Benxin; Deng, Chengwei; Wu, Huanliang; Shen, Liangfang

    2016-05-01

    Sulforaphane is recognized as a safe antitumor agent derived from various cruciferous vegetables, including broccoli. It has been demonstrated that sulforaphase is a potent antitumor agent in diverse cancers. However, its effect on hepatocellular carcinoma remains largely unknown. Here, we show that sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cell via the reactive oxygen species-dependent pathway. We found sulforaphane inhibited hepatocellular carcinoma cell proliferation in a dose- and time-dependent manner. Sulforaphane induced G0/G1 phase cell cycle arrest and promoted cell apoptosis. A set of experiments showed that sulforaphase inhibited hepatocellular carcinoma cell migration and invasion, inhibited the formation of fibroblast like mesenchymal cells and the expression of Vimentin, but increased the expression of E-cadherin, suggesting sulforaphane suppresses epithelial-mesenchymal transition (EMT) process. Cotreatment with N-acetyl-L-cysteine inhibited sulforaphane-inhibited invasion and upregulation of E-cadherin and almost completely abolished the sulforaphane-induced expression of Vimentin. The effect of sulforaphane on the growth of hepatocellular carcinoma cells was confirmed by a xenograft tumor growth model. All our finding indicated that sulforaphane is a promising and safe strategy for treating hepatocellular carcinoma.

  18. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation ofmore » [{sup 3}H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [{sup 3}H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-{kappa}B, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.« less

  19. Unique roles of estrogen-dependent Pten control in epithelial cell homeostasis of mouse vagina.

    PubMed

    Miyagawa, S; Sato, M; Sudo, T; Yamada, G; Iguchi, T

    2015-02-19

    Numerous studies support a role of phosphatase and tensin homolog deleted from chromosome 10 (Pten) as a tumor suppressor gene that controls epithelial cell homeostasis to prevent tumor formation. Mouse vaginal epithelium cyclically exhibits cell proliferation and differentiation in response to estrogen and provides a unique model for analyzing homeostasis of stratified squamous epithelia. We analyzed vaginal epithelium-specific Pten conditional knockout (CKO) mice to provide new insights into Pten/phosphoinositide-3-kinase (PI3K)/Akt function. The vaginal epithelium of ovariectomized (OVX) mice (control) was composed of 1-2 layers of cuboidal cells, whereas OVX CKO mice exhibited epithelial hyperplasia in the suprabasal cells with increased cell mass and mucin production. This is possibly due to misactivation of mammalian target of rapamycin and mitogen-activated protein kinase. Intriguingly, estrogen administration to OVX Pten CKO mice induced stratification and keratinized differentiation in the vaginal epithelium, as in estrogen-treated controls. We found that Pten is exclusively expressed in the suprabasal cells in the absence of estrogens, whereas estrogen administration induced Pten expression in the basal cells. This suggests that Pten acts to prevent excessive cell proliferation as in the case of other squamous tissues. Thus, Pten exhibits a dual role on the control of vaginal homeostasis, depending on whether estrogens are present or absent. Our results provide new insights into how Pten functions in tissue homeostasis.

  20. Mineral trioxide aggregate upregulates odonto/osteogenic capacity of bone marrow stromal cells from craniofacial bones via JNK and ERK MAPK signalling pathways.

    PubMed

    Wang, Y; Li, J; Song, W; Yu, J

    2014-06-01

    The aim of this study was to investigate effects of mineral trioxide aggregate (MTA) on odonto/osteogenic differentiation of bone marrow stromal cells (BMSCs) from craniofacial bones. Craniofacial BMSCs were isolated from rat mandible and effects of MTA on their proliferation, differentiation and MAPK pathway involvement were subsequently investigated, in vitro. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2,5-tetrazoliumbromide) assay was performed to evaluate proliferation of the MTA-treated cells. Alkaline phosphatase (ALP) activity, alizarin red staining, real-time reverse transcription polymerase chain reaction and western blot assays were used to assess differentiation capacity as well as MAPK pathway involvement. 0.02 mg/ml MTA-treated BMSCs had significantly higher ALP activity and formed more mineralized nodules than the untreated group. Odonto/osteoblastic marker genes/proteins (Alp, Runx2/RUNX2, Osx/OSX, Ocn/OCN and Dspp/DSP respectively) in MTA-treated cells were remarkably upregulated compared to untreated ones. Mechanistically, phosphorylated Jun N-terminal kinase (P-JNK) and phosphorylated extracellular regulated protein kinases (P-ERK) in MTA-treated BMSCs increased significantly in a time-dependent manner, while inhibition of JNK and ERK MAPK pathways dramatically blocked MTA-induced odonto/osteoblastic differentiation, as indicated by reduced ALP levels, weakened mineralization capacity and downregulated levels of odonto/osteoblastic marker genes (Alp, Runx2, Osx, Ocn and Dspp). Mineral trioxide aggregate promoted odonto/osteogenic capacity of craniofacial BMSCs via JNK and ERK MAPK signalling pathways. © 2014 John Wiley & Sons Ltd.

  1. ROS regulation of axonal mitochondrial transport is mediated by Ca2+ and JNK in Drosophila

    PubMed Central

    Liao, Pin-Chao; Tandarich, Lauren C.

    2017-01-01

    Mitochondria perform critical functions including aerobic ATP production and calcium (Ca2+) homeostasis, but are also a major source of reactive oxygen species (ROS) production. To maintain cellular function and survival in neurons, mitochondria are transported along axons, and accumulate in regions with high demand for their functions. Oxidative stress and abnormal mitochondrial axonal transport are associated with neurodegenerative disorders. However, we know little about the connection between these two. Using the Drosophila third instar larval nervous system as the in vivo model, we found that ROS inhibited mitochondrial axonal transport more specifically, primarily due to reduced flux and velocity, but did not affect transport of other organelles. To understand the mechanisms underlying these effects, we examined Ca2+ levels and the JNK (c-Jun N-terminal Kinase) pathway, which have been shown to regulate mitochondrial transport and general fast axonal transport, respectively. We found that elevated ROS increased Ca2+ levels, and that experimental reduction of Ca2+ to physiological levels rescued ROS-induced defects in mitochondrial transport in primary neuron cell cultures. In addition, in vivo activation of the JNK pathway reduced mitochondrial flux and velocities, while JNK knockdown partially rescued ROS-induced defects in the anterograde direction. We conclude that ROS have the capacity to regulate mitochondrial traffic, and that Ca2+ and JNK signaling play roles in mediating these effects. In addition to transport defects, ROS produces imbalances in mitochondrial fission-fusion and metabolic state, indicating that mitochondrial transport, fission-fusion steady state, and metabolic state are closely interrelated in the response to ROS. PMID:28542430

  2. Trichomonas vaginalis Contact-Dependent Cytolysis of Epithelial Cells

    PubMed Central

    Lustig, Gila; Ryan, Christopher M.; Secor, W. Evan

    2013-01-01

    Trichomonas vaginalis is an extracellular protozoan parasite that binds to the epithelium of the human urogenital tract during infection. In this study, we examined the propensities of 26 T. vaginalis strains to bind to and lyse prostate (BPH-1) and ectocervical (Ect1) epithelium and to lyse red blood cells (RBCs). We found that only three of the strains had a statistically significant preference for either BPH-1 (MSA1103) or Ect1 (LA1 and MSA1123). Overall, we observed that levels of adherence are highly variable among strains, with a 12-fold range of adherence on Ect1 cells and a 45-fold range on BPH-1 cells. Cytolysis levels displayed even greater variability, from no detectable cytolysis to 80% or 90% cytolysis of Ect1 and BPH-1, respectively. Levels of adherence and cytolysis correlate for weakly adherent/cytolytic strains, and a threshold of attachment was found to be necessary to trigger cytolysis; however, this threshold can be reached without inducing cytolysis. Furthermore, cytolysis was completely blocked when we prevented attachment of the parasites to host cells while allowing soluble factors complete access. We demonstrate that hemolysis was a rare trait, with only 4 of the 26 strains capable of lysing >20% RBCs with a 1:30 parasite/RBC ratio. Hemolysis also did not correlate with adherence to or cytolysis of either male (BPH-1)- or female (Ect1)-derived epithelial cell lines. Our results reveal that despite a broad range of pathogenic properties among different T. vaginalis strains, all strains show strict contact-dependent cytolysis. PMID:23429535

  3. Quantification of confocal fluorescence microscopy for the detection of cervical intraepithelial neoplasia.

    PubMed

    Sheikhzadeh, Fahime; Ward, Rabab K; Carraro, Anita; Chen, Zhao Yang; van Niekerk, Dirk; Miller, Dianne; Ehlen, Tom; MacAulay, Calum E; Follen, Michele; Lane, Pierre M; Guillaud, Martial

    2015-10-24

    Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique. We propose to test the potential of fluorescence confocal microscopy to identify high-grade lesions. We examined the quantification of ex vivo confocal fluorescence microscopy to differentiate among normal cervical tissue, low-grade Cervical Intraepithelial Neoplasia (CIN), and high-grade CIN. We sought to (1) quantify nuclear morphology and tissue architecture features by analyzing images of cervical biopsies; and (2) determine the accuracy of high-grade CIN detection via confocal microscopy relative to the accuracy of detection by colposcopic impression. Forty-six biopsies obtained from colposcopically normal and abnormal cervical sites were evaluated. Confocal images were acquired at different depths from the epithelial surface and histological images were analyzed using in-house software. The features calculated from the confocal images compared well with those features obtained from the histological images and histopathological reviews of the specimens (obtained by a gynecologic pathologist). The correlations between two of these features (the nuclear-cytoplasmic ratio and the average of three nearest Delaunay-neighbors distance) and the grade of dysplasia were higher than that of colposcopic impression. The sensitivity of detecting high-grade dysplasia by analysing images collected at the surface of the epithelium, and at 15 and 30 μm below the epithelial surface were respectively 100, 100, and 92 %. Quantitative analysis of confocal fluorescence images showed its capacity for discriminating high-grade CIN lesions vs. low-grade CIN lesions and normal tissues, at different depth of imaging. This approach could be used to help clinicians identify high-grade CIN in clinical

  4. Amitriptyline induces early growth response-1 gene expression via ERK and JNK mitogen-activated protein kinase pathways in rat C6 glial cells.

    PubMed

    Chung, Eun Young; Shin, Soon Young; Lee, Young Han

    2007-07-05

    Astrocytes play important roles in guiding the construction of the nervous system, controlling extracellular ions and neurotransmitters, and regulating CNS synaptogenesis. Egr-1 is a transcription factor involved in neuronal differentiation and astrocyte cell proliferation. In this study, we investigated whether the tricyclic antidepressant (TCA) amitriptyline induces Egr-1 expression in astrocytes using rat C6 glioma cells as a model. We found that amitriptyline increased the expression of Egr-1 in a dose- and time-dependent manner. The amitriptyline-induced Egr-1 expression was mediated through serum response elements (SREs) in the Egr-1 promoter. SREs were activated by the Ets-domain transcription factor Elk-1 through the ERK and JNK mitogen-activated protein (MAP) kinase pathways. The inhibition of the ERK and JNK MAP kinase signals attenuated amitriptyline-induced transactivation of Gal4-Elk-1 and Egr-1 promoter activity. Our findings suggest that the induction of Egr-1 expression in astrocytes may be required to attain the therapeutic effects of antidepressant drugs.

  5. The Core Molecular Machinery Used for Engulfment of Apoptotic Cells Regulates the JNK Pathway Mediating Axon Regeneration in Caenorhabditis elegans.

    PubMed

    Pastuhov, Strahil Iv; Fujiki, Kota; Tsuge, Anna; Asai, Kazuma; Ishikawa, Sho; Hirose, Kazuya; Matsumoto, Kunihiro; Hisamoto, Naoki

    2016-09-14

    The mechanisms that govern the ability of specific neurons to regenerate their axons after injury are not well understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we identify two components functioning upstream of the JNK pathway: the Ste20-related protein kinase MAX-2 and the Rac-type GTPase CED-10. CED-10, when bound by GTP, interacts with MAX-2 and functions as its upstream regulator in axon regeneration. CED-10, in turn, is activated by axon injury via signals initiated from the integrin α-subunit INA-1 and the nonreceptor tyrosine kinase SRC-1 and transmitted via the signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO. This module is also known to regulate the engulfment of apoptotic cells during development. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. The molecular mechanisms of axon regeneration after injury remain poorly understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we show that integrin, Rac-GTPase, and several other molecules, all of which are known to regulate engulfment of apoptotic cells during development, also regulate axon regeneration. This signaling module activates the JNK-MAPK cascade via MAX-2, a PAK-like protein kinase that binds Rac. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. Copyright © 2016 the authors 0270-6474/16/369710-12$15.00/0.

  6. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Beom Su; Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830; Park, Ji-Yun

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biologicalmore » process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal

  7. Computed tomographic colonography for colorectal cancer screening: risk factors for the detection of advanced neoplasia.

    PubMed

    Hassan, Cesare; Pooler, B Dustin; Kim, David H; Rinaldi, Antonio; Repici, Alessandro; Pickhardt, Perry J

    2013-07-15

    The objective of this study was to determine whether age, sex, a positive family history of colorectal cancer, and body mass index (BMI) are important predictors of advanced neoplasia in the setting of screening computed tomographic colonography (CTC). Consecutive patients who were referred for first-time screening CTC from 2004 to 2011 at a single medical center were enrolled. Results at pathology were recorded for all patients who underwent polypectomy. Logistic regression was used to identify significant predictor variables for advanced neoplasia (any adenoma ≥ 10 mm or with villous component, high-grade dysplasia, or adenocarcinoma). Odds ratios (ORs) were used to express associations between the study variables (age, sex, BMI, and a positive family history of colorectal cancer) and advanced neoplasia. In total, 7620 patients underwent CTC screening. Of these, 276 patients (3.6%; 95% confidence interval [CI], 3.2%-4.1%) ultimately were diagnosed with advanced neoplasia. At multivariate analysis, age (mean OR per 10-year increase, 1.8; 95% CI, 1.6-2.0) and being a man (OR, 1.7; 95% CI, 1.3-2.2) were independent predictors of advanced neoplasia, whereas BMI and a positive family history of colorectal cancer were not. The number needed to screen to detect 1 case of advanced neoplasia varied from 51 among women aged ≤ 55 years to 10 among men aged >65 years. The number of post-CTC colonoscopies needed to detect 1 case of advanced neoplasia varied from 2 to 4. Age and sex were identified as important independent predictors of advanced neoplasia risk in individuals undergoing screening CTC, whereas BMI and a positive family history of colorectal cancer were not. These results have implications for appropriate patient selection. © 2013 American Cancer Society.

  8. Synaptopodin couples epithelial contractility to α-actinin-4–dependent junction maturation

    PubMed Central

    Kannan, Nivetha

    2015-01-01

    The epithelial junction experiences mechanical force exerted by endogenous actomyosin activities and from interactions with neighboring cells. We hypothesize that tension generated at cell–cell adhesive contacts contributes to the maturation and assembly of the junctional complex. To test our hypothesis, we used a hydraulic apparatus that can apply mechanical force to intercellular junction in a confluent monolayer of cells. We found that mechanical force induces α-actinin-4 and actin accumulation at the cell junction in a time- and tension-dependent manner during junction development. Intercellular tension also induces α-actinin-4–dependent recruitment of vinculin to the cell junction. In addition, we have identified a tension-sensitive upstream regulator of α-actinin-4 as synaptopodin. Synaptopodin forms a complex containing α-actinin-4 and β-catenin and interacts with myosin II, indicating that it can physically link adhesion molecules to the cellular contractile apparatus. Synaptopodin depletion prevents junctional accumulation of α-actinin-4, vinculin, and actin. Knockdown of synaptopodin and α-actinin-4 decreases the strength of cell–cell adhesion, reduces the monolayer permeability barrier, and compromises cellular contractility. Our findings underscore the complexity of junction development and implicate a control process via tension-induced sequential incorporation of junctional components. PMID:26504173

  9. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells

    PubMed Central

    Kim, A D; Kang, K A; Kim, H S; Kim, D H; Choi, Y H; Lee, S J; Kim, H S; Hyun, J W

    2013-01-01

    Compound K (20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol) is an active metabolite of ginsenosides and induces apoptosis in various types of cancer cells. This study investigated the role of autophagy in compound K-induced cell death of human HCT-116 colon cancer cells. Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux. Whereas blockade of compound K-induced autophagy by 3-methyladenein and bafilomycin A1 significantly increased cell viability. In addition, compound K augmented the time-dependent expression of the autophagy-related proteins Atg5, Atg6, and Atg7. However, knockdown of Atg5, Atg6, and Atg7 markedly inhibited the detrimental impact of compound K on LC3-II accumulation and cell vitality. Compound K-provoked autophagy was also linked to the generation of intracellular reactive oxygen species (ROS); both of these processes were mitigated by the pre-treatment of cells with the antioxidant N-acetylcysteine. Moreover, compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas downregulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K. Compound K also provoked apoptosis, as evidenced by an increased number of apoptotic bodies and sub-G1 hypodiploid cells, enhanced activation of caspase-3 and caspase-9, and modulation of Bcl-2 and Bcl-2-associated X protein expression. Notably, compound K-stimulated autophagy as well as apoptosis was induced by disrupting the interaction between Atg6 and Bcl-2. Taken together, these results indicate that the induction of autophagy and apoptosis by compound K is mediated through ROS generation and JNK activation in human colon cancer cells. PMID:23907464

  10. The contribution of c-Jun N-terminal kinase activation and subsequent Bcl-2 phosphorylation to apoptosis induction in human B-cells is dependent on the mode of action of specific stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muscarella, Donna E.; Bloom, Stephen E.

