Science.gov

Sample records for joint admission control

  1. Students Selection for University Course Admission at the Joint Admissions Board (Kenya) Using Trained Neural Networks

    ERIC Educational Resources Information Center

    Wabwoba, Franklin; Mwakondo, Fullgence M.

    2011-01-01

    Every year, the Joint Admission Board (JAB) is tasked to determine those students who are expected to join various Kenyan public universities under the government sponsorship scheme. This exercise is usually extensive because of the large number of qualified students compared to the very limited number of slots at various institutions and the…

  2. 28 CFR 541.47 - Admission to control unit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Admission to control unit. 541.47 Section 541.47 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT INMATE DISCIPLINE AND SPECIAL HOUSING UNITS Control Unit Programs § 541.47 Admission to control...

  3. Malnutrition in Joint Arthroplasty: Prospective Study Indicates Risk of Unplanned ICU Admission

    PubMed Central

    Kamath, Atul F.; McAuliffe, Caitlin L.; Kosseim, Laura M.; Pio, Finnah; Hume, Eric

    2016-01-01

    Background: Malnutrition has been linked to poor outcomes after elective joint arthroplasty, but the risk of unplanned postoperative intensive care unit (ICU) admission in malnourished arthroplasty patients is unknown. Methods: 1098 patients were followed as part of a prospective risk stratification program at a tertiary, high-volume arthroplasty center. Chronic malnutrition was defined as preoperative albumin <3.5 g/dL. Results: The overall incidence of malnutrition was 16.9% (primary and revision arthroplasty patients). Average BMI was highest for patients in albumin category 3.0-3.5 (BMI 35.7). Preoperative albumin <3.0 and <3.5 g/dL translated to 15.4% and 3.8% rates of unplanned ICU admission, respectively, indicating nutritional status to be a factor in postoperative ICU admission. Conclusion: Patients with poor nutritional status must be counseled on the risks of adverse medical complications. PMID:27200389

  4. CRUCIFORM CONTROL ROD JOINT

    DOEpatents

    Thorp, A.G. II

    1962-08-01

    An invention is described which relates to nuclear reactor control rod components and more particularly to a joint between cruciform control rod members and cruciform control rod follower members. In one embodiment this invention provides interfitting crossed arms at adjacent ends of a control rod and its follower in abutting relation. This holds the members against relative opposite longitudinal movement while a compression member keys the arms against relative opposite rotation around a common axis. Means are also provided for centering the control rod and its follower on a common axis and for selectively releasing the control rod from its follower for the insertion of a replacement of the control rod and reuse of the follower. (AEC)

  5. A lexicographic approach to constrained MDP admission control

    NASA Astrophysics Data System (ADS)

    Panfili, Martina; Pietrabissa, Antonio; Oddi, Guido; Suraci, Vincenzo

    2016-02-01

    This paper proposes a reinforcement learning-based lexicographic approach to the call admission control problem in communication networks. The admission control problem is modelled as a multi-constrained Markov decision process. To overcome the problems of the standard approaches to the solution of constrained Markov decision processes, based on the linear programming formulation or on a Lagrangian approach, a multi-constraint lexicographic approach is defined, and an online implementation based on reinforcement learning techniques is proposed. Simulations validate the proposed approach.

  6. Medication reconciliation at patient admission: a randomized controlled trial

    PubMed Central

    Mendes, Antonio E.; Lombardi, Natália F.; Andrzejevski, Vânia S.; Frandoloso, Gibran; Correr, Cassyano J.; Carvalho, Mauricio

    2015-01-01

    Objective: To measure length of hospital stay (LHS) in patients receiving medication reconciliation. Secondary characteristics included analysis of number of preadmission medications, medications prescribed at admission, number of discrepancies, and pharmacists interventions done and accepted by the attending physician. Methods: A 6 month, randomized, controlled trial conducted at a public teaching hospital in southern Brazil. Patients admitted to general wards were randomized to receive usual care or medication reconciliation, performed within the first 72 hours of hospital admission. Results: The randomization process assigned 68 patients to UC and 65 to MR. LHS was 10±15 days in usual care and 9±16 days in medication reconciliation (p=0.620). The total number of discrepancies was 327 in the medication reconciliation group, comprising 52.6% of unintentional discrepancies. Physicians accepted approximately 75.0% of the interventions. Conclusion: These results highlight weakness at patient transition care levels in a public teaching hospital. LHS, the primary outcome, should be further investigated in larger studies. Medication reconciliation was well accepted by physicians and it is a useful tool to find and correct discrepancies, minimizing the risk of adverse drug events and improving patient safety. PMID:27011775

  7. An Introduction to Joint Control

    ERIC Educational Resources Information Center

    Lowenkron, Barry

    2006-01-01

    Lowenkron and colleagues (Lowenkron, 1984; 1991; 1998; 2006; Lowenkron and Colvin, 1992) describe a model that explains complex behavior using only well-established behavioral principles, concepts and terms. The model, called "joint control," is especially useful for understanding complex and delayed discriminations within a purely behavioral…

  8. Joint Control for Dummies: An Elaboration of Lowenkron's Model of Joint (Stimulus) Control

    ERIC Educational Resources Information Center

    Sidener, David W.

