Science.gov

Sample records for jnk-mediated interleukin-2 mrna

  1. Cytokine mRNA expression in intestinal tissue of interleukin-2 deficient mice with bowel inflammation

    PubMed Central

    Autenrieth, I; Bucheler, N; Bohn, E; Heinze, G; Horak, I

    1997-01-01

    Background—Mice deficient in interleukin-2 (IL-2) develop inflammatory bowel disease resembling ulcerative colitis in humans. Recent studies provided evidence that ?? T cells, particularly CD4 T cells, rather than B cells, are involved in the pathogenesis of bowel inflammation of IL-2 deficient mice. ?Aim—To analyse the pattern of expression of cytokine mRNA in intestinal tissue of normal and IL-2 deficient mice. ?Methods—Expression of ?-actin, IL-1?, IL-1?, IL-6, IL-10, tumour necrosis factor ? (TNF-?), interferon ? (IFN-?) and transforming growth factor ?1 (TGF-?1) mRNA was analysed in colon and small intestinal tissue of both IL-2 deficient (IL-2?/?) mice and normal (wild type) litter mates (IL-2+/+) at different ages by using qualitative, as well as semiquantitative, competitive reverse transcription polymerase chain reaction (RT-PCR). Results were correlated with the phase of progression of the disease, as determined by histology. ?Results—IL-2?/? mice had expressed low levels of IL-1?, IL-1?, IL-6, TNF-?, and IFN-? mRNA in the colon by 1.5 weeks of age. In advance of the development of histologically and clinically detectable bowel inflammation, expression of IL-1?, IL-1?, IL-6, TNF-?, IFN-?, and IL-10, but not TGF-?1, mRNA increased in the colon of IL-2 deficient mice. In contrast, IL-2+/+ mice expressed TGF-?1 mRNA in colon tissue at 13 and 23 weeks of age, but not IL-1?, IL-1?, IL-6, TNF-?, IL-10, or IFN-? mRNA. Levels of expression of cytokine mRNA in tissue from the small intestine were comparable in IL-2?/? and IL-2+/+ mice. ?Conclusions—Bowel inflammation in IL-2 deficient mice is preceded by an increase in IL-1?, IL-1?, TNF-?, and IFN-? mRNA expression in colon tissue. Low levels of TGF-?1, but high levels of IL-1?, IL-1?, IL-6, TNF-?, IFN-?, and IL-10 mRNA expression correlate with the manifestation of severe colitis, and suggest that T cells and macrophages are involved in bowel inflammation of IL-2 deficient mice. ?? Keywords: cytokine; mRNA expression; interleukin-2 deficient mice; bowel inflammation PMID:9462212

  2. Phorbol esters induce interleukin 2 mRNA in sensitive but not in resistant EL4 cells

    SciTech Connect

    Harrison, J.R.; Lynch, K.R.; Sando, J.J.

    1986-05-01

    Phorbol ester (PE) sensitive EL4 cells are growth-inhibited and produce interleukin 2 (IL2) when treated with PE. Resistant EL4 cells lack both responses. To determine whether the defect in resistant cells occurs pre or post-transcriptionally, an assay for IL2 mRNA was developed using a synthetic oligonucleotide to mouse IL2 as a probe. Total RNA (15 ..mu..g) from cells +/- PE was electrophoresed, blotted onto a cationic nylon membrane, and probed with radiolabeled oligomer. This probe hybridized to a 1.1 kb band in RNA from PE-treated sensitive cells. This RNA was detectable within 3h of PE administration, was clearly visible by 6h, and peaked by 9 to 12h. No bands hybridizing with the IL2 probe were detected in RNA isolated from unstimulated cells or from resistant EL4 cells at any time following PE stimulation. Since levels of the protooncogene c-myc have been shown to decrease in a number of cell lines during differentiation and growth inhibition, total RNA from EL4 cells was probed with a nick-translated plasmid containing the protein coding region of the c-myc gene. In PE sensitive cells, levels of c-myc RNA are markedly reduced by 3h. In a pilot experiment with resistant cells, c-myc levels appeared to remain constant. These results demonstrate that PE induced IL2 mRNA in PE sensitive but not resistant EL4 cells. Sensitive and resistant EL4 cell lines provide a useful model for the investigation of the regulation of gene expression by PE.

  3. Effects of selenium on proliferation, interleukin-2 production and selenoprotein mRNA expression of normal and dexamethasone-treated porcine splenocytes.

    PubMed

    Zhuang, Tenghan; Xu, Haibin; Hao, Shu; Ren, Fei; Chen, Xingxiang; Pan, Cuiling; Huang, Kehe

    2015-02-01

    Porcine splenocytes were isolated in vitro, treated with different levels of dexamethasone (DEX), and stimulated by concanavalin A. Further, the normal (non-DEX-supplemented) or DEX-treated (0.01?µmol/L) splenocytes were incubated with 0, 0.5, 2, and 5?µmol/L Na2SeO3. The splenocyte proliferation, IL-2 production, intracellular glutathione peroxidase 1 (GPx1) mRNA level and activity and thioredoxin reductase 1 mRNA level were measured. The results showed that addition of 0.5 or 2?µmol/L Na2SeO3 significantly promoted normal and DEX-treated splenocyte proliferation, IL-2 production and GPx1 mRNA expression and activity (P?

  4. JNK-mediated turnover and stabilization of the transcription factor p45/NF-E2 during differentiation

    E-print Network

    Tsai, Ming-Daw

    JNK-mediated turnover and stabilization of the transcription factor p45/NF-E2 during for the regulation of erythroid maturation. In the model, the posttransla- tional modifications and turnover of p45

  5. Isothiocyanates inhibit the invasion and migration of C6 glioma cells by blocking FAK/JNK-mediated MMP-9 expression.

    PubMed

    Lee, Chang-Su; Cho, Hyun-Ji; Jeong, Yun-Jeong; Shin, Jae-Moon; Park, Kwan-Kyu; Park, Yoon-Yub; Bae, Young-Seuk; Chung, Il-Kyung; Kim, Mihyun; Kim, Cheorl-Ho; Jin, Fansi; Chang, Hyeun-Wook; Chang, Young-Chae

    2015-12-01

    Isothiocyanates (ITCs) derived from cruciferous vegetables, including benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane (SFN), exhibit preventative effects against various types of cancers. Yet, the inhibitory effects of ITCs on C6 glioma cell invasion and migration have not been reported. Thus, we aimed to analyze ITC-regulated MMP-9 activation, a crucial enzyme of cancer metastasis that degrades the extracellular matrix, in C6 glioma cells to investigate the inhibitory effects on cancer invasion and migration by ITCs. In the present study, we found that ITCs specifically suppressed PMA-induced MMP-9 secretion and protein expression. The inhibitory effects of ITCs on PMA-induced MMP-9 expression were found to be associated with the inhibition of MMP-9 transcription levels through suppression of nuclear translocation of NF-?B and activator protein-1 (AP-1). It was also confirmed that ITCs decreased MMP-9-mediated signaling such as FAK and JNK, whereas they had no effect on the phosphorylation of ERK and p38. Moreover, wound-healing and ?ranswell invasion assays showed that ITCs inhibited the migration and invasion of C6 glioma cells. These results suggest that ITCs could be potential agents for the prevention of C6 glioma cell migration and invasion by decreasing FAK/JNK-mediated MMP-9 expression. PMID:26397194

  6. Interferon, interleukin-2, and other cytokines.

    PubMed

    Buchbinder, Elizabeth I; McDermott, David F

    2014-06-01

    Cytokines are a diverse group of signaling molecules with immunomodulatory activity. This article reviews the application of cytokine therapy in melanoma with a focus on interferon-? and interleukin-2. In addition, it addresses the clinical considerations of these therapies including patient selection, reduction in toxicity, and combination regimens. PMID:24880948

  7. Bornyl caffeate induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways

    PubMed Central

    Yang, Chuan-bin; Pei, Wei-jing; Zhao, Jia; Cheng, Yuan-yuan; Zheng, Xiao-hui; Rong, Jian-hui

    2014-01-01

    Aim: To investigate the effects of bornyl caffeate discovered in several species of plant on human breast cancer cells in vitro and the underlying mechanisms. Methods: Human breast cancer cell line MCF-7 and other tumor cell lines (T47D, HepG2, HeLa, and PC12) were tested. Cell viability was determined using MTT assay, and apoptosis was defined by monitoring the morphology of the nuclei and staining with Annexin V-FITC. Mitochondrial membrane potential (MMP) was measured using JC-1 under fluorescence microscopy. Intracellular reactive oxygen species (ROS) were assessed by flow cytometry. The expression of apoptosis-associated proteins was determined by Western blotting analysis. Results: Bornyl caffeate (10, 25, and 50 ?mol/L) suppressed the viability of MCF-7 cells in dose- and time-dependent manners, but neither caffeic acid nor borneol showed cytotoxicity at a concentration of 50 ?mol/L. Bornyl caffeate also exerted cytotoxicity to HepG2, Hela, T47D, and PC12 cells. Bornyl caffeate dose-dependently induced apoptosis of MCF-7 cells, increased the expression of Bax and decreased the expression of Bcl-xl, resulting in the disruption of MMP and subsequent activation of caspase-3. Moreover, bornyl caffeate triggered the formation of ROS and activated p38 and c-Jun JNK. In MCF-7 cells, the cytotoxicity of bornyl caffeate was significantly attenuated by SB203580 (p38 inhibitor), SP600125 (JNK inhibitor), z-VAD (pan-caspase inhibitor) or the thiol antioxidant L-NAC. Conclusion: Bornyl caffeate exerts non-selective cytotoxicity against cancer cells of different origin in vitro. The compound induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways. PMID:24335836

  8. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    SciTech Connect

    Nguyen Ngoc, Tam Dan; Son, Young-Ok; Lim, Shin-Saeng; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 ; Shi, Xianglin; Kim, Jong-Ghee; Heo, Jung Sun; Choe, Youngji; Jeon, Young-Mi; Lee, Jeong-Chae; Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756

    2012-03-15

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G{sub 2}/M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45?. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-? or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ? The mode of NaF-induced cell death and the mechanisms involved were examined. ? NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ? NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ? JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ? ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.

  9. Structural and functional characterisation of ferret interleukin-2.

    PubMed

    Ren, Bin; McKinstry, William J; Pham, Tam; Newman, Janet; Layton, Daniel S; Bean, Andrew G; Chen, Zhenjun; Laurie, Karen L; Borg, Kathryn; Barr, Ian G; Adams, Timothy E

    2016-02-01

    While the ferret is a valuable animal model for a number of human viral infections, such as influenza, Hendra and Nipah, evaluating the cellular immune response following infection has been hampered by the lack of a number of species-specific immunological reagents. Interleukin 2 (IL-2) is one such key cytokine. Ferret recombinant IL-2 incorporating a C-terminal histidine tag was expressed and purified and the three-dimensional structure solved and refined at 1.89 Å by X-ray crystallography, which represents the highest resolution and first non-human IL-2 structure. While ferret IL-2 displays the classic cytokine fold of the four-helix bundle structure, conformational flexibility was observed at the second helix and its neighbouring region in the bundle, which may result in the disruption of the spatial arrangement of residues involved in receptor binding interactions, implicating subtle differences between ferret and human IL-2 when initiating biological functions. Ferret recombinant IL-2 stimulated the proliferation of ferret lymph node cells and induced the expression of mRNA for IFN-? and Granzyme A. PMID:26472619

  10. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes

    SciTech Connect

    Latchoumycandane, Calivarathan; Seah, Quee Ming; Tan, Rachel C.H.; Sattabongkot, Jetsumon; Beerheide, Walter; Boelsterli, Urs A. . E-mail: phcbua@nus.edu.sg

    2006-11-15

    Leflunomide, a disease-modifying anti-rheumatic drug, protects against T-cell-mediated liver injury by poorly understood mechanisms. The active metabolite of leflunomide, A77 1726 (teriflunomide) has been shown to inhibit stress-activated protein kinases (JNK pathway), which are key regulators of mitochondria-mediated cell death. Therefore, we hypothesized that leflunomide may protect from drugs that induce the mitochondrial permeability transition (mPT) by blocking the JNK signaling pathway. To this end, we exposed cultured immortalized human hepatocytes (HC-04) to the standard protoxicant drug acetaminophen (APAP), which induces CsA-sensitive mPT-mediated cell death. We determined the effects of leflunomide on the extent of APAP-induced hepatocyte injury and the upstream JNK-mediated mitochondrial signaling pathways. We found that leflunomide or A77 1726 concentration-dependently protected hepatocytes from APAP (1 mM)-induced mitochondrial permeabilization and lethal cell injury. This was not due to proximal inhibition of CYP-catalyzed APAP bioactivation to its thiol-reactive metabolite. Instead, we demonstrate that leflunomide (20 {mu}M) inhibited the APAP-induced early (3 h) activation (phosphorylation) of JNK1/2, thus inhibiting phosphorylation of the anti-apoptotic protein Bcl-2 and preventing P-Bcl-2-mediated induction of the mPT. This greatly attenuated mitochondrial cytochrome c release, which we used as a marker for mitochondrial permeabilization. The specific JNK2 inhibitor SP600125 similarly protected from APAP-induced cell death. In conclusion, these findings are consistent with our hypothesis that leflunomide protects from protoxicant-induced hepatocyte injury by inhibiting JNK signaling and preventing mPT induction.

  11. ORIGINAL PAPER Discovery of potent inhibitors for interleukin-2-inducible

    E-print Network

    Lee, Keun Woo

    ORIGINAL PAPER Discovery of potent inhibitors for interleukin-2-inducible T-cell kinase: structure Structure-based hypothesis PTK Protein tyrosine kinase PH Pleckstrin homology SH3 Src homology3 SH2 Src (cytoplasmic) kinases. Src and eight related molecules formed the largest family of cytoplasmic PTKs, while

  12. 77 FR 22283 - Availability of an Environmental Assessment for Field Testing Feline Interleukin-2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Feline Interleukin-2 Immunomodulator, Live Canarypox Vector AGENCY: Animal and Plant Health Inspection... of field testing, and then to field test, an unlicensed Feline Interleukin-2 ] Immunomodulator, Live... Interleukin-2 Immunomodulator, Live Canarypox Vector. Field Test Locations: Georgia, North Carolina, New...

  13. Interleukin 2 receptor expression by macrophages in inflammatory bowel disease.

    PubMed Central

    Mahida, Y R; Patel, S; Wu, K; Jewell, D P

    1988-01-01

    The expression of interleukin 2 receptor by macrophages from normal and inflamed terminal ileum and colon has been studied by using two monoclonal antibodies. In tissue sections from normal ileum and colon, scattered positive lymphocytes and only occasional weakly positive macrophages were seen. In ileal and colonic Crohn's disease or ulcerative colitis many positive macrophages and lymphocytes were seen in the lamina propria. These findings were confirmed by staining cytospin preparations of isolated intestinal mononuclear cells. The isolated macrophages were able to phagocytose opsonized zymosan and the majority were able to undergo a respiratory burst when triggered with opsonized zymosan or phorbol myristate acetate (PMA), suggesting that they were activated. Stimulation with interferon-gamma or lipopolysaccharide did not increase the number of macrophages staining with the antibodies to the interleukin 2 receptor. Therefore we postulate that a large majority of the macrophages expressing interleukin 2 receptor in inflammatory bowel disease are a recently recruited population of cells. Images Fig. 1 Fig. 2 Figure 3 PMID:3266118

  14. Interleukin-2 therapy reverses some immunosuppressive effects of skeletal unloading

    NASA Technical Reports Server (NTRS)

    Armstrong, Jason W.; Balch, Signe; Chapes, Stephen K.

    1994-01-01

    Using antiorthostatic suspension, we characterized hematopoietic changes that may be responsible for the detrimental effect of skeletal unloading on macrophage development. Skeletally unloaded mice had suppressed macrophage development in unloaded and loaded bones, which indicated a systemic effect. Bone marrow cells from unloaded mice secreted less macrophage colony-stimulating factor and interleukin-6 than control mice. Additionally, T-lymphocyte proliferation was reduced after skeletal unloading. We show that polyethylene glycol-interleukin-2 therapy reversed the effects of skeletal unloading on macrophage development and cell proliferation.

  15. Inducibility of interleukin-2 RNA expression in individual mature and immature T lymphocytes.

    PubMed Central

    McGuire, K L; Rothenberg, E V

    1987-01-01

    Expression of the gene for the T-cell growth hormone, interleukin 2 (IL2), is subject to at least two types of control. It is not only tissue specific, i.e. restricted to T lymphocytes, but also strictly dependent upon activation of the producing T cell. In mature cells, IL2 production is usually triggered via the cell surface receptor for antigen. To study the regulation of the murine IL2 gene in T-cell populations of differing stages of maturation, we have used a calcium ionophore in conjunction with the phorbol ester, TPA, to stimulate IL2 gene transcription while bypassing the requirement for triggering through a mature cell surface receptor. We have combined in situ hybridization with RNA probe protection analyses to quantitate accumulated cytoplasmic IL2 RNA and to identify the cells capable of inducing the IL2 gene in mature, immature and precursor T-cell populations. We report evidence for a distinction between the IL2 mRNA induction responses of different T cells, according to their maturation state and/or functional subclass. Mature splenic T cells that make IL2 can accumulate IL2 transcripts to more than 100 copies per cell. However, we find that many T-lineage cells, especially in immature populations, show induction-dependent IL2 gene expression but only accumulate low levels of IL2 mRNA per cell. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. PMID:2439327

  16. Effect of spaceflight on lymphocyte proliferation and interleukin-2 production

    NASA Technical Reports Server (NTRS)

    Nash, Patricia V.; Konstantinova, Irina V.; Fuchs, Boris B.; Rakhmilevich, Alexandr L.; Lesniak, A. T.; Mastro, Andrea M.

    1992-01-01

    In this study, inguinal lymp node lymphocytes from rats flown on the Cosmos 2044 mission were tested for proliferation and interleukin-2 (IL-2) production. Cells cultured with mitogenic lectins, phorbol ester, and calcium ionophore, or T-cell mitogen and lymphokine, were assayed for DNA synthesis by (H-3) thymidine incorporation. Lymphocytes incubated with a T-cell mitogen alone also were tested for IL-2 production. Proliferation of lymphocytes from flight rats was not significantly different from controls for any of the mitogens tested. Furthermore, lymph node lymphocytes from control and flown rats produced similar amounts of IL-23. Thus microgravity may act on lymphocytes in a tissue-specific manner, a new finding that could impact on the evaluation of spaceflight effects on immunocompetence.

  17. Interleukin-2 and histamine in combination inhibit tumour growth and angiogenesis in malignant glioma

    PubMed Central

    Johansson, M; Henriksson, R; Bergenheim, A T; Koskinen, L-O D

    2000-01-01

    Biotherapy including interleukin-2 (IL-2) treatment seems to be more effective outside the central nervous system when compared to the effects obtained when the same tumour is located intracerebrally. Recently published studies suggest that reduced activity of NK cells in tumour tissue can be increased by histamine. The present study was designed to determine whether IL-2 and histamine, alone or in combination, can induce anti-tumour effects in an orthotopic rat glioma model. One group of rats was treated with histamine alone (4 mg kg–1s.c. as daily injections from day 6 after intracranial tumour implantation), another group with IL-2 alone as a continuous subcutaneous infusion and a third group with both histamine and IL-2. The animals were sacrificed at day 24 after tumour implantation. IL-2 and histamine in combination significantly reduced tumour growth. The microvessel density was significantly reduced, an effect mainly affecting the small vessels. No obvious alteration in the pattern of VEGF mRNA expression was evident and no significant changes in apoptosis were observed. Neither IL-2 nor histamine alone caused any detectable effects on tumour growth. Histamine caused an early and pronounced decline in tumour blood flow compared to normal brain. The results indicate that the novel combination of IL-2 and histamine can be of value in reducing intracerebral tumour growth and, thus, it might be of interest to re-evaluate the therapeutic potential of biotherapy in malignant glioma. © 2000 Cancer Research Campaign PMID:10952789

  18. Myelostimulatory activity of recombinant human interleukin-2 in mice

    SciTech Connect

    Talmadge, J.E.; Schneider, M.; Keller, J.; Ruscetti, F.; Longo, D.; Pennington, R.; Bowersox, O.; Tribble, H.

    1989-05-01

    In a series of studies designed to extend our understanding of interleukin-2 (IL-2) and to study the effect of biologic response modifiers on bone marrow, we observed that administering recombinant human (rH) IL-2 to normal mice resulted in an increase in the frequency of colony-forming units-culture (CFU-C) in bone marrow. In addition, rH IL-2 was able to accelerate host recovery from cyclophosphamide (CTX)- or radiation-induced bone marrow depression and peripheral blood leukopenia. Not only can rH IL-2 accelerate, in a dose-dependent manner, the return of bone marrow, peripheral blood cellularity, and CFU-C frequency to normal levels following cytoreduction by CTX or irradiation, but it also significantly increases CFU-C frequency to greater than normal levels. Furthermore, rH IL-2 can significantly prolong survival of animals receiving a lethal dose of irradiation or CTX. Thus, multiple mechanisms are responsible for the synergistic therapeutic activity associated with rH IL-2 and CTX. rH IL-2 does not act only as an immunomodulatory agent in the presence or absence of suppressor T cells, but also accelerates host recovery from cytoreductive agents, resulting in decreased leukopenia and perhaps resistances to secondary infection. Thus, rH IL-2 plus chemotherapy may increase therapeutic activity against neoplastic disease, not only by adding immune stimulation to the direct antitumor effect of the drug but also by allowing delivery of higher, more effective doses of chemotherapy.

  19. The interleukin 2 gene is expressed in the syncytiotrophoblast of the human placenta

    SciTech Connect

    Boehm, K.D.; Kelley, M.F.; Ilan, J.; Ilan, J. )

    1989-01-01

    The lymphokine interleukin 2 is an important immune system regulatory glycopolypeptide. It is produced by antigen- or mitogen-stimulated T lymphocytes and is required for the proliferation or clonal expansion of activated T lymphocytes. In this report, it is demonstrated by RNA transfer blot hybridization that the poly(A){sup +} RNA population of the human placenta contains a 0.85-kilobase RNA transcript that specifically hybridizes to a human interleukin 2 cDNA probe. By using hybridization histochemistry in situ, it is further shown that interleukin 2 RNA transcripts are localized, primarily, to the syncytial (syncytiotrophoblast) layer of the human placenta. Possible roles for syncytiotrophoblast-produced interleukin 2 are suggested and discussed.

  20. In Vitro Interleukin-1 and 2 Production and Interleukin 2 Receptor Expression in the Rhesus Monkey

    NASA Technical Reports Server (NTRS)

    Schmitt, Didier A.; Sonnenfeld, Gerald; Husson, David; Tkaczuk, Jean; Andre, Eric; Schaffar, Laurance

    1996-01-01

    Anti-human monoclonal antibodies were used to detect and quantify interleukins-1 and 2 and interleukin-2 receptor expression in peripheral blood mononuclear cells from a rhesus monkey. Interleukin-1 production could be induced by phorbol esters (PMA) and was potentiated by phytohemagglutinin (PHA). Interleukin-2 secretion could also be induced by the combination of PHA and PMA, but only weakly with PHA alone. Interleukin-2 receptor expression was present in a subpopulation of unstimulated lymphocytes and could be enhanced by PHA or PMA. These data show once again that the rhesus monkey immune system is cross-reactive with the human one and that rhesus macaque could be a good model to study interleukin therapy.

  1. Suppression of morphine withdrawal syndrome by interleukin-2 and its gene

    E-print Network

    Tian, Weidong

    Suppression of morphine withdrawal syndrome by interleukin-2 and its gene Jinfa Gu,1,2 MingzhongDNA3-IL-2 (8 mg DNA) had a similar e¡ect as 1Â104 IU rIL-2 protein on inhibition of morphine withdrawal; Intrathecal injection; Morphine withdrawal syndrome INTRODUCTION Many experiments have indicated the existence

  2. Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes

    PubMed Central

    Preston, Gavin C; Sinclair, Linda V; Kaskar, Aneesa; Hukelmann, Jens L; Navarro, Maria N; Ferrero, Isabel; MacDonald, H Robson; Cowling, Victoria H; Cantrell, Doreen A

    2015-01-01

    Myc controls the metabolic reprogramming that supports effector T cell differentiation. The expression of Myc is regulated by the T cell antigen receptor (TCR) and pro-inflammatory cytokines such as interleukin-2 (IL-2). We now show that the TCR is a digital switch for Myc mRNA and protein expression that allows the strength of the antigen stimulus to determine the frequency of T cells that express Myc. IL-2 signalling strength also directs Myc expression but in an analogue process that fine-tunes Myc quantity in individual cells via post-transcriptional control of Myc protein. Fine-tuning Myc matters and is possible as Myc protein has a very short half-life in T cells due to its constant phosphorylation by glycogen synthase kinase 3 (GSK3) and subsequent proteasomal degradation. We show that Myc only accumulates in T cells exhibiting high levels of amino acid uptake allowing T cells to match Myc expression to biosynthetic demands. The combination of digital and analogue processes allows tight control of Myc expression at the population and single cell level during immune responses. PMID:26136212

  3. Focal takotsubo cardiomyopathy with high-dose interleukin-2 therapy for malignant melanoma.

    PubMed

    Damodaran, Senthil; Mrozek, Ewa; Liebner, David; Kendra, Kari

    2014-12-01

    High-dose interleukin-2 (IL-2) is an available treatment option for patients with metastatic melanoma or renal cell carcinoma, and is associated with sustained complete and partial responses in a subset of patients. IL-2, however, is not devoid of toxicities, most of which involve the cardiovascular system and manifest as hypotension, arrhythmias, and cardiomyopathy. This report describes an unusual presentation of takotsubo cardiomyopathy in a postmenopausal woman receiving high-dose IL-2 for metastatic melanoma. PMID:25505207

  4. Radioiodination of interleukin 2 to high specific activities by the vapor-phase chloramine T method

    SciTech Connect

    Siekierka, J.J.; DeGudicibus, S.

    1988-08-01

    Recombinant human interleukin 2 (IL-2) was radioiodinated utilizing the vapor phase chloramine T method of iodination. The method is rapid, reproducible, and allows the efficient radioiodination of IL-2 to specific activities higher than those previously attained with full retention of biological activity. IL-2 radioiodinated by this method binds with high affinity to receptors present on phytohemagglutinin-stimulated peripheral blood lymphocytes and should be useful for the study of receptor structure and function.

  5. Inhibition of G-Protein ?? Signaling Enhances T Cell Receptor-Stimulated Interleukin 2 Transcription in CD4+ T Helper Cells

    PubMed Central

    Yost, Evan A.; Hynes, Thomas R.; Hartle, Cassandra M.; Ott, Braden J.; Berlot, Catherine H.

    2015-01-01

    G-protein-coupled receptor (GPCR) signaling modulates the expression of cytokines that are drug targets for immune disorders. However, although GPCRs are common targets for other diseases, there are few GPCR-based pharmaceuticals for inflammation. The purpose of this study was to determine whether targeting G-protein ?? (G??) complexes could provide a useful new approach for modulating interleukin 2 (IL-2) levels in CD4+ T helper cells. Gallein, a small molecule inhibitor of G??, increased levels of T cell receptor (TCR)-stimulated IL-2 mRNA in primary human naïve and memory CD4+ T helper cells and in Jurkat human CD4+ leukemia T cells. G?1 and G?2 mRNA accounted for >99% of G? mRNA, and small interfering RNA (siRNA)-mediated silencing of G?1 but not G?2 enhanced TCR-stimulated IL-2 mRNA increases. Blocking G?? enhanced TCR-stimulated increases in IL-2 transcription without affecting IL-2 mRNA stability. Blocking G?? also enhanced TCR-stimulated increases in nuclear localization of nuclear factor of activated T cells 1 (NFAT1), NFAT transcriptional activity, and levels of intracellular Ca2+. Potentiation of IL-2 transcription required continuous G?? inhibition during at least two days of TCR stimulation, suggesting that induction or repression of additional signaling proteins during T cell activation and differentiation might be involved. The potentiation of TCR-stimulated IL-2 transcription that results from blocking G?? in CD4+ T helper cells could have applications for autoimmune diseases. PMID:25629163

  6. In vivo administration of interleukin-2 protects susceptible mice from Theiler's virus persistence.

    PubMed Central

    Larsson-Sciard, E L; Dethlefs, S; Brahic, M

    1997-01-01

    In vivo administration of interleukin-2 (IL-2)-secreting tumor cells results in complete protection against persistent infection by Theiler's murine encephalomyelitis virus (TMEV) in susceptible DBA/2 mice. The IL-2-mediated protection was found to depend on the inoculum size as well as the timing of IL-2 administration. IL-2-treated and TMEV-infected mice displayed a three- to fourfold relative increase in virus-specific cytotoxic T-lymphocyte (CTL) precursors. Thus, we postulate that the persistence of TMEV infection in susceptible mice reflects limited numbers of relevant CTL precursors and their time course of induction and activation. PMID:8985419

  7. Anatomic site and immune function correlate with relative cytokine mRNA expression levels in lymphoid tissues of normal rhesus macaques.

    PubMed

    Abel, K; Alegria-Hartman, M J; Zanotto, K; McChesney, M B; Marthas, M L; Miller, C J

    2001-12-01

    Reverse transcriptase real-time polymerase chain reaction was used to determine pro-inflammatory, anti-viral and immunoregulatory cytokine mRNA expression levels in peripheral blood mononuclear cells (PBMC) of healthy juvenile, adolescent and adult rhesus macaques. Few age-related changes in cytokine mRNA expression levels were observed. Expression of interleukin 2 and Mx, a type I interferon-inducible gene, decreased with age, whereas interleukin 4 and macrophage inflammatory protein 1 (MIP-1) alpha and beta mRNA levels increased in older monkeys. Independent of age, the pro-inflammatory cytokines [tumour necrosis factor alpha (TNF-alpha) and chemokines] were expressed at higher mRNA levels in PBMC than the immunoregulatory cytokines (interleukins 2, 4, 12). Pro-inflammatory cytokine mRNA expression levels were highest in lymphoid tissues draining mucosal surfaces. Thus, a correlation exists between cytokine mRNA levels in lymphoid tissues and the anatomical site. PMID:11814315

  8. Local interleukin-2 and interleukin-12 therapy of bovine ocular squamous cell carcinomas.

    PubMed

    Stewart, Rachel J E; Masztalerz, Agnieszka; Jacobs, John J L; Den Otter, Willem

    2005-07-15

    Interleukin-2 and interleukin-12 have been used independently to successfully treat the induced and the spontaneous tumours in animals. This trial was done to determine if a combination of IL-2 and IL-12 in the treatment of spontaneous bovine ocular squamous cell carcinomas (BOSCC) would be more successful than IL-2 or IL-12 therapy by themselves. For this trial, we selected 25 BOSCC tumours seen on Holstein Fresian cows in Beatrice, Zimbabwe. The cows were randomly assigned to a treatment group of 5 days of IL-2 (200,000 U/day), 5 days of IL-12 (0.5 microg/day) or 5 days of IL-2 (200,000 U/day) and IL-12 (0.5 microg/day). At 20 months after treatment, the IL-2 therapy group had 63% complete regressions; the combination group had 38% complete regressions, which were significantly higher than the IL-12 group, which had 0% complete regressions at 20 months, despite having 29% complete regressions at 6 months. These results show that IL-2 therapy by itself and in combination with IL-12 is more successful than IL-12 by itself. However, combination therapy does not improve the outcome in comparison to IL-2 as a single therapy. It also proves that IL-2 is consistently successful in the therapy of BOSCC with over 60% complete regression, which corresponds to a number of other studies we have done on IL-2 therapy of BOSCC [Rutten, V.P.M.G., Klein, W.R., De Jong, W.A., Misdorp, W., Den Otter, W., Steerenberg, P.A., De Jong, W.H., Ruitenberg, E.J., 1989. Local interleukin-2 therapy in bovine ocular squamous cell carcinoma. A pilot study. Cancer Immunol. Immunother. 30, 165--169; Stewart, R.J.E., Hill, F.W.G., Masztalerz, A., Jacobs, J.J.L., Koten, J.W., Den Otter, W., 2003. Local low dose interleukin-2 therapy of bovine ocular squamous cell carcinomas in cattle in Zimbabwe, submitted for publication; Den Otter, W., Hill, F.W.G., Klein, W.R., Koten, J.W., Steerenberg, P.A., De Mulder, P.H.M., Rutten, V.P.M.G., Ruitenberg, E.J., 1993. Low doses of interleukin-2 can cure large bovine ocular squamous cell carcinoma. Anticancer Res. 13, 2453-2455; Den Otter, W., Hill, F.W.G., Klein, W.R., Koten, J.W., Steerenberg, P.A., De Mulder, P.H., Rhode, C., Stewart, R., Faber, J.A., Ruitenberg, E.J., 1995. Therapy of bovine ocular squamous cell carcinoma with local doses of interleukin-2: 67% complete regressions after 20 months of follow-up. Cancer Immunol. Immunother. 41, 10-14]. PMID:15963825

  9. Interleukin-2 at the Crossroads of Effector Responses, Tolerance, and Immunotherapy

    PubMed Central

    Liao, Wei; Lin, Jian-Xin; Leonard, Warren J.

    2013-01-01

    Interleukin-2 is a pleiotropic cytokine produced after antigen activation that plays pivotal roles in the immune response. Discovered as a T-cell growth factor, IL-2 additionally promotes CD8+ T cell and NK cell cytolytic activity, and modulates T cell differentiation programs in response to antigen, promoting naïve CD4+ T cell differentiation into T helper-1 (Th1) and T helper-2 (Th2) cells while inhibiting T helper-17 (Th17) and T follicular helper (Tfh) cell differentiation. Moreover, IL-2 is essential for the development and maintenance of T regulatory (Treg) cells and for activation-induced cell death, thereby mediating tolerance and limiting inappropriate immune reactions. In this review, we focus on the molecular mechanisms and complex cellular actions of IL-2, its cooperative and opposing effects with other cytokines, and how both promoting and blocking the actions of IL-2 are being utilized in clinical medicine. PMID:23352221

  10. Effect of human colostrum on interleukin-2 production and natural killer cell activity.

    PubMed Central

    Sirota, L.; Straussberg, R.; Notti, I.; Bessler, H.

    1995-01-01

    The effect of human colostrum on the production of interleukin-2 (IL-2) and on natural killer (NK) cell activity by peripheral blood mononuclear cells (PBMC) was investigated in 50 healthy women. At concentrations as low as 0.5%, human colostrum stimulated IL-2 production; at a higher concentration (10%), IL-2 secretion was inhibited. A time and dose dependent inhibitory effect of colostrum on NK cytotoxicity was also observed. This inhibition could be reversed by the addition of human recombinant IL-2 (hrIL-2). The stimulation of IL-2 production induced by human colostrum might compensate for its inhibitory effect on NK cell activity. These findings suggest an additional mechanism by which breast feeding may affect the neonatal immune system. PMID:7583615

  11. Molecular identification of interleukin-2 in the lymphoid tissues of the common brushtail possum, Trichosurus vulpecula.

    PubMed

    Young, L J; Cross, M L; Duckworth, J A; Flenady, S; Belov, K

    2012-01-01

    The common brushtail possum (Trichosurus vulpecula) is an Australian marsupial. Here we describe the identification of possum interleukin-2 in mitogen-stimulated lymph node cells. We used a strategy of Rapid amplification of cDNA ends using probes designed from recently-sequenced marsupial genomes to identify the IL2 gene and then confirmed that IL-2 expression in possum immune tissue occurs in a similar manner to that in their eutherian counterparts. The predictive possum IL-2 peptide showed 28% and 35% amino acid sequence homology with the mouse and human IL-2 molecules, respectively, consistent with the divergence found within this cytokine family. Despite this low sequence identity, possum IL-2 still possessed the characteristic hallmarks of mammalian IL-2, such as a predicted signal peptide and conserved family motifs. PMID:21683733

  12. Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant Newcastle disease virus (rNDV) has shown oncolytic therapeutic efficacy in preclinical studies and are currently in clinical trials. In this study, we have evaluated the possibility to enhance the cancer therapeutic potential of NDV by means of inserting both interleukin-2 (IL-2) and tu...

  13. Soluble Interleukin 2 Receptor Levels, Temperament and Character in Formerly Depressed Suicide Attempters Compared with Normal Controls

    ERIC Educational Resources Information Center

    Rothenhausler, Hans-Bernd; Stepan, Alexandra; Kapfhammer, Hans-Peter

    2006-01-01

    An imbalance of the immune system and mixed personality profiles in suicide attempters have been reported. As suicidal behavior is common in patients with psychiatric disorders within the spectrum of depressive features, in this study we measured soluble interleukin-2 receptor concentrations in plasma (sIL-2R) and investigated temperament and…

  14. The protein pheromone Er-1 of the ciliate Euplotes raikovi stimulates human T-cell activity: Involvement of interleukin-2 system

    SciTech Connect

    Cervia, Davide; Department of Biomedical and Clinical Sciences, “Luigi Sacco” University Hospital, University of Milan, Milano ; Catalani, Elisabetta; Belardinelli, Maria Cristina; Perrotta, Cristiana; Picchietti, Simona; Alimenti, Claudio; Casini, Giovanni; Fausto, Anna Maria; Vallesi, Adriana

    2013-02-01

    Water-soluble protein signals (pheromones) of the ciliate Euplotes have been supposed to be functional precursors of growth factors and cytokines that regulate cell–cell interaction in multi-cellular eukaryotes. This work provides evidence that native preparations of the Euplotes raikovi pheromone Er-1 (a helical protein of 40 amino acids) specifically increases viability, DNA synthesis, proliferation, and the production of interferon-?, tumor necrosis factor-?, interleukin (IL)-1?, IL-2, and IL-13 in human Jurkat T-cells. Also, Er-1 significantly decreases the mRNA levels of the ? and ? subunits of IL-2 receptor (IL-2R), while the mRNA levels of the ? subunit appeared to be not affected. Jurkat T-cell treatments with Er-1 induced the down-regulation of the IL-2R? subunit by a reversible and time-dependent endocytosis, and increased the levels of phosphorylation of the extracellular signal-regulated kinases (ERK). The cell-type specificity of these effects was supported by the finding that Er-1, although unable to directly influence the growth of human glioma U-373 cells, induced Jurkat cells to synthesize and release factors that, in turn, inhibited the U-373 cell proliferation. Overall, these findings imply that Er-1 coupling to IL-2R and ERK immuno-enhances T-cell activity, and that this effect likely translates to an inhibition of glioma cell growth. -- Highlights: ? Euplotes pheromone Er-1 increases the growth of human Jurkat T-cells. ? Er-1 increases the T-cell production of specific cytokines. ? Er-1 activates interleukin-2 receptor and extracellular signal-regulated kinases. ? The immuno-enhancing effect of Er-1 on Jurkat cells translates to an inhibition of human glioma cell growth.

  15. The development of new immunotherapies for the treatment of cancer using interleukin-2. A review.

    PubMed Central

    Rosenberg, S A

    1988-01-01

    Recent increases in knowledge of cellular immunology, combined with developments in biotechnology, have provided new opportunities for the development of immunotherapies for the treatment of cancer in humans. One approach to therapy is that of adoptive immunotherapy, that is, the transfer to the tumor bearing host of lymphoid cells with antitumor reactivity that can mediate antitumor responses. Several lymphocyte subpopulations have now been identified that may be suitable for use in adoptive immunotherapy. Resting lymphocytes incubated in interleukin-2 (IL-2) give rise to lymphokine activated killer (LAK) cells that can lyse malignant cells, but not normal cells. Clinical studies in patients with advanced cancer have revealed that treatment with high dose IL-2 alone or in combination with LAK cells can mediate the complete or partial regression of cancer in selected patients. Other approaches are currently undergoing investigation, including the adoptive transfer of tumor infiltrating lymphocytes, which, in animal models, have antitumor reactivity 50-100 times more potent than do LAK cells. Other new approaches to immunotherapy include the use of combination of lymphokines, such as the use of tumor necrosis factor or alpha interferon in conjunction with IL-2. The availability of recombinant lymphokines that provide large amounts of biologically active materials can hopefully lead to the development of effective new therapies for cancer in humans. Images Fig. 4. Fig. 5. Figs. 6A and B. Fig. 7. Figs. 8A and B. Fig. 9. Fig. 10. Fig. 11. Figs. 12A and B. Figs. 13. Fig. 14. Fig. 15. PMID:3041925

  16. Selectively targeting an inactive conformation of interleukin-2-inducible T-cell kinase by allosteric inhibitors.

    PubMed

    Han, Seungil; Czerwinski, Robert M; Caspers, Nicole L; Limburg, David C; Ding, WeiDong; Wang, Hong; Ohren, Jeffrey F; Rajamohan, Francis; McLellan, Thomas J; Unwalla, Ray; Choi, Chulho; Parikh, Mihir D; Seth, Nilufer; Edmonds, Jason; Phillips, Chris; Shakya, Subarna; Li, Xin; Spaulding, Vikki; Hughes, Samantha; Cook, Andrew; Robinson, Colin; Mathias, John P; Navratilova, Iva; Medley, Quintus G; Anderson, David R; Kurumbail, Ravi G; Aulabaugh, Ann

    2014-06-01

    ITK (interleukin-2-inducible T-cell kinase) is a critical component of signal transduction in T-cells and has a well-validated role in their proliferation, cytokine release and chemotaxis. ITK is an attractive target for the treatment of T-cell-mediated inflammatory diseases. In the present study we describe the discovery of kinase inhibitors that preferentially bind to an allosteric pocket of ITK. The novel ITK allosteric site was characterized by NMR, surface plasmon resonance, isothermal titration calorimetry, enzymology and X-ray crystallography. Initial screening hits bound to both the allosteric pocket and the ATP site. Successful lead optimization was achieved by improving the contribution of the allosteric component to the overall inhibition. NMR competition experiments demonstrated that the dual-site binders showed higher affinity for the allosteric site compared with the ATP site. Moreover, an optimized inhibitor displayed non-competitive inhibition with respect to ATP as shown by steady-state enzyme kinetics. The activity of the isolated kinase domain and auto-activation of the full-length enzyme were inhibited with similar potency. However, inhibition of the activated full-length enzyme was weaker, presumably because the allosteric site is altered when ITK becomes activated. An optimized lead showed exquisite kinome selectivity and is efficacious in human whole blood and proximal cell-based assays. PMID:24593284

  17. Membrane protrusion powers clathrin-independent endocytosis of interleukin-2 receptor.

    PubMed

    Basquin, Cyril; Trichet, Michaël; Vihinen, Helena; Malardé, Valérie; Lagache, Thibault; Ripoll, Léa; Jokitalo, Eija; Olivo-Marin, Jean-Christophe; Gautreau, Alexis; Sauvonnet, Nathalie

    2015-08-13

    Endocytosis controls many functions including nutrient uptake, cell division, migration and signal transduction. A clathrin- and caveolin-independent endocytosis pathway is used by important physiological cargos, including interleukin-2 receptors (IL-2R). However, this process lacks morphological and dynamic data. Our electron microscopy (EM) and tomography studies reveal that IL-2R-pits and vesicles are initiated at the base of protrusions. We identify the WAVE complex as a specific endocytic actor. The WAVE complex interacts with IL-2R, via a WAVE-interacting receptor sequence (WIRS) present in the receptor polypeptide, and allows for receptor clustering close to membrane protrusions. In addition, using total internal reflection fluorescent microscopy (TIRF) and automated analysis we demonstrate that two timely distinct bursts of actin polymerization are required during IL-2R uptake, promoted first by the WAVE complex and then by N-WASP. Finally, our data reveal that dynamin acts as a transition controller for the recruitment of Arp2/3 activators required for IL-2R endocytosis. Altogether, our work identifies the spatio-temporal specific role of factors initiating clathrin-independent endocytosis by a unique mechanism that does not depend on the deformation of a flat membrane, but rather on that of membrane protrusions. PMID:26124312

  18. Interleukin-2 Expression in Lupoid and Usual Types of Old World Cutaneous Leishmaniasis

    PubMed Central

    Mashayekhi Goyonlo, Vahid; Elnour, Hesameldin; Nordlind, Klas

    2014-01-01

    Background: Interleukin (IL)-2 plays a central role in T cell-dependent immune responses. Objectives: We conducted this study to determine and compare IL-2 expression in lupoid and usual types of Old World Cutaneous Leishmaniasis (OWCL), using immunohistochemistry. Patients and Methods: Thirteen paraffin-embedded specimens of lupoid and 12 specimens of usual types of OWCL were used. A mouse monoclonal anti IL-2 antibody was used for staining by the envision technique. Results: There were strongly stained discrete foci of staining through inflammatory infiltrates of dermis and also in basal layers of epidermis and adnexal structures, with a distinctive pattern of hot spot activity foci (mean of 9.31 ± 6.4 versus 8.17 ± 6.9 foci per HPF for lupoid and usual types, respectively). The expression of IL-2 had no correlation with the pattern of granulomatous inflammation (tuberculoid, sarcoidal or mixed suppurative). Conclusions: Interleukin-2 takes part in the immunological response of the granulomatous reaction of OWCL and is not statistically different between lupoid and usual types (P = 0.674). PMID:25763226

  19. Role of Interleukin-2 in Uremic Pruritus Among Attendants of AL-Zahraa Hospital Dialysis Unit

    PubMed Central

    Azim, Amira Adel Abdel; Farag, Asmaa Saied; El-Maleek Hassan, Doaa Abd; Abdu, Safaa Mahmoud Ismail; Lashin, Somaya Mohamed Abo-Elfetouh; Abdelaziz, Nahla Mohamed

    2015-01-01

    Background: Uremic pruritus (UP) is a very distressing symptom and remains one of the most frustrating and potentially disabling symptoms in patients with end-stage renal disease (ESRD). Its etiopathogenesis remains unclear and complex. The aim of this study was to investigate the possible role of interleukin-2 (IL-2) in UP, and correlate its level with the severity of itching in ESRD patients. Patients and Methods: This study was carried out on 60 patients on maintenance hemodialysis (HD), 30 patients with UP and 30 patients without UP, and 30 apparently healthy age- and sex-matched subjects as controls. Itch intensity was scored as mild, moderate, and severe using five-dimensional itch scale. Some relevant clinical parameters (age, sex, xerosis, presence of neuropathy, duration of dialysis, complete medical history, and history of pruritic skin diseases) and laboratory findings including creatinine, urea, calcium, phosphorus, parathyroid hormone, and serum levels of IL-2 were evaluated. Results: In our study, we found a statistically significant difference in IL-2 level between patients and controls. However, there was no statistically significant difference in IL-2 levels between cases with pruritus and cases without pruritus. Also, there was a statistically significant relation between IL-2 level and duration of the disease. Conclusion: Further studies are needed to understand the contribution of IL-2 and possibly other cytokines in the pathogenesis of this distressing symptom in ESRD. PMID:25814728

  20. Purification of human interleukin 2 to apparent homogeneity and its molecular heterogeneity

    PubMed Central

    1982-01-01

    Interleukin 2 (IL-2), produced with and without co-stimulation by the Burkitt's lymphoma line Daudi, was purified 37,000-fold to apparent homogeneity from lymphocyte conditioned medium by (NH4)2SO4 precipitation, DEAE-cellulose ion-exchange chromatography, gel filtration, and chromatography on blue agarose and on Procion-red agarose. The purified IL-2 showed a 10(6) U/mg protein sp act. IL-2 produced in the absence of Daudi cells had a mol wt of 26,000 as measured by gel filtration and an isoelectric point of 6.7. This IL-2 showed a 16,000 and 17,000 mol wt in sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE). IL-2, produced in the presence of Daudi cells (10(6)/ml), showed a mol wt of approximately 14,000, as measured by both gel filtration and SDS-PAGE, and an isoelectric point of 8.1. The purified IL-2 lacked detectable interferon (alpha and gamma), granulocyte-macrophage colony-stimulating factor, B cell growth factor, T cell-replacing factor, and thymocyte- differentiating activity and was free of any contaminating proteins as judged by silver staining in SDS-PAGE. All three molecular forms of IL- 2 were biologically active at concentrations of 10(-11) - 10(-10) M, supporting the growth of human and murine cytotoxic T cell lines. PMID:6980256

  1. Interleukin 2 in the pathogenesis and therapy of type 1 diabetes.

    PubMed

    Rosenzwajg, Michelle; Churlaud, Guillaume; Hartemann, Agnès; Klatzmann, David

    2014-12-01

    Regulatory T cells (Tregs) play a major role in controlling effector T cells (Teffs) responding to self-antigens, which cause autoimmune diseases. An improper Treg/Teff balance contributes to most autoimmune diseases, including type 1 diabetes (T1D). To restore a proper balance, blocking Teffs with immunosuppressants has been the only option, which was partly effective and too toxic. It now appears that expanding/activating Tregs with low-dose interleukin-2 (IL-2) could provide immunoregulation without immunosuppression. This is particularly interesting in T1D as Tregs from T1D patients are reported as dysfunctional and a relative deficiency in IL-2 production and/or IL-2-mediated signaling could contribute to this phenotype. A clinical study of low-dose IL-2 showed a very good safety profile and good Treg expansion/activation in T1D patients. This opens the way for efficacy trials to test low-dose IL-2 in prevention and treatment of T1D and to establish in which condition restoration of a proper Treg/Teff balance would be beneficial in the field of autoimmune and inflammatory diseases. PMID:25344788

  2. Soluble interleukin 2 receptors are released from activated human lymphoid cells in vitro

    SciTech Connect

    Rubin, L.A.; Kurman, C.C.; Fritz, M.E.; Biddison, W.E.; Boutin, B.; Yarchoan, R.; Nelson, D.L.

    1985-11-01

    With the use of an enzyme-linked immunoabsorbent assay to measure soluble human interleukin 2 receptors (IL 2R), certain human T cell leukemia virus I (HTLV I)-positive T cell lines were found to spontaneously release large quantities of IL 2R into culture supernatants. This was not found with HTLV I-negative and IL 2 independent T cell lines, and only one of seven B cell-derived lines examined produced small amounts of IL 2R. In addition to this constitutive production of soluble IL 2R by certain cell lines, normal human peripheral blood mononuclear cells (PBMC) could be induced to release soluble IL 2R by plant lectins, the murine monoclonal antibody OKT3, tetanus toxoid, and allogeneic cells. Such activated cells also expressed cellular IL 2R measurable in detergent solubilized cell extracts. The generation of cellular and supernatant IL 2R was: dependent on cellular activation, rapid, radioresistant (3000 rad), and inhibited by cycloheximide treatment. NaDodSO4-polyacrylamide gel electrophoresis analysis of soluble IL 2R demonstrated molecules of apparent Mr = 35,000 to 40,000, and 45,000 to 50,000, respectively, somewhat smaller than the mature surface receptor on these cells. The release of soluble IL 2R appears to be a characteristic marker of T lymphocyte activation and might serve an immunoregulatory function during both normal and abnormal cell growth and differentiation.

  3. Comparative characteristics of human interleukin-2 preparations obtained from various sources

    SciTech Connect

    Iobadze, M.S.; Kulikov, V.V.; Kupriyanova, T.A.; Bykovskaya, S.N.; Bakhutashvili, V.I.

    1987-02-20

    Interleukin-2 (IL-2) was produced from donor peripheral blood lymphocytes and JURKAT FHCRC T lymphoma cells. Gel filtration, ion exchange chromatography on DEAE- and CM-Sephadex were used to purify the preparation. As a result of the purification, the specific activity of the preparation increased by a factor of 400. It was shown that optimum proliferation of T lymphocytes requires the successive action of phytohemagglutinin and IL-2, as well as the presence of serum in the medium. The properties and methods of production of a long-proliferating line of IL-2-dependent T cells B-5 are described. The proliferation of B-5 cells depends completely on the presence of IL-2 in the medium, although prolonged proliferation requires periodic stimulation by antigen (allogeneic lymphocytes). In the absence of IL-2 in the medium, B-5 cells die within 36 h. The prospects for the use of IL-2 preparations from human peripheral blood lymphocyte culture fluid for adoptive immunotherapy of tumors and the use of cells of the IL-2-dependent line B-5 in the testing of the activity of IL-2 preparations obtained from various sources are discussed.

  4. Early precursor thymocytes can produce interleukin 2 upon stimulation with calcium ionophore and phorbol ester

    SciTech Connect

    Lugo, J.P.; Krishnan, S.N.; Sailor, R.D.; Rothenberg, E.V.

    1986-03-01

    T-cell precursors were stimulated with a conventional T-cell mitogen or with the calcium ionophore A23187 in order to determine whether pre-T cells acquire the ability to produce interleukin 2 (IL-2) before they acquire the ability to respond to antigen or mitogenic lectins. Immature T cells were obtained by eliminating mouse thymocytes that expressed the Lyt2 and L3T4 cell surface proteins. The remaining Lyt2/sup -/, L3T4/sup -/ cells were stimulated for IL-2 production by using concanavalin A (Con A) or A23187, together with phorbol 12-myristate 13-acetate (PMA). The authors found that these double-negative thymocytes were unresponsive to Con A plus PMA but produced substantial amounts of IL-2 when stimulated with A23187 plus PMA. In contrast, both stimulation regimens induced more mature T-lymphocyte populations to produce IL-2. This implies that developing T cells acquire the ability to make IL-2 upon induction before they acquire the ability to be triggered by Con A. Day-15 fetal and cortical thymocytes were also tested for their ability to make IL-2. Both populations failed to synthesize this growth factor, even when stimulated with A23187 and PMA. For cortical thymocytes, this result, together with the finding that A23187 plus PMA fails to activate these cells, suggests that this population is immunologically inert rather than immature.

  5. Leukemia-derived growth factor (non-interleukin 2) produced by a human malignant T lymphoid cell line.

    PubMed Central

    Uittenbogaart, C H; Fahey, J L

    1982-01-01

    A growth factor was found in the supernatants of MOLT-4f, a cell line derived from acute T lymphoblastic leukemia. This factor, which we designated leukemia-derived growth factor from MOLT-4f (LDGF-M4), is different from interleukin 2. LDGF-M4 has features of a polypeptide with a molecular weight in the range of 5,000-15,000, as indicated by gel diffusion chromatography. LDGF-M4 does stimulate MOLT-4f and at least two other T cell lines that do not respond to interleukin 2. Because MOLT-4f cells produce and respond to LDGF-M4, this factor may contribute to the independence of MOLT-4f and related T leukemia cell lines. PMID:6983693

  6. Molecular cloning of a functional bovine interleukin 2 cDNA.

    PubMed Central

    Reeves, R; Spies, A G; Nissen, M S; Buck, C D; Weinberg, A D; Barr, P J; Magnuson, N S; Magnuson, J A

    1986-01-01

    A cDNA clone of the bovine interleukin 2 (IL-2) gene has been isolated and demonstrated to be functional in the production of secreted bovine IL-2 protein when transfected into monkey cells. The bovine IL-2 clone is 791 base pairs in length and contains an open reading frame of 474 base pairs coding for a bovine IL-2 precursor polypeptide of 158 amino acids with an estimated molecular weight of 17,884. The putative hydrophobic leader or signal sequence of the precursor protein is 23 amino acid residues long, suggesting that, after removal by processing, the mature secreted bovine IL-2 protein contains 135 amino acids and has a molecular weight of 15,464. Comparisons of both the nucleotide sequence and the predicted amino acid sequence of bovine IL-2 with those of the human and mouse IL-2 show extensive regions of sequence conservation between the species, interspersed with other regions of less similarity. The 3' untranslated region of the bovine IL-2 gene shares as much, if not greater, sequence homology with the 3' untranslated regions of the human and mouse genes as do the transcribed coding regions of these genes, suggesting an involvement of this region in regulation. In particular, a tandemly repeated sequence, (TATT)n, found in the 3' untranslated tail of the bovine IL-2 clone is also found in the 3' untranslated region of the other known interleukin and interferon genes, as well as in similar regions of many other inducible genes of the lymphoid and immune response systems, suggesting a cell or tissue-specific regulatory function for these evolutionarily conserved sequences. Images PMID:3486415

  7. Administration in vivo of recombinant interleukin 2 protects mice against septic death.

    PubMed Central

    Weyand, C; Goronzy, J; Fathman, C G; O'Hanley, P

    1987-01-01

    Administration in vivo of recombinant interleukin 2 (rIL-2) to mice induces a polyclonal IgM response. When co-administered with a specific antigen, rIL-2 can enhance concentrations of murine IgM antibodies specific for the antigen by fivefold within 7 d of initial treatment. IgM antibodies that are induced after injection of rIL-2 include antibodies specific for J5, a cell wall core lipopolysaccharide (LPS) antigen that is shared by the different members of the Enterobactericeae family. We report here that mice pretreated with rIL-2 or immunized with J5 antigen 7 d before bacterial challenge were protected from septic death that is caused by intraperitoneal challenges with Escherichia coli. Optimal protection was provided by a combined J5 antigen and rIL-2 treatment. Acquisition of the rIL-2 and J5 antigen-induced protection against lethal bacterial infection coincided temporally with maximal serum IgM titers that also contained IgM antibodies specific for the J5 antigen. In passive immunization experiments, the affinity-purified IgM fraction in sera of rIL-2-treated animals was identified as necessary and sufficient for protection. The IgM-depleted serum had no protective effect. The nonspecific augmentation of host-defense mechanisms without the induction of endotoxin manifestations makes rIL-2 a potential candidate to any alternative LPS-containing vaccines for the prevention of bacterial infections by gram-negative organisms since the core LPS antigen is shared among gram-negative bacteria. PMID:3294901

  8. Effective melanoma immunotherapy with interleukin-2 delivered by a novel polymeric nanoparticle.

    PubMed

    Yao, Hong; Ng, Samuel S; Huo, Long-Fei; Chow, Billy K C; Shen, Zan; Yang, Min; Sze, Johnny; Ko, Otis; Li, Ming; Yue, Alexander; Lu, Li-Wei; Bian, Xiu-Wu; Kung, Hsiang-Fu; Lin, Marie C

    2011-06-01

    Interleukin-2 (IL-2) has been shown to possess antitumor activity in numerous preclinical and clinical studies. However, the short half-life of recombinant IL-2 protein in serum requires repeated high-dose injections, resulting in severe side effects. Although adenovirus-mediated IL-2 gene therapy has shown antitumor efficacy, the host antibody response to adenoviral particles and potential biosafety concerns still obstruct its clinical applications. Here we report a novel nanopolymer for IL-2 delivery, consisting of low molecular weight polyethylenimine (600 Da) linked by ?-cyclodextrin and conjugated with folate (named H1). H1 was mixed with IL-2 plasmid to form H1/pIL-2 polyplexes of around 100 nm in diameter. Peritumoral injection of these polyplexes suppressed the tumor growth and prolonged the survival of C57/BL6 mice bearing B16-F1 melanoma grafts. Importantly, the antitumor effects of H1/pIL-2 (50 ?g DNA) were similar to those of recombinant adenoviruses expressing IL-2 (rAdv-IL-2; 2 × 10(8) pfu). Furthermore, we showed that H1/pIL-2 stimulated the activation and proliferation of CD8+, CD4+ T cell, and natural killer cells in peripheral blood and increased the infiltration of CD8+, CD4+ Tcells, and natural killer cells into the tumor environment. In conclusion, these results show that H1/pIL-2 is an effective and safe melanoma therapeutic with an efficacy comparable to that of rAdv-IL-2. This treatment represents an alternative gene therapy strategy for melanoma. PMID:21518728

  9. Effect of combined treatment with recombinant interleukin-2 and allicin on pancreatic cancer.

    PubMed

    Wang, Cong-Jun; Wang, Chao; Han, Jiang; Wang, Yong-Kun; Tang, Lin; Shen, Dong-Wei; Zhao, Yi; Xu, Rong-Hua; Zhang, Hui

    2013-12-01

    This study aimed to evaluate the efficacy of combined treatment with recombinant interleukin-2 (rIL-2) and allicin on pancreatic cancer and explore the potential immunological mechanism. A total of 60 C57/BL6 nude mice pancreatic cancer xenograft models were randomized into four groups of 15 mice per group: control group, allicin treatment group, rIL-2 treatment group, combined treatment with allicin and rIL-2 group. Mice in each group were treated with saline, rIL-2, allicin, or combination of rIL-2 and allicin by weekly i.v injection for four weeks. After four weeks of treatment, eyeballs of the mice were extracted and blood was drawn, percentages of CD4+T, CD8+T and NK cell were analyzed by FACS, IFN-? level was detected by ELISA. One mouse in each group was sacrificed to measure the weight and volume of the tumor and prepared to the paraffin section of tumor tissue. Apoptosis of the tumor cells was analyzed by TUNEL and FACS. Other mice continued to receive treatment, survival period were compared between each group. We observed a significant suppression of xenograft growth and a significant prolonged survival time in the combined treatment with allicin and rIL-2 group (P < 0.05). The most amount of apoptotic cells were observed in the combined therapy group (P < 0.05). The percentages of CD4+T, CD8+T and NK cell and serum IFN-? level increased significantly in the combined treatment group compared with other groups (P < 0.05). Combined treatment with allicin and rIL-2 resulted in suppression of tumor growth and prolonged survival time possibly through activation of CD4+T, CD8+T and NK cell. PMID:24135803

  10. Systemic Administration of Interleukin 2 Enhances the Therapeutic Efficacy of Dendritic Cell-Based Tumor Vaccines

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Fields, R. C.; Giedlin, M.; Mule, J. J.

    1999-03-01

    We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of non-toxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-? production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

  11. Cyclotides Suppress Human T-Lymphocyte Proliferation by an Interleukin 2-Dependent Mechanism

    PubMed Central

    Gründemann, Carsten; Thell, Kathrin; Lengen, Karin; Garcia-Käufer, Manuel; Huang, Yen-Hua; Huber, Roman; Craik, David J.; Schabbauer, Gernot; Gruber, Christian W.

    2013-01-01

    Cyclotides are a diverse and abundant group of ribosomally synthesized plant peptides containing a unique cyclic cystine-knotted topology that confers them with remarkable stability. Kalata B1, a representative member of this family of mini-proteins, has been found to inhibit the proliferation of human peripheral blood mononuclear cells. Analysis of T-cell proliferation upon treatment with chemically synthesized kalata B1 mutants revealed a region comprising inter-cysteine loops 1 and 2 of the cyclotide framework to be important for biological activity. Cytokine signaling analysis using an ‘active’ kalata B1 mutant [T20K], and the reference drug cyclosporin A (CsA) demonstrated that treatment of activated T-lymphocytes with these compounds decreased the expression of the interleukin-2 (IL-2) surface receptor as well as IL-2 cytokine secretion and IL-2 gene expression, whereas the ‘inactive’ kalata B1 mutant [V10K] did not cause any effects. The anti-proliferative activity of [T20K] kalata B1 was antagonized by addition of exogenous IL-2. Furthermore, treatment with [T20K] kalata B1 led to an initial reduction of the effector function, as indicated by the reduced IFN-? and TNF-? production, but the levels of both cytokines stabilized over time and returned to their normal levels. On the other hand, the degranulation activity remained reduced. This indicated that cyclotides interfere with T-cell polyfunctionality and arrest the proliferation of immune-competent cells through inhibiting IL-2 biology at more than one site. The results open new avenues to utilize native and synthetically-optimized cyclotides for applications in immune-related disorders and as immunosuppressant peptides. PMID:23840803

  12. Interleukin-2-induced activation of natural killer activity in spleen cells from old and young mice.

    PubMed Central

    Saxena, R K; Saxena, Q B; Adler, W H

    1984-01-01

    Generation of natural killer (NK) activity in response to a partially purified preparation of rat interleukin-2 (IL-2) was compared in spleen cells derived from young (8-10 weeks old) and old (greater than 2 years old) female C57BL/6 mice. Significant NK activation was observed in both young and old mouse spleen cells incubated with 100 U IL-2/ml for 1-4 days, but the levels of cytotoxic activity generated in old mouse spleen cells was always lower than those of similarly treated young mouse spleen cells. Differences in IL-2-induced NK activation in old and young mouse spleen cells was obtained irrespective of the concentration of IL-2 used (25-400 U/ml). Quantitative comparisons indicated that old spleen cells activated by 3 day incubation with IL-2 acquired about two-fold higher NK activity than fresh young mouse spleen cells but still had only one-fourth of the levels of NK activity attained by IL-2-activated young mouse spleen cells. Cytotoxic activity of IL-2-activated young or old mouse spleen cells were totally abrogated by anti-asialo GM-1 antiserum + C but not by anti-Ly-2 + C treatment, indicating that the activated cytotoxic cells fell in the NK cell category. An analysis of NK precursor (NK-p) frequency by limiting dilution assay indicated that the NK-p frequency was about 4-fold higher in young as compared to old mouse spleen cells. The level of cytotoxic activity attained per NK-p cell was not significantly different for NK-p cells of old or young mice. PMID:6608487

  13. Systemic administration of recombinant interleukin 2 stimulates in vivo lymphoid cell proliferation in tissues

    SciTech Connect

    Ettinghausen, S.E.; Lipford, E.H. III; Mule, J.J.; Rosenberg, S.A.

    1985-08-01

    Recent work in the authors laboratory has demonstrated that the repeated injections of high doses of recombinant interleukin 2 (IL 2) can dramatically reduce the number of established pulmonary and hepatic metastases and the growth of intradermal tumors in a variety of murine tumor models. They have thus undertaken studies to define the mechanisms underlying these in vivo effects of IL 2. Using an in vivo DNA-labeling technique in which the authors employed 5-(/sup 125/I)iodo-2'-deoxyuridine (/sup 125/IUdR), they examined the in vivo cell proliferation in the tissues of mice treated with IL 2. A proliferation index (PI) was calculated by dividing the raw counts per minute (cpm) of tissues in IL 2-treated mice by the cpm in corresponding tissues of control animals. At an IL 2 dose of 6000 U given i.p. three times a day, the highest /sup 125/IUdR incorporation was seen in the lungs, liver, spleen, kidneys, and mesenteric lymph nodes (PI = 6.9, 6.9, 5.1, 7.1, 24.6, respectively, at 5 days). The amount of lymphoid proliferation in these organs was a direct function of the dose of IL 2 administered. Other tissues including thymus, intestines, skin, and hind limb showed no significant increase in /sup 125/IUdR uptake even after host treatment with the highest doses of IL 2. Blood and brain demonstrated intermediate incorporation of the radiolabel. Preirradiation of the host largely eliminated the proliferative response to IL 2. Histologic studies of normal and irradiated mice receiving IL 2 corroborated the result of the /sup 125/IUdR findings.

  14. Elevated serum levels of neopterin and soluble interleukin-2 receptor in patients with ovarian cancer.

    PubMed

    Gadducci, A; Ferdeghini, M; Malagnino, G; Prontera, C; Fanucchi, A; Annicchiarico, C; Bianchi, R; Fioretti, P; Facchini, V

    1994-03-01

    Preoperative serum neopterin, soluble interleukin-2 receptor (sIL-2R), and CA125 levels were assayed in 47 patients with ovarian cancer and 113 patients with benign ovarian disease undergoing laparotomy. The cutoff limits of the antigens for the preoperative evaluation of ovarian cancer were fixed according to the Youden plot, using the patients with benign ovarian disease as controls. These limits were 7.9 nmole/liter for neopterin, 71 U/ml for sIL-2R, and 83 U/ml for CA125. The preoperative mean values of serum neopterin and sIL-2R were significantly higher in patients with ovarian cancer than in those with benign ovarian disease. Therefore these tests would seem to be useful in distinguishing benign from malignant ovarian masses. Serum levels of neopterin, sIL-2R, and CA125 above the cutoff limits were detected in 66.0, 78.7, and 76.6% of patients with ovarian cancer. Patients with advanced-stage disease (FIGO > or = III) were significantly more likely to have a higher percentage of elevated values of sIL-2R and CA125, but not neopterin, compared to patients with early-stage disease. However, neopterin was the antigen most often raised in early disease. As for advanced ovarian cancer, preoperative serum sIL-2R levels were higher in patients who developed progressive disease than in those who were progression-free (P = 0.02) after a median follow-up time of 18 months. Furthermore, a trend to higher preoperative serum neopterin values was found in the former patients (P = 0.08). Tumor progression occurred in 3 of 8 (37.5%) patients with low serum preoperative neopterin (< 7.9 nmole/liter) and in 16 of 19 (84.2%) patients with elevated serum neopterin, respectively (P = 0.027). Multivariate analysis on a larger number of patients followed for a longer time is warranted to elucidate the prognostic relevance of these immunologic markers in ovarian cancer. Changes in serum neopterin, sIL-2R, and CA125 levels correlated with the disease course in 50.0, 54.8, and 92.9% of 42 instances, respectively. Moreover, serum CA125 was more sensitive than the other two antigens in the early detection of tumor progression. Therefore serial neopterin and sIL-2R measurements seem to be of limited value in monitoring the disease course in patients with ovarian cancer. PMID:8157196

  15. Role of CD4 molecule in the induction of interleukin 2 and interleukin 2 receptor in class II major histocompatibility complex-restricted antigen-specific T helper clones. T cell receptor/CD3 complex transmits CD4-dependent and CD4-independent signals.

    PubMed Central

    Oyaizu, N; Chirmule, N; Pahwa, S

    1992-01-01

    The CD4 molecule plays an essential role in antigen-induced activation of T helper (Th) cells, but its contribution to signal transduction events resulting in physiologic T cell function is ill defined. By utilizing anti-CD4 monoclonal antibodies (MAbs) that recognize distinct epitopes of CD4, we have investigated the role of CD4 molecule in antigen-induced interleukin 2 (IL-2) and IL-2 receptor (IL-2R) alpha chain expression in class II major histocompatibility complex-restricted antigen-specific human Th clones. Pretreatment of the Th clones with Leu3a resulted in a dose-dependent suppression of antigen-induced proliferative responses, inositol phosphate accumulation, increase in free cytoplasmic calcium ions ([Ca2+]i), IL-2 mRNA accumulation, IL-2 secretion, and membrane IL-2R expression. IL-2R mRNA accumulation, however, was unaffected even at highest Leu3a concentrations. Leu3a treatment did not affect bypass activation of T cells with PMA plus ionomycin or activation via CD2 molecule. The MAb OKT4, which binds another domain of CD4, was not inhibitory. These results suggest that after T cell antigen receptor-CD3 activation, IL-2 gene induction, IL-2 secretion, and membrane IL-2R expression are absolutely dependent upon participation of CD4 molecules, phosphatidylinositol (PI) hydrolysis, and increase in [Ca2+]i. The requirement for IL-2R gene induction, however, occurs independently of CD4 molecule participation and PI hydrolysis. Images PMID:1534818

  16. Wallenda regulates JNK-mediated cell death in Drosophila

    PubMed Central

    Ma, X; Xu, W; Zhang, D; Yang, Y; Li, W; Xue, L

    2015-01-01

    The c-Jun N-terminal kinase (JNK) pathway plays essential roles in regulating a variety of cellular processes including proliferation, migration and survival. Previous genetic studies in Drosophila have identified numerous cell death regulating genes, providing new insights into the mechanisms for related diseases. Despite the known role of the small GTPase Rac1 in regulating cell death, the downstream components and underlying mechanism remain largely elusive. Here, we show that Rac1 promotes JNK-dependent cell death through Wallenda (Wnd). In addition, we find that Wnd triggers JNK activation and cell death via its kinase domain. Moreover, we show that both MKK4 and Hep are critical for Wnd-induced cell death. Furthermore, Wnd is essential for ectopic Egr- or Rho1-induced JNK activation and cell death. Finally, Wnd is physiologically required for loss of scribble-induced JNK-dependent cell death. Thus, our data suggest that wnd encodes a novel essential cell death regulator in Drosophila. PMID:25950467

  17. Interleukin-1 alpha, soluble interleukin-2 receptor, and IgG concentrations in cystic fibrosis treated with prednisolone.

    PubMed Central

    Greally, P; Hussain, M J; Vergani, D; Price, J F

    1994-01-01

    The cytokines interleukin-1 and interleukin-2 participate in the inflammatory response, and may contribute to hypergammaglobulinaemia G and the development of lung injury in cystic fibrosis. Anti-inflammatory treatment with corticosteroids may attenuate this response. The effect of a 12 week course of oral prednisolone on spirometry and serum concentrations of interleukin-1 alpha (IL-1 alpha), soluble interleukin-2 receptor (sIL-2R), and IgG was investigated in 24 children with cystic fibrosis. Prednisolone was administered, in a double blind and placebo controlled manner, at an initial dose of 2 mg/kg daily for 14 days and tapered to 1 mg/kg on alternate days for 10 weeks. The treated group (n = 12) experienced an increase in forced expiratory volume in one second and forced vital capacity at 14 days, however, these changes were smaller at 12 weeks. In the treated group, change in pulmonary function was associated with decreased serum IgG and cytokine concentrations. Prednisolone suppresses serum concentrations of these cytokines, which may participate in the inflammatory response, the excessive synthesis of IgG, and airflow obstruction observed in cystic fibrosis patients. PMID:8067791

  18. Ability of virus SV40 T-antigen to replace interleukin-2, a specific growth factor of T-lymphocytes

    SciTech Connect

    Kulikov, V.V.; Shlyankevich, M.A.; Drize, O.B.; Shapot, V.S.

    1986-12-10

    The entry of T-lymphocytes into the DNA-synthesizing phase is determined by three successive signals: an antigenic effect, interleukin-2 - a specific growth factor of T-lymphocytes - and by nonspecific serum growth factors, primarily transferrin. This system was used for a study of the effect of the T-antigen of virus SV 40 on the mitotic cycle. Purified T-antigen was injected alternately into T-lymphocytes using vesicles from erythrocyte ghosts instead of one of the control signals. It was established that the T-antigen cannot replace the antigenic effect, but is capable of replacing the specific growth factor interleukin-2. However, both normally proliferating T-lymphocytes and T-lymphocytes induced to divide have an absolute requirement for transferrin and probably for other nonspecific growth factors. It is suggested that the polymorphism of tumors caused by papovaviruses is determined by the ability of their early proteins to imitate the action on cells of growth factors specific for them.

  19. Decreased production of and response to interleukin-2 by cultured lymphocytes from patients with systemic lupus erythematosus.

    PubMed Central

    Alcocer-Varela, J; Alarcón-Segovia, D

    1982-01-01

    We studied the production of and response to interleukin-2 (IL-2) by peripheral blood T lymphocytes from 19 systemic lupus erythematosus (SLE) patients who received no treatment at the time they were studied. Eight had active disease and the rest were in remission. Results were compared with those obtained in 12 healthy subjects of similar age. T cells from SLE patients, whether activated with phytohemagglutinin or in autologous mixed lymphocyte reactions, were found to yield little IL-2, to have a low response to IL-2 from its own, or other sources, and to absorb IL-2 poorly, IL-2 produced by SLE cells, albeit scant, was absorbed normally by activated T cells from normal subjects. Our findings may contribute to the understanding of the immunoregulatory defect in SLE. PMID:6979554

  20. Interleukin-12 and interleukin-2-induced invariant natural killer T-cell cytokine secretion and perforin expression independent of T-cell receptor activation

    E-print Network

    Strominger, Jack L.