    2008-04-01

    The c-Jun N-terminal kinase (JNK) pathway can play paradoxical roles as either a pro-survival or a pro-cell death pathway depending on type of stress and cell type. The goal of the present study was to determine the role of JNK pathway signaling for regulating B-cell apoptosis in two important but contrasting situations-global proteotoxic damage, induced by arsenite and hyperthermia, versus specific microtubule inhibition, induced by the anti-cancer drug vincristine, using the EW36 B-cell line. This cell line over-expresses the Bcl-2 protein and is a useful model to identify treatments that can overcome multi-drug resistance in lymphoid cells. Exposure of EW36more » B-cells to arsenite or lethal hyperthermia resulted in activation of the JNK pathway and induction of apoptosis. However, pharmacological inhibition of the JNK pathway did not inhibit apoptosis, indicating that JNK pathway activation is not required for apoptosis induction by these treatments. In contrast, vincristine treatment of EW36 B-cells resulted in JNK activation and apoptosis that was suppressed by JNK inhibition. A critical difference between the two types of stress treatments was that only vincristine-induced JNK activation resulted in phosphorylation of Bcl-2 at threonine-56, a modification that can block its anti-apoptotic function. Importantly, Bcl-2 phosphorylation was attenuated by JNK inhibition implicating JNK as the upstream kinase. Furthermore, arsenite and hyperthermia treatments activated a p53/p21 pathway associated with apoptosis induction, whereas vincristine did not activate this pathway. These results reveal two stress-activated pathways, one JNK-dependent and another JNK-independent, either of which can bypass Bcl-2 mediated resistance, resulting in cell death.« less

  11. Effect of sodium butyrate on cell proliferation and cell cycle in porcine intestinal epithelial (IPEC-J2) cells.

    PubMed

    Qiu, Yueqin; Ma, Xianyong; Yang, Xuefen; Wang, Li; Jiang, Zongyong

    2017-04-01

    Conflicting results have been reported that butyrate in normal piglets leads either to an increase or to a decrease of jejunal villus length, implying a possible effect on the proliferation of enterocytes. No definitive study was found for the biological effects of butyrate in porcine jejunal epithelial cells. The present study used IPEC-J2 cells, a non-transformed jejunal epithelial line to evaluate the direct effects of sodium butyrate on cell proliferation, cell cycle regulation, and apoptosis. Low concentrations (0.5 and 1 mM) of butyrate had no effect on cell proliferation. However, at 5 and 10 mM, sodium butyrate significantly decreased cell viability, accompanied by reduced levels of p-mTOR and PCNA protein. Sodium butyrate, in a dose-dependent manner, induced cell cycle arrest in G0/G1 phase and reduced the numbers of cells in S phase. In addition, relative expression of p21, p27, and pro-apoptosis bak genes, and protein levels of p21Waf1/Cip1, p27Kip1, cyclinD3, CDK4, and Cleave-caspase3 were increased by higher concentrations of sodium butyrate (1, 5, 10 mM), and the levels of cyclinD1 and CDK6 were reduced by 5 and 10 mM butyrate. Butyrate increased the phosphorylated form of the signaling molecule p38 and phosphorylated JNK. In conclusion, the present in vitro study indicated that sodium butyrate inhibited the proliferation of IPEC-J2 cells by inducing cell cycle arrest in the G0/G1 phase of cell cycles and by increasing apoptosis at high concentrations.

  12. Concurrent endocrine neoplasias in dogs and cats: a retrospective study (2004-2014).

    PubMed

    Beatrice, Laura; Boretti, Felicitas Schär; Sieber-Ruckstuhl, Nadja S; Mueller, Claudia; Kümmerle-Fraune, Claudia; Hilbe, Monika; Grest, Paula; Reusch, Claudia E

    2018-03-17

    Multiple endocrine neoplasia (MEN) is a well-known syndrome in human medicine, whereas only a few cases of concurrent endocrine neoplasias have been reported in dogs and cats. The aim of this study was to evaluate the prevalence of concurrent endocrine neoplasias in dogs and cats at our clinic, identify possible breed and sex predispositions and investigate similarities with MEN syndromes in humans. Postmortem reports of 951 dogs and 1155 cats that died or were euthanased at the Clinic for Small Animal Internal Medicine, University of Zurich, between 2004 and 2014 were reviewed, and animals with at least two concurrent endocrine neoplasias and/or hyperplasias were included. Twenty dogs and 15 cats met the inclusion criteria. In dogs, the adrenal glands were most commonly affected. Multiple tumours affecting the adrenal glands and the association of these tumours with pituitary adenomas were the most common tumour combinations. Only one dog had a combination resembling human MEN type 1 syndrome (pituitary adenoma and insulinoma). In cats, the thyroid glands were most commonly affected and there were no similarities to human MEN syndromes. The prevalence of concurrent endocrine neoplasia was 2.1 per cent in dogs and 1.3 per cent in cats and MEN-like syndromes are very rare in these species. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Comparison of computed tomography and magnetic resonance imaging for the evaluation of canine intranasal neoplasia

    PubMed Central

    Drees, R.; Forrest, L. J.; Chappell, R.

    2009-01-01

    Objectives Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Methods Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Results Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. Clinical Significance We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity. PMID:19508490

  14. Dexmedetomidine-induced Contraction Involves Phosphorylation of Caldesmon by JNK in Endothelium-denuded Rat Aortas

    PubMed Central

    Baik, Jiseok; Ok, Seong-Ho; Cho, Hyunhoo; Yu, Jongsun; Kim, Woochan; Nam, In-Koo; Choi, Mun-Jeoung; Lee, Heon-Keun; Sohn, Ju-Tae

    2014-01-01

    Caldesmon, an inhibitory actin binding protein, binds to actin and inhibits actin-myosin interactions, whereas caldesmon phosphorylation reverses the inhibitory effect of caldesmon on actin-myosin interactions, potentially leading to enhanced contraction. The goal of this study was to investigate the cellular signaling pathway responsible for caldesmon phosphorylation, which is involved in the regulation of the contraction induced by dexmedetomidine (DMT), an alpha-2 adrenoceptor agonist, in endothelium-denuded rat aortas. SP600125 (a c-Jun NH2-terminal kinase [JNK] inhibitor) dose-response curves were generated in aortas that were pre-contracted with DMT or phorbol 12,13-dibutyrate (PDBu), a protein kinase C (PKC) activator. Dose-response curves to the PKC inhibitor chelerythrine were generated in rat aortas pre-contracted with DMT. The effects of SP600125 and rauwolscine (an alpha-2 adrenoceptor inhibitor) on DMT-induced caldesmon phosphorylation in rat aortic vascular smooth muscle cells (VSMCs) were investigated by western blot analysis. PDBu-induced caldesmon and DMT-induced PKC phosphorylation in rat aortic VSMCs was investigated by western blot analysis. The effects of GF109203X (a PKC inhibitor) on DMT- or PDBu-induced JNK phosphorylation in VSMCs were assessed. SP600125 resulted in the relaxation of aortas that were pre-contracted with DMT or PDBu, whereas rauwolscine attenuated DMT-induced contraction. Chelerythrine resulted in the vasodilation of aortas pre-contracted with DMT. SP600125 and rauwolscine inhibited DMT-induced caldesmon phosphorylation. Additionally, PDBu induced caldesmon phosphorylation, and GF109203X attenuated the JNK phosphorylation induced by DMT or PDBu. DMT induced PKC phosphorylation in rat aortic VSMCs. These results suggest that alpha-2 adrenoceptor-mediated, DMT-induced contraction involves caldesmon phosphorylation that is mediated by JNK phosphorylation by PKC. PMID:25332685

  15. Amyloid-β Reduces Exosome Release from Astrocytes by Enhancing JNK Phosphorylation.

    PubMed

    Abdullah, Mohammad; Takase, Hiroshi; Nunome, Mari; Enomoto, Hiroyuki; Ito, Jin-Ichi; Gong, Jian-Sheng; Michikawa, Makoto

    2016-07-02

    Exosomes are small extracellular vesicles secreted by variety of cell types such as neurons, astrocytes, and oligodendrocytes. It is suggested that exosomes play essential role in the maintenance of the neuronal functions and also in the clearance of amyloid-β (Aβ) from the brain. Aβ is well known to cause neuronal cell death, whereas little is known about its effect on astrocytes. In this study, we examined the effect of Aβ on release of exosomes from astrocytes in culture. We analyzed release of exosomes and apoE, both of which are known to remove/clear Aβ from the brain, in the culture medium of astrocytes. We found that exosome and apoE-HDL were successfully separated by density gradient ultracentrifugation demonstrated by distribution of their specific markers, flotillin and HSP90, and cholesterol, and morphological analysis using electron microscopy. Exosome release was significantly reduced by Aβ1-42 treatment in cultured astrocytes accompanied by an increased JNK phosphorylation. Whereas, apoE-HDL release remained unchanged. A JNK inhibitor restored the decreased levels of exosome release induced by Aβ treatment to levels similar to those of control, suggesting that Aβ1-42 inhibits exosome release via stimulation of JNK signal pathway. Because exosomes are shown to remove Aβ in the brain, our findings suggest that increased Aβ levels in the brain may impair the exosome-mediated Aβ clearance pathway.

  16. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    PubMed

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-05-15

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.

  17. Mechanical stretch triggers rapid epithelial cell division through Piezo1.

    PubMed

    Gudipaty, S A; Lindblom, J; Loftus, P D; Redd, M J; Edes, K; Davey, C F; Krishnegowda, V; Rosenblatt, J

    2017-03-02

    Despite acting as a barrier for the organs they encase, epithelial cells turn over at some of the fastest rates in the body. However, epithelial cell division must be tightly linked to cell death to preserve barrier function and prevent tumour formation. How does the number of dying cells match those dividing to maintain constant numbers? When epithelial cells become too crowded, they activate the stretch-activated channel Piezo1 to trigger extrusion of cells that later die. However, it is unclear how epithelial cell division is controlled to balance cell death at the steady state. Here we show that mammalian epithelial cell division occurs in regions of low cell density where cells are stretched. By experimentally stretching epithelia, we find that mechanical stretch itself rapidly stimulates cell division through activation of the Piezo1 channel. To stimulate cell division, stretch triggers cells that are paused in early G2 phase to activate calcium-dependent phosphorylation of ERK1/2, thereby activating the cyclin B transcription that is necessary to drive cells into mitosis. Although both epithelial cell division and cell extrusion require Piezo1 at the steady state, the type of mechanical force controls the outcome: stretch induces cell division, whereas crowding induces extrusion. How Piezo1-dependent calcium transients activate two opposing processes may depend on where and how Piezo1 is activated, as it accumulates in different subcellular sites with increasing cell density. In sparse epithelial regions in which cells divide, Piezo1 localizes to the plasma membrane and cytoplasm, whereas in dense regions in which cells extrude, it forms large cytoplasmic aggregates. Because Piezo1 senses both mechanical crowding and stretch, it may act as a homeostatic sensor to control epithelial cell numbers, triggering extrusion and apoptosis in crowded regions and cell division in sparse regions.

  18. Activation of a Ca2+-dependent cation conductance with properties of TRPM2 by reactive oxygen species in lens epithelial cells.

    PubMed

    Keckeis, Susanne; Wernecke, Laura; Salchow, Daniel J; Reichhart, Nadine; Strauß, Olaf

    2017-08-01

    Ion channels are crucial for maintenance of ion homeostasis and transparency of the lens. The lens epithelium is the metabolically and electrophysiologically active cell type providing nutrients, ions and water to the lens fiber cells. Ca 2+ -dependent non-selective ion channels seem to play an important role for ion homeostasis. The aim of the study was to identify and characterize Ca 2+ - and reactive oxygen species (ROS)-dependent non-selective cation channels in human lens epithelial cells. RT-PCR revealed gene expression of the Ca 2+ -activated non-selective cation channels TRPC3, TRPM2, TRPM4 and Ano6 in both primary lens epithelial cells and the cell line HLE-B3, whereas TRPM5 mRNA was only found in HLE-B3 cells. Using whole-cell patch-clamp technique, ionomycin evoked non-selective cation currents with linear current-voltage relationship in both cell types. The current was decreased by flufenamic acid (FFA), 2-APB, 9-phenanthrol and miconazole, but insensitive to DIDS, ruthenium red, and intracellularly applied spermine. H 2 O 2 evoked a comparable current, abolished by FFA. TRPM2 protein expression in HLE-B3 cells was confirmed by means of immunocytochemistry and western blot. In summary, we conclude that lens epithelial cells functionally express Ca 2+ - and H 2 O 2 -activated non-selective cation channels with properties of TRPM2. Copyright © 2017. Published by Elsevier Ltd.

  19. High-calorie diet exacerbates prostate neoplasia in mice with haploinsufficiency of Pten tumor suppressor gene.

    PubMed

    Liu, Jehnan; Ramakrishnan, Sadeesh K; Khuder, Saja S; Kaw, Meenakshi K; Muturi, Harrison T; Lester, Sumona Ghosh; Lee, Sang Jun; Fedorova, Larisa V; Kim, Andrea J; Mohamed, Iman E; Gatto-Weis, Cara; Eisenmann, Kathryn M; Conran, Philip B; Najjar, Sonia M

    2015-03-01

    Association between prostate cancer and obesity remains controversial. Allelic deletions of PTEN, a tumor suppressor gene, are common in prostate cancer in men. Monoallelic Pten deletion in mice causes low prostatic intraepithelial neoplasia (mPIN). This study tested the effect of a hypercaloric diet on prostate cancer in Pten (+/-) mice. 1-month old mice were fed a high-calorie diet deriving 45% calories from fat for 3 and 6 months before prostate was analyzed histologically and biochemically for mPIN progression. Because Pten (+/-) mice are protected against diet-induced insulin resistance, we tested the role of insulin on cell growth in RWPE-1 normal human prostatic epithelial cells with siRNA knockdown of PTEN. In addition to activating PI3 kinase/Akt and Ras/MAPkinase pathways, high-calorie diet causes neoplastic progression, angiogenesis, inflammation and epithelial-mesenchymal transition. It also elevates the expression of fatty acid synthase (FAS), a lipogenic gene commonly elevated in progressive cancer. SiRNA-mediated downregulation of PTEN demonstrates increased cell growth and motility, and soft agar clonicity in addition to elevation in FAS in response to insulin in RWPE-1 normal human prostatic cells. Downregulating FAS in addition to PTEN, blunted the proliferative effect of insulin (and IL-6) in RWPE-1 cells. High-calorie diet promotes prostate cancer progression in the genetically susceptible Pten haploinsufficient mouse while preserving insulin sensitivity. This appears to be partly due to increased inflammatory response to high-caloric intake in addition to increased ability of insulin to promote lipogenesis.