    2006-01-01

    The following paper describes Lowenkron's model of joint (stimulus) control. Joint control is described as a means of accounting for performances, especially generalized performances, for which a history of contingency control does not provide an adequate account. Examples are provided to illustrate instances in which joint control may facilitate…

  9. The Role of Rehearsal in Joint Control

    ERIC Educational Resources Information Center

    Gutierrez, Rick D.

    2006-01-01

    Behavior analysts have offered accounts of the behavior involved in matching to sample and delayed matching to sample. But until recently have not offered a behavioral analysis of generalized matching-to-sample. The concept of joint control, however, seems especially suited to such an analysis The present study used a joint-control procedure to…

  10. A self-learning call admission control scheme for CDMA cellular networks.

    PubMed

    Liu, Derong; Zhang, Yi; Zhang, Huaguang

    2005-09-01

    In the present paper, a call admission control scheme that can learn from the network environment and user behavior is developed for code division multiple access (CDMA) cellular networks that handle both voice and data services. The idea is built upon a novel learning control architecture with only a single module instead of two or three modules in adaptive critic designs (ACDs). The use of adaptive critic approach for call admission control in wireless cellular networks is new. The call admission controller can perform learning in real-time as well as in offline environments and the controller improves its performance as it gains more experience. Another important contribution in the present work is the choice of utility function for the present self-learning control approach which makes the present learning process much more efficient than existing learning control methods. The performance of our algorithm will be shown through computer simulation and compared with existing algorithms. PMID:16252828

  11. Admission Control Over Internet of Vehicles Attached With Medical Sensors for Ubiquitous Healthcare Applications.

    PubMed

    Lin, Di; Labeau, Fabrice; Yao, Yuanzhe; Vasilakos, Athanasios V; Tang, Yu

    2016-07-01

    Wireless technologies and vehicle-mounted or wearable medical sensors are pervasive to support ubiquitous healthcare applications. However, a critical issue of using wireless communications under a healthcare scenario rests at the electromagnetic interference (EMI) caused by radio frequency transmission. A high level of EMI may lead to a critical malfunction of medical sensors, and in such a scenario, a few users who are not transmitting emergency data could be required to reduce their transmit power or even temporarily disconnect from the network in order to guarantee the normal operation of medical sensors as well as the transmission of emergency data. In this paper, we propose a joint power and admission control algorithm to schedule the users' transmission of medical data. The objective of this algorithm is to minimize the number of users who are forced to disconnect from the network while keeping the EMI on medical sensors at an acceptable level. We show that a fixed point of proposed algorithm always exists, and at the fixed point, our proposed algorithm can minimize the number of low-priority users who are required to disconnect from the network. Numerical results illustrate that the proposed algorithm can achieve robust performance against the variations of mobile hospital environments. PMID:25974956

  12. Controllable Compliance Joint For Human Oriented Robots

    NASA Astrophysics Data System (ADS)

    Tsveov, Mihail; Chakarov, Dimitar

    2013-03-01

    In the paper, different approaches for compliance control for human oriented robots are revealed. The approaches based on the non- antagonistic and antagonistic actuation are compared. In addition, an approach is investigated in this work for the compliance and the position control in the joint by means of antagonistic actuation. It is based on the capability of the joint with torsion leaf springs to adjust its stiffness. Models of joint stiffness are presented in this paper with antagonistic and non-antagonistic influence of the spring forces on the joint motion. The stiffness and the position control possibilities are investigated and the opportunity for their decoupling as well. Some results of numerical experiments are presented in the paper too.

  13. Reduced Admissions for Acute Myocardial Infarction Associated with a Public Smoking Ban: Matched Controlled Study

    ERIC Educational Resources Information Center

    Seo, Dong-Chul; Torabi, Mohammad R.

    2007-01-01

    There has been no research linking implementation of a public smoking ban and reduced incidence of acute myocardial infarction (AMI) among nonsmoking patients. An ex post facto matched control group study was conducted to determine whether there was a change in hospital admissions for AMI among nonsmoking patients after a public smoking ban was…

  14. Some logical functions of joint control.

    PubMed Central

    Lowenkron, B

    1998-01-01

    Constructing a behavioral account of the language-related performances that characterize responding to logical and symbolic relations between stimuli is commonly viewed as a problem for the area of stimulus control. In response to this problem, the notion of joint control is presented here, and its ability to provide an interpretative account of these kinds of performances is explored. Joint control occurs when the currently rehearsed topography of a verbal operant, as evoked by one stimulus, is simultaneously evoked by another stimulus. This event, the onset of joint stimulus control by two stimuli over a common response topography, then sets the occasion for a response appropriate to this special relation between the stimuli. Although the mechanism described is simple, it seems to have broad explanatory properties. In what follows, these properties are applied to provide a behavioral interpretation of two sorts of fundamental, putatively cognitive, performances: those based on logical relations and those based on semantic relations. The first includes responding to generalized conceptual relations such as identity, order, relative size, distance, and orientation. The second includes responding to relations usually ascribed to word meaning. These include relations between words and objects, the specification of objects by words, name-object bidirectionality, and the recognition of objects from their description. Finally, as a preview of some further possibilities, the role of joint control in goal-oriented behavior is considered briefly. PMID:9599452