    Interleukin-12 and interleukin-2-induced invariant natural killer T-cell cytokine secretion natural killer (iNK) T cells expressing an invariant Va24-Ja15 T-cell receptor (TCR) are thought a selective advantage to the CD4 iNK T-cell population. INTRODUCTION Human invariant natural killer (i

  1. Expression of chicken interleukin-2 by a highly virulent strain of Newcastle disease virus leads to decreased systemic viral load but does not significantly affect mortality in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In mammals, interleukin 2 (IL-2) has been shown to decrease replication or attenuate pathogenicity of numerous viral pathogens by activating natural killer cells (NK), cytotoxic T lymphocytes, and expanding subsets of memory cells. In chickens, IL-2 has been shown to activate T cells, and as such i...

  2. Influence of immunomodulatory drugs on the cytotoxicity induced by monoclonal antibody 17-1A and interleukin-2.

    PubMed

    Flieger, Dimitri; Varvenne, Michael; Kleinschmidt, Rolf; Schmidt-Wolf, Ingo G H

    2007-03-01

    Patients treated with monoclonal antibodies and cytokines for cancer receive often co-medication, which may influence treatment efficacy. Therefore, we investigated with a flowcytometric cytotoxicity assay the effect of several immunomodulatory drugs on antibody dependent cellular cytotoxicity (ADCC), interleukin-2 (IL-2) induced cytotoxicity and IL-2-induced-ADCC. We found that dexamethasone markedly inhibited the IL-2 induced cytotoxicity and the IL-2-induced-ADCC. Ondansetron, a 5-HT-3 serotonin receptor antagonist augmented significantly ADCC. Clemastine, a histamine type-2 receptor antagonist augmented the IL-2-induced-ADCC. The TNF antagonist thalidomide suppressed ADCC whereas pentoxifylline proved to be ineffective. Other tested drugs namely ibuprofen and indomethacin, both prostaglandin E2 antagonists, cimetidine a histamine type-2 receptor antagonist, the opioid pethidine, prostaglandin E2 and histamine exerted minor effects or had no influence on the tested parameters. We conclude that glucocorticosteroids should be avoided with monoclonal antibody and cytokine treatment. According to our in vitro data the other drugs tested did not have a negative impact on cellular cytotoxicity and ADCC. PMID:17562330

  3. Successful treatment with Ipilimumab and Interleukin-2 in two patients with metastatic melanoma and systemic autoimmune disease.

    PubMed

    Pedersen, Magnus; Andersen, Rikke; Nørgaard, Peter; Jacobsen, Søren; Thielsen, Peter; Thor Straten, Per; Svane, Inge Marie

    2014-12-01

    Two patients were treated with immunotherapy for metastatic malignant melanoma (MM) despite suffering from systemic autoimmune disease, i.e., ulcerative colitis (UC) and Behcets disease (BD), respectively. Both patients benefitted from the treatment. The patient with UC achieved partial remission of all measurable parameters after treatment with Ipilimumab, while the patient with BD achieved a complete remission of MM after treatment with Interleukin-2 (IL-2) and Interferon-? (IFN-?). Moreover, no aggravation of symptoms related to the autoimmune diseases was seen during treatment, in contrast, clinical indications of improvement were observed. These two cases illustrate that the presence of autoimmune disease does not necessarily predict increased autoimmune toxicity in connection with immunotherapy. They also raise the question of whether autoimmune disease should continue to be an absolute exclusion criterion for treatment of MM with immunotherapy. Consequently, given the poor prognosis of refractory MM, immunotherapies need to be taken into consideration even in cases of autoimmune comorbidity due to the potential long-term benefit that these therapies offer to MM patients. PMID:25227926

  4. Protective efficacy of a Treponema pallidum Gpd DNA vaccine vectored by chitosan nanoparticles and fused with interleukin-2.

    PubMed

    Zhao, Feijun; Wang, Shiping; Zhang, Xiaohong; Gu, Weiming; Yu, Jian; Liu, Shuangquan; Zeng, Tiebing; Zhang, Yuejun; Wu, Yimou

    2012-02-01

    In the present study, immunomodulatory responses of a DNA vaccine constructed by fusing Treponema pallidum (Tp) glycerophosphodiester phosphodiesterase (Gpd) to interleukin-2 (IL-2) and using chitosan (CS) nanoparticles as vectors were investigated. New Zealand white rabbits were immunized by intramuscular inoculation of control DNAs, Tp Gpd DNA vaccine, or Gpd-IL-2 fusion DNA vaccine, which were vectored by CS nanoparticles. Levels of the anti-Gpd antibodies and levels of IL-2 and interferon-? in rabbits were increased upon inoculation of Gpd-IL-2 fusion DNA vaccine, when compared with the inoculation with Gpd DNA vaccine, with CS vectoring increasing the effects. The Gpd-IL-2 fusion DNA vaccine efficiently enhanced the antigen-specific lymphocyte proliferative response. When the rabbits were challenged intradermally with 10(5) Tp (Nichols) spirochetes, the Gpd-IL-2 fusion DNA vaccine conferred better protection than the Gpd DNA vaccine (P < 0.05), as characterized by lower detectable amounts of dark field positive lesions (17.5%), lower ulcerative lesion scores (15%), and faster recovery. Individuals treated with the Tp Gpd-IL-2 fusion DNA vaccine vectored by CS nanoparticles had the lowest amounts of dark field positive lesions (10%) and ulcerations (5%) observed and the fastest recovery (42 days). These results indicate that the Gpd-IL-2 fusion DNA vaccine vectored by CS nanoparticles can efficiently induce Th1-dominant immune responses, improve protective efficacy against Tp spirochete infection, and effectively attenuate development of syphilitic lesions. PMID:22260167

  5. Development of an attenuated interleukin-2 fusion protein that can be activated by tumour-expressed proteases

    PubMed Central

    Puskas, John; Skrombolas, Denise; Sedlacek, Abigail; Lord, Edith; Sullivan, Mark; Frelinger, John

    2011-01-01

    The ability to alter the cytokine microenvironment has the potential to shape immune responses in many physiological settings, including the immunotherapy of tumours. We set out to develop a general approach in which cytokines could be functionally attenuated until activated. We report the development and initial characterization of fusion proteins in which human or mouse interleukin-2 (IL-2), a potent growth factor for immune cells, is joined to a specific IL-2 inhibitory binding component separated by a protease site. The rationale is that upon cleavage by a protease the cytokine is free to dissociate from the inhibitory component and becomes biologically more available. We describe the successful development of two attenuation strategies using specific binding: the first uses the mouse IL-2 receptor alpha chain as the inhibitory binding component whereas the second employs a human antibody fragment (scFv) reactive with human IL-2. We demonstrated that the fusion proteins containing a prostate-specific antigen or a matrix metalloproteinase (MMP) protease cleavage site are markedly attenuated in the intact fusion protein but had enhanced bioactivity of IL-2 in vitro when cleaved. Further, we showed that a fusion protein composed of the IL-2/IL-2 receptor alpha chain with an MMP cleavage site reduced tumour growth in vivo in a peritoneal mouse tumour model. This general strategy should be applicable to other proteases and immune modulators allowing site-specific activation of immunomodulators while reducing unwanted side-effects. PMID:21426339

  6. Keratinocyte-derived T-cell growth factor: a T-cell growth factor functionally distinct from interleukin 2.

    PubMed Central

    Kupper, T S; Coleman, D L; McGuire, J; Goldminz, D; Horowitz, M C

    1986-01-01

    T-cell growth factor, more recently termed interleukin 2 (IL-2), is the product of activated T lymphocytes and is considered the principal trophic factor for T lymphocytes. The activity of IL-2 preparations is assessed by the degree to which they support the growth of various IL-2-dependent cell lines. We report that murine epidermal epithelial cells (keratinocytes) produce and release a factor that supports the growth of the helper-T-cell-derived, IL-2-dependent cell line HT-2. This substance, keratinocyte-derived T-cell growth factor (KTGF), does not support the growth of an IL-2-dependent cell line derived from cytotoxic T cells (line CTLL-2). This differential effect on IL-2-dependent cell lines is unique to KTGF. KTGF has an apparent molecular weight of 25,000-35,000 and has properties similar to those of conventional IL-2 by reversed-phase and gel-filtration HPLC analysis. However, even highly purified KTGF fails to stimulate the proliferation of CTLL-2 cells. The observation that epidermal epithelium produces a trophic factor for T lymphocytes may help explain the basis for preferential proliferation of T cells in the microenvironment of skin in certain dermatologic disorders. Further, it suggests that different IL-2-dependent T-cell lines may have distinct growth requirements and that non-lymphocyte cell types may produce factors capable of maintaining the growth of T cells. PMID:3520573

  7. Influence of tunicamycin, sialidase, and cholera toxin on gangliosides and T-lymphocyte responses to interleukin 2

    SciTech Connect

    Semmes, O.J.; Bailey, J.M.; Merritt, W.D.

    1986-05-01

    The authors have shown that gangliosides inhibit interleukin 2 (IL 2)-dependent proliferation of murine T cells. Tunicamycin (TM), sialidase, and cholera toxin-..beta.. subunit (..beta..-CT) are known modulators of cell surface glycoconjugates. To test the possible role of endogenous gangliosides in T cell responses to IL-2, the effect of these agents on ganglioside expression and cell proliferation was studied. Gangliosides were labelled for 24 hrs with /sup 3/H-glucosamine/galactose in the presence of IL-2 and purified sialidase, TM or ..beta..-CT. Gangliosides were isolated and the species separated by TLC. Alternatively, proliferation was assayed by /sup 3/H-thymidine uptake after 48 hrs culture. TM treatment at a concentration (10 ..mu..g/ml) that completely inhibited proliferation resulted in a 86% reduction of incorporation of saccharide precursors into gangliosides compared to a 50% reduction into proteins. Sialidase treatment (0.1 IU/ml) resulted in a 70% inhibition of proliferation and 30% reduction of radiolabel into gangliosides, of which 3 species were specifically reduced. ..beta..-CT, which binds to GM/sub 1/ and to a lesser extent GD/sub 1a/, caused a 50% reduction in proliferation response at 35 units/ml. The results support the hypothesis that gangliosides are involved in IL-2-dependent proliferation.

  8. Inhibition of interleukin-2-induced T-cell proliferation by sera from patients with the acquired immune deficiency syndrome.

    PubMed

    Donnelly, R P; Tsang, K Y; Galbraith, G M; Wallace, J I

    1986-01-01

    Sera from 22 patients with either lymphadenopathy syndrome (LAS), acquired immune deficiency syndrome (AIDS)-related complex (ARC), or acquired immune deficiency syndrome were examined for their effect on the interleukin-2 (IL-2)-induced proliferative response of an IL-2-dependent cytotoxic T-cell line, CTL-20. All of the patient sera included in this study were positive for the presence of antibodies against human T-cell lymphotropic virus type III (HTLV-III) as determined by an HTLV-III-specific enzyme-linked immunosorbent assay (ELISA). Eighteen of the 22 patient sera examined (81.8%) exhibited at least a modest suppressive effect on the proliferative response of CTL-20 cells. The inhibitory effect was dose-dependent and varied in intensity for each individual serum. In many cases, the magnitude of suppression was absolute in that it totally abrogated IL-2-induced DNA synthesis. Normal human serum (NHS) exerted no suppressive influence on the IL-2-induced proliferative response of identical control cultures. This same panel of 22 patient sera exhibited no significant inhibitory effects on the levels of protein synthesis in cultures of a non-IL-2-dependent human T-cell line, CCRF-HSB-2, indicating that the suppressive effect was not mediated by nonspecific serum cytotoxicity. The inhibitory effect of patient sera in the IL-2-dependent target cell assay correlated with the ability of these same sera to suppress the mitogen-induced proliferative response of normal human peripheral blood lymphocytes (PBL). These observations are particularly striking in view of the recognized defects of IL-2-dependent effector T-cell functions in AIDS. PMID:3007564

  9. Human and Mouse CD8+CD25+FOXP3+ Regulatory T Cells at Steady State and during Interleukin-2 Therapy

    PubMed Central

    Churlaud, Guillaume; Pitoiset, Fabien; Jebbawi, Fadi; Lorenzon, Roberta; Bellier, Bertrand; Rosenzwajg, Michelle; Klatzmann, David

    2015-01-01

    In addition to CD4+ regulatory T cells (Tregs), CD8+ suppressor T cells are emerging as an important subset of regulatory T cells. Diverse populations of CD8+ T cells with suppressive activities have been described. Among them, a small population of CD8+CD25+FOXP3+ T cells is found both in mice and humans. In contrast to thymic-derived CD4+CD25+FOXP3+ Tregs, their origin and their role in the pathophysiology of autoimmune diseases (AIDs) are less understood. We report here the number, phenotype, and function of CD8+ Tregs cells in mice and humans, at the steady state and in response to low-dose interleukin-2 (IL-2). CD8+ Tregs represent approximately 0.4 and 0.1% of peripheral blood T cells in healthy humans and mice, respectively. In mice, their frequencies are quite similar in lymph nodes (LNs) and the spleen, but two to threefold higher in Peyer patches and mesenteric LNs. CD8+ Tregs express low levels of CD127. CD8+ Tregs express more activation or proliferation markers such as CTLA-4, ICOS, and Ki-67 than other CD8+ T cells. In vitro, they suppress effector T cell proliferation as well as or even better than CD4+ Tregs. Owing to constitutive expression of CD25, CD8+ Tregs are 20- to 40-fold more sensitive to in vitro IL-2 stimulation than CD8+ effector T cells, but 2–4 times less than CD4+ Tregs. Nevertheless, low-dose IL-2 dramatically expands and activates CD8+ Tregs even more than CD4+ Tregs, in mice and humans. Further studies are warranted to fully appreciate the clinical relevance of CD8+ Tregs in AIDs and the efficacy of IL-2 treatment. PMID:25926835

  10. Interleukin 2 secretion by lectin-activated human blood lymphocytes is markedly augmented by vascular endothelial cells

    SciTech Connect

    Guinan, E.C.; Pober, J.S.

    1986-03-01

    Since the initial interaction (and possible activation) of a blood borne T lymphocyte involves contact with the endothelial lining of the vasculature at the site of an immune response, the authors have examined the effect of cultured human endothelial cells (HEC) upon polyclonal T cell activation. Addition of 10/sup 4/ HEC to 10/sup 4/-10/sup 5/ peripheral blood lymphocytes (PBL) stimulated with phytohemagglutinin (PHA, 0.3-10 ..mu..g/ml) leads to marked augmentation of interleukin 2 (IL-2) production. The relative increase in IL-2 (mean of 3 expts. +/- SEM) is present at 24 h (5.8 fold +/- 1.5) and become more marked at 48 h (12.6 fold +/- 3.5) and 72 h (18.5 fold +/- 3.7). This relative enhancement is greater for HEC added to 10/sup 4/ than 10/sup 5/ PBL and is also greater when 10/sup 4/ rather than 2 x 10/sup 3/ HEC are added to a given number of PBL. This increased IL-2 concentration has two biological consequences. First, at suboptimal PHA doses or at low PBL number, PBL proliferation as measured by /sup 3/H-thymidine incorporation is increased up to two fold. Second, the phenotype of the proliferating cells appears altered, including a decrease in mean density of IL-2 receptor. The authors hypothesize that such modulation of the concentration of locally produced IL-2 may play a key role in the nature of an immune response, influencing both its magnitude and the functional profile of the activated and amplified effector cells.

  11. Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients.

    PubMed

    Rosenzwajg, Michelle; Churlaud, Guillaume; Mallone, Roberto; Six, Adrien; Dérian, Nicolas; Chaara, Wahiba; Lorenzon, Roberta; Long, S Alice; Buckner, Jane H; Afonso, Georgia; Pham, Hang-Phuong; Hartemann, Agnès; Yu, Aixin; Pugliese, Alberto; Malek, Thomas R; Klatzmann, David

    2015-04-01

    Most autoimmune diseases (AID) are linked to an imbalance between autoreactive effector T cells (Teffs) and regulatory T cells (Tregs). While blocking Teffs with immunosuppression has long been the only therapeutic option, activating/expanding Tregs may achieve the same objective without the toxicity of immunosuppression. We showed that low-dose interleukin-2 (ld-IL-2) safely expands/activates Tregs in patients with AID, such HCV-induced vasculitis and Type 1 Diabetes (T1D). Here we analyzed the kinetics and dose-relationship of IL-2 effects on immune responses in T1D patients. Ld-IL-2 therapy induced a dose-dependent increase in CD4(+)Foxp3(+) and CD8(+)Foxp3(+) Treg numbers and proportions, the duration of which was markedly dose-dependent. Tregs expressed enhanced levels of activation markers, including CD25, GITR, CTLA-4 and basal pSTAT5, and retained a 20-fold higher sensitivity to IL-2 than Teff and NK cells. Plasma levels of regulatory cytokines were increased in a dose-dependent manner, while cytokines linked to Teff and Th17 inflammatory cells were mostly unchanged. Global transcriptome analyses showed a dose-dependent decrease in immune response signatures. At the highest dose, Teff responses against beta-cell antigens were suppressed in all 4 patients tested. These results inform of broader changes induced by ld-IL-2 beyond direct effects on Tregs, and relevant for further development of ld-IL-2 for therapy and prevention of T1D, and other autoimmune and inflammatory diseases. PMID:25634360

  12. Piperine blocks interleukin-2-driven cell cycle progression in CTLL-2 T lymphocytes by inhibiting multiple signal transduction pathways.

    PubMed

    Doucette, Carolyn D; Greenshields, Anna L; Liwski, Robert S; Hoskin, David W

    2015-04-01

    Piperine, a pungent alkaloid found in the fruits of black pepper plants, has diverse physiological effects, including the ability to inhibit immune cell-mediated inflammation. Since the cytokine interleukin-2 (IL-2) is essential for the clonal expansion and differentiation of T lymphocytes, we investigated the effect of piperine on IL-2 signaling in IL-2-dependent mouse CTLL-2 T lymphocytes. Tritiated-thymidine incorporation assays and flow cytometric analysis of Oregon Green 488-stained cells showed that piperine inhibited IL-2-driven T lymphocyte proliferation; however, piperine did not cause T lymphocytes to die or decrease their expression of the high affinity IL-2 receptor, as determined by flow cytometry. Western blot analysis showed that piperine blocked the IL-2-induced phosphorylation of signal transducer and activator of transcription (STAT) 3 and STAT5 without affecting the upstream phosphorylation of Janus kinase (JAK) 1 and JAK3. In addition, piperine inhibited the IL-2-induced phosphorylation of extracellular signal-regulated kinase 1/2 and Akt, which are signaling molecules that regulate cell cycle progression. Piperine also suppressed the expression of cyclin-dependent kinase (Cdk) 1, Cdk4, Cdk6, cyclin B, cyclin D2, and Cdc25c protein phosphatase by IL-2-stimulated T lymphocytes, indicating G0/G1 and G2/M cell cycle arrest. Piperine-mediated inhibition of IL-2 signaling and cell cycle progression in CTLL-2 T lymphocytes suggests that piperine should be further investigated in animal models as a possible natural source treatment for T lymphocyte-mediated transplant rejection and autoimmune disease. PMID:25655587

  13. The effect of interleukin-2 on canine peripheral nerve sheath tumours after marginal surgical excision: a double-blind randomized study

    PubMed Central

    2013-01-01

    Background The objective of this study was to evaluate the effect on outcomes of intraoperative recombinant human interleukin-2 injection after surgical resection of peripheral nerve sheath tumours. In this double-blind trial, 40 patients due to undergo surgical excision (<5 mm margins) of presumed peripheral nerve sheath tumours were randomized to receive intraoperative injection of interleukin-2 or placebo into the wound bed. Results There were no significant differences in any variable investigated or in median survival between the two groups. The median recurrence free interval was 874 days (range 48–2141 days), The recurrence-free interval and overall survival time were significantly longer in dogs that undergone the primary surgery by a specialist-certified surgeon compared to a referring veterinarian regardless of whether additional adjunct therapy was given. Conclusion Overall, marginal excision of peripheral nerve sheath tumours in dogs resulted in a long survival time, but adjuvant treatment with recombinant human interleukin-2 (rhIL-2) did not provide a survival advantage. PMID:23927575

  14. Elevated circulating soluble interleukin-2 receptor in patients with chronic liver diseases is associated with non-classical monocytes

    PubMed Central

    2012-01-01

    Background The soluble interleukin-2 receptor (sIL-2R, sIL2R, sTAC, sCD25) is a reliable biomarker for disease activity in inflammatory disorders such as sarcoidosis. Based on the essential pathogenic role of inflammation for progression of liver diseases, we hypothesized that sIL-2R might be an indicator of inflammatory cell activation and disease severity in patients with chronic liver diseases (CLD). Methods We measured sIL-2R serum levels in 71 patients with different stages and etiologies of CLD in comparison to 41 healthy controls. Serum sIL-2R concentrations were correlated with laboratory markers of liver diseases, cytokine / chemokine levels and circulating immune cell subpopulations as simultaneously assessed by FACS analysis from peripheral leukocytes. Results CLD patients showed significantly elevated serum sIL-2R levels compared with controls. sIL-2R was significantly higher in patients with compared to patients without established liver cirrhosis and increased with the Child-Pugh stage of cirrhosis, independent of the underlying etiology. sIL-2R levels correlated inversely with parameters indicating the hepatic biosynthetic capacity, such as albumin or international normalized ratio, and positively with non-invasive markers of liver fibrosis such as hyaluronic acid or procollagen-III-peptide. Circulating immune cells might represent a major source of sIL-2R. In fact, sIL2-R levels correlated closely with circulating monocytes, especially non-classical CD14+ CD16+ monocytes, which were found to express high levels of CD25 by FACS. Pro-inflammatory cytokines, including IL-2, IFN? or IL-6, and chemokines were also associated with sIL2-R. In addition, renal failure was an important confounder of sIL-2R levels independent of liver dysfunction and inflammation. Conclusions sIL-2R is elevated in patients with liver diseases and cirrhosis, is associated with circulating inflammatory cells and is increased in concomitant renal failure. These data indicate that sIL-2R might be a potential marker for immune cell activation in CLD, especially for proinflammatory and profibrogenic non-classical CD14?+?CD16+ monocytes. PMID:22530792

  15. Lectin interactions with the Jurkat leukemic T-cell line: quantitative binding studies and interleukin-2 production

    SciTech Connect

    Dupuis, G.; Bastin, B.

    1988-03-01

    Phytohemagglutinin (PHA), concanavalin A (Con A), pea lectin, and wheat germ agglutinin (WGA) have been used to investigate their binding properties to Jurkat 77 6.8 leukemic human T cells and their ability to induce these cells to produce interleukin-2 (IL-2). Binding studies showed that the Jurkat cells fixed 0.82 +/- 0.11 microgram pea lectin, 2.02 +/- 0.17 micrograms Con A, 1.85 +/- 0.07 micrograms PHA and 8.88 +/- 0.61 micrograms WGA. Scatchard plots were linear, indicating that the binding process was homogeneous with respect to the binding constant. PHA and Con A bound with the highest affinity (Kass (apparent) approximately equal to 9 x 10(9) M-1), followed by pea lectin and WGA (Kass (apparent) approximately equal to 3 x 10(9) M-1). The number of lectin binding sites was in agreement with the results of saturation experiments. We also evaluated the effect of the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the binding process. Results show that there were no gross alterations in the value of (apparent) Kass in the case of PHA and WGA. In contrast, the presence of TPA decreased the affinity of Con A and modified the Scatchard profile for pea lectin, which was curvilinear with a concavity turned upward. In this case, data were (apparent) K1 = 17.7 x 10(9) M-1 (high-affinity sites) and (apparent) K2 = 2.6 x 10(9) M-1 (low-affinity sites). The four lectins shared the ability to stimulate Jurkat 77 6.8 cells to secrete IL-2. Optimal lectin concentrations were 20 micrograms/ml (PHA) and 50 micrograms/ml (WGA and Con A). Pea lectin failed to display a dose-response relationship, and IL-2 production increased proportionally with lectin concentration. Con A was the most efficient stimulator (250 U/ml), followed by WGA (160 U/ml) and PHA (108 U/ml).

  16. Relationship between Serum Soluble Interleukin-2 Receptor and Renal Allograft Rejection: A Hospital-Based Study in KashmirValley

    PubMed Central

    Rasool, R.; Yousuf, Q.; Masoodi, K. Z.; Bhat, I. A.; A Shah, Z.; Wani, I. A.; Wani, M. S.

    2015-01-01

    Background: Even after adequate immunosuppression therapy, acute rejection continues to be the single most important cause of graft dysfunction after renal transplantation. Renal allograft biopsy continues to be the reference standard, though certain clinical and biochemical parameters are helpful in assessment of these patients. Renal allograft rejection is mediated by T lymphocytes, expressing cell surface interleukin-2 receptors (IL-2R) which has been suggested as a marker of acute rejection episodes after organ transplantation. Objective: To determine the pre- and post-transplantation serum soluble IL-2R levels in live related kidney transplant patients to predict acute rejection episodes. Methods: Serial serum samples from 75 recipients and 41 healthy controls were assessed for soluble IL-2R levels by ELISA. The outcome of the graft was also determined for each recipient. Results: The mean±SD serum soluble IL-2R levels in renal allograft recipients with rejection were significantly (p<0.001) higher than those without rejection (329.85±59.22 vs 18.12±11.22 pg/mL). The elevation of serum soluble IL-2R was evident in acute rejection episodes and found before elevation of serum creatinine. The higher values of serum soluble IL-2R in the rejection group were significantly reduced after recovery of allograft function by adequate anti-rejection therapy. 36.4% of patients in the rejection group had proven positive biopsies for the rejection and higher creatinine values, which was found to be statistically significant (p<0.001). A cohort of 41 healthy controls showed significantly (p<0.05) lower serum soluble IL-2R concentrations (15.27±7.79 pg/mL) when compared with the rejection group. Conclusion: Serum soluble IL-2R concentrations showed significant correlation with the acute rejection episodes in the renal allograft recipients. Prediction of soluble IL-2R levels might help the early detection of rejection episodes, which may pave way for the management of immunosuppression regimes and better graft functioning. PMID:25737772

  17. Adoptive immunotherapy of human pancreatic cancer with lymphokine-activated killer cells and interleukin-2 in a nude mouse model

    SciTech Connect

    Marincola, F.M.; Da Pozzo, L.F.; Drucker, B.J.; Holder, W.D. Jr. )

    1990-11-01

    A pancreatic cancer cell line was grown in orthotopic and heterotopic positions in young Swiss/NIH nude mice, which were tested with adoptive immunotherapy. Mice were injected with 1 x 10(7) human cancer cells in the subcutaneous tissue and duodenal lobe of the pancreas. The mice were randomly divided into four groups: group IA (LAK + IL-2) (N = 25) received 2 X 10(7) human lymphokine-activated killer (LAK) cells from normal donors by tail vein injection followed by 10,000 units of human recombinant interleukin-2 (IL-2) given intraperitoneally every 12 hours for 28 days; group IB (IL-2) (N = 27) was given the same dose of IL-2 alone; group IC (RPMI-1640) (N = 18) received a placebo consisting of 1 ml of RPMI-1640 intraperitoneally every 12 hours; and group ID (LAK) (N = 14) received 2 X 10(7) LAK cells but no IL-2. Toxicity was significantly higher in group IB, with a mortality rate of 45.5% (10/22 animals) versus a 0% mortality (0/25) in group IA. None of the group IA or IB animals died of pancreatic cancer during the experiment. The animals that did not receive IL-2 died before 28 days in 14.2% of group IC and in 16.7% of group ID. The area under the growth curve of subcutaneous tumors during the course of treatment and the pancreatic tumor weight at the end of treatment were compared in each group. Subcutaneous tumors had a reduced rate of growth in group IA animals compared to all the other treatments. Pancreatic tumor growth was slowed in group IA. The animals treated with IL-2 alone (group IB) showed some slowing of tumor growth that was intermediate between group IA, group IC, and group ID. A similar experiment was done with irradiated (375 rad) mice. Nine nude mice with tumors were treated with LAK + IL-2 (group IIA), eight received IL-2 alone (group IIB), and seven received placebo (group IIC).

  18. An Anti-Interleukin-2 Receptor Drug Attenuates T- Helper 1 Lymphocytes-Mediated Inflammation in an Acute Model of Endotoxin-Induced Uveitis

    PubMed Central

    Navea, Amparo; Almansa, Inmaculada; Muriach, María; Bosch-Morell, Francisco

    2014-01-01

    The aim of the present study was to evaluate the anti-inflammatory efficacy of Daclizumab, an anti-interleukin-2 receptor drug, in an experimental uveitis model upon a subcutaneous injection of lipopolysaccharide into Lewis rats, a valuable model for ocular acute inflammatory processes. The integrity of the blood-aqueous barrier was assessed 24 h after endotoxin-induced uveitis by evaluating two parameters: cell count and protein concentration in aqueous humors. The histopathology of all the ocular structures (cornea, lens, sclera, choroid, retina, uvea, and anterior and posterior chambers) was also considered. Enzyme-linked immunosorbent assays of the aqueous humor samples were performed to quantify the levels of the different chemokine and cytokine proteins. Similarly, a biochemical analysis of oxidative stress-related markers was also assessed. The inflammation observed in the anterior chamber of the eyes when Daclizumab was administered with endotoxin was largely prevented since the aqueous humor protein concentration substantially lowered concomitantly with a significant reduction in the uveal and vitreous histopathological grading. Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon-?, also significantly reduced with related anti-oxidant systems recovery. Daclizumab treatment in endotoxin-induced uveitis reduced Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon gamma, by about 60–70% and presented a preventive role in endotoxin-induced oxidative stress. This antioxidant protective effect of Daclizumab may be related to several of the observed Daclizumab effects in our study, including IL-6 cytokine regulatory properties and a substantial concomitant drop in INF?. Concurrently, Daclizumab treatment triggered a significant reduction in both the uveal histopathological grading and protein concentration in aqueous humors, but not in cellular infiltration. PMID:24595020

  19. Cytokine mRNA expression in the mucosa of treated coeliac patients after wheat peptide challenge.

    PubMed

    Kontakou, M; Przemioslo, R T; Sturgess, R P; Limb, G A; Ellis, H J; Day, P; Ciclitira, P J

    1995-07-01

    This study investigated the presence of mRNA coding for interferon gamma (IFN gamma), tumour necrosis factor alpha (TNF alpha), and interleukins 2 (IL2) and 6 (IL6), in the mucosa of four coeliac patients in remission who had been challenged with either gliadin or synthetic gliadin oligopeptides. Jejunal biopsy specimens from these patients, taken before and at two, four, and six hours after challenge, were hybridised with specific 35S-labelled DNA oligonucleotide probes. The lamina propria of all the patients contained significantly increased numbers of cytokine mRNA expressing cells four hours after challenge with gliadin or an oligopeptide corresponding to amino acids 31-49 of A-gliadin (peptide A). No significant changes were seen with the peptides corresponding to aminoacids 202-220 (peptide B) or 3-21 (peptide C) of A-gliadin, with the exception of one patient who showed a significant increase in the number of TNF alpha mRNA expressing cells four hours after challenge with peptide B. In vivo studies in coeliac disease have shown that significant histological changes occur in the mucosa of treated coeliac patients four hours after challenge with either gliadin or peptide A. These findings suggest that the histological changes seen previously in the mucosa of coeliac patients after wheat peptide challenge may be caused by increased expression of cytokines within the mucosa. PMID:7672681

  20. Adoptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2.

    PubMed

    Heemskerk, Bianca; Liu, Ke; Dudley, Mark E; Johnson, Laura A; Kaiser, Andrew; Downey, Stephanie; Zheng, Zhili; Shelton, Thomas E; Matsuda, Kant; Robbins, Paul F; Morgan, Richard A; Rosenberg, Steven A

    2008-05-01

    Adoptive cell transfer of tumor-infiltrating lymphocytes (TILs) after lymphodepletion mediates regression in 50% of patients with metastatic melanoma. In vivo persistence and telomere length of the transferred cells correlate with antitumor response. In an attempt to prolong the in vivo survival of the transferred cells, TILs were genetically engineered to produce interleukin (IL)-2. In vitro, these transduced TILs secreted IL-2 while retaining tumor specificity and exhibited prolonged survival after IL-2 withdrawal. In a phase I/II clinical trial, seven evaluable patients received transduced TILs and one patient experienced a partial response associated with in vivo persistence of IL-2-transduced TILs in circulating lymphocytes. An additional five patients received transduced TILs in conjunction with IL-2 administration. Persistence of IL-2-transduced TILs was observed in three patients, including one partial responder. The transgene DNA as well as vector-derived IL2 mRNA could be detected for 4 months in responding patients. The low response rate in this trial was possibly due to a reduction in telomere length in cells as a result of prolonged in vitro culture. In this study, insertion of the IL-2 gene into antitumor TILs increased their ability to survive after IL-2 withdrawal in vitro but did not increase their in vivo persistence or clinical effectiveness. PMID:18444786

  1. Tetrahydroindazoles as Interleukin-2 Inducible T-Cell Kinase Inhibitors. Part II. Second-Generation Analogues with Enhanced Potency, Selectivity, and Pharmacodynamic Modulation in Vivo.

    PubMed

    Burch, Jason D; Barrett, Kathy; Chen, Yuan; DeVoss, Jason; Eigenbrot, Charles; Goldsmith, Richard; Ismaili, M Hicham A; Lau, Kevin; Lin, Zhonghua; Ortwine, Daniel F; Zarrin, Ali A; McEwan, Paul A; Barker, John J; Ellebrandt, Claire; Kordt, Daniel; Stein, Daniel B; Wang, Xiaolu; Chen, Yong; Hu, Baihua; Xu, Xiaofeng; Yuen, Po-Wai; Zhang, Yamin; Pei, Zhonghua

    2015-05-14

    The medicinal chemistry community has directed considerable efforts toward the discovery of selective inhibitors of interleukin-2 inducible T-cell kinase (ITK), given its role in T-cell signaling downstream of the T-cell receptor (TCR) and the implications of this target for inflammatory disorders such as asthma. We have previously disclosed a structure- and property-guided lead optimization effort which resulted in the discovery of a new series of tetrahydroindazole-containing selective ITK inhibitors. Herein we disclose further optimization of this series that resulted in further potency improvements, reduced off-target receptor binding liabilities, and reduced cytotoxicity. Specifically, we have identified a correlation between the basicity of solubilizing elements in the ITK inhibitors and off-target antiproliferative effects, which was exploited to reduce cytotoxicity while maintaining kinase selectivity. Optimized analogues were shown to reduce IL-2 and IL-13 production in vivo following oral or intraperitoneal dosing in mice. PMID:25844760

  2. Partial agonist/antagonist mouse interleukin-2 proteins indicate that a third component of the receptor complex functions in signal transduction.

    PubMed Central

    Zurawski, S M; Imler, J L; Zurawski, G

    1990-01-01

    Some mouse interleukin-2 (mIL-2) proteins with substitutions at residue Gln141 are unable to trigger a maximal biological response. The Asp141 protein induces the lowest maximal response. The Asp141 protein can weakly antagonize the biological activity of mIL-2 and strongly antagonizes the biological activity of active mIL-2 mutant proteins that have defects in interactions with the high affinity receptor. Residue 141 mutant proteins bind with reduced affinity to T cells expressing the high affinity IL-2 receptor, yet bind normally to transfected fibroblasts expressing only the alpha and beta chains of the receptor. These results suggest that a third receptor component is important for both binding and signal transduction. PMID:2249656

  3. Cellular bases of the production of and response to interleukin-2 in man: role of autologous rosette-forming T-cell subsets defined with monoclonal antibodies.

    PubMed Central

    Fishbein, E; Alcocer-Varela, J; Alarcón-Segovia, D

    1983-01-01

    In this paper we present experiments that indicate that, in man, most T-cell subpopulations produce interleukin-2 (IL-2), but that the main cell subpopulation which produces it, both upon activation with phytohaemagglutinin or in autologous mixed lymphocyte cultures, is that of autologous rosette-forming (Tar) T4+ T cells. Conversely, the main IL-2-responding T-cell subpopulation is that composed of T cells depleted of Tar (T-Tar) that are T8+. IL-2 was also found to be more effectively produced by Tar cells that do not bind peanut agglutinin (PNA) than by those that do. The PNA-T4+Tar cells were also found to respond best to interleukin-1 (IL-1). PMID:6604692

  4. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells.

    PubMed

    Sadlack, B; Löhler, J; Schorle, H; Klebb, G; Haber, H; Sickel, E; Noelle, R J; Horak, I

    1995-11-01

    Interleukin-2-deficient mice (IL-2-/-) crossed to a BALB/c genetic background develop a lymphoproliferative syndrome with severe hemolytic anemia and die within 5 weeks of age. The presence of autoantibodies of various specificities and inflammatory lesions in several organs are indicative of a generalized auto-immune disease. No alterations of the immune system were observed in 6-day-old animals, but 10-day-old mice already showed an increased proliferation and polyclonal activation of lymphocytes. The treatment of IL-2-/- mice with anti-gp39(CD40L) antibody prevented the disease and indicated that the appearance of activated CD4- T cells (CD44high, CD69-) represents the first alteration of the immune system in IL-2-/- mice. Collectively, our results suggest that an essential role of IL-2 in vivo, which is not compensated by other cytokines, is the maintenance of self tolerance. PMID:7489743

  5. Sequential immune monitoring in patients with melanoma and renal cell carcinoma treated with high-dose interleukin-2: immune patterns and correlation with outcome.

    PubMed

    Foureau, David M; Amin, Asim; White, Richard L; Anderson, William; Jones, Chase P; Sarantou, Terry; McKillop, Iain H; Salo, Jonathan C

    2014-12-01

    Interleukin-2 (IL-2) therapy leads to clinically relevant responses in 10-16 % of patients with metastatic melanoma (MMEL) or 10-30 % of patients with metastatic renal cell carcinoma (MRCC). To date, no biomarkers have been validated to identify patients who are likely to respond. We hypothesized that changes in T cell subset distribution in patients undergoing IL-2 therapy may correlate with treatment outcomes. Immune profiles of 64 patients (27-MMEL, 37-MRCC) were evaluated using flow cytometry at baseline, during (?three doses) and at the end of treatment cycle (30 ± 6 h after last dose), through two courses of IL-2 therapy. Changes in distribution and phenotype of circulating CD4 and CD8 lymphocyte subsets were compared (1) based on cancer types and (2) intra-patient during the course of the IL-2 therapy. Exploratory analysis of immunologic profiles was also performed based on treatment outcome. Independent of cancer type, IL-2 led to a transient decrease of circulating effector lymphocytes, while regulatory T cells gradually increased. Interleukin-2 differentially affected a subset of CD8 T cell expressing Foxp3, depending on malignancy type. In MMEL patients, IL-2 gradually expanded circulating CD8 Foxp3+ cells; in MRCC patients, IL-2 transiently increased expression of CD103 and CCR4 homing markers. Monitoring of adaptive immune variables early on and during the course of IL-2 therapy revealed transient alterations in immune profiles, specific to MMEL and MRCC patients, related to immune balance (and ultimately response to IL-2 therapy) or T cell egress from the circulation. PMID:25205170

  6. Involvement of NK 1.1-positive ??T cells in interleukin-18 plus interleukin-2-induced interstitial lung disease.

    PubMed

    Segawa, Seiji; Goto, Daisuke; Yoshiga, Yohei; Horikoshi, Masanobu; Sugihara, Makoto; Hayashi, Taichi; Chino, Yusuke; Matsumoto, Isao; Ito, Satoshi; Sumida, Takayuki

    2011-09-01

    Interstitial lung disease (ILD) is induced by various factors in humans. However, the exact mechanism of ILD remains elusive. This study sought to determine the role of natural killer (NK) 1.1(+) ??T cells in ILD. The injection of IL-18 plus IL-2 (IL-18/IL-2) into C57BL6 (B6) mice induced acute ILD that resembled early-stage human ILD. An accumulation of NK1.1(+) ??T cells similar to NK cells was evident in the lungs. The T Cell Receptor (TCR) V? and V? repertoires of NK1.1(+) ??T cells indicated polyclonal expansion. The expression of IL-2 receptor ? (R?) and IL-18R? in NK1.1(+) ??T cells was higher than in NK1.1(-) ??T cells. IL-18/IL-2 stimulated the proliferation of NK1.1(+) ??T cells, but not NK1.1(-) ??T cells. The IL-18/IL-2-stimulated NK1.1(+) ??T cells produced higher concentrations of IFN-? than did NK1.1(-) ??T cells. Moreover, NK1.1(+) ??T and NK1.1(-) ??T cells constituted completely different cell populations. The IL-18/IL-2-induced ILD was milder in TCR?(-/-) and IFN-?(-/-) mice, compared with B6 mice. Furthermore, cell-transfer experiments demonstrated that NK1.1(+) ??T cells could induce the expansion of NK cells and IFN-? mRNA in the lung by IL-18/IL-2. Our results suggest that NK1.1(+) ??T cells function as inflammatory mediators in the early phase of IL-18/IL-2-induced ILD. PMID:21257923

  7. Dacarbazine and interferon ? with or without interleukin 2 in metastatic melanoma: a randomized phase III multicentre trial of the Dermatologic Cooperative Oncology Group (DeCOG)

    PubMed Central

    Hauschild, A; Garbe, C; Stolz, W; Ellwanger, U; Seiter, S; Dummer, R; Ugurel, S; Sebastian, G; Nashan, D; Linse, R; Achtelik, W; Mohr, P; Kaufmann, R; Fey, M; Ulrich, J; Tilgen, W

    2001-01-01

    In several phase II-trials encouraging tumour responses rates in advanced metastatic melanoma (stage IV; AJCC-classification) have been reported for the application of biochemotherapy containing interleukin 2. This study was designed to compare the efficacy of therapy with dacarbazine (DTIC) and interferon ? (IFN-?) only to that of therapy with DTIC and IFN-? with the addition of interleukin 2 (IL-2) in terms of the overall survival time and rate of objective remissions and to provide an elaborated toxicity profile for both types of therapy. 290 patients were randomized to receive either DTIC (850?mg/m2every 28 days) plus IFN-?2a/b (3?MIU/m2, twice on day 1, once daily from days 2 to 5; 5 MIU/m23 times a week from week 2 to 4) with or without IL-2 (4.5?MIU/m2for 3 hours i.v. on day 3; 9.0?MIU/m2i.v. day 3/4; 4.5?MIU/m2s.c. days 4 to 7). The treatment plan required at least 2 treatment cycles (8 weeks of therapy) for every patient. Of 290 randomized patients 281 were eligible for an intention-to-treat analysis. There was no difference in terms of survival time from treatment onset between the two arms (median 11.0 months each). In 273 patients treated according to protocol tumour response was assessable. The response rates did not differ between both arms (P = 0.87) with 18.0% objective responses (9.7% PR; 8.3% CR) for DTIC plus IFN-? as compared to 16.1% (8.8% PR; 7.3% CR) for DTIC, IFN-? and IL-2. Treatment cessation due to adverse reactions was significantly more common in patients receiving IL-2 (13.9%) than in patients receiving DTIC/IFN-? only (5.6%). In conclusion, there was neither a difference in survival time nor in tumour response rates when IL-2, applied according to the combined intravenous and subcutaneous schedule used for this study, was added to DTIC and IFN-?. However, toxicity was increased in melanoma patients treated with IL-2. Further phase III trials with continuous infusion and higher dosages must be performed before any final conclusions can be drawn on the potential usefulness of IL-2 in biochemotherapy of advanced melanoma. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11308250

  8. Dacarbazine and interferon alpha with or without interleukin 2 in metastatic melanoma: a randomized phase III multicentre trial of the Dermatologic Cooperative Oncology Group (DeCOG).

    PubMed

    Hauschild, A; Garbe, C; Stolz, W; Ellwanger, U; Seiter, S; Dummer, R; Ugurel, S; Sebastian, G; Nashan, D; Linse, R; Achtelik, W; Mohr, P; Kaufmann, R; Fey, M; Ulrich, J; Tilgen, W

    2001-04-20

    In several phase II-trials encouraging tumour responses rates in advanced metastatic melanoma (stage IV; AJCC-classification) have been reported for the application of biochemotherapy containing interleukin 2. This study was designed to compare the efficacy of therapy with dacarbazine (DTIC) and interferon alpha (IFN-alpha) only to that of therapy with DTIC and IFN-alpha with the addition of interleukin 2 (IL-2) in terms of the overall survival time and rate of objective remissions and to provide an elaborated toxicity profile for both types of therapy. 290 patients were randomized to receive either DTIC (850 mg/m(2)every 28 days) plus IFN-alpha2a/b (3 MIU/m(2), twice on day 1, once daily from days 2 to 5; 5 MIU/m(2)3 times a week from week 2 to 4) with or without IL-2 (4.5 MIU/m(2)for 3 hours i.v. on day 3; 9.0 MIU/m(2) i.v. day 3/4; 4.5 MIU/m(2) s.c. days 4 to 7). The treatment plan required at least 2 treatment cycles (8 weeks of therapy) for every patient. Of 290 randomized patients 281 were eligible for an intention-to-treat analysis. There was no difference in terms of survival time from treatment onset between the two arms (median 11.0 months each). In 273 patients treated according to protocol tumour response was assessable. The response rates did not differ between both arms (P = 0.87) with 18.0% objective responses (9.7% PR; 8.3% CR) for DTIC plus IFN-alpha as compared to 16.1% (8.8% PR; 7.3% CR) for DTIC, IFN-alpha and IL-2. Treatment cessation due to adverse reactions was significantly more common in patients receiving IL-2 (13.9%) than in patients receiving DTIC/IFN-alpha only (5.6%). In conclusion, there was neither a difference in survival time nor in tumour response rates when IL-2, applied according to the combined intravenous and subcutaneous schedule used for this study, was added to DTIC and IFN-alpha. However, toxicity was increased in melanoma patients treated with IL-2. Further phase III trials with continuous infusion and higher dosages must be performed before any final conclusions can be drawn on the potential usefulness of IL-2 in biochemotherapy of advanced melanoma. PMID:11308250

  9. Effect of targeted ovarian cancer therapy using amniotic fluid mesenchymal stem cells transfected with enhanced green fluorescent protein-human interleukin-2 in vivo.

    PubMed

    You, Qi; Yao, Yuan; Zhang, Yuanlong; Fu, Songbin; Du, Mei; Zhang, Guangmei

    2015-10-01

    The aim of the present study was to investigate the effect of using amniotic fluid mesenchymal stem cells (AF-MSCs) in targeted ovarian cancer therapy in vivo. AF-MSCs were isolated from human second trimester AF and a plasmid, enhanced green fluorescent protein?human interleukin?2 (pEGFP?hIL?2) was formed. The plasmid was stably transfected into the AF?MSCs and the cells were intravenously injected into ovarian cancer nude mice models. Following stable transfection of the vector, tumor formation, and the expression and activity of hIL?2 were investigated, and microscopic pathological examinations of the tumor were performed. It was found that AF?MSCs exhibited high motility during migration in vivo, and the vector, pEGFP?hIL?2 can be stably transfected into AF?MSCs. Following stable transfection, this type of stem cell is able to successfully transport the therapeutic gene, IL-2, migrate to the ovarian cancer tumor site to secrete the functional IL-2 and treat the tumor. Thus, AF-MSCs may serve as transporters for therapeutic genes targeting ovarian tumor sites and, therefore, be involved in the treatment of tumors. PMID:26179662

  10. Effect of targeted ovarian cancer therapy using amniotic fluid mesenchymal stem cells transfected with enhanced green fluorescent protein-human interleukin-2 in vivo

    PubMed Central

    YOU, QI; YAO, YUAN; ZHANG, YUANLONG; FU, SONGBIN; DU, MEI; ZHANG, GUANGMEI

    2015-01-01

    The aim of the present study was to investigate the effect of using amniotic fluid mesenchymal stem cells (AF-MSCs) in targeted ovarian cancer therapy in vivo. AF-MSCs were isolated from human second trimester AF and a plasmid, enhanced green fluorescent protein-human interleukin-2 (pEGFP-hIL-2) was formed. The plasmid was stably transfected into the AF-MSCs and the cells were intravenously injected into ovarian cancer nude mice models. Following stable transfection of the vector, tumor formation, and the expression and activity of hIL-2 were investigated, and microscopic pathological examinations of the tumor were performed. It was found that AF-MSCs exhibited high motility during migration in vivo, and the vector, pEGFP-hIL-2 can be stably transfected into AF-MSCs. Following stable transfection, this type of stem cell is able to successfully transport the therapeutic gene, IL-2, migrate to the ovarian cancer tumor site to secrete the functional IL-2 and treat the tumor. Thus, AF-MSCs may serve as transporters for therapeutic genes targeting ovarian tumor sites and, therefore, be involved in the treatment of tumors. PMID:26179662

  11. Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site.

    PubMed Central

    Brabletz, T; Pfeuffer, I; Schorr, E; Siebelt, F; Wirth, T; Serfling, E

    1993-01-01

    Transforming growth factor beta (TGF-beta) has a growth-inhibitory effect on numerous different cell types of the immune system, including T lymphocytes. We show in this study that the inhibitory action of TGF-beta on T lymphocytes is accompanied by a block of interleukin 2 (IL-2) gene expression which is mediated, at least in part, by inhibition of IL-2 promoter/enhancer activity. The functional analysis of cis-regulatory (proto-enhancer) elements of the IL-2 enhancer/promoter region showed that the most TGF-beta-responsive element maps to its so-called upstream promoter site. The proto-enhancer activity of the upstream promoter site element is also inhibited by cyclosporin A. The upstream promoter site DNA harbors two noncanonical, closely linked binding sequences for octamer and AP-1-like factors. Both sites are involved in the establishment of IL-2 enhancer activity. Since the activity of genuine octamer sites but not that of AP-1-binding sites is also impaired by TGF-beta and cyclosporin A in El4 T lymphoma cells, we conclude that both immunosuppressives interfere with the activity but not the DNA binding of octamer factors in T lymphocytes. Images PMID:8423782

  12. Natural Variation in Interleukin-2 Sensitivity Influences Regulatory T-Cell Frequency and Function in Individuals With Long-standing Type 1 Diabetes.

    PubMed

    Yang, Jennie H M; Cutler, Antony J; Ferreira, Ricardo C; Reading, James L; Cooper, Nicholas J; Wallace, Chris; Clarke, Pamela; Smyth, Deborah J; Boyce, Christopher S; Gao, Guo-Jian; Todd, John A; Wicker, Linda S; Tree, Timothy I M

    2015-11-01

    Defective immune homeostasis in the balance between FOXP3(+) regulatory T cells (Tregs) and effector T cells is a likely contributing factor in the loss of self-tolerance observed in type 1 diabetes (T1D). Given the importance of interleukin-2 (IL-2) signaling in the generation and function of Tregs, observations that polymorphisms in genes in the IL-2 pathway associate with T1D and that some individuals with T1D exhibit reduced IL-2 signaling indicate that impairment of this pathway may play a role in Treg dysfunction and the pathogenesis of T1D. Here, we have examined IL-2 sensitivity in CD4(+) T-cell subsets in 70 individuals with long-standing T1D, allowing us to investigate the effect of low IL-2 sensitivity on Treg frequency and function. IL-2 responsiveness, measured by STAT5a phosphorylation, was a very stable phenotype within individuals but exhibited considerable interindividual variation and was influenced by T1D-associated PTPN2 gene polymorphisms. Tregs from individuals with lower IL-2 signaling were reduced in frequency, were less able to maintain expression of FOXP3 under limiting concentrations of IL-2, and displayed reduced suppressor function. These results suggest that reduced IL-2 signaling may be used to identify patients with the highest Treg dysfunction and who may benefit most from IL-2 immunotherapy. PMID:26224887

  13. Synergistic induction by calcium ionophore and phorbol ester of interleukin-2 (IL-2) receptor expression, IL-2 production, and proliferation in autoimmune MRL/MP-lpr mice.

    PubMed Central

    Koizumi, T; Nakao, Y; Matsui, T; Katakami, Y; Nakagawa, T; Fujita, T

    1986-01-01

    MRL/MP-lpr/lpr (MRL/l) mice spontaneously develop an age-related autoimmune disease concomitant with interleukin-2 (IL-2) defects. Induction of IL-2 receptor (IL-2R), IL-2 production and subsequent de novo DNA synthesis in MRL/l mice by the tumour-promoting phorbol ester 12-o-tetradecanoyl phorbol 13-acetate (TPA) and calcium ionophore (A23187) were examined. These two compounds given together induced significant IL-2R expression, IL-2 production, and de novo DNA synthesis of spleen cells from this murine strain, as did concanavalin A (Con A) plus TPA. TPA and A23187 may bypass the early steps of activation by mitogens in murine lymphocytes. However, even though these IL-2 defects could be overcome to some extent, the response of MRL/l mice to these stimuli was considerably lower than the enhanced IL-2R expression and IL-2 production of MRL/MP-+/+(MRL/n) control mice. These results suggested that the failure to respond to mitogens in these mice may be due, at least in part, to failure of receptor signal transduction, and to defects of molecular and biochemical reactions following signal transduction. PMID:3093371

  14. Effects of medium quality on the expression of human interleukin-2 at high cell density in fermentor cultures of Escherichia coli K-12.

    PubMed Central

    MacDonald, H L; Neway, J O

    1990-01-01

    We examined the ability of transformed Escherichia coli cells in fermentor cultures to accumulate interleukin-2 (IL-2) intracellularly under temperature-regulated control of the phage lambda pL promoter. Induction of expression was undertaken at different culture optical densities, and specific IL-2 accumulation was found to decrease with increasing cell density at induction. Induction at higher culture optical densities was also accompanied by decreased growth during induction and increased acetate accumulation in the culture medium. Experiments were undertaken to study the effect of replacing spent medium by perfusion with fresh medium both before induction and during IL-2 expression at high cell density. Improved IL-2 expression was seen only when perfusion was continued past 1.6 h after the start of induction, and it was accompanied by a significant reduction in acetate buildup. Further improvements were not seen when perfusion was continued beyond hour 3 of induction. Replenishing medium components and decreasing the concentration of diffusible inhibitors before induction did not alleviate acetate buildup, growth limitation, or limitation of IL-2 synthesis. These results suggested that accumulation of diffusible inhibitors such as acetate during induction may be a significant factor limiting IL-2 expression in high-density cultures, but other factors intrinsic to the organism or the protein also played a major role. PMID:2180368

  15. A phase II study of bevacizumab and high-dose interleukin-2 in patients with metastatic renal cell carcinoma: a Cytokine Working Group (CWG) study.

    PubMed

    Dandamudi, Uday B; Ghebremichael, Musie; Sosman, Jeffrey A; Clark, Joseph I; McDermott, David F; Atkins, Michael B; Dutcher, Janice P; Urba, Walter J; Regan, Meredith M; Puzanov, Igor; Crocenzi, Todd S; Curti, Brendan D; Vaishampayan, Ulka N; Crosby, Nancy A; Margolin, Kim A; Ernstoff, Marc S

    2013-01-01

    Overexpression of vascular endothelial growth factor in renal cell carcinoma (RCC) leads to angiogenesis, tumor progression, and inhibition of immune function. We conducted the first phase II study to estimate the efficacy and safety of bevacizumab with high-dose interleukin-2 (IL-2) therapy in patients with metastatic RCC. Eligible patients had predominantly clear cell metastatic RCC, measurable disease, a Karnofsky Performance Status of ?80%, and adequate end-organ function. IL-2 (600,000 IU/kg) was infused intravenously every 8 hours (maximum 28 doses) during two 5-day cycles on days 1 and 15 of each 84-day course. Bevacizumab (10 mg/kg) was infused intravenously every 2 weeks beginning 2 weeks before initiating IL-2. Fifty of 51 eligible patients from 8 centers were enrolled. Median progression-free survival (PFS) was 11.2 months (90% confidence interval, 5.7-17.7), and 2-year PFS was 18% (90% confidence interval, 8%-27%). Responses included 4 complete (8%) and 11 partial (22%) responses. Toxicities did not exceed those expected from each agent alone. Combining IL-2 plus bevacizumab is feasible, with a response rate and PFS at least as high as reported previously for the single agents. The regimen did not appear to enhance the rate of durable major responses over that of IL-2 alone. PMID:24145360

  16. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  17. Both interleukin 2 and a second T cell-derived factor in EL-4 supernatant have activity as differentiation factors in IgM synthesis

    PubMed Central

    1984-01-01

    B cells cultured with anti-IgM, BSF-p1, and B15-TRF will differentiate into high rate IgM-synthesizing cells in the presence of supernatants from EL-4 cells that have been induced with phorbol myristate acetate. These supernatants contain two molecular species (EL-TRFs) that have differentiative activity. One co-migrates with interleukin 2 (IL-2) and its activity is blocked by antibody to the IL-2 receptor. Furthermore, molecularly cloned IL-2, at concentrations of 100 U/ml or more, expresses such EL-TRF activity. The EL-TRF activity of cloned IL-2 can also be inhibited by antibody to the IL-2 receptor. The other material with EL-TRF activity has a molecular weight of approximately 32,000. This material lacks IL-2 activity. Antibody to the IL-2 receptor does not impair its function. B cells stimulated with anti-IgM and BSF-p1, with or without B15-TRF, express determinants that react with two monoclonal antibodies which recognize distinct epitopes on the T cell IL-2 receptor. These determinants are present at much lower density (approximately 100-fold) on stimulated B cells that on HT-2 cells, an IL-2-dependent T cell line. Very small amounts of [3H]IL-2 (less than 1,000 molecules per cell) bind to activated B cells. These results indicate that IL-2 binds to a receptor on appropriately prepared B cells and causes them to differentiate into high rate IgM-synthesizing cells. The physiologic significance of the B cell differentiative activity of IL-2 remains to be investigated. PMID:6439814

  18. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes

    SciTech Connect

    Grimm, E.A.; Mazumder, A.; Zhang, H.Z.; Rosenberg, S.A.

    1982-06-01

    Activation in lectin-free interleukin 2 (IL-2) containing supernatants of peripheral blood mononuclear leukocytes (PBL) from cancer patients or normal individuals resulted in expression of cytotoxicity toward 20 of 21 natural killer (NK)-resistant fresh solid tumor cells tested. Fresh solid tumor cells were resistant to NK-mediated lysis in 10 autologous patients' PBL-tumor interactions, and from 17 normal individuals tested against 13 allogeneic fresh tumors. Culture of PBL in IL-2 for 2-3 d was required for the lymphokine activated killers (LAK) to be expressed, and lytic activity toward a variety of NK-resistant fresh and cultured tumor targets developed in parallel. Autologous IL-2 was functional in LAK activation, as well as interferon-depleted IL-2 preparations. Irradiation of responder PBL before culture in IL-2 prevented LAK development. Precursors of LAK were present in PBL depleted of adherent cells and in NK-void thoracic duct lymphocytes, suggesting that the precursor is neither a monocyte nor an NK cell. LAK effectors expressed the serologically defined T cell markers of OKT.3, Leu-1, and 4F2, but did not express the monocyte/NK marker OKM-1. Lysis of autologous fresh solid tumors by LAK from cancer patients' PBL was demonstrated in 85% of the patient-fresh tumor combinations. Our data present evidence that the LAK system is a phenomenon distinct from either NK or CTL systems that probably accounts for a large number of reported nonclassical cytotoxicities. The biological role of LAK cells is not yet known, although it is suggested that these cells may be functional in immune surveillance against human solid tumors.

  19. Retrospective analysis of the safety and efficacy of high-dose interleukin-2 after prior tyrosine kinase inhibitor therapy in patients with advanced renal cell carcinoma.

    PubMed

    Lam, Elaine T; Wong, Michael K K; Agarwal, Neeraj; Redman, Bruce G; Logan, Theodore; Gao, Dexiang; Flaig, Thomas W; Lewis, Karl; Poust, Jamie; Monk, Paul; Jarkowski, Anthony; Sendilnathan, Arun; Bolden, Marcus; Kuzel, Timothy M; Olencki, Thomas

    2014-09-01

    Although tyrosine kinase inhibitors (TKI) are the most common first-line therapy for metastatic renal cell carcinoma, high-dose interleukin-2 (HD-IL2) remains the only agent that provides durable complete responses. The optimal sequence of these agents remains uncertain. This retrospective multi-institutional study examined the safety and efficacy of HD-IL2 following TKI therapy. After IRB approval at 7 HD-IL2 centers, data relating to patient, disease, and treatment characteristics among 40 consecutive patients with metastatic renal cell carcinoma who were treated with HD-IL2 after at least 1 prior TKI therapy were retrospectively collected. The most common cardiac adverse events were grade 3 hypotension and vascular leak syndrome. Six patients (15%) experienced other grade ?3 cardiac adverse events. There were 2 treatment-related deaths due to congestive heart failure, occurring in 1 patient with short TKI to HD-IL2 interval and another patient with an abnormal baseline cardiac stress test. Best responses included 2 CRs (5%, duration 40+ and 62+ mo), 3 PRs (8%, duration 6, 11, and 24 mo), 13 SD (32%, median duration 12 mo), 20 PD (50%), and 2 not evaluable patients. Median overall survival was 22 months. Administration of HD-IL2 could be safe and effective after TKI therapy; however, careful selection of patients is critical. We recommend baseline cardiac risk factor assessment, screening with both cardiac stress test and echocardiogram, and allowing a TKI to HD-IL2 interval of at least 2 months. PMID:25075565

  20. Relationship between Serum Level of Interleukin-2 in Patients with Systemic Lupus Erythematosus and Disease Activity in Comparison with Control Group

    PubMed Central

    Aghaei, Mehrdad; Musavi, Sara; Nomali, Mahin

    2014-01-01

    Background: Despite the large number of surveys, there are not any validated biomarkers for SLE disease activity till now. This study aimed to evaluate the relationship between serum level of IL-2 in patients with SLE and disease activity in comparison with control group. Materials and Methods: In this case-control study, 73 patients with lupus and 73 healthy subjects referred to the rheumatology clinic of 5 Azar Hospital in Gorgan (North of Iran).They were studied via convenience sampling during 2011-2012. Blood samples were taken from both groups and serum levels of interleukin -2 measured by Avi Bion Human IL-2 ELISA kit. Serum Level of IL-2 greater than 15 pg/ml defined positive and lesser than this amount defined negative. Disease activity evaluated with SLE disease activity index. Score greater than or equal to three or four defined as active disease. Data analysis conducted by SPSS software (version 16) and by using descriptive statistics and statistical tests. Results: Serum level of IL-2 was positive in 45.2% of sample studied and negative in 54.8% in case group, while in control group, serum level of IL-2 only in 11% of sample studied was positive and in 89% was negative. Statistical analysis indicated a significant relationship between serum level of IL-2 and the SLE disease activity index (p=0.025). Conclusion: This study showed the relationship between serum levels of IL-2 and disease activity, so this biomarker can be used as a clinical indicator for assessing disease activity in patients with SLE. PMID:25177590

  1. Targeting interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK) using a novel covalent inhibitor PRN694.

    PubMed

    Zhong, Yiming; Dong, Shuai; Strattan, Ethan; Ren, Li; Butchar, Jonathan P; Thornton, Kelsey; Mishra, Anjali; Porcu, Pierluigi; Bradshaw, J Michael; Bisconte, Angelina; Owens, Timothy D; Verner, Erik; Brameld, Ken A; Funk, Jens Oliver; Hill, Ronald J; Johnson, Amy J; Dubovsky, Jason A

    2015-03-01

    Interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK or TXK) are essential mediators of intracellular signaling in both normal and neoplastic T-cells and natural killer (NK) cells. Thus, ITK and RLK inhibitors have therapeutic potential in a number of human autoimmune, inflammatory, and malignant diseases. Here we describe a novel ITK/RLK inhibitor, PRN694, which covalently binds to cysteine residues 442 of ITK and 350 of RLK and blocks kinase activity. Molecular modeling was utilized to design molecules that interact with cysteine while binding to the ATP binding site in the kinase domain. PRN694 exhibits extended target residence time on ITK and RLK and is highly selective for a subset of the TEC kinase family. In vitro cellular assays confirm that PRN694 prevents T-cell receptor- and Fc receptor-induced cellular and molecular activation, inhibits T-cell receptor-induced T-cell proliferation, and blocks proinflammatory cytokine release as well as activation of Th17 cells. Ex vivo assays demonstrate inhibitory activity against T-cell prolymphocytic leukemia cells, and in vivo assays demonstrate durable pharmacodynamic effects on ITK, which reduces an oxazolone-induced delayed type hypersensitivity reaction. These data indicate that PRN694 is a highly selective and potent covalent inhibitor of ITK and RLK, and its extended target residence time enables durable attenuation of effector cells in vitro and in vivo. The results from this study highlight potential applications of this dual inhibitor for the treatment of T-cell- or NK cell-mediated inflammatory, autoimmune, and malignant diseases. PMID:25593320

  2. Induction of interleukin-2 transcription by the hamster polyomavirus middle T antigen: a role for Fyn in T cell signal transduction.

    PubMed

    Brizuela, L; Ulug, E T; Jones, M A; Courtneidge, S A

    1995-02-01

    The transforming protein of mouse polyomavirus, the mouse middle T antigen (MomT), and its counterpart in the hamster polyomavirus, the hamster middle T antigen (HamT), interact with a number of cellular proteins. Among these are members of the Src family of tyrosine kinases, the phosphatidylinositol 3-kinase, the serine/threonine phosphatase PP2A and the adaptor protein Shc (in the case of MomT). However, both the relative affinity of these antigens for the members of the Src family and the tumor profile induced by their respective viruses are quite distinct. Particularly noteworthy are the preferential binding of Fyn by HamT and the induction of lymphoid malignancies by the hamster polyomavirus. Here we report that, when expressed in fibroblasts, HamT also associated with phospholipase C gamma (PLC gamma), which led to an increased intracellular concentration of inositol-1, 4, 5-trisphosphate. We also show that expression of HamT in the mouse T cell line EL4 was sufficient to induce transcription from interleukin-2 (IL-2), NFAT and NF kappa B reporter constructs. The immunosuppressant FK506 as well as dominant negative alleles of Ras and Raf inhibited HamT-induced IL-2 transcription. This, together with the observation of NFAT responses, suggests that the action of HamT depended at least in part on the integrity of signal transduction pathways elicited by activated PLC gamma. Furthermore, dominant negative Fyn but not the equivalent allele of Lck blocked HamT activation of IL-2 transcription, while both Lck and Fyn dominant negative alleles blocked LT cell receptor-mediated IL-2 transcriptional activation. These results support the hypothesis that Fyn is involved in signal transduction events leading to IL-2 transcriptional activation in T cells. Finally, the activation of IL-2 transcription by HamT and not by MomT shown here parallels the ability of the hamster polyomavirus to induce lymphoid malignancies. PMID:7875200

  3. Mechanism of action of interleukin-2 (IL-2)-Bax, an apoptosis-inducing chimaeric protein targeted against cells expressing the IL-2 receptor.

    PubMed Central

    Aqeilan, Rami; Kedar, Rotem; Ben-Yehudah, Ahmi; Lorberboum-Galski, Haya

    2003-01-01

    The chimaeric protein interleukin-2 (IL-2)-Bax was designed to target and kill specific cell populations expressing the IL-2 receptor. However, it is not well understood how IL-2-Bax causes target cells to die. In the present study, we investigated the pathway of apoptosis evoked by IL-2-Bax and the possible involvement of endogenous Bax in this process. We report here that, upon internalization of IL-2-Bax into target cells, it is localized first mainly in the nucleus, and only later is it translocated to the mitochondria. Similarly, endogenous Bax is also partially localized in the nucleus, and accumulates mainly in this compartment soon after physiological triggering of apoptosis. Despite the fact that Bax has no nuclear localization sequence, our data suggest that Bax has one or more physiological roles and/or substrates within the nucleus. Indeed, a dramatic repression of nuclear Tax protein expression was induced following treatment of HUT-102 cells with IL-2-Bax, similar to what occurs following serum deprivation of these cells. Unexpectedly, induction of apoptosis using IL-2-Bax was preceded by enhanced expression of newly synthesized Bax protein and suppression of Bcl-2. This imbalance between the pro- and anti-apoptotic genes was associated with p53 induction, although IL-2-Bax activity was also evident in cells lacking p53 expression. By studying the mechanism of action of IL-2-Bax, we were able to follow the intrinsic events and their cascade that culminates in cell death. We have shown that the ability of IL-2-Bax to affect the intracellular apoptotic machinery within the target cells, and to cause the cells to die, uses a mechanism similar to that induced following a normal apoptotic signal. PMID:12405905

  4. Francisella tularensis-induced in vitro gamma interferon, tumor necrosis factor alpha, and interleukin 2 responses appear within 2 weeks of tularemia vaccination in human beings.

    PubMed Central

    Karttunen, R; Surcel, H M; Andersson, G; Ekre, H P; Herva, E

    1991-01-01

    Cell-mediated immunity is essential for protection against the intracellular bacterium Francisella tularensis, which causes tularemia. Positive in vitro T-cell responses in the form of lymphocyte proliferation and lymphokine interleukin 2 (IL-2) and gamma interferon (IFN-gamma) secretion are found in memory immunity. Studies on the secretion of lymphokines with regard to the developing immunity to F. tularensis have not been published. Therefore, 14 subjects with no clinical history of tularemia were vaccinated with a live F. tularensis vaccine strain. The in vitro responses of five subjects (antigen-induced mononuclear cell and whole blood culture DNA synthesis and cytokine secretion) were measured twice a week throughout the period from 0 to 35 days after vaccination, and the peripheral blood lymphocyte subpopulations of nine subjects were determined between days 0 and 14. Positive reactions, i.e., responses exceeding those on day 0, were reached on day 10 with regard to the whole blood culture DNA synthesis response and IL-2 and IFN-gamma secretion and on day 14 with regard to the mononuclear cell DNA synthesis response and tumor necrosis factor alpha (TNF-alpha) secretion. No measurable IL-4 was found in either the immune or nonimmune supernatants. Since the secretion of TNF-alpha was related to immunization, this points to the specificity of the phenomenon, even though the type of secreting cell is not yet known. If it is shown later that specific T cells produce it, the TNF-alpha response and the negative IL-4 finding may speak for the importance of the Th1-like pattern in immunity to F. tularensis. PMID:1909711

  5. Transgenic Eimeria mitis expressing chicken interleukin 2 stimulated higher cellular immune response in chickens compared with the wild-type parasites

    PubMed Central

    Li, Zhuoran; Tang, Xinming; Suo, Jingxia; Qin, Mei; Yin, Guangwen; Liu, Xianyong; Suo, Xun

    2015-01-01

    Chicken coccidiosis, caused by Eimeria sp., occurs in almost all poultry farms and causes huge economic losses in the poultry industry. Although this disease could be controlled by vaccination, the reduced feed conservation ratio limits the widespread application of anticoccidial vaccines in broilers because some intermediate and/or low immunogenic Eimeria sp. only elicit partial protection. It is of importance to enhance the immunogenicity of these Eimeria sp. by adjuvants for more effective prevention of coccidiosis. Cytokines have remarkable effects on the immunogenicity of antigens. Interleukin 2 (IL-2), for example, significantly stimulates the activation of CD8+ T cells and other immune cells. In this study, we constructed a transgenic Eimeria mitis line (EmiChIL-2) expressing chicken IL-2 (ChIL-2) to investigate the adjuvant effect of ChIL-2 to enhance the immunogenicity of E. mitis against its infection. Stable transfected EmiChIL-2 population was obtained by pyrimethamine selection and verified by PCR, genome walking, western blotting and indirect immunofluorescence assay. Cellular immune response, E. mitis-specific IFN-? secretion lymphocytes in the peripheral blood mononuclear cells, stimulated by EmiChIL-2 was analyzed by enzyme-linked immunospot assay (ELISPOT). The results showed that EmiChIL-2 stimulated a higher cellular immune response compared with that of the wild-type parasite infection in chickens. Moreover, after the immunization with EmiChIL-2, elevated cellular immune response as well as reduced oocyst output were observed These results indicated that ChIL-2 expressed by Eimeria sp. functions as adjuvant and IL-2 expressing Eimeria parasites are valuable vaccine strains against coccidiosis. PMID:26082759

  6. Targeting of TAK1 by the NF-B protein Relish regulates the JNK-mediated

    E-print Network

    an adaptive immune system, being en- tirely dependent on innate immunity for its resistance to microbial, San Diego, California 92121, USA The molecular circuitry underlying innate immunity is constructed induction of Relish-dependent innate immune loci. Because the IKK-NF- B module also negatively regulates JNK

  7. N-Farnesyloxy-norcantharimide inhibits progression of human leukemic Jurkat T cells through regulation of mitogen-activated protein kinase and interleukin-2 production

    PubMed Central

    Chang, Ming-Che; Wu, Jin-Yi; Liao, Hui-Fen; Chen, Yu-Jen

    2015-01-01

    This study investigated the anticancer effects of N-farnesyloxy-norcantharimide (NOC15), a newly synthesized norcantharidin (NCTD) analogue, on human leukemic Jurkat T cells and the signaling pathway underlying its effects. We found that the half maximal inhibitory concentration (IC50) of NOC15 on Jurkat T cells is 1.4??mol/l, which is 11.14-fold (=15.6÷1.4) smaller than the 15.6??mol/l of NCTD on Jurkat T cells, whereas the IC50 of NOC15 on human normal lymphoblast (HNL) is 207.9??mol/l, which is 8.17-fold (=1698.0÷207.8) smaller than the 1698.0??mol/l of NCTD on HNL cells. These results indicated that NOC15 exerts a higher anticancer effect on Jurkat T cells and has higher toxicity toward HNL cells than NCTD. Thus, NOC15 is 1.36-fold (=11.14÷8.17) beneficial as an anticancer agent toward Jurkat T cells compared with NCTD. Moreover, NOC15 can increase the percentage of cells in the sub-G1 phase and reduce the cell viability of Jurkat T cells, stimulate p38 and extracellular signal-regulated protein kinase 1/2 (ERK1/2) of mitogen-activated protein kinases (MAPKs) signaling pathway, and inhibit calcineurin expression and interleukin-2 (IL-2) production. However, NOC15 exerted no effects on the Jun-N-terminal kinase 1/2 (JNK1/2) signaling pathway, the production of IL-8, and tumor necrosis factor-?. We conclude that the anticancer activity of the newly synthesized NOC15 is 1.36-fold beneficial than NCTD as an anticancer agent and that NOC15 can increase the percentage of cells in the sub-G1 phase through the stimulation of p38 and ERK1/2 of the MAPK signaling pathway and the inhibition of calcineurin expression and IL-2 production. The NOC15 may have the potential of being developed into an anticancer agent in the future. PMID:26288134

  8. Phase 2 study of the g209-2M melanoma peptide vaccine and low-dose interleukin-2 in advanced melanoma: Cancer and Leukemia Group B 509901.