  20. Acute ethanol exposure-induced autophagy-mediated cardiac injury via activation of the ROS-JNK-Bcl-2 pathway.

    PubMed

    Zhu, Zhongxin; Huang, Yewei; Lv, Lingchun; Tao, Youli; Shao, Minglong; Zhao, Congcong; Xue, Mei; Sun, Jia; Niu, Chao; Wang, Yang; Kim, Sunam; Cong, Weitao; Mao, Wei; Jin, Litai

    2018-02-01

    Binge drinking is associated with increased cardiac autophagy, and often triggers heart injury. Given the essential role of autophagy in various cardiac diseases, this study was designed to investigate the role of autophagy in ethanol-induced cardiac injury and the underlying mechanism. Our study showed that ethanol exposure enhanced the levels of LC3-II and LC3-II positive puncta and promoted cardiomyocyte apoptosis in vivo and in vitro. In addition, we found that ethanol induced autophagy and cardiac injury largely via the sequential triggering of reactive oxygen species (ROS) accumulation, activation of c-Jun NH2-terminal kinase (JNK), phosphorylation of Bcl-2, and dissociation of the Beclin 1/Bcl-2 complex. By contrast, inhibition of ethanol-induced autophagic flux with pharmacologic agents in the hearts of mice and cultured cells significantly alleviated ethanol-induced cardiomyocyte apoptosis and heart injury. Elimination of ROS with the antioxidant N-acetyl cysteine (NAC) or inhibition of JNK with the JNK inhibitor SP600125 reduced ethanol-induced autophagy and subsequent autophagy-mediated apoptosis. Moreover, metallothionein (MT), which can scavenge reactive oxygen and nitrogen species, also attenuated ethanol-induced autophagy and cell apoptosis in MT-TG mice. In conclusion, our findings suggest that acute ethanol exposure induced autophagy-mediated heart toxicity and injury mainly through the ROS-JNK-Bcl-2 signaling pathway. © 2017 Wiley Periodicals, Inc.

  1. Epithelial Control of Gut-Associated Lymphoid Tissue Formation through p38α-Dependent Restraint of NF-κB Signaling.

    PubMed

    Caballero-Franco, Celia; Guma, Monica; Choo, Min-Kyung; Sano, Yasuyo; Enzler, Thomas; Karin, Michael; Mizoguchi, Atsushi; Park, Jin Mo

    2016-03-01

    The protein kinase p38α mediates cellular responses to environmental and endogenous cues that direct tissue homeostasis and immune responses. Studies of mice lacking p38α in several different cell types have demonstrated that p38α signaling is essential to maintaining the proliferation-differentiation balance in developing and steady-state tissues. The mechanisms underlying these roles involve cell-autonomous control of signaling and gene expression by p38α. In this study, we show that p38α regulates gut-associated lymphoid tissue (GALT) formation in a noncell-autonomous manner. From an investigation of mice with intestinal epithelial cell-specific deletion of the p38α gene, we find that p38α serves to limit NF-κB signaling and thereby attenuate GALT-promoting chemokine expression in the intestinal epithelium. Loss of this regulation results in GALT hyperplasia and, in some animals, mucosa-associated B cell lymphoma. These anomalies occur independently of luminal microbial stimuli and are most likely driven by direct epithelial-lymphoid interactions. Our study illustrates a novel p38α-dependent mechanism preventing excessive generation of epithelial-derived signals that drive lymphoid tissue overgrowth and malignancy. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. DHEA increases epithelial markers and decreases mesenchymal proteins in breast cancer cells and reduces xenograft growth.

    PubMed

    Colín-Val, Zaira; González-Puertos, Viridiana Yazmín; Mendoza-Milla, Criselda; Gómez, Erika Olivia; Huesca-Gómez, Claudia; López-Marure, Rebeca

    2017-10-15

    Breast cancer is one of the most common neoplasias and the leading cause of cancer death in women worldwide. Its high mortality rate is linked to a great metastatic capacity associated with the epithelial-mesenchymal transition (EMT). During this process, a decrease in epithelial proteins expression and an increase of mesenchymal proteins are observed. On the other hand, it has been shown that dehydroepiandrosterone (DHEA), the most abundant steroid in human plasma, inhibits migration of breast cancer cells; however, the underlying mechanisms have not been elucidated. In this study, the in vitro effect of DHEA on the expression pattern of some EMT-related proteins, such as E-cadherin (epithelial), N-cadherin, vimentin and Snail (mesenchymal) was measured by Western blot and immunofluorescence in MDA-MB-231 breast cancer cells with invasive, metastatic and mesenchymal phenotype. Also, the in vivo effect of DHEA on xenograft tumor growth in nude mice (nu - /nu - ) and on expression of the same epithelial and mesenchymal proteins in generated tumors was evaluated. We found that DHEA increased expression of E-cadherin and decreased N-cadherin, vimentin and Snail expression both in MD-MB-231 cells and in the formed tumors, possibly by DHEA-induced reversion of mesenchymal phenotype. These results were correlated with a tumor size reduction in mouse xenografts following DHEA administration either a week earlier or concurrent with breast cancer cells inoculation. In conclusion, DHEA could be useful in the treatment of breast cancer with mesenchymal phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. PTEN induces apoptosis and cavitation via HIF-2-dependent Bnip3 upregulation during epithelial lumen formation.

    PubMed

    Qi, Y; Liu, J; Saadat, S; Tian, X; Han, Y; Fong, G-H; Pandolfi, P P; Lee, L Y; Li, S

    2015-05-01

    The tumor suppressor phosphatase and tensin homolog (PTEN) dephosphorylates PIP3 and antagonizes the prosurvival PI3K-Akt pathway. Targeted deletion of PTEN in mice led to early embryonic lethality. To elucidate its role in embryonic epithelial morphogenesis and the underlying mechanisms, we used embryonic stem cell-derived embryoid body (EB), an epithelial cyst structurally similar to the periimplantation embryo. PTEN is upregulated during EB morphogenesis in parallel with apoptosis of core cells, which mediates EB cavitation. Genetic ablation of PTEN causes Akt overactivation, apoptosis resistance and cavitation blockade. However, rescue experiments using mutant PTEN and pharmacological inhibition of Akt suggest that the phosphatase activity of PTEN and Akt are not involved in apoptosis-mediated cavitation. Instead, hypoxia-induced upregulation of Bnip3, a proapoptotic BH3-only protein, mediates PTEN-dependent apoptosis and cavitation. PTEN inactivation inhibits hypoxia- and reactive oxygen species-induced Bnip3 elevation. Overexpression of Bnip3 in PTEN-null EBs rescues apoptosis of the core cells. Mechanistically, suppression of Bnip3 following PTEN loss is likely due to reduction of hypoxia-inducible factor-2α (HIF-2α) because forced expression of an oxygen-stable HIF-2α mutant rescues Bnip3 expression and apoptosis. Lastly, we show that HIF-2α is upregulated by PTEN at both transcriptional and posttranscriptional levels. Ablation of prolyl hydroxylase domain-containing protein 2 (PHD2) in normal EBs or inhibition of PHD activities in PTEN-null EBs stabilizes HIF-2α and induces Bnip3 and caspase-3 activation. Altogether, these results suggest that PTEN is required for apoptosis-mediated cavitation during epithelial morphogenesis by regulating the expression of HIF-2α and Bnip3.

  4. Curcumin reduces the toxic effects of iron loading in rat liver epithelial cells

    PubMed Central

    Messner, Donald J.; Sivam, Gowsala; Kowdley, Kris V.

    2008-01-01

    Background/aims Iron overload can cause liver toxicity and increase the risk of liver failure or hepatocellular carcinoma in humans. Curcumin (diferuloylmethane), a component of the food spice turmeric, has antioxidant, iron binding, and hepatoprotective properties. The aim of this study was to quantify its effects on iron overload and resulting downstream toxic effects in cultured T51B rat liver epithelial cells. Methods T51B cells were loaded with ferric ammonium citrate (FAC) with or without the iron delivery agent 8-hydroxyquinoline. Cytotoxicity was measured by MTT assay. Iron uptake and iron bioavailability were documented by chemical assay, quench of calcein fluorescence, and ferritin induction. Reactive oxygen species (ROS) were measured by fluorescence assay using 2′,7′-dichlorodihydrofluorescein diacetate. Oxidative stress signaling to jnk, c-jun, and p38 was measured by western blot with phospho-specific antibodies. Results Curcumin bound iron, but did not block iron uptake or bioavailability in T51B cells given FAC. However, it reduced cytotoxicity, blocked generation of ROS, and eliminated signaling to cellular stress pathways caused by iron. Inhibition was observed over a wide range of FAC concentrations (50 – 500 μM), with an apparent IC50 in all cases between 5 and 10 μM curcumin. In contrast, desferoxamine blocked both iron uptake and toxic effects of iron at concentrations that depended on the FAC concentration. Effects of curcumin also differed from those of α-tocopherol, which did not bind iron and was less effective at blocking iron-stimulated ROS generation. Conclusions Curcumin reduced iron-dependent oxidative stress and iron toxicity in T51B cells without blocking iron uptake. PMID:18492020

  5. Inactivation of JNK1 enhances innate IL-10 production and dampens autoimmune inflammation in the brain.

    PubMed

    Tran, Elise H; Azuma, Yasu-Taka; Chen, Manchuan; Weston, Claire; Davis, Roger J; Flavell, Richard A

    2006-09-05

    Environmental insults such as microbial pathogens can contribute to the activation of autoreactive T cells, leading to inflammation of target organs and, ultimately, autoimmune disease. Various infections have been linked to multiple sclerosis and its animal counterpart, autoimmune encephalomyelitis. The molecular process by which innate immunity triggers autoreactivity is not currently understood. By using a mouse model of multiple sclerosis, we found that the genetic loss of the MAPK, c-Jun N-terminal kinase 1 (JNK1), enhances IL-10 production, rendering innate myeloid cells unresponsive to certain microbes and less capable of generating IL-17-producing, encephalitogenic T cells. Moreover, JNK1-deficient central nervous system myeloid cells are unable to respond to effector T cell inflammatory cytokines, preventing further progression to neuroinflammation. Thus, we have identified the JNK1 signal transduction pathway in myeloid cells to be a critical component of a regulatory circuit mediating inflammatory responses in autoimmune disease. Our findings provide further insights into the pivotal MAPK-regulated network of innate and adaptive cytokines in the progression to autoimmunity.

  6. E3 ubiquitin ligase Mule ubiquitinates Miz1 and is required for TNFalpha-induced JNK activation.

    PubMed

    Yang, Yi; Do, HanhChi; Tian, Xuejun; Zhang, Chaozheng; Liu, Xinyuan; Dada, Laura A; Sznajder, Jacob I; Liu, Jing

    2010-07-27

    The zinc finger transcription factor Miz1 is a negative regulator of TNFalpha-induced JNK activation and cell death through inhibition of TRAF2 K63-polyubiquitination in a transcription-independent manner. Upon TNFalpha stimulation, Miz1 undergoes K48-linked polyubiquitination and proteasomal degradation, thereby relieving its inhibition. However, the underling regulatory mechanism is not known. Here, we report that HECT-domain-containing Mule is the E3 ligase that catalyzes TNFalpha-induced Miz1 polyubiquitination. Mule is a Miz1-associated protein and catalyzes its K48-linked polyubiquitination. TNFalpha-induced polyubiquitination and degradation of Miz1 were inhibited by silencing of Mule and were promoted by ectopic expression of Mule. The interaction between Mule and Miz1 was promoted by TNFalpha independently of the pox virus and zinc finger domain of Miz1. Silencing of Mule stabilized Miz1, thereby suppressing TNFalpha-induced JNK activation and cell death. Thus, our study reveals a molecular mechanism by which Mule regulates TNFalpha-induced JNK activation and apoptosis by catalyzing the polyubiquitination of Miz1.

  7. Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides.

    PubMed

    Schweitzer, Kelly S; Hatoum, Hadi; Brown, Mary Beth; Gupta, Mehak; Justice, Matthew J; Beteck, Besem; Van Demark, Mary; Gu, Yuan; Presson, Robert G; Hubbard, Walter C; Petrache, Irina

    2011-12-01

    The epithelial and endothelial cells lining the alveolus form a barrier essential for the preservation of the lung respiratory function, which is, however, vulnerable to excessive oxidative, inflammatory, and apoptotic insults. Whereas profound breaches in this barrier function cause pulmonary edema, more subtle changes may contribute to inflammation. The mechanisms by which cigarette smoke (CS) exposure induce lung inflammation are not fully understood, but an early alteration in the epithelial barrier function has been documented. We sought to investigate the occurrence and mechanisms by which soluble components of mainstream CS disrupt the lung endothelial cell barrier function. Using cultured primary rat microvascular cell monolayers, we report that CS induces endothelial cell barrier disruption in a dose- and time-dependent manner of similar magnitude to that of the epithelial cell barrier. CS exposure triggered a mechanism of neutral sphingomyelinase-mediated ceramide upregulation and p38 MAPK and JNK activation that were oxidative stress dependent and that, along with Rho kinase activation, mediated the endothelial barrier dysfunction. The morphological changes in endothelial cell monolayers induced by CS included actin cytoskeletal rearrangement, junctional protein zonula occludens-1 loss, and intercellular gap formation, which were abolished by the glutathione modulator N-acetylcysteine and ameliorated by neutral sphingomyelinase inhibition. The direct application of ceramide recapitulated the effects of CS, by disrupting both endothelial and epithelial cells barrier, by a mechanism that was redox and apoptosis independent and required Rho kinase activation. Furthermore, ceramide induced dose-dependent alterations of alveolar microcirculatory barrier in vivo, measured by two-photon excitation microscopy in the intact rat. In conclusion, soluble components of CS have direct endothelial barrier-disruptive effects that could be ameliorated by glutathione

  8. Penile warty mucoepidermoid carcinoma with features of stratified mucin-producing intra-epithelial lesion and invasive stratified mucin-producing carcinoma.

    PubMed

    Yorita, Kenji; Kuroda, Naoto; Naroda, Takushi; Tamura, Masato; Ohe, Chisato; Divatia, Mukul; Amin, Mahul B; Cubilla, Antonio L; Kazakov, Dimitry V; Hes, Ondrej; Michal, Michael; Michal, Michal

    2018-04-01

    Stratified mucin-producing intra-epithelial lesion (SMILE) and invasive stratified mucin-producing carcinoma (ISMC) are recently described cervical and penile lesions. We report an unusual case of mixed variant of penile squamous cell carcinomas with warty, usual and mucoepidermoid SMILE/ISMC features. A 62-year-old Japanese man had a glans penis lesion of one-and-a-half years' duration, suggesting malignancy. Partial penectomy and left inguinal lymphadenectomy were performed. Pathological evaluation revealed a mixed squamous cell carcinoma with warty, mucinous and usual features. The mucinous component resembled mucoepidermoid carcinoma (MEC) and SMILE/ISMC. Glandular differentiation was absent. All the diverse tumour components were negative for p16, which was confirmed by negative human papillomavirus (HPV) genotyping. The mucinous component was diffusely positive for cytokeratin 7 and largely negative for cytokeratin 5 and p63. Fluorescence in-situ hybridisation did not detect rearrangement in the MAML2 or EWSR1 genes. The tumour was pathological stage pT2, pN1 (AJCC prognostic stage group IIIA) and was disease-free 26 months after surgery. The lack of glands in the mucinous areas suggested that MEC should be separated from adenosquamous carcinoma (ASC). Penile SMILE/ISMC may occur without dependence upon HPV status. Further studies will be necessary to determine the pathogenesis and definition of penile SMILE/ISMC, the presence of true MEC arising from the glans penis and the clinicopathological differences of penile ASC, MEC and SMILE/ISMC. Herein, we refer to the SMILE-like penile lesion as 'mucinous penile intra-epithelial neoplasia'. © 2017 John Wiley & Sons Ltd.

  9. Inhibition of JNK by pi class of glutathione S-transferase through PKA/CREB pathway is associated with carnosic acid protection against 6-hydroxydopamine-induced apoptosis.

    PubMed

    Lin, Chia-Yuan; Fu, Ru-Huei; Chou, Ruey-Hwang; Chen, Jing-Hsien; Wu, Chi-Rei; Chang, Shu-Wei; Tsai, Chia-Wen

    2017-05-01

    Pi class of glutathione S-transferase (GST) is known to suppress c-Jun N-terminal kinase (JNK)-related apoptosis through protein-protein interactions. Moreover, signaling by PKA/cAMP response element binding protein (CREB) is necessary for GSTP up-regulation. This study explored whether carnosic acid (CA) from rosemary prevents 6-hydroxydopamine (6-OHDA)-induced neurotoxicity by inhibition of JNK through GSTP via PKA/CREB signaling. Results indicated that the GSTP protein was increased in SH-SY5Y cells treated with CA for 18 and 24 h. However, CA had no significant effect on alpha or mu class of GST. Treatment of CA increased the induction of p-PKAα, nuclear p-CREB, and CRE-DNA binding activity. These effects of CA were attenuated in cells pretreated with the PKA inhibitor H89. CA pretreatment suppressed 6-OHDA-induced apoptosis by inhibition of JNK phosphorylation, poly(ADP)-ribose polymerase cleavage, and nuclear condensation. Pretreatment with H89 and GSTP siRNA attenuated the ability of CA to reverse 6-OHDA-induced apoptosis. By use of immunoprecipitation with JNK antibody to examine the interaction of GSTP-JNK with CA, we showed that CA pretreatment increased the immunoprecipitation of GSTP after 6-OHDA treatment, which suggests that CA promoted the interaction between GSTP and JNK. CA prevents 6-OHDA-induced apoptosis via inhibition of JNK by GSTP through the PKA/CREB pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Proinflammatory effect of sodium 4-phenylbutyrate in deltaF508-cystic fibrosis transmembrane conductance regulator lung epithelial cells: involvement of extracellular signal-regulated protein kinase 1/2 and c-Jun-NH2-terminal kinase signaling.