    PubMed

    Roberts, John D; Niedzwiecki, Donna; Carson, William E; Chapman, Paul B; Gajewski, Thomas F; Ernstoff, Marc S; Hodi, F Stephen; Shea, Christopher; Leong, Stanley P; Johnson, Jeffrey; Zhang, Dongsheng; Houghton, Alan; Haluska, Frank G

    2006-01-01

    High-dose interleukin-2 (IL-2) is the only approved immunologic therapy for advanced melanoma, but response rates are low and significant toxicities limit treatment to otherwise healthy patients. g209-2M is a nanopeptide engineered to mimic an epitope of the gp100 melanocyte differentiation protein that is recognized in a human leukocyte antigen (HLA)-restricted manner by melanoma tumor-infiltrating lymphocytes in some patients. Previous reports indicated that administration of the g209-2M peptide could induce g209-reactive circulating T cells in patients with melanoma and that the combination of g209-2M and high-dose IL-2 might be a more active treatment than high-dose IL-2 alone. Low-dose IL-2 is not active but has significant biologic effects, and because of a different toxicity profile, it can be offered to most patients. The primary objective of this cooperative group phase 2 study was to determine the activity of the combination of g209-2M and low-dose IL-2 in advanced melanoma. Twenty-six HLA appropriate patients with advanced melanoma received subcutaneous g209-2M peptide once every 3 weeks and subcutaneous IL-2 (5 million IU/m) daily for 5 days during the first and second weeks. Patients were monitored for tumor response, toxicity, and induction of g209-reactive circulating T cells. There were no objective responses. There were no toxic deaths and no grade 4 toxicities. More than half of the patients experienced some grade 2 toxicity and one quarter experienced grade 3 toxicity. There was no convincing evidence by enzyme-linked immunospot or tetramer analysis of induction of g209-reactive circulating T cells. The combination of g209-2M and low-dose IL-2 is safe and tolerable but inactive against advanced melanoma. Absence of evidence of immunization raises concerns for peptide-based immunization strategies with concurrent IL-2. PMID:16365605

  9. Cell surface glycoproteins involved in the stimulation of interleukin 1-dependent interleukin 2 production by a subline of EL4 thymoma cells. II. Structure, biosynthesis, and maturation.

    PubMed

    Lüscher, B; Rousseaux, M; Lees, R; MacDonald, H R; Bron, C

    1985-12-01

    In the present study, we examined the biosynthesis and the maturation of two distinct membrane glycoproteins detected by two monoclonal antibodies (RL388 and RL119), which were selected on the basis of their ability to stimulate the production of interleukin 2 by a subline of the murine EL4 thymoma. RL388 detected a disulfide-linked heterodimer complex (Mr = 130,000) composed of a glycosylated heavy (Mr = 86,000) and a nonglycosylated light (Mr = 39,000) subunit. The unglycosylated precursor of the heavy chain was a polypeptide of Mr = 57,500, which was converted upon maturation into a Mr = 73,000 core-glycosylated intermediate, and then into the Mr = 86,000 surface-expressed molecule. Partial endo-H digestion of the core-glycosylated form suggested the presence of four N-linked glycan units. The antibody reacted with a protein determinant expressed on the mature form as well as the unglycosylated precursor of the heavy chain. Moreover, both subunits assembled rapidly during biosynthesis, and the glycosylation of the heavy chain was not required for this association. Taken together, these data suggest that the antigen detected by RL388 may be the murine homologue of the human 4F2 antigen. The antigen identified by RL119 was a surface glycoprotein of Mr = 55,000 with three to five N-linked glycan units. The unglycosylated precursor polypeptide was of Mr = 29,000. The fully core-glycosylated form of Mr = 41,000, which was detected after inhibition of glucosidase I with 1-deoxynojirimycin, was converted into a Mr = 39,000 intermediate, and upon further trimming, into a Mr = 36,000 endo-H-sensitive form. The latter could be detected for chase periods of over several hours, thus suggesting a low rate of intracellular processing. The wide cellular distribution of the molecules identified by RL388 and RL119 and their preferential expression on the surface of growing cells suggests that they may be associated with cell activation events. PMID:3877761

  10. NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces tumour growth in adenocarcinoma-bearing mice.

    PubMed Central

    Orucevic, A.; Lala, P. K.

    1996-01-01

    We tested whether NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis, can prevent interleukin 2 (IL-2)-induced capillary leakage in tumour-bearing mice without compromising the therapeutic benefits of IL-2. C3H/HeJ female mice transplanted s.c. with 2.5 x 10(5) C3-L5 mammary carcinoma cells were treated with: nothing, IL-2 (ten injections of 15,000 Cetus units i.p. every 8 h), L-NAME (0.1, 0.5, or 1 mg ml-1 drinking water), IL-2 + L-NAME (0.1 or 0.5 or 1 mg ml-1 drinking water). Therapies were given in one round (IL-2, days 10-13; L-NAME, days 9-13) or in two rounds (IL-2, days 10-13 and 20-23; L-NAME, days 9-13 and days 19-23) after tumour transplantation. Capillary leakage was measured from the water contents of the pleural cavities, lungs, spleen and kidneys. Effects of the therapies on the primary tumour size and the number of spontaneous lung metastases were also recorded. NO production was measured as the nitrite + nitrate levels in the serum and in the pleural effusion. After the first round of therapies, addition of L-NAME significantly reduced IL-2-induced pulmonary oedema and water retention in the spleen in a dose-dependent manner. It also significantly reduced the IL-2-induced rise in NO levels in the serum and pleural fluid, but did not affect IL-2-induced pleural effusion or water retention in the kidney. At later stages of tumour growth (day 23), tumours themselves induced significant fluid retention in the lungs and the kidney, which was not aggravated further with the second round of IL-2 therapy. At this time, L-NAME therapy alone ameliorated tumour-induced pulmonary oedema. During both rounds of therapy different doses of L-NAME alone caused a reduction of primary tumour growth as well as spontaneous lung metastases, which improved further with the addition of IL-2. The combination therapy was at least as effective as IL-2 therapy. In summary, L-NAME had anti-tumour effects in vivo, reduced the severity of IL-2-induced capillary leakage in some organs and did not compromise anti-tumour efficacy of IL-2 therapy. Thus, L-NAME could be a valuable adjunct to IL-2-based cancer therapy. PMID:8546905

  11. Prognostic Relevance of Cytokine Receptor Expression in Acute Myeloid Leukemia: Interleukin-2 Receptor ?-Chain (CD25) Expression Predicts a Poor Prognosis.

    PubMed

    Nakase, Kazunori; Kita, Kenkichi; Kyo, Taiichi; Ueda, Takanori; Tanaka, Isao; Katayama, Naoyuki

    2015-01-01

    A variety of cytokine/cytokine receptor systems affect the biological behavior of acute leukemia cells. However, little is known about the clinical relevance of cytokine receptor expression in acute myeloid leukemia (AML). We quantitatively examined the expression of interleukin-2 receptor ?-chain (IL-2R?, also known as CD25), IL-2R?, IL-3R?, IL-4R?, IL-5R?, IL-6R?, IL-7R?, the common ?-chain (?c), ?c, granulocyte-macrophage colony-stimulating factor (GM-CSF)R?, G-CSFR, c-fms, c-mpl, c-kit, FLT3, and GP130 in leukemia cells from 767 adult patients with AML by flow cytometry and determined their prevalence and clinical significance. All cytokine receptors examined were expressed at varying levels, whereas the levels of IL-3R?, GM-CSFR?, IL-2R?, ?c, c-kit, and G-CSFR exhibited a wide spectrum of ?10,000 sites/cell. In terms of their French-American-British classification types, GM-CSFR? and c-fms were preferentially expressed in M4/M5 patients, G-CSF in M3 patients, and IL-2R? in non-M3 patients. Elevated levels of IL-3R?, GM-CSFR?, and IL-2R? correlated with leukocytosis. In patients ?60 years old, higher levels of these 3 receptors correlated with poor responses to conventional chemotherapy, but only IL-2R? was associated with a shorter overall survival. By incorporating IL-2R? status into cytogenetic risk stratification, we could sort out a significantly adverse-risk cohort from the cytogenetically intermediate-risk group. Analyses with various phenotypical risk markers revealed the expression of IL-2R? as an independent prognostic indicator in patients with intermediate-risk cytogenetics. These findings were not observed in patients >60 years old. Our results indicate that several cytokine receptors were associated with certain cellular and clinical features, but IL-2R? alone had prognostic value that provides an additional marker to improve current risk evaluation in AML patients ?60 years old. PMID:26375984

  12. Prognostic Relevance of Cytokine Receptor Expression in Acute Myeloid Leukemia: Interleukin-2 Receptor ?-Chain (CD25) Expression Predicts a Poor Prognosis

    PubMed Central

    Nakase, Kazunori; Kita, Kenkichi; Kyo, Taiichi; Ueda, Takanori; Tanaka, Isao; Katayama, Naoyuki

    2015-01-01

    A variety of cytokine/cytokine receptor systems affect the biological behavior of acute leukemia cells. However, little is known about the clinical relevance of cytokine receptor expression in acute myeloid leukemia (AML). We quantitatively examined the expression of interleukin-2 receptor ?-chain (IL-2R?, also known as CD25), IL-2R?, IL-3R?, IL-4R?, IL-5R?, IL-6R?, IL-7R?, the common ?-chain (?c), ?c, granulocyte-macrophage colony-stimulating factor (GM-CSF)R?, G-CSFR, c-fms, c-mpl, c-kit, FLT3, and GP130 in leukemia cells from 767 adult patients with AML by flow cytometry and determined their prevalence and clinical significance. All cytokine receptors examined were expressed at varying levels, whereas the levels of IL-3R?, GM-CSFR?, IL-2R?, ?c, c-kit, and G-CSFR exhibited a wide spectrum of ?10,000 sites/cell. In terms of their French-American-British classification types, GM-CSFR? and c-fms were preferentially expressed in M4/M5 patients, G-CSF in M3 patients, and IL-2R? in non-M3 patients. Elevated levels of IL-3R?, GM-CSFR?, and IL-2R? correlated with leukocytosis. In patients ?60 years old, higher levels of these 3 receptors correlated with poor responses to conventional chemotherapy, but only IL-2R? was associated with a shorter overall survival. By incorporating IL-2R? status into cytogenetic risk stratification, we could sort out a significantly adverse-risk cohort from the cytogenetically intermediate-risk group. Analyses with various phenotypical risk markers revealed the expression of IL-2R? as an independent prognostic indicator in patients with intermediate-risk cytogenetics. These findings were not observed in patients >60 years old. Our results indicate that several cytokine receptors were associated with certain cellular and clinical features, but IL-2R? alone had prognostic value that provides an additional marker to improve current risk evaluation in AML patients ?60 years old. PMID:26375984

  13. A Randomised Trial of Subcutaneous Intermittent Interleukin-2 without Antiretroviral Therapy in HIV-Infected Patients: The UK–Vanguard Study

    PubMed Central

    Youle, Mike; Emery, Sean; Fisher, Martin; Nelson, Mark; Fosdick, Lisa; Janossy, George; Loveday, Clive; Sullivan, Ann; Herzmann, Christian; Wand, Handan; Davey, Richard T; Johnson, Margaret A; Tavel, Jorge A; Lane, H. Clifford

    2006-01-01

    Objective: The objective of the trial was to evaluate in a pilot setting the safety and efficacy of interleukin-2 (IL-2) therapy when used without concomitant antiretroviral therapy as a treatment for HIV infection. Design and Setting: This was a multicentre randomised three-arm trial conducted between September 1998 and March 2001 at three clinical centres in the United Kingdom. Participants: Participants were 36 antiretroviral treatment naïve HIV-1-infected patients with baseline CD4 T lymphocyte counts of at least 350 cells/mm3. Interventions: Participants were randomly assigned to receive IL-2 at 15 million international units (MIU) per day (12 participants) or 9 MIU/day (12 participants) or no treatment (12 participants). IL-2 was administered by twice-daily subcutaneous injections for five consecutive days every 8 wk. Outcome Measures: Primary outcome was the change from baseline CD4 T lymphocyte count at 24 wk. Safety and plasma HIV RNA levels were also monitored every 4 wk through 24 wk. The two IL-2 dose groups were combined for the primary analysis. Results: Area under curve (AUC) for change in the mean CD4 T lymphocyte count through 24 wk was 129 cells/mm3 for those assigned IL-2 (both dose groups combined) and 13 cells/mm3 for control participants (95% CI for difference, 51.3–181.2 cells/mm3; p = 0.0009). Compared to the control group, significant increases in CD4 cell count were observed for both IL-2 dose groups: 104.2/mm3 (p = 0.008) and 128.4 cells/mm3 (p = 0.002) for the 4.5 and 7.5 MIU dose groups, respectively. There were no significant differences between the IL-2 (0.13 log10 copies/ml) and control (0.09 log10 copies/ml) groups for AUC of change in plasma HIV RNA over the 24-wk period of follow-up (95% CI for difference, ?0.17 to 0.26; p = 0.70). Grade 4 and dose-limiting side effects were in keeping with those previously reported for IL-2 therapy. Conclusions: In participants with HIV infection and baseline CD4 T lymphocyte counts of at least 350 cells/mm3, intermittent subcutaneous IL-2 without concomitant antiretroviral therapy was well tolerated and produced significant increases in CD4 T lymphocyte counts and did not adversely affect plasma HIV RNA levels. PMID:16871325

  14. Clinical outcome of combined immunotherapy with interferon-alpha and low-dose interleukine-2 for Japanese patients with metastatic renal cell carcinoma.

    PubMed

    Miyake, Hideaki; Kurahashi, Toshifumi; Takenaka, Atsushi; Inoue, Taka-aki; Fujisawa, Masato

    2009-01-01

    The objective of this study was to retrospectively investigate clinical outcomes of combined immunotherapy with interferon-alpha (IFN-alpha) and low-dose interleukin-2 (IL-2) in Japanese patients with metastatic renal cell carcinoma (RCC). This study included a total of 52 patients with metastatic RCC who were treated by combined immunotherapy with IFN-alpha and low-dose IL-2 following radical nephrectomy. These patients received a subcutaneous injection of IFN-alpha (5 to 6 million U/d) three times per week and intravenous injection of IL-2 (1.4 million U/d) twice per week. Tumor response was evaluated every 16 weeks, and as a rule, this weekly regimen was repeated 50 times in patients with evidence of objective response or stable disease. In this series, complete response and partial response were achieved in 1 and 11 patients, respectively; however, the remaining 20 and 20 patients were diagnosed as showing stable disease and progressive disease, respectively. Of several parameters examined, presence of metastases at diagnosis and C-reactive protein (CRP) level were significantly associated with response to this combined therapy. The 1-, 3-, and 5-year cancer-specific survival rates of these 52 patients were 80.4%, 51.7%, and 38.8%, respectively. Furthermore, cancer-specific survival was significantly associated with performance status, presence of metastases at diagnosis, metastatic organ and CRP level on univariate analysis; however, only performance status and presence of metastases at diagnosis appeared to be independent predictors of cancer-specific death by multivariate analysis. Toxicities related to this therapy were generally mild and tolerable, limited to World Health Organization (WHO) grade 1 or 2 in the majority of patients. Collectively, these findings suggest that combined immunotherapy with IFN-alpha and low-dose IL-2 could achieve comparatively acceptable oncological outcomes in patients with metastatic RCC; however, other therapeutic options should be considered in patients with unfavorable performance status and/or those positive for metastatic diseases at diagnosis. PMID:18818106

  15. The effect of combined expression of interleukin 2 and interleukin 4 on the tumorigenicity and treatment of B16F10 melanoma.

    PubMed Central

    Hollingsworth, S. J.; Darling, D.; Gäken, J.; Hirst, W.; Patel, P.; Kuiper, M.; Towner, P.; Humphreys, S.; Farzaneh, F.; Mufti, G. J.

    1996-01-01

    The recent use of interleukin 2 (IL-2) and interleukin 4 (IL-4) single cytokine modified tumour cells in rodent models has demonstrated a potential use of these cytokines to produce autologous cancer cell vaccines. Here we compare the potential therapeutic benefit of transduction with IL-2 or IL-4 alone, and combined IL-2 + IL-4 in B16F10 cells, a murine malignant melanoma of poor immunogenicity. Transduction of B16F10 cells (MHC class I and II negative) to express either IL-2 or IL-4 alone delays the formation of tumours, IL-4 being more effective than IL-2. However, combined expression of IL-2 + IL-4 reduces tumorigenicity more than either cytokine alone. The eventual formation of tumours may result from loss of gene expression, and preliminary results suggest methylation of the retroviral long terminal repeat (LTR), rather than loss of the transduced DNA sequences. Histological examination of tumours expressing either IL-2 or IL-4 alone shows a non-specific inflammatory reaction with an increased tissue infiltrate of immune effectors (monocytes/macrophages, lymphocytes, granulocytes) localised around the tumour. In comparison, when cells expressing combined IL-2 + IL-4 were injected there were more granulocytes present, and perhaps more importantly, these were mainly localised within the tumour. The benefit of combined IL-2 + IL-4 expression results from a local rather than systemic effect as the growth of tumours from cells expressing IL-2 or IL-4 alone injected at distant sites was comparable with a single inoculation of cells expressing either cytokine alone. However, when cells expressing single cytokines IL-2 or IL-4 were mixed and injected at the same site, in comparison with the clonal population of cells expressing combined IL-2 + IL-4, tumour growth was characteristic of IL-4 alone rather than IL-2 + IL-4. Treatment of established tumours with a single injection of lethally irradiated tumour cells expressing IL-2 + IL-4 was sufficient to either reject tumours, or at least delay further tumour development. Furthermore, treatment stimulated an initial non-specific immune reaction that lead to a systemic immunity. Lethally irradiated wild-type cells were also successful in treating some established tumours, although this did not induce any systemic immunity. However, although successful in treatment studies, neither wild-type nor combined IL-2 + IL-4 expressing cells were able to vaccinate animals against a subsequent challenge with live wild-type tumour. These results indicate a potential therapeutic benefit with the use of combination IL-2 + IL-4 transduction of autologous cancer cells. PMID:8679459

  16. Biomaterials for mRNA delivery.

    PubMed

    Islam, Mohammad Ariful; Reesor, Emma K G; Xu, Yingjie; Zope, Harshal R; Zetter, Bruce R; Shi, Jinjun

    2015-12-10

    Messenger RNA (mRNA) has recently emerged with remarkable potential as an effective alternative to DNA-based therapies because of several unique advantages. mRNA does not require nuclear entry for transfection activity and has a negligible chance of integrating into the host genome which excludes the possibility of potentially detrimental genomic alternations. Chemical modification of mRNA has further enhanced its stability and decreased its activation of innate immune responses. Additionally, mRNA has been found to have rapid expression and predictable kinetics. Nevertheless, the ubiquitous application of mRNA remains challenging given its unfavorable attributes, such as large size, negative charge and susceptibility to enzymatic degradation. Further refinement of mRNA delivery modalities is therefore essential for its development as a therapeutic tool. This review provides an exclusive overview of current state-of-the-art biomaterials and nanotechnology platforms for mRNA delivery, and discusses future prospects to bring these exciting technologies into clinical practice. PMID:26280625

  17. Biomaterials for mRNA Delivery

    PubMed Central

    Islam, Mohammad Ariful; Reesor, Emma K. G.; Xu, Yingjie; Zope, Harshal R.; Zetter, Bruce R.; Shi, Jinjun

    2015-01-01

    Messenger RNA (mRNA) has recently emerged with remarkable potential as an effective alternative to DNA-based therapies because of several unique advantages. mRNA does not require nuclear entry for transfection activity and has a negligible chance of integrating into the host genome which excludes the possibility of potentially detrimental genomic alternations. Chemical modification of mRNA has further enhanced its stability and decreased its activation of innate immune responses. Additionally, mRNA has been found to have rapid expression and predictable kinetics. Nevertheless, the ubiquitous application of mRNA remains challenging given its unfavorable attributes, such as large size, negative charge and susceptibility to enzymatic degradation. Further refinement of mRNA delivery modalities is therefore essential for its development as a therapeutic tool. This review provides an exclusive overview of current state-of-the-art biomaterials and nanotechnology platforms for mRNA delivery, and discusses future prospects to bring these exciting technologies into clinical practice. PMID:26280625

  18. Coupling mRNA Synthesis and Decay

    PubMed Central

    Braun, Katherine A.

    2014-01-01

    What has been will be again, what has been done will be done again; there is nothing new under the sun.—Ecclesiastes 1:9 (New International Version) Posttranscriptional regulation of gene expression has an important role in defining the phenotypic characteristics of an organism. Well-defined steps in mRNA metabolism that occur in the nucleus—capping, splicing, and polyadenylation—are mechanistically linked to the process of transcription. Recent evidence suggests another link between RNA polymerase II (Pol II) and a posttranscriptional process that occurs in the cytoplasm—mRNA decay. This conclusion appears to represent a conundrum. How could mRNA synthesis in the nucleus and mRNA decay in the cytoplasm be mechanistically linked? After a brief overview of mRNA processing, we will review the recent evidence for transcription-coupled mRNA decay and the possible involvement of Snf1, the Saccharomyces cerevisiae ortholog of AMP-activated protein kinase, in this process. PMID:25154419

  19. Sensitivity of mRNA Translation

    PubMed Central

    Poker, Gilad; Margaliot, Michael; Tuller, Tamir

    2015-01-01

    Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5? end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies. PMID:26238363

  20. Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2'-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide

    SciTech Connect

    Kaplan, Barbara L.F.; Ouyang Yanli; Herring, Amy; Yea, Sung Su; Razdan, Raj; Kaminski, Norbert E. . E-mail: kamins11@msu.edu

    2005-06-01

    Arachidonylethanolamide (anandamide, AEA) has been identified as an endogenous ligand for cannabinoid receptors CB1 and CB2. Characterization of the direct cannabimimetic actions of anandamide has been hampered by its short duration of action and rapid degradation in in vivo and in vitro systems to arachidonic acid, a precursor in the biosynthesis of a broad range of biologically active molecules. In the present studies, we utilized 2-methylarachidonyl-(2'-fluoroethyl)amide (F-Me-AEA), an analog of anandamide resistant to enzymatic degradation, to determine whether F-Me-AEA modulated T cell function similar to that of plant-derived cannabinoids. Indeed, F-Me-AEA at low micromolar concentrations exhibited a marked inhibition of phorbol ester plus calcium ionophore (PMA/Io)-induced IL-2 protein secretion and steady state mRNA expression. Likewise, a modest suppression of the mixed lymphocyte response was observed in the presence of F-Me-AEA indicating an alteration in T cell responsiveness to allogeneic MHC class II antigens. F-Me-AEA was also found to modestly inhibit forskolin-stimulated adenylate cyclase activity in thymocytes and splenocytes, a hallmark of cannabinoid receptor agonists. Further characterization of the influence of F-Me-AEA on the cAMP signaling cascade revealed an inhibition of CREB-1/ATF-1 phosphorylation and subsequently, an inhibition of CRE DNA binding activity. Characterization of nuclear binding proteins further revealed that NF-AT and, to a lesser extent, NF-{kappa}B DNA binding activities were also suppressed. These studies demonstrate that F-Me-AEA modulates T cell function in a similar manner to plant-derived and endogenous cannabinoids and therefore can be utilized as an amidase- and hydrolysis-resistant endogenous cannabinoid.

  1. Mechanism of Cytoplasmic mRNA Translation

    PubMed Central

    2015-01-01

    Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings. PMID:26019692

  2. Sensitivity of mRNA Translation

    E-print Network

    Gilad Poker; Michael Margaliot; Tamir Tuller

    2014-09-18

    Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, exit, and elongation rates along the mRNA strand on the steady state protein translation rate. We focus on two special cases where exact closed-form expressions for the translation rate sensitivity can be derived. We discuss the ramifications of our results in the context of functional genomics, molecular evolution, and synthetic biology.

  3. Gene regulation by mRNA editing

    SciTech Connect

    Ashkenas, J.

    1997-02-01

    The commonly cited figure of 10{sup 5} genes in the human genome represents a tremendous underestimate of our capacity to generate distinct gene products with unique functions. Our cells possess an impressive collection of tools for altering the products of a single gene to create a variety of proteins. The different gene products may have related but distinct functions, allowing cells of different types or at different developmental stages to fine-tune their patterns of gene expression. These tools may act in the cytoplasm, as when proteins undergo post-translational modifications, or in the nucleus, in the processing of pre-mRNA. Two forms of intranuclear fine-tuning are well established and widely studied: alternative splicing of pre-mRNAs and alternative polyadenylation site selection. In recent years it has become clear that cells possess yet another tool to create RNA sequence diversity, mRNA editing. The term {open_quotes}editing{close_quotes} is applied to posttranscriptional modifications of a purine or pyrimidine, which alter an mRNA sequence as it is read, for example, by ribosomes. Covalent changes to the structure of nucleotide bases are well known to occur on tRNA and rRNA molecules, but such changes in mRNA sequence are novel in that they have the capacity to change specific protein sequences. 43 refs., 1 fig.

  4. Regulation of yeast development by mRNA methylation

    E-print Network

    Agarwala, Sudeep D

    2012-01-01

    The internal methylation of mRNA post-transcriptionally is an essential component of the mRNA editing machinery in virtually every eukaryotic system. Despite this ubiquity, little is known about the relevance, consequences ...

  5. Understanding regulation of mRNA by RNA binding proteins

    E-print Network

    Robertson, Alexander De Jong

    2014-01-01

    Posttranscriptional regulation of mRNA by RNA-binding proteins plays key roles in regulating the transcriptome over the course of development, between tissues and in disease states. The specific interactions between mRNA ...

  6. Structure based 3D-QSAR studies of Interleukin-2 inhibitors: Comparing the quality and predictivity of 3D-QSAR models obtained from different alignment methods and charge calculations.

    PubMed

    Halim, Sobia Ahsan; Zaheer-ul-Haq

    2015-08-01

    Interleukin-2 is an essential cytokine in an innate immune response, and is a promising drug target for several immunological disorders. In the present study, structure-based 3D-QSAR modeling was carried out via Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Index Analysis (CoMSIA) methods. Six different partial charge calculation methods were used in combination with two different alignment methods to scrutinize their effects on the predictive power of 3D-QSAR models. The best CoMFA and CoMSIA models were obtained with the AM1 charges when used with co-conformer based substructure alignment (CCBSA) method. The obtained models posses excellent correlation coefficient value and also exhibited good predictive power (for CoMFA: q(2)=0.619; r(2)=0.890; r(2)Pred=0.765 and for CoMSIA: q(2)=0.607; r(2)=0.884; r(2)Pred=0.655). The developed models were further validated by using a set of another sixteen compounds as external test set 2 and both models showed strong predictive power with r(2)Pred=>0.8. The contour maps obtained from these models better interpret the structure activity relationship; hence the developed models would help to design and optimize more potent IL-2 inhibitors. The results might have implications for rational design of specific anti-inflammatory compounds with improved affinity and selectivity. PMID:26051521

  7. Interleukin 2 Induces CD8^+ T Cell-Mediated Suppression of Human Immunodeficiency Virus Replication in CD4^+ T Cells and This Effect Overrides Its Ability to Stimulate Virus Expression

    NASA Astrophysics Data System (ADS)

    Kinter, Audrey L.; Bende, Steven M.; Hardy, Elena C.; Jackson, Robert; Fauci, Anthony S.

    1995-11-01

    The nonlytic suppression of human immunodeficiency virus (HIV) production from infected CD4^+ T cells by CD8^+ lymphocytes from HIV-infected individuals is one of the most potent host-mediated antiviral activities observed in vitro. We demonstrate that the pleiotropic cytokine interleukin 2 (IL-2), but not IL-12, is a potent inducer of the CD8^+ HIV suppressor phenomenon. IL-2 induces HIV expression in peripheral blood or lymph node mononuclear cells from HIV-infected individuals in the absence of CD8^+ T cells. However, IL-2 induces CD8^+ T cells to suppress HIV expression when added back to these cultures, and this effect dramatically supersedes the ability of IL-2 to induce HIV expression. Five to 25 times fewer CD8^+ cells were required to obtain comparable levels of inhibition of viral production if they were activated in the presence of IL-2 as compared with IL-12 or no exogenous cytokine. Furthermore, IL-2 appeared either to induce a qualitative increase in HIV suppressor cell activity or to increase the relative frequency of suppressor cells in the activated (CD25^+) CD8^+ populations. Analyses of proviral levels in peripheral blood mononuclear cells suggest that CD8^+ T cell-mediated lysis of in vivo infected cells is not induced by IL-2. These results have implications for our understanding of the effects of impaired IL-2 production during HIV disease as well as the overall effects of IL-2-based immunotherapy on HIV replication in vivo.

  8. Messenger RNA (mRNA) nanoparticle tumour vaccination

    NASA Astrophysics Data System (ADS)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.

    2014-06-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.

  9. Methotrexate Promotes Platelet Apoptosis via JNK-Mediated Mitochondrial Damage: Alleviation by N-Acetylcysteine and N-Acetylcysteine Amide

    PubMed Central

    Paul, Manoj; Hemshekhar, Mahadevappa; Thushara, Ram M.; Sundaram, Mahalingam S.; NaveenKumar, Somanathapura K.; Naveen, Shivanna; Devaraja, Sannaningaiah; Somyajit, Kumar; West, Robert; Basappa; Nayaka, Siddaiah C.; Zakai, Uzma I.; Nagaraju, Ganesh; Rangappa, Kanchugarakoppal S.; Kemparaju, Kempaiah; Girish, Kesturu S.

    2015-01-01

    Thrombocytopenia in methotrexate (MTX)-treated cancer and rheumatoid arthritis (RA) patients connotes the interference of MTX with platelets. Hence, it seemed appealing to appraise the effect of MTX on platelets. Thereby, the mechanism of action of MTX on platelets was dissected. MTX (10 ?M) induced activation of pro-apoptotic proteins Bid, Bax and Bad through JNK phosphorylation leading to ??m dissipation, cytochrome c release and caspase activation, culminating in apoptosis. The use of specific inhibitor for JNK abrogates the MTX-induced activation of pro-apoptotic proteins and downstream events confirming JNK phosphorylation by MTX as a key event. We also demonstrate that platelet mitochondria as prime sources of ROS which plays a central role in MTX-induced apoptosis. Further, MTX induces oxidative stress by altering the levels of ROS and glutathione cycle. In parallel, the clinically approved thiol antioxidant N-acetylcysteine (NAC) and its derivative N-acetylcysteine amide (NACA) proficiently alleviate MTX-induced platelet apoptosis and oxidative damage. These findings underpin the dearth of research on interference of therapeutic drugs with platelets, despite their importance in human health and disease. Therefore, the use of antioxidants as supplementary therapy seems to be a safe bet in pathologies associated with altered platelet functions. PMID:26083398

  10. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy

    PubMed Central

    Külshammer, Eva; Mundorf, Juliane; Kilinc, Merve; Frommolt, Peter; Wagle, Prerana; Uhlirova, Mirka

    2015-01-01

    ABSTRACT Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (RasV12) and loss of the tumor suppressor Scribble (scrib1). We show that malignant transformation of the rasV12scrib1 tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to rasV12scrib1 tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in rasV12scrib1 tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with RasV12 in inducing malignant clones that, like rasV12scrib1 tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While rasV12ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our study delineates both unique and overlapping functions of distinct TFs that cooperatively promote aberrant expression of target genes, leading to malignant tumor phenotypes. PMID:26398940

  11. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy.

    PubMed

    Külshammer, Eva; Mundorf, Juliane; Kilinc, Merve; Frommolt, Peter; Wagle, Prerana; Uhlirova, Mirka

    2015-10-01

    Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (Ras(V12)) and loss of the tumor suppressor Scribble (scrib(1)). We show that malignant transformation of the ras(V12)scrib(1) tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to ras(V12)scrib(1) tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in ras(V12)scrib(1) tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with Ras(V12) in inducing malignant clones that, like ras(V12)scrib(1) tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While ras(V12)ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our study delineates both unique and overlapping functions of distinct TFs that cooperatively promote aberrant expression of target genes, leading to malignant tumor phenotypes. PMID:26398940

  12. Human infection with Ascaris lumbricoides is associated with suppression of the interleukin-2 response to recombinant cholera toxin B subunit following vaccination with the live oral cholera vaccine CVD 103-HgR.

    PubMed

    Cooper, P J; Chico, M; Sandoval, C; Espinel, I; Guevara, A; Levine, M M; Griffin, G E; Nutman, T B

    2001-03-01

    To investigate the potential immunomodulatory effects of concurrent ascariasis on the cytokine response to a live oral vaccine, we measured cytokine responses to cholera toxin B subunit (CT-B) following vaccination with the live oral cholera vaccine CVD 103-HgR in Ascaris lumbricoides-infected subjects randomized in a double-blind study to receive two doses of either albendazole or placebo prior to vaccination and in a group of healthy U.S. controls. Postvaccination cytokine responses to CT-B were characterized by transient increases in the production of interleukin-2 (IL-2; P = 0.02) and gamma interferon (IFN-gamma; P = 0.001) in the three study groups combined; however, postvaccination increases in IFN-gamma were significant only in the albendazole-treated A. lumbricoides infection group (P = 0.008). Postvaccination levels of IL-2 were significantly greater in the albendazole-treated group compared with the placebo group (P = 0.03). No changes in levels of Th1 and Th2 cytokines in response to control ascaris antigens were observed over the same period. These findings indicate that vaccination with CVD 103-HgR is associated with a Th1 cytokine response (IL-2 and IFN-gamma) to CT-B, that infection with A. lumbricoides diminishes the magnitude of this response, and that albendazole treatment prior to vaccination was able to partially reverse the deficit in IL-2. The potential modulation of the immune response to oral vaccines by geohelminth parasites has important implications for the design of vaccination campaigns in geohelminth-endemic areas. PMID:11179329

  13. Low-Dose Interleukin-2 Immunotherapy Does Not Improve Outcome of Patients Age 60 Years and Older With Acute Myeloid Leukemia in First Complete Remission: Cancer and Leukemia Group B Study 9720

    PubMed Central

    Baer, Maria R.; George, Stephen L.; Caligiuri, Michael A.; Sanford, Ben L.; Bothun, Sandra M.; Mrózek, Krzysztof; Kolitz, Jonathan E.; Powell, Bayard L.; Moore, Joseph O.; Stone, Richard M.; Anastasi, John; Bloomfield, Clara D.; Larson, Richard A.

    2008-01-01

    Purpose Cancer and Leukemia Group B (CALGB) 9720 evaluated subcutaneous low-dose recombinant interleukin-2 (rIL-2) maintenance immunotherapy as a strategy for prolonging remission in older patients with acute myeloid leukemia (AML). Patients and Methods AML patients age 60 years and older in first complete remission after induction and consolidation chemotherapy were randomly assigned to no further therapy or a 90-day regimen of 14-day cycles of low-dose rIL-2, aimed at expanding natural killer (NK) cells, followed by 3-day higher doses aimed at activating cytotoxicity of expanded NK cells to lyse residual AML cells. All randomly assigned patients were included in an intention-to-treat analysis. Results A total of 163 (64%) of 254 patients who completed induction and consolidation chemotherapy on CALGB 9720 were randomly assigned to rIL-2 (n = 81) or no further therapy (n = 82); the most common reasons for lack of random assignment were patient refusal and relapse. Fifteen patients randomly assigned to rIL-2 never initiated it because of refusal, intercurrent medical problems, or relapse, and 24 patients initiated rIL-2 but stopped early because of toxicity or relapse. Grade 4 toxicities during rIL-2 therapy included thrombocytopenia (65%) and neutropenia (64%), and grade 3 toxicities included anemia (33%), infection (24%) and malaise/fatigue (14%). Forty-two patients (52%) randomly assigned to rIL-2 completed the full 90-day course. Patients in both arms had similar distributions of both disease-free (combined median = 6.1 months; P = .47) and overall survival (combined median = 14.7 months; P = .61) after random assignment. Moreover, the 42 patients who completed all planned therapy did not show prolongation of disease-free or overall survival. Conclusion Low-dose rIL-2 maintenance immunotherapy is not a successful strategy in older AML patients. PMID:18591543

  14. Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin 2-secreting tumor cells: three consecutive stages may be required for successful tumor vaccination.

    PubMed Central

    Maass, G; Schmidt, W; Berger, M; Schilcher, F; Koszik, F; Schneeberger, A; Stingl, G; Birnstiel, M L; Schweighoffer, T

    1995-01-01

    Although both CD4+ and CD8+ T cells are clearly required to generate long-lasting anti-tumor immunity induced by s.c. vaccination with interleukin 2 (IL-2)-transfected, irradiated M-3 clone murine melanoma cells, some controversy continues about the site and mode of T-cell activation in this system. Macrophages, granulocytes, and natural killer cells infiltrate the vaccination site early after injection into either syngeneic euthymic DBA/2 mice or athymic nude mice and eliminate the inoculum within 48 hr. We could not find T cells at the vaccination site, which argues against the concept that T-cell priming by the IL-2-secreting cancer cells occurs directly at that location. However, reverse transcription-PCR revealed transcripts indicative of T-cell activation and expansion in the draining lymph nodes of mice immunized with the IL-2-secreting vaccine but not in mice vaccinated with untransfected, irradiated M-3 cells. We therefore propose that the antigen-presenting cells, which invade the vaccination site, process tumor-derived antigens and, subsequently, initiate priming of tumor-specific T lymphocytes in lymphoid organs. These findings suggest a three-stage process for the generation of effector T cells after vaccination with IL-2-secreting tumor cells: (i) tumor-antigen uptake and processing at the site of injection by antigen-presenting cells, (ii) migration of antigen-presenting cells into the regional draining lymph nodes, where T-cell priming occurs, and (iii) circulation of activated T cells that either perform or initiate effector mechanisms leading to tumor cell destruction. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:7777545

  15. Engineering persistent interleukin-2 for cancer immunotherapy

    E-print Network

    Gai, Shuning

    2012-01-01

    Mobilizing the immune system to recognize and destroy tumor cells is a promising strategy for treating cancer. In contrast to standard therapeutic approaches such as surgery, radiation, and chemotherapy, immunotherapy ...

  16. Interleukin-2 Engineering for improved therapeutic effectiveness

    E-print Network

    Rao, Balaji Madhav, 1978-

    2004-01-01

    (cont.) (K[d] [approximately] 10pM) for its private alpha receptor subunit, unlike wild-type IL-2 (K[d] [approximately] 10 nM). IL-2 mutants with picomolar affinity for IL-2R? stimulate T cell growth responses quantitatively ...

  17. An expanding universe of mRNA modifications

    PubMed Central

    Jaffrey, Samie R.

    2015-01-01

    The fate of mRNA can be regulated by internal base modifications, with the currently known modified bases being N6-methyladenosine, 5-methylcytosine, and inosine. Three new studies show that yeast and human mRNA also contain pseudouridine residues and that pseudouridylation is induced in various stress states, hinting at a new pathway for post-transcriptional control of mRNA. PMID:25372308

  18. Premature translation termination mediates triosephosphate isomerase mRNA degradation

    SciTech Connect

    Daar, I.O.; Maquat, L.E.

    1988-02-01

    The authors characterized an anemia-inducing mutation in the human gene for triosephosphate isomerase (TPI) that resulted in the production of prematurely terminated protein and mRNA with a reduced cytoplasmic half-life. The mutation converted a CGA arginine codon to a TGA nonsense condon and generated a protein of 188 amino acids, instead of the usual 248 amino acids. To determine how mRNA primary structure and translation and influence mRNA stability, in vitro-mutagenized TPI alleles were introduced into cultured L cells and analyzed for their effect on TPI RNA metabolism. Results indicated that mRNA stability is decreased by all nonsense and frameshift mutations. To determine the relative contribution of the changes in mRNA structure and translation to the altered half-life, the effects of individual mutations were compared with the effects of second-site reversions that restored translation termination to normal. All mutations that resulted in premature translation termination reduced the mRNA half-life solely or mainly by altering the length of the mRNA that was translated. The only mutation that altered translation termination and that reduced the mRNA half-life mainly by affecting the mRNA structure was an insertion that shifted termination to a position downstream of the normal stop codon.

  19. Single mRNA Tracking in Live Cells

    PubMed Central

    Park, Hye Yoon; Buxbaum, Adina R.; Singer, Robert H.

    2011-01-01

    Asymmetric distribution of mRNA is a prevalent phenomenon observed in diverse cell types. The posttranscriptional movement and localization of mRNA provides an important mechanism to target certain proteins to specific cytoplasmic regions of their function. Recent technical advances have enabled real-time visualization of single mRNA molecules in living cells. Studies analyzing the motion of individual mRNAs have shed light on the complex RNA transport system. This chapter presents an overview of general approaches for single particle tracking and some methodologies that are used for single mRNA detection. PMID:20580973

  20. Sodium Channel Inhibitors Reduce DMPK mRNA and Protein.

    PubMed

    Witherspoon, Luke; O'Reilly, Sean; Hadwen, Jeremiah; Tasnim, Nafisa; MacKenzie, Alex; Farooq, Faraz

    2015-08-01

    Myotonic dystrophy type 1 (DM1) is caused by an expanded trinucleotide (CTG)n tract in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) gene. This results in the aggregation of an expanded mRNA forming toxic intranuclear foci which sequester splicing factors. We believe down-regulation of DMPK mRNA represents a potential, and as yet unexplored, DM1 therapeutic avenue. Consequently, a computational screen for agents which down-regulate DMPK mRNA was undertaken, unexpectedly identifying the sodium channel blockers mexiletine, prilocaine, procainamide, and sparteine as effective suppressors of DMPK mRNA. Analysis of DMPK mRNA in C2C12 myoblasts following treatment with these agents revealed a reduction in the mRNA levels. In vivo analysis of CD1 mice also showed DMPK mRNA and protein down-regulation. The role of DMPK mRNA suppression in the documented efficacy of this class of compounds in DM1 is worthy of further investigation. PMID:26011798

  1. Functional Integration of mRNA Translational Control Programs.

    PubMed

    MacNicol, Melanie C; Cragle, Chad E; Arumugam, Karthik; Fosso, Bruno; Pesole, Graziano; MacNicol, Angus M

    2015-01-01

    Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs) but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease. PMID:26197342

  2. Functional Integration of mRNA Translational Control Programs

    PubMed Central

    MacNicol, Melanie C.; Cragle, Chad E.; Arumugam, Karthik; Fosso, Bruno; Pesole, Graziano; MacNicol, Angus M.

    2015-01-01

    Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs) but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease. PMID:26197342

  3. Highly efficient expression of interleukin-2 under the control of rabbit ?-globin intron II gene enhances protective immune responses of porcine reproductive and respiratory syndrome (PRRS) DNA vaccine in pigs.

    PubMed

    Du, Yijun; Lu, Yu; Wang, Xinglong; Qi, Jing; Liu, Jiyu; Hu, Yue; Li, Feng; Wu, Jiaqiang; Guo, Lihui; Liu, Junzhen; Tao, Haiying; Sun, Wenbo; Chen, Lei; Cong, Xiaoyan; Ren, Sufang; Shi, Jianli; Li, Jun; Wang, Jinbao; Huang, Baohua; Wan, Renzhong

    2014-01-01

    Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) had caused catastrophic losses in swine industry in China. The current inactivated vaccine provided only limited protection, and the attenuated live vaccine could protect piglets against the HP-PRRSV but there was a possibility that the attenuated virus returned to high virulence. In this study, the eukaryotic expression vector pVAX1© was modified under the control of rabbit ?-globin intron II gene and the modified vector pMVAX1© was constructed. Porcine interleukin-2 (IL-2) and GP3-GP5 fusion protein of HP-PRRSV strain SD-JN were highly expressed by pMVAX1©. Mice inoculated with pMVAX1©-GP35 developed significantly higher PRRSV-specific antibody responses and T cell proliferation than those vaccinated with pVAX1©-GP35. pMVAX1©-GP35 was selected as PRRS DNA vaccine candidate and co-administrated with pVAX1©-IL-2 or pMVAX1©-IL-2 in pigs. pMVAX1©-IL-2+pMVAX1©-GP35 could provide enhanced PRRSV-specific antibody responses, T cell proliferation, Th1-type and Th2-type cytokine responses and CTL responses than pMVAX1©-GP35 and pVAX1©-IL-2+pMVAX1©-GP35. Following homologous challenge with HP-PRRSV strain SD-JN, similar with attenuated PRRS vaccine group, pigs inoculated with pMVAX1©-IL-2+pMVAX1©-GP35 showed no clinical signs, almost no lung lesions and no viremia, as compared to those in pMVAX1©-GP35 and pVAX1©-IL-2+pMVAX1©-GP35 groups. It indicated that pMVAX1©-IL-2 effectively increases humoral and cell mediated immune responses of pMVAX1©-GP35. Co-administration of pMVAX1©-IL-2 and pMVAX1©-GP35 might be attractive candidate vaccines for preventing HP-PRRSV infections. PMID:24603502

  4. Changes in Chloroplast mRNA Stability during Leaf Development.

    PubMed Central

    Klaff, P; Gruissem, W

    1991-01-01

    During spinach leaf development, chloroplast-encoded mRNAs accumulate to different steady-state levels. Their relative transcription rates alone, however, cannot account for the changes in mRNA amount. In this study, we examined the importance of mRNA stability for the regulation of plastid mRNA accumulation using an in vivo system to measure mRNA decay in intact leaves by inhibiting transcription with actinomycin D. Decay of psbA and rbcL mRNAs was assayed in young and mature leaves. The psbA mRNA half-life was increased more than twofold in mature leaves compared with young leaves, whereas rbcL mRNA decayed with a similar relative half-life at both leaf developmental stages. The direct in vivo measurements demonstrated that differential mRNA stability in higher plant plastids can account for differences in mRNA accumulation during leaf development. The role of polysome association in mRNA decay was also investigated. Using organelle-specific translation inhibitors that force mRNAs into a polysome-bound state or deplete mRNAs of ribosomes, we measured mRNA decay in vivo in either state. The results showed that rbcL and psbA mRNAs are less stable when bound to polysomes relative to the polysome-depleted mRNAs and that their stabilities are differentially affected by binding to polysomes. The results suggested that ribosome binding and/or translation of the psbA and rbcL mRNAs may function to modulate the rate of their decay in chloroplasts. PMID:12324602

  5. Heritable variation of mRNA decay rates in yeast

    PubMed Central

    Andrie, Jennifer M.; Wakefield, Jon

    2014-01-01

    Gene expression levels are determined by the balance between rates of mRNA transcription and decay, and genetic variation in either of these processes can result in heritable differences in transcript abundance. Although the genetics of gene expression has been a subject of intense interest, the contribution of heritable variation in mRNA decay rates to gene expression variation has received far less attention. To this end, we developed a novel statistical framework and measured allele-specific differences in mRNA decay rates in a diploid yeast hybrid created by mating two genetically diverse parental strains. We estimate that 31% of genes exhibit allelic differences in mRNA decay rates, of which 350 can be identified at a false discovery rate of 10%. Genes with significant allele-specific differences in mRNA decay rates have higher levels of polymorphism compared to other genes, with all gene regions contributing to allelic differences in mRNA decay rates. Strikingly, we find widespread evidence for compensatory evolution, such that variants influencing transcriptional initiation and decay have opposite effects, suggesting that steady-state gene expression levels are subject to pervasive stabilizing selection. Our results demonstrate that heritable differences in mRNA decay rates are widespread and are an important target for natural selection to maintain or fine-tune steady-state gene expression levels. PMID:25258386

  6. Mechanism of grk mRNA anchoring during Drosophila oogenesis 

    E-print Network

    Soetaert, Jan

    2009-01-01

    Messenger RNA localization is a widespread mechanism of posttranscriptional regulation of gene expression in multicellular organisms ranging from yeast to mammals. In Drosophila oocytes, gurken (grk) mRNA is transported ...

  7. Polyadenylation of Vesicular Stomatitis Virus mRNA

    PubMed Central

    Ehrenfeld, Ellie

    1974-01-01

    Vesicular stomatitis virus (VSV) mRNA isolated from infected cell polysomes contains polyadenylic acid [poly(A)] sequences. Detergent-activated purified virions in vitro can transcribe complementary RNA, which has sedimentation properties similar to mRNA, and this RNA also contains poly(A) sequences. Digestion of virion RNA with U2 RNase under conditions where hydrolysis is specific for purine linkages leaves no sequences of polyuridylic acid corresponding in length to the poly(A) on the transcripts. Growth of infectious virus is not inhibited by 3-deoxyadenosine (cordycepin) under conditions in which it inhibits polyadenylation of cellular mRNA. The virus-specific mRNA produced in the presence of cordycepin has poly(A) sequences of the same size distribution as that synthesized in the absence of cordycepin. PMID:4363251

  8. Signaling Pathways That Control mRNA Turnover

    PubMed Central

    Thapar, Roopa; Denmon, Andria P.

    2013-01-01

    Cells regulate their genomes mainly at the level of transcription and at the level of mRNA decay. While regulation at the level of transcription is clearly important, the regulation of mRNA turnover by signaling networks is essential for a rapid response to external stimuli. Signaling pathways result in posttranslational modification of RNA binding proteins by phosphorylation, ubiquitination, methylation, acetylation etc. These modifications are important for rapid remodeling of dynamic ribonucleoprotein complexes and triggering mRNA decay. Understanding how these posttranslational modifications alter gene expression is therefore a fundamental question in biology. In this review we highlight recent findings on how signaling pathways and cell cycle checkpoints involving phosphorylation, ubiquitination, and arginine methylation affect mRNA turnover. PMID:23602935

  9. HDAC3 regulates stability of estrogen receptor ? mRNA

    SciTech Connect

    Oie, Shohei; Matsuzaki, Kazuya; Yokoyama, Wataru; Murayama, Akiko; Yanagisawa, Junn

    2013-03-08

    Highlights: ? HDAC inhibitors decrease the stability of ER? mRNA in MCF-7 cells. ? HDAC3 is involved in maintaining ER? mRNA stability in MCF-7 cells. ? ER? mRNA instability by knockdown of HDAC3 reduces the estrogen-dependent proliferation of ER?-positive MCF-7 cells. ? HDAC3 specific inhibitor will be one of new drugs for ER?-positive breast cancers. -- Abstract: Estrogen receptor alpha (ER?) expression is a risk factor for breast cancer. HDAC inhibitors have been demonstrated to down-regulate ER? expression in ER?-positive breast cancer cell lines, but the molecular mechanisms are poorly understood. Here, we showed that HDAC inhibitors decrease the stability of ER? mRNA, and that knockdown of HDAC3 decreases the stability of ER? mRNA and suppresses estrogen-dependent proliferation of ER?-positive MCF-7 breast cancer cells. In the Oncomine database, expression levels of HDAC3 in ER?-positive tumors are higher than those in ER?-negative tumors, thus suggesting that HDAC3 is necessary for ER? mRNA stability, and is involved in the estrogen-dependent proliferation of ER?-positive tumors.

  10. Nebulisation of IVT mRNA Complexes for Intrapulmonary Administration

    PubMed Central

    Guan, Shan; Rosenecker, Joseph

    2015-01-01

    During the last years the potential role of in vitro transcribed (IVT) mRNA as a vehicle to deliver genetic information has come into focus. IVT mRNA could be used for anti-cancer therapies, vaccination purposes, generation of pluripotent stem cells and also for genome engineering or protein replacement. However, the administration of IVT mRNA into the target organ is still challenging. The lung with its large surface area is not only of interest for delivery of genetic information for treatment of e.g. for cystic fibrosis or alpha-1-antitrypsin deficiency, but also for vaccination purposes. Administration of IVT mRNA to the lung can be performed by direct intratracheal instillation or by aerosol inhalation/nebulisation. The latter approach shows a non-invasive tool, although it is not known, if IVT mRNA is resistant during the process of nebulisation. Therefore, we investigated the transfection efficiency of non-nebulised and nebulised IVT mRNA polyplexes and lipoplexes in human bronchial epithelial cells (16HBE). A slight reduction in transfection efficiency was observed for lipoplexes (Lipofectamine 2000) in the nebulised part compared to the non-nebulised which can be overcome by increasing the amount of Lipofectamine. However, Lipofectamine was more than three times more efficient in transfecting 16HBE than DMRIE and linear PEI performed almost 10 times better than its branched derivative. By contrast, the nebulisation process did not affect the cationic polymer complexes. Furthermore, aerosolisation of IVT mRNA complexes did neither affect the protein duration nor the toxicity of the cationic complexes. Taken together, these data show that aerosolisation of cationic IVT mRNA complexes constitute a potentially powerful means to transfect cells in the lung with the purpose of protein replacement for genetic diseases such as cystic fibrosis or alpha-1-antitrypsin deficiency or for infectious disease vaccines, while bringing along the advantages of IVT mRNA as compared to pDNA as transfection agent. PMID:26352268

  11. Translation with frameshifting of ribosome along mRNA transcript

    E-print Network

    Jingwei Li; Yunxin Zhang

    2015-02-07

    Translation is an important process for prokaryotic and eukaryotic cells to produce necessary proteins for cell growth. Numerious experiments have been performed to explore the translational properties. Diverse models have also been developed to determine the biochemical mechanism of translation. However, to simplify the majority of the existing models, the frameshifting of ribosome along the mRNA transcript is neglected, which actually occurs in real cells and has been extensively experimentally studied. The frameshifting of ribosome evidently influences the efficiency and speed of translation, considering that the peptide chains synthesized by shifted ribosomes will not fold into functional proteins and will degrade rapidly. In this study, a theoretical model is presented to describe the translational process based on the model for totally asymmetric simple exclusion process. In this model, the frameshifting of the ribosome along the mRNA transcript and the attachment/detachment of the ribosome to/from the main body of mRNA codons during translation elongation process, are explicitly included. The results show that, with ribosome frameshifing, the speed of correctly synthesized peptide chains may increase first and then decrease with both the translation initiation rate $\\alpha$ and the ribosome detachment rate $\\omega_d$. This results indicates that regulating the translation process to reach maximal synthesized speed of proteins is theoretically feasible. Traffic-related problems of ribosome motion along the mRNA transcript are also addressed theoretically. Depending on parameter values, shock wave (or domain wall) may exist for ribosome probabilities along the mRNA.

  12. Paclitaxel inhibits mRNA transport in axons.

    PubMed

    Bobylev, Ilja; Joshi, Abhijeet R; Barham, Mohammed; Ritter, Christian; Neiss, Wolfram F; Höke, Ahmet; Lehmann, Helmar C

    2015-10-01

    Paclitaxel is an integral component of solid tumor treatment. This chemotherapeutic agent provokes an often irreversible peripheral sensory neuropathy with pathological features of distal axonal degeneration. Current pathological concepts assume that polymerization of axonal microtubules and mitochondrial dysfunction contributes to the development of paclitaxel-induced peripheral neuropathy. The relationship, however, between microtubule stabilization, mitotoxicity and axonal degeneration is still not completely understood. To explore the function of axonal mitochondria we treated transgenic mice that harbor cyan fluorescent protein (CFP)-labeled neuronal mitochondria with repeated doses of paclitaxel and assessed neuropathic changes by nerve conduction and histological studies. In addition, mitochondrial content and morphology was determined by ex vivo imaging of axons containing CFP-labeled mitochondria. Using quantitative RT-PCR and fluorescence-labeled mRNA we determined axonal mRNA transport of nuclear encoded mitochondrial proteins. Prolonged treatment with high doses of paclitaxel-induced a predominant sensory neuropathy in mice. Although mitochondrial velocity in axons per se was not altered, we observed significant changes in mitochondrial morphology, suggesting that paclitaxel treatment impairs the dynamics of axonal mitochondria. These changes were caused by decreased levels of nuclear encoded mRNA, including the mitochondrial fusion/fission machinery. Moreover, impaired axonal mRNA transport in vitro resulted in mitochondrial dysfunction and subsequent axonal degeneration. Taken together, our experiments provide evidence that disrupted axonal transport of nuclear derived mRNA plays a crucial role in the pathogenesis of paclitaxel-induced sensory neuropathy. PMID:26188177

  13. Nuclear Retention of mRNA in Mammalian Tissues.

    PubMed

    Bahar Halpern, Keren; Caspi, Inbal; Lemze, Doron; Levy, Maayan; Landen, Shanie; Elinav, Eran; Ulitsky, Igor; Itzkovitz, Shalev

    2015-12-29

    mRNA is thought to predominantly reside in the cytoplasm, where it is translated and eventually degraded. Although nuclear retention of mRNA has a regulatory potential, it is considered extremely rare in mammals. Here, to explore the extent of mRNA retention in metabolic tissues, we combine deep sequencing of nuclear and cytoplasmic RNA fractions with single-molecule transcript imaging in mouse beta cells, liver, and gut. We identify a wide range of protein-coding genes for which the levels of spliced polyadenylated mRNA are higher in the nucleus than in the cytoplasm. These include genes such as the transcription factor ChREBP, Nlrp6, Glucokinase, and Glucagon receptor. We demonstrate that nuclear retention of mRNA can efficiently buffer cytoplasmic transcript levels from noise that emanates from transcriptional bursts. Our study challenges the view that transcripts predominantly reside in the cytoplasm and reveals a role of the nucleus in dampening gene expression noise. PMID:26711333

  14. The stoichiometric production of IL-2 and IFN-? mRNA defines memory T cells that can self-renew after adoptive transfer in humans.

    PubMed

    Wang, Anran; Chandran, Smita; Shah, Syed A; Chiu, Yu; Paria, Biman C; Aghamolla, Tamara; Alvarez-Downing, Melissa M; Lee, Chyi-Chia Richard; Singh, Sanmeet; Li, Thomas; Dudley, Mark E; Restifo, Nicholas P; Rosenberg, Steven A; Kammula, Udai S

    2012-08-29

    Adoptive immunotherapy using ex vivo-expanded tumor-reactive lymphocytes can mediate durable cancer regression in selected melanoma patients. Analyses of these trials have associated the in vivo engraftment ability of the transferred cells with their antitumor efficacy. Thus, there is intensive clinical interest in the prospective isolation of tumor-specific T cells that can reliably persist after transfer. Animal studies have suggested that central memory CD8(+) T cells (T(CM)) have divergent capabilities including effector differentiation to target antigen and stem cell-like self-renewal that enable long-term survival after adoptive transfer. We sought to isolate human melanoma-specific T(CM) to define their in vivo fate and function after autologous therapeutic transfer to metastatic patients. To facilitate the high-throughput identification of these rare cells from patients, we report that T(CM) have a defined stoichiometric production of interleukin-2 (IL-2) and interferon-? (IFN-?) mRNA after antigen stimulation. Melanoma-specific T cells screened for high relative IL-2 production had a T(CM) phenotype and superior in vitro proliferative capacity compared to cells with low IL-2 production. To investigate in vivo effector function and self-renewal capability, we allowed melanoma-specific T(CM) to undergo in vitro expansion and differentiation into lytic effector clones and then adoptively transferred them back into their hosts. These clones targeted skin melanocytes in all five patients and persisted long term and reacquired parental T(CM) attributes in four patients after transfer. These findings demonstrate the favorable engraftment fitness for human T(CM)-derived clones, but further efforts to improve their antitumor efficacy are still necessary. PMID:22932225

  15. Effect of ribosome shielding on mRNA stability

    NASA Astrophysics Data System (ADS)

    Deneke, Carlus; Lipowsky, Reinhard; Valleriani, Angelo

    2013-08-01

    Based on the experimental evidence that translating ribosomes stabilize the mRNAs, we introduce and study a theoretical model for the dynamic shielding of mRNA by ribosomes. We present an improved fitting of published decay assay data in E. coli and show that only one third of the decay patterns are exponential. Our new transcriptome-wide estimate of the average lifetimes and mRNA half-lives shows that these timescales are considerably shorter than previous estimates. We also explain why there is a negative correlation between mRNA length and average lifetime when the mRNAs are subdivided in classes sharing the same degradation parameters. As a by-product, our model indicates that co-transcriptional translation in E. coli may be less common than previously believed.

  16. Post-transcriptional regulation tends to attenuate the mRNA noise and to increase the mRNA gain

    NASA Astrophysics Data System (ADS)

    Shi, Changhong; Wang, Shuqiang; Zhou, Tianshou; Jiang, Yiguo

    2015-10-01

    Post-transcriptional regulation is ubiquitous in prokaryotic and eukaryotic cells, but how it impacts gene expression remains to be fully explored. Here, we analyze a simple gene model in which we assume that mRNAs are produced in a constitutive manner but are regulated post-transcriptionally by a decapping enzyme that switches between the active state and the inactive state. We derive the analytical mRNA distribution governed by a chemical master equation, which can be well used to analyze the mechanism of how post-transcription regulation influences the mRNA expression level including the mRNA noise. We demonstrate that the mean mRNA level in the stochastic case is always higher than that in the deterministic case due to the stochastic effect of the enzyme, but the size of the increased part depends mainly on the switching rates between two enzyme states. More interesting is that we find that in contrast to transcriptional regulation, post-transcriptional regulation tends to attenuate noise in mRNA. Our results provide insight into the role of post-transcriptional regulation in controlling the transcriptional noise.

  17. A minimum principle in mRNA editing of Physarum ?

    E-print Network

    Frappat, L; Sorba, Paul

    2000-01-01

    mRNA editing in three sequences of Physarum polycephalum is analyzed. Once fixed the edited peptide chain, the nature of the inserted nucleotides and the position of the insertion sites are explained by introducing a minimum principle in the framework of the crystal basis model of the genetic code introduced by the authors.

  18. Regulation of mRNA Trafficking by Nuclear Pore Complexes

    PubMed Central

    Bonnet, Amandine; Palancade, Benoit

    2014-01-01

    Over the last two decades, multiple studies have explored the mechanisms governing mRNA export out of the nucleus, a crucial step in eukaryotic gene expression. During transcription and processing, mRNAs are assembled into messenger ribonucleoparticles (mRNPs). mRNPs are then exported through nuclear pore complexes (NPCs), which are large multiprotein assemblies made of several copies of a limited number of nucleoporins. A considerable effort has been put into the dissection of mRNA export through NPCs at both cellular and molecular levels, revealing the conserved contributions of a subset of nucleoporins in this process, from yeast to vertebrates. Several reports have also demonstrated the ability of NPCs to sort out properly-processed mRNPs for entry into the nuclear export pathway. Importantly, changes in mRNA export have been associated with post-translational modifications of nucleoporins or changes in NPC composition, depending on cell cycle progression, development or exposure to stress. How NPC modifications also impact on cellular mRNA export in disease situations, notably upon viral infection, is discussed. PMID:25184662

  19. HEAT-TREATED CAMPYLOBACTER SPP AND MRNA STABILITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymerase chain reaction (PCR) is a rapid, specific, and sensitive technique for detecting pathogenic bacteria. However, the technique cannot distinguish between viable and nonviable cells. Bacterial mRNA has been suggested as an indicator for cell viability as it expresses a component of ongoing m...

  20. Analysis of mRNA recognition by human thymidylate synthase.

    PubMed

    Brunn, Nicholas D; Dibrov, Sergey M; Kao, Melody B; Ghassemian, Majid; Hermann, Thomas

    2014-01-01

    Expression of hTS (human thymidylate synthase), a key enzyme in thymidine biosynthesis, is regulated on the translational level through a feedback mechanism that is rarely found in eukaryotes. At low substrate concentrations, the ligand-free enzyme binds to its own mRNA and stabilizes a hairpin structure that sequesters the start codon. When in complex with dUMP (2'-deoxyuridine-5'-monophosphate) and a THF (tetrahydrofolate) cofactor, the enzyme adopts a conformation that is unable to bind and repress expression of mRNA. Here, we have used a combination of X-ray crystallography, RNA mutagenesis and site-specific cross-linking studies to investigate the molecular recognition of TS mRNA by the hTS enzyme. The interacting mRNA region was narrowed to the start codon and immediately flanking sequences. In the hTS enzyme, a helix-loop-helix domain on the protein surface was identified as the putative RNA-binding site. PMID:25423174

  1. BIOMARKERS OF ENDOCRINE DISRUPTION AT THE MRNA LEVEL

    EPA Science Inventory

    Denslow, Nancy D., Christopher J. Bowman, Gillian Robinson, H. Stephen Lee, Ronald J. Ferguson, Michael J. Hemmer and Leroy C. Folmar. 1999. Biomarkers of Endocrine Disruption at the mRNA Level. In: Environmental Toxicology and Risk Assessment: Standardization of Biomarkers for ...

  2. Identification of differentially expressed mRNA during pancreas regeneration of rat by mRNA differential display

    E-print Network

    Park, Jong-Sang

    Identification of differentially expressed mRNA during pancreas regeneration of rat by m was used to isolate genes that show transcriptional changes in pancreas of rat after 90% partial pancreatectomy. Forty-nine candidate pancreas regeneration-associated transcripts were isolated. cDNA sequencing

  3. Interplay between Exonic Splicing Enhancers, mRNA Processing, and mRNA Surveillance in the Dystrophic Mdx Mouse

    PubMed Central

    Buvoli, Massimo; Buvoli, Ada; Leinwand, Leslie A.

    2007-01-01

    Background Pre-mRNA splicing, the removal of introns from RNA, takes place within the spliceosome, a macromolecular complex composed of five small nuclear RNAs and a large number of associated proteins. Spliceosome assembly is modulated by the 5? and 3? splice site consensus sequences situated at the ends of each intron, as well as by exonic and intronic splicing enhancers/silencers recognized by SR and hnRNP proteins. Nonsense mutations introducing a premature termination codon (PTC) often result in the activation of cellular quality control systems that reduce mRNA levels or alter the mRNA splicing pattern. The mdx mouse, a commonly used genetic model for Duchenne muscular dystrophy (DMD), lacks dystrophin by virtue of a premature termination codon (PTC) in exon 23 that also severely reduces the level of dystrophin mRNA. However, the effect of the mutation on dystrophin RNA processing has not yet been described. Methodology/Principal Finding Using combinations of different biochemical and cellular assays, we found that the mdx mutation partially disrupts a multisite exonic splicing enhancer (ESE) that is recognized by a 40 kDa SR protein. In spite of the presence of an inefficient intron 22 3? splice site containing the rare GAG triplet, the mdx mutation does not activate nonsense-associated altered splicing (NAS), but induces exclusively nonsense-mediated mRNA decay (NMD). Functional binding sites for SR proteins were also identified in exon 22 and 24, and in vitro experiments show that SR proteins can mediate direct association between exon 22, 23, and 24. Conclusions/Significance Our findings highlight the complex crosstalk between trans-acting factors, cis-elements and the RNA surveillance machinery occurring during dystrophin mRNA processing. Moreover, they suggest that dystrophin exon–exon interactions could play an important role in preventing mdx exon 23 skipping, as well as in facilitating the pairing of committed splice sites. PMID:17487273

  4. UCP1 mRNA does not produce heat.

    PubMed

    Nedergaard, Jan; Cannon, Barbara

    2013-05-01

    Because of the possible role of brown adipose tissue and UCP1 in metabolic regulation, even in adult humans, there is presently considerable interest in quantifying, from in-vitro data, the thermogenic capacities of brown and brite/beige adipose tissues. An important issue is therefore to establish which parameters are the most adequate for this. A particularly important issue is the relevance of UCP1 mRNA levels as estimates of the degree of recruitment and of the thermogenic capacity resulting from differences in physiological conditions and from experimental manipulations. By solely following UCP1 mRNA levels in brown adipose tissue, the conclusion would be made that the tissue's highest activation occurs after only 6h in the cold and then successively decreases to being only some 50% elevated after 1month in the cold. However, measurement of total UCP1 protein levels per depot ("mouse") reveals that the maximal thermogenic capacity estimated in this way is reached first after 1month but represents an approx. 10-fold increase in thermogenic capacity. Since this in-vitro measure correlates quantitatively and temporally with the acquisition of nonshivering thermogenesis, this must be considered the most physiologically relevant parameter. Similarly, observations that cold acclimation barely increases UCP1 mRNA levels in classical brown adipose tissue but leads to a 200-fold increase in UCP1 mRNA levels in brite/beige adipose tissue depots may overemphasise the physiological significance of these depots, as the high fold-increases are due to very low initial levels, and the UCP1 mRNA levels reached are at least an order of magnitude lower than in brown adipose tissue; furthermore, based on total UCP1 protein amounts, the brite/beige depots attain only about 10% of the thermogenic capacity of the classical brown adipose tissue depots. Consequently, inadequate conclusions may be reached if UCP1 mRNA levels are used as a proxy for the metabolic significance of recruited versus non-recruited brown adipose tissue and for estimating the metabolic significance of brown versus brite/beige adipose tissues. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease. PMID:23353596

  5. Translation with frameshifting of ribosome along mRNA transcript

    E-print Network

    Li, Jingwei

    2015-01-01

    Translation is an important process for prokaryotic and eukaryotic cells to produce necessary proteins for cell growth. Numerious experiments have been performed to explore the translational properties. Diverse models have also been developed to determine the biochemical mechanism of translation. However, to simplify the majority of the existing models, the frameshifting of ribosome along the mRNA transcript is neglected, which actually occurs in real cells and has been extensively experimentally studied. The frameshifting of ribosome evidently influences the efficiency and speed of translation, considering that the peptide chains synthesized by shifted ribosomes will not fold into functional proteins and will degrade rapidly. In this study, a theoretical model is presented to describe the translational process based on the model for totally asymmetric simple exclusion process. In this model, the frameshifting of the ribosome along the mRNA transcript and the attachment/detachment of the ribosome to/from the ...

  6. Developmental expression of choline acetyltransferase mRNA in Drosophila.

    PubMed

    Carbini, L A; Muñoz Maines, V J; Salvaterra, P M

    1990-11-01

    We have measured the steady state levels of choline acetyltransferase (ChAT, EC 2.3.1.6) mRNA during different developmental stages of Drosophila melanogaster using a ChAT specific cRNA probe. ChAT mRNA was first detected approximately 6-7 h after oviposition, increased until the 1st-2nd larval instar, decreased into early pupal stages and increased again during late pupation, reaching a maximum in adults. Northern analysis showed a major RNA band with a Mr of 4.7 kilobases and Western analysis also showed a single major 75 kD protein band at all developmental stages. Our results support the hypothesis that a major point of regulation of ChAT expression may be at the transcriptional level. PMID:2128533

  7. Membrane-Coupled mRNA Trafficking in Fungi.

    PubMed

    Haag, Carl; Steuten, Benedikt; Feldbrügge, Michael

    2015-10-15

    Intracellular logistics are essential for delivery of newly synthesized material during polar growth of fungal hyphae. Proteins and lipids are actively transported throughout the cell by motor-dependent movement of small vesicles or larger units such as endosomes and the endoplasmic reticulum. A remarkably tight link is emerging between active membrane trafficking and mRNA transport, a process that determines the precise subcellular localization of translation products within the cell. Here, we report on recent insights into the mechanism and biological role of these intricate cotransport processes in fungal models such as Saccharomyces cerevisiae, Candida albicans, and Ustilago maydis. In the latter, we focus on the new finding of endosomal mRNA transport and its implications for protein targeting, complex assembly, and septin biology. PMID:26274025

  8. Cloning and nitrate induction of nitrate reductase mRNA

    PubMed Central

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase protein and translatable mRNA. A partial cDNA clone for barley nitrate reductase has been isolated and identified by hybrid-selected translation. RNA blot-hybridization analysis shows that nitrate induction also causes a marked increase in the steady-state level of nitrate reductase mRNA. Images PMID:16593758

  9. Peptide inhibitors of botulinum neurotoxin by mRNA display

    SciTech Connect

    Yiadom, Kwabena P.A.B.; Muhie, Seid; Yang, David C.H. . E-mail: yangdc@georgetown.edu

    2005-10-07

    Botulinum neurotoxins (BoNTs) are extremely toxic. The metalloproteases associated with the toxins cleave proteins essential for neurotransmitter secretion. Inhibitors of the metalloprotease are currently sought to control the toxicity of BoNTs. Toward that goal, we produced a synthetic cDNA for the expression and purification of the metalloprotease of BoNT/A in Escherichia coli as a biotin-ubiquitin fusion protein, and constructed a combinatorial peptide library to screen for BoNT/A light chain inhibitors using mRNA display. A protease assay was developed using immobilized intact SNAP-25 as the substrate. The new peptide inhibitors showed a 10-fold increase in affinity to BoNT/A light chain than the parent peptide. Interestingly, the sequences of the new peptide inhibitors showed abundant hydrophobic residues but few hydrophilic residues. The results suggest that mRNA display may provide a general approach in developing peptide inhibitors of BoNTs.

  10. The Current Status of Vertebrate Cellular mRNA IRESs

    PubMed Central

    Jackson, Richard J.

    2013-01-01

    Internal ribosome entry sites/segments (IRESs) were first discovered over 20 years ago in picornaviruses, followed by the discovery of two other types of IRES in hepatitis C virus (HCV), and the dicistroviruses, which infect invertebrates. In the meantime, reports of IRESs in eukaryotic cellular mRNAs started to appear, and the list of such putative IRESs continues to grow to the point in which it now stands at ?100, 80% of them in vertebrate mRNAs. Despite initial skepticism from some quarters, there now seems universal agreement that there is genuine internal ribosome entry on the viral IRESs. However, the same cannot be said for cellular mRNA IRESs, which continue to be shrouded in controversy. The aim of this article is to explain why vertebrate mRNA IRESs remain controversial, and to discuss ways in which these controversies might be resolved. PMID:23378589

  11. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  12. The utility of protein and mRNA correlation

    SciTech Connect

    Payne, Samuel H.

    2015-01-01

    Transcriptomic, proteomic and metabolomic measurements are revolutionizing the way we model and predict cellular behavior, and multi-omic comparisons are being published with increased regularity. Some have expected a trivial and predictable correlation between mRNA and protein; however the manifest complexity of biological regulation suggests a more nuanced relationship. Indeed, observing this lack of strict correlation provides clues for new research topics, and has the potential for transformative biological insight.

  13. Sequence and expression of ferredoxin mRNA in barley

    SciTech Connect

    Zielinski, R.; Funder, P.M.; Ling, V. )

    1990-05-01

    We have isolated and structurally characterized a full-length cDNA clone encoding ferredoxin from a {lambda}gt10 cDNA library prepared from barley leaf mRNA. The ferredoxin clone (pBFD-1) was fused head-to-head with a partial-length cDNA clone encoding calmodulin, and was fortuitously isolated by screening the library with a calmodulin-specific oligonucleotide probe. The mRNA sequence from which pBFD-1 was derived is expressed exclusively in the leaf tissues of 7-d old barley seedlings. Barley pre-ferredoxin has a predicted size of 15.3 kDal, of which 4.6 kDal are accounted for by the transit peptide. The polypeptide encoded by pBFD-1 is identical to wheat ferredoxin, and shares slightly more amino acid sequence similarity with spinach ferredoxin I than with ferredoxin II. Ferredoxin mRNA levels are rapidly increased 10-fold by white light in etiolated barley leaves.

  14. Osteonectin mRNA: distribution in normal and transformed cells.

    PubMed Central

    Young, M F; Bolander, M E; Day, A A; Ramis, C I; Robey, P G; Yamada, Y; Termine, J D

    1986-01-01

    Overlapping cDNA clones encoding bovine osteonectin were isolated from a lambda gt11 expression library constructed from bovine bone cell mRNA. The longest clone, lambda On 17 (insert size 2.0 kb) was studied in detail. The clone was shown to encode osteonectin by hybrid select translation experiments and by DNA sequence analysis. Northern analysis of bone cell RNA showed the length of the osteonectin mRNA to be 2.0 kb. Osteonectin message was found in bone but not in soft tissue (liver and brain) preparations consistent with the distribution of the protein in these tissues. On the other hand, osteonectin message was observed in tendon, a tissue in which little or no osteonectin protein is found in vivo. Hybridization of osteonectin cDNA was detected in cells from a number of species including human, rat, mouse and chick. The level of osteonectin mRNA was drastically decreased in chick embryo fibroblasts transformed by Rous sarcoma virus. Images PMID:3012473

  15. Decreased albumin mRNA in immunodeficient wasted' mice

    SciTech Connect

    Libertin, C.R.; Buczek, N.; Weaver, P.; Mobarhan, S.; Woloschak, G.E. Argonne National Lab., IL )

    1991-03-15

    Mice bearing the autosomal recessive gene wst (wst/wst) develop a wasting syndrome' that leads to death by 28-32 days of age. These mice have faulty repair of damage induced by ionizing radiation, immunodeficiency at secretory sites, and neurologic abnormalities. In addition to a progressively more apparent wasted phenotype, wst/wst mice show other features of failure to thrive and malnutrition. Daily body weights of the animals revealed a loss in weight between 25 and 30 days of age, a time during which normal littermates were progressively and rapidly gaining weight. Albumin mRNA levels were measured by dilution dot blot hybridizations of liver-derived RNA preparations from wasted mice, littermates, and parental controls. In all wasted mice, albumin mRNA levels were reduced 5 to 10 fold compared to controls. Northern blots revealed that the albumin mRNA present in wasted mice was normal in length though reduced in amount. These results suggest there may be a relationship between low albumin synthesis and the wasting syndrome of the wst/wst mouse.