    PubMed

    Roque, Telma; Boncoeur, Emilie; Saint-Criq, Vinciane; Bonvin, Elise; Clement, Annick; Tabary, Olivier; Jacquot, Jacky

    2008-09-01

    Sodium 4-phenylbutyrate (4-PBA) has attracted a great deal of attention in cystic fibrosis (CF) pathology due to its capacity to traffic DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) to the cell membrane and restore CFTR chloride function at the plasma membrane of CF lung cells in vitro and in vivo. Using two different DeltaF508-CFTR lung epithelial cell lines (CFBE41o- and IB3-1 cells, characterized with DeltaF508-homozygous and heterozygous genotype, respectively) in vitro, 4-PBA induced an increase of proinflammatory cytokine interleukin (IL)-8 production in a concentration-dependent manner. This 4-PBA-induced IL-8 production was associated with a strong reduction of proteasome and nuclear factor-kappaB transcriptional activities in the two DeltaF508-CFTR lung cells either in a resting state or after tumor necrosis factor-alpha stimulation. In contrast, a strong increase of activator protein-1 transcriptional activity was observed. The inhibition of extracellular signal-regulated protein kinase 1/2 (ERK1/2) by 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126) and 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) and c-Jun-NH(2)-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) by anthra[1,9-cd] pyrazol-6 (2H)-one (SP600125), respectively, was associated with a reduction (2-3.5-fold) of IL-8 production in both DeltaF508-CFTR lung cell lines treated with 4-PBA. No significant change of IL-8 production was observed after an inhibition of p38 MAPK with 4-[4-(4-fluorophenyl)-5-(4-pyridinyl)-1H-imidazol-2-yl] phenol (SB202190). Therefore, we suggest that inhibition of both ERK1/2 and JNK signaling may be a means to strongly reduce 4-PBA-induced IL-8 production in combination with 4-PBA treatment to restore CFTR Cl(-) channel function in lung epithelial cells of patients with CF.

  11. Anal and Cervical High-Risk Human Papillomavirus Genotyping in Women With and Without Genital Neoplasia.

    PubMed

    Bregar, Amy J; Cronin, Beth; Luis, Christine; DiSilvestro, Paul; Schechter, Steven; Pisharodi, Latha; Raker, Christina; Clark, Melissa; Robison, Katina

    2018-04-01

    The aim of the study was to compare the prevalence, genotypes, and rates of concomitant anal and cervical high-risk human papillomavirus (HR-HPV) in women with and without a history of HPV-related genital neoplasia. This was a prospective cohort study conducted from December 2012 to February 2014. Women with a history of neoplasia were considered the high-risk group. Women without a history of neoplasia were considered the low-risk group. Cervical and anal cytology and HPV genotyping were performed. All women with abnormal anal cytology were referred for anoscopy. One hundred eighty-four women met inclusion criteria. High-risk HPV was detected in the anal canal of 17.4% of the high-risk group and 1.5% of the low-risk group (p = .003). High-risk HPV was detected in the cervix of 30.5% of the high-risk group and 7.6% of the low-risk group (p < .001). Concomitant anal and cervical high-risk HPV was detected in 4.4% of the high-risk group and was not detected in the low-risk group (p = .2). Among women with anal intraepithelial neoplasia 2 or greater (n = 5), 60% had HR-HPV detected in the anal canal while none had HR-HPV detected in the cervix. Women with a history of genital neoplasia are more likely to be positive for anal and cervical HR-HPV compared with women without a history of genital neoplasia. Although there was no significant difference in rates of concomitant HR-HPV between low- and high-risk groups, HR-HPV can be found concomitantly in the anus and the cervix and may be associated with anal intraepithelial neoplasia or carcinoma.

  12. Calcium dependent and independent cytokine synthesis by air pollution particle-exposed human bronchial epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Noriho; Hayashi, Shizu; Gosselink, John

    2007-12-01

    Exposure to ambient air pollution particles with a diameter of < 10 {mu}m (PM{sub 10}) has been associated with increased cardiopulmonary morbidity and mortality. We have shown that human bronchial epithelial cells (HBECs) exposed to PM{sub 10} produce pro-inflammatory mediators that contribute to a local and systemic inflammatory response. Changes in intracellular calcium concentrations ([Ca{sup 2+}]{sub i}) have been demonstrated to regulate several functions of the airway epithelium including the production of pro-inflammatory mediators. The aim of the present study was to determine the nature and mechanism of calcium responses induced by PM{sub 10} in HBECs and its relationship tomore » cytokine synthesis. Methods: Primary HBECs were exposed to urban air pollution particles (EHC-93) and [Ca{sup 2+}]{sub i} responses were measured using the fluoroprobe (Fura-2). Cytokine levels were measured at mRNA and protein levels using real-time PCR and ELISA. Results: PM{sub 10} increased [Ca{sup 2+}]{sub i} in a dose-dependent manner. This calcium response was reduced by blocking the influx of calcium into cells (i.e. calcium-free medium, NiCl{sub 2}, LaCl{sub 3}). PM{sub 10} also decreased the activity of calcium pumps. PM{sub 10} increased the production of IL-1{beta}, IL-8, GM-CSF and LIF. Preincubation with intracellular calcium chelator (BAPTA-AM) attenuated IL-1{beta} and IL-8 production, but not GM-CSF and LIF production. Conclusion: We conclude that exposure to PM{sub 10} induces an increase in cytosolic calcium and cytokine production in bronchial epithelial cells. Our results also suggest that PM{sub 10} induces the production of pro-inflammatory mediators via either intracellular calcium-dependent (IL-1{beta}, IL-8) or -independent (GM-CSF, LIF) pathways.« less

  13. Endoscopic submucosal dissection for early Barrett’s neoplasia

    PubMed Central

    Barret, Maximilien; Cao, Dalhia Thao; Beuvon, Frédéric; Leblanc, Sarah; Terris, Benoit; Camus, Marine; Coriat, Romain; Chaussade, Stanislas

    2015-01-01

    Introduction The possible benefit of endoscopic submucosal dissection (ESD) for early neoplasia arising in Barrett’s esophagus remains controversial. We aimed to assess the efficacy and safety of ESD for the treatment of early Barrett’s neoplasia. Methods All consecutive patients undergoing ESD for the resection of a visible lesion in a Barrett’s esophagus, either suspicious of submucosal infiltration or exceeding 10 mm in size, between February 2012 and January 2015 were prospectively included. The primary endpoint was the rate of curative resection of carcinoma, defined as histologically complete resection of adenocarcinomas without poor histoprognostic factors. Results Thirty-five patients (36 lesions) with a mean age of 66.2 ± 12 years, a mean ASA score of 2.1 ± 0.7, and a mean C4M6 Barrett’s segment were included. The mean procedure time was 191 ± 79 mn, and the mean size of the resected specimen was 51.3 ± 23 mm. En bloc resection rate was 89%. Lesions were 12 ± 15 mm in size, and 81% (29/36) were invasive adenocarcinomas, six of which with submucosal invasion. Although R0 resection of carcinoma was 72.4%, the curative resection rate was 66% (19/29). After a mean follow-up of 12.9 ± 9 months, 16 (45.7%) patients had required additional treatment, among whom nine underwent surgical resection, and seven further endoscopic treatments. Metachronous lesions or recurrence of cancer developed during the follow-up period in 17.2% of the patients. The overall complication rate was 16.7%, including 8.3% perforations, all conservatively managed, and no bleeding. The 30-day mortality was 0%. Conclusion In this early experience, ESD yielded a moderate curative resection rate in Barrett’s neoplasia. At present, improvements are needed if ESD is to replace piecemeal endoscopic mucosal resection in the management of Barrett’s neoplasia. PMID:27087948

  14. The natural compound Guttiferone F sensitizes prostate cancer to starvation induced apoptosis via calcium and JNK elevation.

    PubMed

    Li, Xin; Lao, Yuanzhi; Zhang, Hong; Wang, Xiaoyu; Tan, Hongsheng; Lin, Zhixiu; Xu, Hongxi

    2015-04-11

    In a cytotoxicity screen in serum-free medium, Guttiferone F showed strong growth inhibitory effect against prostate cancer cells. Prostate cancer cells LNCaP and PC3 were treated with Guttiferone F in serum depleted medium. Sub-G1 phase distributions were estimated with flow cytometry. Mitochondrial disruption was observed under confocal microscope using Mitotracker Red staining. Gene and protein expression changes were detected by real-time PCR and Western blotting. Ca(2+) elevation was examined by Fluo-4 staining under fluorescence microscope. PC3 xenografts in mice were examined by immunohistochemical analysis. Guttiferone F had strong growth inhibitory effect against prostate cancer cell lines under serum starvation. It induced a significant increase in sub-G1 fraction and DNA fragmentation. In serum-free medium, Guttiferone F triggered mitochondria dependent apoptosis by regulating Bcl-2 family proteins. In addition, Guttiferone F attenuated the androgen receptor expression and phosphorylation of ERK1/2, while activating the phosphorylation of JNK and Ca(2+) flux. Combination of caloric restriction with Guttiferone F in vivo could increase the antitumor effect without causing toxicity. Guttiferone F induced prostate cancer cell apoptosis under serum starvation via Ca(2+) elevation and JNK activation. Combined with caloric restriction, Guttiferone F exerted significant growth inhibition of PC3 cells xenograft in vivo. Guttiferone F is therefore a potential anti-cancer compound.

  15. Photooxidative damage in retinal pigment epithelial cells via GRP78 and the protective role of grape skin polyphenols.

    PubMed

    Zhao, Zhao; Sun, Tao; Jiang, Yun; Wu, Lijiang; Cai, Xiangzhong; Sun, Xiaodong; Sun, Xiangjun

    2014-12-01

    Blue light induced oxidative damage and ER stress are related to the pathogenesis of age-related macular degeneration (AMD). However, the mechanism of blue light-induced damage remained obscure. The objective of this work is to assess the photooxidative damage to retinal pigment epithelial cells (RPE) and oxidation-induced changes in expression of ER stress associated apoptotic proteins, and investigate the mechanism underlying the protective effects of grape skin extracts. To mimic lipofuscin-mediated photooxidation in vivo, ARPE-19 cells that accumulated A2E, one of lipofuscin fluorophores, were used as a model system to investigate the mechanism of photooxidative damage and the protective effects of grape skin polyphenols. Exposure of A2E containing ARPE-19 cells to blue light resulted in significant apoptosis and increases in levels of GRP78, CHOP, p-JNK, Bax, cleaved caspase-9, and cleaved caspase-3, indicating that photooxidative damage to RPE cells is mediated by the ER-stress-induced intrinsic apoptotic pathway. Cells in which GRP78 had been knocked down with shRNA were more vulnerable to photooxidative damage. Pre-treatment of blue-light-exposed A2E containing ARPE-19 cells, with grape skin extracts, inhibited apoptosis, in a dose dependent manner. Knockdown GRP78 blocked the protective effect of grape skin extracts.

  16. Prevalence of colorectal neoplasia among young African Americans and Hispanic Americans

    PubMed Central

    Ashktorab, Hassan; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Brim, Hassan; Panchal, Heena; Lee, Edward; Kibreab, Angesom; Nouraie, Mehdi; Laiyemo, Adeyinka O.

    2014-01-01

    Background The disproportionately higher incidence of, and mortality from colorectal cancer (CRC) among African Americans (AA) led the American College of Gastroenterology to recommend screening starting at age 45 in 2005. Aim To determine the prevalence of colorectal neoplasia among 40–49 years old inner city African Americans (AA) and Hispanic Americans (HA). Methods We reviewed the medical records of 2435 inner city AA and HA who underwent colonoscopy regardless of indication and compared the prevalence of colorectal neoplasia between AA and HA patients. We used logistic regression models to calculate odds ratios (OR) and 95% confidence intervals (CI). Results There were 2,163 AA and 272 HA. There were 57% women in both groups. A total of 158 (7%) AA and 9 (3%) HA (P = 0.014) underwent the procedures for CRC screening. When compared to HA, AA had higher prevalence of any polyp (35% versus 18%, OR = 2.53; 95% CI: 1.82–3.52). Overall, AA had higher prevalence of colorectal neoplasia (adenoma and cancer) when compared to HA (16% versus 10%; OR = 1.68; 95% CI: 1.10–2.56). Conclusion We observed a higher frequency of colorectal neoplasia among 40–49 year-old AA as compared to HA suggesting an increased susceptibility to CRC risk in this population. PMID:24193352

  17. Prevalence of colorectal neoplasia among young African Americans and Hispanic Americans.

    PubMed

    Ashktorab, Hassan; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Brim, Hassan; Panchal, Heena; Lee, Edward; Kibreab, Angesom; Nouraie, Mehdi; Laiyemo, Adeyinka O

    2014-02-01

    The disproportionately higher incidence of and mortality from colorectal cancer (CRC) among African Americans (AA) led the American College of Gastroenterology to recommend screening starting at age 45 in 2005. The purpose of this study was to determine the prevalence of colorectal neoplasia among 40-49-year-old inner city AA and Hispanic Americans (HA). We reviewed the medical records of 2,435 inner city AA and HA who underwent colonoscopy regardless of indication and compared the prevalence of colorectal neoplasia between AA and HA patients. We used logistic regression models to calculate odds ratios (OR) and 95 % confidence intervals (CI). There were 2,163 AAs and 272 HA. There were 57 % women in both groups. A total of 158 (7 %) AA and 9 (3 %) HA (P = 0.014) underwent the procedures for CRC screening. When compared to HAs, AAs had higher prevalence of any polyp (35 vs. 18 %, OR = 2.53; 95 % CI 1.82-3.52). Overall, AA had higher prevalence of colorectal neoplasia (adenoma and cancer) when compared to HAs (16 vs. 10 %; OR = 1.68; 95 % CI 1.10-2.56). We observed a higher frequency of colorectal neoplasia among 40-49-year-old AAs as compared to HAs suggesting an increased susceptibility to CRC risk in this population.

  18. Severe Phenotype of Keratitis-Ichthyosis-Deafness Syndrome With Presumed Ocular Surface Squamous Neoplasia.

    PubMed

    Serrano-Ahumada, Ana Silvia; Cortes-González, Vianney; González-Huerta, Luz María; Cuevas, Sergio; Aguilar-Lozano, Luis; Villanueva-Mendoza, Cristina

    2018-02-01

    The aim of this study was to describe a case of severe keratitis-ichthyosis-deafness (KID) syndrome with ocular surface squamous neoplasia. The affected patient underwent complete ocular and systemic examinations. The molecular studies included polymerase chain reaction amplification and automated DNA sequencing of the complete gap junction beta-2 (GJB2) gene coding sequence. A 30-year-old man presented with generalized erythro-hyperkeratosis and deafness and complaints of decreased visual acuity, tearing, and photophobia. Ophthalmic examination showed corneal erosion, vascularization, and a gray gelatinous lesion partially covering the right cornea, suggestive of squamous neoplasia. The clinical features were characteristic of KID syndrome. This diagnosis was confirmed with a DNA analysis showing the pathogenic variant p.D50N in the GJB2 gene. Presumed squamous neoplasia was treated with topical interferon α2b. KID syndrome is a very rare disease that has been reported with an incremental incidence of squamous cell carcinoma of the mucous membranes and skin (12%-15%). Here, we presented a case of severe systemic KID syndrome with ocular surface squamous neoplasia.

  19. Phosphorylation of insulin receptor substrate-1 serine 307 correlates with JNK activity in atrophic skeletal muscle

    NASA Technical Reports Server (NTRS)

    Hilder, Thomas L.; Tou, Janet C L.; Grindeland, Richard E.; Wade, Charles E.; Graves, Lee M.

    2003-01-01

    c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.

  20. Drosophila myeloid leukemia factor acts with DREF to activate the JNK signaling pathway

    PubMed Central

    Yanai, H; Yoshioka, Y; Yoshida, H; Nakao, Y; Plessis, A; Yamaguchi, M

    2014-01-01

    Drosophila myelodysplasia/myeloid leukemia factor (dMLF), a homolog of human MLF1, oncogene was first identified by yeast two-hybrid screen using the DNA replication-related element-binding factor (DREF) as bait. DREF is a transcription factor that regulates proliferation-related genes in Drosophila. It is known that overexpression of dMLF in the wing imaginal discs through the engrailed-GAL4 driver causes an atrophied wing phenotype associated with the induction of apoptosis. However, the precise mechanisms involved have yet to be clarified. Here, we found the atrophied phenotype to be suppressed by loss-of-function mutation of Drosophila Jun N-terminal kinase (JNK), basket (bsk). Overexpression of dMLF induced ectopic JNK activation in the wing disc monitored with the puckered-lacZ reporter line, resulting in induction of apoptosis. The DREF-binding consensus DRE sequence could be shown to exist in the bsk promoter. Chromatin immunoprecipitation assays in S2 cells with anti-dMLF IgG and quantitative real-time PCR revealed that dMLF binds specifically to the bsk promoter region containing the DRE sequence. Furthermore, using a transient luciferase expression assay, we provide evidence that knockdown of dMLF reduced bsk gene promoter activity in S2 cells. Finally, we show that dMLF interacts with DREF in vivo. Altogether, these data indicate that dMLF acts with DREF to stimulate the bsk promoter and consequently activates the JNK pathway to promote apoptosis. PMID:24752236

  1. Drosophila myeloid leukemia factor acts with DREF to activate the JNK signaling pathway.

    PubMed

    Yanai, H; Yoshioka, Y; Yoshida, H; Nakao, Y; Plessis, A; Yamaguchi, M

    2014-04-21

    Drosophila myelodysplasia/myeloid leukemia factor (dMLF), a homolog of human MLF1, oncogene was first identified by yeast two-hybrid screen using the DNA replication-related element-binding factor (DREF) as bait. DREF is a transcription factor that regulates proliferation-related genes in Drosophila. It is known that overexpression of dMLF in the wing imaginal discs through the engrailed-GAL4 driver causes an atrophied wing phenotype associated with the induction of apoptosis. However, the precise mechanisms involved have yet to be clarified. Here, we found the atrophied phenotype to be suppressed by loss-of-function mutation of Drosophila Jun N-terminal kinase (JNK), basket (bsk). Overexpression of dMLF induced ectopic JNK activation in the wing disc monitored with the puckered-lacZ reporter line, resulting in induction of apoptosis. The DREF-binding consensus DRE sequence could be shown to exist in the bsk promoter. Chromatin immunoprecipitation assays in S2 cells with anti-dMLF IgG and quantitative real-time PCR revealed that dMLF binds specifically to the bsk promoter region containing the DRE sequence. Furthermore, using a transient luciferase expression assay, we provide evidence that knockdown of dMLF reduced bsk gene promoter activity in S2 cells. Finally, we show that dMLF interacts with DREF in vivo. Altogether, these data indicate that dMLF acts with DREF to stimulate the bsk promoter and consequently activates the JNK pathway to promote apoptosis.

  2. Retrospective study: The diagnostic accuracy of conventional forceps biopsy of gastric epithelial compared to endoscopic submucosal dissection (STROBE compliant).

    PubMed

    Lu, Chao; Lv, Xueyou; Lin, Yiming; Li, Dejian; Chen, Lihua; Ji, Feng; Li, Youming; Yu, Chaohui

    2016-07-01

    Conventional forceps biopsy (CFB) is the most popular way to screen for gastric epithelial neoplasia (GEN) and adenocarcinoma of gastric epithelium. The aim of this study was to compare the diagnostic accuracy between conventional forceps biopsy and endoscopic submucosal dissection (ESD).Four hundred forty-four patients who finally undertook ESD in our hospital were enrolled from Jan 1, 2009 to Sep 1, 2015. We retrospectively assessed the characteristics of pathological results of CFB and ESD.The concordance rate between CFB and ESD specimens was 68.92% (306/444). Men showed a lower concordance rate (63.61% vs 79.33%; P = 0.001) and concordance patients were younger (P = 0.048). In multivariate analysis, men significantly had a lower concordance rate (coefficient -0.730, P = 0.002) and a higher rate of pathological upgrade (coefficient -0.648, P = 0.015). Locations of CFB did not influence the concordance rate statistically.The concordance rate was relatively high in our hospital. According to our analysis, old men plus gastric fundus or antrum of CFB were strongly suggested to perform ESD if precancerous lesions were found. And young women with low-grade intraepithelial neoplasia could select regular follow-up.

  3. Dual leucine zipper kinase-dependent PERK activation contributes to neuronal degeneration following insult

    PubMed Central

    Larhammar, Martin; Huntwork-Rodriguez, Sarah; Jiang, Zhiyu; Solanoy, Hilda; Sengupta Ghosh, Arundhati; Wang, Bei; Kaminker, Joshua S; Huang, Kevin; Eastham-Anderson, Jeffrey; Siu, Michael; Modrusan, Zora; Farley, Madeline M; Tessier-Lavigne, Marc; Lewcock, Joseph W; Watkins, Trent A

    2017-01-01

    The PKR-like endoplasmic reticulum kinase (PERK) arm of the Integrated Stress Response (ISR) is implicated in neurodegenerative disease, although the regulators and consequences of PERK activation following neuronal injury are poorly understood. Here we show that PERK signaling is a component of the mouse MAP kinase neuronal stress response controlled by the Dual Leucine Zipper Kinase (DLK) and contributes to DLK-mediated neurodegeneration. We find that DLK-activating insults ranging from nerve injury to neurotrophin deprivation result in both c-Jun N-terminal Kinase (JNK) signaling and the PERK- and ISR-dependent upregulation of the Activating Transcription Factor 4 (ATF4). Disruption of PERK signaling delays neurodegeneration without reducing JNK signaling. Furthermore, DLK is both sufficient for PERK activation and necessary for engaging the ISR subsequent to JNK-mediated retrograde injury signaling. These findings identify DLK as a central regulator of not only JNK but also PERK stress signaling in neurons, with both pathways contributing to neurodegeneration. DOI: http://dx.doi.org/10.7554/eLife.20725.001 PMID:28440222

  4. SK-N-MC cell death occurs by distinct molecular mechanisms in response to hydrogen peroxide and superoxide anions: involvements of JAK2-STAT3, JNK, and p38 MAP kinases pathways.

    PubMed

    Moslehi, Maryam; Yazdanparast, Razieh

    2013-07-01

    Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer's disease.

  5. Vitamin K3-2,3-epoxide induction of apoptosis with activation of ROS-dependent ERK and JNK protein phosphorylation in human glioma cells.

    PubMed

    Wu, Jender; Chien, Chih-Chiang; Yang, Liang-Yo; Huang, Guan-Cheng; Cheng, Min-Chi; Lin, Che-Tong; Shen, Shing-Chuan; Chen, Yen-Chou

    2011-08-15

    2-Methyl-1,4-naphthoquinone (menadione or vitamin K3; EPO) and K3-2,3-epoxide (EPO1), but not vitamin K3-3-OH (EPO2), exhibited cytotoxicity that caused DNA fragmentation and chromatin condensation in U87 and C6 cells. EPO1 showed more-potent cytotoxicity than EPO, and the IC(50) values of EPO and EPO1 in U87 cells were 37.5 and 15.7μM, respectively. Activation of caspase 3 enzyme activity with cleavage of caspase 3 protein was detected in EPO1-treated U87 and C6 cells, and the addition of the caspase 3 peptidyl inhibitor, DEVD-FMK, reduced the cytotoxic effect of EPO1. An increase in the intracellular ROS level by EPO1 was observed in the DCHF-DA analysis, and EPO1-induced apoptosis and caspase 3 protein cleavage were prevented by adding the antioxidant, N-acetyl-cysteine (NAC), with decreased ROS production elicited by EPO1. Activation of ERK and JNK, but not p38, via phosphorylation induction was identified in EPO1- but not EPO- or EPO2-treated U87 and C6 cells, and this was blocked by adding NAC. However, the ERK inhibitor, PD98059, and the JNK inhibitor, SP600125, showed no effect on EPO1-induced cytotoxicity in either cell type. Our findings demonstrate that 2,3-epoxide substitution significantly potentiates the apoptotic effect of vitamin K3 via stimulating ROS production, which may be useful in the chemotherapy of glioblastoma cells. Copyright © 2011. Published by Elsevier Ireland Ltd.

  6. Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression

    PubMed Central

    Cheng, Hsin-Lin; Hsieh, Ming-Ju; Yang, Jia-Sin; Lin, Chiao-Wen; Lue, Ko-Haung; Lu, Ko-Hsiu; Yang, Shun-Fa

    2016-01-01

    Nobiletin, a polymethoxyflavone, has a few pharmacological activities, including anti-inflammation and anti-cancer effects. However, its effect on human osteosarcoma progression remains uninvestigated. Therefore, we examined the effectiveness of nobiletin against cellular metastasis of human osteosarcoma and the underlying mechanisms. Nobiletin, up to 100 μM without cytotoxicity, significantly decreased motility, migration and invasion as well as enzymatic activities, protein levels and mRNA expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in U2OS and HOS cells. In addition to inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the inhibitory effect of nobiletin on the DNA-binding activity of the transcription factor nuclear factor-kappa B (NF-κB), cAMP response element-binding protein (CREB), and specificity protein 1 (SP-1) in U2OS and HOS cells. Co-treatment with ERK and JNK inhibitors and nobiletin further reduced U2OS cells migration and invasion. These results indicated that nobiletin inhibits human osteosarcoma U2OS and HOS cells motility, migration and invasion by down-regulating MMP-2 and MMP-9 expressions via ERK and JNK pathways and through the inactivation of downstream NF-κB, CREB, and SP-1. Nobiletin has the potential to serve as an anti-metastatic agent for treating osteosarcoma. PMID:27144433

  7. WISP-2 in human gastric cancer and its potential metastatic suppressor role in gastric cancer cells mediated by JNK and PLC-γ pathways.

    PubMed

    Ji, Jiafu; Jia, Shuqin; Jia, Yongning; Ji, Ke; Hargest, Rachel; Jiang, Wen G

    2015-09-15

    It has recently been shown that WISP proteins (Wnt-inducted secreted proteins), a group of intra- and extra-cellular regulatory proteins, have been implicated in the initiation and progression of a variety of tumour types including colorectal and breast cancer. However, the role of WISP proteins in gastric cancer (GC) cells and their clinical implications have not yet been elucidated. The expression of WISP molecules in a cohort of GC patients was analysed using real-time quantitative PCR and immunohistochemistry. The expression of a panel of recognised epithelial-mesenchymal transition (EMT) markers was quantified using Q-PCR in paired tumour and normal tissues. WISP-2 knockdown (kd) sublines using ribozyme transgenes were created in the GC cell lines AGS and HGC27. Subsequently, several biological functions, including cell growth, adhesion, migration and invasion, were studied. Potential pathways for the interaction of EMT, extracellular matrix and MMP were evaluated. Overexpression of WISP-2 was detected in GC and significantly correlated with early tumour node-metastasis staging, differentiation status and positively correlated with overall survival and disease-free survival of the patients. WISP-2 expression was inversely correlated with that of Twist and Slug in paired samples. Kd of WISP-2 expression promoted the proliferation, migration and invasion of GC cells. WISP-2 suppressed GC cell metastasis through reversing EMT and suppressing the expression and activity of MMP9 and MMP2 via JNK and ERK. Cell motility analysis indicated that WISP-2 kd contributed to GC cells' motility and can be attenuated by PLC-γ and JNK small inhibitors. Increased expression of WISP-2 in GC is positively correlated with favourable clinical features and the survival of patients with GC and is a negative regulator of growth, migration and invasion in GC cells. These findings suggest that WISP-2 is a potential tumour suppressor in GC.

  8. ROCK activity affects IL-1-induced signaling possibly through MKK4 and p38 MAPK in Caco-2 cells.

    PubMed

    Banerjee, Sayantan; McGee, Dennis W

    2016-09-01

    Elevated levels of interleukin-1 (IL-1) accompany inflammatory bowel disease. IL-1-stimulated intestinal epithelial cells can secrete potent chemokines like CXCL8 to exacerbate inflammation. Previously, we found that inhibiting the Rho-associated kinase (ROCK) could inhibit IL-1- or TNF-α-induced CXCL8 secretion by the Caco-2 colonic epithelial cell line. This ROCK inhibition did not affect IκBα phosphorylation and degradation, but suppressed the phosphorylation of c-Jun N-terminal kinase (JNK). Therefore, ROCK must play an important role in epithelial cell CXCL8 responses through an effect on the JNK signaling pathway. Here, we extend these studies by showing that inhibiting ROCK suppressed the IL-1-induced phosphorylation of MKK4, a known activator of JNK, but not MKK7. Yet, ROCK inhibition had no significant effect on the IL-1-induced phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2. Inhibiting ROCK also suppressed the phosphorylation of p38 MAPK after IL-1 stimulation, but this inhibition had no significant effect on the stability of CXCL8 messenger RNA (mRNA) after IL-1 stimulation. These results suggest that ROCK may be important in IL-1-induced signaling through MKK4 to JNK and the activation of p38 MAPK. Finally, inhibiting ROCK in IL-1 and TNF-α co-stimulated Caco-2 cells also resulted in a significant suppression of CXCL8 secretion and mRNA levels suggesting that inhibiting ROCK may be a mechanism to inhibit the overall response of epithelial cells to both cytokines. These studies indicate a novel signaling event, which could provide a target for suppressing intestinal epithelial cells (IEC) chemokine responses involved in mucosal inflammation.

  9. Clinical significance of serum anti-human papillomavirus 16 and 18 antibodies in cervical neoplasia.

    PubMed

    Chay, Doo Byung; Cho, Hanbyoul; Kim, Bo Wook; Kang, Eun Suk; Song, Eunseop; Kim, Jae-Hoon

    2013-02-01

    To estimate the clinical significance of serum anti-human papillomavirus (HPV) antibodies and high-risk cervical HPV DNA in cervical neoplasia. The study population comprised patients who were histopathologically diagnosed with cervical intraepithelial neoplasia (CIN) 1 (n=64), CIN 2 and 3 (n=241), cervical cancer (n=170), and normal control participants (n=975). Cervical HPV DNA tests were performed through nucleic acid hybridization assay tests, and serum anti-HPV 16 and 18 antibodies were measured by competitive immunoassay. The associations of HPV DNA and anti-HPV antibodies were evaluated with demographic characteristics and compared according to the levels of disease severity. Anti-HPV antibodies were also investigated with clinicopathologic parameters, including survival data. Among various demographic characteristics, factors involving sexual behavior had a higher tendency of HPV DNA positivity and HPV seropositivity. Human papillomavirus DNA mean titer and positivity were both increased in patients with cervical neoplasia compared with those with normal control participants, but there was no statistical difference among types of cervical neoplasia. Serum anti-HPV 16 antibodies were also able to differentiate cervical neoplasia from a normal control participant and furthermore distinguished CIN 1 from CIN 2 and 3 (odd ratio 2.87 [1.43-5.78], P=.002). In cervical cancer, HPV 16 seropositivity was associated with prolonged disease-free survival according to the univariable analysis (hazard ratio=0.12 [0.01-0.94], P=.044). Serum anti-HPV 16 antibodies can distinguish cervical neoplasia from a normal control and has the advantage of identifying high-grade CIN. Moreover, in cervical cancer, HPV 16 seropositivity may be associated with a more favorable prognosis. II.

  10. Aberrant Axonal Arborization of PDF Neurons Induced by Aβ42-Mediated JNK Activation Underlies Sleep Disturbance in an Alzheimer's Model.

    PubMed

    Song, Qian; Feng, Ge; Huang, Zehua; Chen, Xiaoman; Chen, Zhaohuan; Ping, Yong

    2017-10-01

    Impaired sleep patterns are common symptoms of Alzheimer's disease (AD). Cellular mechanisms underlying sleep disturbance in AD remain largely unknown. Here, using a Drosophila Aβ42 AD model, we show that Aβ42 markedly decreases sleep in a large population, which is accompanied with postdevelopmental axonal arborization of wake-promoting pigment-dispersing factor (PDF) neurons. The arborization is mediated in part via JNK activation and can be reversed by decreasing JNK signaling activity. Axonal arborization and impaired sleep are correlated in Aβ42 and JNK kinase hemipterous mutant flies. Image reconstruction revealed that these aberrant fibers preferentially project to pars intercerebralis (PI), a fly brain region analogous to the mammalian hypothalamus. Moreover, PDF signaling in PI neurons was found to modulate sleep/wake activities, suggesting that excessive release of PDF by these aberrant fibers may lead to the impaired sleep in Aβ42 flies. Finally, inhibition of JNK activation in Aβ42 flies restores nighttime sleep loss, decreases Aβ42 accumulation, and attenuates neurodegeneration. These data provide a new mechanism by which sleep disturbance could be induced by Aβ42 burden, a key initiator of a complex pathogenic cascade in AD.