  16. Beta-globin nonsense mutation: deficient accumulation of mRNA occurs despite normal cytoplasmic stability.

    PubMed Central

    Baserga, S J; Benz, E J

    1992-01-01

    A common mutation causing thalassemia in Mediterranean populations is an amber (UAG) nonsense mutation at the 39th codon of the human beta-globin gene, the beta-39 mutation. Studies of mRNA metabolism in erythroblasts from patients with beta-39 thalassemia and studies using heterologous transfection systems have suggested the possibility that this mutation not only affects protein synthesis but also alters mRNA metabolism. The effects of this mutation on several steps in the metabolism of mRNA have been investigated by transfection of the gene into permanent cell lines bearing a temperature-sensitive RNA polymerase II. Several RNA expression studies were performed, including analysis of transcription, mRNA stability, mRNA splicing accuracy, and mRNA polyadenylation. The results suggest that the defect in expression of the beta-39 mRNA occurs at a step prior to the accumulation of mRNA in the cytoplasm. Images PMID:1557399

  17. The separation of 9 S RNA from avian immature red blood cells into f2c-histone mRNA and globin mRNA.

    PubMed

    Knöchel, W; Heyer, I

    1975-07-23

    9 S RNA from avian immature red blood cells was isolated from polysome-released ribonucleoprotein particles by sucrose-gradient techniques. Translation of this RNA in an Ehrlich ascites cell-free system and product analysis revealed that globin mRNA was contaminated by f2c-histone mRNA. When 9 S RNA was applied to oligo(dT)-cellulose columns a partial separation could be achieved. Poly (A)-containing globin mRNA did not contain f2c-histon mRNA, whereas the RNA which was not absorbed to oligo(dT)-cellulose contained all the f2c-histone mRNA besides substantial amounts of globin mRNA. PMID:1148248

  18. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    PubMed Central

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3?UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3?UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3?UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of nucleolin's actions on CSF-1 mRNA and describe the dependence of miR-130a- and miR-301a-directed CSF-1 mRNA decay and inhibition of ovarian cancer cell motility on nucleolin. PMID:23471483

  19. Research report Sexually dimorphic regulation of estrogen receptor a mRNA in the

    E-print Network

    Crews, David

    Research report Sexually dimorphic regulation of estrogen receptor a mRNA in the ventromedial to exogenous estrogen with an increase in estrogen receptor a (ERa) mRNA in the ventromedial hypothalamus (VMH testosterone treatment reduced estrogen-induced ERa mRNA levels (number of grains per cell) in the VMH

  20. Precision and functional specificity in mRNA decay , Chih Long Liu

    E-print Network

    Herschlag, Dan

    precisely measured the decay of each yeast mRNA, after thermal inactivation of a temperature-sensitive RNA of each mRNA is a fundamental feature of the gene expression program in yeast. Athough initiation and genetic manipulation, yeast makes an excellent model for studying eukaryotic mRNA turn- over. Simple

  1. Differential regulation of plastid mRNA stability. Progress report

    SciTech Connect

    Stern, D.B.

    1993-09-01

    Our goal is to identify cis-acting sequences and transacting factors that function in plastid mRNA maturation, stabilization, and/or decay through an in vitro and in vivo analysis of mRNA:protein interactions. Our previous results emphasized the study of 3{prime}end inverted repeat sequences (IRs) that serve both as mRNA processing elements and stability determinants, and associate with plastid proteins that potentially play enzymatic, structural and/or regulatory roles. We seek to define, by single base and internal deletion mutagenesis, the sequence and structural requirements for protein binding to the 3{prime} IRs of petD and psbA mRNAs; to purify RNA-binding proteins that demonstrate gene- or sequence-specific binding, or that are implicated in RNA stabilization or decay; and to investigate the native form of mRNA in the plastid, by attempting to purify ribonucleoprotein (RNP) particles from organelles. Our view of mRNA decay is that it is regulated by three interactive components: RNA structure, ribonucleases and RNA-binding proteins. We have used mutagenesis to study the role of RNA structure in regulating RNA decay rates, and to identify protein binding and endonuclease recognition sites. We have identified at least three endonuclease activities; one that cleaves psbA RNA; and two whose cleavage patterns with petD 3{prime} IR-RNA has been studied (endoC1 and endoC2). Additionally, we have continued to analyze the properties of the major RNA processing exoribonuclease. We have concentrated our efforts on three RNA-binding proteins. A 100 kd protein with properties suggestive of a mammalian RNP component has been purified. A protein of 55 kd that may also be an endonuclease has been partially purified. We have studied the interaction of a 29 kd protein with the petD stem/loop, and its role in RNA processing. Recently, we have used a novel gel shift/SDS-PAGE technique to identify new RNA-binding proteins.

  2. Visualizing mRNA Dynamics in Live Neurons and Brain Tissues.

    PubMed

    Park, Hye Yoon; Song, Minho

    2016-01-01

    Localization of mRNA plays a crucial role in a variety of neuronal processes including synaptogenesis, axonal guidance, and long-term plasticity. Recent advances in fluorescence imaging and RNA labeling techniques allow us to visualize how individual mRNA molecules are dynamically regulated inside live neurons and brain tissues. Here, we describe key methods in imaging mRNA dynamics, including preparation of neuron culture and brain slices from transgenic mice expressing GFP-labeled mRNA, high-resolution detection of single molecules, live tissue imaging, and analysis of mRNA transport. PMID:26463394

  3. The Dynamics of Fluorescently Labeled Endogenous gurken mRNA in Drosophila

    PubMed Central

    Jaramillo, Angela M.; Weil, Timothy T.; Goodhouse, Joseph; Gavis, Elizabeth R.; Schupbach, Trudi

    2008-01-01

    Summary During Drosophila oogenesis, the targeted localization of gurken (grk) mRNA leads to the establishment of the axis polarity of the egg. In early stages of oogenesis, grk mRNA is found at the posterior of the oocyte, whereas in the later stages grk mRNA is positioned at the dorsal anterior corner of the oocyte. In order to visualize real time localization and anchorage of endogenous grk mRNA in living oocytes, we have utilized the MS2-MCP system. We show that MCP-GFP tagged endogenous grk mRNA properly localizes within wild-type oocytes and behaves aberrantly in mutant backgrounds. FRAP experiments of localized grk mRNA in egg chambers reveal a difference in the dynamics of grk mRNA between young and older egg chambers. grk mRNA particles, as a population, are highly dynamic molecules that steadily lose their dynamic nature as oogenesis progresses. This difference in dynamics is attenuated in K10 and sqd1 mutants such that mislocalized grk mRNA in older stages is much more dynamic compared to wild-type. In contrast, in flies with compromised dynein activity, properly localized grk mRNA is much more static. Taken together, we have observed the nature of localized grk mRNA in live oocytes and propose that its maintenance changes from a dynamic to a static process as oogenesis progresses. PMID:18303053

  4. Interleukin 2 receptor-targeted cytotoxicity. Interleukin 2 receptor- mediated action of a diphtheria toxin-related interleukin 2 fusion protein

    PubMed Central

    1988-01-01

    The IL-2 toxin-mediated inhibition of protein synthesis in high affinity IL-2-R-positive murine and human T cell lines has been examined. Both excess free IL-2 and mAb to the Tac epitope of the p55 subunit of IL-2-R are shown to block the action of IL-2 toxin; whereas, agents that interact with other receptors or antigens on the T cell surface have no effect. We show that IL-2 toxin, like diphtheria toxin, must pass through an acidic vesicle in order to intoxicate target T cells. Finally, we demonstrate that the IL-2 toxin-mediated inhibition of protein synthesis in both human and murine T cells that bear the high affinity IL-2-R is due to the classic diphtheria toxin fragment A- catalyzed ADP ribosylation of elongation factor 2. PMID:3126255

  5. Mucin1 promotes the migration and invasion of hepatocellular carcinoma cells via JNK-mediated phosphorylation of Smad2 at the C-terminal and linker regions

    PubMed Central

    Wang, Juan; Liu, Guomu; Li, Qiongshu; Wang, Fang; Xie, Fei; Zhai, Ruiping; Guo, Yingying; Chen, Tanxiu; Zhang, Nannan; Ni, Weihua; Yuan, Hongyan; Tai, Guixiang

    2015-01-01

    Mucin1 (MUC1), as an oncogene, plays a key role in the progression and tumorigenesis of many human adenocarcinomas. In this study, wound-healing, transwell migration and matrigel invasion assays showed that MUC1 promotes human hepatocellular carcinoma (HCC) cell migration and invasion by MUC1 gene silencing and overexpressing. Treatment with exogenous transforming growth factor beta (TGF-?)1, TGF-? type I receptor (T?RI) inhibitor, TGF-?1 siRNAs, or activator protein 1 (AP-1) inhibitor to MUC1-overexpressing HCC cells revealed that MUC1-induced autocrine TGF-? via JNK/AP-1 pathway promotes the cell migration and invasion. In addition, the migration and invasion of HCC cells were more significantly inhibited by JNK inhibitor compared with that by T?RI inhibitor or TGF-?1 siRNAs. Further studies demonstrated that MUC1-mediated JNK activation not only enhances the phosphorylation of Smad2 C-terminal at Ser-465/467 site (Smad2C) through TGF-?/T?RI, but also directly enhances the phosphorylation of Smad2 linker region at Ser-245/250/255 site (Smad2L), and then both of them collaborate to upregulate matrix metalloproteinase (MMP)-9-mediated cell migration and invasion of HCC. These results indicate that MUC1 is an attractive target in liver cancer therapy. PMID:26057631

  6. Prolyl carboxypeptidase mRNA expression in the mouse brain.

    PubMed

    Jeong, Jin Kwon; Diano, Sabrina

    2014-01-13

    Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and ?-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic ?-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain. PMID:24161824

  7. Clustered bottlenecks in mRNA translation and protein synthesis

    E-print Network

    Tom Chou; Greg Lakatos

    2003-10-29

    We construct an algorithm that generates large, band-diagonal transition matrices for a totally asymmetric exclusion process (TASEP) with local hopping rate inhomogeneities. The matrices are diagonalized numerically to find steady-state currents of TASEPs with local variations in hopping rate. The results are then used to investigate clustering of slow codons along mRNA. Ribosome density profiles near neighboring clusters of slow codons interact, enhancing suppression of ribosome throughput when such bottlenecks are closely spaced. Increasing the slow codon cluster size, beyond $\\approx 3-4$, does not significantly reduce ribosome current. Our results are verified by extensive Monte-Carlo simulations and provide a biologically-motivated explanation for the experimentally-observed clustering of low-usage codons.

  8. Origin of hepatitis delta virus mRNA.

    PubMed

    Gudima, S; Wu, S Y; Chiang, C M; Moraleda, G; Taylor, J

    2000-08-01

    Hepatitis delta virus (HDV) is unique relative to all known animal viruses, especially in terms of its ability to redirect host RNA polymerase(s) to transcribe its 1,679-nucleotide (nt) circular RNA genome. During replication there accumulates not only more molecules of the genome but also its exact complement, the antigenome. In addition, there are relatively smaller amounts of an 800-nt RNA of antigenomic polarity that is polyadenylated and considered to act as mRNA for translation of the single and essential HDV protein, the delta antigen. Characterization of this mRNA could provide insights into the in vivo mechanism of HDV RNA-directed RNA transcription and processing. Previously, we showed that the 5' end of this RNA was located in the majority of species, at nt 1630. The present studies show that (i) at least some of this RNA, as extracted from the liver of an HDV-infected woodchuck, behaved as if it contained a 5'-cap structure; (ii) in the infected liver there were additional polyadenylated antigenomic HDV RNA species with 5' ends located at least 202 nt and even 335 nt beyond the nt 1630 site, (iii) the 5' end at nt 1630 was not detected in transfected cells, following DNA-directed HDV RNA transcription, in the absence of genome replication, and (iv) nevertheless, using in vitro transcription with purified human RNA polymerase II holoenzyme and genomic RNA template, we did not detect initiation of template-dependent RNA synthesis; we observed only low levels of 3'-end addition to the template. These new findings support the interpretation that the 5' end detected at nt 1630 during HDV replication represents a specific site for the initiation of an RNA-directed RNA synthesis, which is then modified by capping. PMID:10906174

  9. Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage.

    PubMed

    Prévost, Karine; Desnoyers, Guillaume; Jacques, Jean-François; Lavoie, François; Massé, Eric

    2011-02-15

    Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site (RBS), it is possible that the resulting translation block is sufficient to promote the rapid degradation of the targeted mRNA. Contrary to this mechanism, we report here that the pairing of the sRNA RyhB to the target mRNA sodB initiates mRNA degradation even in the absence of translation on the mRNA target. Remarkably, even though it pairs at the RBS, the sRNA RyhB induces mRNA cleavage in vivo at a distal site located >350 nucleotides (nt) downstream from the RBS, ruling out local cleavage near the pairing site. Both the RNA chaperone Hfq and the RNA degradosome are required for efficient cleavage at the distal site. Thus, beyond translation initiation block, sRNA-induced mRNA cleavage requires several unexpected steps, many of which are determined by structural features of the target mRNA. PMID:21289064

  10. An agent-based model for mRNA export through the nuclear pore complex

    PubMed Central

    Azimi, Mohammad; Bulat, Evgeny; Weis, Karsten; Mofrad, Mohammad R. K.

    2014-01-01

    mRNA export from the nucleus is an essential step in the expression of every protein- coding gene in eukaryotes, but many aspects of this process remain poorly understood. The density of export receptors that must bind an mRNA to ensure export, as well as how receptor distribution affects transport dynamics, is not known. It is also unclear whether the rate-limiting step for transport occurs at the nuclear basket, in the central channel, or on the cytoplasmic face of the nuclear pore complex. Using previously published biophysical and biochemical parameters of mRNA export, we implemented a three-dimensional, coarse-grained, agent-based model of mRNA export in the nanosecond regime to gain insight into these issues. On running the model, we observed that mRNA export is sensitive to the number and distribution of transport receptors coating the mRNA and that there is a rate-limiting step in the nuclear basket that is potentially associated with the mRNA reconfiguring itself to thread into the central channel. Of note, our results also suggest that using a single location-monitoring mRNA label may be insufficient to correctly capture the time regime of mRNA threading through the pore and subsequent transport. This has implications for future experimental design to study mRNA transport dynamics. PMID:25253717

  11. Insulin-like growth factor-1 mRNA isoforms and insulin-like growth factor-1 receptor mRNA expression in chronic hepatitis C

    PubMed Central

    Kasprzak, Aldona; Adamek, Agnieszka; Przybyszewska, Wies?awa; Pyda, Przemys?aw; Szmeja, Jacek; Seraszek-Jaros, Agnieszka; Lanzafame, Agata; Surdacka, Anna; Mozer-Lisewska, Iwona; Koczorowska, Maria

    2015-01-01

    AIM: To evaluate the expression of different insulin-like growth factor (IGF)-1 mRNA isoforms and IGF-1 receptor (IGF-1R) mRNA in hepatitis C virus (HCV)-infected livers. METHODS: Thirty-four liver biopsy specimens from chronic hepatitis C (CH-C) patients were obtained before anti-viral therapy. Inflammatory activity (grading) and advancement of fibrosis (staging) were evaluated using a modified point scale of METAVIR. The samples were analyzed using quantitative real-time PCR technique. From fragments of liver biopsies and control liver that were divided and ground in liquid nitrogen, RNA was isolated using RNeasy Fibrous Tissue Mini Kit according to the manufacturer’s instruction. Expression levels of IGF-1 mRNA isoforms (IGF-1A, IGF-1B, IGF-1C, P1, and P2) and IGF-1R mRNA were determined through normalization of copy numbers in samples as related to reference genes: glyceraldehyde-3-phosphate dehydrogenase and hydroxymethylbilane synthase. Results on liver expression of the IGF-1 mRNA isoforms and IGF-1R transcript were compared to histological alterations in liver biopsies and with selected clinical data in the patients. Statistical analysis was performed using Statistica PL v. 9 software. RESULTS: The study showed differences in quantitative expression of IGF-1 mRNA variants in HCV-infected livers, as compared to the control. Higher relative expression of total IGF-1 mRNA and of IGF-1 mRNAs isoforms (P1, A, and C) in HCV-infected livers as compared to the control were detected. Within both groups, expression of the IGF-1A mRNA isoform significantly prevailed over expressions of B and C isoforms. Expression of P1 mRNA was higher than that of P2 only in CH-C. Very high positive correlations were detected between reciprocal expressions of IGF-1 mRNA isoforms P1 and P2 (r = 0.876). Expression of P1 and P2 mRNA correlated with IGF-1A mRNA (r = 0.891; r = 0.821, respectively), with IGF-1B mRNA (r = 0.854; r = 0.813, respectively), and with IGF-1C mRNA (r = 0.839; r = 0.741, respectively). Expression of IGF-1A mRNA significantly correlated with isoform B and C mRNA (r = 0.956; r = 0.869, respectively), and B with C isoforms (r = 0.868) (P < 0.05 in all cases). Lower expression of IGF-1A and B transcripts was noted in the more advanced liver grading (G2) as compared to G1. Multiple negative correlations were detected between expression of various IGF-1 transcripts and clinical data (e.g., alpha fetoprotein, HCV RNA, steatosis, grading, and staging). Expression of IGF-1R mRNA manifested positive correlation with grading and HCV-RNA. CONCLUSION: Differences in quantitative expression of IGF-1 mRNA isoforms in HCV-infected livers, as compared to the control, suggest that HCV may induce alteration of IGF-1 splicing profile. PMID:25852271

  12. Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription

    SciTech Connect

    Dreyfuss, G.; Adam, S.A.; Choi, Y.D.

    1984-03-01

    Exposure of intact cells to UV light brings about cross-linking of polyadenylated mRNA to a set of cytoplasmic proteins which are in direct contact with the mRNA in vivo. Substantial amounts of an additional protein of molecular weight 38,000 become cross-linked to the mRNA when cells are treated with inhibitors of mRNA synthesis (actinomycin D, camptothecin, and 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole) or after infection with vesicular stomatitis virus. Cordycepin, which inhibits polyadenylation but not mRNA synthesis, has no such effect. Inhibitors of protein synthesis and of rRNA synthesis are also without effect on 38K cross-linking to mRNA. The onset of the effect of inhibitors of mRNA synthesis on the UV cross-linkable interaction between mRNA and 38K is rapid and reaches a maximal level in less than 60 min, and it is completely and rapidly reversible. In cells treated with actinomycin D, the amount of 38K which becomes cross-linked to mRNA is proportional to the extent of inhibition of mRNA synthesis. The association of 38K with mRNA during transcriptional arrest does not require protein synthesis because simultaneous treatment with the protein synthesis inhibitor emetine does not interfere with it. The effectors which promote the interaction of 38K with mRNA do not affect the proteins which are in contact with polyadenylated heterogeneous nuclear RNA and do not markedly affect protein synthesis in the cell. The 38K protein can be isolated with the polyribosomal polyadenylated fraction from which it was purified, and monoclonal antibodies against it were prepared.

  13. Oscillatory kinetics of gene expression: Protein conversion and slow mRNA transport

    SciTech Connect

    Zhdanov, V. P.

    2009-06-15

    The negative feedback between mRNA and regulatory-protein production may result in oscillations in the kinetics of gene expression if the mRNA-protein interplay includes protein conversion. Using a mean-field kinetic model, we show that such oscillations can be amplified due to limitations of the mRNA transport between the nucleus and cytoplasm. This effect may be dramatic for the mRNA population in the nucleus.

  14. New Study Shows Protein and mRNA Levels Are Not Correlated | Physical Sciences in Oncology

    Cancer.gov

    Ever since molecular biologists sorted out the general mechanisms that cells use to turn DNA into messenger RNA (mRNA) and then into protein, researchers have largely assumed that the amount of mRNA a cell makes during gene transcription will correlate with the subsequent amount of protein the cell produces from that mRNA. Indeed, aggregate measurements made from large numbers of cells have long supported this assumption.

  15. A new function of glucocorticoid receptor: regulation of mRNA stability

    PubMed Central

    Park, Ok Hyun; Do, Eunjin; Kim, Yoon Ki

    2015-01-01

    It has long been thought that glucocorticoid receptor (GR) functions as a DNA-binding transcription factor in response to its ligand (a glucocorticoid) and thus regulates various cellular and physiological processes. It is also known that GR can bind not only to DNA but also to mRNA; this observation points to the possible role of GR in mRNA metabolism. Recent data revealed a molecular mechanism by which binding of GR to target mRNA elicits rapid mRNA degradation. GR binds to specific RNA sequences regardless of the presence of a ligand. In the presence of a ligand, however, the mRNA-associated GR can recruit PNRC2 and UPF1, both of which are specific factors involved in nonsense-mediated mRNA decay (NMD). PNRC2 then recruits the decapping complex, consequently promoting mRNA degradation. This mode of mRNA decay is termed “GR-mediated mRNA decay” (GMD). Further research demonstrated that GMD plays a critical role in chemotaxis of immune cells by targeting CCL2 mRNA. All these observations provide molecular insights into a previously unappreciated function of GR in posttranscriptional regulation of gene expression. [BMB Reports 2015; 48(7): 367-368] PMID:26169194

  16. The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells.

    PubMed

    Kim, H; You, S; Foster, L K; Farris, J; Foster, D N

    2001-08-23

    The steady-state levels of p53 mRNA were dramatically lower in immortal chicken embryo fibroblast (CEF) cell lines compared to primary CEF cells. In the presence of cycloheximide (CHX), the steady-state levels of p53 mRNA markedly increased in immortal CEF cell lines, similar to levels found in primary cells. The de novo synthetic rates of p53 mRNA were relatively similar in primary and immortal cells grown in the presence or absence of CHX. Destabilization of p53 mRNA was observed in the nuclei of immortal, but not primary, CEF cells. The half-life of p53 mRNA in primary cells was found to be a relatively long 23 h compared to only 3 h in immortal cells. The expression of transfected p53 cDNA was inhibited in immortal cells, but restored upon CHX treatment. The 5'-region of the p53 mRNA was shown to be involved in the rapid p53 mRNA destabilization in immortal cells by expression analysis of 5'- and 3'-deleted p53 cDNAs as well as fusion mRNA constructs of N-terminal p53 and N-terminal deleted LacZ genes. Together, it is suggestive that the downregulation of p53 mRNA in immortal CEF cells occurs through a post-transcriptional destabilizing mechanism. PMID:11526500

  17. In vitro Splicing of Influenza Viral NS1 mRNA and NS1-? -globin Chimeras: Possible Mechanisms for the Control of Viral mRNA Splicing

    NASA Astrophysics Data System (ADS)

    Plotch, Stephen J.; Krug, Robert M.

    1986-08-01

    In influenza virus-infected cells, the splicing of the viral NS1 mRNA catalyzed by host nuclear enzymes is controlled so that the steady-state amount of the spliced NS2 mRNA is only 5-10% of that of the unspliced NS1 mRNA. Here we examine the splicing of NS1 mRNA in vitro, using nuclear extracts from HeLa cells. We show that in addition to its consensus 5' and 3' splice sites, NS1 mRNA has an intron branch-point adenosine residue that was functional in lariat formation. Nonetheless, this RNA was not detectably spliced in vitro under conditions in which a human ? -globin precursor was efficiently spliced. Using chimeric RNA precursors containing both NS1 and ? -globin sequences, we show that the NS1 5' splice site was effectively utilized by the ? -globin branch-point sequence and 3' splice site to form a spliced RNA, whereas the NS1 3' splice site did not function in detectable splicing in vitro, even in the presence of the ? -globin branch-point sequence or in the presence of both the branch-point sequence and 5' exon and splice site from ? -globin With the chimeric precursors that were not detectably spliced, as with NS1 mRNA itself, a low level of a lariat structure containing only intron and not 3' exon sequences was formed. The inability of the consensus 3' splice site of NS1 mRNA to function effectively in in vitro splicing suggests that this site is structurally inaccessible to components of the splicing machinery. Based on these results, we propose two mechanisms whereby NS1 mRNA splicing in infected cells is controlled via the accessibility of its 3' splice site.

  18. Identification of mRNA binding proteins that regulate the stability of LDL receptor mRNA through AU-rich elementss?

    PubMed Central

    Li, Hai; Chen, Wei; Zhou, Yue; Abidi, Parveen; Sharpe, Orr; Robinson, William H.; Kraemer, Fredric B.; Liu, Jingwen

    2009-01-01

    The 3?untranslated region (UTR) of human LDL receptor (LDLR) mRNA contains three AU-rich elements (AREs) responsible for rapid mRNA turnover and mediates the stabilization induced by berberine (BBR). However, the identities of the specific RNA binding proteins involved in the regulation of LDLR mRNA stability at the steady state level or upon BBR treatment are unknown. By conducting small interfering RNA library screenings, biotinylated RNA pull-down, mass spectrometry analysis, and functional assays, we now identify heterogeneous nuclear ribonucleoprotein D (hnRNP D), hnRNP I, and KH-type splicing regulatory protein (KSRP) as key modulators of LDLR mRNA stability in liver cells. We show that hnRNP D, I, and KSRP interact with AREs of the LDLR 3?UTR with sequence specificity. Silencing the expression of these proteins increased LDLR mRNA and protein levels. We further demonstrate that BBR-induced mRNA stabilization involves hnRNP I and KSRP, as their cellular depletions abolished the BBR effect and BBR treatment reduced the binding of hnRNP I and KSRP to the LDLR mRNA 3?UTR. These new findings demonstrate that LDLR mRNA stability is controlled by a group of ARE binding proteins, including hnRNP D, hnRNP I, and KSRP. Our results suggest that interference with the ability of destabilizing ARE binding proteins to interact with LDLR-ARE motifs is likely a mechanism for regulating LDLR expression by compounds such as BBR and perhaps others. PMID:19141871

  19. Identification of mRNA binding proteins that regulate the stability of LDL receptor mRNA through AU-rich elements.

    PubMed

    Li, Hai; Chen, Wei; Zhou, Yue; Abidi, Parveen; Sharpe, Orr; Robinson, William H; Kraemer, Fredric B; Liu, Jingwen

    2009-05-01

    The 3'untranslated region (UTR) of human LDL receptor (LDLR) mRNA contains three AU-rich elements (AREs) responsible for rapid mRNA turnover and mediates the stabilization induced by berberine (BBR). However, the identities of the specific RNA binding proteins involved in the regulation of LDLR mRNA stability at the steady state level or upon BBR treatment are unknown. By conducting small interfering RNA library screenings, biotinylated RNA pull-down, mass spectrometry analysis, and functional assays, we now identify heterogeneous nuclear ribonucleoprotein D (hnRNP D), hnRNP I, and KH-type splicing regulatory protein (KSRP) as key modulators of LDLR mRNA stability in liver cells. We show that hnRNP D, I, and KSRP interact with AREs of the LDLR 3'UTR with sequence specificity. Silencing the expression of these proteins increased LDLR mRNA and protein levels. We further demonstrate that BBR-induced mRNA stabilization involves hnRNP I and KSRP, as their cellular depletions abolished the BBR effect and BBR treatment reduced the binding of hnRNP I and KSRP to the LDLR mRNA 3'UTR. These new findings demonstrate that LDLR mRNA stability is controlled by a group of ARE binding proteins, including hnRNP D, hnRNP I, and KSRP. Our results suggest that interference with the ability of destabilizing ARE binding proteins to interact with LDLR-ARE motifs is likely a mechanism for regulating LDLR expression by compounds such as BBR and perhaps others. PMID:19141871

  20. Regulation of mRNA translation during mitosis.

    PubMed

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-01-01

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ~200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function. PMID:26305499

  1. Regulation of mRNA translation during mitosis

    PubMed Central

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-01-01

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ?200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function. DOI: http://dx.doi.org/10.7554/eLife.07957.001 PMID:26305499

  2. Intracellular Calcium Regulates Nonsense-Mediated mRNA Decay

    PubMed Central

    Nickless, Andrew; Jackson, Erin; Marasa, Jayne; Nugent, Patrick; Mercer, Robert W.; Piwnica-Worms, David; You, Zhongsheng

    2014-01-01

    The nonsense-mediated mRNA decay (NMD) pathway selectively eliminates aberrant transcripts containing premature translation termination codons (PTCs) and regulates the levels of a number of physiological mRNAs. NMD modulates the clinical outcome of a variety of human diseases, including cancer and many genetic disorders, and may represent an important target for therapeutic intervention. Here we have developed a novel multicolored, bioluminescence-based reporter system that can specifically and effectively assay NMD in live human cells. Using this reporter system, we conducted a robust high-throughput small-molecule screen in human cells and, unpredictably, identified a group of cardiac glycosides including ouabain and digoxin as potent inhibitors of NMD. Cardiac glycoside-mediated effects on NMD are dependent on binding and inhibiting the Na+/K+-ATPase on the plasma membrane and subsequent elevation of intracellular calcium levels. Induction of calcium release from endoplasmic reticulum also leads to inhibition of NMD. Thus, this study reveals intracellular calcium as a key regulator of NMD and has important implications for exploiting NMD in the treatment of disease. PMID:25064126

  3. mRNA related to insulin family in human placenta

    SciTech Connect

    Younes, M.A.; D'Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-03-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A/sup +/) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A/sup +/) RNA templates. Five hundred transformants were initially screened by colony hybridization using a /sup 32/P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II.

  4. Target mRNA inhibition by oligonucleotide drugs in man

    PubMed Central

    Lightfoot, Helen L.; Hall, Jonathan

    2012-01-01

    Oligonucleotide delivery in vivo is commonly seen as the principal hurdle to the successful development of oligonucleotide drugs. In an analysis of 26 oligonucleotide drugs recently evaluated in late-stage clinical trials we found that to date at least half have demonstrated suppression of the target mRNA and/or protein levels in the relevant cell types in man, including those present in liver, muscle, bone marrow, lung, blood and solid tumors. Overall, this strongly implies that the drugs are being delivered to the appropriate disease tissues. Strikingly we also found that the majority of the drug targets of the oligonucleotides lie outside of the drugable genome and represent new mechanisms of action not previously investigated in a clinical setting. Despite the high risk of failure of novel mechanisms of action in the clinic, a subset of the targets has been validated by the drugs. While not wishing to downplay the technical challenges of oligonucleotide delivery in vivo, here we demonstrate that target selection and validation are of equal importance for the success of this field. PMID:22989709

  5. Herpes simplex virus virion stimulatory protein mRNA leader contains sequence elements which increase both virus-induced transcription and mRNA stability.

    PubMed Central

    Blair, E D; Blair, C C; Wagner, E K

    1987-01-01

    To investigate the role of 5' noncoding leader sequence of herpes simplex virus type 1 (HSV-1) mRNA in infected cells, the promoter for the 65,000-dalton virion stimulatory protein (VSP), a beta-gamma polypeptide, was introduced into plasmids bearing the chloramphenicol acetyltransferase (cat) gene together with various lengths of adjacent viral leader sequences. Plasmids containing longer lengths of leader sequence gave rise to significantly higher levels of CAT enzyme in transfected cells superinfected with HSV-1. RNase T2 protection assays of CAT mRNA showed that transcription was initiated from an authentic viral cap site in all VSP-CAT constructs and that CAT mRNA levels corresponded to CAT enzyme levels. Use of cis-linked simian virus 40 enhancer sequences demonstrated that the effect was virus specific. Constructs containing 12 and 48 base pairs of the VSP mRNA leader gave HSV infection-induced CAT activities intermediate between those of the leaderless construct and the VSP-(+77)-CAT construct. Actinomycin D chase experiments demonstrated that the longest leader sequences increased hybrid CAT mRNA stability at least twofold in infected cells. Cotransfection experiments with a cosmid bearing four virus-specified transcription factors (ICP4, ICP0, ICP27, and VSP-65K) showed that sequences from -3 to +77, with respect to the viral mRNA cap site, also contained signals responsive to transcriptional activation. Images PMID:3037112

  6. Potent Anti-R5 Human Immunodeficiency Virus Type 1 Effects of a CCR5 Antagonist, AK602/ONO4128/GW873140, in a Novel Human Peripheral Blood Mononuclear Cell Nonobese Diabetic-SCID, Interleukin-2 Receptor ?-Chain-Knocked-Out AIDS Mouse Model

    PubMed Central

    Nakata, Hirotomo; Maeda, Kenji; Miyakawa, Toshikazu; Shibayama, Shiro; Matsuo, Masayoshi; Takaoka, Yoshikazu; Ito, Mamoru; Koyanagi, Yoshio; Mitsuya, Hiroaki

    2005-01-01

    We established human peripheral blood mononuclear cell (PBMC)-transplanted R5 human immunodeficiency virus type 1 isolate JR-FL (HIV-1JR-FL)-infected, nonobese diabetic-SCID, interleukin 2 receptor ?-chain-knocked-out (NOG) mice, in which massive and systemic HIV-1 infection occurred. The susceptibility of the implanted PBMC to the infectivity and cytopathic effect of R5 HIV-1 appeared to stem from hyperactivation of the PBMC, which rapidly proliferated and expressed high levels of CCR5. When a novel spirodiketopiperazine-containing CCR5 inhibitor, AK602/ONO4128/GW873140 (molecular weight, 614), was administered to the NOG mice 1 day after R5 HIV-1 inoculation, the replication and cytopathic effects of R5 HIV-1 were significantly suppressed. In saline-treated mice (n = 7), the mean human CD4+/CD8+ cell ratio was 0.1 on day 16 after inoculation, while levels in mice (n = 8) administered AK602 had a mean value of 0.92, comparable to levels in uninfected mice (n = 7). The mean number of HIV-RNA copies in plasma in saline-treated mice were ?106/ml on day 16, while levels in AK602-treated mice were 1.27 × 103/ml (P = 0.001). AK602 also significantly suppressed the number of proviral DNA copies and serum p24 levels (P = 0.001). These data suggest that the present NOG mouse system should serve as a small-animal AIDS model and warrant that AK602 be further developed as a potential therapeutic for HIV-1 infection. PMID:15681411

  7. Exercise and adrenaline increase PGC-1? mRNA expression in rat adipose tissue

    PubMed Central

    Sutherland, Lindsey N; Bomhof, Marc R; Capozzi, Lauren C; Basaraba, Susan A U; Wright, David C

    2009-01-01

    The purpose of the present investigation was to explore the effects of exercise and adrenaline on the mRNA expression of PGC-1?, a master regulator of mitochondrial biogenesis, in rat abdominal adipose tissue. We hypothesized that (1) exercise training would increase PGC-1? mRNA expression in association with increases in mitochondrial marker enzymes, (2) adrenaline would increase PGC-1? mRNA expression and (3) the effect of exercise on PGC-1? mRNA expression in white adipose tissue would be attenuated by a ?-blocker. Two hours of daily swim training for 4 weeks led to increases in mitochondrial marker proteins and PGC-1? mRNA expression in epididymal and retroperitoneal fat depots. Additionally, a single 2 h bout of exercise led to increases in PGC-1? mRNA expression immediately following exercise cessation. Adrenaline treatment of adipose tissue organ cultures led to dose-dependent increases in PGC-1? mRNA expression. A supra-physiological concentration of adrenaline increased PGC-1? mRNA expression in epididymal but not retroperitoneal adipose tissue. ?-Blockade attenuated the effects of an acute bout of exercise on PGC-1? mRNA expression in epididymal but not retroperitoneal fat pads. In summary, this is the first investigation to demonstrate that exercise training, an acute bout of exercise and adrenaline all increase PGC-1? mRNA expression in rat white adipose tissue. Furthermore it would appear that increases in circulating catecholamine levels may be one potential mechanism mediating exercise induced increases in PGC-1? mRNA expression in rat abdominal adipose tissue. PMID:19221126

  8. Distinguishing direct from indirect roles for bicoid mRNA localization factors

    PubMed Central

    Weil, Timothy T.; Xanthakis, Despina; Parton, Richard; Dobbie, Ian; Rabouille, Catherine; Gavis, Elizabeth R.; Davis, Ilan

    2010-01-01

    Localization of bicoid mRNA to the anterior of the Drosophila oocyte is essential for patterning the anteroposterior body axis in the early embryo. bicoid mRNA localizes in a complex multistep process involving transacting factors, molecular motors and cytoskeletal components that remodel extensively during the lifetime of the mRNA. Genetic requirements for several localization factors, including Swallow and Staufen, are well established, but the precise roles of these factors and their relationship to bicoid mRNA transport particles remains unresolved. Here we use live cell imaging, super-resolution microscopy in fixed cells and immunoelectron microscopy on ultrathin frozen sections to study the distribution of Swallow, Staufen, actin and dynein relative to bicoid mRNA during late oogenesis. We show that Swallow and bicoid mRNA are transported independently and are not colocalized at their final destination. Furthermore, Swallow is not required for bicoid transport. Instead, Swallow localizes to the oocyte plasma membrane, in close proximity to actin filaments, and we present evidence that Swallow functions during the late phase of bicoid localization by regulating the actin cytoskeleton. In contrast, Staufen, dynein and bicoid mRNA form nonmembranous, electron dense particles at the oocyte anterior. Our results exclude a role for Swallow in linking bicoid mRNA to the dynein motor. Instead we propose a model for bicoid mRNA localization in which Swallow is transported independently by dynein and contributes indirectly to bicoid mRNA localization by organizing the cytoskeleton, whereas Staufen plays a direct role in dynein-dependent bicoid mRNA transport. PMID:20023172

  9. Inhibition of tumor growth by histoincompatible cells expressing interleukin-2.

    PubMed

    Roth, C; Mir, L M; Cressent, M; Quintin-Colonna, F; Ley, V; Fradelizi, D; Kourilsky, P

    1992-12-01

    Murine tumor cells engineered to express IL-2 have been shown to be rejected by the syngeneic host, which is then protected against a subsequent tumorigenic challenge. To assess whether IL-2 has to be produced by the tumor cells themselves, or whether its local delivery would be sufficient to promote such beneficial effects, the syngeneic tumor cells were co-inoculated with allogeneic or xenogeneic cells secreting IL-2, selected after gene transfection. In several murine systems, it was observed that this is an efficient approach for controlling the growth of the syngeneic tumor. However, animals which rejected the tumor were not protected against a subsequent challenge. Several lines of evidence indicate that NK cells play a major role in tumor rejection induced by the IL-2 expressing histoincompatible vector cells. Thus, while local delivery of IL-2 in the vicinity of a tumor might not be sufficient to promote a systemic long-term specific antitumor immune response, it can control the growth of the primary syngeneic tumor. These experiments demonstrate the feasibility of using genetically engineered histoincompatible cells (which are rejected by the host's immune system) as a transient delivery system in vivo. PMID:1286066

  10. Development of an interleukin 2 receptor targeted gene therapy vehicle 

    E-print Network

    Wattanakaroon, Wanida

    2006-08-16

    diseases associated with aberrant immune response. This study describes the development and optimization of a targeted gene or oligonucleotide therapy vehicle to IL-2R bearing T cells for selective elimination of these cells. In this work, a monoclonal...

  11. Lymphocyte Subsets and Interleukin-2 Receptors in Autistic Children.

    ERIC Educational Resources Information Center

    Denney, Douglas R.; And Others

    1996-01-01

    Blood samples were obtained from 10 male autistic children, ages 7-15 years, and 10 controls. The children with autism had a lower percentage of helper-inducer cells and a lower helper:suppressor ratio, with both measures inversely related to the severity of autistic symptoms. (Author/DB)

  12. Rituximab Plus Interleukin-2 in Treating Patients With Hematologic Cancer

    ClinicalTrials.gov

    2013-06-05

    B-cell Adult Acute Lymphoblastic Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  13. Interleukin-2 gene therapy of surgical minimal residual tumour disease.

    PubMed

    Vlk, V; Rössner, P; Indrová, M; Bubeník, J; Sobota, V

    1998-03-30

    Our study was designed to examine the effects of IL-2 gene therapy in a surgical minimal residual tumour disease (SMRTD). Mice were inoculated s.c. with methylcholanthrene (MC)-induced MC12 sarcoma cells. When the tumours reached 8 to 12 mm in diameter, they were excised, either completely ("microscopic SMRTD") or incompletely ("macroscopic SMRTD"). On day 90 after surgery, the tumour recurrence rate in untreated mice with microscopic SMRTD was approximately 30%, whereas in those with macroscopic SMRTD it was 75%. After surgery, experimental mice were treated with 2 types of irradiated, IL-2 gene-modified, IL-2-producing tumour cell vaccine. One type of vaccine was derived from the MC12 sarcoma cells (MC12-1L2/IV-3); the other type was derived from an unrelated X63-Ag8.653 plasmacytoma (X63-m-IL-2). Both types of vaccine failed to cure the macroscopic SMRTD. Whereas the X63-m-IL-2 vaccine was also ineffective in the microscopic SMRTD, the MC12-IL2/IV-3 vaccine was capable of preventing growth in all but one mouse (1164) with microscopic SMRTD when administered 2 to 5 days after surgery. If the vaccination took place 2 days before surgery or later than 5 days after surgery, the therapeutic activity was lost. Vaccination with irradiated parental MC12 cells did not produce any significant benefit compared to the operated-only mice. The protective effect of the MC12-L2/IV-3 vaccine was specific and comparatively long-lasting. Vaccinated mice, which had rejected the MC12 tumour residuum, were capable of rejecting a second inoculum of the MC12 sarcoma cells injected on days 35 to 110 after surgery but succumbed to the growth of 2 other unrelated murine sarcomas carrying different tumour-rejection antigens. PMID:9533770

  14. Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function.

    PubMed

    Del Campo, Cristian; Bartholomäus, Alexander; Fedyunin, Ivan; Ignatova, Zoya

    2015-10-01

    Messenger RNA acts as an informational molecule between DNA and translating ribosomes. Emerging evidence places mRNA in central cellular processes beyond its major function as informational entity. Although individual examples show that specific structural features of mRNA regulate translation and transcript stability, their role and function throughout the bacterial transcriptome remains unknown. Combining three sequencing approaches to provide a high resolution view of global mRNA secondary structure, translation efficiency and mRNA abundance, we unraveled structural features in E. coli mRNA with implications in translation and mRNA degradation. A poorly structured site upstream of the coding sequence serves as an additional unspecific binding site of the ribosomes and the degree of its secondary structure propensity negatively correlates with gene expression. Secondary structures within coding sequences are highly dynamic and influence translation only within a very small subset of positions. A secondary structure upstream of the stop codon is enriched in genes terminated by UAA codon with likely implications in translation termination. The global analysis further substantiates a common recognition signature of RNase E to initiate endonucleolytic cleavage. This work determines for the first time the E. coli RNA structurome, highlighting the contribution of mRNA secondary structure as a direct effector of a variety of processes, including translation and mRNA degradation. PMID:26495981

  15. Cisplatin, oxaliplatin, and carboplatin unequally inhibit in vitro mRNA translation.

    PubMed

    Becker, Jonas Philipp; Weiss, Johanna; Theile, Dirk

    2014-02-10

    DNA is considered the preferential target of platinum containing cytostatics such as cisplatin, oxaliplatin, and carboplatin. Despite profound knowledge on the interaction between platinum drugs and DNA, there is little data on the interaction with mRNA and even less on the potential differences among these antineoplastic agents to inhibit protein synthesis. We therefore established an in vitro translation system using in vitro transcribed mRNA encoding green fluorescent protein (GFP) to evaluate the effects of exposure of GFP mRNA to 0-100 ?M of cisplatin, oxaliplatin, or carboplatin. We additionally investigated the interaction between these drugs and mRNA through evaluation of crossing-points during quantitative real-time polymerase chain reactions. In contrast to oxaliplatin or carboplatin, 100 ?M cisplatin significantly increased crossing-points by about 3 cycles (P<0.01) and profoundly attenuated translation of GFP mRNA (P<0.05). Oxaliplatin showed a trend to reduce GFP mRNA translation, whereas carboplatin entirely failed to influence it. In conclusion, this study for the very first time documents different effects of platinum cytostatics on mRNA translation and demonstrates mRNA to be a functionally relevant target of at least cisplatin. PMID:24275384

  16. Deciphering molecular mechanisms of mRNA metabolism in the deep-branching eukaryote Entamoeba histolytica.

    PubMed

    López-Camarillo, César; López-Rosas, Itzel; Ospina-Villa, Juan David; Marchat, Laurence A

    2014-01-01

    Although extraordinary rapid advance has been made in the knowledge of mechanisms regulating messenger RNA (mRNA) metabolism in mammals and yeast, little information is known in deep-branching eukaryotes. The complete genome sequence of Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, provided a lot of information for the identification and comparison of regulatory sequences and proteins potentially involved in mRNA synthesis, processing, and degradation. Here, we review the current knowledge of mRNA metabolism in this human pathogen. Several DNA motifs in promoter and nuclear factors involved in transcription, as well as conserved polyadenylation sequences in mRNA 3'-untranslated region and possible cleavage and polyadenylation factors, are described. In addition, we present recent data about proteins involved in mRNA decay with a special focus on the recently reported P-bodies in amoeba. Models for mechanisms of decapping and deadenylation-dependent pathways are discussed. We also review RNA-based gene silencing mechanisms and describe the DEAD/DExH box RNA helicases that are molecular players in all mRNA metabolism reactions. The functional characterization of selected proteins allows us to define a general framework to describe how mRNA synthesis, processing, and decay may occur in E. histolytica. Taken altogether, studies of mRNA metabolism in this single-celled eukaryotic model suggest the conservation of specific gene expression regulatory events through evolution. PMID:24249245

  17. PROLONGED FASTING AND CORTISOL REDUCE MYOSTATIN MRNA LEVELS IN TILAPIA LARVAE, SHORT-TERM FASTING ELEVATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myostatin negatively regulates muscle growth and development and has recently been characterized in several fishes. We measured fasting myostatin mRNA levels in adult tilapia skeletal muscle and in whole larvae. Although fasting reduced some growth indices in adults, skeletal muscle myostatin mRNA...

  18. Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function

    PubMed Central

    Fedyunin, Ivan; Ignatova, Zoya

    2015-01-01

    Messenger RNA acts as an informational molecule between DNA and translating ribosomes. Emerging evidence places mRNA in central cellular processes beyond its major function as informational entity. Although individual examples show that specific structural features of mRNA regulate translation and transcript stability, their role and function throughout the bacterial transcriptome remains unknown. Combining three sequencing approaches to provide a high resolution view of global mRNA secondary structure, translation efficiency and mRNA abundance, we unraveled structural features in E. coli mRNA with implications in translation and mRNA degradation. A poorly structured site upstream of the coding sequence serves as an additional unspecific binding site of the ribosomes and the degree of its secondary structure propensity negatively correlates with gene expression. Secondary structures within coding sequences are highly dynamic and influence translation only within a very small subset of positions. A secondary structure upstream of the stop codon is enriched in genes terminated by UAA codon with likely implications in translation termination. The global analysis further substantiates a common recognition signature of RNase E to initiate endonucleolytic cleavage. This work determines for the first time the E. coli RNA structurome, highlighting the contribution of mRNA secondary structure as a direct effector of a variety of processes, including translation and mRNA degradation. PMID:26495981

  19. Application of a Master Equation for Quantitative mRNA Analysis Using qRT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The qRT-PCR has been widely accepted as the assay of choice for mRNA quantification. Gene expression as measured by mRNA dynamics varies in response to different conditions and environmental stimuli. For conventional practice, housekeeping genes have been applied as internal reference for data nor...

  20. Isolate and sequence ribosome-protected mRNA fragments using size-exclusion chromatography

    E-print Network

    Cai, Long

    of enriching ribosome-bound mRNA fragments. Introduction Traditional RNA-seq experiments are effective for surveying the transcribed regions of the genome but are not designed to specifically measure mRNA involvedARTseqTMTM Illumina libraryIllumina library Figure 1 | ARTseqTM Ribosome Profiling protocol overview. advertising

  1. Messenger RNAs bearing tRNA-like features exemplified by interferon alfa 5 mRNA.

    PubMed

    Díaz-Toledano, Rosa; Gómez, Jordi

    2015-10-01

    The purpose of this work was to ascertain whether liver mRNA species share common structural features with hepatitis C virus (HCV) mRNA that allow them to support the RNase-P (pre-tRNA/processing enzyme) cleavage reaction in vitro. The presence of RNase-P competitive elements in the liver mRNA population was determined by means of biochemical techniques, and a set of sensitive mRNA species were identified through microarray screening. Cleavage specificity and substrate length requirement of around 200 nts, were determined for three mRNA species. One of these cleavage sites was found in interferon-alpha 5 (IFNA5) mRNA between specific base positions and with the characteristic RNase-P chemistry of cleavage. It was mapped within a cloverleaf-like structure revealed by a comparative structural analysis based on several direct enzymes and chemical probing methods of three RNA fragments of increasing size, and subsequently contrasted against site-directed mutants. The core region was coincident with the reported signal for the cytoplasmic accumulation region (CAR) in IFNAs. Striking similarities with the tRNA-like element of the antagonist HCV mRNA were found. In general, this study provides a new way of looking at a variety of viral tRNA-like motifs as this type of structural mimicry might be related to specific host mRNA species rather than, or in addition to, tRNA itself. PMID:25900662

  2. RELATION OF MRNA REVERSE TRANSCRIPTASE-PCR SIGNAL TO CAMPYLOBACTER SPP. COLONIZATION OF CHICKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chicken colonization by cells of Campylobacter jejuni having positive mRNA Reverse Transcriptase-PCR (RT-PCR) signal, but which are non-cultivable, would provide a means to relate cell viability with mRNA signal. In addition, the role of viable but non-cultivable (VBNC) forms of Campylobacter spp. f...

  3. Axonal Amphoterin mRNA Is Regulated by Translational Control and Enhances Axon Outgrowth

    PubMed Central

    Merianda, Tanuja T.; Coleman, Jennifer; Kim, Hak Hee; Kumar Sahoo, Pabitra; Gomes, Cynthia; Brito-Vargas, Paul; Rauvala, Heikki; Blesch, Armin; Yoo, Soonmoon

    2015-01-01

    High mobility group (HMG) proteins concentrate in the nucleus, interacting with chromatin. Amphoterin is an HMG protein (HMGB1) that has been shown to have extranuclear functions and can be secreted from some cell types. Exogenous amphoterin can increase neurite growth, suggesting that the secreted protein may have growth promoting activities in neurons. Consistent with this, we show that depletion of amphoterin mRNA from cultured adult rat DRG neurons attenuates neurite outgrowth, pointing to autocrine or paracrine mechanisms for its growth-promoting effects. The mRNA encoding amphoterin localizes to axonal processes and we showed recently that its 3?-UTR is sufficient for axonal localization of heterologous transcripts (Donnelly et al., 2013). Here, we show that amphoterin mRNA is transported constitutively into axons of adult DRG neurons. A preconditioning nerve injury increases the levels of amphoterin protein in axons without a corresponding increase in amphoterin mRNA in the axons. A 60 nucleotide region of the amphoterin mRNA 3?-UTR is necessary and sufficient for its localization into axons of cultured sensory neurons. Amphoterin mRNA 3?-UTR is also sufficient for axonal localization in distal axons of DRG neurons in vivo. Overexpression of axonally targeted amphoterin mRNA increases axon outgrowth in cultured sensory neurons, but axon growth is not affected when the overexpressed mRNA is restricted to the cell body. PMID:25855182

  4. Disrupted-in-schizophrenia 1 regulates transport of ITPR1 mRNA for synaptic plasticity.

    PubMed

    Tsuboi, Daisuke; Kuroda, Keisuke; Tanaka, Motoki; Namba, Takashi; Iizuka, Yukihiko; Taya, Shinichiro; Shinoda, Tomoyasu; Hikita, Takao; Muraoka, Shinsuke; Iizuka, Michiro; Nimura, Ai; Mizoguchi, Akira; Shiina, Nobuyuki; Sokabe, Masahiro; Okano, Hideyuki; Mikoshiba, Katsuhiko; Kaibuchi, Kozo

    2015-05-01

    Disrupted-in-schizophrenia 1 (DISC1) is a susceptibility gene for major psychiatric disorders, including schizophrenia. DISC1 has been implicated in neurodevelopment in relation to scaffolding signal complexes. Here we used proteomic analysis to screen for DISC1 interactors and identified several RNA-binding proteins, such as hematopoietic zinc finger (HZF), that act as components of RNA-transporting granules. HZF participates in the mRNA localization of inositol-1,4,5-trisphosphate receptor type 1 (ITPR1), which plays a key role in synaptic plasticity. DISC1 colocalizes with HZF and ITPR1 mRNA in hippocampal dendrites and directly associates with neuronal mRNAs, including ITPR1 mRNA. The binding potential of DISC1 for ITPR1 mRNA is facilitated by HZF. Studies of Disc1-knockout mice have revealed that DISC1 regulates the dendritic transport of Itpr1 mRNA by directly interacting with its mRNA. The DISC1-mediated mRNA regulation is involved in synaptic plasticity. We show that DISC1 binds ITPR1 mRNA with HZF, thereby regulating its dendritic transport for synaptic plasticity. PMID:25821909

  5. In the right place at the right time: visualizing and understanding mRNA localization

    PubMed Central

    Buxbaum, Adina R.; Haimovich, Gal

    2015-01-01

    The spatial regulation of protein translation is an efficient way to create functional and structural asymmetries in cells. Recent research has furthered our understanding of how individual cells spatially organize protein synthesis, by applying innovative technology to characterize the relationship between mRNAs and their regulatory proteins, single-mRNA trafficking dynamics, physiological effects of abrogating mRNA localization in vivo and for endogenous mRNA labelling. The implementation of new imaging technologies has yielded valuable information on mRNA localization, for example, by observing single molecules in tissues. The emerging movements and localization patterns of mRNAs in morphologically distinct unicellular organisms and in neurons have illuminated shared and specialized mechanisms of mRNA localization, and this information is complemented by transgenic and biochemical techniques that reveal the biological consequences of mRNA mislocalization. PMID:25549890

  6. Regulation and deregulation of mRNA translation during myeloid maturation.

    PubMed

    Khanna-Gupta, Arati

    2011-02-01

    Gene expression in the eukaryotic cell is regulated at a number of levels, including transcription of genomic DNA into messenger RNA (mRNA), nucleocytoplasmic export of mRNA, and translation of the exported mRNA into proteins in the cytoplasm by ribosomes. The role played by epigenetics and transcription factors associated with the control of gene expression in the developing neutrophil has been well documented and appreciated over the years. A wealth of information on the role played by transcription factors in myeloid biology has contributed to our understanding of both normal and abnormal neutrophil development. However, regulation of mRNA translation in myeloid cell maturation is much less well-studied. A better understanding of the translational control of myeloid gene expression may provide important insights into both normal and abnormal myeloid maturation. This review summarizes our current understanding of the regulation of myeloid gene expression at the mRNA translational level. PMID:21093533

  7. Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles.

    PubMed

    Baba, Miyuki; Itaka, Keiji; Kondo, Kenji; Yamasoba, Tatsuya; Kataoka, Kazunori

    2015-03-10

    Sensory nerve disorders are difficult to cure completely considering poor nerve regeneration capacity and difficulties in accurately targeting neural tissues. Administering mRNA is a promising approach for treating neurological disorders because mRNA can provide proteins and peptides in their native forms for mature non-dividing neural cells, without the need of entering their nuclei. However, direct mRNA administration into neural tissues in vivo has been challenging due to too unstable manner of mRNA and its strong immunogenicity. Thus, using a suitable carrier is essential for effective mRNA administration. For this purpose, we established a novel carrier based on the self-assembly of polyethylene glycol (PEG)-polyamino acid block copolymer, i.e. polyplex nanomicelles. To investigate the feasibility and efficacy of mRNA administration for the treatment of sensory nerve disorders, we used a mouse model of experimentally induced olfactory dysfunction. Intranasal administration of mRNA-loaded nanomicelles provided an efficient and sustained protein expression for nearly two days in nasal tissues, particularly in the lamina propria which contains olfactory nerve fibers, with effectively regulating the immunogenicity of mRNA. Consequently, once-daily intranasal administration of brain-derived neurotrophic factor (BDNF)-expressing mRNA using polyplex nanomicelles remarkably enhanced the neurological recovery of olfactory function along with repairing the olfactory epithelium to a nearly normal architecture. To the best of our knowledge, this is the first study to show the therapeutic potential of introducing exogenous mRNA for the treatment of neurological disorders. These results indicate the feasibility and safety of using mRNA, and provide a novel strategy of mRNA-based therapy. PMID:25599855

  8. Comparison of Protamine 1 to Protamine 2 mRNA Ratio and YBX2 gene mRNA Content in Testicular Tissue of Fertile and Azoospermic Men

    PubMed Central

    Moghbelinejad, Sahar; Najafipour, Reza; Hashjin, Amir Samimi

    2015-01-01

    Background Although aberrant protamine (PRM) ratios have been observed in infertile men, the mechanisms that implicit the uncoupling of PRM1 and PRM2 expression remain unclear. To uncover these mechanisms, in this observational study we have compared the PRM1/PRM2 mRNA ratio and mRNA contents of two regulatory factors of these genes. Materials and Methods In this experimental study, sampling was performed by a multi-step method from 50 non-obstructive azoospermic and 12 normal men. After RNA extraction and cDNA synthesis, real-time quantitative polymerase chain reaction (RT- QPCR) was used to analyze the PRM1, PRM2, Y box binding protein 2 (YBX2) and JmjC-containing histone demethylase 2a (JHDM2A) genes in testicular biopsies of the studied samples. Results The PRM1/PRM2 mRNA ratio differed significantly among studied groups, namely 0.21 ± 0.13 in azoospermic samples and -0.8 ± 0.22 in fertile samples. The amount of PRM2 mRNA, significantly reduced in azoospermic patients. Azoospermic men exhibited significant under expression of YBX2 gene compared to controls (P<0.001). mRNA content of this gene showed a positive correlation with PRM mRNA ratio (R=0.6, P=0.007). JHDM2A gene expression ratio did not show any significant difference between the studied groups (P=0.3). We also observed no correlation between JHDM2A mRNA content and the PRM mRNA ratio (R=0.2, P=0.3). Conclusion We found significant correlation between the aberrant PRM ratio (PRM2 under expression) and lower YBX2 mRNA content in testicular biopsies of azoospermic men compared to controls, which suggested that downregulation of the YBX2 gene might be involved in PRM2 under expression. These molecules could be useful biomarkers for predicting male infertility. PMID:26644857

  9. AUF1 contributes to Cryptochrome1 mRNA degradation and rhythmic translation

    PubMed Central

    Lee, Kyung-Ha; Kim, Sung-Hoon; Kim, Hyo-Jin; Kim, Wanil; Lee, Hwa-Rim; Jung, Youngseob; Choi, Jung-Hyun; Hong, Ka Young; Jang, Sung Key; Kim, Kyong-Tai

    2014-01-01

    In the present study, we investigated the 3? untranslated region (UTR) of the mouse core clock gene cryptochrome 1 (Cry1) at the post-transcriptional level, particularly its translational regulation. Interestingly, the 3?UTR of Cry1 mRNA decreased its mRNA levels but increased protein amounts. The 3?UTR is widely known to function as a cis-acting element of mRNA degradation. The 3?UTR also provides a binding site for microRNA and mainly suppresses translation of target mRNAs. We found that AU-rich element RNA binding protein 1 (AUF1) directly binds to the Cry1 3?UTR and regulates translation of Cry1 mRNA. AUF1 interacted with eukaryotic translation initiation factor 3 subunit B and also directly associated with ribosomal protein S3 or ribosomal protein S14, resulting in translation of Cry1 mRNA in a 3?UTR-dependent manner. Expression of cytoplasmic AUF1 and binding of AUF1 to the Cry1 3?UTR were parallel to the circadian CRY1 protein profile. Our results suggest that the 3?UTR of Cry1 is important for its rhythmic translation, and AUF1 bound to the 3?UTR facilitates interaction with the 5? end of mRNA by interacting with translation initiation factors and recruiting the 40S ribosomal subunit to initiate translation of Cry1 mRNA. PMID:24423872

  10. Translation by Ribosomes with mRNA Degradation: Exclusion Processes on Aging Tracks

    NASA Astrophysics Data System (ADS)

    Nagar, Apoorva; Valleriani, Angelo; Lipowsky, Reinhard

    2011-12-01

    We investigate the role of degradation of mRNA on protein synthesis using the totally asymmetric simple exclusion process (TASEP) as the underlying model for ribosome dynamics. mRNA degradation has a strong effect on the lifetime distribution of the mRNA, which in turn affects polysome statistics such as the number of ribosomes present on an mRNA strand of a given size. An average over mRNA of all ages is equivalent to an average over possible configurations of the corresponding TASEP—both before steady state and in steady state. To evaluate the relevant quantities for the translation problem, we first study the approach towards steady state of the TASEP, starting with an empty lattice representing an unloaded mRNA. When approaching the high density phase, the system shows two distinct phases with the entry and exit boundaries taking control of the density at their respective ends in the second phase. The approach towards the maximal current phase exhibits the surprising property that the ribosome entry flux can exceed the maximum possible steady state value. In all phases, the averaging over the mRNA age distribution shows a decrease in the average ribosome density profile as a function of distance from the entry boundary. For entry/exit parameters corresponding to the high density phase of TASEP, the average ribosome density profile also has a maximum near the exit end.

  11. A nucleic acid biosensor for gene expression analysis in nanograms of mRNA.

    PubMed

    Xie, Hong; Yu, Yuan Hong; Xie, Fang; Lao, Yuan Zhi; Gao, Zhiqiang

    2004-07-15

    An ultrasensitive nucleic acid biosensor for direct detection of genes in mRNA extracted from animal tissues is described. It is based on amperometric detection of a target gene by forming an mRNA/redox polymer bilayer on a gold electrode. The mRNA was directly labeled with cisplatin-biotin conjugates through coordinative bonds with purine bases in the mRNA molecules. A subsequent binding of glucose oxidase-avidin conjugates to the labeled mRNA and the introduction of a poly(vinylimidazole-co-acrylamide) partially imidazole-complexed with [Os(bpy)(2)(im)] (bpy = 2,2'-bipyridine, im = imidazole) redox polymer overcoating to the electrode allowed for electrochemical detection of the oxidation current of glucose in solution. Depending on individual genes, detection limits of subfemtograms were achieved. As compared to a sandwich-type assay, the sensitivity was improved by as much as 25-fold through the incorporation of multiple enzyme labels to the mRNA molecules. Less than 2-fold gene expression difference was unambiguously differentiated in as little as 5.0 ng of mRNA. With the greatly improved sensitivity, at least 1000-fold more sensitive than fluorescence-based techniques, the amount of mRNA needed in the assay was cut down from microgram to nanogram levels. PMID:15253638

  12. Single-molecule modeling of mRNA degradation by miRNA: Lessons from data

    E-print Network

    Celine Sin; Davide Chiarugi; Angelo Valleriani

    2014-10-20

    Recent experimental results on the effect of miRNA on the decay of its target mRNA have been analyzed against a previously hypothesized single molecule degradation pathway. According to that hypothesis, the silencing complex (miRISC) first interacts with its target mRNA and then recruits the protein complexes associated with NOT1 and PAN3 to trigger deadenylation (and subsequent degradation) of the target mRNA. Our analysis of the experimental decay patterns allowed us to refine the structure of the degradation pathways at the single molecule level. Surprisingly, we found that if the previously hypothesized network was correct, only about 7% of the target mRNA would be regulated by the miRNA mechanism, which is inconsistent with the available knowledge. Based on systematic data analysis, we propose the alternative hypothesis that NOT1 interacts with miRISC before binding to the target mRNA. Moreover, we show that when miRISC binds alone to the target mRNA, the mRNA is degraded more slowly, probably through a deadenylation-independent pathway. The new biochemical pathway we propose both fits the data and paves the way for new experimental work to identify new interactions.

  13. The DHX33 RNA Helicase Promotes mRNA Translation Initiation

    PubMed Central

    You, Jin; Wang, Xingshun

    2015-01-01

    DEAD/DEAH box RNA helicases play essential roles in numerous RNA metabolic processes, such as mRNA translation, pre-mRNA splicing, ribosome biogenesis, and double-stranded RNA sensing. Herein we show that a recently characterized DEAD/DEAH box RNA helicase, DHX33, promotes mRNA translation initiation. We isolated intact DHX33 protein/RNA complexes in cells and identified several ribosomal proteins, translation factors, and mRNAs. Reduction of DHX33 protein levels markedly reduced polyribosome formation and caused the global inhibition of mRNA translation that was rescued with wild-type DHX33 but not helicase-defective DHX33. Moreover, we observed an accumulation of mRNA complexes with the 80S ribosome in the absence of functional DHX33, consistent with a stalling in initiation, and DHX33 more preferentially promoted structured mRNA translation. We conclude that DHX33 functions to promote elongation-competent 80S ribosome assembly at the late stage of mRNA translation initiation. Our results reveal a newly recognized function of DHX33 in mRNA translation initiation, further solidifying its central role in promoting cell growth and proliferation. PMID:26100019

  14. Single-molecule modeling of mRNA degradation by miRNA: Lessons from data

    PubMed Central

    2015-01-01

    Recent experimental results on the effect of miRNA on the decay of its target mRNA have been analyzed against a previously hypothesized single molecule degradation pathway. According to that hypothesis, the silencing complex (miRISC) first interacts with its target mRNA and then recruits the protein complexes associated with NOT1 and PAN3 to trigger deadenylation (and subsequent degradation) of the target mRNA. Our analysis of the experimental decay patterns allowed us to refine the structure of the degradation pathways at the single molecule level. Surprisingly, we found that if the previously hypothesized network was correct, only about 7% of the target mRNA would be regulated by the miRNA mechanism, which is inconsistent with the available knowledge. Based on systematic data analysis, we propose the alternative hypothesis that NOT1 interacts with miRISC before binding to the target mRNA. Moreover, we show that when miRISC binds alone to the target mRNA, the mRNA is degraded more slowly, probably through a deadenylation-independent pathway. The new biochemical pathway proposed here both fits the data and paves the way for new experimental work to identify new interactions. PMID:26050661

  15. Nonsense mutations in the human. beta. -globin gene affect mRNA metabolism

    SciTech Connect

    Baserga, S.J.; Benz, E.J. Jr. )

    1988-04-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.

  16. Development and tissue distribution of sucrase-isomaltase mRNA in rats.

    PubMed

    Leeper, L L; Henning, S J

    1990-01-01

    Previous studies of sucrase-isomaltase (SI) activities have shown this complex to be absent in the suckling rat and to appear during the weaning period. We describe here the cloning of a heterologous SI cDNA and its use for the quantitation of SI mRNA as a first step toward understanding the molecular basis of SI development. A survey of RNA from 12 tissues of mature rats by Northern blot analysis showed a 6-kb band of SI mRNA only in the small intestine. Within the latter, both sucrase activity and SI mRNA peaked in the jejunum. Assay of jejunal tissue from developing rats showed sucrase activity and SI mRNA to be first detectable at 18 days, to rise in parallel through 24 days, and then to diverge a little (enzyme activity being lower) by 36 days. When glucocorticoid was administered to 10-day-old rats, neither sucrase activity nor SI mRNA was detectable 12 h later. Both parameters were readily detected 24 h postinjection, although the mRNA had risen relatively more than the enzyme activity. The two parameters increased in concert through 5 days postinjection and then plateaued. We conclude that, with respect to distribution along the intestine and to normal and precocious development, activities of SI in the rat are determined primarily by the abundance of its mRNA. PMID:2301583

  17. Oestrogen receptor protein and mRNA in adenocarcinoma of the uterine cervix.

    PubMed Central

    Ismail, S. M.; Thomas, G. A.; Ghandour, F. A.; Davies, H. G.; Attanoos, R.; Williams, E. D.

    1992-01-01

    We have investigated the oestrogen receptor (ER) status of 20 cervical adenocarcinomas by immunocytochemistry for ER protein and non-isotopic in situ hybridisation for ER mRNA. Both methods, which are applicable to paraffin sections, were developed and validated in breast carcinomas with known ER content. Six cervical adenocarcinomas contained immunocytochemically demonstrable ER protein; all contained ER mRNA, but staining was less intense in poorly differentiated areas of four tumours. This disparity between protein and mRNA detection needs further investigation as does the possibility that oestrogens may play a role in the pathogenesis of cervical adenocarcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1457356

  18. The mRNA assembly line: transcription and processing machines in the same factory.

    PubMed

    Bentley, David

    2002-06-01

    Processing of RNA precursors to their mature form often occurs co-transcriptionally. Consequently, the ternary complex of DNA template, RNA polymerase and nascent RNA chain is the physiological substrate for factors that modify the nascent RNA by capping, splicing and cleavage/polyadenylation. mRNA production is thought to occur within a "factory" that contains the RNA polymerase II transcription machine and the processing machines. Newly discovered protein-protein contacts between RNA polymerase and factors that process mRNA precursors are beginning to illuminate how the "mRNA factory" works. PMID:12067656

  19. Cell cycle regulation of mouse H3 histone mRNA metabolism.

    PubMed Central

    Alterman, R B; Ganguly, S; Schulze, D H; Marzluff, W F; Schildkraut, C L; Skoultchi, A I

    1984-01-01

    The mechanisms responsible for the periodic accumulation and decay of histone mRNA in the mammalian cell cycle were investigated in mouse erythroleukemia cells, using a cloned mouse H3 histone gene probe that hybridizes with most or all H3 transcripts. Exponentially growing cells were fractionated into cell cycle-specific stages by centrifugal elutriation, a method for purifying cells at each stage of the cycle without the use of treatments that arrest growth. Measurements of H3 histone mRNA content throughout the cell cycle show that the mRNA accumulates gradually during S phase, achieving its highest value in mid-S phase when DNA synthesis is maximal. The mRNA content then decreases as cells approach G2. These results demonstrate that the periodic synthesis of histones during S phase is due to changes in the steady-state level of histone mRNA. They are consistent with the conventional view in which histone synthesis is regulated coordinately with DNA synthesis in the cell cycle. The periodic accumulation and decay of H3 histone mRNA appear to be controlled primarily by changes in the rate of appearance of newly synthesized mRNA in the cytoplasm, determined by pulse-labeling whole cells with [3H]uridine. Measurements of H3 mRNA turnover by pulse-chase experiments with cells in S and G2 did not provide evidence for changes in the cytoplasmic stability of the mRNA during the period of its decay in late S and G2. Furthermore, transcription measurements carried out by brief pulse-labeling in vivo and by in vitro transcription in isolated nuclei indicate that the rate of H3 gene transcription changes to a much smaller extent than the steady-state levels of the mRNA or the appearance of newly synthesized mRNA in the cytoplasm. The results suggest that post-transcriptional processes make an important contribution to the periodic accumulation and decay of histone mRNA and that these processes may operate within the nucleus. Images PMID:6583492

  20. Mutation of genes controlling mRNA metabolism and protein synthesis predisposes to neurodevelopmental disorders.

    PubMed

    Sartor, Francesca; Anderson, Jihan; McCaig, Colin; Miedzybrodzka, Zosia; Müller, Berndt

    2015-12-01

    Brain development is a tightly controlled process that depends upon differentiation and function of neurons to allow for the formation of functional neural networks. Mutation of genes encoding structural proteins is well recognized as causal for neurodevelopmental disorders (NDDs). Recent studies have shown that aberrant gene expression can also lead to disorders of neural development. Here we summarize recent evidence implicating in the aetiology of NDDs mutation of factors acting at the level of mRNA splicing, mRNA nuclear export, translation and mRNA degradation. This highlights the importance of these fundamental processes for human health and affords new strategies and targets for therapeutic intervention. PMID:26614670

  1. Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA.

    PubMed

    Yanagitani, Kota; Kimata, Yukio; Kadokura, Hiroshi; Kohno, Kenji

    2011-02-01

    Upon endoplasmic reticulum (ER) stress, an endoribonuclease, inositol-requiring enzyme-1?, splices the precursor unspliced form of X-box-binding protein 1 messenger RNA (XBP1u mRNA) on the ER membrane to yield an active transcription factor (XBP1s), leading to the alleviation of the stress. The nascent peptide encoded by XBP1u mRNA drags the mRNA-ribosome-nascent chain (R-RNC) complex to the membrane for efficient cytoplasmic splicing. We found that translation of the XBP1u mRNA was briefly paused to stabilize the R-RNC complex. Mutational analysis of XBP1u revealed an evolutionarily conserved peptide module at the carboxyl terminus that was responsible for the translational pausing and was required for the efficient targeting and splicing of the XBP1u mRNA. Thus, translational pausing may be used for unexpectedly diverse cellular processes in mammalian cells. PMID:21233347

  2. Visual detection of Akt mRNA in living cell using gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Tian, Caiping; Li, Siwen; Wang, Zhaohui; Gu, Yueqing

    2014-09-01

    PI3K-Akt signaling pathway plays the key role in cell apoptosis and survival, and the components of PI3K /Akt signaling pathway are often abnormally expressed in human tumors. Therefore, determination of the Akt (protein kinase B, PKB) messenger ribonucleic acid (mRNA) expression is significantly important in understanding the mechanism of tumor progression. In this study, we designed a special hairpin deoxyribonucleic acid (DNA) functionalized with gold nanoparticles and fluorescein isothiocyanate(FITC) as a beacon for detecting human Akt mRNA. Spectrofluorometer was used to detect the fluorescence quenching and recovery of the beacons, and laser confocal scanning microscopy was adopted to image Akt mRNA in cells. The results showed that this beacon could sensitively and quantitatively measure the Akt mRNA in living cells . This strategy is potentially useful for the cellular imaging of RNA or protein expression in living cells.

  3. Screening of Different Organs of Rats for HCA2 Receptor mRNA

    PubMed Central

    Shomali, Tahoora; Mosleh, Najmeh; Kamalpour, Mohammad

    2014-01-01

    Interest in hydroxy - carboxylic acid 2 (HCA2) receptor has been raised since it is the target of antidyslipidemic drug nicotinic acid. The present study aimed to evaluate the presence of mRNA of this receptor in different organs of laboratory rat. Twenty two different organs of rats including mesenteric fat, epididymis (head, body and tail), testis, ovary, xiphoid process, liver, adrenal gland, femoral head, proximal epiphyseal and metaphyseal bone marrow of femur, esophagus, glandular stomach, forestomach, intestines, colons, heart, spleen, kidney, trachea, lung, skeletal muscle (quadriceps), cerebrum and cerebellum were removed and examined for HCA2 mRNA by RT- PCR method. The mRNA for HCA2 receptor was detected in all analyzed tissues. In conclusion, the different organs of rat express HCA2 receptor mRNA which makes a proper animal model for future studies on the physiological and pharmacological roles of this receptor in vivo. PMID:25035863

  4. Aberrant mRNA transcripts and nonsense-mediated decay Laura Trinkle-Mulcahy

    E-print Network

    Trinkle-Mulcahy, Laura

    repression and recruit- ment of mRNA degradation proteins [4]. In yeast and invertebrates, abnormally long 30 this subnuclear organelle [5,6]. The nucleolus, best known as the site of ribosome biogenesis, has recently been

  5. DOI: 10.1002/cbic.200600061 Detection of mRNA in Mammalian

    E-print Network

    Rao, Jianghong

    - ods. Here we introduce a new strategy with a mechanism of signal amplification for sensing target m a biosensor for mRNA detection. We previously reported a cis-splicing ribozyme construct, Rz156, in which

  6. Luzp4 defines a new mRNA export pathway in cancer cells

    PubMed Central

    Viphakone, Nicolas; Cumberbatch, Marcus G.; Livingstone, Michaela J.; Heath, Paul R.; Dickman, Mark J.; Catto, James W.; Wilson, Stuart A.