  11. Systematic review with meta-analysis: the incidence of advanced neoplasia after polypectomy in patients with and without low-risk adenomas.

    PubMed

    Hassan, C; Gimeno-García, A; Kalager, M; Spada, C; Zullo, A; Costamagna, G; Senore, C; Rex, D K; Quintero, E

    2014-05-01

    Patients with one to two tubular adenomas <1 cm in size without high-grade dysplasia (low-risk group) are considered at low risk for colorectal cancer. However, it is uncertain whether they have the same risk of subsequent advanced neoplasia as those with no neoplasia at baseline colonoscopy. To compare incidence of metachronous advanced neoplasia between patients in the low-risk adenoma group and those without neoplasia at index colonoscopy. Relevant publications were identified by MEDLINE/EMBASE and other databases for the period 1992-2013. Studies comparing the incidence of post-polypectomy advanced neoplasia (adenomas ≥10 mm/high-grade dysplasia/villous or cancer) between the low-risk group and patients without colorectal neoplasia at the first colonoscopy were included. Detection rates for advanced neoplasia at endoscopic surveillance were extracted. Study quality was ascertained according to Newcastle-Ottawa Scale. Forest plot was produced based on random-effect models. Inter-study heterogeneity was assessed using the I(2) statistic. Seven studies provided data on 11 387 patients. Mean surveillance periods ranged between 2 and 5 years. Altogether, 267 patients with post-polypectomy advanced neoplasia were detected in the two groups. The incidence of advanced neoplasia was 1.6% (119/7308) in those without neoplasia and 3.6% (148/4079) in those with low-risk adenoma, respectively, corresponding to a relative risk of 1.8 (95% CI: 1.3-2.6). Inter-study heterogeneity was only moderate (I(2) : 37%). No publication bias was present. Patients with low-risk adenomas at baseline had a higher risk of metachronous advanced neoplasia than the group with no adenomas at baseline, though the absolute risk was low in both groups. © 2014 John Wiley & Sons Ltd.

  12. Inhibition of autophagy promotes CYP2E1-dependent toxicity in HepG2 cells via elevated oxidative stress, mitochondria dysfunction and activation of p38 and JNK MAPK☆

    PubMed Central

    Wu, Defeng; Cederbaum, Arthur I.

    2013-01-01

    Autophagy has been shown to be protective against drug and alcohol-induced liver injury. CYP2E1 plays a role in the toxicity of ethanol, carcinogens and certain drugs. Inhibition of autophagy increased ethanol-toxicity and accumulation of fat in wild type and CYP2E1 knockin mice but not in CYP2E1 knockout mice as well as in HepG2 cells expressing CYP2E1 (E47 cells) but not HepG2 cells lacking CYP2E1 (C34 cells). The goal of the current study was to evaluate whether modulation of autophagy can affect CYP2E1-dependent cytotoxicity in the E47 cells. The agents used to promote CYP2E1 –dependent toxicity were a polyunsaturated fatty acid, arachidonic acid (AA), buthionine sulfoximine (BSO), which depletes GSH, and CCl4, which is metabolized to the CCl3 radical. These three agents produced a decrease in E47 cell viability which was enhanced upon inhibition of autophagy by 3-methyladenine (3-MA) or Atg 7 siRNA. Toxicity was lowered by rapamycin which increased autophagy and was much lower to the C34 cells which do not express CYP2E1. Toxicity was mainly necrotic and was associated with an increase in reactive oxygen production and oxidative stress; 3-MA increased while rapamycin blunted the oxidative stress. The enhanced toxicity and ROS formation produced when autophagy was inhibited was prevented by the antioxidant N-Acetyl cysteine. AA, BSO and CCl4 produced mitochondrial dysfunction, lowered cellular ATP levels and elevated mitochondrial production of ROS. This mitochondrial dysfunction was enhanced by inhibition of autophagy with 3-MA but decreased when autophagy was increased by rapamycin. The mitogen activated protein kinases p38 MAPK and JNK were activated by AA especially when autophagy was inhibited and chemical inhibitors of p38 MAPK and JNK lowered the elevated toxicity of AA produced by 3-MA. These results show that autophagy was protective against the toxicity produced by several agents known to be activated by CYP2E1. Since CYP2E1 plays an important role

  13. Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCdelta/JNK/c-Jun pathway.

    PubMed

    Mun, Se Hwan; Kim, Hyuk Soon; Kim, Jie Wan; Ko, Na Young; Kim, Do Kyun; Lee, Beob Yi; Kim, Bokyung; Won, Hyung Sik; Shin, Hwa-Sup; Han, Jeung-Whan; Lee, Hoi Young; Kim, Young Mi; Choi, Wahn Soo

    2009-09-01

    We investigated whether oral administration of curcumin suppressed type II collagen-induced arthritis (CIA) in mice and its effect and mechanism on matrix metalloproteinase (MMP)-1 and MMP-3 production in CIA mice, RA fibroblast-like synoviocytes (FLS), and chondrocytes. CIA in mice was suppressed by oral administration of curcumin in a dose-dependent manner. Macroscopic observations were confirmed by histological examinations. Histological changes including infiltration of immune cells, synovial hyperplasia, cartilage destruction, and bone erosion in the hind paw sections were extensively suppressed by curcumin. The histological scores were consistent with clinical arthritis indexes. Production of MMP-1 and MMP-3 were inhibited by curcumin in CIA hind paw sections and tumor necrosis factor (TNF)-alpha-stimulated FLS and chondrocytes in a dose-dependent manner. As for the mechanism, curcumin inhibited activating phosphorylation of protein kinase Cdelta (PKCdelta) in CIA, FLS, and chondrocytes. Curcumin also suppressed the JNK and c-Jun activation in those cells. This study suggests that the suppression of MMP-1 and MMP-3 production by curcumin in CIA is mediated through the inhibition of PKCdelta and the JNK/c-Jun signaling pathway.

  14. Linear array ultrasonography to stage rectal neoplasias suitable for local treatment.

    PubMed

    Ravizza, Davide; Tamayo, Darina; Fiori, Giancarla; Trovato, Cristina; De Roberto, Giuseppe; de Leone, Annalisa; Crosta, Cristiano

    2011-08-01

    Because of the many therapeutic options available, a reliable staging is crucial for rectal neoplasia management. Adenomas and cancers limited to the submucosa without lymph node involvement may be treated locally. The aim of this study is to evaluate the diagnostic accuracy of endorectal ultrasonography in the staging of neoplasias suitable for local treatment. We considered all patients who underwent endorectal ultrasonography between 2001 and 2010. The study population consisted of 92 patients with 92 neoplasias (68 adenocarcinomas and 24 adenomas). A 5 and 7.5MHz linear array echoendoscope was used. The postoperative histopathologic result was compared with the preoperative staging defined by endorectal ultrasonography. Adenomas and cancers limited to the submucosa were considered together (pT0-1). The sensitivity, specificity, overall accuracy rate, positive predictive value, and negative predictive value of endorectal ultrasonography for pT0-1 were 86%, 95.6%, 91.3%, 94.9% and 88.7%. Those for nodal involvement were 45.4%, 95.5%, 83%, 76.9% and 84%, with 3 false positive results and 12 false negative. For combined pT0-1 and pN0, endorectal ultrasonography showed an 87.5% sensitivity, 95.9% specificity, 92% overall accuracy rate, 94.9% positive predictive value and 90.2% negative predictive value. Endorectal linear array ultrasonography is a reliable tool to detect rectal neoplasias suitable for local treatment. Copyright © 2011 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  15. Gadd45a, the gene induced by the mood stabilizer valproic acid, regulates neurite outgrowth through JNK and the substrate paxillin in N1E-115 neuroblastoma cells.

    PubMed

    Yamauchi, Junji; Miyamoto, Yuki; Murabe, Mayu; Fujiwara, Yoko; Sanbe, Atsushi; Fujita, Yuko; Murase, Shoko; Tanoue, Akito

    2007-05-15

    Valproic acid (VPA), a mood stabilizer and anticonvulsant, has a variety of neurotrophic functions; however, less is known about how VPA regulates neurite outgrowth. Here, using N1E-115 neuroblastoma cells as the model, we show that VPA upregulates Gadd45a to trigger activation of the downstream JNK cascade controlling neurite outgrowth. VPA induces the phosphorylation of c-Jun N-terminal kinase (JNK) and the substrate paxillin, while VPA induction of neurite outgrowth is inhibited by JNK inhibitors (SP600125 and the small JNK-binding peptide) or a paxillin construct harboring a Ser 178-to-Ala mutation at the JNK phosphorylation. Transfection of Gadd45a, acting through the effector MEKK4, leads to the phosphorylation of the JNK cascade. Conversely, knockdown of Gadd45a with siRNA reduces the effect of VPA. Taken together, these results suggest that upregulation of Gadd45a explains one of the mechanisms whereby VPA induces the neurotrophic effect, providing a new role of Gadd45a in neurite outgrowth.

  16. Metabolic reprogramming and dependencies associated with epithelial cancer stem cells independent of the epithelial-mesenchymal transition program

    PubMed Central

    Aguilar, Esther; de Mas, Igor Marin; Zodda, Erika; Marin, Silvia; Morrish, Fionnuala; Selivanov, Vitaly; Meca-Cortés, Óscar; Delowar, Hossain; Pons, Mònica; Izquierdo, Inés; Celià-Terrassa, Toni; de Atauri, Pedro; Centelles, Josep J; Hockenbery, David; Thomson, Timothy M; Cascante, Marta

    2016-01-01

    In solid tumors, cancer stem cells (CSCs) can arise independently of epithelial-mesenchymal transition (EMT). In spite of recent efforts, the metabolic reprogramming associated with CSC phenotypes uncoupled from EMT is poorly understood. Here, by using metabolomic and fluxomic approaches, we identify major metabolic profiles that differentiate metastatic prostate epithelial CSCs (e-CSCs) from non-CSCs expressing a stable EMT. We have found that the e-CSC program in our cellular model is characterized by a high plasticity in energy substrate metabolism, including an enhanced Warburg effect, a greater carbon and energy source flexibility driven by fatty acids and amino acid metabolism and an essential reliance on the proton buffering capacity conferred by glutamine metabolism. An analysis of transcriptomic data yielded a metabolic gene signature for our e-CSCs consistent with the metabolomics and fluxomics analysis that correlated with tumor progression and metastasis in prostate cancer and in 11 additional cancer types. Interestingly, an integrated metabolomics, fluxomics and transcriptomics analysis allowed us to identify key metabolic players regulated at the post-transcriptional level, suggesting potential biomarkers and therapeutic targets to effectively forestall metastasis. PMID:27146024

  17. Iron overload may promote alteration of NK cells and hematopoietic stem/progenitor cells by JNK and P38 pathway in myelodysplastic syndromes.

    PubMed

    Hua, Yanni; Wang, Chaomeng; Jiang, Huijuan; Wang, Yihao; Liu, Chunyan; Li, Lijuan; Liu, Hui; Shao, Zonghong; Fu, Rong

    2017-08-01

    The objective of the study was to examine levels of intracellular iron, reactive oxygen species (ROS) and the expression of JNK and p38MAPK in NK cells and hematopoietic stem/progenitor cells (HSPCs) in MDS patients, and explore potential mechanisms by which iron overload (IOL) promotes MDS progression. Thirty-four cases of MDS and six cases of AML transformed from MDS (MDS/AML) were included. HSPCs and NK cells were isolated by magnetic absorption cell sorting. We used flow cytometry to detect the levels of ROS and intracellular JNK and P38 in NK cells and HSPCs. Total RNA and protein were extracted from NK cells and CD34 + cells to examine the expression of JNK and p38MAPK using RT-PCR and Western blotting. Intracellular iron concentration was detected. Data were analyzed by SPSS 21 statistical software. Intracellular iron concentration and ROS were increased in both NK cells and HSPCs in MDS patients with iron overload (P < 0.05). MDS patients with iron overload had higher JNK expression and lower p38 expression in NK cells, and higher p38 expression in HSPCs compared with non-iron overload group. IOL may cause alterations in NK cells and HSPCs through the JNK and p38 pathways, and play a role in the transformation to AML from MDS.

  18. Multiple endocrine neoplasia syndrome type 1: institution, management, and data analysis of a nationwide multicenter patient database.

    PubMed

    Giusti, Francesca; Cianferotti, Luisella; Boaretto, Francesca; Cetani, Filomena; Cioppi, Federica; Colao, Annamaria; Davì, Maria Vittoria; Faggiano, Antongiulio; Fanciulli, Giuseppe; Ferolla, Piero; Ferone, Diego; Fossi, Caterina; Giudici, Francesco; Gronchi, Giorgio; Loli, Paola; Mantero, Franco; Marcocci, Claudio; Marini, Francesca; Masi, Laura; Opocher, Giuseppe; Beck-Peccoz, Paolo; Persani, Luca; Scillitani, Alfredo; Sciortino, Giovanna; Spada, Anna; Tomassetti, Paola; Tonelli, Francesco; Brandi, Maria Luisa

    2017-11-01

    The aim of this study was to integrate European epidemiological data on patients with multiple endocrine neoplasia type 1 by creating an Italian registry of this syndrome, including clinical and genetic characteristics and therapeutic management. Clinical, familial and genetic data of patients with multiple endocrine neoplasia type 1, diagnosed, treated, and followed-up for a mean time of 11.3 years, in 14 Italian referral endocrinological centers, were collected, over a 3-year course (2011-2013), to build a national electronic database. The Italian multiple endocrine neoplasia type 1 database includes 475 patients (271 women and 204 men), of whom 383 patients (80.6%) were classified as familial cases (from 136 different pedigrees), and 92 (19.4%) patients were sporadic cases. A MEN1 mutation was identified in 92.6% of familial cases and in 48.9% of sporadic cases. Four hundred thirty-six patients were symptomatic, presenting primary hyperparathyroidism, gastroenteropancreatic neuroendocrine tumors and pituitary tumors in 93, 53, and 41% of cases, respectively. Thirty-nine subjects, belonging to affected pedigrees positive for a MEN1 mutation, were asymptomatic at clinical and biochemical screening. Age at diagnosis of multiple endocrine neoplasia type 1 probands was similar for both familial and simplex cases (mean age 47.2 ± 15.3 years). In familial cases, diagnosis of multiple endocrine neoplasia type 1 in relatives of affected probands was made more than 10 years in advance (mean age at diagnosis 36.5 ± 17.6 years). The analysis of Italian registry of multiple endocrine neoplasia type 1 patients revealed that clinical features of Italian multiple endocrine neoplasia type 1 patients are similar to those of other western countries, and confirmed that the genetic test allowed multiple endocrine neoplasia type 1 diagnosis 10 years earlier than biochemical or clinical diagnosis.

  19. Risk of Advanced Neoplasia in First-Degree Relatives with Colorectal Cancer: A Large Multicenter Cross-Sectional Study

    PubMed Central

    Quintero, Enrique; Gargallo, Carla; Lanas, Angel; Bujanda, Luis; Gimeno-García, Antonio Z.; Hernández-Guerra, Manuel; Nicolás-Pérez, David; Alonso-Abreu, Inmaculada; Morillas, Juan Diego; Balaguer, Francesc; Muriel, Alfonso

    2016-01-01

    Background First-degree relatives (FDR) of patients with colorectal cancer have a higher risk of developing colorectal cancer than the general population. For this reason, screening guidelines recommend colonoscopy every 5 or 10 y, starting at the age of 40, depending on whether colorectal cancer in the index-case is diagnosed at <60 or ≥60 y, respectively. However, studies on the risk of neoplastic lesions are inconclusive. The aim of this study was to determine the risk of advanced neoplasia (three or more non-advanced adenomas, advanced adenoma, or invasive cancer) in FDR of patients with colorectal cancer compared to average-risk individuals (i.e., asymptomatic adults 50 to 69 y of age with no family history of colorectal cancer). Methods and Findings This cross-sectional analysis includes data from 8,498 individuals undergoing their first lifetime screening colonoscopy between 2006 and 2012 at six Spanish tertiary hospitals. Of these individuals, 3,015 were defined as asymptomatic FDR of patients with colorectal cancer (“familial-risk group”) and 3,038 as asymptomatic with average-risk for colorectal cancer (“average-risk group”). The familial-risk group was stratified as one FDR, with one family member diagnosed with colorectal cancer at ≥60 y (n = 1,884) or at <60 y (n = 831), and as two FDR, with two family members diagnosed with colorectal cancer at any age (n = 300). Multiple logistic regression analysis was used for between-group comparisons after adjusting for potential confounders (age, gender, and center). Compared with the average-risk group, advanced neoplasia was significantly more prevalent in individuals having two FDR with colorectal cancer (odds ratio [OR] 1.90; 95% confidence interval [CI] 1.36–2.66, p < 0.001), but not in those having one FDR with colorectal cancer diagnosed at ≥60 y (OR 1.03; 95% CI 0.83–1.27, p = 0.77) and <60 y (OR 1.19; 95% CI 0.90–1.58, p = 0.20). After the age of 50 y, men developed advanced

  20. Emerging indications of endoscopic radiofrequency ablation

    PubMed Central

    Becq, Aymeric; Camus, Marine; Rahmi, Gabriel; de Parades, Vincent; Marteau, Philippe

    2015-01-01

    Introduction Radiofrequency ablation (RFA) is a well-validated treatment of dysplastic Barrett's esophagus. Other indications of endoscopic RFA are under evaluation. Results Four prospective studies (total 69 patients) have shown that RFA achieved complete remission of early esophageal squamous intra-epithelial neoplasia at a rate of 80%, but with a substantial risk of stricture. In the setting of gastric antral vascular ectasia, two prospective monocenter studies, and a retrospective multicenter study, (total 51 patients), suggest that RFA is efficacious in terms of reducing transfusion dependency. In the setting of chronic hemorrhagic radiation proctopathy, a prospective monocenter study and a retrospective multicenter study (total 56 patients) suggest that RFA is an efficient treatment. A retrospective comparative study (64 patients) suggests that RFA improves stents patency in malignant biliary strictures. Conclusions Endoscopic RFA is an upcoming treatment modality in early esophageal squamous intra-epithelial neoplasia, as well as in gastric, rectal, and biliary diseases. PMID:26279839

  1. Cyclic AMP regulates formation of mammary epithelial acini in vitro

    PubMed Central

    Nedvetsky, Pavel I.; Kwon, Sang-Ho; Debnath, Jayanta; Mostov, Keith E.

    2012-01-01

    Epithelial cells form tubular and acinar structures notable for a hollow lumen. In three-dimensional culture utilizing MCF10A mammary epithelial cells, acini form due to integrin-dependent polarization and survival of cells contacting extracellular matrix (ECM), and the apoptosis of inner cells of acini lacking contact with the ECM. In this paper, we report that cyclic AMP (cAMP)-dependent protein kinase A (PKA) promotes acinus formation via two mechanisms. First, cAMP accelerates redistribution of α6-integrin to the periphery of the acinus and thus facilitates the polarization of outer acinar cells. Blocking of α6-integrin function by inhibitory antibody prevents cAMP-dependent polarization. Second, cAMP promotes the death of inner cells occupying the lumen. In the absence of cAMP, apoptosis is delayed, resulting in perturbed luminal clearance. cAMP-dependent apoptosis is accompanied by a posttranscriptional PKA-dependent increase in the proapoptotic protein Bcl-2 interacting mediator of cell death. These data demonstrate that cAMP regulates lumen formation in mammary epithelial cells in vitro, both through acceleration of polarization of outer cells and apoptosis of inner cells of the acinus. PMID:22675028

  2. Polyethylene glycol inhibits intestinal neoplasia and induces epithelial apoptosis in Apc(min) mice.

    PubMed

    Roy, Hemant K; Gulizia, James; DiBaise, John K; Karolski, William J; Ansari, Sajid; Madugula, Madhavi; Hart, John; Bissonnette, Marc; Wali, Ramesh K

    2004-11-08

    Efficacy of a safe and clinically utilized polyethylene glycol formulation (PEG-3350) to suppress intestinal tumors was investigated in the Apc(min) mouse-model of experimental carcinogenesis. Furthermore, based on our previous finding on the induction of apoptosis in HT-29 cells by PEG, we evaluated its ability to stimulate epithelial cell apoptosis in both Apc(min) mouse as well as AOM-treated rat as a potential molecular mechanism of chemoprevention. Twenty-two Apc(min) mice were randomized equally to PEG or vehicle (control) supplementation. Tumors were scored and uninvolved intestinal mucosal apoptosis was assayed using a modified terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) assay and by immunohistochemical detection of cleaved caspase-3. Supplementation of Apc(min) mice with 10% PEG 3350 (in drinking water) resulted in a 48% (P<0.05) reduction in intestinal tumor burden and induced 2-3 fold increase in mucosal apoptosis. Dietary supplementation of polyethylene glycol (5%) also stimulated colonic mucosal apoptosis 4-5 fold in AOM-treated rats, the regimen that we previously reported to reduce tumor burden by 76% (P<0.05). In summary, we demonstrate, for the first time, that PEG does protect against Apc(min) mouse tumorigenesis. The correlation between pro-apoptotic actions and chemopreventive efficacy of PEG in these models strongly implicates induction of apoptosis as one of the impending mechanisms of chemoprevention.

  3. Resveratrol promotes recovery of immune function of immunosuppressive mice by activating JNK/NF-κB pathway in splenic lymphocytes.

    PubMed

    Lai, Xin; Cao, Mei; Song, Xu; Jia, Renyong; Zou, Yuanfeng; Li, Lixia; Liang, Xiaoxia; He, Changliang; Yin, Lizi; Yue, Guizhou; Ye, Gang; Yin, Zhongqiong

    2017-06-01

    Resveratrol, a natural compound found in over 70 plants, is known to possess immunoregulatory effects and anti-inflammatory activity. It has been shown that resveratrol has regulatory effects on different signaling pathways in different diseases. However, few reports have evaluated the effects of resveratrol on reinforcing immunity recovery via activating nuclear factor-κB (NF-κB) pathway and Jun N-terminal kinases (JNK) pathway. The present study aimed to assess immune-enhancing activity and underlying mechanism of resveratrol in immunosuppressive mice. Previously, we reported that resveratrol could promote mouse spleen lymphocyte functions to recover the immune system effectively. In the present study, we show that resveratrol could upregulate the expressions of NF-κB, IκB kinase, JNK, and c-jun in splenic lymphocytes of immunosuppressive mice. Taken together, our results indicate that resveratrol could promote recovery of immunologic function in immunosuppressive mice by activating JNK/NF-κB pathway.

  4. Multicentric intraepithelial neoplasia involving the vulva. Clinical features and association with human papillomavirus and herpes simplex virus.

    PubMed

    Bornstein, J; Kaufman, R H; Adam, E; Adler-Storthz, K

    1988-10-15

    Sixteen of 46 patients (35%) with Grade 3 vulvar intraepithelial neoplasia (VIN 3) were found to have an additional site of lower genital tract squamous cell neoplasia, primarily in the cervix. The frequency of multicentricity decreased significantly with age. In addition, patients with multicentric disease (involving the vagina and/or cervix in addition to the vulva) had a significantly higher frequency of multifocal disease involving the vulva (involving more than one location on the vulva) and of recurrence than patients without multicentric disease. Human papillomavirus (HPV) DNA was detected by in situ hybridization in 81% of the women with multicentric squamous cell neoplasia. No significant difference was noticed between patients with multicentric and unicentric squamous cell neoplasia in the detection rate of papillomavirus antigen, HPV DNA, the various HPV types, herpes simplex virus Type 2 (HSV2)-related antigen, type-specific antibodies to HSV, and dual HPV and HSV2 infections. These findings suggest that HPV and HSV2, although strongly associated with VIN 3, do not influence the development pattern of squamous cell neoplasia, and that all patients with VIN 3, especially if they are younger than 50 years of age, should be evaluated periodically for additional centers of lower genital tract squamous cell neoplasia.

  5. [Study of the effect of JNK signal transduction pathway in intense noise-induced apoptosis in cochlea of guinea pig].

    PubMed

    Xue, Qiuhong; Chen, Jia; Gong, Shusheng; Xie, Jing; He, Jian; Chen, Xiaolin

    2009-12-01

    To investigate the mechanism of intense noise-induced cochlea cells death in guinea pig, and the effect of JNK signal transduction pathway in the procedure of cochlea cells apoptosis by intense noise-induced. Thirty-two guinea pigs were randomly divided into 4 groups. The guinea pigs in the experiment groups were exposed to 4 kHz narrow band noise at 120 dB SPL for 4 h. After the noise expose for 1, 4, 14 days of the experiment guinea pigs, ABR of the guinea pigs on experiment and control groups were tested before put them to death. Four guinea pig's cochleas of every group were taken to paraffin section, and the rest was extracted the total cochlear's protein. Apoptosis was tested by terminal deoxynucleotidyl Transferase (TdT)-mediated deoxyuridine triphosphate (d-UTP) nick and labeling method (TUNEL). The phosphorylation of JNK and c-Jun were tested by immunohistochemistry and western blot methods. Tunel-Positive cells in the Corti's, SGC and SV of experiment groups, and there have significant differences compared with the control group (P<0.01) and Tunel-Positive cells are most in 1 d experiment group. The positive cells of P-JNK and P-c-Jun could be detected in guinea pig's cochleas after noise exposed, but no positive cells were found in the control. Protein levels of P-JNK and P-c-Jun were risen up and activated quickly after noise exposed, and achieved peak in 1 d, 4 d and then fallen-offs, but still maintained higher levels within 14 d. Intense noise causes cochlea cell lesion by inducing apoptosis to result in and JNK signal transduction pathway plays an important role in the procedure of apoptosis.

  6. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    PubMed

    Sun, Chi-Chin; Chiu, Hsiao-Ting; Lin, Yi-Fang; Lee, Kuo-Ying; Pang, Jong-Hwei Su

    2015-01-01

    Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  7. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids.

    PubMed

    Gilchrist, Samuel E; Alcorn, Jane

    2010-04-01

    Since solute carrier (SLC) and ATP-binding cassette (ABC) transporters play pivotal roles in the transport of both nutrients and drugs into breast milk, drug-nutrient transport interactions at the lactating mammary gland are possible. Our purpose was to characterize lactation stage-dependent changes in transporter expression in rat mammary gland and isolated mammary epithelial organoids (MEO) to provide additional insight for the safe use of maternal medications during breastfeeding. We used quantitative reverse transcription-polymerase chain reaction to assess the temporal expression patterns of SLC and ABC transporters in rat mammary gland and isolated MEO at different stages of lactation. In whole mammary gland five distinct patterns of expression emerged relative to late gestation: (i) decreasing throughout lactation (Mdr1a, Mdr1b, Mrp1, Octn2, Ent2, Ent3, Ncbt2, Mtx1); (ii) prominent increase in early lactation, which may remain elevated or decline with advancing lactation (Octn1, Cnt2, Cnt3, Ent1, Pept1, Pept2); (iii) constant but decreasing later in lactation (Octn3, Dmt1); (iv) increasing until mid-to-late lactation (Oct1, Cnt1); and (v) prominent increase late in lactation (Ncbt1). In isolated MEO (an enriched source of mammary epithelial cells) major differences in expression patterns were noted for Octn3, Ncbt1, and Mtx1, but otherwise were reasonably similar with the whole mammary gland. In conclusion our study augments existing data on transporter expression in the lactating mammary gland. These data should facilitate investigations into lactation-stage dependent changes in drug or nutrient milk-to-serum concentration ratios, the potential for drug- or disease-transporter interactions, and mechanistic studies of transporter function in the lactating mammary gland.

  8. Nicotine transport in lung and non-lung epithelial cells.

    PubMed

    Takano, Mikihisa; Kamei, Hidetaka; Nagahiro, Machi; Kawami, Masashi; Yumoto, Ryoko

    2017-11-01

    Nicotine is rapidly absorbed from the lung alveoli into systemic circulation during cigarette smoking. However, mechanism underlying nicotine transport in alveolar epithelial cells is not well understood to date. In the present study, we characterized nicotine uptake in lung epithelial cell lines A549 and NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Characteristics of [ 3 H]nicotine uptake was studied using these cell lines. Nicotine uptake in A549 cells occurred in a time- and temperature-dependent manner and showed saturation kinetics, with a Km value of 0.31mM. Treatment with some organic cations such as diphenhydramine and pyrilamine inhibited nicotine uptake, whereas treatment with organic cations such as carnitine and tetraethylammonium did not affect nicotine uptake. Extracellular pH markedly affected nicotine uptake, with high nicotine uptake being observed at high pH up to 11.0. Modulation of intracellular pH with ammonium chloride also affected nicotine uptake. Treatment with valinomycin, a potassium ionophore, did not significantly affect nicotine uptake, indicating that nicotine uptake is an electroneutral process. For comparison, we assessed the characteristics of nicotine uptake in another lung epithelial cell line NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Interestingly, these cell lines showed similar characteristics of nicotine uptake with respect to pH dependency and inhibition by various organic cations. The present findings suggest that a similar or the same pH-dependent transport system is involved in nicotine uptake in these cell lines. A novel molecular mechanism of nicotine transport is proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Protective properties of sesamin against fluoride-induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway.

    PubMed

    Cao, Jinling; Chen, Jianjie; Xie, Lingtian; Wang, Jundong; Feng, Cuiping; Song, Jing

    2015-10-01

    Sesamin, a major lignan derived from sesame seeds, has been reported to have many benefits and medicinal properties. However, its protective effects against fluoride-induced injury in kidney of fish have not been clarified. Previously we found that fluoride exposure caused damage and apoptosis in the kidneys of the common carp, Cyprinus carpio. In this study, the effects of sesamin on renal oxidative stress and apoptosis in fluoride-exposed fish were determined. The results showed that sesamin alleviated significantly fluoride-induced renal damage and apoptosis of carp in a dose-dependent manner, indicated by the histopathological examination and ultrastructural observation. Moreover, treatment with sesamin also inhibited significantly fluoride-induced remarkable enhancement of reactive oxygen species (ROS) production and oxidative stress, such as the increase of lipid peroxidation level and the depletion of intracellular reduced glutathione (GSH) level in kidney. To explore the underlying mechanisms of sesamin action, we found that activities of caspase-3 were notably inhibited by treatment with sesamin in the kidney of fluoride-exposed fish. Sesamin decreased the levels of p-JNK protein in kidney, which in turn inactivated pro-apoptotic signaling events by restoring the balance between mitochondrial pro- and anti-apoptotic Bcl-2 and Bax proteins and by decreasing the release of mitochondrial cytochrome c in kidney of fluoride-exposed fish. JNK was also involved in the mitochondrial extrinsic apoptotic pathways of sesamin effects against fluoride-induced renal injury by regulating the levels of p-c-Jun, necrosis factor-alpha (TNF-α) and Bak proteins. These findings indicated that sesamin could protect kidney against fluoride-induced apoptosis by the oxidative stress downstream-mediated change in the inactivation of JNK signaling pathway. Taken together, sesamin plays an important role in maintaining renal health and preventing kidney from toxic damage induced by

  10. A Low-Level Carbon Dioxide Laser Promotes Fibroblast Proliferation and Migration through Activation of Akt, ERK, and JNK

    PubMed Central

    Shingyochi, Yoshiaki; Kanazawa, Shigeyuki; Tajima, Satoshi; Tanaka, Rica; Mizuno, Hiroshi; Tobita, Morikuni

    2017-01-01

    Background Low-level laser therapy (LLLT) with various types of lasers promotes fibroblast proliferation and migration during the process of wound healing. Although LLLT with a carbon dioxide (CO2) laser was also reported to promote wound healing, the underlying mechanisms at the cellular level have not been previously described. Herein, we investigated the effect of LLLT with a CO2 laser on fibroblast proliferation and migration. Materials and Methods Cultured human dermal fibroblasts were prepared. MTS and cell migration assays were performed with fibroblasts after LLLT with a CO2 laser at various doses (0.1, 0.5, 1.0, 2.0, or 5.0 J/cm2) to observe the effects of LLLT with a CO2 laser on the proliferation and migration of fibroblasts. The non-irradiated group served as the control. Moreover, western blot analysis was performed using fibroblasts after LLLT with a CO2 laser to analyze changes in the activities of Akt, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK), which are signaling molecules associated with cell proliferation and migration. Finally, the MTS assay, a cell migration assay, and western blot analysis were performed using fibroblasts treated with inhibitors of Akt, ERK, or JNK before LLLT with a CO2 laser. Results In MTS and cell migration assays, fibroblast proliferation and migration were promoted after LLLT with a CO2 laser at 1.0 J/cm2. Western blot analysis revealed that Akt, ERK, and JNK activities were promoted in fibroblasts after LLLT with a CO2 laser at 1.0 J/cm2. Moreover, inhibition of Akt, ERK, or JNK significantly blocked fibroblast proliferation and migration. Conclusions These findings suggested that LLLT with a CO2 laser would accelerate wound healing by promoting the proliferation and migration of fibroblasts. Activation of Akt, ERK, and JNK was essential for CO2 laser-induced proliferation and migration of fibroblasts. PMID:28045948

  11. Overexpression of the Ubiquilin-4 (UBQLN4) is Associated with Cell Cycle Arrest and Apoptosis in Human Normal Gastric Epithelial Cell Lines GES-1 Cells by Activation of the ERK Signaling Pathway

    PubMed Central

    Huang, Shengkai; Dong, Xin; Wang, Jia; Ding, Jie; Li, Yan; Li, Dongdong; Lin, Hong; Wang, Wenjie; Zhao, Mei

    2018-01-01

    Background Ubiquilin-4 (UBQLN4) is a component of the ubiquitin-proteasome system and regulates the degradation of many proteins implicated in pathological conditions. The aim of this study was to determine the role of UBQLN4 in regulating the proliferation and survival of the normal gastric epithelial cell line GES-1. Material/Methods We constructed GES-1 lines stably overexpressing UBQLN4 by lentiviral infection. Cell proliferation, apoptosis, and the cell cycle were analyzed using the MTT assay and flow cytometric assays. Phosphorylation of ERK, JNK, p38, and expression of cyclin D1 were detected by western blot analysis. Results Overexpression of UBQLN4 significantly reduced proliferation and induced G2/M phase arrest and apoptosis in GES-1 cells. Moreover, upregulation of UBQLN4 increased the expression of cyclin D1 and phosphorylated ERK, but not JNK or p38. Conclusions These data suggest that UBQLN4 may induce cell cycle arrest and apoptosis via activation of the ERK pathway and upregulation of cyclin D1 in GES-1 cells. PMID:29807370

  12. Wound-Induced Polyploidization: Regulation by Hippo and JNK Signaling and Conservation in Mammals

    PubMed Central

    Losick, Vicki P.; Jun, Albert S.; Spradling, Allan C.