    2015-01-01

    Cancer testis antigens (CTAs) represented a poorly characterized group of proteins whose expression is normally restricted to testis but are frequently up-regulated in cancer cells. Here we show that one CTA, Luzp4, is an mRNA export adaptor. It associates with the TREX mRNA export complex subunit Uap56 and harbours a Uap56 binding motif, conserved in other mRNA export adaptors. Luzp4 binds the principal mRNA export receptor Nxf1, enhances its RNA binding activity and complements Alyref knockdown in vivo. Whilst Luzp4 is up-regulated in a range of tumours, it appears preferentially expressed in melanoma cells where it is required for growth. PMID:25662211

  7. Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes

    E-print Network

    Reilly, Cavan

    October 22, 2002 ABSTRACT We used microarray technology to measure mRNA decay rates in resting microarray technology have evaluated only steady-state mRNA levels. Recent work, however, suggested that microarray technology can be used to categorize mRNA transcripts based on their mRN

  8. Rapid changes in ovarian mRNA induced by brief photostimulation in Siberian hamsters (Phodopus sungorus).

    PubMed

    Shahed, Asha; McMichael, Carling F; Young, Kelly A

    2015-11-01

    This study sought to characterize the rapid intraovarian mRNA response of key folliculogenic factors that may contribute to the restoration of folliculogenesis during 2-10 days of photostimulation in Siberian hamsters. Adult hamsters were exposed to short photoperiod (8L:16D) for 14 weeks (SD). A subset were then transferred to long photoperiod (16L:8D) for 2 (PT day-2), 4 (PT day-4), or 10 days (PT day-10). Quantitative real-time PCR was used to measure intraovarian mRNA expression of: gonadotropin releasing hormone (GnRH), follicle stimulating hormone ?-subunit (FSH?-subunit), luteinizing hormone ?-subunit (LH?-subunit), FSH and LH receptors, estrogen receptors ? and ? (Esr1 and Esr2), matrix metalloproteinase (MMP)-2 and -9, anti-Müllerian hormone (AMH), inhibin-? subunit, fibroblast growth factor-2 (FGF-2) and proliferating cell nuclear antigen (PCNA). Compared to SD, plasma FSH concentrations increased on PT day-4 and the number of antral follicles and corpora lutea increased on PT day-10. FSHR and inhibin-? mRNA expression also increased on PT day-4, whereas LHR and proliferation marker PCNA both increased on PT day-10 as compared to SD. Esr1 mRNA increased on PT day-2 and remained significantly increased as compared to SD, whereas Esr1 mRNA increased only on PT day-2, similar to FGF-2 and MMP-2 results. No differences were observed in mRNA expression in ovarian GnRH, FSH?- and LH?-subunits, AMH, and MMP-9 mRNA with 2-10 days of photostimulation. Rapid increases in intraovarian FSHR and inhibin-? mRNA and antral follicle/corpora lutea numbers suggest that the ovary is primed to react quickly to the FSH released in response to brief periods of photostimulation. J. Exp. Zool. 323A: 627-636, 2015. © 2015 Wiley Periodicals, Inc. PMID:26174001

  9. Expression of local renin and angiotensinogen mRNA in cirrhotic portal hypertensive patient

    PubMed Central

    Zhang, Li; Yang, Zhen; Shi, Bao-Min; Li, Da-Peng; Fang, Chong-Yun; Qiu, Fa-Zu

    2003-01-01

    AIM: To investigate the expression of local renin and angiotensinogen mRNA in cirrhotic portal hypertensive patients. METHODS: The expression of local renin and angiotensinogen mRNA in the liver, splenic artery and vein of PH patients was detected by RT-PCR analysis. RESULTS: Expression of local renin mRNA in the liver of control group was (0.19 ± 0.11), significantly lower than that in splenic artery(0.45 ± 0.17)or splenic vein(0.39 ± 0.12) respectively, (P < 0.05). Expression of local angiotensinogen mRNA in the liver was (0.64 ± 0.21), significantly higher than that in splenic artery(0.41 ± 0.15) or in splenic vein (0.35 ± 0.18) respectively, (P < 0.05). Expression of local renin mRNA in the liver, splenic artery and vein of PH group was (0.78 ± 0.28), (0.86 ± 0.35) and (0.81 ± 0.22) respectively, significantly higher than that in the control group, (P < 0.05). Expression of local angiotensinogen mRNA in the liver, splenic artery and vein of PH group was (0.96 ± 0.25), (0.83 ± 0.18) and (0.79 ± 0.23) respectively, significantly higher than that in the control group, (P < 0.05). There was no significant difference between the liver, splenic artery and vein in the expression of local renin or local angiotensinogen mRNA in PH group, (P < 0.05). CONCLUSION: In normal subjects the expression of local renin and angiotensinogen mRNA was organ specific, but with increase of the expression of LRAS, the organ-specificity became lost in cirrhotic patients. LRAS may contribute to increased resistance of portal vein with liver and formation of splanchnic vasculopathy. PMID:12854169

  10. A stem–loop structure directs oskar mRNA to microtubule minus ends

    PubMed Central

    Jambor, Helena; Mueller, Sandra; Bullock, Simon L.; Ephrussi, Anne

    2014-01-01

    mRNA transport coupled with translational control underlies the intracellular localization of many proteins in eukaryotic cells. This is exemplified in Drosophila, where oskar mRNA transport and translation at the posterior pole of the oocyte direct posterior patterning of the embryo. oskar localization is a multistep process. Within the oocyte, a spliced oskar localization element (SOLE) targets oskar mRNA for plus end-directed transport by kinesin-1 to the posterior pole. However, the signals mediating the initial minus end-directed, dynein-dependent transport of the mRNA from nurse cells into the oocyte have remained unknown. Here, we show that a 67-nt stem–loop in the oskar 3? UTR promotes oskar mRNA delivery to the developing oocyte and that it shares functional features with the fs(1)K10 oocyte localization signal. Thus, two independent cis-acting signals, the oocyte entry signal (OES) and the SOLE, mediate sequential dynein- and kinesin-dependent phases of oskar mRNA transport during oogenesis. The OES also promotes apical localization of injected RNAs in blastoderm stage embryos, another dynein-mediated process. Similarly, when ectopically expressed in polarized cells of the follicular epithelium or salivary glands, reporter RNAs bearing the oskar OES are apically enriched, demonstrating that this element promotes mRNA localization independently of cell type. Our work sheds new light on how oskar mRNA is trafficked during oogenesis and the RNA features that mediate minus end-directed transport. PMID:24572808

  11. Relating mRNA and protein biomarker levels in a Dehalococcoides and Methanospirillum-containing community.

    PubMed

    Rowe, Annette R; Mansfeldt, Cresten B; Heavner, Gretchen L; Richardson, Ruth E

    2015-03-01

    To better understand the quantitative relationships between messenger RNA (mRNA) and protein biomarkers relevant to bioremediation, we quantified and compared respiration-associated gene products in an anaerobic syntrophic community. Respiration biomarkers for Dehalococcoides, an organohalide reducer, and Methanospirillum, a hydrogenotrophic methanogen, were quantified via qRT-PCR for mRNA and multiple reaction monitoring (MRM) of proteotypic peptides for protein. mRNA transcripts of the Dehalococcoides reductive dehalogenases PceA, TceA, and DMC1545, and hydrogenase HupL, as well as the Methanospirillum oxidoreductases MvrD and FrcA were shown to be similarly regulated with respect to their temporal responses to substrate addition. However, MvrD was two orders of magnitude lower in mRNA abundance. Per cell, Dehalococcoides protein biomarkers quantified were more abundant than Methanospirillum proteins. Comparing mRNA with protein abundance, poor correlations were observed between mRNA transcript levels and the net protein produced. For example, Dehalococcoides HupL and TceA transcripts were similarly abundant though TceA was far more abundant at the protein level (167?±?121 vs. 1095?±?337 proteins per cell, respectively). In Methanospirillum, MvrD maintained comparable per-cell protein abundance to FrcA (42?±?14 vs. 60?±?1 proteins per cell, respectively) despite the significantly lower transcript levels. Though no variability in protein decay rates was observed, the mRNA translation rate quantified for TceA was greater than the other Dehalococcoides targets monitored. These data suggest that there is considerable variation in the relationship between mRNA abundance and protein production both across transcripts within an organism and across organisms. This highlights the importance of empirically based studies for interpreting biomarker levels in environmentally relevant organisms. PMID:25467924

  12. CXCL10 mRNA expression predicts response to neoadjuvant chemoradiotherapy in rectal cancer patients.

    PubMed

    Li, Cong; Wang, Zhimin; Liu, Fangqi; Zhu, Ji; Yang, Li; Cai, Guoxiang; Zhang, Zhen; Huang, Wei; Cai, Sanjun; Xu, Ye

    2014-10-01

    Chemoradiotherapy has been commonly used as neoadjuvant therapy for rectal cancer to allow for less aggressive surgical approaches and to improve quality of life. In cancer, it has been reported that CXCL10 has an anti-tumor function. However, the association between CXCL10 and chemoradiosensitivity has not been fully investigated. We performed this study to investigate the relationship between CXCL10 expression and chemoradiosensitivity in rectal cancer patients. Ninety-five patients with rectal cancer who received neoadjuvant chemoradiotherapy (NCRT) were included. Clinical parameters were compared with the outcome of NCRT and CXCL10 messenger RNA (mRNA) expression between the pathological complete response (pCR) group and non-pathological complete response (npCR) group. CXCL10 mRNA and protein expressions between groups were analyzed using the Student's t test and chi-square test. The mean mRNA level of CXCL10 in the pCR group was significantly higher than that in the npCR group (p?=?0.010). In the pCR group, 73.7 % of the patients had high CXCL10 mRNA expression, and 61.4 % of the patients in the npCR group had low CXCL10 mRNA expression. Subjects with high CXCL10 mRNA expression demonstrated a higher sensitivity to NCRT (p?=?0.011). The receiver operating characteristic curve showed that the diagnostic performance of CXCL10 mRNA expression had an area under the curve of 0.720 (95 % confidence interval, 0.573-0.867). There were no differences between the pCR and npCR groups in CXCL10 protein expression (p?>?0.05). High CXCL10 mRNA expression is associated with a better tumor response to NCRT in rectal cancer patients and may predict the outcome of NCRT in this malignancy. PMID:24969558

  13. Expression and relationship between endothelin-1 messenger ribonucleic acid (mRNA) and inducible/endothelial nitric oxide synthase mRNA isoforms from normal and preeclamptic placentas.

    PubMed

    Napolitano, M; Miceli, F; Calce, A; Vacca, A; Gulino, A; Apa, R; Lanzone, A

    2000-06-01

    Preeclampsia is a mainly vascular disease of pregnancy, probably caused by an imbalance between vasodilator and vasoconstrictor agents that results in generalized vasospasm and poor perfusion in many organs. Among these factors, endothelin-1 (ET-1), a potent vasoconstrictor, is highly increased in preeclamptic women, while nitric oxide (NO), a vasodilator of human utero-placental arteries, is reduced in the same patients. The present study was designed to investigate the interactions between ET-1 and the NO system in the feto-placental unit; to this purpose we also examined the messenger ribonucleic acid (mRNA) expression of ET-1, inducible NO synthase (iNOS), and endothelial NOS (eNOS) in human cultured placental trophoblastic cells obtained from preeclamptic (PE) and normotensive (NT) pregnancies. We also studied whether exogenous ET-1 may affect the expression of iNOS and eNOS in human placental trophoblastic cells. Interestingly, by Northern blot analysis we observed an increased ET-1 mRNA expression level in PE trophoblastic cells compared to NT trophoblastic cells. Furthermore, exogenous ET-1 (10(-7) mol/L) was able to up-regulate its own mRNA expression in both NT and PE trophoblastic cells. iNOS and eNOS mRNA expression was then detected, by semiquantitative PCR, in both NT and PE trophoblastic cells. PE trophoblastic cells expressed lower iNOS mRNA levels compared with NT pregnancies. On the contrary, eNOS mRNA expression was higher in PE trophoblastic cells than in NT cells. Moreover, in the presence of ET-1 we observed a decrease in iNOS and an increase in eNOS mRNA expression levels in both NT and PE trophoblastic cells compared with the respective untreated cells. In conclusion, we demonstrate that ET-1 expression is increased in PE cells, whereas iNOS, which represents the main source of NO synthesis, is decreased; conversely, eNOS expression is increased. Finally, ET-1 is able to influence its own as well as NOS isoform expression in normal and PE trophoblastic cultured cells. These findings suggest the existence of a functional relationships between ET(s) and NOS isoforms that could constitute the biological mechanism leading to the reduced placental blood flow and increased resistance to flow in the feto-maternal circulation, which are characteristic of the pathophysiology of preeclampsia. PMID:10852470

  14. Creatine kinase and alpha-actin mRNA levels decrease in diabetic rat hearts

    SciTech Connect

    Popovich, B.; Barrieux, A.; Dillmann, W.H.

    1987-05-01

    Diabetic cardiomyopathy is associated with cardiac atrophy and isoenzyme redistribution. To determine if tissue specific changes occur in mRNAs coding for ..cap alpha..-actin and creatine kinase (CK), they performed RNA blot analysis. Total ventricular RNA from control (C) and 4 wk old diabetic (D) rats were hybridized with /sup 32/P cDNA probes for ..cap alpha..-actin and CK. A tissue independent cDNA probe, CHOA was also used. Signal intensity was quantified by photodensitometry. D CK mRNA was 47 +/- 16% lower in D vs C. Insulin increases CK mRNA by 20% at 1.5 hs, and completely reverses the deficit after 4 wks. D ..cap alpha..-actin mRNA is 66 +/- 18% lower in D vs C. Insulin normalized ..cap alpha..-actin mRNA by 5 hs. CHOA mRNA is unchanged in D vs C, but D + insulin CHOA mRNA is 30 +/- 2% lower than C. In rats with diabetic cardiomyopathy, muscle specific CK and ..cap alpha..-actin mRNAs are decreased. Insulin treatment reverses these changes.

  15. mRNA transfection of mouse and human neural stem cell cultures.

    PubMed

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J; Chen, Fred K

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages. PMID:24386231

  16. Viscum album-Mediated COX-2 Inhibition Implicates Destabilization of COX-2 mRNA

    PubMed Central

    Saha, Chaitrali; Hegde, Pushpa; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srinivas V.

    2015-01-01

    Extensive use of Viscum album (VA) preparations in the complementary therapy of cancer and in several other human pathologies has led to an increasing number of cellular and molecular approaches to explore the mechanisms of action of VA. We have recently demonstrated that, VA preparations exert a potent anti-inflammatory effect by selectively down-regulating the COX-2-mediated cytokine-induced secretion of prostaglandin E2 (PGE2), one of the important molecular signatures of inflammatory reactions. In this study, we observed a significant down-regulation of COX-2 protein expression in VA-treated A549 cells however COX-2 mRNA levels were unaltered. Therefore, we hypothesized that VA induces destabilisation of COX-2 mRNA, thereby depleting the available functional COX-2 mRNA for the protein synthesis and for the subsequent secretion of PGE2. To address this question, we analyzed the molecular degradation of COX-2 protein and its corresponding mRNA in A549 cell line. Using cyclohexamide pulse chase experiment, we demonstrate that, COX-2 protein degradation is not affected by the treatment with VA whereas experiments on transcriptional blockade with actinomycin D, revealed a marked reduction in the half life of COX-2 mRNA due to its rapid degradation in the cells treated with VA compared to that in IL-1?-stimulated cells. These results thus demonstrate that VA-mediated inhibition of PGE2 implicates destabilization of COX-2 mRNA. PMID:25664986

  17. Viscum album-mediated COX-2 inhibition implicates destabilization of COX-2 mRNA.

    PubMed

    Saha, Chaitrali; Hegde, Pushpa; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srinivas V

    2015-01-01

    Extensive use of Viscum album (VA) preparations in the complementary therapy of cancer and in several other human pathologies has led to an increasing number of cellular and molecular approaches to explore the mechanisms of action of VA. We have recently demonstrated that, VA preparations exert a potent anti-inflammatory effect by selectively down-regulating the COX-2-mediated cytokine-induced secretion of prostaglandin E2 (PGE2), one of the important molecular signatures of inflammatory reactions. In this study, we observed a significant down-regulation of COX-2 protein expression in VA-treated A549 cells however COX-2 mRNA levels were unaltered. Therefore, we hypothesized that VA induces destabilisation of COX-2 mRNA, thereby depleting the available functional COX-2 mRNA for the protein synthesis and for the subsequent secretion of PGE2. To address this question, we analyzed the molecular degradation of COX-2 protein and its corresponding mRNA in A549 cell line. Using cyclohexamide pulse chase experiment, we demonstrate that, COX-2 protein degradation is not affected by the treatment with VA whereas experiments on transcriptional blockade with actinomycin D, revealed a marked reduction in the half life of COX-2 mRNA due to its rapid degradation in the cells treated with VA compared to that in IL-1?-stimulated cells. These results thus demonstrate that VA-mediated inhibition of PGE2 implicates destabilization of COX-2 mRNA. PMID:25664986

  18. Localization of bradykinin type II receptor mRNA in human endometrium.

    PubMed

    Shams, M; Sisi, P; Ahmed, A

    1996-01-01

    Bradykinin is a nonapeptide inflammatory agent that in the endometrium stimulates stromal cell proliferation, prostaglandin synthesis and electrogenic ion transport. The expression of bradykinin type II (B2) receptor mRNA was examined by in-situ hybridization using 35S-labelled riboprobe in human endometrium to determine its temporal and spatial pattern of distribution throughout the menstrual cycle. The B2 receptor mRNA was expressed in proliferative and secretory endometrium. In the early proliferative endometrium there were low levels of B2 receptor mRNA over both the glands and stromal cells. The signal increased in intensity and was localized over the glands with low levels of hybridization in the stroma in the late proliferative endometrium. In the early secretory endometrium B2 receptor mRNA was highly expressed in the endometrial glands. The strong hybridization signal persisted and in late secretory endometrium both glandular and stromal cells expressed B2 receptor mRNA. The apparent increase in B2 receptor mRNA in the secretory endometrium suggests that bradykinin acting via B2 receptor may play a role in the increased vascular permeability and vasodilatation associated with implantation. PMID:9238655

  19. Gravitational loading of a simulated launch alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Hughes-Fulford, M.

    1996-01-01

    Serum-deprived mouse osteoblastic cells (MC3T3-E1a) were centrifuged under a regime designed to simulate a space shuttle launch (maximum of 3g). Messenger RNA levels for eight genes involved in bone growth and maintenance were determined using RT-PCR. Following 30 min of centrifugation, mRNA level for early response gene c-fos was significantly increased 89% (P < 0.05). The c-fos induction was transient and returned to control levels after 3 h. The mRNA level for the mineralization marker gene osteocalcin was significantly decreased to 44% of control level (P < 0.005) 3 h after centrifugation. No changes in mRNA levels were detected for c-myc, TGFbeta1, TGFbeta2, cyclophilin A, or actin. No basal mRNA level for TGFbeta3 was detected. In addition, no change in the steady-state synthesis of prostaglandin E2 was detected, possibly due to lack of lipid substrates in serum-deprived cells, suggesting that the increase in c-fos mRNA in response to gravitational loading is a result of mechanical stimulation. These results indicate that a small magnitude mechanical loading, such as that experienced during a shuttle launch, can alter mRNA levels in quiescent osteoblastic cells.

  20. Splicing promotes the nuclear export of ?-globin mRNA by overcoming nuclear retention elements.

    PubMed

    Akef, Abdalla; Lee, Eliza S; Palazzo, Alexander F

    2015-11-01

    Most current models of mRNA nuclear export in vertebrate cells assume that an mRNA must have specialized signals in order to be exported from the nucleus. Under such a scenario, mRNAs that lack these specialized signals would be shunted into a default pathway where they are retained in the nucleus and eventually degraded. These ideas were based on the selective use of model mRNA reporters. For example, it has been shown that splicing promotes the nuclear export of certain model mRNAs, such as human ?-globin, and that in the absence of splicing, the cDNA-derived mRNA is retained in the nucleus and degraded. Here we provide evidence that ?-globin mRNA contains an element that actively retains it in the nucleus and degrades it. Interestingly, this nuclear retention activity can be overcome by increasing the length of the mRNA or by splicing. Our results suggest that contrary to many current models, the default pathway for most intronless RNAs is to be exported from the nucleus, unless the RNA contains elements that actively promote its nuclear retention. PMID:26362019

  1. RPFdb: a database for genome wide information of translated mRNA generated from ribosome profiling

    PubMed Central

    Xie, Shang-Qian; Nie, Peng; Wang, Yan; Wang, Hongwei; Li, Hongyu; Yang, Zhilong; Liu, Yizhi; Ren, Jian; Xie, Zhi

    2016-01-01

    Translational control is crucial in the regulation of gene expression and deregulation of translation is associated with a wide range of cancers and human diseases. Ribosome profiling is a technique that provides genome wide information of mRNA in translation based on deep sequencing of ribosome protected mRNA fragments (RPF). RPFdb is a comprehensive resource for hosting, analyzing and visualizing RPF data, available at www.rpfdb.org or http://sysbio.sysu.edu.cn/rpfdb/index.html. The current version of database contains 777 samples from 82 studies in 8 species, processed and reanalyzed by a unified pipeline. There are two ways to query the database: by keywords of studies or by genes. The outputs are presented in three levels. (i) Study level: including meta information of studies and reprocessed data for gene expression of translated mRNAs; (ii) Sample level: including global perspective of translated mRNA and a list of the most translated mRNA of each sample from a study; (iii) Gene level: including normalized sequence counts of translated mRNA on different genomic location of a gene from multiple samples and studies. To explore rich information provided by RPF, RPFdb also provides a genome browser to query and visualize context-specific translated mRNA. Overall our database provides a simple way to search, analyze, compare, visualize and download RPF data sets. PMID:26433228

  2. Splicing promotes the nuclear export of ?-globin mRNA by overcoming nuclear retention elements

    PubMed Central

    Akef, Abdalla; Lee, Eliza S.; Palazzo, Alexander F.

    2015-01-01

    Most current models of mRNA nuclear export in vertebrate cells assume that an mRNA must have specialized signals in order to be exported from the nucleus. Under such a scenario, mRNAs that lack these specialized signals would be shunted into a default pathway where they are retained in the nucleus and eventually degraded. These ideas were based on the selective use of model mRNA reporters. For example, it has been shown that splicing promotes the nuclear export of certain model mRNAs, such as human ?-globin, and that in the absence of splicing, the cDNA-derived mRNA is retained in the nucleus and degraded. Here we provide evidence that ?-globin mRNA contains an element that actively retains it in the nucleus and degrades it. Interestingly, this nuclear retention activity can be overcome by increasing the length of the mRNA or by splicing. Our results suggest that contrary to many current models, the default pathway for most intronless RNAs is to be exported from the nucleus, unless the RNA contains elements that actively promote its nuclear retention. PMID:26362019

  3. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    SciTech Connect

    Lazarus, Kyren A.; Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122 ; Zhao, Zhe; Knower, Kevin C.; To, Sarah Q.; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 ; Chand, Ashwini L.; Clyne, Colin D.

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER?ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER? and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels higher in oestrogen receptor ? (ER?) positive (ER+) breast cancer cells compared to ER? cells. However, the presence of LRH-1 protein in ER? cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER? breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER? compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER? versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ER?. Our data demonstrates that in ER? cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER? cells as well as ER? tumors suggests a possible role in the development of ER? tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER? and ER+ breast cancer.

  4. Prognostic value of ISG15 mRNA level in drinkers with esophageal squamous cell cancers

    PubMed Central

    Tao, Jun; Hua, Ping; Wen, Jing; Hu, Yi; Yang, Hong; Xie, Xuan

    2015-01-01

    ISG15, the protein encoded by interferon (IFN)-stimulated gene 15, was the first identified ubiquitin-like protein, which could be strongly upregulated by type I interferons as a primary response to diverse microbial and cellular stress stimuli. Although the biological activities of ISG15 have yet to be fully elucidated, it is frequently overexpressed in various cancers. As the role of ISG15 in esophageal squamous cell cancer (ESCC) has not been well reported, the current study aimed to elucidate the role of ISG15 in predicting outcomes of ESCC patients. Samples were collected from 153 ESCC patients, including 54 pairs of tumor tissues and non-tumor tissues. Compared with the paired non-tumor tissues, higher expression of ISG15 mRNA were detected in ESCC tissues. The cut-off value 1.28 determined by ROC curve analysis divided the ESCC patients into high and low ISG15 mRNA expression group. High-ISG15 mRNA expression appeared with more frequency in ever-drinkers (P = 0.018). Kaplan-Meier analysis indicated that Low-ISG15 mRNA expression group had a longer cancer-specific survival (CSS) compared with High-ISG15 mRNA expression group. Multivariate analysis revealed that ISG15 mRNA (P = 0.024; hazard ratio, 2.759, 95% CI, 1.841-4.134) as well as Pathological staging (P < 0.001; hazard ratio, 1.634, 95% CI, 1.065-2.505) were independent prognostic factors. Subgroup analysis revealed that the discernibility of ISG15 mRNA level on ESCC outcomes was only pronounced in ever-drinkers (P = 0.026) not in never-drinkers (P = 0.138). ISG15 might serve as a novel prognostic biomarker in drinkers with ESCC. PMID:26617815

  5. mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development

    PubMed Central

    Kropp, Jenna; Khatib, Hasan

    2015-01-01

    In vitro production (IVP) systems have been used to bypass problems of fertilization and early embryonic development. However, embryos produced by IVP are commonly selected for implantation based on morphological assessment, which is not a strong indicator of establishment and maintenance of pregnancy. Thus, there is a need to identify additional indicators of embryonic developmental potential. Previous studies have identified microRNA expression in in vitro culture media to be indicative of embryo quality in both bovine and human embryos. Like microRNAs, mRNAs have been shown to be secreted from cells into the extracellular environment, but it is unknown whether or not these RNAs are secreted by embryos. Thus, the objective of the present study was to determine whether mRNAs are secreted into in vitro culture media and if their expression in the media is indicative of embryo quality. In vitro culture medium was generated and collected from both blastocyst and degenerate (those which fail to develop from the morula to blastocyst stage) embryos. Small-RNA sequencing revealed that many mRNA fragments were present in the culture media. A total of 17 mRNA fragments were differentially expressed between blastocyst and degenerate conditioned media. Differential expression was confirmed by quantitative real-time PCR for fragments of mRNA POSTN and VSNL-1, in four additional biological replicates of media. To better understand the mechanisms of mRNA secretion into the media, the expression of a predicted RNA binding protein of POSTN, PUM2, was knocked down using an antisense oligonucleotide gapmer. Supplementation of a PUM2 gapmer significantly reduced blastocyst development and decreased secretion of POSTN mRNA into the media. Overall, differential mRNA expression in the media was repeatable and sets the framework for future study of mRNA biomarkers in in vitro culture media to improve predictability of reproductive performance. PMID:26379701

  6. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    SciTech Connect

    Dalgaard, Louise T.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  7. Molecular cloning and regulation of murine fatty acid synthase mRNA

    SciTech Connect

    Paulauskis, J.D.; Sul, H.S.

    1987-05-01

    Mouse liver mRNA that was enriched in sequences coding for fatty acid synthase (FAS) by sucrose-density gradient centrifugation was used as a template for cDNA synthesis. Double-stranded cDNA sequences were inserted into pBR322 and lambdagt10 and cloned. Clones containing putative cDNA sequences for FAS were identified by differential hybridization where /sup 32/P-cDNAs, synthesized from sucrose gradient purified liver mRNA from mice starved or starved and refed a fat-free diet, were used as probes. Two of these clones were further studied and found to contain sequences complementary to FAS mRNA by hybrid-selected translation and specific immunoprecipitation. Using these clones as probes, they selected 33 additional clones containing cDNA sequences for FAS. Partial DNA sequence data for these clones were obtained. Northern blot analysis revealed a single mRNA size of 9.3 kb when a cDNA clone with a 3.1 kb insert was used as a probe. This is in contrast to rat liver FAS which showed two mRNAs sizes of 9.2 and 10.0 kb. They also studied FAS mRNA level of 3T3-L1 preadipocytes during differentiation into adipocytes. An approximate 10-fold increase in FAS mRNA content was observed which corresponded with an increased rate of FAS synthesis indicating pretranslational regulation. The FAS cDNA probe was also employed to demonstrate that induction of FAS in the livers of previously starved mice that were fed a fat-free diet was controlled pretranslationally by a parallel modulation of the FAS mRNA concentration.

  8. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells.

    PubMed

    Thompson, Alison M; Gansen, Alexander; Paguirigan, Amy L; Kreutz, Jason E; Radich, Jerald P; Chiu, Daniel T

    2014-12-16

    Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small sample volumes and the high variability in measurements. Microfluidic digital PCR provides far better sensitivity for minute quantities of genetic material, but the typical format of this assay does not allow for counting of the absolute number of mRNA transcripts samples taken from single cells. Furthermore, a large fraction of the sample is often lost during sample handling in microfluidic digital PCR. Here, we report the absolute quantification of single-cell mRNA transcripts by digital, one-step reverse transcription PCR in a simple microfluidic array device called the self-digitization (SD) chip. By performing the reverse transcription step in digitized volumes, we find that the assay exhibits a linear signal across a wide range of total RNA concentrations and agrees well with standard curve qPCR. The SD chip is found to digitize a high percentage (86.7%) of the sample for single-cell experiments. Moreover, quantification of transferrin receptor mRNA in single cells agrees well with single-molecule fluorescence in situ hybridization experiments. The SD platform for absolute quantification of single-cell mRNA can be optimized for other genes and may be useful as an independent control method for the validation of mRNA quantification techniques. PMID:25390242

  9. A ribonucleoprotein complex protects the interleukin-6 mRNA from degradation by distinct herpesviral endonucleases.

    PubMed

    Muller, Mandy; Hutin, Stephanie; Marigold, Oliver; Li, Kathy H; Burlingame, Al; Glaunsinger, Britt A

    2015-05-01

    During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, the viral endonuclease SOX promotes widespread degradation of cytoplasmic messenger RNA (mRNA). However, select mRNAs escape SOX-induced cleavage and remain robustly expressed. Prominent among these is interleukin-6 (IL-6), a growth factor important for survival of KSHV infected B cells. IL-6 escape is notable because it contains a sequence within its 3' untranslated region (UTR) that can confer protection when transferred to a SOX-targeted mRNA, and thus overrides the endonuclease targeting mechanism. Here, we pursued how this protective RNA element functions to maintain mRNA stability. Using affinity purification and mass spectrometry, we identified a set of proteins that associate specifically with the protective element. Although multiple proteins contributed to the escape mechanism, depletion of nucleolin (NCL) most severely impacted protection. NCL was re-localized out of the nucleolus during lytic KSHV infection, and its presence in the cytoplasm was required for protection. After loading onto the IL-6 3' UTR, NCL differentially bound to the translation initiation factor eIF4H. Disrupting this interaction, or depleting eIF4H, reinstated SOX targeting of the RNA, suggesting that interactions between proteins bound to distant regions of the mRNA are important for escape. Finally, we found that the IL-6 3' UTR was also protected against mRNA degradation by the vhs endonuclease encoded by herpes simplex virus, despite the fact that its mechanism of mRNA targeting is distinct from SOX. These findings highlight how a multitude of RNA-protein interactions can impact endonuclease targeting, and identify new features underlying the regulation of the IL-6 mRNA. PMID:25965334

  10. Maternal mRNA expression levels of H19 are inversely associated with risk of macrosomia

    PubMed Central

    Jiang, Hua; Yu, Yang; Xun, Pengcheng; Zhang, Jun; Luo, Guanghua

    2014-01-01

    Introduction To investigate the associations between the mRNA levels of H19 in term placenta and risk of macrosomia. Material and methods Term placentas were collected from 37 macrosomia and 37 matched neonates with normal birth weight (controls) born in Changzhou Women and Children Health Hospital, Jiangsu province, P. R. China from March 1 to June 30, 2008. The mRNA levels of H19 in those placentas were measured by real-time polymerase chain reaction (PCR). Simple and multiple logistic regression models were used to explore the risk factors in the development of macrosomia. All analyses were performed using Stata 10.0 (StataCorp, College Station, Texas, USA). Results The average H19 mRNA level of the macrosomia group was 1.450 ±0.456 while in the control group it was 2.080 ±1.296. Based on the result of Student's t test, there was a significant difference in H19 mRNA level between the macrosomia group and the control group (p = 0.008). After controlling for potential confounders, the multivariable adjusted odds ratio (OR) of macrosomia for those in the highest tertile of H19 mRNA level was 0.12 (95% CI: 0.02–0.59) when compared to those in the lowest tertile (p for linear trend = 0.009). Conclusions The term placental H19 mRNA levels were inversely related to the occurrence of macrosomia. Our findings suggest that the low expression of H19 mRNA may contribute to the development of macrosomia. PMID:25097584

  11. Molecular contacts of ribose-phosphate backbone of mRNA with human ribosome.

    PubMed

    Sharifulin, Dmitri E; Grosheva, Anastasia S; Bartuli, Yulia S; Malygin, Alexey A; Meschaninova, Maria I; Ven'yaminova, Aliya G; Stahl, Joachim; Graifer, Dmitri M; Karpova, Galina G

    2015-08-01

    In this work, intimate contacts of riboses of mRNA stretch from nucleotides in positions +3 to +12 with respect to the first nucleotide of the P site codon were studied using cross-linking of short mRNA analogs with oxidized 3'-terminal riboses bound to human ribosomes in the complexes stabilized by codon-anticodon interactions and in the binary complexes. It was shown that in all types of complexes cross-links of the mRNA analogs to ribosomal protein (rp) uS3 occur and the yield of these cross-links does not depend on the presence of tRNA and on sequences of the mRNA analogs. Site of the mRNA analogs cross-linking in rp uS3 was mapped to the peptide in positions 55-64 that is located away from the mRNA binding site. Additionally, in complexes with P site-bound tRNA, riboses of mRNA nucleotides in positions +4 to +7 cross-linked to the C-terminal tail of rp uS19 displaying a contact specific to the decoding site of the mammalian ribosome, and tRNA bound at the A site completely blocked this cross-linking. Remarkably, rps uS3 and uS19 were also able to cross-link to the fragment of HCV IRES containing unstructured 3'-terminal part restricted by the AUGC tetraplet with oxidized 3'-terminal ribose. However, no cross-linking to rp uS3 was observed in the 48S preinitiation complex assembled in reticulocyte lysate with this HCV IRES derivative. The results obtained show an ability of rp uS3 to interact with single-stranded RNAs. Possible roles of rp uS3 region 55-64 in the functioning of ribosomes are discussed. PMID:26066980

  12. Abnormal cholecystokinin mRNA levels in entorhinal cortex of schizophrenics.

    PubMed

    Bachus, S E; Hyde, T M; Herman, M M; Egan, M F; Kleinman, J E

    1997-01-01

    Limbic cortical regions, including anterior cingulate cortex (ACC), prefrontal cortex (PFC) and entorhinal cortex (ERC), have been implicated in the neuropathology of schizophrenia. Glutamate projection neurons connect these limbic cortical regions to each other, as well as to the terminal fields of the striatal/accumbens dopamine neurons. Subsets of these glutamate projection neurons, and of the GABA interneurons in cortex, contain the neuropeptide cholecystokinin (CCK). In an effort to study the limbic cortical glutamate projection neurons and GABA interneurons in schizophrenia, we have measured CCK mRNA with in situ hybridization histochemistry in postmortem samples of dorsolateral (DL)PFC, ACC and ERC of seven schizophrenics, nine non-psychotic suicides and seven normal controls. CCK mRNA is decreased in ERC (especially layers iii vi) and subiculum in schizophrenics relative to controls. Cellular analysis indicates that there is a decrease in density of CCK mRNA in labelled neurons. In so far as ERC CCK mRNA is not reduced in rats treated chronically with haloperidol, this decrease in schizophrenics does not appear to be related to neuroleptic treatment. In contrast, in DLPFC, where schizophrenics do not differ from normals, the suicide victims have elevated CCK mRNA (especially in layers v and vi), and increased cellular density of CCK mRNA, relative to both normals and schizophrenics. These results lend further support for the involvement of ERC and hippocampus in schizophrenia, suggesting that neurons that utilize CCK may be particularly important. Similarly, an increase in CCK mRNA levels in the PFC of suicides adds to a growing body of evidence implicating this structure in this pathological state. In so far as CCK is co-localized with GABA or glutamate in cortical neurons, both of these neuronal populations need to be studied further in schizophrenia and suicide. PMID:9278188

  13. A Ribonucleoprotein Complex Protects the Interleukin-6 mRNA from Degradation by Distinct Herpesviral Endonucleases

    PubMed Central

    Muller, Mandy; Hutin, Stephanie; Marigold, Oliver; Li, Kathy H.; Burlingame, Al; Glaunsinger, Britt A.

    2015-01-01

    During lytic Kaposi’s sarcoma-associated herpesvirus (KSHV) infection, the viral endonuclease SOX promotes widespread degradation of cytoplasmic messenger RNA (mRNA). However, select mRNAs escape SOX-induced cleavage and remain robustly expressed. Prominent among these is interleukin-6 (IL-6), a growth factor important for survival of KSHV infected B cells. IL-6 escape is notable because it contains a sequence within its 3’ untranslated region (UTR) that can confer protection when transferred to a SOX-targeted mRNA, and thus overrides the endonuclease targeting mechanism. Here, we pursued how this protective RNA element functions to maintain mRNA stability. Using affinity purification and mass spectrometry, we identified a set of proteins that associate specifically with the protective element. Although multiple proteins contributed to the escape mechanism, depletion of nucleolin (NCL) most severely impacted protection. NCL was re-localized out of the nucleolus during lytic KSHV infection, and its presence in the cytoplasm was required for protection. After loading onto the IL-6 3’ UTR, NCL differentially bound to the translation initiation factor eIF4H. Disrupting this interaction, or depleting eIF4H, reinstated SOX targeting of the RNA, suggesting that interactions between proteins bound to distant regions of the mRNA are important for escape. Finally, we found that the IL-6 3’ UTR was also protected against mRNA degradation by the vhs endonuclease encoded by herpes simplex virus, despite the fact that its mechanism of mRNA targeting is distinct from SOX. These findings highlight how a multitude of RNA-protein interactions can impact endonuclease targeting, and identify new features underlying the regulation of the IL-6 mRNA. PMID:25965334

  14. Lipoprotein lipase and hepatic lipase mRNA tissue specific expression, developmental regulation, and evolution.

    PubMed

    Semenkovich, C F; Chen, S H; Wims, M; Luo, C C; Li, W H; Chan, L

    1989-03-01

    Lipoprotein lipase (LPL) and hepatic lipase (HL) enzyme activities were previously reported to be regulated during development, but the underlying molecular events are unknown. In addition, little is known about LPL evolution. We cloned and sequenced a complete mouse LPL cDNA. Comparison of sequences from mouse, human, bovine, and guinea pig cDNAs indicated that the rates of evolution of mouse, human, and bovine LPL are quite low, but guinea pig LPL has evolved several times faster than the others. 32P-Labeled mouse LPL and rat HL cDNAs were used to study lipase mRNA tissue distribution and developmental regulation in the rat. Northern gel analysis revealed the presence of a single 1.87 kb HL mRNA species in liver, but not in other tissues including adrenal and ovary. A single 4.0 kb LPL mRNA species was detected in epididymal fat, heart, psoas muscle, lactating mammary gland, adrenal, lung, and ovary, but not in adult kidney, liver, intestine, or brain. Quantitative slot-blot hybridization analysis demonstrated the following relative amounts of LPL mRNA in rat tissues: adipose, 100%; heart, 94%; adrenal, 6.6%; muscle, 3.8%; lung, 3.0%; kidney, 0%; adult liver, 0%. The same quantitative analysis was used to study lipase mRNA levels during development. There was little postnatal variation in LPL mRNA in adipose tissue; maximal levels were detected at the earliest time points studied for both inguinal and epididymal fat. In heart, however, LPL mRNA was detected at low levels 6 days before birth and increased 278-fold as the animals grew to adulthood.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2723548

  15. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Ozge; Doruker, Pemra; Sen, Taner Z.; Kloczkowski, Andrzej; Jernigan, Robert L.

    2008-12-01

    The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs and mRNA; here, the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal structures are used to construct various model systems of the 70S complex with/without tRNA, elongation factor Tu and the ribosomal proteins. Computed motions reveal the well-known ratchet-like rotational motion of the large subunits, as well as the head rotation of the small subunit and the high flexibility of the L1 and L7/L12 stalks, even in the absence of ribosomal proteins. This result indicates that these experimentally observed motions during translocation are inherently controlled by the ribosomal shape and only partially dependent upon GTP hydrolysis. Normal mode analysis further reveals the mobility of A- and P-tRNAs to increase in the absence of the E-tRNA. In addition, the dynamics of the E-tRNA is affected by the absence of the ribosomal protein L1. The mRNA in the entrance tunnel interacts directly with helicase proteins S3 and S4, which constrain the mRNA in a clamp-like fashion, as well as with protein S5, which likely orients the mRNA to ensure correct translation. The ribosomal proteins S7, S11 and S18 may also be involved in assuring translation fidelity by constraining the mRNA at the exit site of the channel. The mRNA also interacts with the 16S 3' end forming the Shine-Dalgarno complex at the initiation step; the 3' end may act as a 'hook' to reel in the mRNA to facilitate its exit.

  16. Urinary vimentin mRNA as a potential novel biomarker of renal fibrosis.

    PubMed

    Cao, Yu-Han; Lv, Lin-Li; Zhang, Xu; Hu, Hong; Ding, Li-Hong; Yin, Di; Zhang, Ying-Zi; Ni, Hai-Feng; Chen, Ping-Sheng; Liu, Bi-Cheng

    2015-09-15

    Renal fibrosis is a histological outcome of chronic kidney disease (CKD) progression. However, the noninvasive detection of renal fibrosis remains a challenge. Here we constructed a renal fibrosis target mRNA array and used it to detect urinary mRNAs of CKD patients for investigating potential noninvasive biomarkers of renal fibrosis. We collected urine samples from 39 biopsy-proven CKD patients and 11 healthy controls in the training set. Urinary mRNA profiles of 86 genes showed a total of 21 mRNAs that were differentially expressed between CKD patients and controls (P < 0.05), and vimentin (VIM) mRNA demonstrated the highest change fold of 9.99 in CKD vs. controls with robust correlations with decline of renal function and severity of tubulointerstitial fibrosis. Additionally, VIM mRNA further differentiated patients with moderate-to-severe fibrosis from none-to-mild fibrosis group with an area of the curve of 0.796 (P = 0.008). A verification of VIM mRNA in the urine of an additional 96 patients and 20 controls showed that VIM is not only well correlated with renal function parameters but also correlated with proteinuria and renal fibrosis scores. Multiple logistic regression and receiver-operating characteristics analysis further showed that urine VIM mRNA is the best predictive parameter of renal fibrosis compared with estimated glomerular filtration rate, serum creatinine, and blood urea nitrogen. In addition, there is no improved predictive performance for the composite biomarkers to predict renal fibrosis severity compared with a single gene of VIM. Overall, urinary VIM mRNA might serve as a novel independent noninvasive biomarker to monitor the progression of kidney fibrosis. PMID:25904701

  17. Eosinophil cationic protein mRNA expression in children with bronchial asthma.

    PubMed

    Yu, H Y; Li, X Y; Cai, Z F; Li, L; Shi, X Z; Song, H X; Liu, X J

    2015-01-01

    Studies have shown that eosinophils are closely related to pathogenesis of bronchial asthma. Eosinophils release eosinophil cationic protein (ECP), which plays an important role in infection and allergic reactions. Serum ECP mRNA expression in children with bronchial asthma has not been adequately investigated. We analyzed serum ECP mRNA expression in 63 children with bronchial asthma and 21 healthy children by using reverse-transcriptase polymerase chain reaction to understand the role of ECP in children with bronchial asthma. The children with bronchial asthma were segregated into acute-phase and stable-phase groups, based on the severity of the illness. Serum ECP mRNA expression in children with bronchial asthma (0.375 ± 0.04) was significantly higher than that in healthy controls (0.20 ± 0.02; P < 0.05). Additionally, children in the acute-phase group showed higher ECP mRNA expression level (0.44 ± 0.06) than those in the stable-phase (0.31 ± 0.03) and healthy control groups (0.20 ± 0.02; P < 0.05), while the level in the stable-phase (0.31 ± 0.03) was markedly higher than that in the healthy control group (0.20 ± 0.02; P < 0.05). Detection of serum ECP mRNA expression level has possible applications in the diagnosis and treatment of children with bronchial asthma. PMID:26600485

  18. Translation by polysome: theory of ribosome profile on a single mRNA transcript

    E-print Network

    Sharma, Ajeet K

    2011-01-01

    The process of polymerizing a protein by a ribosome, using a messenger RNA (mRNA) as the corresponding template, is called {\\it translation}. Ribosome may be regarded as a molecular motor for which the mRNA template serves also as the track. Often several ribosomes may translate the same (mRNA) simultaneously. The ribosomes bound simultaneously to a single mRNA transcript are the members of a polyribosome (or, simply, {\\it polysome}). Experimentally measured {\\it polysome profile} gives the distribution of polysome {\\it sizes}. Recently a breakthrough in determining the instantaneous {\\it positions} of the ribosomes on a given mRNA track has been achieved and the technique is called {\\it ribosome profiling} \\cite{ingolia10,guo10}. Motivated by the success of these techniques, we have studied the spatio-temporal organization of ribosomes by extending a theoretical model that we have reported elsewhere \\cite{sharma11}. This extended version of our model incorporates not only (i) mechano-chemical cycle of indivi...

  19. Localization of Zip1 and Zip4 mRNA in the Adult Rat Brain

    PubMed Central

    Belloni-Olivi, Luisa; Marshall, Cathleen; Laal, Bachchu; Andrews, Glenn K.; Bressler, Joseph

    2010-01-01

    The localization of two members of the Slc39a (zip1 and zip4) family of zinc transporters was examined in the brains of adult mice. Zip1 was highly enriched in brain regions with high densities of neuronal cell bodies, including the hippocampus, thalamus, and perifontal cortex. Zip1 was also expressed in commissural fiber tracts such as the corpus callosum and anterior commissure, but little was found in the internal and external capsules. Also, very low amounts of zip1 mRNA were detected in resting astrocytes and reactive astrocytes that were examined at 14 days after inflicting a stab wound. Zip1 mRNA was detected in ependymal cells lining the third and lateral ventricles and epithelium cells in the choroid plexus. Interestingly, zip4 mRNA was detected in the choroid plexus but not in the ependymal cells or other neural elements. Zip4 mRNA was also detected in brain capillaries, but zip1 mRNA was not. In zip4 knockout heterozygotes that express green fluorescent protein regulated by the zip4 promoter, green fluorescent protein was detected in brain capillaries. Because zip4 levels are regulated by dietary Zn, our studies suggest that the brain has the potential of adapting to changes in Zn status. PMID:19530166

  20. The structure of the SOLE element of oskar mRNA

    PubMed Central

    Simon, Bernd; Masiewicz, Pawel; Ephrussi, Anne; Carlomagno, Teresa

    2015-01-01

    mRNA localization by active transport is a regulated process that requires association of mRNPs with protein motors for transport along either the microtubule or the actin cytoskeleton. oskar mRNA localization at the posterior pole of the Drosophila oocyte requires a specific mRNA sequence, termed the SOLE, which comprises nucleotides of both exon 1 and exon 2 and is assembled upon splicing. The SOLE folds into a stem–loop structure. Both SOLE RNA and the exon junction complex (EJC) are required for oskar mRNA transport along the microtubules by kinesin. The SOLE RNA likely constitutes a recognition element for a yet unknown protein, which either belongs to the EJC or functions as a bridge between the EJC and the mRNA. Here, we determine the solution structure of the SOLE RNA by Nuclear Magnetic Resonance spectroscopy. We show that the SOLE forms a continuous helical structure, including a few noncanonical base pairs, capped by a pentanucleotide loop. The helix displays a widened major groove, which could accommodate a protein partner. In addition, the apical helical segment undergoes complex dynamics, with potential functional significance. PMID:26089324

  1. The structure of the SOLE element of oskar mRNA.

    PubMed

    Simon, Bernd; Masiewicz, Pawel; Ephrussi, Anne; Carlomagno, Teresa

    2015-08-01

    mRNA localization by active transport is a regulated process that requires association of mRNPs with protein motors for transport along either the microtubule or the actin cytoskeleton. oskar mRNA localization at the posterior pole of the Drosophila oocyte requires a specific mRNA sequence, termed the SOLE, which comprises nucleotides of both exon 1 and exon 2 and is assembled upon splicing. The SOLE folds into a stem-loop structure. Both SOLE RNA and the exon junction complex (EJC) are required for oskar mRNA transport along the microtubules by kinesin. The SOLE RNA likely constitutes a recognition element for a yet unknown protein, which either belongs to the EJC or functions as a bridge between the EJC and the mRNA. Here, we determine the solution structure of the SOLE RNA by Nuclear Magnetic Resonance spectroscopy. We show that the SOLE forms a continuous helical structure, including a few noncanonical base pairs, capped by a pentanucleotide loop. The helix displays a widened major groove, which could accommodate a protein partner. In addition, the apical helical segment undergoes complex dynamics, with potential functional significance. PMID:26089324

  2. Tumor Suppressor Protein Pdcd4 Inhibits Translation of p53 mRNA*

    PubMed Central

    Wedeken, Lena; Singh, Priyanka; Klempnauer, Karl-Heinz

    2011-01-01

    The tumor suppressor protein Pdcd4 is thought to suppress translation of mRNAs containing structured 5?-UTRs by interacting with translation initiation factor eIF4A and inhibiting its helicase activity. However, natural target mRNAs regulated by Pdcd4 so far are mostly unknown. Here, we identified p53 mRNA as a translational target of Pdcd4. We found that Pdcd4 is associated with p53 mRNA and suppresses its translation. The inhibitory effect of Pdcd4 on the translation of p53 mRNA depends on the ability of Pdcd4 to interact with eIF4A and is mediated by the 5?-UTR of p53 mRNA, which is able to form a stable stem-loop structure. We show that treatment of cells with DNA-damaging agents decreases the expression of Pdcd4. This suggests that translational suppression by Pdcd4 plays a role in maintaining a low level of p53 in unstressed cells and that this suppression is abrogated due to low levels of Pdcd4 after DNA damage. Overall, our work demonstrates for the first time that Pdcd4 is directly involved in translational suppression of a natural mRNA with a 5?-structured UTR and provides novel insight into the translational control of p53 expression. PMID:22033922

  3. Stochastic theory of protein synthesis and polysome: ribosome profile on a single mRNA transcript

    E-print Network

    Ajeet K. Sharma; Debashish Chowdhury

    2011-08-18

    The process of polymerizing a protein by a ribosome, using a messenger RNA (mRNA) as the corresponding template, is called {\\it translation}. Ribosome may be regarded as a molecular motor for which the mRNA template serves also as the track. Often several ribosomes may translate the same (mRNA) simultaneously. The ribosomes bound simultaneously to a single mRNA transcript are the members of a polyribosome (or, simply, {\\it polysome}). Experimentally measured {\\it polysome profile} gives the distribution of polysome {\\it sizes}. Recently a breakthrough in determining the instantaneous {\\it positions} of the ribosomes on a given mRNA track has been achieved and the technique is called {\\it ribosome profiling} \\cite{ingolia10,guo10}. Motivated by the success of these techniques, we have studied the spatio-temporal organization of ribosomes by extending a theoretical model that we have reported elsewhere \\cite{sharma11}. This extended version of our model incorporates not only (i) mechano-chemical cycle of individual ribomes, and (ii) their steric interactions, but also (iii) the effects of (a) kinetic proofreading, (b) translational infidelity, (c) ribosome recycling, and (d) sequence inhomogeneities. The theoretical framework developed here will serve in guiding further experiments and in analyzing the data to gain deep insight into various kinetic processes involved in translation.

  4. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    SciTech Connect

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  5. Target-specific arrest of mRNA translation by antisense 2'-O-alkyloligoribonucleotides.

    PubMed Central

    Johansson, H E; Belsham, G J; Sproat, B S; Hentze, M W

    1994-01-01

    We describe a novel experimental approach to investigate mRNA translation. Antisense 2'-O-allyl oligoribonucleotides (oligos) efficiently arrest translation of targeted mRNAs in rabbit reticulocyte lysate and wheat germ extract while displaying minimal non-specific effects on translation. Oligo/mRNA-hybrids positioned anywhere within the 5' UTR or the first approximately 20 nucleotides of the open reading frame block cap-dependent translation initiation with high specificity. The thermodynamic stability of hybrids between 2'-O-alkyl oligos and RNA permits translational inhibition with oligos as short as 10 nucleotides. This inhibition is independent of RNase H cleavage or modifications which render the mRNA untranslatable. We show that 2'-O-alkyl oligos can also be employed to interfere with cap-independent internal initiation of translation and to arrest translation elongation. The latter is accomplished by UV-crosslinking of psoralen-tagged 2'-O-methyloligoribonucleotides to the mRNA within the open reading frame. The utility of 2'-O-alkyloligoribonucleotides to arrest translation from defined positions within an mRNA provides new approaches to investigate mRNA translation. Images PMID:7984406

  6. Partial isolation and identification of hepatic stimulator substance mRNA extracted from human fetal liver

    PubMed Central

    Yang, Xiao-Ming; Xie, Ling; Xing, Gui-Chun; Wu, Zu-Ze; He, Fu-Chu

    1998-01-01

    AIM: To partially isolate and identify hepatic stimulator substance mRNA from human fetal liver tissues. METHODS: The poly (A) mRNA was extracted from human fetal liver tissues of 4-5 month gestation, fractionated by size on sucrose gradient centrifugation, translated into protein from each fraction in vitro and then its products were tested for HSS activity. RESULTS: Twenty-two 500 ?g total RNA was obtained from human fetal liver tissues and pooled. mRNA of 420 ?g was yielded, processed by oligo (dT)-cellulose column chromatography, then was size-fractionated by ultracentrifution on a continuous sucrose density gradient (5%-25%), and separated into 18 fractions. Translated products of mRNA in fraction 8 and 9 could produce a two-fold increase in the incorporation of 3H-TdR into DNA of SMMC-7721 hepatoma cells and in a heat resistant and organ-specific way. CONCLUSION: The partially purified HSS mRNA was obtained and this would facilitate the cloning of HSS using expression vectors. PMID:11819247

  7. Sleep deprivation differentially alters the mRNA and protein levels of neurogranin in rat brain.

    PubMed

    Neuner-Jehle, M; Rhyner, T A; Borbély, A A

    1995-07-10

    The mRNA level of the 17-kDa protein neurogranin (NG), a postsynaptic substrate of the protein kinase C, has previously been found to be decreased in rat forebrain after 24-h sleep deprivation (SD). To investigate the functional significance of this finding in various forebrain regions, the effect of 24-h SD on the mRNA level and the protein level of NG was determined in the cerebral cortex, hippocampus, and the total of the remaining subcortical forebrain plus midbrain areas (SFMA) of rats. In these areas, high levels of both NG mRNA and NG protein were detected by in situ hybridization and immunohistochemistry, respectively. NG protein was recognized in brain tissue by newly developed polyclonal antibodies. As determined by RNase protection assays, the level of NG mRNA was decreased in SFMA by 34 +/- 7% (P < 0.05) after 24-h SD, and was not significantly affected in the cerebral cortex and hippocampus. In contrast, on Western blots, the protein concentration of NG was reduced in the cerebral cortex by 37 +/- 7% (P < 0.05) whereas no significant changes were present in other brain areas tested. The results indicate that the mRNA and protein levels of NG are differentially modulated in rat brain by the prolongation of the waking period. PMID:7583240

  8. Expression of Melanocortin-4 Receptor mRNA in Male Rat Hypothalamus During Chronic Stress

    PubMed Central

    Karami Kheirabad, Maryam; Namavar Jahromi, Bahia; Tamadon, Amin; Ramezani, Amin; Ahmadloo, Somayeh; Sabet Sarvestan, Fatemeh; Koohi-Hosseinabadi, Omid

    2015-01-01

    The effects of chronic stress and glucocorticoids receptor antagonist (RU486) on expression of melanocortin 4 receptor (MC4R) mRNA in arcuate nucleus (ARC) of male rats were evaluated. In this study, adult male Sprague Dawley rats were placed into four groups (n=6/group); stress, RU486, stress/RU486, and control groups. In stress group, the rats were restrained, 1 h/day, for 12 days. In RU486 group, the rats were injected RU486 for 12 days. In stress/RU486 group, the rats were injected RU486 1 h before the stress process for 12 days. Relative expression of MC4R mRNA was determined using real-time PCR. Relative expression of MC4R mRNA in the stress group was higher than that of the control rats (P<0.05). Relative expressions of MC4R mRNA were not different between the stress, RU486 and stress/RU486 groups (P>0.05). Chronic restraint stress causes increase in mRNA expression of MC4R in ARC and blockade of glucocorticoid receptors has no effect on this up-regulation.

  9. HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels.

    PubMed

    Hviid, Thomas Vauvert F; Hylenius, Sine; Rørbye, Christina; Nielsen, Lone G

    2003-05-01

    During pregnancy, the human extra-villous trophoblast in the contact zone between maternal and fetal tissue in the placenta does not express the classical MHC class I and II molecules. Instead, HLA-G and -C, and possibly HLA-E, are expressed. HLA-G may modulate the immunological relationship between mother and fetus in several ways. Finally, the expression of membrane-bound HLA-G and soluble HLA-G has been proposed to influence the outcome of pregnancy, and an aberrant HLA-G expression in pre-eclamptic placentas and spontaneous abortions has been reported. Here, an association between certain HLA-G polymorphisms and the mRNA levels of the different alternatively spliced HLA-G isoforms in first trimester trophoblast cell populations is reported. Several alternatively spliced HLA-G mRNA isoforms, including a 14-bp polymorphism in the 3'UTR end (exon 8) of the HLA-G gene, are expressed at a significantly lower level than the corresponding HLA-G mRNA isoforms with the 14-bp sequence deleted. Furthermore, characteristic HLA-G mRNA isoform expression patterns were associated with specific HLA-G genotypes and alleles. In the HLA-G*01012 and - G*01013 alleles that include the 14-bp sequence, an additional alternative splicing was observed, with the first 92-bp of exon 8 spliced out. This was most pronounced in HLA-G genotypes with G*01013. These findings may have functional implications for the recent reports of aberrant HLA-G expression and reproductive success. PMID:12712263

  10. Repeated administration of MDMA down-regulates preprocholecystokinin mRNA expression but not tyrosine hydroxylase mRNA expression in neurones of the rat substantia nigra.

    PubMed

    Wotherspoon, G; Savery, D; Priestley, J V; Rattray, M

    1994-08-01

    The effect of repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) on the expression of tyrosine hydroxylase and preprocholecystokinin (CCK) messenger RNAs in substantia nigra was examined by in situ hybridisation histochemistry. Sections hybridised with 35S-labelled oligonucleotides were subjected to computerised image analysis to determine the density of silver grains above positively labelled cells as an index of steady state mRNA levels. In the substantia nigra pars compacta, CCK mRNA levels were significantly reduced in drug-treated animals 24 h and at 2 weeks after the last dose of MDMA (10 mg/kg i.p., twice daily for 4 days). In the same animals, MDMA caused no change in the level of tyrosine hydroxylase mRNA in this brain region. The results show that MDMA can produce changes in dopamine neurones. Furthermore, since tyrosine hydroxylase and cholecystokinin are co-expressed in substantia nigra pars compacta, these results suggest that the expression of the tyrosine hydroxylase and CCK genes are regulated independently. PMID:7984049

  11. Complete nucleotide sequence of mRNA for caerulein precursor from Xenopus skin: the mRNA contains an unusual repetitive structure.

    PubMed Central

    Wakabayashi, T; Kato, H; Tachibana, S

    1985-01-01

    The complete nucleotide sequence of mRNA for caerulein precursor in the skin of Xenopus laevis was determined. The sequence was composed of 705 bp of coding region, accounting for 234 amino acids, 58 bp of 5'-untranslated region and 158 bp of 3'-untranslated region containing two putative poly(A) signals. It coded for four caerulein peptides interspersed with three 147 bp segments (intercaerulein segment; ICS). Analyses of several caerulein encoding cDNAs revealed some interesting features of caerulein mRNA species, which were highly heterogeneous and consisted of a repetition of two fundamental RNA sequences, a 45-nucleotide caerulein fragment and a 147-nucleotide ICS. The result of Northern blotting indicated that caerulein mRNA was only present in frog skin, not in stomach, upper intestine or liver. It appears that caerulein has different physiological function(s) from mammalian gastrin and cholecystokinin-pancreozymin (CCK). The relationship of caerulein to mammalian gastrointestinal hormones is discussed. Images PMID:4000945

  12. Amicoumacin A inhibits translation by stabilizing mRNA interaction with the ribosome

    PubMed Central

    Polikanov, Yury S.; Osterman, Ilya A.; Szal, Teresa; Tashlitsky, Vadim N.; Serebryakova, Marina V.; Kusochek, Pavel; Bulkley, David; Malanicheva, Irina A.; Efimenko, Tatyana A.; Efremenkova, Olga V.; Konevega, Andrey L.; Shaw, Karen J.; Bogdanov, Alexey A.; Rodnina, Marina V.; Dontsova, Olga A.; Mankin, Alexander S.; Steitz, Thomas A.; Sergiev, Petr V.

    2014-01-01

    SUMMARY We demonstrate that the antibiotic amicoumacin A (AMI) whose cellular target was unknown, is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G. PMID:25306919

  13. The nucleotide sequence of the very low density lipoprotein II mRNA from chicken.

    PubMed Central

    Wieringa, B; Ab, G; Gruber, M

    1981-01-01

    The nucleotide sequence of an almost complete, double-stranded cDNA of chicken Very Low Density Lipoprotein II mRNA, carried in recombinant plasmid pVLDLII 3.33 (Wieringa et al., 1979, 7: 2147-2163) is presented. A stretch of 318 nucleotides codes for the pre-VLDLII polypeptide, which consists of a 24 amino acids signal and a 82 amino acids secreted protein. The coding stretch is flanked by 57 nucleotides in the 5'-leader sequence of the mRNA, and 258 nucleotides in the 3'-non-coding region. Hypothetical self-complementary structures of parts of the mRNA are presented. Images PMID:7012793

  14. Changes in Polysome Association of mRNA Throughout Growth and Development in Arabidopsis thaliana.

    PubMed

    Yamasaki, Shotaro; Matsuura, Hideyuki; Demura, Taku; Kato, Ko

    2015-11-01

    Translational control is a key regulatory step in the expression of genes as proteins. In plant cells, the translational efficiency of mRNAs differs for different mRNA species, and the efficiency dynamically changes in various conditions. To gain a global view of translational control throughout growth and development, we performed genome-wide analysis of polysome association of mRNA during growth and leaf development in Arabidopsis thaliana by subjecting the mRNAs in polysomes to DNA microarray. This analysis revealed that the degree of polysome association of mRNA was different depending on the mRNA species, and the polysome association changed greatly throughout growth and development for each. In the growth stage, transcripts showed varying changes in polysome association from strongly depressed to unchanged, with the majority of transcripts showing dissociation from ribosomes. On the other hand, during leaf development, the polysome association of transcripts showed a normal distribution from repressed to activated mRNAs when comparing expanding and expanded leaves. In addition, functional category analysis of the microarray data suggested that translational control has a physiological significance in the plant growth and development process, especially in the categories of signaling and protein synthesis. In addition to this, we compared changes in polysome association of mRNAs between various conditions and characterized translational controls in each. This result suggested that mRNA translation might be controlled by complicated mechanisms for response to each condition. Our results highlight the importance of dynamic changes in mRNA translation in plant development and growth. PMID:26412777

  15. Ammonium Chloride Ingestion Attenuates Exercise-Induced mRNA Levels in Human Muscle

    PubMed Central

    Mündel, Toby; Pilegaard, Henriette; Hawke, Emma; Leikis, Murray; Lopez-Villalobos, Nicolas; Oliveira, Rodrigo S. F.; Bishop, David J.

    2015-01-01

    Minimizing the decrease in intracellular pH during high-intensity exercise training promotes greater improvements in mitochondrial respiration. This raises the intriguing hypothesis that pH may affect the exercise-induced transcription of genes that regulate mitochondrial biogenesis. Eight males performed 10x2-min cycle intervals at 80% V?O2peak intensity on two occasions separated by ~2 weeks. Participants ingested either ammonium chloride (ACID) or calcium carbonate (PLA) the day before and on the day of the exercise trial in a randomized, counterbalanced order, using a crossover design. Biopsies were taken from the vastus lateralis muscle before and after exercise. The mRNA level of peroxisome proliferator-activated receptor co-activator 1? (PGC-1?), citrate synthase, cytochome c and FOXO1 was elevated at rest following ACID (P<0.05). During the PLA condition, the mRNA content of mitochondrial- and glucose-regulating proteins was elevated immediately following exercise (P<0.05). In the early phase (0–2 h) of post-exercise recovery during ACID, PGC-1?, citrate synthase, cytochome C, FOXO1, GLUT4, and HKII mRNA levels were not different from resting levels (P>0.05); the difference in PGC-1? mRNA content 2 h post-exercise between ACID and PLA was not significant (P = 0.08). Thus, metabolic acidosis abolished the early post-exercise increase of PGC-1? mRNA and the mRNA of downstream mitochondrial and glucose-regulating proteins. These findings indicate that metabolic acidosis may affect mitochondrial biogenesis, with divergent responses in resting and post-exercise skeletal muscle. PMID:26656911

  16. Dual posttranscriptional regulation via a cofactor-responsive mRNA leader.

    PubMed

    Patterson-Fortin, Laura M; Vakulskas, Christopher A; Yakhnin, Helen; Babitzke, Paul; Romeo, Tony

    2013-10-01

    Riboswitches are cis-acting mRNA elements that regulate gene expression in response to ligand binding. Recently, a class of riboswitches was proposed to respond to the molybdenum cofactor (Moco), which serves as a redox center for metabolic enzymes. The 5' leader of the Escherichia coli moaABCDE transcript exemplifies this candidate riboswitch class. This mRNA encodes enzymes for Moco biosynthesis, and moaA expression is feedback inhibited by Moco. Previous RNA-seq analyses showed that moaA mRNA copurified with the RNA binding protein CsrA (carbon storage regulator), suggesting that CsrA binds to this RNA in vivo. Among its global regulatory roles, CsrA represses stationary phase metabolism and activates central carbon metabolism. Here, we used gel mobility shift analysis to determine that CsrA binds specifically and with high affinity to the moaA 5' mRNA leader. Northern blotting and studies with a series of chromosomal lacZ reporter fusions showed that CsrA posttranscriptionally activates moaA expression without altering moaA mRNA levels, indicative of translation control. Deletion analyses, nucleotide replacement studies and footprinting with CsrA-FeBABE identified two sites for CsrA binding. Toeprinting assays suggested that CsrA binding causes changes in moaA RNA structure. We propose that the moaA mRNA leader forms an aptamer, which serves as a target of posttranscriptional regulation by at least two different factors, Moco and the protein CsrA. While we are not aware of similar dual posttranscriptional regulatory mechanisms, additional examples are likely to emerge. PMID:23274138

  17. Translational control of maskin mRNA by its 3' untranslated region

    PubMed Central

    Meijer, Hedda A.; Radford, Helois E.; Wilson, Lolita S.; Lissenden, Sarah; de Moor, Cornelia H.

    2007-01-01

    Background information. Maskin is a member of the acidic transforming coiled-coil (TACC) domain proteins found in Xenopus leavis oocytes and embryos. It is implicated in the coordination of the spindle and has been reported to mediate translational repression of cyclin B1 mRNA. Results We report here that maskin mRNA is translationally repressed at the level of initiation in stage 4 oocytes and becomes activated in stage 6 oocytes. The translational repression of maskin mRNA correlates with the presence of a short poly(A) tail on this mRNA in stage 4 oocytes. The 3' UTR of maskin can confer the translational regulation to a reporter mRNA, and so can the 3' UTR of human TACC3. A conserved GUCU repeat element was found to repress translation in both stage 4 and stage 6 oocytes, but deletion of this element did not abrogate repression in stage 4 oocytes. UV crosslinking experiments indicated that overlapping sets of proteins bind efficiently to both the maskin and the cyclin B1 3' UTRs. As previously reported, CPEB binds to the cyclin B1 3' UTR, but its binding to the maskin 3' UTR is minimal. By RNA affinity chromatography and mass spectrometry, we identified the embryonic deadenylation element binding protein (EDEN-BP) as one of the proteins binding to both the maskin and the cyclin B1 3' UTRs. Conclusion Maskin mRNA is translationally regulated by at least two repressor elements and an activation element. One of the repessor elements is the evolutionarily conserved GUCU repeat. EDEN-BP binds to both the maskin and cyclin B1 3' UTRs, indicating it may be involved in the deadenylation of these mRNAs. PMID:17241108

  18. Maintenance of Pdx1 mRNA Translation in Islet ?-Cells During the Unfolded Protein Response

    PubMed Central

    Templin, Andrew T.; Maier, Bernhard; Tersey, Sarah A.; Hatanaka, Masayuki

    2014-01-01

    In type 1 diabetes, proinflammatory cytokines secreted by infiltrating immune cells activate the unfolded protein response (UPR) in islet ?-cells, which leads to attenuation of global mRNA translation. Under such conditions, privileged mRNAs required for adaptation to the prevailing stress are maintained in an actively translated state. Pdx1 is a ?-cell transcription factor that is required for the adaptive UPR, but it is not known how translation of its mRNA is maintained under these conditions. To study translation, we established conditions in vitro with MIN6 cells and mouse islets and a mixture of proinflammatory cytokines (IL-1?, TNF-?, and IFN-?) that mimicked the UPR conditions seen in type 1 diabetes. Cell extracts were then subjected to polyribosome profiling to monitor changes to mRNA occupancy by ribosomes. Similar to other privileged mRNAs (Atf4 and Chop), Pdx1 mRNA remained partitioned in actively translating polyribosomes under the UPR, whereas the mRNA encoding a proinsulin-processing enzyme (Cpe) and others partitioned into inactively translating monoribosomes. Bicistronic luciferase reporter analyses revealed that the distal portion of the 5?-untranslated region of mouse Pdx1 (between bp ?105 to ?280) contained elements that promoted translation under both normal and UPR conditions, and this region exhibited conserved sequences and secondary structure similar to those of other known internal ribosome entry sites. Our findings suggest that Pdx1 protein levels are maintained in the setting of the UPR, in part, through elements in the 5?-untranslated region that confer privileged mRNA translation in a 5?-7-methylguanylate cap–independent manner. PMID:25251389

  19. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  20. Ammonium Chloride Ingestion Attenuates Exercise-Induced mRNA Levels in Human Muscle.

    PubMed

    Edge, Johann; Mündel, Toby; Pilegaard, Henriette; Hawke, Emma; Leikis, Murray; Lopez-Villalobos, Nicolas; Oliveira, Rodrigo S F; Bishop, David J

    2015-01-01

    Minimizing the decrease in intracellular pH during high-intensity exercise training promotes greater improvements in mitochondrial respiration. This raises the intriguing hypothesis that pH may affect the exercise-induced transcription of genes that regulate mitochondrial biogenesis. Eight males performed 10x2-min cycle intervals at 80% [Formula: see text] intensity on two occasions separated by ~2 weeks. Participants ingested either ammonium chloride (ACID) or calcium carbonate (PLA) the day before and on the day of the exercise trial in a randomized, counterbalanced order, using a crossover design. Biopsies were taken from the vastus lateralis muscle before and after exercise. The mRNA level of peroxisome proliferator-activated receptor co-activator 1? (PGC-1?), citrate synthase, cytochome c and FOXO1 was elevated at rest following ACID (P<0.05). During the PLA condition, the mRNA content of mitochondrial- and glucose-regulating proteins was elevated immediately following exercise (P<0.05). In the early phase (0-2 h) of post-exercise recovery during ACID, PGC-1?, citrate synthase, cytochome C, FOXO1, GLUT4, and HKII mRNA levels were not different from resting levels (P>0.05); the difference in PGC-1? mRNA content 2 h post-exercise between ACID and PLA was not significant (P = 0.08). Thus, metabolic acidosis abolished the early post-exercise increase of PGC-1? mRNA and the mRNA of downstream mitochondrial and glucose-regulating proteins. These findings indicate that metabolic acidosis may affect mitochondrial biogenesis, with divergent responses in resting and post-exercise skeletal muscle. PMID:26656911

  1. Biomarkers for Monitoring Pre-Analytical Quality Variation of mRNA in Blood Samples

    PubMed Central

    Zhang, Hui; Korenková, Vlasta; Sjöback, Robert; Švec, David; Björkman, Jens; Kruhøffer, Mogens; Verderio, Paolo; Pizzamiglio, Sara; Ciniselli, Chiara Maura; Wyrich, Ralf; Oelmueller, Uwe; Kubista, Mikael; Lindahl, Torbjørn; Lönneborg, Anders; Rian, Edith

    2014-01-01

    There is an increasing need for proper quality control tools in the pre-analytical phase of the molecular diagnostic workflow. The aim of the present study was to identify biomarkers for monitoring pre-analytical mRNA quality variations in two different types of blood collection tubes, K2EDTA (EDTA) tubes and PAXgene Blood RNA Tubes (PAXgene tubes). These tubes are extensively used both in the diagnostic setting as well as for research biobank samples. Blood specimens collected in the two different blood collection tubes were stored for varying times at different temperatures, and microarray analysis was performed on resultant extracted RNA. A large set of potential mRNA quality biomarkers for monitoring post-phlebotomy gene expression changes and mRNA degradation in blood was identified. qPCR assays for the potential biomarkers and a set of relevant reference genes were generated and used to pre-validate a sub-set of the selected biomarkers. The assay precision of the potential qPCR based biomarkers was determined, and a final validation of the selected quality biomarkers using the developed qPCR assays and blood samples from 60 healthy additional subjects was performed. In total, four mRNA quality biomarkers (USP32, LMNA, FOSB, TNRFSF10C) were successfully validated. We suggest here the use of these blood mRNA quality biomarkers for validating an experimental pre-analytical workflow. These biomarkers were further evaluated in the 2nd ring trial of the SPIDIA-RNA Program which demonstrated that these biomarkers can be used as quality control tools for mRNA analyses from blood samples. PMID:25369468

  2. Matrix metalloproteinase-3 gene polymorphism and its mRNA expression in rheumatoid arthritis.

    PubMed

    Ma, M J; Liu, H C; Qu, X Q; Wang, J L

    2015-01-01

    Matrix metalloproteinase-3 (MMP-3) can mediate the occurrence and development of rheumatoid arthritis (RA). The MMP3 promoter gene exhibits polymorphism with 5A/6A alleles. We investigated the correlation between the expression of MMP3 gene polymorphism and RA to provide an objective basis for prognosis evaluation. We enrolled 80 RA patients and 80 healthy subjects. Enzyme-linked immunosorbent assay was used to detect MMP-3 serum levels, pyrosequencing was used to test MMP3 genotypes, and real-time polymerase chain reaction determined MMP-3 mRNA expression levels. Compared with the control group, the serum level of MMP-3 in the RA patients increased significantly (P < 0.05). The serum level of MMP-3 in RA patients in the active period was markedly elevated compared with that in patients in the relief period (P < 0.05). There was no statistically significant difference between MMP3 gene frequency distribution in the RA patients and the control group (P > 0.05). MMP-3 mRNA expression in the RA patients was markedly upregulated compared with the control group (P < 0.05), while RA patients in the active period exhibited higher MMP-3 mRNA expression (P < 0.05). There was no significant difference in MMP-3 mRNA expression between RA patients with or without the 6A/6A genotype (P > 0.05). RA patients exhibited higher serum MMP-3 levels and mRNA expression, which were more obvious in the active period. MMP-3 is associated with the occurrence and development of RA bone erosion, and its serum level and mRNA expression can be treated as important predictors of joint damage. PMID:26634533

  3. A Max-Plus Model of Ribosome Dynamics During mRNA Translation

    E-print Network

    Brackley, Chris A; Romano, M Carmen; Thiel, Marco

    2011-01-01

    We examine the dynamics of the translation stage of cellular protein production, in which ribosomes move uni-directionally along mRNA strands building an amino acid chain as they go. We describe the system using a timed event graph - a class of Petri net useful for studying discrete events which take a finite time. We use max-plus algebra to describe a deterministic version of the model, calculating the protein production rate and density of ribosomes on the mRNA. We find exact agreement between these analytical results and numerical simulations of the deterministic case.

  4. An Orthogonal Array Optimization of Lipid-like Nanoparticles for mRNA Delivery in Vivo.

    PubMed

    Li, Bin; Luo, Xiao; Deng, Binbin; Wang, Junfeng; McComb, David W; Shi, Yimin; Gaensler, Karin M L; Tan, Xu; Dunn, Amy L; Kerlin, Bryce A; Dong, Yizhou

    2015-12-01

    Systemic delivery of mRNA-based therapeutics remains a challenging issue for preclinical and clinical studies. Here, we describe new lipid-like nanoparticles (TT-LLNs) developed through an orthogonal array design, which demonstrates improved delivery efficiency of mRNA encoding luciferase in vitro by over 350-fold with significantly reduced experimental workload. One optimized TT3 LLN, termed O-TT3 LLNs, was able to restore the human factor IX (hFIX) level to normal physiological values in FIX-knockout mice. Consequently, these mRNA based nanomaterials merit further development for therapeutic applications. PMID:26529392

  5. Anthocyanin-rich red potato flakes affect serum lipid peroxidation and hepatic SOD mRNA level in rats.

    PubMed

    Han, Kyu-Ho; Shimada, Ken-ichiro; Sekikawa, Mitsuo; Fukushima, Michihiro

    2007-05-01

    We examined the effects of red potato flakes (RPF) on serum antioxidant potential and hepatic mRNA in rats. The serum thiobarbituric acid-reactive substances concentration and hepatic superoxide dismutase mRNA level in rats fed RPF were significantly lower and higher respectively than those in control rats. These results suggest that RPF might improve the antioxidant system by enhancing hepatic SOD mRNA. PMID:17485834

  6. Dopamine D2 receptor mRNA is expressed in maturing neurons of the human hippocampal and subicular fields.

    PubMed

    Gurevich, E V; Kordower, J; Joyce, J N

    1997-11-10

    Pyramidal neurons of the adult and fetal hippocampus and subicular fields were shown to express D2 mRNA using non-radioactive in situ hybridization histochemistry. At the earliest developmental stages examined (embryonic week (E) 13), cell packing within the CA1 region is dense and immature neuroblasts express D2 mRNA at high levels, as do more mature pyramid-like neurons in the deep aspect of the pyramidal cell layer. With development (E19 and E24), cell packing density is reduced, maturing neurons of the pyramidal layer are prominently D2 mRNA positive, while the majority of immature cells lining the superficial layer are D2 mRNA negative. In Layer II of the presubiculum there is a high density of immature D2 mRNA negative cells at E13 with D2 mRNA positive cells located on the periphery of the clusters. By E24, the cells in the layer II clusters are larger, express D2 mRNA, and D2 mRNA negative cells are rarely observed. Thus, expression of D2 mRNA in humans is an early and permanent feature of pyramidal neurons of these regions. PMID:9427335

  7. Seasonal Relationship between Gonadotropin, Growth Hormone, and Estrogen Receptor mRNA Expression in the Pituitary Gland of Largemouth Bass

    PubMed Central

    Martyniuk, Christopher J; Kroll, Kevin J.; Porak, Wesley F.; Steward, Cheree; Grier, Harry J.; Denslow, Nancy D.

    2011-01-01

    The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) ? subunit and follicle-stimulating hormone (FSH) ? subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May through August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2–3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LH? mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin ? subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction. PMID:19416730

  8. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes.

    PubMed

    Pardi, Norbert; Tuyishime, Steven; Muramatsu, Hiromi; Kariko, Katalin; Mui, Barbara L; Tam, Ying K; Madden, Thomas D; Hope, Michael J; Weissman, Drew

    2015-11-10

    In recent years, in vitro transcribed messenger RNA (mRNA) has emerged as a potential therapeutic platform. To fulfill its promise, effective delivery of mRNA to specific cell types and tissues needs to be achieved. Lipid nanoparticles (LNPs) are efficient carriers for short-interfering RNAs and have entered clinical trials. However, little is known about the potential of LNPs to deliver mRNA. Here, we generated mRNA-LNPs by incorporating HPLC purified, 1-methylpseudouridine-containing mRNA comprising codon-optimized firefly luciferase into stable LNPs. Mice were injected with 0.005-0.250mg/kg doses of mRNA-LNPs by 6 different routes and high levels of protein translation could be measured using in vivo imaging. Subcutaneous, intramuscular and intradermal injection of the LNP-encapsulated mRNA translated locally at the site of injection for up to 10days. For several days, high levels of protein production could be achieved in the lung from the intratracheal administration of mRNA. Intravenous and intraperitoneal and to a lesser extent intramuscular and intratracheal deliveries led to trafficking of mRNA-LNPs systemically resulting in active translation of the mRNA in the liver for 1-4 days. Our results demonstrate that LNPs are appropriate carriers for mRNA in vivo and have the potential to become valuable tools for delivering mRNA encoding therapeutic proteins. PMID:26264835

  9. A single molecule view on Dbp5 and mRNA at the nuclear pore

    PubMed Central

    Kaminski, Tim; Siebrasse, Jan Peter; Kubitscheck, Ulrich

    2013-01-01

    Numerous molecular details of intracellular mRNA processing have been revealed in recent years. However, the export process of single native mRNA molecules, the actual translocation through the nuclear pore complex (NPC), could not yet be examined in vivo. The problem is observing mRNA molecules without interfering with their native behavior. We used a protein-based labeling approach to visualize single native mRNPs in live salivary gland cells of Chironomus tentans, an iconic system used for decades to study the mRNA life cycle. Recombinant hrp36, the C. tentans homolog of mammalian hnRNP A1, was fluorescence labeled and microinjected into living cells, where it was integrated into nascent mRNPs. Intranuclear trajectories of single mRNPs, including their NPC passage, were observed with high space and time resolution employing a custom-built light sheet fluorescence microscope. We analyzed the kinetics and dynamics of mRNP export and started to study its mechanism and regulation by measuring the turnover-kinetics of single Dbp5 at the NPC. PMID:23324459

  10. The Beads of Translation: Using Beads to Translate mRNA into a Polypeptide Bracelet

    ERIC Educational Resources Information Center

    Dunlap, Dacey; Patrick, Patricia

    2012-01-01

    During this activity, by making beaded bracelets that represent the steps of translation, students simulate the creation of an amino acid chain. They are given an mRNA sequence that they translate into a corresponding polypeptide chain (beads). This activity focuses on the events and sites of translation. The activity provides students with a…

  11. MYELIN BASIC PROTEIN-MRNA USED TO MONITOR TRIMETHYLTIN TOXIC NEUROPATHY IN RATS

    EPA Science Inventory

    Trimethyltin (TMT) is an alkyltin that selectively targets neurons of the limbic system. ene probe (i.e., mRNA) for myelin basic protein (MBP) was used to monitor this toxic neuropathy. prague Dawley rats, were dosed (IP) acutely with hydroxide at neuropathic (8.0 mg/kg) or non-n...

  12. Calreticulin mRNA expression and clinicopathological characteristics in acute myeloid leukemia.

    PubMed

    Park, Sholhui; Huh, Hee Jin; Mun, Yeung Chul; Seong, Chu-Myong; Chung, Wha Soon; Chung, Hae-Sun; Huh, Jungwon

    2015-12-01

    Calreticulin, encoded by CALR, is a multifunctional protein with roles in calcium homeostasis and chaperoning molecular processes. This study aimed to evaluate calreticulin mRNA expression levels in acute myeloid leukemia (AML) compared with other hematologic malignancies, and to investigate the clinicopathological characteristics associated with expression in AML patients. The study group included 43 patients diagnosed with AML, 57 with other hematologic malignancies, and 21 benign hematologic conditions. CALR mRNA quantification using real-time polymerase chain reaction revealed it to be significantly higher in AML compared with other hematologic malignancies (P?mRNA expression between AML subgroups by karyotype (P?=?0.3201). No differences were found in age, white blood cell counts, platelet counts, bone marrow blast percentage, calcium, lactate dehydrogenase or CD34 expression rate between the high and low CALR groups (CALR mRNA???1.2 fold and <1.2 fold, respectively), although hemoglobin and sex differences were observed. Although statistically not significant, there was a trend that Relapse rate was lower (54.5% vs. 84.6%) (P?=?0.1063) and disease-free survival was longer (22 months vs. 7 months) (P?=?0.0784) in low CALR group, whereas overall survival was similar between the two groups (11 months and 8 months). The clinical relevance of CALR expression in AML remains to be clarified in a larger cohort. PMID:26640226

  13. Widespread occurrence of N6-methyladenosine in bacterial mRNA.

    PubMed

    Deng, Xin; Chen, Kai; Luo, Guan-Zheng; Weng, Xiaocheng; Ji, Quanjiang; Zhou, Tianhong; He, Chuan

    2015-07-27

    N(6)-methyladenosine (m(6)A) is the most abundant internal modification in eukaryotic messenger RNA (mRNA). Recent discoveries of demethylases and specific binding proteins of m(6)A as well as m(6)A methylomes obtained in mammals, yeast and plants have revealed regulatory functions of this RNA modification. Although m(6)A is present in the ribosomal RNA of bacteria, its occurrence in mRNA still remains elusive. Here, we have employed ultra-high pressure liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-QQQ-MS/MS) to calculate the m(6)A/A ratio in mRNA from a wide range of bacterial species, which demonstrates that m(6)A is an abundant mRNA modification in tested bacteria. Subsequent transcriptome-wide m(6)A profiling in Escherichia coli and Pseudomonas aeruginosa revealed a conserved m(6)A pattern that is distinct from those in eukaryotes. Most m(6)A peaks are located inside open reading frames and carry a unique consensus motif of GCCAU. Functional enrichment analysis of bacterial m(6)A peaks indicates that the majority of m(6)A-modified genes are associated with respiration, amino acids metabolism, stress response and small RNAs, suggesting potential functional roles of m(6)A in these pathways. PMID:26068471

  14. Genome-wide study of mRNA degradation and transcript elongation in Escherichia coli

    E-print Network

    Xie, Xiaoliang Sunney

    expression. The spatial locali- zation of RNA in bacterial cells has been studied in detail by micro- scopyArticle Genome-wide study of mRNA degradation and transcript elongation in Escherichia coli Huiyi part of gene expression is the coordination of RNA synthesis and degradation, which occurs in the same

  15. CYTOKINE MRNA PROFILES FOR ISOCYANATES WITH KNOWN AND UNKNOWN POTENTIAL TO INDUCE RESPIRATORY SENSITIZATION

    EPA Science Inventory

    Cytokine mRNA Profiles for Isocyanates with Known and Unknown Potential to Induce Respiratory Sensitization. Plitnick, L.M., Loveless, S.E., Ladics, G.S., Holsapple, M.P., Smialowicz, R.J., Woolhiser, M.R., Anderson, P.K., Smith, C., Sailstad, D.M. and Selgrade, M.J.K (2002) Tox...

  16. mRNA Degradation Machinery in Plants Yukako Chiba & Pamela J. Green

    E-print Network

    Green, Pamela

    be degraded in a 3 to 5 direction by the exosome following deadenylation. These two pathways comprise the bulk, transcripts lacking translation termination codons are degraded rapidly from 3 to 5 direction by exosome ribosome leading to exonucleolytic degradation of the mRNA by Xrn1p and exosome. In addition to an active

  17. Global Analysis of mRNA Isoform Half-Lives Reveals Stabilizing

    E-print Network

    be degraded in the 30 to 50 di- rection by the multisubunit exosome complex. In both instances, mRNA decay(A)-specific nuclease Pan2- Pan3. Deadenylated transcripts can then be directly degraded by the exosome or, following

  18. Species-specific factors mediate extensive heterogeneity of mRNA 3 ends in yeasts

    E-print Network

    Zhang, Jianzhi

    cerevisiae, Kluyveromyces lactis, and Debaryomyces hansenii) are remark- ably heterogeneous. Instead of a fewSpecies-specific factors mediate extensive heterogeneity of mRNA 3 ends in yeasts Zarmik Moqtaderi1 sites at their 3 ends. Here we show that polyadenylated 3 termini in three yeast species (Saccharomyces

  19. Txe, an endoribonuclease of the enterococcal AxeTxe toxinantitoxin system, cleaves mRNA and

    E-print Network

    Hergenrother, Paul J.

    RNA and inhibits protein synthesis Elizabeth M. Halvorsen,1 Julia J. Williams,1 Azra J. Bhimani,1,2 Emily A protein synthesis in E. coli without affecting DNA or RNA synthesis, and inhibits protein synthesis is an endoribonuclease which cleaves mRNA and inhibits protein synthesis. INTRODUCTION Enterococcal species

  20. LMO4 mRNA stability is regulated by extracellular ATP in F11 cells

    SciTech Connect

    Chen, Hsiao-Huei . E-mail: hchen@uottawa.ca; Xu, Jin; Safarpour, Farzaneh; Stewart, Alexandre F.R.

    2007-05-25

    LIM only domain protein 4 (LMO4) interacts with many signaling and transcription factors to regulate cellular proliferation, differentiation and plasticity. In Drosophila, mutations in the 3' untranslated region (UTR) of the homologue dLMO cause a gain of function by increasing mRNA stability. LMO4 3'UTR contains several AU-rich elements (ARE) and is highly conserved among vertebrates, suggesting that RNA destabilizing mechanisms are evolutionarily conserved. Here, we found that extracellular ATP stabilized LMO4 mRNA in F11 cells. The LMO4 3'UTR added to a luciferase reporter markedly reduced reporter activity under basal conditions, but increased activity with ATP treatment. Two ARE motifs were characterized in the LMO4 3'UTR. ATP increased binding of HuD protein to ARE1. ARE1 conferred ATP and HuD-dependent mRNA stabilization. In contrast, sequences flanking ARE2 bound CUGBP1 and ATP destabilized this complex. Thus, our results suggest that ATP modulates recruitment of RNA-binding proteins to the 3'UTR to stabilize LMO4 mRNA.

  1. Light-regulated protein and mRNA synthesis in root caps of maize

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Piechulla, B.; Sun, P. S.

    1988-01-01

    Illumination of maize roots initiates changes in mRNA levels and in the activities of proteins within the root cap. Using Northern analysis we showed a 5-6 fold increase in the levels of three specific mRNAs and a 14-fold increase in plastid mRNA. This increase is rapid, occurring within 30 minutes of illumination. With prolonged periods of darkness following illumination, messages return to levels observed in dark, control caps. For two species of mRNA illumination results in a reduction in message levels. Light-stimulated increases in the levels of specific mRNAs are proportionally greater than are increases in the activities of corresponding proteins. We suggest that the light-stimulated increase in protein activity in root caps may be preceded by and occur as a consequence of enhanced levels of mRNA. Our work suggests that photomorphogenesis in roots could involve changes in the levels of a wide variety of mRNAs within the root cap.

  2. Phencyclidine rapidly decreases neuronal mRNA of brain-derived neurotrophic factor.

    PubMed

    Katanuma, Yusuke; Numakawa, Tadahiro; Adachi, Naoki; Yamamoto, Noriko; Ooshima, Yoshiko; Odaka, Haruki; Inoue, Takafumi; Kunugi, Hiroshi

    2014-06-01

    Downregulation of brain-derived neurotrophic factor (BDNF), a member of neurotrophin family, has been implicated in psychiatric diseases including schizophrenia. However, detailed mechanisms of its reduction in patients with schizophrenia remain unclear. Here, using cultured cortical neurons, we monitored BDNF mRNA levels following acute application of phencyclidine [PCP; an N-methyl-d-aspartate (NMDA) receptor blocker], which is known to produce schizophrenia-like symptoms. We found that PCP rapidly caused a reduction in total amount of BDNF transcripts without effect on cell viability, while mRNA levels of nerve growth factor was intact. Actinomycin-D (ActD), an RNA synthesis inhibitor, decreased total BDNF mRNA levels similar to PCP, and coapplication of ActD with PCP did not show further reduction in BDNF mRNA compared with solo application of each drug. Among BDNF exons I, IV, and VI, the exon IV, which is positively regulated by neuronal activity, was highly sensitive to PCP. Furthermore, PCP inactivated cAMP response element-binding protein (CREB; a regulator of transcriptional activity of exon IV). The inactivation of CREB was also achieved by an inhibitor for Ca(2+) /calmodulin kinase II (CaMKII), although coapplication with PCP induced no further inhibition on the CREB activity. It is possible that PCP decreases BDNF transcription via blocking the NMDA receptor/CaMKII/CREB signaling. PMID:24615983

  3. Subcellular Localization of Expansin mRNA in Xylem Cells1,2

    E-print Network

    Jones, Alan M.

    Subcellular Localization of Expansin mRNA in Xylem Cells1,2 Kyung-Hoan Im, Daniel J. Cosgrove expansins are xylem cell specific and possibly involved in the intrusive growth of the primary walls of differentiating xylem cells. Plant cells expand by controlling slippage of the wall network of microfibrils

  4. Gammaherpesviral gene expression and virion composition are broadly controlled by accelerated mRNA degradation.

    PubMed

    Abernathy, Emma; Clyde, Karen; Yeasmin, Rukhsana; Krug, Laurie T; Burlingame, Al; Coscoy, Laurent; Glaunsinger, Britt

    2014-01-01

    Lytic gammaherpesvirus infection restricts host gene expression by promoting widespread degradation of cytoplasmic mRNA through the activity of the viral endonuclease SOX. Though generally assumed to be selective for cellular transcripts, the extent to which SOX impacts viral mRNA stability has remained unknown. We addressed this issue using the model murine gammaherpesvirus MHV68 and, unexpectedly, found that all stages of viral gene expression are controlled through mRNA degradation. Using both comprehensive RNA expression profiling and half-life studies we reveal that the levels of the majority of viral mRNAs but not noncoding RNAs are tempered by MHV68 SOX (muSOX) activity. The targeting of viral mRNA by muSOX is functionally significant, as it impacts intracellular viral protein abundance and progeny virion composition. In the absence of muSOX-imposed gene expression control the viral particles display increased cell surface binding and entry as well as enhanced immediate early gene expression. These phenotypes culminate in a viral replication defect in multiple cell types as well as in vivo, highlighting the importance of maintaining the appropriate balance of viral RNA during gammaherpesviral infection. This is the first example of a virus that fails to broadly discriminate between cellular and viral transcripts during host shutoff and instead uses the targeting of viral messages to fine-tune overall gene expression. PMID:24453974

  5. Research Report The distribution of estrogen receptor mRNA in male and

    E-print Network

    Wade, Juli

    Research Report The distribution of estrogen receptor mRNA in male and female green anole lizards are available on its distribution in the brain in this vertebrate group. Here, we have cloned ER in the green anole lizard, mapped its distribution using in situ hybridization, and quantified expression in three

  6. A Journal of Integrative Biology Morphology and Estrogen Receptor a mRNA Expression

    E-print Network

    Wade, Juli

    in the Developing Green Anole Forebrain LAUREL AMANDA BECK1Ã AND JULI WADE1­3 1 Neuroscience Program, Michigan State ontogeny of reproductive nuclei in the green anole lizard, including whether steroid hormones influence. Morphology and estrogen receptor a mRNA expression in the developing green anole forebrain. J. Exp. Zool. 311

  7. Further evidence that the rna2 mutation of Saccharomyces cerevisiae affects mRNA processing.

    PubMed Central

    Bromley, S; Hereford, L; Rosbash, M

    1982-01-01

    The relative rate at which ribosomal protein 51 (rp51) mRNA is synthesized was measured by pulse-labeling cells in vivo with [3H]adenine. Two strains of Saccharomyces cerevisiae were compared: A364A (wild type) and ts368 (rna2), a temperature-sensitive strain in which the level of rp51 mRNA decreases and an intron-containing rp51 precursor RNA increases. When cells were shifted up to the nonpermissive temperature (36 degrees C), the rate of rp51 RNA synthesis was only marginally affected (75% of wild type) by the presence of the rna2 mutation. The precursor RNA was the predominant transcription product at 36 degrees C. This precursor could be converted into RNA equal in size to mature mRNA by further incubation at either 36 or 23 degrees C in the presence of unlabeled adenine. The relative half-life of the rp51 transcripts at 36 degrees C also decreased approximately twofold in ts368 as compared with A364A. All of these data imply that the precursor (intron-containing) RNA is processed inefficiently to mature mRNA and that the rp51 precursor RNA is continuously synthesized and degraded in the mutant strain at 36 degrees C. Images PMID:6757717

  8. Quantitative imaging of single mRNA splice variants in living cells

    NASA Astrophysics Data System (ADS)

    Lee, Kyuwan; Cui, Yi; Lee, Luke P.; Irudayaraj, Joseph

    2014-06-01

    Alternative messenger RNA (mRNA) splicing is a fundamental process of gene regulation, and errors in RNA splicing are known to be associated with a variety of different diseases. However, there is currently a lack of quantitative technologies for monitoring mRNA splice variants in cells. Here, we show that a combination of plasmonic dimer probes and hyperspectral imaging can be used to detect and quantify mRNA splice variants in living cells. The probes are made from gold nanoparticles functionalized with oligonucleotides and can hybridize to specific mRNA sequences, forming nanoparticle dimers that exhibit distinct spectral shifts due to plasmonic coupling. With this approach, we show that the spatial and temporal distribution of three selected splice variants of the breast cancer susceptibility gene, BRCA1, can be monitored at single-copy resolution by measuring the hybridization dynamics of the nanoplasmonic dimers. Our study provides insights into RNA and its transport in living cells, which could improve our understanding of cellular protein complexes, pharmacogenomics, genetic diagnosis and gene therapies.

  9. PIWI homologs mediate histone H4 mRNA localization to planarian chromatoid bodies.

    PubMed

    Rouhana, Labib; Weiss, Jennifer A; King, Ryan S; Newmark, Phillip A

    2014-07-01

    The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans. PMID:24903754

  10. PIWI homologs mediate Histone H4 mRNA localization to planarian chromatoid bodies

    PubMed Central

    Rouhana, Labib; Weiss, Jennifer A.; King, Ryan S.; Newmark, Phillip A.

    2014-01-01

    The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans. PMID:24903754

  11. CDKN3 mRNA as a Biomarker for Survival and Therapeutic Target in Cervical Cancer

    PubMed Central

    Barrón, Eira Valeria; Roman-Bassaure, Edgar; Sánchez-Sandoval, Ana Laura; Espinosa, Ana María; Guardado-Estrada, Mariano; Medina, Ingrid; Juárez, Eligia; Alfaro, Ana; Bermúdez, Miriam; Zamora, Rubén; García-Ruiz, Carlos; Gomora, Juan Carlos; Kofman, Susana; Pérez-Armendariz, E. Martha; Berumen, Jaime

    2015-01-01

    The cyclin-dependent kinase inhibitor 3 (CDKN3) gene, involved in mitosis, is upregulated in cervical cancer (CC). We investigated CDKN3 mRNA as a survival biomarker and potential therapeutic target for CC. CDKN3 mRNA was measured in 134 CC and 25 controls by quantitative PCR. A 5-year survival study was conducted in 121 of these CC patients. Furthermore, CDKN3-specific siRNAs were used to investigate whether CDKN3 is involved in proliferation, migration, and invasion in CC-derived cell lines (SiHa, CaSki, HeLa). CDKN3 mRNA was on average 6.4-fold higher in tumors than in controls (p = 8 x 10?6, Mann-Whitney). A total of 68.2% of CC patients over expressing CDKN3 gene (fold change ? 17) died within two years of diagnosis, independent of the clinical stage and HPV type (Hazard Ratio = 5.0, 95% CI: 2.5–10, p = 3.3 x 10?6, Cox proportional-hazards regression). In contrast, only 19.2% of the patients with lower CDKN3 expression died in the same period. In vitro inactivation of CDKN3 decreased cell proliferation on average 67%, although it had no effect on cell migration and invasion. CDKN3 mRNA may be a good survival biomarker and potential therapeutic target in CC. PMID:26372210

  12. RELATION OF MRNA REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION SIGNAL WITH CAMPYLOBACTER SPP COLONIZATION OF CHICKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Discrimination of viable from dead cells is of importance in the development of bacterial detection methods. A positive RT-PCR amplification signal has been considered to indicate the presence of viable cells because mRNA has an extremely short half-life. However, some researchers have suggested tha...

  13. EXPRESSION OF AHR AND ARNT MRNA IN CULTURED HUMAN ENDOMETRIAL EXPLANTS EXPOSED TO TCDD

    EPA Science Inventory

    Expression of AhR and ARNT mRNA in cultured human endometrial explants exposed to TCDD.

    Pitt JA, Feng L, Abbott BD, Schmid J, Batt RE, Costich TG, Koury ST, Bofinger DP.

    Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA.

    Endom...

  14. Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing

    E-print Network

    Arribere, Joshua Alexander

    Transcript leaders (TLs) can have profound effects on mRNA translation and stability. To map TL boundaries genome-wide, we developed TL-sequencing (TL-seq), a technique combining enzymatic capture of m[superscript 7]G-capped ...

  15. Single-Molecule Measurements of the CCR5 mRNA Unfolding Pathways Michel de Messieres,

    E-print Network

    La Porta, Arthur

    and Molecular Genetics, University of Maryland, College Park, Maryland ABSTRACT Secondary or tertiary structure trapping techniques to investigate the structure of a À1 programmed ribosomal frameshift (À1 PRF) sequence element located in the CCR5 mRNA, which en- codes a coreceptor for HIV-1 and is, to our knowledge

  16. tion, the ribosomes will dissociate from the mRNA before they reach the legitimate

    E-print Network

    Lykke-Andersen, Jens

    gene lacks 12 nucleotides that encode amino acids 255 to 258 (num- bering based o of the termination complex (eRF1 and eRF3), and trigger degradation of this mRNA. There may be additional functions). 27. S. E. Applequist, M. Selg, C. Raman, H. M. Jack, Nucleic Acids Res. 25, 814 (1997). 28. J. Lykke

  17. INTRODUCTION The frog oocyte contains a pool of maternally derived mRNA

    E-print Network

    Amaya, Enrique

    INTRODUCTION The frog oocyte contains a pool of maternally derived mRNA transcripts that are stored expression during early embryonic development in the frog and a variety of vertebrate and invertebrate mid-blastula stage (Newport and Kirschner, 1982), critical steps in frog embryogenesis depend

  18. INTRODUCTION mRNA localization pathways play a central role in axis

    E-print Network

    Schedl, Paul

    concentrating gurken (grk) mRNA, which encodes a transforming growth factor (TGF) homolog, in a cap just above to the overlying follicle cell epithelium by interacting with the Drosophila epidermal growth factor receptor (DER growth factor receptor (DER) signaling pathway. During the pre- vitellogenic stages of oogenesis, the grk

  19. Widespread occurrence of N6-methyladenosine in bacterial mRNA

    PubMed Central

    Deng, Xin; Chen, Kai; Luo, Guan-Zheng; Weng, Xiaocheng; Ji, Quanjiang; Zhou, Tianhong; He, Chuan

    2015-01-01

    N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic messenger RNA (mRNA). Recent discoveries of demethylases and specific binding proteins of m6A as well as m6A methylomes obtained in mammals, yeast and plants have revealed regulatory functions of this RNA modification. Although m6A is present in the ribosomal RNA of bacteria, its occurrence in mRNA still remains elusive. Here, we have employed ultra-high pressure liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-QQQ-MS/MS) to calculate the m6A/A ratio in mRNA from a wide range of bacterial species, which demonstrates that m6A is an abundant mRNA modification in tested bacteria. Subsequent transcriptome-wide m6A profiling in Escherichia coli and Pseudomonas aeruginosa revealed a conserved m6A pattern that is distinct from those in eukaryotes. Most m6A peaks are located inside open reading frames and carry a unique consensus motif of GCCAU. Functional enrichment analysis of bacterial m6A peaks indicates that the majority of m6A-modified genes are associated with respiration, amino acids metabolism, stress response and small RNAs, suggesting potential functional roles of m6A in these pathways. PMID:26068471

  20. Letter to NeuroscienceLetter to Neuroscience STRESS-INDUCED PREPROENKEPHALIN mRNA EXPRESSION IN

    E-print Network

    Barr, Gordon A.

    10021, USA Key words: opioids, analgesia, periaqueductal gray. Stress activates endogenous opioids-related behaviors in pre- weaning but not in older rats. This male-induced analgesia is mediated by l opioid. To determine whether enkephalin, a l and d opioid receptor agonist, is activated by male exposure, mRNA levels

  1. Allelic Imbalance of mRNA Associated with ?2-HS Glycoprotein (Fetuin-A) Polymorphism

    PubMed Central

    Inaoka, Yoshihiko; Osawa, Motoki; Mukasa, Nahoko; Miyashita, Keiko; Satoh, Fumiko; Kakimoto, Yu

    2015-01-01

    Alpha 2-HS glycoprotein (AHSG), also designated as fetuin-A, exhibits polymorphism in population genetics consisting of two major alleles of AHSG?1 and AHSG?2. The serum level in the AHSG?1 homozygote is significantly higher than that of the AHSG?2 homozygote. This study examined the molecular mechanism for the cis-regulatory expression. To quantitate allele-specific mRNA in intra-assays of the heterozygote, RT-PCR method employing primers that were incorporated to the two closely located SNPs was developed. The respective magnitudes of AHSG?1 to AHSG?2 in the liver tissues and hepatic culture cells of PLC/PRF/5 were determined quantitatively as 2.5-fold and 6.2-fold. The mRNA expressional difference of two major alleles was observed, which is consistent with that in the serum level. The culture cells carried heterozygous genotypes in rs4917 and rs4918, but homozygous one in rs2248690. It was unlikely that the imbalance was derived from the SNP located in the promotor site. Furthermore, to investigate the effect of mRNA degradation, RNA synthesis in the cell culture was inhibited potently by the addition of actinomycin-D. No marked change was apparent between the two alleles. The results indicated that the cis-regulatory expressional difference is expected to occur at the level of transcription or splicing of mRNA. PMID:26549924

  2. Yeast Sm-like proteins function in mRNA decapping and decay 

    E-print Network

    Tharun, Sundaresan; He, Weihai; Mayes, Andrew E.; Lennertz, Pascal; Beggs, Jean D; Parker, Roy

    2000-03-30

    motif, form a complex with U6 small nuclear RNA and are required for pre-mRNA splicing3-9. Here we show that mutations in seven yeast Lsm proteins (Lsm1–Lsm7) also lead to inhibition of mRNA decapping. In addition, the Lsm1–Lsm7 proteins co...

  3. Decoupled evolution of coding region and mRNA expression patterns after gene

    E-print Network

    Wagner, Andreas

    Decoupled evolution of coding region and mRNA expression patterns after gene duplication perspective on molecular evolution maintains that the vast majority of mutations affecting gene function are neutral or deleterious. After a gene duplication where both genes are retained, it predicts that original

  4. Intestinal PTGS2 mRNA Levels, PTGS2 Gene Polymorphisms, and Colorectal Carcinogenesis

    PubMed Central

    Vogel, Lotte K.; Sæbø, Mona; Høyer, Helle; Kopp, Tine Iskov; Vogel, Ulla; Godiksen, Sine; Frenzel, Franz B.; Hamfjord, Julian; Bowitz-Lothe, Inger Marie; Johnson, Egil; Kure, Elin H.; Andersen, Vibeke

    2014-01-01

    Background & Aims Inflammation is a major risk factor for development of colorectal cancer (CRC). Prostaglandin synthase cyclooxygenase-2 (COX-2) encoded by the PTGS2 gene is the rate limiting enzyme in prostaglandin synthesis and therefore plays a distinct role as regulator of inflammation. Methods PTGS2 mRNA levels were determined in intestinal tissues from 85 intestinal adenoma cases, 115 CRC cases, and 17 healthy controls. The functional PTGS2 polymorphisms A-1195G (rs689466), G-765C (rs20417), T8473C (rs5275) were assessed in 200 CRC cases, 991 adenoma cases and 399 controls from the Norwegian KAM cohort. Results PTGS2 mRNA levels were higher in mild/moderate adenoma tissue compared to morphologically normal tissue from the same individual (P<0.0001) and (P<0.035) and compared to mucosa from healthy individuals (P<0.0039) and (P<0.0027), respectively. In CRC patients, PTGS2 mRNA levels were 8–9 times higher both in morphologically normal tissue and in cancer tissue, compared to healthy individuals (P<0.0001). PTGS2 A-1195G variant allele carriers were at reduced risk of CRC (odds ratio (OR)?=?0.52, 95% confidence interval (95% CI): 0.28–0.99, P?=?0.047). Homozygous carriers of the haplotype encompassing the A-1195G and G-765C wild type alleles and the T8473C variant allele (PTGS2 AGC) were at increased risk of CRC as compared to homozygous carriers of the PTGS2 AGT (A-1195G, G-765C, T8473C) haplotype (OR?=?5.37, 95% CI: 1.40–20.5, P?=?0.014). No association between the investigated polymorphisms and PTGS2 mRNA levels could be detected. Conclusion High intestinal PTGS2 mRNA level is an early event in colorectal cancer development as it occurs already in mild/moderate dysplasia. PTGS2 polymorphisms that have been associated with altered PTGS2 mRNA levels/COX-2 activity in some studies, although not the present study, were associated with colorectal cancer risk. Thus, both PTGS2 polymorphisms and PTGS2 mRNA levels may provide information regarding CRC risk. PMID:25166592

  5. Tissue-specific mRNA expression profiling in grape berry tissues

    PubMed Central

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and transport processes. Seeds, which supply essential resources for embryo development, showed higher mRNA abundance of genes encoding phenylpropanoid biosynthetic enzymes, seed storage proteins, and late embryogenesis abundant proteins. Water-deficit stress affected the mRNA abundance of 13% of the genes with differential expression patterns occurring mainly in the pulp and skin. In pulp and seed tissues transcript abundance in most functional categories declined in water-deficit stressed vines relative to well-watered vines with transcripts for storage proteins and novel (no-hit) functional assignments being over represented. In the skin of berries from water-deficit stressed vines, however, transcripts from several functional categories including general phenypropanoid and ethylene metabolism, pathogenesis-related responses, energy, and interaction with the environment were significantly over-represented. Conclusion These results revealed novel insights into the tissue-specific expression mRNA expression patterns of an extensive repertoire of genes expressed in berry tissues. This work also establishes an extensive catalogue of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern tissue-specific expression patterns associated with tissue differentiation within berries. These results also confirmed that water-deficit stress has a profound effect on mRNA expression patterns particularly associated with the biosynthesis of aroma and color metabolites within skin and pulp tissues that ultimately impact wine quality. PMID:17584945

  6. ErbB3 mRNA leukocyte levels as a biomarker for major depressive disorder

    PubMed Central

    2012-01-01

    Background In recent years, the identification of peripheral biomarkers that are associated with psychiatric diseases, such as Major Depressive Disorder (MDD), has become relevant because these biomarkers may improve the efficiency of the differential diagnosis process and indicate targets for new antidepressant drugs. Two recent candidate genes, ErbB3 and Fgfr1, are growth factors whose mRNA levels have been found to be altered in the leukocytes of patients that are affected by bipolar disorder in a depressive state. On this basis, the aim of the study was to determine if ErbB3 and Fgfr1 mRNA levels could be a biomarkers of MDD. Methods We measured by Real Time PCR ErbB3 and Fgfr1 mRNA expression levels in leukocytes of MDD patients compared with controls. Successively, to assess whether ErbB3 mRNA levels were influenced by previous antidepressant treatment we stratified our patients sample in two cohorts, comparing drug-naive versus drug-free patients. Moreover, we evaluated the levels of the transcript in MDD patients after 12 weeks of antidepressant treatment, and in prefrontal cortex of rats stressed and treated with an antidepressant drug of the same class. Results These results showed that ErbB3 but not Fgfr1 mRNA levels were reduced in leukocytes of MDD patients compared to healthy subjects. Furthermore, ErbB3 levels were not affected by antidepressant treatment in either human or animal models Conclusions Our data suggest that ErbB3 might be considered as a biomarker for MDD and that its deficit may underlie the pathopsysiology of the disease and is not a consequence of treatment. Moreover the study supports the usefulness of leukocytes as a peripheral system for identifying biomarkers in psychiatric diseases. PMID:22989054

  7. Dithranol downregulates expression of Id1 mRNA in human keratinocytes in vitro.

    PubMed

    Ronpirin, C; Tencomnao, T

    2012-01-01

    The precise causes of psoriasis, a chronic skin disorder characterized by hyperproliferation of keratinocytes and incomplete keratinization, are unclear. It is known that expression of helix-loop-helix transcription factor Id1, which functions as an inhibitor of differentiation, is upregulated in psoriatic skin. We investigated the effect of the antipsoriatic drug dithranol on mRNA and protein expression levels of Id1 in the HaCaT keratinocyte cell line. Cultured HaCaT cells were treated with 0-0.5 ?g/mL dithranol for 30 min. After 2 and 4 h, total cellular RNA and total proteins were isolated from HaCaT cells, and quantitative real-time reverse transcriptase (RT-PCR) and Western blot were used to determine the mRNA and protein levels of Id1, respectively. Changes in normalized Id1 mRNA levels were observed only after 4 h of dithranol treatment. There was reduced expression of Id1 mRNA transcripts in the HaCaT cells treated with 0.1 ?g/mL dithranol, but the reduction was not significant. The expression of Id1 mRNA was significantly downregulated (almost 50%) when 0.25 or 0.5 ?g/mL dithranol was applied to the HaCaT cells. However, the normalized Id1 protein levels were not significantly affected. The molecular mechanisms underlying this finding should be investigated further to help determine the therapeutic action of this drug. PMID:23079823

  8. Social status regulates kisspeptin receptor mRNA in the brain of Astatotilapia burtoni.

    PubMed

    Grone, Brian P; Maruska, Karen P; Korzan, Wayne J; Fernald, Russell D

    2010-10-01

    The brain controls reproduction in response to relevant external and internal cues. Central to this process in vertebrates is gonadotropin-releasing hormone (GnRH1) produced in neurons of the hypothalamic-preoptic area (POA). GnRH1 released from the POA stimulates pituitary release of gonadotropins, which in males causes sperm production and concomitant steroid hormone release from the testes. Kisspeptin, a neuropeptide acting via the kisspeptin receptor (Kiss1r), increases GnRH1 release and is linked to development of the reproductive system in mammals and other vertebrates. In both fish and mammals, kiss1r mRNA levels increase in the brain around the time of puberty but the environmental and other stimuli regulating kisspeptin signaling to GnRH1 neurons remain unknown. To understand where kiss1r is expressed and how it is regulated in the brain of a cichlid fish, Astatotilapia burtoni, we measured expression of a kiss1r homolog mRNA by in situ hybridization and quantitative reverse transcription-PCR (qRT-PCR). We found kiss1r mRNA localized in the olfactory bulb, specific nuclei in the telencephalon, diencephalon, mesencephalon, and rhombencephalon, as well as in GnRH1 and GnRH3 neurons. Since males' sexual physiology and behavior depend on social status in A. burtoni, we also tested how status influenced kiss1r mRNA levels. We found higher kiss1r mRNA levels in whole brains of high status territorial males and lower levels in low status non-territorial males. Our results are consistent with the hypothesis that Kiss1r regulates many functions in the brain, making it a strong candidate for mediating differences in reproductive physiology between territorial and non-territorial phenotypes. PMID:20688063

  9. Mammalian nonsense codons can be cis effectors of nuclear mRNA half-life.

    PubMed Central

    Belgrader, P; Cheng, J; Zhou, X; Stephenson, L S; Maquat, L E

    1994-01-01

    Frameshift and nonsense mutations within the gene for human triosephosphate isomerase (TPI) that generate a nonsense codon within the first three-fourths of the protein coding region have been found to reduce the abundance of the product mRNA that copurifies with nuclei. The cellular process and location of the nonsense codon-mediated reduction have proven difficult to elucidate for technical reasons. We show here, using electron microscopy to judge the purity of isolated nuclei, that the previously established reduction to 25% of the normal mRNA level is evident for nuclei that are free of detectable cytoplasmic contamination. Therefore, the reduction is likely to be characteristic of bona fide nuclear RNA. Fully spliced nuclear mRNA is identified by Northern (RNA) blot hybridization and a reverse transcription-PCR assay as the species that undergoes decay in experiments that used the human c-fos promoter to elicit a burst and subsequent shutoff of TPI gene transcription upon the addition of serum to serum-deprived cells. Finally, the finding that deletion of a 5' splice site of the TPI gene results predominantly but not exclusively in the removal by splicing (i.e., skipping) of the upstream exon as a part of the flanking introns has been used to demonstrate that decay is specific to those mRNA products that maintain the nonsense codon. This result, together with our previous results that implicate translation by ribosomes and charged tRNAs in the decay mechanism, indicate that nonsense codon recognition takes place after splicing and triggers decay solely in cis. The possibility that decay takes place during the process of mRNA export from the nucleus to the cytoplasm is discussed. Images PMID:7969159

  10. Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna)

    PubMed Central

    Hannas, Bethany R.; Wang, Ying H.; Thomson, Susanne; Kwon, Gwijun; Li, Hong; LeBlanc, Gerald A.

    2013-01-01

    The induction of vitellogenin in oviparous vertebrates has become the gold standard biomarker of exposure to estrogenic chemicals in the environment. This biomarker of estrogen exposure also has been used in arthropods, however, little is known of the factors that regulate the expression of vitellogenin in these organisms. We investigated changes in accumulation of mRNA products of the vitellogenin gene Vtg2 in daphnids (Daphnia magna) exposed to a diverse array of chemicals. We further evaluated the involvement of hormonal factors in the regulation of vitellogenin expression that may be targets of xenobiotic chemicals. Expression of the Vtg2 gene was highly responsive to exposure to various chemicals with an expression range spanning approximately four orders of magnitude. Chemicals causing the greatest induction were piperonyl butoxide, chlordane, 4-nonylphenol, cadmium, and chloroform. Among these, only 4-nonylphenol is recognized to be estrogenic. Exposure to several chemicals also suppressed Vtg2 mRNA levels, as much as 100-fold. Suppressive chemicals included cyproterone acetate, acetone, triclosan, and atrazine. Exposure to the estrogens diethylstilbestrol and bisphenol A had little effect on vitellogenin mRNA levels further substantiating that these genes are not induced by estrogen exposure. Exposure to the potent ecdysteroids 20-hydroxyecdysone and ponasterone A revealed that Vtg2 was subject to strong suppressive control by these hormones. Vtg2 mRNA levels were not significantly affected from exposure to several juvenoid hormones. Results indicate that ecdysteroids are suppressors of vitellogenin gene expression and that vitellogenin mRNA levels can be elevated or suppressed in daphnids by xenobiotics that elicit antiecdysteroidal or ecdysteroidal activity, respectively. Importantly, daphnid Vtg2 is not elevated in response to estrogenic activity. PMID:21216345

  11. mRNA Distribution and Heterologous Expression of Orphan Cytochrome P450 20A1

    PubMed Central

    Stark, Katarina; Wu, Zhong-Liu; Bartleson, Cheryl J.; Guengerich, F. Peter

    2015-01-01

    Cytochrome P450 (P450) 20A1 is one of the so-called “orphan” P450s without assigned biological function. mRNA expression was detected in human liver and extrahepatic expression was noted in several human brain regions, including substantia nigra, hippocampus, and amygdala, using conventional polymerase chain reaction and RNA dot blot analysis. Adult human liver contained 3-fold higher overall mRNA levels than whole brain, although specific regions (i.e., hippocampus and substantia nigra) exhibited higher mRNA expression levels than liver. Orthologous full-length and truncated transcripts of P450 20A1 were transcribed and sequenced from rat liver, heart, and brain. In rat, the concentrations of full-length transcripts were 3–4 fold higher in brain and heart than liver. In situ hybridization of rat whole brain sections showed a similar mRNA expression pattern as observed for human P450 20A1, indicating expression in substantia nigra, hippocampus, and amygdala. A number of N-terminal modifications of the codon-optimized human P450 20A1 sequence were prepared and expressed in Escherichia coli, and two of the truncated derivatives showed characteristic P450 spectra (200–280 nmol P450/l). Although the recombinant enzyme system oxidized NADPH, no catalytic activity was observed with the heterologously expressed protein when a number of potential steroids and biogenic amines were surveyed as potential substrates. The function of P450 20A1 remains unknown; however, the sites of mRNA expression in human brain and the conservation among species may suggest possible neurophysiological function. PMID:18541694

  12. miR-19b regulates hTERT mRNA expression through targeting PITX1 mRNA in melanoma cells

    PubMed Central

    Ohira, Takahito; Naohiro, Sunamura; Nakayama, Yuji; Osaki, Mitsuhiko; Okada, Futoshi; Oshimura, Mitsuo; Kugoh, Hiroyuki

    2015-01-01

    Human telomerase reverse transcriptase (hTERT) plays a crucial role in cancer development. We previously identified paired-like homeodomain1 (PITX1) as an hTERT suppressor gene. However, the underlying mechanisms that are involved in the regulation of PITX1 remain unknown. Here, we report that the microRNA-19b (miR-19b) regulates hTERT expression and cell proliferation through inhibition of PITX1. Compared with normal melanocyte cells, miR-19b expression was higher in most melanoma cells and was accompanied by downregulation of PITX1. Moreover, overexpression of miR-19b inhibited PITX1 mRNA translation through a miR-19b binding site within the 3?UTR of the PITX1 mRNA. Our combined findings indicate the participation of miR-19b as a novel upstream effector of hTERT transcription via direct targeting of PITX1. PMID:25643913

  13. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex.

    PubMed

    Xie, Ping

    2015-01-01

    Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel. PMID:26473825

  14. hnRNP L binds to CA repeats in the 3'UTR of bcl-2 mRNA

    SciTech Connect

    Lee, Dong-Hyoung; Lim, Mi-Hyun; Youn, Dong-Ye; Jung, Seung Eun; Ahn, Young Soo; Tsujimoto, Yoshihide; Lee, Jeong-Hwa

    2009-05-08

    We previously reported that the CA-repeat sequence in the 3'-untranslated region (3'UTR) of bcl-2 mRNA is involved in the decay of bcl-2 mRNA. However, the trans-acting factor for the CA element in bcl-2 mRNA remains unidentified. The heterogeneous nuclear ribonucleoprotein L (hnRNP L), an intron splicing factor, has been reported to bind to CA repeats and CA clusters in the 3'UTR of several genes. We reported herein that the CA repeats of bcl-2 mRNA have the potential to form a distinct ribonuclear protein complex in cytoplasmic extracts of MCF-7 cells, as evidenced by RNA electrophoretic mobility shift assays (REMSA). A super-shift assay using the hnRNP L antibody completely shifted the complex. Immunoprecipitation with the hnRNP L antibody and MCF-7 cells followed by RT-PCR revealed that hnRNP L interacts with endogenous bcl-2 mRNA in vivo. Furthermore, the suppression of hnRNP L in MCF-7 cells by the transfection of siRNA for hnRNP L resulted in a delay in the degradation of RNA transcripts including CA repeats of bcl-2 mRNA in vitro, suggesting that the interaction between hnRNPL and CA repeats of bcl-2 mRNA participates in destabilizing bcl-2 mRNA.

  15. A Targeted, Self-Delivered, and Photocontrolled Molecular Beacon for mRNA Detection in Living Cells

    E-print Network

    Tan, Weihong

    A Targeted, Self-Delivered, and Photocontrolled Molecular Beacon for mRNA Detection in Living Cells a targeted, self-delivered, and photocontrolled aptamer-based molecular beacon (MB) for intracellular m current live-cell imaging methods for mRNA,3-8 molecular beacons (MBs) may be the most attractive since

  16. Preferential mRNA expression of prostromelysin relative to procollagenase and in situ localization in human articular cartilage.

    PubMed Central

    Nguyen, Q; Mort, J S; Roughley, P J

    1992-01-01

    An imbalance between extracellular proteinases and their inhibitors is thought to underlie cartilage degradation. In cultures of adult cartilage, prostromelysin mRNA levels were much higher than those for procollagenase and this differential was increased in cultures stimulated with IL-1 beta. Analysis of mRNA prepared from freshly isolated chondrocytes showed abundant amounts of prostromelysin mRNA in normal adult cartilage but low levels in the neonate. Not all adult cartilage may possess such high levels of prostromelysin mRNA, as the message levels in the cartilage remaining on late-stage osteoarthritic joints were lower than those in normal adult cartilage. Relative to prostromelysin mRNA, little procollagenase and TIMP mRNA were found in the adult cartilage. In situ hybridization revealed that metalloproteinase mRNAs were localized in chondrocytes of the superficial zone in adult cartilage. However, upon IL-1 beta treatment, chondrocytes in all cartilage zones were observed to express prostromelysin mRNA. Relative to the neonate, the normal adult cartilage appears to have a high degradative potential, if one accepts that steady-state mRNA levels reflect prostromelysin production. As the adult cartilage is not apparently undergoing rapid turnover, it would appear that control of prostromelysin activation may be the major regulatory step in stromelysin-induced cartilage degradation. Images PMID:1313449

  17. mRNA Destabilization: The Role of the 3?UTR in Post-transcriptional Regulation of Wnt8 Transcripts 

    E-print Network

    Butler, Annika D 1987-

    2012-07-11

    that are complementary to particular mRNA binding sites found in the 3' untranslated regions (3' UTRs) of target transcripts. The binding of miRNAs to specific sites in mRNAs causes one of two fates: the mRNA is degraded or translation of the transcript is suppressed...

  18. Localization and anchoring of mRNA in budding yeast Dale L. Beach, E.D. Salmon and Kerry Bloom

    E-print Network

    to the ASH1 3UTR allowed us to visualize ASH1 mRNA with an MS2-coat-protein­GFP fusion protein (together cytoskeletal systems. Recently, an mRNA in the yeast Saccharomyces cerevisiae, ASH1, was shown to coalesce in particle formation and/or localization of the ASH1 transcript. Factors at the destination of the m

  19. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex

    PubMed Central

    Xie, Ping

    2015-01-01

    Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by “hungry” codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel. PMID:26473825

  20. Learning-Induced arg 3.1/arc mRNA Expression in the Mouse Brain

    PubMed Central

    Montag-Sallaz, Monique; Montag, Dirk

    2003-01-01

    The effector immediate-early gene (IEG) arg 3.1, also called arc, encodes a protein interacting with the neuronal cytoskeleton. The selective localization of arg 3.1/arc mRNA in activated dendritic segments suggests that the arg 3.1/arc protein may be synthesized at activated post-synaptic sites and that arg 3.1/arc could participate in structural and functional modifications underlying cognitive processes like memory formation. To analyze whether learning itself is sufficient to trigger expression of arg 3.1/arc, we developed a one-trial learning paradigm in which mice learned to enter a dark compartment to escape from an aversively illuminated area. Arg 3.1/arc mRNA expression was analyzed by in situ hybridization in three groups of mice as follows: a control group with no access to the dark compartment, a learning group having access to the dark compartment for one trial, and a retrieval group having access to the dark compartment for two trials on consecutive days. All animals from the learning and retrieval groups escaped the illuminated area, and those tested 24 h later (retrieval group) showed a strongly reduced latency to enter the dark compartment, demonstrating the validity of our learning paradigm to induce long-term memory. Our results show that acquisition of a simple task results in a brain area-specific biphasic increase in arg 3.1/arc mRNA expression 15 min and 4.5 h post-training. This increase was detected specifically in the learning group but neither in the control nor in the retrieval groups. The pattern of arg 3.1/arc mRNA expression corresponds temporally to the two mRNA- and protein-synthesis-dependent periods of long-term memory formation. Our study provides the first unequivocal evidence that arg 3.1/arc expression is induced by a learning task and strongly suggests a role of arg 3.1/arc mRNA in the early and late cellular mechanisms underlying the stabilization of the memory trace. PMID:12663748

  1. Dis3- and exosome subunit-responsive 3 Prime mRNA instability elements

    SciTech Connect

    Kiss, Daniel L.; Hou, Dezhi; Gross, Robert H.; Andrulis, Erik D.

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Successful use of a novel RNA-specific bioinformatic tool, RNA SCOPE. Black-Right-Pointing-Pointer Identified novel 3 Prime UTR cis-acting element that destabilizes a reporter mRNA. Black-Right-Pointing-Pointer Show exosome subunits are required for cis-acting element-mediated mRNA instability. Black-Right-Pointing-Pointer Define precise sequence requirements of novel cis-acting element. Black-Right-Pointing-Pointer Show that microarray-defined exosome subunit-regulated mRNAs have novel element. -- Abstract: Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3 Prime -5 Prime exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3 Prime untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette-harboring four elements-destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are underrepresented or missing from the down-regulated data sets. Taken together, our findings imply a potentially novel mechanism of mRNA turnover that involves direct Dis3 and other exosome subunit recruitment to and/or regulation on mRNA substrates.

  2. Nutritional regulation of insulin-like growth factor-I mRNA expression in barramundi, Lates calcarifer.

    PubMed

    Matthews, S J; Kinhult, A K; Hoeben, P; Sara, V R; Anderson, T A

    1997-06-01

    The effect of nutritional status on IGF-I mRNA expression in the liver and brain of juvenile barramundi (Lates calcarifer) was investigated. Fish were either fed a satiety ration (SAT) or starved (STV) for 6 weeks. Starved fish demonstrated significantly lower condition factor and hepatic IGF-I mRNA expression at 3 and 6 weeks, when compared with the SAT group. IGF-I mRNA expression in the brain was 10 fold lower than the liver and was not affected by ration size. These results suggest the liver is the major site of IGF-I mRNA synthesis and hepatic but not brain IGF-I mRNA expression is regulated by food availability in juvenile barramundi. PMID:9195481

  3. Ontogeny of the dopamine D2 receptor mRNA expressing cells in the human hippocampal formation and temporal neocortex.

    PubMed

    Gurevich, E V; Kordower, J H; Joyce, J N

    2000-12-01

    The study details the cellular expression of the dopamine D2 receptor mRNA in the human temporal lobe during prenatal development. At 13 embryonic weeks (E13) D2 mRNA was widely expressed in the temporal lobe. At this time point in the dentate gyrus D2 mRNA positive cells first appeared at the outer border of the granular layer and their number increased with development. The CA1 exhibited the highest level of D2 mRNA expression. By E19-25 the hippocampal formation underwent rapid morphological maturation. D2 mRNA expression became more uniform and dense in the ammonic subfield. At all ages the subiculum appeared more mature morphologically but less intensely stained for D2 mRNA than the ammonic fields. In the entorhinal cortex D2 mRNA expression was most conspicuous in the future layer II at all ages. In the temporal neocortex D2 mRNA-positive cells were detected in the subplate and cortical plate. Differentiation of the cortical plate was accompanied by concentration of D2 mRNA-positive cells in layer V. The most conspicuous cells expressing D2 mRNA were found in the marginal zone of all regions and resembled Cajal-Retzius cells in morphology and location. Density of putative Cajal-Retzius cells expressing D2 mRNA decreased with development. They all but disappeared from the hippocampal areas by mid gestation, but in the temporal neocortex occasional cells were seen even at term. Early and widespread but region and cell type specific expression of D2 receptor mRNA suggests an important role of this DA receptor subtype in prenatal development of the human temporal lobe. PMID:11207428

  4. Poly(A)-binding proteins and mRNA localization: who rules the roost?

    PubMed

    Gray, Nicola K; Hrabálková, Lenka; Scanlon, Jessica P; Smith, Richard W P

    2015-12-01

    RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals. PMID:26614673

  5. Genome-wide analysis of microRNA and mRNA expression signatures in cancer

    PubMed Central

    Li, Ming-hui; Fu, Sheng-bo; Xiao, Hua-sheng

    2015-01-01

    Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles. PMID:26299954

  6. Translation of the edited mRNA for cytochrome b in trypanosome mitochondria

    SciTech Connect

    Horvath, Anton; Berry, Edward A.; Maslov, Dmitri A.

    2000-02-01

    The type of RNA editing found in the kinetoplast-mitochondria of trypanosomes and related protozoa, involving uridylate insertions and deletions, creates translatable messenger RNAs (mRNAs) out of nonsense pre-edited RNAs by correcting encoded defects that vary from simple frameshifts to large ''cryptic'' regions. However, any evidence for translation of these mRNAs in the kinetoplast has been missing for decades. We identified a kinetoplast-encoded protein, apocytochrome b, whose mRNA is edited in the 5' region. The determined amino-terminal sequence of the protein coincides with the predicted sequence derived from the edited region, demonstrating that the cognate apocytochrome b mRNA is translated into a functional protein. This finding represents the first direct evidence for a functional translation system in the kinetoplasts.

  7. Localization during development of alternatively spliced forms of cytotactin mRNA by in situ hybridization

    PubMed Central

    1990-01-01

    Cytotactin, an extracellular glycoprotein found in neural and nonneural tissues, influences a variety of cellular phenomena, particularly cell adhesion and cell migration. Northern and Western blot analysis and in situ hybridization were used to determine localization of alternatively spliced forms of cytotactin in neural and nonneural tissues using a probe (CT) that detected all forms of cytotactin mRNA, and one (VbVc) that detected two of the differentially spliced repeats homologous to the type III repeats of fibronectin. In the brain, the levels of mRNA and protein increased from E8 through E15 and then gradually decreased until they were barely detectable by P3. Among the three cytotactin mRNAs (7.2, 6.6, and 6.4 kb) detected in the brain, the VbVc probe hybridized only to the 7.2-kb message. In isolated cerebella, the 220- kD polypeptide and 7.2-kb mRNA were the only cytotactin species present at hatching, indicating that the 220-kD polypeptide is encoded by the 7.2-kb message that contains the VbVc alternatively spliced insert. In situ hybridization showed cytotactin mRNA in glia and glial precursors in the ventricular zone throughout the central nervous system. In all regions of the nervous system, cytotactin mRNAs were more transient and more localized than the polypeptides. For example, in the radial glia, cytotactin mRNA was observed in the soma whereas the protein was present externally along the glial fibers. In the telencephalon, cytotactin mRNAs were found in a narrow band at the edge of a larger region in which the protein was wide-spread. Hybridization with the VbVc probe generally overlapped that of the CT probe in the spinal cord and cerebellum, consistent with the results of Northern blot analysis. In contrast, in the outermost tectal layers, differential hybridization was observed with the two probes. In nonneural tissues, hybridization with the CT probe, but not the VbVc probe, was detected in chondroblasts, tendinous tissues, and certain mesenchymal cells in the lung. In contrast, hybridization with both probes was observed in smooth muscle and lung epithelium. Both epithelium and mesenchyme expressed cytotactin mRNA in varying combinations: in the choroid plexus, only epithelial cells expressed cytotactin mRNA; in kidney, only mesenchymal cells; and in the lung, both of these cell types contained cytotactin mRNA. These spatiotemporal changes during development suggest that the synthesis of the various alternatively spliced cytotactin mRNAs is responsive to tissue-specific local signals and prompt a search for functional differences in the various molecular forms of the protein. PMID:1696267

  8. TLR2 and TLR4 polymorphisms influence mRNA and protein expression in colorectal cancer

    PubMed Central

    Proença, Marcela Alcântara; de Oliveira, Juliana Garcia; Cadamuro, Aline Cristina Targa; Succi, Maysa; Netinho, João Gomes; Goloni-Bertolo, Eny Maria; Pavarino, Érika Cristina; Silva, Ana Elizabete

    2015-01-01

    AIM: To evaluate the effect of promoter region polymorphisms of toll-like receptor (TLR)2-196 to -174del and TLR4-1607T/C (rs10759932) on mRNA and protein expression in tumor tissue and of TLR4+896A/G (rs4986790) on colorectal cancer (CRC) risk. METHODS: The TLR2-196 to -174del polymorphism was investigated using allele-specific polymerase chain reaction (PCR) and the TLR4-1607T/C and TLR4+896A/G by PCR-restriction fragment length polymorphism (RFLP). We genotyped 434 DNA samples from 194 CRC patients and 240 healthy individuals. The mRNA relative quantification (RQ) was performed in 40 tumor tissue samples by quantitative PCR TaqMan assay, using specific probes for TLR2 and TLR4 genes, and ACTB and GAPDH reference genes were used as endogenous controls. Protein expression was analyzed by immunohistochemistry with specific primary antibodies. RESULTS: No association was found for TLR4-1607T/C and TLR4+896A/G by three statistical models (log-additive, dominant and recessive). However, based on dominant and log-additive models, the polymorphic variant TLR2-196 to -174del was associated with increased CRC risk [dominant: odds ratio (OR) = 1.72, 95%CI: 1.03-2.89; P = 0.038 and log-additive: OR =1.59, 95%CI: 1.02-2.48; P = 0.039]. TLR2 mRNA expression was increased in tumor tissue (RQ = 2.36) when compared to adjacent normal tissue (RQ = 1; P < 0.0001), whereas the TLR4 mRNA showed a basal expression (RQ = 0.74 vs RQ = 1, P = 0.452). Immunohistochemistry analysis of TLR2 and TLR4 protein expression was concordant with the findings of mRNA expression. In addition, the TLR2-196 to -174del variant carriers showed mRNA relative expression 2.19 times higher than wild-genotype carriers. The TLR2 protein expression was also higher for the TLR2-196 to -174del variant carriers [117 ± 10 arbitrary unit (a.u.) vs 95 ± 4 a.u., P = 0.03]. However, for the TLR4 -1607T/C polymorphism no significant difference was found for both mRNA (P = 0.56) and protein expression (P = 0.26). CONCLUSION: Our findings suggest that TLR2-196 to -174del polymorphism increases TLR2 mRNA expression and is associated with higher CRC risk, indicating an important role in CRC genetic susceptibility. PMID:26167073

  9. On the Relationship of Protein and mRNA Dynamics in Vertebrate Embryonic Development.

    PubMed

    Peshkin, Leonid; Wühr, Martin; Pearl, Esther; Haas, Wilhelm; Freeman, Robert M; Gerhart, John C; Klein, Allon M; Horb, Marko; Gygi, Steven P; Kirschner, Marc W

    2015-11-01

    A biochemical explanation of development from the fertilized egg to the adult requires an understanding of the proteins and RNAs expressed over time during embryogenesis. We present a comprehensive characterization of protein and mRNA dynamics across early development in Xenopus. Surprisingly, we find that most protein levels change little and duplicated genes are expressed similarly. While the correlation between protein and mRNA levels is poor, a mass action kinetics model parameterized using protein synthesis and degradation rates regresses protein dynamics to RNA dynamics, corrected for initial protein concentration. This study provides detailed data for absolute levels of ?10,000 proteins and ?28,000 transcripts via a convenient web portal, a rich resource for developmental biologists. It underscores the lasting impact of maternal dowry, finds surprisingly few cases where degradation alone drives a change in protein level, and highlights the importance of transcription in shaping the dynamics of the embryonic proteome. PMID:26555057

  10. Tentative Mapping of Transcription-Induced Interchromosomal Interaction using Chimeric EST and mRNA Data

    PubMed Central

    Unneberg, Per; Claverie, Jean-Michel

    2007-01-01

    Recent studies on chromosome conformation show that chromosomes colocalize in the nucleus, bringing together active genes in transcription factories. This spatial proximity of actively transcribing genes could provide a means for RNA interaction at the transcript level. We have screened public databases for chimeric EST and mRNA sequences with the intent of mapping transcription-induced interchromosomal interactions. We suggest that chimeric transcripts may be the result of close encounters of active genes, either as functional products or “noise” in the transcription process, and that they could be used as probes for chromosome interactions. We have found a total of 5,614 chimeric ESTs and 587 chimeric mRNAs that meet our selection criteria. Due to their higher quality, the mRNA findings are of particular interest and we hope that they may serve as food for thought for specialists in diverse areas of molecular biology. PMID:17330142

  11. How can Steganography BE AN Interpretation of the Redundancy in Pre-Mrna Ribbon?

    NASA Astrophysics Data System (ADS)

    Regoli, Massimo

    2013-01-01

    In the past years we have developed a new symmetric encryption algorithm based on a new interpretation of the biological phenomenon of the presence of redundant sequences inside pre-mRNA (the introns apparently junk DNA) from a `science of information' point of view. For the first, we have shown the flow of the algorithm by creating a parallel between the various biological aspects of the phenomenon of redundancy and the corresponding agents in our encryption algorithm. Then we set a strict mathematical terminology identifying spaces and mathematical operators for the correct application and interpretation of the algorithm. Finally, last year, we proved that our algorithm has excellent statistics behavior being able to exceed the standard static tests. This year we will try to add a new operator (agent) that is capable of allowing the introduction of a mechanisms like a steganographic sub message (sub ribbon of mRNA) inside the original message (mRNA ribbon).

  12. Multicolor fluorescent in situ mRNA hybridization (FISH) on whole mounts and sections.

    PubMed

    Lea, Robert; Bonev, Boyan; Dubaissi, Eamon; Vize, Peter D; Papalopulu, Nancy

    2012-01-01

    In situ hybridization involves the hybridization of an antisense RNA probe to an mRNA transcript and it is a powerful method for the characterization of gene expression in tissues, organs, or whole organisms. Performed as a whole mount (WISH), it allows the detection of mRNA transcripts in three dimensions, while combined with sectioning, either before or after hybridization, it provides gene expression information with cellular resolution. FISH relies on the fluorescence detection of probes and is the method of choice for the simultaneous detection of transcripts with similar or overlapping expression patterns, as each can be clearly distinguished by the selection of fluorophore. Here, we describe a protocol for performing multicolor FISH in Xenopus embryos in whole mounts and sections that can be further combined with antibody staining. PMID:22956102

  13. A mRNA determinant of gRNA-directed kinetoplastid editing

    PubMed Central

    Kabb, Aaron L.; Oppegard, Lisa M.; McKenzie, Bruce A.; Connell, Gregory J.

    2001-01-01

    Several mitochondrial mRNAs of the kinetoplastid protozoa do not encode a functional open reading frame until they have been edited through the addition or deletion of U nucleotides at specific sites. Genetic information specifying the location and extent of editing is present on guide RNAs (gRNAs). The sequence adjacent to most mRNA editing sites has a high purine content which previously has been proposed to facilitate the editing reaction through base-pairing to a poly(U) tail at the 3? end of the gRNA. We demonstrate here that gRNA binding alone is insufficient to create an editing site and that the mRNA sequence near an editing site is an additional determinant affecting the efficiency of the reaction. PMID:11410666

  14. Mechanism, factors, and physiological role of nonsense-mediated mRNA decay.

    PubMed

    Fatscher, Tobias; Boehm, Volker; Gehring, Niels H

    2015-12-01

    Nonsense-mediated mRNA decay (NMD) is a translation-dependent, multistep process that degrades irregular or faulty messenger RNAs (mRNAs). NMD mainly targets mRNAs with a truncated open reading frame (ORF) due to premature termination codons (PTCs). In addition, NMD also regulates the expression of different types of endogenous mRNA substrates. A multitude of factors are involved in the tight regulation of the NMD mechanism. In this review, we focus on the molecular mechanism of mammalian NMD. Based on the published data, we discuss the involvement of translation termination in NMD initiation. Furthermore, we provide a detailed overview of the core NMD machinery, as well as several peripheral NMD factors, and discuss their function. Finally, we present an overview of diseases associated with NMD factor mutations and summarize the current state of treatment for genetic disorders caused by nonsense mutations. PMID:26283621

  15. mRNA knockdown by single strand RNA is improved by chemical modifications

    PubMed Central

    Haringsma, Henry J.; Li, Jenny J.; Soriano, Ferdie; Kenski, Denise M.; Flanagan, W. Michael; Willingham, Aarron T.

    2012-01-01

    While RNAi has traditionally relied on RNA duplexes, early evaluation of siRNAs demonstrated activity of the guide strand in the absence of the passenger strand. However, these single strands lacked the activity of duplex RNAs. Here, we report the systematic use of chemical modifications to optimize single-strand RNA (ssRNA)-mediated mRNA knockdown. We identify that 2?F ribose modifications coupled with 5?-end phosphorylation vastly improves ssRNA activity both in vitro and in vivo. The impact of specific chemical modifications on ssRNA activity implies an Ago-mediated mechanism but the hallmark mRNA cleavage sites were not observed which suggests ssRNA may operate through a mechanism beyond conventional Ago2 slicer activity. While currently less potent than duplex siRNAs, with additional chemical optimization and alternative routes of delivery, chemically modified ssRNAs could represent a powerful RNAi platform. PMID:22253019

  16. Intracellular mRNA Regulation with Self-Assembled Locked Nucleic Acid Polymer Nanoparticles

    PubMed Central

    2015-01-01

    We present an untemplated, single-component antisense oligonucleotide delivery system capable of regulating mRNA abundance in live human cells. While most approaches to nucleic acid delivery rely on secondary carriers and complex multicomponent charge-neutralizing formulations, we demonstrate efficient delivery using a simple locked nucleic acid (LNA)-polymer conjugate that assembles into spherical micellar nanoparticles displaying a dense shell of nucleic acid at the surface. Cellular uptake of soft LNA nanoparticles occurs rapidly within minutes as evidenced by flow cytometry and fluorescence microscopy. Importantly, these LNA nanoparticles knockdown survivin mRNA, an established target for cancer therapy, in a sequence-specific fashion as analyzed by RT-PCR. PMID:24827740

  17. Regulation of mRNA stability by ARE-binding proteins in synaptic plasticity and memory.

    PubMed

    Lee, Yong-Seok; Lee, Jin-A; Kaang, Bong-Kiun

    2015-10-01

    Formation of long-term memories requires coordinated gene expression, which can be regulated at transcriptional, post-transcriptional, and translational levels. Post-transcriptional stabilization and destabilization of mRNAs provides precise temporal and spatial regulation of gene expression, which is critical for consolidation of synaptic plasticity and memory. mRNA stability is regulated by interactions between the cis-acting elements of mRNAs, such as adenine-uridine-rich elements (AREs), and the trans-acting elements, ARE-binding proteins (AUBPs). There are several AUBPs in the nervous system. Among AUBPs, Hu/ELAV-like proteins and AUF1 are the most studied mRNA stabilizing and destabilizing factors, respectively. Here, we summarize compelling evidence for critical roles of these AUBPs in synaptic plasticity, as well as learning and memory, in both vertebrates and invertebrates. Furthermore, we also briefly review the deregulations of AUBPs in neurological disorders. PMID:26291750

  18. Genome-Wide Study of mRNA Isoform Half-Lives.

    PubMed

    Geisberg, Joseph V; Moqtaderi, Zarmik

    2016-01-01

    In eukaryotes, RNA polymerase II-driven transcription and processing results in the formation of numerous mRNA 3' isoforms that for any given gene may differ from one another by as little as a single nucleotide. These 3' isoforms can vary in physical properties that may affect their function and stability. Here, we outline a systematic framework to measure individual mRNA 3' isoform half-lives on a genome-wide level in S. cerevisiae. Our approach utilizes the Anchor-Away system to sequester RNA polymerase II (Pol II) in the cytoplasm followed by direct single-molecule RNA sequencing to generate a highly detailed view of 3' isoform stability under most physiological conditions without many of the adverse effects associated with commonly used alternative approaches. PMID:26463393

  19. Osteoblast fibronectin mRNA, protein synthesis, and matrix are unchanged after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Gilbertson, V.

    1999-01-01

    The well-defined osteoblast line, MC3T3-E1 was used to examine fibronectin (FN) mRNA levels, protein synthesis, and extracellular FN matrix accumulation after growth activation in spaceflight. These osteoblasts produce FN extracellular matrix (ECM) known to regulate adhesion, differentiation, and function in adherent cells. Changes in bone ECM and osteoblast cell shape occur in spaceflight. To determine whether altered FN matrix is a factor in causing these changes in spaceflight, quiescent osteoblasts were launched into microgravity and were then sera activated with and without a 1-gravity field. Synthesis of FN mRNA, protein, and matrix were measured after activation in microgravity. FN mRNA synthesis is significantly reduced in microgravity (0-G) when compared to ground (GR) osteoblasts flown in a centrifuge simulating earth's gravity (1-G) field 2.5 h after activation. However, 27.5 h after activation there were no significant differences in mRNA synthesis. A small but significant reduction of FN protein was found in the 0-G samples 2.5 h after activation. Total FN protein 27.5 h after activation showed no significant difference between any of the gravity conditions, however, there was a fourfold increase in absolute amount of protein synthesized during the incubation. Using immunofluorescence, we found no significant differences in the amount or in the orientation of the FN matrix after 27.5 h in microgravity. These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity. These data also suggest that after a total period of 43 h of spaceflight FN transcription, translation, or altered matrix assembly is not responsible for the altered cell shape or altered matrix formation of osteoblasts.

  20. TruSeq Stranded mRNA and Total RNA Sample Preparation Kits

    Cancer.gov

    Total RNA-Seq enabled by ribosomal RNA (rRNA) reduction is compatible with formalin-fixed paraffin embedded (FFPE) samples, which contain potentially critical biological information. The family of TruSeq Stranded Total RNA sample preparation kits provides a unique combination of unmatched data quality for both mRNA and whole-transcriptome analyses, robust interrogation of both standard and low-quality samples and workflows compatible with a wide range of study designs.