    2016-01-01

    Tissue integrity and homeostasis often rely on the proliferation of stem cells or differentiated cells to replace lost, aged, or damaged cells. Recently, we described an alternative source of cell replacement- the expansion of resident, non-dividing diploid cells by wound-induced polyploidization (WIP). Here we show that the magnitude of WIP is proportional to the extent of cell loss using a new semi-automated assay with single cell resolution. Hippo and JNK signaling regulate WIP; unexpectedly however, JNK signaling through AP-1 limits rather than stimulates the level of Yki activation and polyploidization in the Drosophila epidermis. We found that polyploidization also quantitatively compensates for cell loss in a mammalian tissue, mouse corneal endothelium, where increased cell death occurs with age in a mouse model of Fuchs Endothelial Corneal Dystrophy (FECD). Our results suggest that WIP is an evolutionarily conserved homeostatic mechanism that maintains the size and synthetic capacity of adult tissues. PMID:26958853

  13. Wound-Induced Polyploidization: Regulation by Hippo and JNK Signaling and Conservation in Mammals.

    PubMed

    Losick, Vicki P; Jun, Albert S; Spradling, Allan C

    2016-01-01

    Tissue integrity and homeostasis often rely on the proliferation of stem cells or differentiated cells to replace lost, aged, or damaged cells. Recently, we described an alternative source of cell replacement- the expansion of resident, non-dividing diploid cells by wound-induced polyploidization (WIP). Here we show that the magnitude of WIP is proportional to the extent of cell loss using a new semi-automated assay with single cell resolution. Hippo and JNK signaling regulate WIP; unexpectedly however, JNK signaling through AP-1 limits rather than stimulates the level of Yki activation and polyploidization in the Drosophila epidermis. We found that polyploidization also quantitatively compensates for cell loss in a mammalian tissue, mouse corneal endothelium, where increased cell death occurs with age in a mouse model of Fuchs Endothelial Corneal Dystrophy (FECD). Our results suggest that WIP is an evolutionarily conserved homeostatic mechanism that maintains the size and synthetic capacity of adult tissues.

  14. Lymphomagenic CARD11/BCL10/MALT1 signaling drives malignant B-cell proliferation via cooperative NF-κB and JNK activation.

    PubMed

    Knies, Nathalie; Alankus, Begüm; Weilemann, Andre; Tzankov, Alexandar; Brunner, Kristina; Ruff, Tanja; Kremer, Marcus; Keller, Ulrich B; Lenz, Georg; Ruland, Jürgen

    2015-12-29

    The aggressive activated B cell-like subtype of diffuse large B-cell lymphoma is characterized by aberrant B-cell receptor (BCR) signaling and constitutive nuclear factor kappa-B (NF-κB) activation, which is required for tumor cell survival. BCR-induced NF-κB activation requires caspase recruitment domain-containing protein 11 (CARD11), and CARD11 gain-of-function mutations are recurrently detected in human diffuse large B-cell lymphoma (DLBCL). To investigate the consequences of dysregulated CARD11 signaling in vivo, we generated mice that conditionally express the human DLBCL-derived CARD11(L225LI) mutant. Surprisingly, CARD11(L225LI) was sufficient to trigger aggressive B-cell lymphoproliferation, leading to early postnatal lethality. CARD11(L225LI) constitutively associated with B-cell CLL/lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) to simultaneously activate the NF-κB and c-Jun N-terminal kinase (JNK) signaling cascades. Genetic deficiencies of either BCL10 or MALT1 completely rescued the phenotype, and pharmacological inhibition of JNK was, similar to NF-κB blockage, toxic to autonomously proliferating CARD11(L225LI)-expressing B cells. Moreover, constitutive JNK activity was observed in primary human activated B cell-like (ABC)-DLBCL specimens, and human ABC-DLBCL cells were also sensitive to JNK inhibitors. Thus, our results demonstrate that enforced activation of CARD11/BCL10/MALT1 signaling is sufficient to drive transformed B-cell expansion in vivo and identify the JNK pathway as a therapeutic target for ABC-DLBCL.

  15. Neoplasia in felids at the Knoxville Zoological Gardens, 1979-2003.

    PubMed

    Owston, Michael A; Ramsay, Edward C; Rotstein, David S

    2008-12-01

    A review of medical records and necropsy reports from 1979-2003 found 40 neoplasms in 26 zoo felids, including five lions (Panthera leo, two males and three females), three leopards (Panthera pardus, two males and one female), one jaguar (Panthera onca, female), 11 tigers (Panthera tigris, three males and eight females), two snow leopards (Panthera uncia, one male and one female), two cougars (Felis concolor, one male and one female), one bobcat (Felis rufus, male), and one cheetah (Acinonyx jubatus, female). Animals that had not reached 3 yr of age or had been housed in the collection less than 3 yrs were not included in the study. Neoplasia rate at necropsy was 51% (24/47), and overall incidence of felid neoplasia during the study period was 25% (26/103). Neoplasia was identified as the cause of death or reason for euthanasia in 28% (13/47) of those necropsied. Neoplasms were observed in the integumentary-mammary (n=11), endocrine (n=10), reproductive (n=8), hematopoietic-lymphoreticular (n=5), digestive (n=3), and hepatobiliary (n=2) systems. One neoplasm was unclassified by system. Multiple neoplasms were observed in 11 animals. Both benign and malignant neoplasms were observed in all systems except for the hematopoietic-lymphoreticular systems where all processes were malignant. Of the endocrine neoplasms, those involving the thyroid and parathyroid glands predominated (n=8) over other endocrine organs and included adenomas and carcinomas. In the integumentary system, 63% (7/11) of neoplasms involved the mammary gland, with mammary carcinoma representing 83% (6/7) of the neoplasms. The rates of neoplasia at this institution, during the given time period, appears to be greater than rates found in the one other published survey of captive felids.

  16. Alternate pathogenesis of systemic neoplasia in the bivalve mollusc Mytilus.

    PubMed

    Moore, J D; Elston, R A; Drum, A S; Wilkinson, M T

    1991-09-01

    The proliferative disease systemic neoplasia, also termed hemic neoplasia or disseminated sarcoma, was studied in four Puget Sound, Washington populations of the bay mussel (Mytilus sp.). Using flow cytometric measurement of DAPI-stained cells withdrawn from the hemolymph, DNA content frequency histograms were generated for 73 individuals affected by the disease. The cells manifesting systemic neoplasia were found to exist as either of two separate types, characterized by G0G1 phase nuclear DNA contents of either approximately 4.9 x haploid (pentaploid form) or approximately 3.8 x haploid (tetraploid form). The two disease forms were found to coexist in all four mussel populations sampled, with overall relative prevalences of 66% pentaploid form, 29% tetraploid form, and 5% exhibiting both disease forms simultaneously. These findings represent the first unequivocal demonstration of multiple cell types in a bivalve neoplasia. The two forms appear to represent separate pathogenetic processes rather than sequential stages of a single pathogenesis. Two cell cycling parameters associated with proliferative activity were employed to compare the alternate forms: (i) the percentage of cells assigned to the DNA Synthesis (S) phase of the neoplastic cell cycle, and (ii) the proportion of neoplastic cell mitotic figures in hemocytological preparations. Mean values for both parameters were significantly higher for mussels with the tetraploid form of the disease, suggesting a higher rate of proliferation relative to the pentaploid form. Qualitatively, cells of the tetraploid form contained slightly lower nuclear and cytoplasmic volumes compared to those of the pentaploid form. An observed wide variation in neoplastic cell nuclear size within either disease form may reflect the distribution of cells in the G0G1, S, and G2M phases of the cell cycle. Potential etiologic relationships between the two forms are discussed.

  17. Sphingosylphosphorylcholine promotes the differentiation of resident Sca-1 positive cardiac stem cells to cardiomyocytes through lipid raft/JNK/STAT3 and β-catenin signaling pathways.

    PubMed

    Li, Wenjing; Liu, Honghong; Liu, Pingping; Yin, Deling; Zhang, Shangli; Zhao, Jing

    2016-07-01

    Resident cardiac Sca-1-positive (+) stem cells may differentiate into cardiomyocytes to improve the function of damaged hearts. However, little is known about the inducers and molecular mechanisms underlying the myogenic conversion of Sca-1(+) stem cells. Here we report that sphingosylphosphorylcholine (SPC), a naturally occurring bioactive lipid, induces the myogenic conversion of Sca-1(+) stem cells, as evidenced by the increased expression of cardiac transcription factors (Nkx2.5 and GATA4), structural proteins (cardiac Troponin T), transcriptional enhancer (Mef2c) and GATA4 nucleus translocation. First, SPC activated JNK and STAT3, and the JNK inhibitor SP600125 or STAT3 inhibitor stattic impaired the SPC-induced expression of cardiac transcription factors and GATA4 nucleus translocation, which suggests that JNK and STAT3 participated in SPC-promoted cardiac differentiation. Moreover, STAT3 activation was inhibited by SP600125, whereas JNK was inhibited by β-cyclodextrin as a lipid raft breaker, which indicates a lipid raft/JNK/STAT3 pathway involved in SPC-induced myogenic transition. β-Catenin, degraded by activated GSK3β, was inhibited by SPC. Furthermore, GSK3β inhibitors weakened but the β-catenin inhibitor promoted SPC-induced differentiation. We found no crosstalk between the lipid raft/JNK/STAT3 and β-catenin pathway. Our study describes a lipid, SPC, as an endogenic inducer of myogenic conversion in Sca-1(+) stem cells with low toxicity and high efficiency for uptake. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Regulation of B7.1 costimulatory molecule is mediated by the IFN regulatory factor-7 through the activation of JNK in lipopolysaccharide-stimulated human monocytic cells.

    PubMed

    Lim, Wilfred; Gee, Katrina; Mishra, Sasmita; Kumar, Ashok

    2005-11-01

    The engagement of CD28 or CTLA-4 with B7.1 provides the essential second costimulatory signal that regulates the development of immune responses, including T cell activation, differentiation, and induction of peripheral tolerance. The signaling molecules and the transcription factors involved in B7.1 regulation are poorly understood. In this study we investigated the role of MAPKs in the regulation of LPS-induced B7.1 expression in human monocytes and the promonocytic THP-1 cells. Our results show that LPS-induced B7.1 expression in monocytic cells did not involve the activation of either p38 or ERKs. Using the JNK-specific inhibitor SP600125, small interfering RNAs specific for JNK1 and JNK2, and agents such as dexamethasone that inhibit JNK activation, we determined that LPS-induced B7.1 expression was regulated by JNK MAPK in both monocytes and THP-1 cells. In addition, we identified a distinct B7.1-responsive element corresponding to the IFN regulatory factor-7 (IRF-7) binding site in the B7.1 promoter responsible for the regulation of LPS-induced B7.1 transcription. Furthermore, SP600125 and dexamethasone inhibited LPS-induced IRF-7 activity. Taken together, these results suggest that LPS-induced B7.1 transcription in human monocytic cells may be regulated by JNK-mediated activation of the IRF-7 transcription factor.

  19. TSG-6 secreted by human umbilical cord-MSCs attenuates severe burn-induced excessive inflammation via inhibiting activations of P38 and JNK signaling.

    PubMed

    Liu, Lingying; Song, Huifeng; Duan, Hongjie; Chai, Jiake; Yang, Jing; Li, Xiao; Yu, Yonghui; Zhang, Xulong; Hu, Xiaohong; Xiao, Mengjing; Feng, Rui; Yin, Huinan; Hu, Quan; Yang, Longlong; Du, Jundong; Li, Tianran

    2016-07-22

    The hMSCs have become a promising approach for inflammation treatment in acute phase. Our previous study has demonstrated that human umbilical cord-MSCs could alleviate the inflammatory reaction of severely burned wound. In this study, we further investigated the potential role and mechanism of the MSCs on severe burn-induced excessive inflammation. Wistar rats were randomly divided into following groups: Sham, Burn, Burn+MSCs, Burn+MAPKs inhibitors, and Burn, Burn+MSCs, Burn+Vehicle, Burn+siTSG-6, Burn+rhTSG-6 in the both experiments. It was found that MSCs could only down-regulate P38 and JNK signaling, but had no effect on ERK in peritoneal macrophages of severe burn rats. Furthermore, suppression of P38 and JNK activations significantly reduced the excessive inflammation induced by severe burn. TSG-6 was secreted by MSCs using different inflammatory mediators. TSG-6 from MSCs and recombinant human (rh)TSG-6 all significantly reduced activations of P38 and JNK signaling induced by severe burn and then attenuated excessive inflammations. On the contrary, knockdown TSG-6 in the cells significantly increased phosphorylation of P38 and JNK signaling and reduced therapeutic effect of the MSCs on excessive inflammation. Taken together, this study suggested TSG-6 from MSCs attenuated severe burn-induced excessive inflammation via inhibiting activation of P38 and JNK signaling.

  20. Balanites aegyptiaca ameliorates insulin secretion and decreases pancreatic apoptosis in diabetic rats: Role of SAPK/JNK pathway.

    PubMed

    Hassanin, Kamel M A; Mahmoud, Mohamed O; Hassan, Hossam M; Abdel-Razik, Abdel-Razik H; Aziz, Lourin N; Rateb, Mostafa E

    2018-06-01

    SAPK-JNK pathway performs a significant role in the pathogenesis of type 2 diabetes. Balanites aegyptiaca (BA) is used as an anti-diabetic agent in folk medicine however its hypoglycemic mechanism is not fully elucidated. The current study aimed to evaluate the effect of crude extract, butanol, and dichloromethane fractions from BA on the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK-JNK) pathway in experimental diabetic rats. Six groups of male Wistar rats were included: normal control, diabetic, diabetic rats treated with crude, butanol or dichloromethane fraction from BA (50 mg/kg BW) and diabetic rats treated with gliclazide as a reference drug for one month. Our results suggested a protective role of treatment of diabetic rats with BA against oxidative stress-induced SAPK-JNK pathway. Moreover, BA treatment produced a reduction in plasma glucose, HbA 1c , lactic acid, lipid profile, malondialdehyde levels and produced an increase in insulin, reduced glutathione levels, catalase and superoxide dismutase activities compared with untreated diabetic rats. Moreover, it decreased apoptosis signal-regulating kinase 1, c-Jun N-terminal kinase 1, protein 53 and increased insulin receptor substrate 1 in rat pancreas while it increased glucose transporter 4 in rat muscle. Analysis of BA extracts by LC-HRMS revealed the presence of different saponins with reported hypoglycemic effect. In conclusion, BA exerted hypoglycemic, hypolipidemic, insulinotropic and antioxidant effects. Additionally, it reduced apoptosis in pancreatic β-cells and increased glucose uptake in muscle. These results suggest that the hypoglycemic effect of BA is due to the inhibition of the SAPK-JNK pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.