  1. BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells

    E-print Network

    Awe, Jason P; Crespo, Agustin; Li, You; Kiledjian, Megerditch; Byrne, James A

    2013-01-01

    in adult human skin cells. Stem Cell Research & Therapy 2013Stem Cell Research & Therapy 2013, 4:15 http://stemcellres.com/content/4/1/15 transfection of synRNA into adultStem Cell Research & Therapy 2013, 4:15 http://stemcellres.com/content/4/1/15 RESEARCH Open Access BAY11 enhances OCT4 synthetic mRNA expression in adult

  2. Second Harmonic Super-resolution Microscopy for Quantification of mRNA at Single Copy Sensitivity

    PubMed Central

    2015-01-01

    Cell-specific information on the quantity and localization of key mRNAs at single copy sensitivity in single cells is critical for evaluating basic cellular process, disease risk, and efficacy of therapy. Quantification of overexpressed mRNAs beyond the diffraction limit is constrained by the optical property of the probes and microscopy techniques. In this report, nanosized barium titanium oxide (BaTiO3, BTO) crystals were utilized as probes for mRNA quantification by a second harmonic super-resolution microscopy (SHaSM). The SHaSM was able to detect a single copy of the human epidermal growth factor receptor 2 (Her2) mRNA at a resolution of 55.6 nm with the ability to resolve multiple mRNA copies in a diffraction-limited spot. Her2 mRNA per cell was counted in SK-BR-3, MCF-7, and HeLa cell lines as 595 ± 79.1, 38.9 ± 8.26, and 1.5 ± 2.8, respectively. Our single-cell quantification results were validated with the fluorescence in situ hybridization studies and quantitative PCR, showing better specificity and selectivity over current single-molecule approaches for transcript detection. The SHaSM is expected to have an upper limit of resolving ?104 transcripts in a single cell with the ability to monitor intracellular transcriptional dynamics at video rate. The developed approach has strong potential in clinical research and in the early diagnosis of life-threatening diseases such as cancer. PMID:25494326

  3. Downregulation of KIF1B mRNA in hepatocellular carcinoma tissues correlates with poor prognosis

    PubMed Central

    Yang, Song-Zhu; Wang, Jian-Tao; Yu, Wei-Wei; Liu, Qing; Wu, Yan-Fang; Chen, Shu-Guang

    2015-01-01

    AIM: To compare kinesin family member 1B (KIF1B) expression with clinicopathologic parameters and prognosis in hepatocellular carcinoma (HCC) patients. METHODS: KIF1B protein and mRNA expression was assessed in HCC and paracarcinomatous (PC) tissues from 68 patients with HCC using Western blot and quantitative real-time reverse transcription-PCR, respectively. Student’s t-tests were used to analyze relationships between clinicopathologic parameters and KIF1B expression, the Kaplan-Meier method was used to analyze survival outcomes, and the log-rank test was used to compare survival differences between groups. RESULTS: Mean protein and mRNA levels of KIF1B were similar between HCC and PC tissues. However, HCC tissues with vein invasions had significantly lower KIF1B protein levels compared to those without vein invasions (2.30 ± 0.82 relative units vs 2.77 ± 0.84 relative units, P < 0.05). KIF1B protein levels in HCC tissues from patients with recurrence during the follow-up period were significantly lower than those without recurrence (2.31 ± 0.92 relative units vs 2.80 ± 0.80 relative units, P < 0.05). However, KIF1B protein and mRNA expression in HCC patients was not associated with other clinicopathologic parameters. Ratios of KIF1B mRNA expression in HCC tissues to those in PC tissues were correlated with overall survival (13.5 mo vs 20.0 mo, P < 0.05) and disease-free survival (11.5 mo vs 19.5 mo, P < 0.05). CONCLUSION: Downregulation of KIF1B in HCC tissues is associated with poor prognosis; additional clinical studies are needed to confirm whether KIF1B can serve as a prognostic marker. PMID:26217094

  4. Analysis of myosin heavy chain mRNA expression by RT-PCR

    NASA Technical Reports Server (NTRS)

    Wright, C.; Haddad, F.; Qin, A. X.; Baldwin, K. M.

    1997-01-01

    An assay was developed for rapid and sensitive analysis of myosin heavy chain (MHC) mRNA expression in rodent skeletal muscle. Only 2 microg of total RNA were necessary for the simultaneous analysis of relative mRNA expression of six different MHC genes. We designed synthetic DNA fragments as internal standards, which contained the relevant primer sequences for the adult MHC mRNAs type I, IIa, IIx, IIb as well as the embryonic and neonatal MHC mRNAs. A known amount of the synthetic fragment was added to each polymerase chain reaction (PCR) and yielded a product of different size than the amplified MHC mRNA fragment. The ratio of amplified MHC fragment to synthetic fragment allowed us to calculate percentages of the gene expression of the different MHC genes in a given muscle sample. Comparison with the traditional Northern blot analysis demonstrated that our reverse transcriptase-PCR-based assay was reliable, fast, and quantitative over a wide range of relative MHC mRNA expression in a spectrum of adult and neonatal rat skeletal muscles. Furthermore, the high sensitivity of the assay made it very useful when only small quantities of tissue were available. Statistical analysis of the signals for each MHC isoform across the analyzed samples showed a highly significant correlation between the PCR and the Northern signals as Pearson correlation coefficients ranged between 0.77 and 0.96 (P < 0.005). This assay has potential use in analyzing small muscle samples such as biopsies and samples from pre- and/or neonatal stages of development.

  5. A post-translational regulatory switch on UPF1 controls targeted mRNA degradation

    PubMed Central

    Kurosaki, Tatsuaki; Li, Wencheng; Hoque, Mainul; Popp, Maximilian W.-L.; Ermolenko, Dmitri N.; Tian, Bin

    2014-01-01

    Nonsense-mediated mRNA decay (NMD) controls the quality of eukaryotic gene expression and also degrades physiologic mRNAs. How NMD targets are identified is incompletely understood. A central NMD factor is the ATP-dependent RNA helicase upframeshift 1 (UPF1). Neither the distance in space between the termination codon and the poly(A) tail nor the binding of steady-state, largely hypophosphorylated UPF1 is a discriminating marker of cellular NMD targets, unlike for premature termination codon (PTC)-containing reporter mRNAs when compared with their PTC-free counterparts. Here, we map phosphorylated UPF1 (p-UPF1)-binding sites using transcriptome-wide footprinting or DNA oligonucleotide-directed mRNA cleavage to report that p-UPF1 provides the first reliable cellular NMD target marker. p-UPF1 is enriched on NMD target 3? untranslated regions (UTRs) along with suppressor with morphogenic effect on genitalia 5 (SMG5) and SMG7 but not SMG1 or SMG6. Immunoprecipitations of UPF1 variants deficient in various aspects of the NMD process in parallel with Förster resonance energy transfer (FRET) experiments reveal that ATPase/helicase-deficient UPF1 manifests high levels of RNA binding and disregulated hyperphosphorylation, whereas wild-type UPF1 releases from nonspecific RNA interactions in an ATP hydrolysis-dependent mechanism until an NMD target is identified. 3? UTR-associated UPF1 undergoes regulated phosphorylation on NMD targets, providing a binding platform for mRNA degradative activities. p-UPF1 binding to NMD target 3? UTRs is stabilized by SMG5 and SMG7. Our results help to explain why steady-state UPF1 binding is not a marker for cellular NMD substrates and how this binding is transformed to induce mRNA decay. PMID:25184677

  6. Biology of circulating mRNA: still more questions than answers?

    PubMed

    Fleischhacker, Michael

    2006-09-01

    A few years after the first description of free-circulating DNA in plasma and serum, the detection of tumor-associated overexpressed mRNA in plasma was also reported. This observation has been confirmed and it seems to be clear that the presence of free-circulating RNA is a ubiquitous phenomenon. In this short review I will discuss some basic aspects of the release mechanisms for the RNA, its biological meaning, and clinical value. PMID:17108190

  7. Differential regulation of neuropeptide mRNA expression in intrastriatal striatal transplants by host dopaminergic afferents.

    PubMed Central

    Campbell, K; Wictorin, K; Björklund, A

    1992-01-01

    The effects of dopamine-specific manipulations on neuropeptide gene expression in intrastriatal grafts of fetal striatal tissue were studied by quantitative in situ hybridization histochemistry, using 35S-labeled oligonucleotide probes. Messenger RNA transcripts for the striatal neuropeptides preproenkephalin (PPE) and preprotachykinin (PPT) were detected in neurons forming discrete patches in the striatal grafts. The relative abundance of PPE and PPT mRNA-expressing neurons within the graft patches (51-54%) was similar to that found in normal caudate-putamen. In specimens with intact dopamine afferents the expression of PPE mRNA in grafted neurons was similar to that found in normal caudate putamen, whereas the hybridization signal for PPT mRNA was 27% higher in the graft neurons than in the normal caudate-putamen. Removal of host dopaminergic afferents by 6-hydroxydopamine lesions of the ipsilateral mesostriatal dopamine pathway increased the hybridization signal for PPE mRNA both in the grafts (+84%) and in the spared ipsilateral host caudate-putamen (+125%), whereas the PPT signal was reduced by 53% in the grafts and by 51% in the remaining host caudate-putamen. Similarly, chronic treatment of grafted animals with the dopamine receptor antagonist haloperidol (2 mg/kg per day for 10 days) produced a 146% increase in the PPE signal in the grafts and a 175% increase in the intact contralateral caudate-putamen, whereas the signal for PPT mRNA was again decreased by 52% and 51% in the grafts and host caudate-putamen, respectively. These results show that the host nigrostriatal dopamine pathway differentially regulates enkephalin and substance P gene expression within striatal grafts and thereby exerts a tonic functional influence over grafted striatal neurons. Images PMID:1438238

  8. Optimization of mRNA design for protein expression in the crustacean Daphnia magna.

    PubMed

    Törner, Kerstin; Nakanishi, Takashi; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2014-08-01

    The water flea Daphnia is a new model organism for ecological, evolutionary, and toxicological genomics. Detailed functional analysis of genes newly discovered through genomic approaches often requires overexpression of the identified protein. In the present study, we report the microinjection of in vitro-synthesized RNAs into the eggs as a method for overexpressing ubiquitous proteins in Daphnia magna. We injected a 1.3-kb mRNA that coded for the red fluorescent protein (DsRed2) flanked by UTRs from the ubiquitously expressed elongation factor 1?-1 (EF1?-1) into D. magna embryos. DsRed2 fluorescence in the embryos was measured 24 h after microinjection. Unexpectedly, the reporter RNA containing the 522-bp full-length EF1?-1 3' UTR failed to induce fluorescence. To assess reporter expression, the length of the 3' UTR that potentially contained negative regulatory elements of protein expression, including AU-rich regions and Musashi binding elements, was serially reduced from the 3' end. Assessing all injected RNA alternatives, mRNA containing the first 60 bp of the 3' UTR gave rise to the highest fluorescence, 14 times the Daphnia auto-fluorescence. In contrast, mRNA lacking the entire 3' UTR hardly induced any change in fluorescence intensity. This is the first evaluation of UTRs of mRNAs delivered into Daphnia embryos by microinjection for overexpressing proteins. The mRNA with truncated 3' UTRs of Daphnia EF1?-1 will be useful not only for gain-of-function analyses but also for labeling proteins and organelles with fluorescent proteins in Daphnia. PMID:24585253

  9. Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation.

    PubMed

    Kushibiki, Toshihiro; Tajiri, Takako; Ninomiya, Yoshihisa; Awazu, Kunio

    2010-03-01

    Low-level laser therapy (LLLT) has been used as a method for biostimulation. Cartilage develops through the differentiation of mesenchymal cells into chondrocytes, and differentiated chondrocytes in articular cartilage maintain cartilage homeostasis by synthesizing cartilage-specific extracellular matrix. The aim of this study is to evaluate the enhancement of chondrocyte differentiation and the expression levels of chondrogenic mRNA in prechondrogenic ATDC5 cells after laser irradiation. For chondrogenic induction, ATDC5 cells were irradiated with a blue laser (405 nm, continuous wave) at 100 mW/cm(2) for 180 s following incubation in chondrogenic differentiation medium. Differentiation after laser irradiation was quantitatively evaluated by the measurement of total collagen contents and chondrogenesis-related mRNAs. The total amount of collagen and mRNA levels of aggrecan, collagen type II, SOX-9, and DEC-1 were increased relative to those of a non-laser irradiated group after 14 days of laser irradiation. On the other hand, Ap-2alpha mRNA, a negative transcription factor of chondrogenesis, was dramatically decreased after laser irradiation. In addition, intracellular reactive oxygen species (ROS) were generated after laser irradiation. These results, for the first time, provide functional evidence that mRNA expression relating to chondrogenesis is increased, and Ap-2alpha is decreased immediately after laser irradiation. As this technique could readily be applied in situ to control the differentiation of cells at an implanted site within the body, this approach may have therapeutic potential for the restoration of damaged or diseased tissue. PMID:20163967

  10. RANKL, OPG and CTR mRNA expression in the temporomandibular joint in rheumatoid arthritis

    PubMed Central

    LIU, WEI-WEI; XU, ZHI-MIN; LI, ZHENG-QIANG; ZHANG, YAN; HAN, BING

    2015-01-01

    The calcitonin receptor (CTR) and receptor activator of nuclear factor ?B ligand (RANKL) have been found to be involved in the differentiation of osteoclasts. The association between the RANKL:osteoprotegerin (OPG) expression ratio and the pathogenesis of bone-destructive rheumatoid arthritis (RA) has been described in several joints, but the available data for the temporomandibular joint (TMJ) are limited. The aim of the present study was to investigate the involvement of osteoclasts at sites of bone erosion by determining the CTR expression and the RANKL:OPG expression ratio in the TMJ in a collagen-induced arthritis (CIA) model. Forty-eight male Wistar rats were randomly divided into two groups: Control group, injected with saline solution for 6 weeks; and CIA group, injected with emulsion. The RANKL and OPG mRNA expression was significantly increased in immunized rats compared with that in non-immunized rats. The RANKL:OPG expression ratio on the trabecular bone surface was 9.0 and 6.4 in the CIA group at weeks 4 and 6, respectively, while the RANKL:OPG expression ratio in the controls was 1.0:2. CTR mRNA expression was significantly upregulated in immunized rats compared with that in non-immunized rats; the level of CTR mRNA in the CTR-positive osteoclasts on the trabecular bone surface was 10.9- and 7.8-fold higher in the CIA rats than that in the control rats at weeks 4 and 6, respectively. In conclusion, focal bone destruction in an experimental model of arthritis in the TMJ can be attributed to cells expressing CTR, a defining feature of osteoclasts. The expression of RANKL and OPG mRNA within the inflamed synovium provides an insight into the mechanism of osteoclast differentiation and function at the border of bone erosion in arthritis.

  11. Targeted mRNA degradation by double-stranded RNA in vitro

    E-print Network

    Bartel, David

    ,4,5,8 Ruth Lehmann,6 David P. Bartel,1,7,8 and Phillip A. Sharp3,7 1 The Whitehead Institute for BiomedicalTargeted mRNA degradation by double-stranded RNA in vitro Thomas Tuschl,1­4,8 Phillip D. Zamore,1 (for reviews, see Montgomery and Fire et al. 1998; Fire 1999; Hunter 1999; Sharp 1999) including

  12. Local IGFBP-3 mRNA expression, apoptosis and risk of colorectal adenomas

    PubMed Central

    Keku, Temitope O; Sandler, Robert S; Simmons, James G; Galanko, Joseph; Woosley, John T; Proffitt, Michelle; Omofoye, Oluwaseun; McDoom, Maya; Lund, Pauline K

    2008-01-01

    Background IGF binding protein-3 (IGFBP-3) regulates the bioavailability of insulin-like growth factors I and II, and has both anti-proliferative and pro-apoptotic properties. Elevated plasma IGFBP-3 has been associated with reduced risk of colorectal cancer (CRC), but the role of tissue IGFBP-3 is not well defined. We evaluated the association between tissue or plasma IGFBP-3 and risk of colorectal adenomas or low apoptosis. Methods Subjects were consenting patients who underwent a clinically indicated colonoscopy at UNC Hospitals and provided information on diet and lifestyle. IGFBP-3 mRNA in normal colon was assessed by real time RT-PCR. Plasma IGFBP-3 was measured by ELISA and apoptosis was determined by morphology on H & E slides. Logistic regression was used to compute odds ratio (OR) and 95% confidence intervals. Results We observed a modest correlation between plasma IGFBP-3 and tissue IGFBP-3 expression (p = 0.007). There was no significant association between plasma IGFBP-3 and adenomas or apoptosis. Tissue IGFBP-3 mRNA expression was significantly lower in cases than controls. Subjects in the lowest three quartiles of tissue IGFBP-3 gene expression were more likely to have adenomas. Consistent with previous reports, low apoptosis was significantly associated with increased risk of adenomas (p = 0.003). Surprisingly, local IGFBP-3 mRNA expression was inversely associated with apoptosis. Conclusion Low expression of IGFBP-3 mRNA in normal colonic mucosa predicts increased risk of adenomas. Our findings suggest that local IGFBP-3 in the colon may directly increase adenoma risk but IGFBP-3 may act through a pathway other than apoptosis to influence adenoma risk. PMID:18498652

  13. Second harmonic super-resolution microscopy for quantification of mRNA at single copy sensitivity.

    PubMed

    Liu, Jing; Cho, Il-Hoon; Cui, Yi; Irudayaraj, Joseph

    2014-12-23

    Cell-specific information on the quantity and localization of key mRNAs at single copy sensitivity in single cells is critical for evaluating basic cellular process, disease risk, and efficacy of therapy. Quantification of overexpressed mRNAs beyond the diffraction limit is constrained by the optical property of the probes and microscopy techniques. In this report, nanosized barium titanium oxide (BaTiO3, BTO) crystals were utilized as probes for mRNA quantification by a second harmonic super-resolution microscopy (SHaSM). The SHaSM was able to detect a single copy of the human epidermal growth factor receptor 2 (Her2) mRNA at a resolution of 55.6 nm with the ability to resolve multiple mRNA copies in a diffraction-limited spot. Her2 mRNA per cell was counted in SK-BR-3, MCF-7, and HeLa cell lines as 595±79.1, 38.9±8.26, and 1.5±2.8, respectively. Our single-cell quantification results were validated with the fluorescence in situ hybridization studies and quantitative PCR, showing better specificity and selectivity over current single-molecule approaches for transcript detection. The SHaSM is expected to have an upper limit of resolving ?10(4) transcripts in a single cell with the ability to monitor intracellular transcriptional dynamics at video rate. The developed approach has strong potential in clinical research and in the early diagnosis of life-threatening diseases such as cancer. PMID:25494326

  14. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export.

    PubMed

    Li, Ping; Noegel, Angelika A

    2015-11-16

    Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the l I: nker of N: ucleoskeleton and C: ytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153. PMID:26476453

  15. The Consensus 5' Splice Site Motif Inhibits mRNA Nuclear Export

    PubMed Central

    Lee, Eliza S.; Akef, Abdalla; Mahadevan, Kohila; Palazzo, Alexander F.

    2015-01-01

    In eukaryotes, mRNAs are synthesized in the nucleus and then exported to the cytoplasm where they are translated into proteins. We have mapped an element, which when present in the 3’terminal exon or in an unspliced mRNA, inhibits mRNA nuclear export. This element has the same sequence as the consensus 5’splice site motif that is used to define the start of introns. Previously it was shown that when this motif is retained in the mRNA, it causes defects in 3’cleavage and polyadenylation and promotes mRNA decay. Our new data indicates that this motif also inhibits nuclear export and promotes the targeting of transcripts to nuclear speckles, foci within the nucleus which have been linked to splicing. The motif, however, does not disrupt splicing or the recruitment of UAP56 or TAP/Nxf1 to the RNA, which are normally required for nuclear export. Genome wide analysis of human mRNAs, lncRNA and eRNAs indicates that this motif is depleted from naturally intronless mRNAs and eRNAs, but less so in lncRNAs. This motif is also depleted from the beginning and ends of the 3’terminal exons of spliced mRNAs, but less so for lncRNAs. Our data suggests that the presence of the 5’splice site motif in mature RNAs promotes their nuclear retention and may help to distinguish mRNAs from misprocessed transcripts and transcriptional noise. PMID:25826302

  16. Dynamic m(6)A mRNA methylation directs translational control of heat shock response.

    PubMed

    Zhou, Jun; Wan, Ji; Gao, Xiangwei; Zhang, Xingqian; Jaffrey, Samie R; Qian, Shu-Bing

    2015-10-22

    The most abundant mRNA post-transcriptional modification is N(6)-methyladenosine (m(6)A), which has broad roles in RNA biology. In mammalian cells, the asymmetric distribution of m(6)A along mRNAs results in relatively less methylation in the 5' untranslated region (5'UTR) compared to other regions. However, whether and how 5'UTR methylation is regulated is poorly understood. Despite the crucial role of the 5'UTR in translation initiation, very little is known about whether m(6)A modification influences mRNA translation. Here we show that in response to heat shock stress, certain adenosines within the 5'UTR of newly transcribed mRNAs are preferentially methylated. We find that the dynamic 5'UTR methylation is a result of stress-induced nuclear localization of YTHDF2, a well-characterized m(6)A 'reader'. Upon heat shock stress, the nuclear YTHDF2 preserves 5'UTR methylation of stress-induced transcripts by limiting the m(6)A 'eraser' FTO from demethylation. Remarkably, the increased 5'UTR methylation in the form of m(6)A promotes cap-independent translation initiation, providing a mechanism for selective mRNA translation under heat shock stress. Using Hsp70 mRNA as an example, we demonstrate that a single m(6)A modification site in the 5'UTR enables translation initiation independent of the 5' end N(7)-methylguanosine cap. The elucidation of the dynamic features of 5'UTR methylation and its critical role in cap-independent translation not only expands the breadth of physiological roles of m(6)A, but also uncovers a previously unappreciated translational control mechanism in heat shock response. PMID:26458103

  17. Novel, Testis-Specific mRNA Transcripts Encoding N-Terminally Truncated Choline Acetyltransferase

    E-print Network

    Ibáñez, Carlos

    of choline acetyltransferase (ChAT) mRNA and protein in the mammalian testis. We have now found that none of the ChAT mRNAs produced in the testis is capable of encoding a full-length ChAT protein. Two ChAT cDNAs were isolated from an adult rat testis cDNA library encoding N-terminally truncated ChAT proteins

  18. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice.

    PubMed

    Andries, Oliwia; Mc Cafferty, Séan; De Smedt, Stefaan C; Weiss, Ron; Sanders, Niek N; Kitada, Tasuku

    2015-11-10

    Messenger RNA as a therapeutic modality is becoming increasingly popular in the field of gene therapy. The realization that nucleobase modifications can greatly enhance the properties of mRNA by reducing the immunogenicity and increasing the stability of the RNA molecule (the Kariko paradigm) has been pivotal for this revolution. Here we find that mRNAs containing the N(1)-methylpseudouridine (m1?) modification alone and/or in combination with 5-methylcytidine (m5C) outperformed the current state-of-the-art pseudouridine (?) and/or m5C/?-modified mRNA platform by providing up to ~44-fold (when comparing double modified mRNAs) or ~13-fold (when comparing single modified mRNAs) higher reporter gene expression upon transfection into cell lines or mice, respectively. We show that (m5C/)m1?-modified mRNA resulted in reduced intracellular innate immunogenicity and improved cellular viability compared to (m5C/)?-modified mRNA upon in vitro transfection. The enhanced capability of (m5C/)m1?-modified mRNA to express proteins may at least partially be due to the increased ability of the mRNA to evade activation of endosomal Toll-like receptor 3 (TLR3) and downstream innate immune signaling. We believe that the (m5C/)m1?-mRNA platform presented here may serve as a new standard in the field of modified mRNA-based therapeutics. PMID:26342664

  19. Decline in c-myc mRNA expression but not the induction of c-fos mRNA expression is associated with differentiation of SH-SY5Y human neuroblastoma cells

    SciTech Connect

    Jalava, A.M.; Heikkilae, J.E.; Akerman, K.E.O. )

    1988-11-01

    The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc RNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC{sub 8}) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA and DiC{sub 8} it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.

  20. Global changes in processing of mRNA 3? untranslated regions characterize clinically distinct cancer subtypes

    PubMed Central

    Singh, Priyam; Alley, Travis L; Wright, Sarah M; Kamdar, Sonya; Schott, William; Wilpan, Robert Y; Mills, Kevin D; Graber, Joel H

    2009-01-01

    Molecular cancer diagnostics are an important clinical advance in cancer management, but new methods are still needed. In this context, gene expression signatures obtained by microarray represent a useful molecular diagnostic. Here, we describe novel probe-level microarray analyses that reveal connections between mRNA processing and neoplasia in multiple tumor types, with diagnostic potential. We now show that characteristic differences in mRNA processing, primarily in the 3?-untranslated region, define molecular signatures that can distinguish similar tumor subtypes with different survival characteristics, with at least 74% accuracy. Using a mouse model of B-cell leukemia/lymphoma, we find that differences in transcript isoform abundance are likely due to both alternative polyadenylation (APA) and differential degradation. While truncation of the 3?-UTR is the most common observed pattern, genes with elongated transcripts were also observed, and distinct groups of affected genes are found in related, but distinct tumor types. Genes with elongated transcripts are overrepresented in ontology categories related to cell-cell adhesion and morphology. Analysis of microarray data from human primary tumor samples revealed similar phenomena. Western blot analysis of selected proteins confirms that changes in the 3?-UTR can correlate with changes in protein expression. Our work suggests that alternative mRNA processing, particularly APA, can be a powerful molecular biomarker with prognostic potential. Finally, these findings provide insights into the molecular mechanisms of gene deregulation in tumorigenesis. PMID:19934316

  1. How mRNA is misspliced in acute myelogenous leukemia (AML)?

    PubMed Central

    Solly, Françoise; Balsat, Marie

    2014-01-01

    Approximately one-third of expressed genes are misspliced in AML, opening the possibility that additional factors than splicing factor mutations might cause RNA missplicing in these diseases. AML cells harbor a constellation of epigenetic modifications and regularly express large amounts of WT1 transcripts. Histone acetylation/methylation and DNA CpG methylation favor either exon skipping or inclusion, mainly through interfering with RNA Pol II-mediated elongation. This can result either from the binding of various factors on Pol II or alternatively from the recruitment of DNA binding factors that create roadblocks to Pol II-induced elongation. WT1 exhibits pleiotropic effects on mRNA splicing, which mainly result from the binding properties of WT1 via its zinc fingers domains to DNA, RNA, and proteins. Through the repression of the kinase SRPK1, WT1 modifies the splicing of VEGF, which plays important roles in hematopoiesis and angiogenesis. At the protein level, WT1 interacts with the splicing factors U2AF2, WTAP, and RPM4. Therefore, AML cells appear to have acquired numerous properties known to interfere with mRNA splicing. The challenge is now to elucidate these links in order to trigger mRNA splicing at the therapeutic level. PMID:25375204

  2. Endothelin-1 mRNA is widely expressed in porcine and human tissues.

    PubMed Central

    Nunez, D J; Brown, M J; Davenport, A P; Neylon, C B; Schofield, J P; Wyse, R K

    1990-01-01

    Endothelin-1 (ET-1) is a potent vasoconstrictor peptide isolated from porcine endothelial cells. We have previously demonstrated widespread binding sites for ET-1 in blood vessels, heart, kidney, adrenal, lung, and brain in a distribution that paralleled that of endothelial cells. To determine whether these cells are capable of synthesizing ET-1 in close proximity to its binding sites, amplification of cDNA using the polymerase chain reaction and in situ hybridization were used to study the distribution of ET-1 mRNA. We have found widespread transcription of ET-1 mRNA in human and porcine tissues. The identity of the transcripts was confirmed by prediction of restriction fragment lengths or sequencing. In situ hybridization in the kidney showed that the regional expression of these transcripts is localized, probably to small blood vessels, but the failure to visualize ET-1 mRNA in the capillaries may reflect absence of expression or insufficient sensitivity of the technique. These results should permit investigation of the role of ET-1 as a local factor in vascular pathophysiology. Images PMID:1692036

  3. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1

    PubMed Central

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem–loop structure containing the branch site near its apical loop and the 3? splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing. PMID:26546116

  4. Pre-Mrna Introns as a Model for Cryptographic Algorithm:. Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Regoli, Massimo

    2010-01-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. In particular the RNA sequences have some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algorithm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  5. RNase II is important for A-site mRNA cleavage during ribosome pausing

    PubMed Central

    Garza-Sánchez, Fernando; Shoji, Shinichiro; Fredrick, Kurt; Hayes, Christopher S.

    2009-01-01

    Summary In Escherichia coli, translational arrest can elicit cleavage of codons within the ribosomal A site. This A-site mRNA cleavage is independent of RelE, and has been proposed to be an endonucleolytic activity of the ribosome. Here, we show that the 3??5? exonuclease RNase II plays an important role in RelE-independent A-site cleavage. Instead of A-site cleavage, translational pausing in ?RNase II cells produces transcripts that are truncated +12 and +28 nucleotides downstream of the A-site codon. Deletions of the genes encoding polynucleotide phosphorylase (PNPase) and RNase R had little effect on A-site cleavage. However, PNPase overexpression restored A-site cleavage activity to ?RNase II cells. Purified RNase II and PNPase were both unable to directly catalyze A-site cleavage in vitro. Instead, these exonucleases degraded ribosome-bound mRNA to positions +18 and +24 nucleotides downstream of the ribosomal A site, respectively. Finally, a stable structural barrier to exoribonuclease activity inhibited A-site cleavage when introduced immediately downstream of paused ribosomes. These results demonstrate that 3??5? exonuclease activity is an important prerequisite for efficient A-site cleavage. We propose that RNase II degrades mRNA to the downstream border of paused ribosomes, facilitating cleavage of the A-site codon by an unknown RNase. PMID:19627501

  6. Serum amyloid A in the mouse. Sites of uptake and mRNA expression.

    PubMed Central

    Meek, R. L.; Eriksen, N.; Benditt, E. P.

    1989-01-01

    Murine serum amyloid A1 (SAA1) and serum amyloid A2 (SAA2) are circulating, acute phase, high density apolipoproteins of unknown function. To pursue issues relating to their possible function their uptake and formation were studied. Kinetics of SAA protein distribution and gene expression after acute phase stimulation by casein or lipopolysaccharide were examined using immunocytochemistry for protein and RNA blot and in situ hybridization with probes for SAA1 and SAA2 mRNA. After casein injection, interstitial cells of testes, cells of adrenal cortex, kidney proximal convoluted tubule epithelia, and some parafollicular cells of spleen took up SAA in a time pattern related to plasma SAA levels. Extrahepatic SAA1 and SAA2 mRNA were induced by lipopolysaccharide in kidney proximal and distal convoluted tubule epithelia, and SAA1 mRNA was induced in epithelial lining the mucosa of the ileum and large intestine, indicating that there may be more than one function for the apoSAA gene family related to site of and stimulus for expression. Images Figure 3 Figure 4 Figure 4 Figure 5 Figure 6 PMID:2782380

  7. An RNA-protein complex links enhanced nuclear 3' processing with cytoplasmic mRNA stabilization.

    PubMed

    Ji, Xinjun; Kong, Jian; Liebhaber, Stephen A

    2011-07-01

    Post-transcriptional controls are critical to gene regulation. These controls are frequently based on sequence-specific binding of trans-acting proteins to cis-acting motifs on target RNAs. Prior studies have revealed that the KH-domain protein, ?CP, binds to a 3' UTR C-rich motif of h?-globin mRNA and contributes to its cytoplasmic stability. Here, we report that this 3' UTR ?CP complex regulates the production of mature ?-globin mRNA by enhancing 3' processing of the h?-globin transcript. We go on to demonstrate that this nuclear activity reflects enhancement of both the cleavage and the polyadenylation reactions and that ?CP interacts in vivo with core components of the 3' processing complex. Consistent with its nuclear processing activity, our studies reveal that ?CP assembles co-transcriptionally at the h?-globin chromatin locus and that this loading is selectively enriched at the 3' terminus of the gene. The demonstrated linkage of nuclear processing with cytoplasmic stabilization via a common RNA-protein complex establishes a basis for integration of sequential controls critical to robust and sustained expression of a target mRNA. PMID:21623344

  8. Expression of MDR1, MRP2 and BCRP mRNA in tissues of turkeys.

    PubMed

    Haritova, A M; Schrickx, J; Lashev, L D; Fink-Gremmels, J

    2008-08-01

    MDR1, MRP2 and BCRP are members of the superfamily of ABC membrane transporters that export a large variety of structurally diverse substances out of the cell, hence being an integral part of various biological barriers. Here we report for the first time the tissue distribution of these ABC efflux transporters in the gastrointestinal tract (crop, proventriculus, duodenum, proximal and distal jejunum, ileum, caecum, colon) as well as in liver, kidney, lung, brain, adrenal gland, ovaries, oviduct and testes in BUT9 turkeys. MDR1 and BCRP mRNA expression was detected in all tissue samples, and the highest levels were measured in the small intestines. The tissue distribution of MRP2 mRNA was less consistent and some tissues seemed to lack any significant expression. Moreover, in consideration of previous findings suggesting that fluoroquinolones are substrates and modulators of ABC transporters, the effect of orally administered danofloxacin mesylate on the levels of MDR1, MRP2 and BCRP mRNA expression was investigated. Danofloxacin treatment resulted in a significant up-regulation of the measured transporters at the transcriptional level in the upper part of gastro-intestinal tract, liver and kidneys as well as in barrier-protected organs, such as the brain. However, despite this significant increase in the transcription levels, the pharmacokinetic parameters after repeated application of danofloxacin mesylate were not significantly altered. PMID:18638299

  9. Tandem Spinach Array for mRNA Imaging in Living Bacterial Cells

    PubMed Central

    Zhang, Jichuan; Fei, Jingyi; Leslie, Benjamin J.; Han, Kyu Young; Kuhlman, Thomas E.; Ha, Taekjip

    2015-01-01

    Live cell RNA imaging using genetically encoded fluorescent labels is an important tool for monitoring RNA activities. A recently reported RNA aptamer-fluorogen system, the Spinach, in which an RNA aptamer binds and induces the fluorescence of a GFP-like 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) ligand, can be readily tagged to the RNA of interest. Although the aptamer–fluorogen system is sufficient for imaging highly abundant non-coding RNAs (tRNAs, rRNAs, etc.), it performs poorly for mRNA imaging due to low brightness. In addition, whether the aptamer-fluorogen system may perturb the native RNA characteristics has not been systematically characterized at the levels of RNA transcription, translation and degradation. To increase the brightness of these aptamer-fluorogen systems, we constructed and tested tandem arrays containing multiple Spinach aptamers (8–64 aptamer repeats). Such arrays enhanced the brightness of the tagged mRNA molecules by up to ~17 fold in living cells. Strong laser excitation with pulsed illumination further increased the imaging sensitivity of Spinach array-tagged RNAs. Moreover, transcriptional fusion to the Spinach array did not affect mRNA transcription, translation or degradation, indicating that aptamer arrays might be a generalizable labeling method for high-performance and low-perturbation live cell RNA imaging. PMID:26612428

  10. Modulation of metabolic and clock gene mRNA rhythms by pineal and retinal circadian oscillators.

    PubMed

    Karaganis, Stephen P; Bartell, Paul A; Shende, Vikram R; Moore, Ashli F; Cassone, Vincent M

    2009-04-01

    Avian circadian organization involves interactions between three neural pacemakers: the suprachiasmatic nuclei (SCN), pineal, and retina. Each of these structures is linked within a neuroendocrine loop to influence downstream processes and peripheral oscillations. However, the contribution of each structure to drive or synchronize peripheral oscillators or circadian outputs in avian species is largely unknown. To explore these interactions in the chick, we measured 2-deoxy[(14)C]-glucose (2DG) uptake and mRNA expression of the chick clock genes bmal1, cry1, and per3 in three brain areas and in two peripheral organs in chicks that underwent pinealectomy, enucleation, or sham surgery. We found that 2DG uptake rhythms damp under constant darkness in intact animals, while clock gene mRNA levels continue to cycle, demonstrating that metabolic rhythms are not directly driven by clock gene transcription. Moreover, 2DG rhythms are not phase-locked to rhythms of clock gene mRNA. However, pinealectomy and enucleation had similar disruptive effects on both metabolic and clock gene rhythms, suggesting that both of these oscillators act similarly to reinforce molecular and physiological rhythms in the chicken. Finally, we show that the relative phasing of at least one clock gene, cry1, varies between central and peripheral oscillators in a tissue specific manner. These data point to a complex, differential orchestration of central and peripheral oscillators in the chick, and, importantly, indicate a disconnect between canonical clock gene regulation and circadian control of metabolism. PMID:19136000

  11. Ribosome collisions and Translation efficiency: Optimization by codon usage and mRNA destabilization

    E-print Network

    Namiko Mitarai; Kim Sneppen; Steen Pedersen

    2008-09-25

    Individual mRNAs are translated by multiple ribosomes that initiate translation with a few seconds interval. The ribosome speed is codon dependant, and ribosome queuing has been suggested to explain specific data for translation of some mRNAs in vivo. By modelling the stochastic translation process as a traffic problem, we here analyze conditions and consequences of collisions and queuing. The model allowed us to determine the on-rate (0.8 to 1.1 initiations per sec) and the time (1 sec) the preceding ribosome occludes initiation for Escherichia coli lacZ mRNA in vivo. We find that ribosome collisions and queues are inevitable consequences of a stochastic translation mechanism that reduce the translation efficiency substantially on natural mRNAs. The cells minimize collisions by having its mRNAs being unstable and by a highly selected codon usage in the start of the mRNA. The cost of mRNA breakdown is offset by the concomitant increase in translational efficiency.

  12. Dendritically targeted Bdnf mRNA is essential for energy balance and response to leptin

    PubMed Central

    Liao, Guey-Ying; An, Juan Ji; Gharami, Kusumika; Waterhouse, Emily G.; Vanevski, Filip; Jones, Kevin R.; Xu, Baoji

    2012-01-01

    Mutations in the Bdnf gene, which produces transcripts with either short or long 3? untranslated regions (3?UTRs), cause human obesity; however, the precise role of BDNF in the regulation of energy balance remains unknown. Here we show the relationship between long 3?UTR Bdnf mRNA, leptin, neuronal activation and body weight. We found that long 3?UTR Bdnf mRNA was enriched in dendrites of hypothalamic neurons and that insulin and leptin could stimulate its translation in dendrites. Furthermore, mice harboring a truncated long Bdnf 3?UTR developed severe hyperphagic obesity, which was completely rescued by viral expression of long 3?UTR Bdnf mRNA in the hypothalamus. In these animals the ability of leptin to activate hypothalamic neurons and to inhibit food intake was compromised despite normal activation of leptin receptors. These results reveal a novel mechanism linking leptin action to BDNF expression during hypothalamic-mediated regulation of body weight, while also implicating dendritic protein synthesis in this process. PMID:22426422

  13. Volatility in mRNA secondary structure as a design principle for antisense.

    PubMed

    Johnson, Erik; Srivastava, Ranjan

    2013-02-01

    Designing effective antisense sequences is a formidable problem. A method for predicting efficacious antisense holds the potential to provide fundamental insight into this biophysical process. More practically, such an understanding increases the chance of successful antisense design as well as saving considerable time, money and labor. The secondary structure of an mRNA molecule is believed to be in a constant state of flux, sampling several different suboptimal states. We hypothesized that particularly volatile regions might provide better accessibility for antisense targeting. A computational framework, GenAVERT was developed to evaluate this hypothesis. GenAVERT used UNAFold and RNAforester to generate and compare the predicted suboptimal structures of mRNA sequences. Subsequent analysis revealed regions that were particularly volatile in terms of intramolecular hydrogen bonding, and thus potentially superior antisense targets due to their high accessibility. Several mRNA sequences with known natural antisense target sites as well as artificial antisense target sites were evaluated. Upon comparison, antisense sequences predicted based upon the volatility hypothesis closely matched those of the naturally occurring antisense, as well as those artificial target sites that provided efficient down-regulation. These results suggest that this strategy may provide a powerful new approach to antisense design. PMID:23161691

  14. Abundance of specific mRNA transcripts impacts hatching success in European eel, Anguilla anguilla L.

    PubMed

    Rozenfeld, Christoffer; Butts, Ian A E; Tomkiewicz, Jonna; Zambonino-Infante, Jose-Luis; Mazurais, David

    2016-01-01

    Maternal mRNA governs early embryonic development in fish and variation in abundance of maternal transcripts may contribute to variation in embryonic survival and hatch success in European eel, Anguilla anguilla. Previous studies have shown that quantities of the maternal gene products ?-tubulin, insulin-like growth factor 2 (igf2), nucleoplasmin (npm2), prohibitin 2 (phb2), phosphatidylinositol glycan biosynthesis class F protein 5 (pigf5), and carnitine O-palmitoyltransferase liver isoform-like 1 (cpt1) are associated with embryonic developmental competence in other teleosts. Here, the relations between relative mRNA abundance of these genes in eggs and/or embryos and egg quality, was studied and analyzed. We compared egg quality of the two groups: i) batches with hatching and ii) batches with no hatching. Results showed no significant differences in relative mRNA abundance between the hatch and no hatching groups for any of the selected genes at 0, 2.5, and 5HPF. However, at 30HPF the hatch group showed significantly higher abundance of cpt1a, cpt1b, ?-tubulin, phb2, and pigf5 transcripts than the no hatch group. Therefore, these results indicate that up-regulation of the transcription of these genes in European eel after the mid-blastula transition, may be needed to sustain embryonic development and hatching success. PMID:26415730

  15. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1.

    PubMed

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem-loop structure containing the branch site near its apical loop and the 3' splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing. PMID:26546116

  16. Expression of connexin 43 mRNA and protein in developing follicles of prepubertal porcine ovaries

    USGS Publications Warehouse

    Melton, C.M.; Zaunbrecher, G.M.; Yoshizaki, G.; Patio, R.; Whisnant, S.; Rendon, A.; Lee, V.H.

    2001-01-01

    A major form of cell-cell communication is mediated by gap junctions, aggregations of intercellular channels composed of connexins (Cxs), which are responsible for exchange of low molecular weight (< 1200 Da) cytosolic materials. These channels are a growing family of related proteins. This study was designed to determine the ontogeny of connexin 43 (Cx43) during early stages of follicular development in prepubertal porcine ovaries. A partial-length (412 base) cDNA clone was obtained from mature porcine ovaries and determined to have 98% identity with published porcine Cx43. Northern blot analysis demonstrated a 4.3-kb mRNA in total RNA isolated from prepubertal and adult porcine ovaries. In-situ hybridization revealed that Cx43 mRNA was detectable in granulosa cells of primary follicles but undetectable in dormant primordial follicles. The intensity of the signal increased with follicular growth and was greatest in the large antral follicles. Immunohistochemical evaluation indicated that Cx43 protein expression correlated with the presence of Cx43 mRNA. These results indicate that substantial amounts of Cx43 are first expressed in granulosa cells following activation of follicular development and that this expression increases throughout follicular growth and maturation. These findings suggest an association between the enhancement of intercellular gap-junctional communication and onset of follicular growth. ?? 2001 Elsevier Science Inc. All rights reserved.

  17. Fending off decay: a combinatorial approach in intact cells for identifying mRNA stability elements.

    PubMed Central

    Chrzanowska-Lightowlers, Z; Lightowlers, R N

    2001-01-01

    The strategy of systematic evolution, whereby nucleic acid sequences or conformers can be selected and amplified from a randomized population, has been exploited by many research groups for numerous purposes. It is, however, a technique largely performed in vitro, under nonphysiological conditions. We have now modified this in vitro approach to accomplish selection in growing cells. Here, we report that this new methodology has been used in vivo to select RNA elements that confer increased transcript stability. A randomized cassette was embedded in a 3'-untranslated region (UTR), downstream from the luciferase reporter open reading frame. A heterogeneous population of capped luciferase mRNA was then generated by in vitro transcription. Human liver Hep G2 cells were electroporated with this population of luciferase mRNA and total cytoplasmic RNA was isolated after varying lengths of incubation. Following RT-PCR, the 3' UTR was used to reconstruct a new population of luciferase templates, permitting subsequent cycles of in vitro transcription, electroporation, RNA isolation, and RT-PCR. Increasing the incubation time at each cycle before RNA isolation imposed selection for stable transcripts. The functional half-life of the luciferase mRNA population increased from 55 to 140 min after four cycles. Subsequent sequencing of the selected 3' UTRs revealed G-U rich elements in clones with extended chemical and functional half-lives. PMID:11333023

  18. Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening.

    PubMed

    Bazin, Jérémie; Langlade, Nicolas; Vincourt, Patrick; Arribat, Sandrine; Balzergue, Sandrine; El-Maarouf-Bouteau, Hayat; Bailly, Christophe

    2011-06-01

    After-ripening is the mechanism by which dormant seeds become nondormant during their dry storage after harvest. The absence of free water in mature seeds does not allow detectable metabolism; thus, the processes associated with dormancy release under these conditions are largely unknown. We show here that sunflower (Helianthus annuus) seed alleviation of dormancy during after-ripening is associated with mRNA oxidation and that this oxidation is prevented when seeds are maintained dormant. In vitro approaches demonstrate that mRNA oxidation results in artifacts in cDNA-amplified fragment length polymorphim analysis and alters protein translation. The oxidation of transcripts is not random but selective, and, using microarrays, we identified 24 stored mRNAs that became highly oxidized during after-ripening. Oxidized transcripts mainly correspond to genes involved in responses to stress and in cell signaling. Among them, protein phosphatase 2C PPH1, mitogen-activated protein kinase phosphatase 1, and phenyl ammonia lyase 1 were identified. We propose that targeted mRNA oxidation during dry after-ripening of dormant seeds could be a process that governs cell signaling toward germination in the early steps of seed imbibition. PMID:21642546

  19. Tandem Spinach Array for mRNA Imaging in Living Bacterial Cells.

    PubMed

    Zhang, Jichuan; Fei, Jingyi; Leslie, Benjamin J; Han, Kyu Young; Kuhlman, Thomas E; Ha, Taekjip

    2015-01-01

    Live cell RNA imaging using genetically encoded fluorescent labels is an important tool for monitoring RNA activities. A recently reported RNA aptamer-fluorogen system, the Spinach, in which an RNA aptamer binds and induces the fluorescence of a GFP-like 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) ligand, can be readily tagged to the RNA of interest. Although the aptamer-fluorogen system is sufficient for imaging highly abundant non-coding RNAs (tRNAs, rRNAs, etc.), it performs poorly for mRNA imaging due to low brightness. In addition, whether the aptamer-fluorogen system may perturb the native RNA characteristics has not been systematically characterized at the levels of RNA transcription, translation and degradation. To increase the brightness of these aptamer-fluorogen systems, we constructed and tested tandem arrays containing multiple Spinach aptamers (8-64 aptamer repeats). Such arrays enhanced the brightness of the tagged mRNA molecules by up to ~17 fold in living cells. Strong laser excitation with pulsed illumination further increased the imaging sensitivity of Spinach array-tagged RNAs. Moreover, transcriptional fusion to the Spinach array did not affect mRNA transcription, translation or degradation, indicating that aptamer arrays might be a generalizable labeling method for high-performance and low-perturbation live cell RNA imaging. PMID:26612428

  20. Circadian Rhythm of Surfactant Protein A, B and C mRNA in Rats

    PubMed Central

    Kim, Chung Mi; Sohn, Jang Won; Yoon, Ho Joo; Shin, Dong Ho; Park, Sung Soo

    2003-01-01

    Background: All organisms have developed an internal timing system capable of reacting to and anticipating environmental stimuli with a program of appropriately timed metabolic, physiologic and behavioral events. The alveolar epithelial type II cell of the mammalian lung synthesizes, stores, and secretes a lipoprotein pulmonary surfactant, which functions to stabilize alveoli at low lung volumes. Methods: The authors investigated the diurnal variation of surfactant protein A, B and C mRNA accumulation. The diurnal variation on gene expression of surfactant protein A, B and C was analysed using filter hybridization at 9 a.m., 4 p.m. and 11 p.m. Lung SP-A protein content was determined by double sandwich ELISA assay using a polyclonal antiserum raised in rabbits against purified rat SP-A. Results: The accumulation of SP-A mRNA at 4 p.m. was significantly decreased by 23.5% compared to the value at 9 a.m. (p<0.05). The accumulation of SP-B mRNA at 4 p.m. and 11 p.m. was decreased by 15.1% and 5.7%, respectively, compared to the value at 9 a.m. (p=0.07, p=0.69). The accumulation of SP-C mRNA at 4 p.m. and 11 p.m. was decreased by 6.8% and 7.7%, respectively, compared to the value at 9 a.m. (p=0.38, p=0.57). Total lung SP-A content at 4 p.m. and 11 p.m. was increased by 5.3% and 15.9%, respectively, compared to the value at 9 a.m. (p=0.64, p=0.47) Conclusion: These findings represent the diurnal variation of surfactant proteins mRNA expression in vivo. These results indicated that the diurnal variation of significant gene expression is observed in hydrophilic surfactant protein rather than in hydrophobic surfactant proteins. PMID:12872443

  1. Expression of c-fos proto-oncogene mRNA in non-melanoma skin cancer.

    PubMed

    Takahashi, S; Pearse, A D; Marks, R

    1994-02-01

    c-fos is a member of the proto-oncogene family and is implicated in the modulation of cell proliferation and differentiation. Previous studies have shown that the c-fos gene expression is regulated in a tissue specific manner. In order to clarify the role of the c-fos gene in human epidermis, we have investigated c-fos mRNA expression in both normal skin and non-melanoma skin cancer. In normal skin the intensity of the c-fos mRNA expression in spinous cells was found to be stronger than that observed in basal cells. In lesions of solar keratosis and Bowen's disease the spinous cells also showed stronger c-fos mRNA expression than in basal cells. In two of four cases of Bowen's disease some upper spinous cells showed very strong mRNA expression of the c-fos gene. In squamous cell carcinomas studied there was considerable variation in the intensity of c-fos mRNA expression. Our findings indicate that the degree of c-fos mRNA expression is related to the degree of dysplasia present. In all cases of basal cell carcinoma examined the c-fos mRNA expression was markedly decreased. These results suggest that c-fos expression may be involved in the differentiation of human keratinocytes in vivo rather than in the neoplastic process itself. PMID:8193084

  2. Determination of the Absolute Number of Cytokine mRNA Molecules within Individual Activated Human T Cells

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Marshall, Gwen; Hockett, Richard D.; Bucy, R. Pat; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A primary function of activated T cells is the expression and subsequent secretion of cytokines, which orchestrate the differentiation of other lymphocytes, modulate antigen presenting cell activity, and alter vascular endothelium to mediate an immune response. Since many features of immune regulation probably result from modest alterations of endogenous rates of multiple interacting processes, quantitative analysis of the frequency and specific activity of individual T cells is critically important. Using a coordinated set of quantitative methods, the absolute number of molecules of several key cytokine mRNA species in individual T cells has been determined. The frequency of human blood T cells activated in vitro by mitogens and recall protein antigens was determined by intracellular cytokine protein staining, in situ hybridization for cytokine mRNA, and by limiting dilution analysis for cytokine mRNA+ cells. The absolute number of mRNA molecules was simultaneously determined in both homogenates of the entire population of cells and in individual cells obtained by limiting dilution, using a quantitative, competitive RT-PCR assay. The absolute numbers of mRNA molecules in a population of cells divided by the frequency of individual positive cells, yielded essentially the same number of mRNA molecules per cell as direct analysis of individual cells by limiting dilution analysis. Mean numbers of mRNA per positive cell from both mitogen and antigen activated T cells, using these stimulation conditions, were 6000 for IL-2, 6300 for IFN-gamma, and 1600 for IL-4.

  3. Four-base codon mediated mRNA display to construct peptide libraries that contain multiple nonnatural amino acids

    PubMed Central

    Muranaka, Norihito; Hohsaka, Takahiro; Sisido, Masahiko

    2006-01-01

    In vitro selection and directed evolution of peptides from mRNA display are powerful strategies to find novel peptide ligands that bind to target biomolecules. In this study, we expanded the mRNA display method to include multiple nonnatural amino acids by introducing three different four-base codons at a randomly selected single position on the mRNA. Another nonnatural amino acid may be introduced by suppressing an amber codon that may appear from a (NNK)n nucleotide sequence on the mRNA. The mRNA display was expressed in an Escherichia coli in vitro translation system in the presence of three types of tRNAs carrying different four-base anticodons and a tRNA carrying an amber anticodon, the tRNAs being chemically aminoacylated with different nonnatural amino acids. The complexity of the starting mRNA-displayed peptide library was estimated to be 1.1 × 1012 molecules. The effectiveness of the four-base codon mediated mRNA display method was demonstrated in the selection of biocytin-containing peptides on streptavidin-coated beads. Moreover, a novel streptavidin-binding nonnatural peptide containing benzoylphenylalanine was obtained from the nonnatural peptide library. The nonnatural peptide library from the four-base codon mediated mRNA display provides much wider functional and structural diversity than conventional peptide libraries that are constituted from 20 naturally occurring amino acids. PMID:16397292

  4. Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export

    PubMed Central

    Zhang, Liang; Das, Priyabrata; Schmolke, Mirco; Manicassamy, Balaji; Wang, Yaming; Deng, Xiaoyi; Cai, Ling; Tu, Benjamin P.; Forst, Christian V.; Roth, Michael G.; Levy, David E.; García-Sastre, Adolfo; de Brabander, Jef; Phillips, Margaret A.

    2012-01-01

    The NS1 protein of influenza virus is a major virulence factor essential for virus replication, as it redirects the host cell to promote viral protein expression. NS1 inhibits cellular messenger ribonucleic acid (mRNA) processing and export, down-regulating host gene expression and enhancing viral gene expression. We report in this paper the identification of a nontoxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of the virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for de novo pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of vesicular stomatitis virus M (matrix) protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. PMID:22312003

  5. Circadian regulation of hydroxyindole-O-methyltransferase mRNA in the chicken pineal gland in vivo and in vitro.

    PubMed Central

    Grève, P; Voisin, P; Grechez-Cassiau, A; Bernard, M; Collin, J P; Guerlotté, J

    1996-01-01

    The production of the pineal hormone melatonin displays circadian variations with high levels at night. The last enzyme involved in melatonin biosynthesis is hydroxyindole-O-methyltransferase (HIOMT, EC 2.1.1.4). The expression of the mRNA encoding chicken HIOMT was investigated in vivo and in vitro throughout the light/dark cycle, in constant darkness and with light interruption of the dark phase. The stability of HIOMT mRNA was also examined. A day/night rhythm of HIOMT mRNA levels, with a peak at the midlight phase, was observed in vivo as well as in vitro. Constant darkness did not abolish this rhythm in vivo. One cycle of the HIOMT mRNA rhythm could be observed in constant darkness in vitro. In addition, a stimulatory effect of light on HIOMT mRNA levels during the dark phase could be observed in vivo as well as in vitro. HIOMT mRNA stability was not affected by light or dark conditions, as demonstrated by chase experiments with actinomycin D. The results indicate that the daily changes in HIOMT mRNA concentration reflect transcriptional regulation by circadian oscillators and photosensory mechanisms that are endogenous to the pineal gland. PMID:8920978

  6. Time-related changes in connexin mRNA abundance in the rat neocortex during postnatal development.

    PubMed

    Prime, G; Horn, G; Sutor, B

    2000-01-01

    Gap junction coupling between neurons is important for the temporal and spatial co-ordination of neocortical development and can be visualised by dye-coupling. Neuronal dye-coupling in the rat neocortex is extensive during the first 2 postnatal weeks and diminishes rapidly thereafter. We used RT (reverse transcriptase)-PCR to investigate the time-related changes in mRNA expression for the connexins (Cx) Cx 26, Cx 30, Cx 32, Cx 36, Cx 37, Cx 40, Cx 43, Cx 45 and Cx 46 as well as for beta-actin and GAPDH in rat neocortex during the first 6 postnatal weeks. The time courses for mRNA expression for GAPDH, Cx 30, Cx 36 and Cx 43 were also investigated by northern blotting. Cx 30 and Cx 45 mRNA abundance showed no time-dependent changes during the early postnatal period. The relative abundance of Cx 32, Cx 43 and Cx 46 mRNA increased significantly during the first 2-3 weeks and then remained relatively constant during weeks 3-6. The relative abundance of Cx 26, Cx 36, Cx 37 and Cx 40 mRNA also increased significantly during the first 10-15 postnatal days but then declined significantly from their peak values during weeks 3-6. beta-actin mRNA expression showed no time-related changes but GAPDH mRNA expression increased significantly during the first postnatal week, then remained constant. The time-dependent changes in mRNA relative abundance for GAPDH, Cx 36 and Cx 43 determined by northern blotting corroborate the results from the RT-PCR study. None of the Cx exhibited time-dependent changes in mRNA expression in homogenates of rat neocortex which parallel the changes in neuronal dye-coupling during postnatal development. PMID:10648878

  7. Decreased UBASH3A mRNA Expression Levels in Peripheral Blood Mononuclear Cells from Patients with Systemic Lupus Erythematosus.

    PubMed

    Liu, Jie; Ni, Jing; Li, Lian-Ju; Leng, Rui-Xue; Pan, Hai-Feng; Ye, Dong-Qing

    2015-10-01

    Increasing evidence has demonstrated the association between UBASH3A gene and multiple autoimmune diseases (ADs). The aim of our study was to explore the potential effect of UBASH3A messenger RNA (mRNA) expression and its role in the pathogenesis of systemic lupus erythematosus (SLE). UBASH3A mRNA levels were detected by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) in total RNA, isolated from the peripheral blood mononuclear cells (PBMCs) of 32 SLE patients and 30 healthy donors with TRIzol Reagent. The expression level of UBASH3A mRNA was significantly reduced in PBMCs from SLE patients when compared with healthy controls (p?=?0.002). UBASH3A mRNA expression levels in lower active SLE were significantly lower than that in inactive SLE groups (p?=?0.000). There was a negative association between mRNA levels of hyper-active and lower-active SLE patients (p?=?0.000). Moreover, a significant negative correlation between UBASH3A mRNA expression and the onset age of SLE patients was found (p?=?0.044). A negative correlation was found between UBASH3A mRNA expression and SLEDAI (p?=?0.049). Nevertheless, no significant difference was found between patients with lupus nephritis (LN) and those without LN (p?=?0.392). The presence of leukopenia, positive for anti-dsDNA antibody and anti-SSB antibody were associated with UBASH3A mRNA levels in SLE patients (all p?mRNA levels in SLE patients and their correlations with experimental parameters suggested that UBASH3A may involve in the pathogenesis of SLE. PMID:25876712

  8. Functions of maternal mRNA as a cytoplasmic factor responsible for pole cell formation in Drosophila embryos

    SciTech Connect

    Togashi, S.; Kobayashi, S.; Okada, M.

    1986-12-01

    Injection of mRNA extracted from Drosophila cleavage embryos or mature oocytes restored pole cell-forming ability to embryos that had been deprived of this ability by uv irradiation. However, mRNA extracted from blastoderms did not show the restoration activity. Pole cells thus formed in uv-irradiated embryos bear similarities to normal pole cells both in their morphology and their ability to migrate to the gonadal rudiments. But this mRNA does not appear to be capable of rescuing uv-induced sterility, or inducing pole cells in the anterior polar region.

  9. Molecular cloning of amyloid cDNA derived from mRNA of the Alzheimer disease brain: coding and noncoding regions of the fetal precursor mRNA are expressed in the cortex

    SciTech Connect

    Zain, S.B.; Salim, M.; Chou, W.G.; Sajdel-Sulkowska, E.M.; Majocha, R.E.; Marotta, C.A.

    1988-02-01

    To gain insight into factors associated with the excessive accumulation of ..beta..-amyloid in the Alzheimer disease (AD) brain, the present studies were initiated to distinguish between a unique primary structure of the AD-specific amyloid precursor mRNA vis a vis other determinants that may affect amyloid levels. Previous molecular cloning experiments focused on amyloid derived from sources other than AD cases. In the present work, the authors cloned and characterized amyloid cDNA derived directly from AD brain mRNA. Poly(A)/sup +/ RNA from AD cortices was used for the preparation of lambdagt11 recombinant cDNA libraries. An insert of 1564 nucleotides was isolated that included the ..beta..-amyloid domain and corresponded to 75% of the coding region and approx. = 70% of the 3'-noncoding region of the fetal precursor amyloid cDNA reported by others. On RNA blots, the AD amyloid mRNA consisted of a doublet of 3.2 and 3.4 kilobases. In control and AD cases, the amyloid mRNA levels were nonuniform and were independent of glial-specific mRNA levels. Based on the sequence analysis data, they conclude that a segment of the amyloid gene is expressed in the AD cortex as a high molecular weight precursor mRNA with major coding and 3'-noncoding regions that are identical to the fetal brain gene product.

  10. In vitro and in vivo mRNA delivery using lipid-enveloped pHresponsive polymer nanoparticles

    E-print Network

    Su, Xingfang

    Biodegradable core?shell structured nanoparticles with a poly(?-amino ester) (PBAE) core enveloped by a phospholipid bilayer shell were developed for in vivo mRNA delivery with a view toward delivery of mRNA-based vaccines. ...

  11. Loss of the scavenger mRNA decapping enzyme DCPS causes syndromic intellectual disability with neuromuscular defects

    PubMed Central

    Ng, Calista K.L.; Shboul, Mohammad; Taverniti, Valerio; Bonnard, Carine; Lee, Hane; Eskin, Ascia; Nelson, Stanley F.; Al-Raqad, Mohammed; Altawalbeh, Samah; Séraphin, Bertrand; Reversade, Bruno

    2015-01-01

    mRNA decay is an essential and active process that allows cells to continuously adapt gene expression to internal and environmental cues. There are two mRNA degradation pathways: 3? to 5? and 5? to 3?. The DCPS protein is the scavenger mRNA decapping enzyme which functions in the last step of the 3? end mRNA decay pathway. We have identified a DCPS pathogenic mutation in a large family with three affected individuals presenting with a novel recessive syndrome consisting of craniofacial anomalies, intellectual disability and neuromuscular defects. Using patient's primary cells, we show that this homozygous splice mutation results in a DCPS loss-of-function allele. Diagnostic biochemical analyses using various m7G cap derivatives as substrates reveal no DCPS enzymatic activity in patient's cells. Our results implicate DCPS and more generally RNA catabolism, as a critical cellular process for neurological development, normal cognition and organismal homeostasis in humans. PMID:25712129

  12. cis-acting translational effects of the 5' noncoding region of c-myc mRNA

    SciTech Connect

    Parkin, N.; Darveau, A.; Nicholson, R.; Sonenberg, N.

    1988-07-01

    The authors previously shown that the 5' noncoding region of mouse c-myc mRNA has a negative effect on translational efficiency in a rabbit reticulocyte Iysate. They wanted to localize and characterize the inhibitory translational element(s) in the mRNA and to study its effect in other in vitro and in vivo systems. There they report that the restrictive element is confined to a 240-nucleotide sequence of the 5' noncoding region of mouse c-myc mRNA and that this sequence acts in cis to inhibit the translation of a heterologous mRNA. In addition, they report that the cis-inhibitory effect is also exhibited in microinjected Xenopus ooctyes and wheat-germ extracts but not in HeLa cell extracts. Transfection of corresponding plasmid DNA constructs into several established cell lines did not produce the cis-inhibitory effect. A model to explain these results is presented.

  13. Expression of somatostatin, dopamine, progesterone and growth hormone receptor mRNA in canine cortisol-secreting adrenocortical tumours.

    PubMed

    Kool, Miriam M J; Galac, Sara; van der Helm, Noortje; Spandauw, Catharina G; Kooistra, Hans S; Mol, Jan A

    2015-10-01

    Cortisol-secreting adrenocortical tumours (AT) in dogs are characterised by uncontrolled growth and excessive cortisol secretion. Dysregulated hormone receptor expression might be involved in tumour growth and hypersecretion of cortisol. The relative mRNA expression of growth hormone receptor, progesterone receptor, somatostatin receptors (SSTR1-3) and dopamine receptors (DRD1-2 and DRD5) was evaluated in 36 canine ATs and 15 adrenal glands obtained from healthy dogs. Compared with normal adrenal tissue, DRD2 mRNA expression was relatively lower in carcinomas, while SSTR1 mRNA expression was lower in both adenomas and carcinomas. Both of these features might contribute to loss of inhibition of tumour growth and upregulation of cortisol secretion. In canine ATs that had recurred within 30 months of surgical adrenalectomy, a marked increase in expression of DRD1 mRNA was observed. Targeting of specific hormone receptors, expressed by ATs, might be exploited for therapy. PMID:26143682

  14. Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay

    E-print Network

    Hurt, Jessica A.

    UPF1 is a DNA/RNA helicase with essential roles in nonsense-mediated mRNA decay (NMD) and embryonic development. How UPF1 regulates target abundance and the relationship between NMD and embryogenesis are not well understood. ...

  15. p53 cellular tumor antigen: analysis of mRNA levels in normal adult tissues, embryos, and tumors.

    PubMed Central

    Rogel, A; Popliker, M; Webb, C G; Oren, M

    1985-01-01

    The relative levels of mRNA specific for the mouse p53 cellular tumor antigen were determined in various normal adult tissues, embryos, and tumors. All tumors studied contained concentrations of p53 mRNA well above those present in most normal tissues. Normal spleen, however, had p53 mRNA levels comparable to those found in some tumors, despite the fact that they contained barely detectable p53 protein. This apparent discrepancy was found to be due to the extremely rapid turnover rate of p53 in the spleen (half-life, approximately equal to 6 min). In developing fetuses, a marked reduction of p53 mRNA levels was manifest from day 11 onwards, whereas the levels during organogenesis (days 9 to 11) were comparable to those found in undifferentiated embryonic stem cells and in some tumors. Images PMID:3915536

  16. The genetic basis for individual differences in mRNA splicing and APOBEC1 editing activity in murine macrophages

    E-print Network

    Hassan, Musa A.

    Alternative splicing and mRNA editing are known to contribute to transcriptome diversity. Although alternative splicing is pervasive and contributes to a variety of pathologies, including cancer, the genetic context for ...

  17. Long-term stability of fear memory depends on the synthesis of protein but not mRNA in the amygdala

    E-print Network

    Helmstetter, Fred J.

    Long-term stability of fear memory depends on the synthesis of protein but not mRNA in the amygdala inhibitors of protein or messenger ribonucleic acid (mRNA) synthesis into the amygdala just after training or retrieval of fear memory. Results showed that blocking mRNA or protein synthesis immediately after learning

  18. Characterization of the Crithidia fasciculata mRNA Cycling Sequence Binding Proteins

    PubMed Central

    Mahmood, Riaz; Mittra, Bidyottam; Hines, Jane C.; Ray, Dan S.

    2001-01-01

    The Crithidia fasciculata cycling sequence binding protein (CSBP) binds with high specificity to sequence elements in several mRNAs that accumulate periodically during the cell cycle. Mutations in these sequence elements abolish both cycling of the mRNA and binding of CSBP. Two genes, CSBPA and CSBPB, encoding putative subunits of CSBP have been cloned and were found to be present in tandem on the same DNA molecule and to be closely related. CSBPA and CSBPB are predicted to encode proteins with sizes of 35.6 and 42.0 kDa, respectively. Both CSBPA and CSBPB proteins have a predicted coiled-coil domain near the N terminus and a novel histidine and cysteine motif near the C terminus. The latter motif is conserved in other trypanosomatid species. Gel sieving chromatography and glycerol gradient sedimentation results indicate that CSBP has a molecular mass in excess of 200 kDa and an extended structure. Recombinant CSBPA and CSBPB also bind specifically to the cycling sequence and together can be reconstituted to give an RNA gel shift similar to that of purified CSBP. Proteins in cell extracts bind to an RNA probe containing six copies of the cycling sequence. The RNA-protein complexes contain both CSBPA and CSBPB, and the binding activity cycles in near synchrony with target mRNA levels. CSBPA and CSBPB mRNA and protein levels show little variation throughout the cell cycle, suggesting that additional factors are involved in the cyclic binding to the cycling sequence elements. PMID:11416125

  19. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins.

    PubMed

    Wang, Eric T; Ward, Amanda J; Cherone, Jennifer M; Giudice, Jimena; Wang, Thomas T; Treacy, Daniel J; Lambert, Nicole J; Freese, Peter; Saxena, Tanvi; Cooper, Thomas A; Burge, Christopher B

    2015-06-01

    RNA binding proteins of the conserved CUGBP1, Elav-like factor (CELF) family contribute to heart and skeletal muscle development and are implicated in myotonic dystrophy (DM). To understand their genome-wide functions, we analyzed the transcriptome dynamics following induction of CELF1 or CELF2 in adult mouse heart and of CELF1 in muscle by RNA-seq, complemented by crosslinking/immunoprecipitation-sequencing (CLIP-seq) analysis of mouse cells and tissues to distinguish direct from indirect regulatory targets. We identified hundreds of mRNAs bound in their 3' UTRs by both CELF1 and the developmentally induced MBNL1 protein, a threefold greater overlap in target messages than expected, including messages involved in development and cell differentiation. The extent of 3' UTR binding by CELF1 and MBNL1 predicted the degree of mRNA repression or stabilization, respectively, following CELF1 induction. However, CELF1's RNA binding specificity in vitro was not detectably altered by coincubation with recombinant MBNL1. These findings support a model in which CELF and MBNL proteins bind independently to mRNAs but functionally compete to specify down-regulation or localization/stabilization, respectively, of hundreds of mRNA targets. Expression of many alternative 3' UTR isoforms was altered following CELF1 induction, with 3' UTR binding associated with down-regulation of isoforms and genes. The splicing of hundreds of alternative exons was oppositely regulated by these proteins, confirming an additional layer of regulatory antagonism previously observed in a handful of cases. The regulatory relationships between CELFs and MBNLs in control of both mRNA abundance and splicing appear to have evolved to enhance developmental transitions in major classes of heart and muscle genes. PMID:25883322

  20. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway.

    PubMed

    Miller, Aimee L; Suntharalingam, Mythili; Johnson, Sylvia L; Audhya, Anjon; Emr, Scott D; Wente, Susan R

    2004-12-01

    Production of inositol hexakisphosphate (IP6) by Ipk1, the inositol-1,3,4,5,6-pentakisphosphate 2-kinase, is required for Gle1-mediated mRNA export in Saccharomyces cerevisiae cells. To examine the network of interactions that require IP6 production, an analysis of fitness defects was conducted in mutants harboring both an ipk1 null allele and a mutant allele in genes encoding nucleoporins or transport factors. Enhanced lethality was observed with a specific subset of mutants, including nup42, nup116, nup159, dbp5, and gle2, all of which had been previously connected to Gle1 function. Complementation of the nup116Deltaipk1Delta and nup42Deltaipk1Delta double mutants did not require the Phe-Gly repeat domains in the respective nucleoporins, suggesting that IP6 was acting subsequent to heterogeneous nuclear ribonucleoprotein targeting to the nuclear pore complex. With Nup42 and Nup159 localized exclusively to the nuclear pore complex cytoplasmic side, we speculated that IP6 may regulate a cytoplasmic step in mRNA export. To test this prediction, the spatial requirements for the production of IP6 were investigated. Restriction of Ipk1 to the cytoplasm did not block IP6 production. Moreover, coincident sequestering of both Ipk1 and Mss4 (an enzyme required for phosphatidylinositol 4,5-bisphosphate production) to the cytoplasm also did not block IP6 production. Given that the kinase required for inositol 1,3,4,5,6-pentakisphosphate production (Ipk2) is localized in the nucleus, these results indicated that soluble inositides were diffusing between the nucleus and the cytoplasm. Additionally, the cytoplasmic production of IP6 by plasma membrane-anchored Ipk1 rescued a gle1-2 ipk1-4 synthetic lethal mutant. Thus, cytoplasmic IP6 production is sufficient for mediating the Gle1-mRNA export pathway. PMID:15459192

  1. Expression analysis of a pseudogene in transgenic tobacco: a frameshift mutation prevents mRNA accumulation.

    PubMed Central

    Voelker, T A; Moreno, J; Chrispeels, M J

    1990-01-01

    Seeds of the Pinto cultivar of the common bean, Phaseolus vulgaris, are deficient in phytohemagglutinin (PHA), a lectin normally composed of two different polypeptides (PHA-E and PHA-L). In Pinto seeds, there is no PHA-E and only small amounts of PHA-L. The gene coding for the Pinto PHA-E, Pdlec1, is a pseudogene as a result of a single base pair deletion in codon 11, causing a frameshift and premature termination of translation. This mutation explains the absence of the PHA-E polypeptide but not the several-hundredfold reduction of the cytoplasmic Pdlec1 mRNA in developing seeds when compared with a normal PHA-E gene. To find the cause for this reduction in mRNA levels, we swapped gene fragments of Pdlec1 with the homologous parts of a normal PHA gene from the cultivar Greensleeves and introduced these fusions into tobacco. Analysis of the transgenic seeds showed that the Pdlec1 promoter is fully functional. We also repaired the Pdlec1 coding frame in vitro and inserted the repaired and unrepaired versions into a PHA gene expression cassette. In transgenic tobacco, both constructs showed Pdlec1 transcript accumulation in the second half of seed maturation. The single-base frame repair boosted the peak transcript levels by a factor of 40 and resulted in the synthesis of PHA-E at normal levels. We propose that the premature translational stop caused by the frameshift leads to a faster breakdown of the Pdlec1 mRNA, thereby preventing this transcript from accumulating to high levels. PMID:2152115

  2. The effect of RNA base lesions on mRNA translation

    PubMed Central

    Calabretta, Alessandro; Küpfer, Pascal A.; Leumann, Christian J.

    2015-01-01

    The biological effect of oxidatively damaged RNA, unlike oxidatively damaged DNA, has rarely been investigated, although it poses a threat to any living cell. Here we report on the effect of the commonly known RNA base-lesions 8-oxo-rG, 8-oxo-rA, ?-rC, ?-rA, 5-HO-rC, 5-HO-rU and the RNA abasic site (rAS) on ribosomal translation. To this end we have developed an in vitro translation assay based on the mRNA display methodology. A short synthetic mRNA construct containing the base lesion in a predefined position of the open reading frame was 32P-labeled at the 5?-end and equipped with a puromycin unit at the 3?-end. Upon in vitro translation in rabbit reticulocyte lysates, the encoded peptide chain is transferred to the puromycin unit and the products analyzed by gel electrophoresis. Alternatively, the unlabeled mRNA construct was used and incubated with 35S-methionine to prove peptide elongation of the message. We find that all base-lesions interfere substantially with ribosomal translation. We identified two classes, the first containing modifications at the base coding edge (?-rC, ?-rA and rAS) which completely abolish peptide synthesis at the site of modification, and the second consisting of 8-oxo-rG, 8-oxo-rA, 5-HO-rC and 5-HO-rU that significantly retard full-length peptide synthesis, leading to some abortive peptides at the site of modification. PMID:25897124

  3. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data

    PubMed Central

    Gao, Feng; Foat, Barrett C; Bussemaker, Harmen J

    2004-01-01

    Background Functional genomics studies are yielding information about regulatory processes in the cell at an unprecedented scale. In the yeast S. cerevisiae, DNA microarrays have not only been used to measure the mRNA abundance for all genes under a variety of conditions but also to determine the occupancy of all promoter regions by a large number of transcription factors. The challenge is to extract useful information about the global regulatory network from these data. Results We present MA-Networker, an algorithm that combines microarray data for mRNA expression and transcription factor occupancy to define the regulatory network of the cell. Multivariate regression analysis is used to infer the activity of each transcription factor, and the correlation across different conditions between this activity and the mRNA expression of a gene is interpreted as regulatory coupling strength. Applying our method to S. cerevisiae, we find that, on average, 58% of the genes whose promoter region is bound by a transcription factor are true regulatory targets. These results are validated by an analysis of enrichment for functional annotation, response for transcription factor deletion, and over-representation of cis-regulatory motifs. We are able to assign directionality to transcription factors that control divergently transcribed genes sharing the same promoter region. Finally, we identify an intrinsic limitation of transcription factor deletion experiments related to the combinatorial nature of transcriptional control, to which our approach provides an alternative. Conclusion Our reliable classification of ChIP positives into functional and non-functional TF targets based on their expression pattern across a wide range of conditions provides a starting point for identifying the unknown sequence features in non-coding DNA that directly or indirectly determine the context dependence of transcription factor action. Complete analysis results are available for browsing or download at . PMID:15113405

  4. Widespread signatures of local mRNA folding structure selection in four Dengue virus serotypes

    PubMed Central

    2015-01-01

    Background It is known that mRNA folding can affect and regulate various gene expression steps both in living organisms and in viruses. Previous studies have recognized functional RNA structures in the genome of the Dengue virus. However, these studies usually focused either on the viral untranslated regions or on very specific and limited regions at the beginning of the coding sequences, in a limited number of strains, and without considering evolutionary selection. Results Here we performed the first large scale comprehensive genomics analysis of selection for local mRNA folding strength in the Dengue virus coding sequences, based on a total of 1,670 genomes and 4 serotypes. Our analysis identified clusters of positions along the coding regions that may undergo a conserved evolutionary selection for strong or weak local folding maintained across different viral variants. Specifically, 53-66 clusters for strong folding and 49-73 clusters for weak folding (depending on serotype) aggregated of positions with a significant conservation of folding energy signals (related to partially overlapping local genomic regions) were recognized. In addition, up to 7% of these positions were found to be conserved in more than 90% of the viral genomes. Although some of the identified positions undergo frequent synonymous / non-synonymous substitutions, the selection for folding strength therein is preserved, and thus cannot be trivially explained based on sequence conservation alone. Conclusions The fact that many of the positions with significant folding related signals are conserved among different Dengue variants suggests that a better understanding of the mRNA structures in the corresponding regions may promote the development of prospective anti- Dengue vaccination strategies. The comparative genomics approach described here can be employed in the future for detecting functional regions in other pathogens with very high mutations rates. PMID:26449467

  5. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures

    PubMed Central

    Slinger, Betty L.; Newman, Hunter; Lee, Younghan; Pei, Shermin; Meyer, Michelle M.

    2015-01-01

    RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition. PMID:26675164

  6. GABAergic mRNA expression is upregulated in the prefrontal cortex of rats sensitized to methamphetamine.

    PubMed

    Wearne, Travis A; Parker, Lindsay M; Franklin, Jane L; Goodchild, Ann K; Cornish, Jennifer L

    2016-01-15

    Inhibitory gamma-aminobutyric acid (GABA)-mediated neurotransmission plays an important role in the regulation of the prefrontal cortex (PFC), with increasing evidence suggesting that dysfunctional GABAergic processing of the PFC may underlie certain deficits reported across psychotic disorders. Methamphetamine (METH) is a psychostimulant that induces chronic psychosis in a subset of users, with repeat administration producing a progressively increased vulnerability to psychotic relapse following subsequent drug administration (sensitization). The aim here was to investigate changes to GABAergic mRNA expression in the PFC of rats sensitized to METH using quantitative polymerase chain reaction (qPCR). Male Sprague-Dawley rats (n=12) underwent repeated methamphetamine (intraperitoneal (i.p.) or saline injections for 7 days. Following 14 days of withdrawal, rats were challenged with acute methamphetamine (1mg/kg i.p.) and RNA was isolated from the PFC to compare the relative mRNA expression of a range of GABA enzymes, transporters and receptors subunits. METH challenge resulted in a significant sensitized behavioral (locomotor) response in METH pre-treated animals compared with saline pre-treated controls. The mRNAs of transporters (GAT1 and GAT3), ionotropic GABAA receptor subunits (?3 and ?1), together with the metabotropic GABAB1 receptor, were upregulated in the PFC of sensitized rats compared with saline controls. These findings indicate that GABAergic mRNA expression is significantly altered at the pre and postsynaptic level following sensitization to METH, with sensitization resulting in the transcriptional upregulation of several inhibitory genes. These changes likely have significant consequences on GABA-mediated neurotransmission in the PFC and may underlie certain symptoms conserved across psychotic disorders, such as executive dysfunction. PMID:26475507

  7. Expression of macrophage inflammatory protein-2 and KC mRNA in pulmonary inflammation.

    PubMed Central

    Huang, S.; Paulauskis, J. D.; Godleski, J. J.; Kobzik, L.

    1992-01-01

    This study sought to test the hypothesis that expression of mRNA for two cytokines, macrophage inflammatory protein-2 (MIP-2) and the KC gene product, is induced in rat lung cells during inflammatory responses in vitro and in vivo. Macrophage inflammatory protein-2 and KC are members of the platelet-factor 4 (PF-4) cytokine superfamily that cause marked neutrophil chemotaxis and activation in vitro. To investigate expression of the genes for MIP-2 and KC in rat models of lung injury, cDNA probes for these cytokines in the rat were made from polymerase chain reaction (PCR) products generated using mouse sequence-derived primers. Sequence analysis of these cDNAs showed marked homology to known murine sequences (89% and 92% MIP-2 and KC, respectively). These cDNAs were first used to study the expression of these two genes in rat alveolar macrophages (AMs) in vitro by Northern blot hybridization. Lipopolysaccharide (LPS) treatment of rat AMs in vitro caused marked increases in mRNA for both KC and MIP-2 within 30 minutes, which persisted through the 6 hours measured. To study expression during inflammation in vivo, rats were treated with LPS by intratracheal instillation. Bronchoalveolar lavage (BAL) cells and whole trachea homogenates were analyzed. There was a marked and rapid increase in MIP-2 and KC mRNA levels within both BAL cells and trachea homogenates after LPS instillation. The results support the hypothesis that MIP-2 and KC cytokines contribute to neutrophil chemotaxis and activation in this rat model of acute pulmonary inflammation. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:1415488

  8. Urinary cell mRNA profiles and differential diagnosis of acute kidney graft dysfunction.

    PubMed

    Matignon, Marie; Ding, Ruchuang; Dadhania, Darshana M; Mueller, Franco B; Hartono, Choli; Snopkowski, Catherine; Li, Carol; Lee, John R; Sjoberg, Daniel; Seshan, Surya V; Sharma, Vijay K; Yang, Hua; Nour, Bakr; Vickers, Andrew J; Suthanthiran, Manikkam; Muthukumar, Thangamani

    2014-07-01

    Noninvasive tests to differentiate the basis for acute dysfunction of the kidney allograft are preferable to invasive allograft biopsies. We measured absolute levels of 26 prespecified mRNAs in urine samples collected from kidney graft recipients at the time of for-cause biopsy for acute allograft dysfunction and investigated whether differential diagnosis of acute graft dysfunction is feasible using urinary cell mRNA profiles. We profiled 52 urine samples from 52 patients with biopsy specimens indicating acute rejection (26 acute T cell-mediated rejection and 26 acute antibody-mediated rejection) and 32 urine samples from 32 patients with acute tubular injury without acute rejection. A stepwise quadratic discriminant analysis of mRNA measures identified a linear combination of mRNAs for CD3?, CD105, TLR4, CD14, complement factor B, and vimentin that distinguishes acute rejection from acute tubular injury; 10-fold cross-validation of the six-gene signature yielded an estimate of the area under the curve of 0.92 (95% confidence interval, 0.86 to 0.98). In a decision analysis, the six-gene signature yielded the highest net benefit across a range of reasonable threshold probabilities for biopsy. Next, among patients diagnosed with acute rejection, a similar statistical approach identified a linear combination of mRNAs for CD3?, CD105, CD14, CD46, and 18S rRNA that distinguishes T cell-mediated rejection from antibody-mediated rejection, with a cross-validated estimate of the area under the curve of 0.81 (95% confidence interval, 0.68 to 0.93). Incorporation of these urinary cell mRNA signatures in clinical decisions may reduce the number of biopsies in patients with acute dysfunction of the kidney allograft. PMID:24610929

  9. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins

    PubMed Central

    Wang, Eric T.; Ward, Amanda J.; Cherone, Jennifer M.; Giudice, Jimena; Wang, Thomas T.; Treacy, Daniel J.; Lambert, Nicole J.; Freese, Peter; Saxena, Tanvi; Cooper, Thomas A.; Burge, Christopher B.

    2015-01-01

    RNA binding proteins of the conserved CUGBP1, Elav-like factor (CELF) family contribute to heart and skeletal muscle development and are implicated in myotonic dystrophy (DM). To understand their genome-wide functions, we analyzed the transcriptome dynamics following induction of CELF1 or CELF2 in adult mouse heart and of CELF1 in muscle by RNA-seq, complemented by crosslinking/immunoprecipitation-sequencing (CLIP-seq) analysis of mouse cells and tissues to distinguish direct from indirect regulatory targets. We identified hundreds of mRNAs bound in their 3? UTRs by both CELF1 and the developmentally induced MBNL1 protein, a threefold greater overlap in target messages than expected, including messages involved in development and cell differentiation. The extent of 3? UTR binding by CELF1 and MBNL1 predicted the degree of mRNA repression or stabilization, respectively, following CELF1 induction. However, CELF1's RNA binding specificity in vitro was not detectably altered by coincubation with recombinant MBNL1. These findings support a model in which CELF and MBNL proteins bind independently to mRNAs but functionally compete to specify down-regulation or localization/stabilization, respectively, of hundreds of mRNA targets. Expression of many alternative 3? UTR isoforms was altered following CELF1 induction, with 3? UTR binding associated with down-regulation of isoforms and genes. The splicing of hundreds of alternative exons was oppositely regulated by these proteins, confirming an additional layer of regulatory antagonism previously observed in a handful of cases. The regulatory relationships between CELFs and MBNLs in control of both mRNA abundance and splicing appear to have evolved to enhance developmental transitions in major classes of heart and muscle genes. PMID:25883322

  10. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    SciTech Connect

    Zhang, Jingjie; Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987 ; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-09-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ? SAHA inhibits cell transformation in Cl41 cells. ? SAHA suppresses Cyclin D1 protein expression. ? SAHA decreases cyclin D1 mRNA stability.

  11. PromEC: An updated database of Escherichia coli mRNA promoters with experimentally identified transcriptional start sites

    PubMed Central

    Hershberg, Ruti; Bejerano, Gill; Santos-Zavaleta, Alberto; Margalit, Hanah

    2001-01-01

    PromEC is an updated compilation of Escherichia coli mRNA promoter sequences. It includes documentation on the location of experimentally identified mRNA transcriptional start sites on the E.coli chromosome, as well as the actual sequences in the promoter region. The database was updated as of July 2000 and includes 472 entries. PromEC is accessible at http://bioinfo.md.huji.ac.il/marg/promec PMID:11125111

  12. PTEN mRNA detection by chromogenic, RNA in situ technologies: a reliable alternative to PTEN immunohistochemistry.

    PubMed

    Bingham, Victoria; Ong, Chee Wee; James, Jacqueline; Maxwell, Pamela; Waugh, David; Salto-Tellez, Manuel; McQuaid, Stephen

    2016-01-01

    Immunohistochemical staining for phosphatase and tensin homolog (PTEN) does not have either an acceptable standard protocol or concordance of scoring between pathologists. Evaluation of PTEN mRNA with a unique and verified sequence probe may offer a realistic alternative providing a robust and reproducible protocol. In this study, we have evaluated an in situ hybridization (ISH) protocol for PTEN mRNA using RNAScope technology and compared it with a standard protocol for PTEN immunohistochemistry (IHC). PTEN mRNA expression by ISH was consistently more sensitive than PTEN IHC, with 56% of samples on a mixed-tumor tissue microarray (TMA) showing high expression by ISH compared with 42% by IHC. On a prostate TMA, 49% of cases showed high expression by ISH compared with 43% by IHC. Variations in PTEN mRNA expression within malignant epithelium were quantifiable using image analysis on the prostate TMAs. Within tumors, clear overexpression of PTEN mRNA on malignant epithelium compared with benign epithelium was frequently observed and quantified. The use of SpotStudio software in the mixed-tumor TMA allowed for clear demonstration of varying levels of PTEN mRNA between tumor samples by the mRNA methodology. This was evident by the quantifiable differences between distinct oropharyngeal tumors (up to 3-fold increase in average number of spots per cell between 2 cases). mRNA detection of PTEN or other biomarkers, for which optimal or standardized immunohistochemical techniques are not available, represents a means by which heterogeneity of expression within focal regions of tumor can be explored with more confidence. PMID:26518664

  13. Dietary copper can regulate the level of mRNA for dopamine B-hydroxylase in rat adrenal gland

    SciTech Connect

    Sabban, E.L.; Failla, M.L.; McMahon, A.; Seidel, K.E. Dept. of Agriculture, Beltsville, MD )

    1991-03-15

    Recent studies have shown that Cu deficiency markedly alters the levels of dopamine (DA) and norepinephrine (NE) in several peripheral tissues of rodents. Conversion of DA to NE is mediated by dopamine B-hydroxylase (DBM). Here the authors examined the effect of dietary Cu deficiency on the levels of DA, NE and DBM mRNA in rat adrenal gland. Severe Cu deficiency was induced by feeding low Cu diet to dams beginning at 17d gestation and weaning pups to the same diet. At 7 wks of age rats fed {minus}Cu diet were characterized by depressed growth, low tissue Cu, enlarged hearts and moderate anemia. Concentrations of DA were higher in adrenals and hearts of {minus}Cu rats compared to +Cu controls. While cardiac level of NE in {minus}Cu rats were reduced to 17% that of controls, adrenal NE was unchanged by Cu deficiency. To investigate possible mechanisms responsible for the response of adrenal gland to Cu deficiency, RNA was isolated and the levels of DBH mRNA and tyrosine hydroxylase (TH) mRNA were analyzed by Northern blots. Steady state levels of adrenal DBH mRNA was increased 2-3 fold in {minus}Cu rats, whereas TH mRNA were unchanged by dietary Cu status. Upon feeding the {minus}Cu rats the Cu adequate diet overnight, there was a further increase in DBH mRNA and a slight elevation of TH mRNA levels. The results indicate that dietary copper can markedly affect the level of DBH mRNA in rat adrenal gland.

  14. A supersandwich fluorescence in situ hybridization strategy for highly sensitive and selective mRNA imaging in tumor cells.

    PubMed

    Huang, Jin; Wang, He; Yang, Xiaohai; Yang, Yanjing; Quan, Ke; Ying, Le; Xie, Nuli; Ou, Min; Wang, Kemin

    2016-01-01

    We report a supersandwich fluorescence in situ hybridization (SFISH) strategy for highly sensitive and selective in situ visualization of mRNA expression patterns at the single-cell level. This strategy uses two fluorophore-labeled signal probes to generate a supersandwich product, which in turn generates numerous signal probes located at the target mRNA position, resulting in the in situ fluorescence signal amplification. PMID:26523451

  15. Light differentially regulates cell division and the mRNA abundance of pea nucleolin during de-etiolation

    NASA Technical Reports Server (NTRS)

    Reichler, S. A.; Balk, J.; Brown, M. E.; Woodruff, K.; Clark, G. B.; Roux, S. J.

    2001-01-01

    The abundance of plant nucleolin mRNA is regulated during de-etiolation by phytochrome. A close correlation between the mRNA abundance of nucleolin and mitosis has also been previously reported. These results raised the question of whether the effects of light on nucleolin mRNA expression were a consequence of light effects on mitosis. To test this we compared the kinetics of light-mediated increases in cell proliferation with that of light-mediated changes in the abundance of nucleolin mRNA using plumules of dark-grown pea (Pisum sativum) seedlings. These experiments show that S-phase increases 9 h after a red light pulse, followed by M-phase increases in the plumule leaves at 12 h post-irradiation, a time course consistent with separately measured kinetics of red light-induced increases in the expression of cell cycle-regulated genes. These increases in cell cycle-regulated genes are photoreversible, implying that the light-induced increases in cell proliferation are, like nucleolin mRNA expression, regulated via phytochrome. Red light stimulates increases in the mRNA for nucleolin at 6 h post-irradiation, prior to any cell proliferation changes and concurrent with the reported timing of phytochrome-mediated increases of rRNA abundance. After a green light pulse, nucleolin mRNA levels increase without increasing S-phase or M-phase. Studies in animals and yeast indicate that nucleolin plays a significant role in ribosome biosynthesis. Consistent with this function, pea nucleolin can rescue nucleolin deletion mutants of yeast that are defective in rRNA synthesis. Our data show that during de-etiolation, the increased expression of nucleolin mRNA is more directly regulated by light than by mitosis.

  16. Stress regulation of adrenocorticosteroid receptor gene transcription and mRNA expression in rat hippocampus: time-course analysis.

    PubMed

    Paskitti, M E; McCreary, B J; Herman, J P

    2000-09-15

    Neuronal glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) proteins mediate the transcriptional effects of circulating glucocorticoids. These receptors bind the same DNA response element, yet mediate quite different cellular functions. The present study tests the hypothesis that acute and chronic stress, which cause increases in glucocorticoids sufficient to bind the GR, will regulate expression of the GR and MR genes in the hippocampal formation. Analysis of MR gene transcription using an intronic MR probe revealed a transient 50% decrease in MR hnRNA in CA1, CA3 and dentate gyrus at 60-120 min post-stress, consistent with glucocorticoid down-regulation of the MR gene. However, no changes were seen in full-length MR mRNA at any post-stress time point. In contrast, GR hnRNA was not affected by acute stress, but GR mRNA was decreased 120 min post stress in all hippocampal subregions. Chronic stress exposure down-regulated GR mRNA in CA3 only; effects were first evident 7 days post stress and persisted for the entire stress time-course (28 days). There was no evidence for down-regulation of GR hnRNA or MR hnRNA/mRNA at any point in the chronic stress regimen. The transient decrease in MR hnRNA in the absence of mRNA changes suggests increased MR mRNA stability. In contrast, acute stress decreases the availability of GR mRNA without demonstrably affecting transcription, suggesting reduced GR mRNA stability. The results suggest that acute stress alters GR mRNA expression by largely post-transcriptional mechanisms. However, elevations in basal corticosterone secretion seen following chronic stress are not sufficient to markedly down-regulate GR/MR expression in a long-term fashion. PMID:11038247

  17. Cleavage of full-length beta APP mRNA by hammerhead ribozymes.

    PubMed Central

    Denman, R B

    1993-01-01

    The sequences surrounding the first 5'GUC3' in the mRNA encoding the Alzheimer amyloid peptide precursor (beta APP) were used to construct a pair of transacting hammerhead ribozymes. Each ribozyme contained the conserved core bases of the hammerhead motif found in the positive strand of satellite RNA of tobacco ringspot virus [(+)sTRSV] and two stems, 7 and 8 bases long, complementary to the target, beta APP mRNA. However, one of the ribozyme cleaving strands was lengthened at its 3' end to include the early splicing and polyadenylation signal sequences of SV40 viral RNA. This RNA, therefore, more closely mimics transcripts produced by RNA polymerase II from eucaryotic expression vectors in vivo. RNA, prepared by run-off transcription of cDNA oligonucleotide or plasmid constructs containing a T7 RNA polymerase promoter was used to characterize several properties of the cleavage reaction. In the presence of both ribozyme cleaving strands magnesium-ion dependent cleavage of a model 26 base beta APP substrate RNA or full-length beta APP-751 mRNA was observed at the hammerhead consensus cleavage site. Neither ribozyme was active against non-message homologs of beta APP mRNA, nor was cleavage detected when point mutations were made in the conserved core sequences. However, the kcat/Km at 37 degrees C in 10 mM Mg+2 of the longer ribozyme was reduced twenty-fold when model and full-length substrates were compared. The use of short deoxyoligonucleotides (13-17 mers) that bind upstream of the ribozyme was found to enhance the rate of cleavage of the full-length but not beta APP model substrate RNAs. The rate of enhancement depended on both the length of the deoxyoligonucleotide used as well as its site of binding with respect to the ribozyme. These data demonstrate the utility of ribozymes to cleave target RNAs in a catalytic, site-specific fashion in vitro. Direct comparison of the efficiency of different ribozyme constructs and different modulating activities provide an experimental strategy for designing more effective ribozymes for therapeutic purposes. Images PMID:8371986

  18. Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats.

    PubMed

    Cherrington, Nathan J; Slitt, Angela L; Li, Ning; Klaassen, Curtis D

    2004-07-01

    The function of hepatic transporters is to move organic substances across sinusoidal and canalicular membranes. During extrahepatic cholestasis, transporters involved in the movement of substances from blood to bile, such as sodium/taurocholate-cotransporting polypeptide (Ntcp) and multidrug resistance protein 2 (Mrp2), are down-regulated, whereas others that transport chemicals from liver to blood, such as Mrp3, are up-regulated. Unlike extrahepatic cholestasis, where transporter expression responds to the stress of accumulating bile constituents, lipopolysaccharide (LPS)-induced intrahepatic cholestasis may be directly caused by alterations in transporter expression. The aim of this study was to quantitatively determine the effect of LPS on transporter expression and study the mechanism(s) by which LPS alters mRNA levels of major hepatic transporters in Sprague-Dawley rats. Hepatic mRNA levels of Mrp2, Mrp6, multiple drug resistance protein 1a (Mdr1a), organic anion-transporting polypeptide 1 (Oatp1), Oatp2, Oatp4, Ntcp, bile salt export pump, organic cation transporter 1 (Oct1), and organic anion transporter 3 (Oat3) were dramatically decreased, beginning approximately 6 h after LPS administration, whereas Mrp5 and Oat2 levels were unchanged. In contrast, LPS increased mRNA levels of Mrp1, Mrp3, and Mdr1b concurrently with the down-regulated transporters. Pretreatment with dexamethasone, which decreases the release of cytokines, reversed the reduction of Mdr1a, Oatp1, Oatp2, Oct1, and Ntcp mRNA following LPS administration. Furthermore, dexamethasone pretreatment also prevented the LPS-mediated increase in Mrp1, Mrp3, and Mdr1b, whereas pretreatment with aminoguanidine or gadolinium chloride, an inhibitor of inducible nitric oxide synthetase and a Kupffer cell toxicant, respectively, had no effect on the LPS-induced changes. The concurrent repression and induction of various transporters, as well as dexamethasone abatement of both LPS-mediated repression and induction, indicates that these responses may be mediated through similar pathways. PMID:15205389

  19. Endothelin receptor B protects granulocyte macrophage colony-stimulating factor mRNA from degradation.

    PubMed

    Jungck, David; Knobloch, Jürgen; Körber, Sandra; Lin, Yingfeng; Konradi, Jürgen; Yanik, Sarah; Stoelben, Erich; Koch, Andrea

    2015-06-01

    Evidence is lacking on the differential effects of the two therapeutic concepts of endothelin receptor antagonists (ERAs): the blockade of only the endothelin receptor A (ETAR; selective antagonism) versus both ETAR and endothelin receptor B (ETBR; dual blockade). Ambrisentan, a selective ERA, and bosentan, a dual blocker, are both available for therapy. We hypothesized that there are differences in the potential of ERAs to ameliorate inflammatory processes in human airway smooth muscle cells (HASMCs) and aimed to unravel underlying mechanisms. We used HASMC culture, enzyme-linked immunosorbent assay, and quantitative reverse-transcription polymerase chain reaction. Tumor necrosis factor ? (TNF?) induced transcription and expression of chemokine (C-X-C motif) ligand 2 (CXCL2), chemokine (C-X-C motif) ligand 3 (CXCL3), granulocyte macrophage colony-stimulating factor (GM-CSF), and matrix metalloproteinase 12 (MMP12) in HASMCs. In concentration-response experiments, bosentan led to a significantly greater reduction of GM-CSF and MMP12 protein release than ambrisentan, whereas there was no significant difference in their effect on GM-CSF and MMP12 mRNA. Both ERAs reduced CXCL3 protein and mRNA equally but had no effect on CXCL2. Blocking mitogen-activated protein kinases revealed that both ETAR and ETBR signal through p38 mitogen-activated protein kinase, but ETBR also signals through extracellular signal-regulated kinase (ERK) 1/2 to induce GM-CSF expression. In the presence of the transcription inhibitor actinomycin D, bosentan, but not ambrisentan, reduced GM-CSF but not MMP12 or CXCL3 mRNA. In conclusion, blockade of each endothelin receptor subtype reduces GM-CSF transcription, but blocking ETBR additionally protects GM-CSF mRNA from degradation via ERK-1/2. Accordingly, blocking both ETAR and ETBR leads to a stronger reduction of TNF?-induced GM-CSF protein expression. This mechanism might be specific to GM-CSF. Our data stress the anti-inflammatory potential of ERA and warrant further investigation of their utility in chronic inflammatory airway diseases. PMID:25855530

  20. Anesthesia for Euthanasia Influences mRNA Expression in Healthy Mice and after Traumatic Brain Injury

    PubMed Central

    Staib-Lasarzik, Irina; Kriege, Oliver; Timaru-Kast, Ralph; Pieter, Dana; Werner, Christian; Engelhard, Kristin

    2014-01-01

    Abstract Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10–11/group): no anesthesia (NA), 1?min of 4?vol% isoflurane in room air (ISO), 3?min of a combination of 5?mg/kg midazolam, 0.05?mg/kg fentanyl, and 0.5?mg/kg medetomidine intraperitoneally (COMB), or 3?min of 360?mg/kg chloral hydrate intraperitoneally (CH). mRNA expression of actin-1-related gene (Act1), FBJ murine osteosarcoma viral oncogene homolog B (FosB), tumor necrosis factor alpha (TNF?), heat shock protein beta-1 (HspB1), interleukin (IL)-6, tight junction protein 1 (ZO-1), IL-1ß, cyclophilin A, micro RNA 497 (miR497), and small cajal body-specific RNA 17 were determined by real-time polymerase chain reaction (PCR) in hippocampus samples. In naïve animals, Act1 expression was downregulated in the CH group compared with NA. FosB expression was downregulated in COMB and CH groups compared with NA. CCI reduced Act1 and FosB expression, whereas HspB1 and TNF? expression increased. After CCI, HspB1 expression was significantly higher in ISO, COMB, and CH groups, and TNF? expression was elevated in ISO and COMB groups. MiR497, IL-6, and IL-1ß were upregulated after CCI but not affected by anesthetics. Effects were independent of absolute mRNA copy numbers. The data demonstrate that a few minutes of anesthesia before tissue sampling are sufficient to induce immediate mRNA changes, which seem to predominate in the early-regulated gene cluster. Anesthesia-related effects on gene expression might explain limited reproduciblity of real-time PCR data between studies or research groups and should therefore be considered for quantitative PCR data. PMID:24945082

  1. Faithful degradation of soybean rbcS mRNA in vitro.

    PubMed Central

    Tanzer, M M; Meagher, R B

    1994-01-01

    The mRNA encoding the soybean rbcS gene, SRS4, is degraded into a set of discrete lower-molecular-weight products in light-grown soybean seedlings and in transgenic petunia leaves. The 5'-proximal products have intact 5' ends, lack poly(A) tails, lack various amounts of 3'-end sequences, and are found at higher concentrations in the polysomal fraction. To study the mechanisms of SRS4 mRNA decay more closely, we developed a cell-free RNA degradation system based on a polysomal fraction isolated from soybean seedlings or mature petunia leaves. In the soybean in vitro degradation system, endogenous SRS4 mRNA and proximal product levels decreased over a 6-h time course. When full-length in vitro-synthesized SRS4 RNAs were added to either in vitro degradation system, the RNAs were degraded into the expected set of proximal products, such as those observed for total endogenous RNA samples. When exogenously added SRS4 RNAs already truncated at their 3' ends were added to either system, they too were degraded into the expected subset of proximal products. A set of distal fragments containing intact 3' ends and lacking various portions of 5'-end sequences were identified in vivo when the heterogeneous 3' ends of the SRS4 RNAs were removed by oligonucleotide-directed RNase H cleavage. Significant amounts of distal fragments which comigrated with the in vivo products were also observed when exogenous SRS4 RNAs were degraded in either in vitro system. These proximal and distal products lacking various portions of their 3' and 5' sequences, respectively, were generated in essentially a random order, a result supporting a nonprocessive mechanism. Tagging of the in vitro-synthesized RNAs on their 5' and 3' ends with plasmid vector sequences or truncation of the 3' end had no apparent effect on the degradation pattern. Therefore, RNA sequences and/or structures in the immediate vicinity of each 3' end point may be important in the degradation machinery. Together, these data suggest that SRS4 mRNA is degraded by a stochastic mechanism and that endonucleolytic cleavage may be the initial event. These plant in vitro systems should be useful in identifying the cis- and trans-acting factors involved in the degradation of mRNAs. Images PMID:8139564

  2. A high performance cloud computing platform for mRNA analysis.

    PubMed

    Lin, Feng-Seng; Shen, Chia-Ping; Sung, Hsiao-Ya; Lam, Yan-Yu; Lin, Jeng-Wei; Lai, Feipei

    2013-01-01

    Multiclass classification is an important technique to many complex bioinformatics problems. However, their performance is limited by the computation power. Based on the Apache Hadoop design framework, this study proposes a two layer architecture that exploits the inherent parallelism of GA-SVM classification to speed up the work. The performance evaluations on an mRNA benchmark cancer dataset have reduced 86.55% features and raised accuracy from 97.53% to 98.03%. With a user-friendly web interface, the system provides researchers an easy way to investigate the unrevealed secrets in the fast-growing repository of bioinformatics data. PMID:24109986

  3. Genome-wide analysis of mRNA decay patterns during early Drosophila development

    E-print Network

    Thomsen, Stefan; Anders, Simon; Chandra Janga, Sarath; Huber, Wolfgang; Alonso, Claudio R.

    2010-09-21

    Regulation of cellular process 5.24E-04 Regulation of gene expression 6.81E-04 Cellular component assembly 8.16E-04 Cellular respiration 1.78E-03 Proteolysis involved in cellular protein catabolic process 2.76E-03 Cellular protein catabolic process 2.76E-03... , and reproduction in any medium, provided the original work is properly cited. controlling mRNA decay in a transcript-specific manner, and how such rules interface with the developmental programs encoded in the genome of multi-cellular animals. We envisage two main...

  4. An analysis of vertebrate mRNA sequences: intimations of translational control

    PubMed Central

    1991-01-01

    Five structural features in mRNAs have been found to contribute to the fidelity and efficiency of initiation by eukaryotic ribosomes. Scrutiny of vertebrate cDNA sequences in light of these criteria reveals a set of transcripts--encoding oncoproteins, growth factors, transcription factors, and other regulatory proteins--that seem designed to be translated poorly. Thus, throttling at the level of translation may be a critical component of gene regulation in vertebrates. An alternative interpretation is that some (perhaps many) cDNAs with encumbered 5' noncoding sequences represent mRNA precursors, which would imply extensive regulation at a posttranscriptional step that precedes translation. PMID:1955461

  5. Vitamin D and the RNA transcriptome: more than mRNA regulation

    PubMed Central

    Campbell, Moray J.

    2014-01-01

    The GRCh37.p13 primary assembly of the human genome contains 20805 protein coding mRNA, and 37147 non-protein coding genes and pseudogenes that as a result of RNA processing and editing generate 196501 gene transcripts. Given the size and diversity of the human transcriptome, it is timely to revisit what is known of VDR function in the regulation and targeting of transcription. Early transcriptomic studies using microarray approaches focused on the protein coding mRNA that were regulated by the VDR, usually following treatment with ligand. These studies quickly established the approximate size, and surprising diversity of the VDR transcriptome, revealing it to be highly heterogenous and cell type and time dependent. With the discovery of microRNA, investigators also considered VDR regulation of these non-protein coding RNA. Again, cell and time dependency has emerged. Attempts to integrate mRNA and miRNA regulation patterns are beginning to reveal patterns of co-regulation and interaction that allow for greater control of mRNA expression, and the capacity to govern more complex cellular events. As the awareness of the diversity of non-coding RNA increases, it is increasingly likely it will be revealed that VDR actions are mediated through these molecules also. Key knowledge gaps remain over the VDR transcriptome. The causes for the cell and type dependent transcriptional heterogenetiy remain enigmatic. ChIP-Seq approaches have confirmed that VDR binding choices differ very significantly by cell type, but as yet the underlying causes distilling VDR binding choices are unclear. Similarly, it is clear that many of the VDR binding sites are non-canonical in nature but again the mechanisms underlying these interactions are unclear. Finally, although alternative splicing is clearly a very significant process in cellular transcriptional control, the lack of RNA-Seq data centered on VDR function are currently limiting the global assessment of the VDR transcriptome. VDR focused research that complements publically available data (e.g., ENCODE Birney et al., 2007; Birney, 2012), TCGA (Strausberg et al., 2002), GTEx (Consortium, 2013) will enable these questions to be addressed through large-scale data integration efforts. PMID:24860511

  6. Simplified Identification of mRNA or DNA in Whole Cells

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo; Kadambi, Geeta

    2007-01-01

    A recently invented method of detecting a selected messenger ribonucleic acid (mRNA) or deoxyribonucleic acid (DNA) sequence offers two important advantages over prior such methods: it is simpler and can be implemented by means of compact equipment. The simplification and miniaturization achieved by this invention are such that this method is suitable for use outside laboratories, in field settings in which space and power supplies may be limited. The present method is based partly on hybridization of nucleic acid, which is a powerful technique for detection of specific complementary nucleic acid sequences and is increasingly being used for detection of changes in gene expression in microarrays containing thousands of gene probes.

  7. A unifying model for mTORC1-mediated regulation of mRNA translation

    PubMed Central

    Thoreen, Carson C.; Chantranupong, Lynne; Keys, Heather R.; Wang, Tim; Gray, Nathanael S.; Sabatini, David M.

    2012-01-01

    The mTOR Complex 1 (mTORC1) kinase nucleates a pathway that promotes cell growth and proliferation and is the target of rapamycin, a drug with many clinical uses1. mTORC1 regulates mRNA translation, but the overall translational program is poorly defined and no unifying model exists to explain how mTORC1 differentially controls the translation of specific mRNAs. Here we use high-resolution transcriptome-scale ribosome profiling to monitor translation in cells acutely treated with the mTOR inhibitor Torin1, which, unlike rapamycin, fully inhibits mTORC12. These data reveal a surprisingly simple view of the mRNA features and mechanisms that confer mTORC1-dependent translation control. The subset of mRNAs that are specifically regulated by mTORC1 consists almost entirely of transcripts with established 5? terminal oligopyrimidine (TOP) motifs, or, like Hsp90ab1 and Ybx1, with previously unrecognized TOP or related TOP-like motifs that we identified. We find no evidence to support proposals that mTORC1 preferentially regulates mRNAs with increased 5? UTR length or complexity3. mTORC1 phosphorylates a myriad of translational regulators, but how it controls TOP mRNA translation is unknown4. Remarkably, loss of just the well-characterized mTORC1 substrates, the 4E-BP family of translational repressors, is sufficient to render TOP and TOP-like mRNA translation resistant to Torin1. The 4E-BPs inhibit translation initiation by interfering with the interaction between the cap-binding protein eIF4E and eIF4G1. Loss of this interaction diminishes the capacity of eIF4E to bind TOP and TOP-like mRNAs much more than other mRNAs, explaining why mTOR inhibition selectively suppresses their translation. Our results clarify the translational program controlled by mTORC1 and identify 4E-BPs and eIF4G1 as its master effectors. PMID:22552098

  8. Region-Specific Activation of oskar mRNA Translation by Inhibition of Bruno-Mediated Repression

    PubMed Central

    Kim, Goheun; Pai, Chin-I; Sato, Keiji; Person, Maria D.; Nakamura, Akira; Macdonald, Paul M.

    2015-01-01

    A complex program of translational repression, mRNA localization, and translational activation ensures that Oskar (Osk) protein accumulates only at the posterior pole of the Drosophila oocyte. Inappropriate expression of Osk disrupts embryonic axial patterning, and is lethal. A key factor in translational repression is Bruno (Bru), which binds to regulatory elements in the osk mRNA 3? UTR. After posterior localization of osk mRNA, repression by Bru must be alleviated. Here we describe an in vivo assay system to monitor the spatial pattern of Bru-dependent repression, separate from the full complexity of osk regulation. This assay reveals a form of translational activation—region-specific activation—which acts regionally in the oocyte, is not mechanistically coupled to mRNA localization, and functions by inhibiting repression by Bru. We also show that Bru dimerizes and identify mutations that disrupt this interaction to test its role in vivo. Loss of dimerization does not disrupt repression, as might have been expected from an existing model for the mechanism of repression. However, loss of dimerization does impair regional activation of translation, suggesting that dimerization may constrain, not promote, repression. Our work provides new insight into the question of how localized mRNAs become translationally active, showing that repression of osk mRNA is locally inactivated by a mechanism acting independent of mRNA localization. PMID:25723530

  9. The genetic basis for individual differences in mRNA splicing and APOBEC1 editing activity in murine macrophages

    PubMed Central

    Hassan, Musa A.; Butty, Vincent; Jensen, Kirk D.C.; Saeij, Jeroen P.J.

    2014-01-01

    Alternative splicing and mRNA editing are known to contribute to transcriptome diversity. Although alternative splicing is pervasive and contributes to a variety of pathologies, including cancer, the genetic context for individual differences in isoform usage is still evolving. Similarly, although mRNA editing is ubiquitous and associated with important biological processes such as intracellular viral replication and cancer development, individual variations in mRNA editing and the genetic transmissibility of mRNA editing are equivocal. Here, we have used linkage analysis to show that both mRNA editing and alternative splicing are regulated by the macrophage genetic background and environmental cues. We show that distinct loci, potentially harboring variable splice factors, regulate the splicing of multiple transcripts. Additionally, we show that individual genetic variability at the Apobec1 locus results in differential rates of C-to-U(T) editing in murine macrophages; with mouse strains expressing mostly a truncated alternative transcript isoform of Apobec1 exhibiting lower rates of editing. As a proof of concept, we have used linkage analysis to identify 36 high-confidence novel edited sites. These results provide a novel and complementary method that can be used to identify C-to-U editing sites in individuals segregating at specific loci and show that, beyond DNA sequence and structural changes, differential isoform usage and mRNA editing can contribute to intra-species genomic and phenotypic diversity. PMID:24249727

  10. Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5' noncoding region

    SciTech Connect

    Pelletier, J.; Kaplan, G.; Racaniello, V.R.; Sonenberg, N.

    1988-03-01

    Poliovirus polysomal RNA is naturally uncapped, and as such, its translation must bypass any 5' cap-dependent ribosome recognition event. To elucidate the manner by which poliovirus mRNA is translated, the authors determined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. They found striking differences in translatability among the altered mRNAs when assayed in mock-infected and poliovirus-infected HeLa cell extracts. The results identify a functional cis-acting element within the 5' noncoding region of the poliovirus mRNA which enables it to translate in a cap-independent fashion. The major determinant of this element maps between nucleotides 320 and 631 of the 5' end of the poliovirus mRNA. They also show that this region (320 to 631), when fused to a heterologous mRNA, can function in cis to render the mRNA cap independent in translation.

  11. Ontogeny and nutritional programming of uncoupling protein-2 and glucocorticoid receptor mRNA in the ovine lung

    PubMed Central

    Gnanalingham, MG; Mostyn, A; Dandrea, J; Yakubu, DP; Symonds, ME; Stephenson, T

    2005-01-01

    This study investigated the developmental and nutritional programming of uncoupling protein-2 (UCP2), glucocorticoid receptor (GR) and 11?-hydroxysteroid dehydrogenase type 1 (11?HSD1) mRNA in the sheep lung from the time of uterine attachment to 6 months of age. The effect of maternal nutrient restriction on lung development was determined in early to mid gestation (i.e. 28–80 days gestation, period of maximal placental growth, and embryonic and pseudoglandular stages of fetal lung development) and late gestation (i.e. 110–147 days gestation, period of maximal fetal growth, and canalicular and saccular stages of fetal lung development). Fetal lungs were sampled at 80 and 140 days (term ?148 days) gestation, and sheep lungs at 1, 7, 30 days and 6 months. GR and 11?HSD1 mRNA were maximal at 140 days gestation, whereas UCP2 mRNA peaked at 1 day of age and then declined with postnatal age. Maternal nutrient restriction in both early-to-mid and late gestation had no effect on lung weight, but increased UCP2, GR and 11?HSD1 mRNA abundance at every sampling age. These findings suggest that the developmental ontogeny of UCP2 mRNA in the ovine lung is under local glucocorticoid hormone action and that maternal nutrient restriction has long-term consequences for UCP2 and GR mRNA abundance in the lung irrespective of its timing. PMID:15774522

  12. Laser Microdissection-based Analysis of mRNA Expression in Human Coronary Arteries with Intimal Thickening

    PubMed Central

    Stolle, Katrin; Weitkamp, Benedikt; Rauterberg, Jürgen; Lorkowski, Stefan; Cullen, Paul

    2004-01-01

    Intimal thickening is an early phase of atherosclerosis characterized by differentiation of plaque smooth muscle cells (SMCs) from a contractile to a synthetic phenotype. We used laser microdissection (LMD) plus real-time RT-PCR to quantify mRNAs for calponin-1 and smoothelin, markers of the contractile phenotype, and for serum response factor (SRF), a regulator of SMC differentiation, in intimal and medial SMCs of human coronary arteries with intimal thickening. RNA expression was also analyzed by ISH and protein expression was detected by IHC. LMD plus RT-PCR found similar levels of SRF mRNA in intimal and medial SMCs, while medial mRNA levels for calponin-1 and smoothelin were higher. ISH confirmed that smoothelin mRNA levels in media exceeded those in intima, whereas SRF mRNA levels were similar at both sites. For calponin-1 and smoothelin, protein levels mirrored respective mRNA levels. By contrast, more medial than intimal SRF protein was present. Our results indicate that intimal SMCs exhibit a largely synthetic phenotype, perhaps reflecting lower intimal levels of SRF protein; ISH and LMD plus real-time RT-PCR provide comparable results; as a valuable alternative to ISH, LMD plus RT-PCR allows parallel measurement of several transcripts; and tissue gene expression studies must measure both protein and mRNA levels. PMID:15505346

  13. Localized maternal mRNA related to transforming growth factor beta mRNA is concentrated in a cytokeratin-enriched fraction from Xenopus oocytes.

    PubMed Central

    Pondel, M D; King, M L

    1988-01-01

    The localized maternal RNA Vg1 resides in the cortical region of the vegetal pole of fully grown Xenopus oocytes and is inherited by only a subset of blastomeres in the early embryo [Weeks, D. L. & Melton, D. A. (1987) Cell 51, 861-867]. Because RNA-cytoskeletal interactions may play a role in RNA localization, we have examined the association of Vg1 RNA with components of the oocyte's cytoskeleton. Gel and immunoblot analysis of a detergent-insoluble fraction revealed a greatly simplified protein pattern composed largely of cytokeratins and vimentin. In sharp contrast to the nonlocalized histone H3 mRNA, Vg1 RNA was concentrated some 35- to 50-fold in this insoluble fraction. Extractions at higher salt concentrations yielded preparations further enriched in cytokeratins and in the Vg1 RNA. Upon ovulation, VG1 RNA is released into the soluble fraction. This change in Vg1 RNA distribution coincides with the observed breakdown of cortical cytokeratin filaments [Klymkowsky, M. W., Maynell, L. A. & Polson, A. G. (1987) Development 100, 543-557] and the loss of Vg1 RNA from the cortical region. Our findings are consistent with the hypothesis that RNA-cytoskeletal interactions are involved in the localization and segregation of information during development. Images PMID:2459710

  14. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects.

    PubMed

    Martínez-Pacheco, M; Hidalgo-Miranda, A; Romero-Córdoba, S; Valverde, M; Rojas, E

    2014-01-10

    Metals are a threat to human health by increasing disease risk. Experimental data have linked altered miRNA expression with exposure to some metals. MiRNAs comprise a large family of non-coding single-stranded molecules that primarily function to negatively regulate gene expression post-transcriptionally. Although several human populations are exposed to low concentrations of As, Cd and Pb as a mixture, most toxicology research focuses on the individual effects that these metals exert. Thus, this study aims to evaluate global miRNA and mRNA expression changes induced by a metal mixture containing NaAsO2, CdCl2, Pb(C2H3O2)2·3H2O and to predict possible metal-associated disease development under these conditions. Our results show that this metal mixture results in a miRNA expression profile that may be responsible for the mRNA expression changes observed under experimental conditions in which coding proteins are involved in cellular processes, including cell death, growth and proliferation related to the metal-associated inflammatory response and cancer. PMID:24080485

  15. Cell-Type-Specific mRNA Purification by Translating Ribosome Affinity Purification (TRAP)

    PubMed Central

    Heiman, Myriam; Kulicke, Ruth; Fenster, Robert J.; Greengard, Paul; Heintz, Nathaniel

    2014-01-01

    Cellular diversity and architectural complexity create barriers to understanding the function of the mammalian central nervous system (CNS) at a molecular level. To address this problem, we recently developed a methodology that provides the ability to profile the entire translated mRNA complement of any genetically defined cell population. This methodology, which we termed translating ribosome affinity purification, or TRAP, combines cell-type-specific transgene expression with affinity purification of translating ribosomes. TRAP can be used to study the cell-type-specific mRNA profiles of any genetically defined cell type, and has been successfully used to date in organisms ranging from D. melanogaster to mice and human cultured cells. Unlike other methodologies that rely upon micro-dissection, cell panning, or cell sorting, the TRAP methodology bypasses the need for tissue fixation or single-cell suspensions (and potential artifacts these treatments introduce), and reports on mRNAs in the entire cell body. This protocol provides a step-by-step guide to implementing the TRAP methodology, which takes two days to complete once all materials are in hand. PMID:24810037

  16. mRNA and DNA selection via protein multimerization: YB-1 as a case study

    PubMed Central

    Kretov, Dmitry A.; Curmi, Patrick A.; Hamon, Loic; Abrakhi, Sanae; Desforges, Bénédicte; Ovchinnikov, Lev P.; Pastré, David

    2015-01-01

    Translation is tightly regulated in cells for keeping adequate protein levels, this task being notably accomplished by dedicated mRNA-binding proteins recognizing a specific set of mRNAs to repress or facilitate their translation. To select specific mRNAs, mRNA-binding proteins can strongly bind to specific mRNA sequences/structures. However, many mRNA-binding proteins rather display a weak specificity to short and redundant sequences. Here we examined an alternative mechanism by which mRNA-binding proteins could inhibit the translation of specific mRNAs, using YB-1, a major translation regulator, as a case study. Based on a cooperative binding, YB-1 forms stable homo-multimers on some mRNAs while avoiding other mRNAs. Via such inhomogeneous distribution, YB-1 can selectively inhibit translation of mRNAs on which it has formed stable multimers. This novel mechanistic view on mRNA selection may be shared by other proteins considering the elevated occurrence of multimerization among mRNA-binding proteins. Interestingly, we also demonstrate how, by using the same mechanism, YB-1 can form multimers on specific DNA structures, which could provide novel insights into YB-1 nuclear functions in DNA repair and multi-drug resistance. PMID:26271991

  17. GeneTack database: genes with frameshifts in prokaryotic genomes and eukaryotic mRNA sequences.

    PubMed

    Antonov, Ivan; Baranov, Pavel; Borodovsky, Mark

    2013-01-01

    Database annotations of prokaryotic genomes and eukaryotic mRNA sequences pay relatively low attention to frame transitions that disrupt protein-coding genes. Frame transitions (frameshifts) could be caused by sequencing errors or indel mutations inside protein-coding regions. Other observed frameshifts are related to recoding events (that evolved to control expression of some genes). Earlier, we have developed an algorithm and software program GeneTack for ab initio frameshift finding in intronless genes. Here, we describe a database (freely available at http://topaz.gatech.edu/GeneTack/db.html) containing genes with frameshifts (fs-genes) predicted by GeneTack. The database includes 206?991 fs-genes from 1106 complete prokaryotic genomes and 45?295 frameshifts predicted in mRNA sequences from 100 eukaryotic genomes. The whole set of fs-genes was grouped into clusters based on sequence similarity between fs-proteins (conceptually translated fs-genes), conservation of the frameshift position and frameshift direction (-1, +1). The fs-genes can be retrieved by similarity search to a given query sequence via a web interface, by fs-gene cluster browsing, etc. Clusters of fs-genes are characterized with respect to their likely origin, such as pseudogenization, phase variation, etc. The largest clusters contain fs-genes with programed frameshifts (related to recoding events). PMID:23161689

  18. The nuclear basket mediates perinuclear mRNA scanning in budding yeast.

    PubMed

    Saroufim, Mark-Albert; Bensidoun, Pierre; Raymond, Pascal; Rahman, Samir; Krause, Matthew R; Oeffinger, Marlene; Zenklusen, Daniel

    2015-12-21

    After synthesis and transit through the nucleus, messenger RNAs (mRNAs) are exported to the cytoplasm through the nuclear pore complex (NPC). At the NPC, messenger ribonucleoproteins (mRNPs) first encounter the nuclear basket where mRNP rearrangements are thought to allow access to the transport channel. Here, we use single mRNA resolution live cell microscopy and subdiffraction particle tracking to follow individual mRNAs on their path toward the cytoplasm. We show that when reaching the nuclear periphery, RNAs are not immediately exported but scan along the nuclear periphery, likely to find a nuclear pore allowing export. Deletion or mutation of the nuclear basket proteins MLP1/2 or the mRNA binding protein Nab2 changes the scanning behavior of mRNPs at the nuclear periphery, shortens residency time at nuclear pores, and results in frequent release of mRNAs back into the nucleoplasm. These observations suggest a role for the nuclear basket in providing an interaction platform that keeps RNAs at the periphery, possibly to allow mRNP rearrangements before export. PMID:26694838

  19. A potential regulatory role for mRNA secondary structures within the prothrombin 3'UTR.

    PubMed

    Liu, Xingge; Jiang, Yong; Russell, J Eric

    2010-08-01

    The distal 3'UTR of prothrombin mRNA exhibits significant sequence heterogeneity reflecting an inexact 3'-cleavage/polyadenylation reaction. This same region encompasses a single-nucleotide polymorphism that enhances the normal post-transcriptional processing of nascent prothrombin transcripts. Both observations indicate the importance of 3'UTR structures to physiologically relevant properties of prothrombin mRNA. Using a HepG2-based model system, we mapped both the primary structures of reporter mRNAs containing the prothrombin 3'UTR, as well as the secondary structures of common, informative 3'UTR processing variants. A chromatographic method was subsequently employed to assess the effects of structural heterogeneities on the binding of candidate trans-acting regulatory factors. We observed that prothrombin 3'UTRs are constitutively polyadenylated at seven or more positions, and can fold into at least two distinct stem-loop conformations. These alternate structures expose/sequester a consensus binding site for hnRNP-I/PTB-1, a trans-acting factor with post-transcriptional regulatory properties. hnRNP-I/PTB-1 exhibits different affinities for the alternate 3'UTR secondary structures in vitro, predicting a corresponding regulatory role in vivo. These analyses demonstrate a critical link between the structure of the prothrombin 3'UTR and its normal function, providing a basis for further investigations into the molecular pathophysiology of naturally occurring polymorphisms within this region. PMID:20553951

  20. Nonparametric testing for DNA copy number induced differential mRNA gene expression.

    PubMed

    van Wieringen, Wessel N; van de Wiel, Mark A

    2009-03-01

    The central dogma of molecular biology relates DNA with mRNA. Array CGH measures DNA copy number and gene expression microarrays measure the amount of mRNA. Methods that integrate data from these two platforms may uncover meaningful biological relationships that further our understanding of cancer. We develop nonparametric tests for the detection of copy number induced differential gene expression. The tests incorporate the uncertainty of the calling of genomic aberrations. The test is preceded by a "tuning algorithm" that discards certain genes to improve the overall power of the false discovery rate selection procedure. Moreover, the test statistics are "shrunken" to borrow information across neighboring genes that share the same array CGH signature. For each gene we also estimate its effect, its amount of differential expression due to copy number changes, and calculate the coefficient of determination. The method is illustrated on breast cancer data, in which it confirms previously reported findings, now with a more profound statistical underpinning. PMID:18479479

  1. Species-specific factors mediate extensive heterogeneity of mRNA 3' ends in yeasts.

    PubMed

    Moqtaderi, Zarmik; Geisberg, Joseph V; Jin, Yi; Fan, Xiaochun; Struhl, Kevin

    2013-07-01

    Most eukaryotic genes express mRNAs with alternative polyadenylation sites at their 3' ends. Here we show that polyadenylated 3' termini in three yeast species (Saccharomyces cerevisiae, Kluyveromyces lactis, and Debaryomyces hansenii) are remarkably heterogeneous. Instead of a few discrete 3' ends, the average yeast gene has an "end zone," a >200 bp window with >60 distinct poly(A) sites, the most used of which represents only 20% of the mRNA molecules. The pattern of polyadenylation within this zone varies across species, with D. hansenii possessing a higher focus on a single dominant point closer to the ORF terminus. Some polyadenylation occurs within mRNA coding regions with a strong bias toward the promoter. The polyadenylation pattern is determined by a highly degenerate sequence over a broad region and by a local sequence that relies on A residues after the cleavage point. Many dominant poly(A) sites are predicted to adopt a common secondary structure that may be recognized by the cleavage/polyadenylation machinery. We suggest that the end zone reflects a region permissive for polyadenylation, within which cleavage occurs preferentially at the A-rich sequence. In S. cerevisiae strains, D. hansenii genes adopt the S. cerevisiae polyadenylation profile, indicating that the polyadenylation pattern is mediated primarily by species-specific factors. PMID:23776204

  2. A rare polymorphism in the low density lipoprotein (LDL) gene that affects mRNA splicing.

    PubMed

    Bourbon, M; Sun, X-M; Soutar, A K

    2007-11-01

    Familial hypercholesterolaemia (FH) is usually caused by mutations in the low density lipoprotein (LDL) receptor gene (LDLR) that impair clearance of LDL from the circulation. The increased risk of premature coronary heart disease associated with FH can be reduced by dietary advice and treatment with lipid-lowering drug therapy, but it is important to identify affected individuals at an early stage. Several programmes for genetic diagnosis of FH that rely on identifying nucleotide substitutions in genomic DNA have been initiated, but the validity of these is dependent on distinguishing between a silent nucleotide variant and a mutation that affects LDL-receptor function. Here we describe a single nucleotide substitution in the coding region of exon 9 of LDLR that is an apparently silent polymorphism: CGG (Arg406) to AGG (Arg). Analysis of mRNA from the patient's cells showed that the mutation introduces a new splice site that is used to the exclusion of the natural splice site and causes a deletion of 31 bp from the mRNA, predicted to introduce premature termination four codons after R406. This finding emphasizes the caution needed in genetic diagnosis of FH based on genomic DNA sequence alone. PMID:17335829

  3. Prolonged Pseudohypoxia Targets Ambra1 mRNA to P-Bodies for Translational Repression

    PubMed Central

    Merlo, Paola; Rizza, Salvatore; D’Amico, Silvia; Cecconi, Francesco

    2015-01-01

    Hypoxia has been associated with several pathological conditions ranging from stroke to cancer. This condition results in the activation of autophagy, a cyto-protective response involving the formation of double-membraned structures, the autophagosomes, in the cytoplasm. In this study, we investigated the cellular mechanisms regulating the autophagy gene Ambra1, after exposure to a hypoxia mimetic, cobalt chloride (CoCl2). We observed that, upon CoCl2 administration, activation of the apoptotic machinery was concomitant with down-regulation of the pro-autophagic factor Ambra1, without affecting transcription. Additionally, co-treating the cells with the caspase inhibitor z-VAD-FMK did not restore Ambra1 protein levels, this implying the involvement of other regulatory mechanisms. Partial re-localization of Ambra1 mRNA to non-translating fractions and cytoplasmic P-bodies was further detected. Thus, in this pseudohypoxic context, Ambra1 mRNA translocation to P-bodies and translational suppression correlated with increased cell death. PMID:26086269

  4. Selection of mRNA 5'-untranslated region sequence with high translation efficiency through ribosome display

    SciTech Connect

    Mie, Masayasu; Shimizu, Shun; Takahashi, Fumio; Kobatake, Eiry

    2008-08-15

    The 5'-untranslated region (5'-UTR) of mRNAs functions as a translation enhancer, promoting translation efficiency. Many in vitro translation systems exhibit a reduced efficiency in protein translation due to decreased translation initiation. The use of a 5'-UTR sequence with high translation efficiency greatly enhances protein production in these systems. In this study, we have developed an in vitro selection system that favors 5'-UTRs with high translation efficiency using a ribosome display technique. A 5'-UTR random library, comprised of 5'-UTRs tagged with a His-tag and Renilla luciferase (R-luc) fusion, were in vitro translated in rabbit reticulocytes. By limiting the translation period, only mRNAs with high translation efficiency were translated. During translation, mRNA, ribosome and translated R-luc with His-tag formed ternary complexes. They were collected with translated His-tag using Ni-particles. Extracted mRNA from ternary complex was amplified using RT-PCR and sequenced. Finally, 5'-UTR with high translation efficiency was obtained from random 5'-UTR library.

  5. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma

    PubMed Central

    Shao, Huilin; Chung, Jaehoon; Lee, Kyungheon; Balaj, Leonora; Min, Changwook; Carter, Bob S.; Hochberg, Fred H.; Breakefield, Xandra O.; Lee, Hakho; Weissleder, Ralph

    2015-01-01

    Real-time monitoring of drug efficacy in glioblastoma multiforme (GBM) is a major clinical problem as serial re-biopsy of primary tumours is often not a clinical option. MGMT (O6-methylguanine DNA methyltransferase) and APNG (alkylpurine-DNA-N-glycosylase) are key enzymes capable of repairing temozolomide-induced DNA damages and their levels in tissue are inversely related to treatment efficacy. Yet, serial clinical analysis remains difficult, and, when done, primarily relies on promoter methylation studies of tumour biopsy material at the time of initial surgery. Here we present a microfluidic chip to analyse mRNA levels of MGMT and APNG in enriched tumour exosomes obtained from blood. We show that exosomal mRNA levels of these enzymes correlate well with levels found in parental cells and that levels change considerably during treatment of seven patients. We propose that if validated on a larger cohort of patients, the method may be used to predict drug response in GBM patients. PMID:25959588

  6. On a stochastic gene expression with pre-mRNA, mRNA and protein contribution.

    PubMed

    Rudnicki, Ryszard; Tomski, Andrzej

    2015-12-21

    In this paper we develop a model of stochastic gene expression, which is an extension of the model investigated in the paper [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.R. Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, J. Theor. Biol. 238 (2006) 348-367]. In our model, stochastic effects still originate from random fluctuations in gene activity status, but we precede mRNA production by the formation of pre-mRNA, which enriches classical transcription phase. We obtain a stochastically regulated system of ordinary differential equations (ODEs) describing evolution of pre-mRNA, mRNA and protein levels. We perform mathematical analysis of a long-time behavior of this stochastic process, identified as a piece-wise deterministic Markov process (PDMP). We check exact results using numerical simulations for the distributions of all three types of particles. Moreover, we investigate the deterministic (adiabatic) limit state of the process, when depending on parameters it can exhibit two specific types of behavior: bistability and the existence of the limit cycle. The latter one is not present when only two kinds of gene expression products are considered. PMID:26434618

  7. Human apolipoproteins AI, AII, CII and CIII. cDNA sequences and mRNA abundance.

    PubMed Central

    Sharpe, C R; Sidoli, A; Shelley, C S; Lucero, M A; Shoulders, C C; Baralle, F E

    1984-01-01

    The structure and function of the genes encoding the polypeptide components of plasma lipoproteins are of interest because of the central role they play in the regulation of lipid metabolism. We have now completed our previous studies on the human apoAI gene and furthermore isolated and sequenced cDNA clones for apoAII , CII and CIII. The nucleotide sequences show the signal peptides of apoAII , CII and CIII to be 18, 22 and 20 amino acids in length, respectively, and in addition that prepro apoAII bears a classical propeptide structure of 5 amino acids. The amino acid homology detected between apoCII and pro- apoAI is discussed, as is the gene arrangement of the 5' non-coding region of apoAI mRNA. The relative liver mRNA levels of the 4 apolipoproteins analysed in this study have been estimated and compared with their corresponding plasma products. The data reported here provide an essential basis for further studies of structural and functional alleles of apo AI, AII, CII and CIII genes. Images PMID:6328445

  8. Morphology and estrogen receptor alpha mRNA expression in the developing green anole forebrain.

    PubMed

    Beck, Laurel Amanda; Wade, Juli

    2009-03-01

    Sex differences in forebrain morphology arise during development and are often linked to hormonal changes. These dimorphisms frequently occur in regions related to reproductive behaviors. Little is known about the normal ontogeny of reproductive nuclei in the green anole lizard, including whether steroid hormones influence their development. To address this issue, brain region volume, cell density, soma size, and estrogen receptor alpha (ERalpha) mRNA expression were characterized in the preoptic area (POA), ventromedial amygdala (AMY), and ventromedial hypothalamus (VMH) of late embryonic and early post-hatchling anoles. In adulthood, the POA and AMY are associated with male-specific reproductive behaviors and the VMH is implicated in female receptivity. Although soma size decreased in all brain regions with age, brain region volume diminished only in the POA, with a transient sex difference appearing before hatching. Cell density increased with age only in the female AMY. ERalpha mRNA expression was up to four times greater in the developing VMH than POA and AMY, peaking in the VMH around the day of hatching. These results are consistent with the idea that estradiol may influence differentiation of the VMH in particular. However, other factors are likely important to the development of these three brain regions, some of which exert their effects at later developmental stages. PMID:19065643

  9. Dss1 associating with the proteasome functions in selective nuclear mRNA export in yeast

    SciTech Connect

    Mannen, Taro; Andoh, Tomoko; Tani, Tokio

    2008-01-25

    Dss1p is an evolutionarily conserved small protein that interacts with BRCA2, a tumor suppressor protein, in humans. The Schizosaccharomyces pombe strain lacking the dss1{sup +} gene ({delta}dss1) shows a temperature-sensitive growth defect and accumulation of bulk poly(A){sup +} RNA in the nucleus at a nonpermissive temperature. In situ hybridization using probes for several specific mRNAs, however, revealed that the analyzed mRNAs were exported normally to the cytoplasm in {delta}dss1, suggesting that Dss1p is required for export of some subsets of mRNAs. We identified the pad1{sup +} gene, which encodes a component of the 26S proteasome, as a suppressor for the ts{sup -} phenotype of {delta}dss1. Unexpectedly, overexpression of Pad1p could suppress neither the defect in nuclear mRNA export nor a defect in proteasome function. In addition, loss of proteasome functions does not cause defective nuclear mRNA export. Dss1p seems to be a multifunctional protein involved in nuclear export of specific sets of mRNAs and the ubiquitin-proteasome pathway in fission yeast.

  10. Reverse Engineering of Vaccine Antigens Using High Throughput Sequencing-enhanced mRNA Display

    PubMed Central

    Guo, Nini; Duan, Hongying; Kachko, Alla; Krause, Benjamin W.; Major, Marian E.; Krause, Philip R.

    2015-01-01

    Vaccine reverse engineering is emerging as an important approach to vaccine antigen identification, recently focusing mainly on structural characterization of interactions between neutralizing monoclonal antibodies (mAbs) and antigens. Using mAbs that bind unknown antigen structures, we sought to probe the intrinsic features of antibody antigen-binding sites with a high complexity peptide library, aiming to identify conformationally optimized mimotope antigens that capture mAb-specific epitopes. Using a high throughput sequencing-enhanced messenger ribonucleic acid (mRNA) display approach, we identified high affinity binding peptides for a hepatitis C virus neutralizing mAb. Immunization with the selected peptides induced neutralizing activity similar to that of the original mAb. Antibodies elicited by the most commonly selected peptides were predominantly against specific epitopes. Thus, using mRNA display to interrogate mAbs permits high resolution identification of functional peptide antigens that direct targeted immune responses, supporting its use in vaccine reverse engineering for pathogens against which potent neutralizing mAbs are available. Research in Context We used a large number of randomly produced small proteins (“peptides”) to identify peptides containing specific protein sequences that bind efficiently to an antibody that can prevent hepatitis C virus infection in cell culture. After the identified peptides were injected into mice, the mice produced their own antibodies with characteristics similar to the original antibody. This approach can provide previously unavailable information about antibody binding and could also be useful in developing new vaccines. PMID:26425692

  11. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver.

    PubMed

    Atger, Florian; Gobet, Cédric; Marquis, Julien; Martin, Eva; Wang, Jingkui; Weger, Benjamin; Lefebvre, Grégory; Descombes, Patrick; Naef, Felix; Gachon, Frédéric

    2015-11-24

    Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light-dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5'-Terminal Oligo Pyrimidine tract (5'-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5'-UTR (TISU) motif. The increased translation efficiency of 5'-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation. PMID:26554015

  12. Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA.

    PubMed

    Nishida, Atsushi; Minegishi, Maki; Takeuchi, Atsuko; Niba, Emma Tabe Eko; Awano, Hiroyuki; Lee, Tomoko; Iijima, Kazumoto; Takeshima, Yasuhiro; Matsuo, Masafumi

    2015-06-01

    The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), comprises 79 exons that show multiple alternative splicing events. Intron retention, a type of alternative splicing, may control gene expression. We examined intron retention in dystrophin introns by reverse-transcription PCR from skeletal muscle, focusing on the nine shortest (all <1000?bp), because these are more likely to be retained. Only one, intron 40, was retained in mRNA; sequencing revealed insertion of a complete intron 40 (851?nt) between exons 40 and 41. The intron 40 retention product accounted for 1.2% of the total product but had a premature stop codon at the fifth intronic codon. Intron 40 retention was most strongly observed in the kidney (36.6%) and was not obtained from the fetal liver, lung, spleen or placenta. This indicated that intron retention is a tissue-specific event whose level varies among tissues. In two DMD patients, intron 40 retention was observed in one patient but not in the other. Examination of splicing regulatory factors revealed that intron 40 had the highest guanine-cytosine content of all examined introns in a 30-nt segment at its 3' end. Further studies are needed to clarify the biological role of intron 40-retained dystrophin mRNA. PMID:25833469

  13. Exploration of the origin and evolution of globular proteins by mRNA display.

    PubMed

    Yanagawa, Hiroshi

    2013-06-01

    The questions of how proteins first appeared on the primitive earth and how they evolved into functional proteins are fundamental. If we can understand the origins and evolution of proteins, we should be able to create novel functional proteins. Evolutionary protein engineering or directed protein evolution has been used to create artificial proteins with novel functions by repeated mutation, selection, and amplification, mimicking Darwinian evolution in the laboratory. For this purpose, display technology, such as mRNA display, to link genotype with phenotype is extremely important. Here I focus on three hypotheses regarding the origin and evolution of proteins. First, Eigen's GNC hypothesis proposes that the early genetic code began from the directionless codons GNC and GNN, where N denotes U, C, A, or G. Second, Ohno's gene duplication theory proposes that gene duplication produces two functionally redundant, paralogous genes, of which one retains the original function, leaving the second free to evolve adaptively. Third, Gilbert's exon shuffling theory proposes that new genes are formed through shuffling of small segments corresponding to exons. I then review various experimental approaches to evolutionary protein engineering using mRNA display, such as the creation of functional proteins from random sequences with limited sets of amino acids, randomly mutated folded proteins, and block-shuffled sequence proteins, and I discuss the results in relation to these three hypotheses. PMID:23679339

  14. Evidence for cooperative tandem binding of hnRNP C RRMs in mRNA processing.

    PubMed

    Cieniková, Zuzana; Jayne, Sandrine; Damberger, Fred Franz; Allain, Frédéric Hai-Trieu; Maris, Christophe

    2015-11-01

    The human hnRNP C is a ubiquitous cellular protein involved in mRNA maturation. Recently, we have shown that this protein specifically recognizes uridine (U) pentamers through its single RNA recognition motif (RRM). However, a large fraction of natural RNA targets of hnRNP C consists of much longer contiguous uridine stretches. To understand how these extended sites are recognized, we studied the binding of the RRM to U-tracts of 8-11 bases. In vivo investigation of internal translation activation of unr (upstream of N-ras) mRNA indicates that the conservation of the entire hnRNP C binding site, UC(U)8, is required for hnRNP C-dependent IRES activation. The assays further suggest a synergistic interplay between hnRNP C monomers, dependent on the protein's ability to oligomerize. In vitro spectroscopic and thermodynamic analyses show that isolated RRMs bind to (U)11 oligomers as dimers. Structural modeling of a ternary double-RRM/RNA complex indicates additionally that two RRM copies can be accommodated on the canonical sequence UC(U)8. The proposed tandem RRM binding is in very good agreement with the transcriptome-wide recognition of extended U-tracts by full-length hnRNP C, which displays a cross-linking pattern consistent with a positively cooperative RRM dimer binding model. PMID:26370582

  15. Phosphorylation regulates the Star-PAP-PIPKI? interaction and directs specificity toward mRNA targets

    PubMed Central

    Mohan, Nimmy; AP, Sudheesh; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S.

    2015-01-01

    Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKI? interaction. We show that S6 is phosphorylated by CKI? within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKI?. Unlike the CKI? mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKI? activity. S6 phosphorylation together with coactivator PIPKI? controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3?-end processing. PMID:26138484

  16. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts.

    PubMed

    Vousooghi, Nasim; Zarei, Seyed Zeinolabedin; Sadat-Shirazi, Mitra-Sadat; Eghbali, Fatemeh; Zarrindast, Mohammad Reza

    2015-10-01

    Excessive playing of computer games like some other behaviors could lead to addiction. Addictive behaviors may induce their reinforcing effects through stimulation of the brain dopaminergic mesolimbic pathway. The status of dopamine receptors in the brain may be parallel to their homologous receptors in peripheral blood lymphocytes (PBLs). Here, we have investigated the mRNA expression of dopamine D3, D4 and D5 receptors in PBLs of computer game addicts (n = 20) in comparison to normal subjects (n = 20), using a real-time PCR method. The results showed that the expression level of D3 and D4 dopamine receptors in computer game addicts were not statistically different from the control group. However, the expression of the mRNA of D5 dopamine receptor was significantly down-regulated in PBLs of computer game addicts and reached 0.42 the amount of the control group. It is concluded that unlike with drug addiction, the expression levels of the D3 and D4 dopamine receptors in computer game addicts are not altered compared to the control group. However, reduced level of the D5 dopamine receptor in computer game addicts may serve as a peripheral marker in studies where the confounding effects of abused drugs are unwanted. PMID:25967984

  17. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver

    PubMed Central

    Atger, Florian; Gobet, Cédric; Marquis, Julien; Martin, Eva; Wang, Jingkui; Weger, Benjamin; Lefebvre, Grégory; Descombes, Patrick; Naef, Felix; Gachon, Frédéric

    2015-01-01

    Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light–dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5?-Terminal Oligo Pyrimidine tract (5?-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5?-UTR (TISU) motif. The increased translation efficiency of 5?-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation. PMID:26554015

  18. Phosphorylation site analysis of the anti-inflammatory and mRNA destabilizing protein tristetraprolin

    PubMed Central

    Deterding, Leesa J; Blackshear, Perry J

    2009-01-01

    Tristetraprolin (TTP) is a member of the CCCH zinc finger proteins and is an anti-inflammatory protein. Mice deficient in TTP develop a profound inflammatory syndrome with erosive arthritis, autoimmunity and myeloid hyperplasia. TTP binds to mRNA AU-rich elements with high affinity for UUAUUUAUU nucleotides and causes destabilization of those mRNA molecules. TTP is phosphorylated extensively in vivo and is a substrate for multiple protein kinases in vitro. A number of approaches have been used to identify its phosphorylation sites. This article highlights the recent progress and different approaches utilized for the identification of phosphorylation sites in mammalian TTP. Important but limited results are obtained using traditional methods including in vivo labeling, site-directed mutagenesis, phosphopeptide mapping and protein sequencing. Mass spectrometry including MALDI/MS, MALDI/MS/MS, LC/MS/MS, IMAC/MALDI/MS/MS and multidimensional protein identification technology (MudPIT) has led the way in identifying TTP phosphorylation sites. The combination of these approaches has identified multiple phosphorylation sites in mammalian TTP, some of which are predicted by motif scanning to be phosphorylated by several protein kinases. This information should provide the molecular basis for future investigation of TTP’s regulatory functions in controlling pro-inflammatory cytokines. PMID:18067411

  19. Studies on the role of NonA in mRNA biogenesis

    SciTech Connect

    Kozlova, Natalia; Braga, Jose; Lundgren, Josefin; Rino, Jose; Young, Patrick; Carmo-Fonseca, Maria; Visa, Neus . E-mail: Neus.Visa@molbio.su.se

    2006-08-01

    The NonA protein of Drosophila melanogaster is an abundant nuclear protein that belongs to the DBHS (Drosophila behavior, human splicing) protein family. The DBHS proteins bind both DNA and RNA in vitro and have been involved in different aspects of gene expression, including pre-mRNA splicing, transcription regulation and nuclear retention of mRNA. We have used double-stranded RNA interference in Drosophila S2 cells to silence the expression of NonA and to investigate its role in mRNA biogenesis. We show that knockdown of NonA does not affect transcription nor splicing. We demonstrate that NonA forms a complex with the essential nuclear export factor NXF1 in an RNA-dependent manner. We have constructed stable S2 cell lines that express full-length and truncated NXF1 fused to GFP in order to perform fluorescence recovery after photobleaching experiments. We show that knockdown of NonA reduces the intranuclear mobility of NXF1-GFP associated with poly(A){sup +} RNA in vivo, while the mobility of the truncated NXF1-GFP that does not bind RNA is not affected. Our data suggest that NonA facilitates the intranuclear mobility of mRNP particles.

  20. Ribosome recycling, diffusion, and mRNA loop formation in translational regulation

    E-print Network

    Tom Chou

    2003-09-17

    We explore and quantify the physical and biochemical mechanisms that may be relevant in the regulation of translation. After elongation and detachment from the 3' termination site of mRNA, parts of the ribosome machinery can diffuse back to the initiation site, especially if it is held nearby, enhancing overall translation rates. The elongation steps of the mRNA-bound ribosomes are modeled using exact and asymptotic results of the totally asymmetric exclusion process (TASEP).Since the ribosome injection rates of the TASEP depend on the local concentrations at the initiation site, a source of ribosomes emanating from the termination end can feed back to the initiation site, leading to a self-consistent set of equations for the steady-state ribosome throughput. Additional mRNA binding factors can also promote loop formation, or cyclization, bringing the initiation and termination sites into close proximity. The probability distribution of the distance between the initiation and termination sites is described using simple noninteracting polymer models. We find that the initiation, or initial ribosome adsorption binding required for maximal throughput can vary dramatically depending on certain values of the bulk ribosome concentration and diffusion constant. If cooperative interactions among the loop-promoting proteins and the initiation/termination sites are considered, the throughput can be further regulated in a nonmonotonic manner. Potential experiments to test the hypothesized physical mechanisms are discussed.