  15. Bidirectional controlled joint remote state preparation

    NASA Astrophysics Data System (ADS)

    Peng, Jia-Yin; Bai, Ming-Qiang; Mo, Zhi-Wen

    2015-11-01

    Fusing the ideas of bidirectional controlled teleportation and joint remote state preparation, we put forward a protocol for implementing five-party bidirectional controlled joint remote state preparation (BCJRSP) by using an eight-qubit cluster state as quantum channel. It can be shown that two distant senders can simultaneously and deterministically exchange their states with the other senders under the control of the supervisor. In order to extend BCJRSP, we generalize this protocol from five participants to multi participants utilizing two multi-qubit GHZ-type states as channel and propose two generalized BCJRSP schemes. On the other hand, we generalize the BCJRSP to multidirectional controlled joint remote state preparation by utilizing multi GHZ-type states of multi-qubit as quantum channel. By integrating bidirectional quantum teleportation, quantum state sharing and joint remote state preparation, some modified versions are discussed. Only Pauli operations and single-qubit measurements are used in our schemes, so the scheme with five-party is easily realized in physical experiment.

  16. A universal six-joint robot controller

    NASA Technical Reports Server (NTRS)

    Bihn, D. G.; Hsia, T. C.

    1987-01-01

    A general purpose six-axis robotic manipulator controller was designed and implemented to serve as a research tool for the investigation of the practical and theoretical aspects of various control strategies in robotics. A 80286-based Intel System 310 running the Xenix operating servo software as well as the higher level software (e.g., kinematics and path planning) were employed. A Multibus compatible interface board was designed and constructed to handle I/O signals from the robot manipulator's joint motors. From the design point of view, the universal controller is capable of driving robot manipulators equipped with D.C. joint motors and position optical encoders. To test its functionality, the controller is connected to the joint motor D.C. power amplifier of a PUMA 560 arm bypassing completely the manufacturer-supplied Unimation controller. A controller algorithm consisting of local PD control laws was written and installed into the Xenix operating system. Additional software drivers were implemented to allow application programs access to the interface board. All software was written in the C language.

  17. BARTER: Behavior Profile Exchange for Behavior-Based Admission and Access Control in MANETs

    NASA Astrophysics Data System (ADS)

    Frias-Martinez, Vanessa; Stolfo, Salvatore J.; Keromytis, Angelos D.

    Mobile Ad-hoc Networks (MANETs) are very dynamic networks with devices continuously entering and leaving the group. The highly dynamic nature of MANETs renders the manual creation and update of policies associated with the initial incorporation of devices to the MANET (admission control) as well as with anomaly detection during communications among members (access control) a very difficult task. In this paper, we present BARTER, a mechanism that automatically creates and updates admission and access control policies for MANETs based on behavior profiles. BARTER is an adaptation for fully distributed environments of our previously introduced BB-NAC mechanism for NAC technologies. Rather than relying on a centralized NAC enforcer, MANET members initially exchange their behavior profiles and compute individual local definitions of normal network behavior. During admission or access control, each member issues an individual decision based on its definition of normalcy. Individual decisions are then aggregated via a threshold cryptographic infrastructure that requires an agreement among a fixed amount of MANET members to change the status of the network. We present experimental results using content and volumetric behavior profiles computed from the ENRON dataset. In particular, we show that the mechanism achieves true rejection rates of 95% with false rejection rates of 9%.

  18. Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    This paper presents a control method based on virtual passive dynamic control that will stabilize a robot manipulator using joint torque sensors and a simple joint model. The method does not require joint position or velocity feedback for stabilization. The proposed control method is stable in the sense of Lyaponov. The control method was implemented on several joints of a laboratory robot. The controller showed good stability robustness to system parameter error and to the exclusion of nonlinear dynamic effects on the joints. The controller enhanced position tracking performance and, in the absence of position control, dissipated joint energy.

  19. Ordinal optimization of admission control in wireless multihop integrated networks via standard clock simulation

    NASA Astrophysics Data System (ADS)

    Wieselthier, Jeffrey E.; Barnhart, Craig M.; Ephremides, Anthony

    1995-08-01

    In this report we apply the ideas of ordinal optimization and the technique of Standard Clock (SC) simulation to the voice-call admission-control problem in integrated voice/data multihop radio networks. We first describe the use of the SC approach on sequential machines, and quantify the speedup in simulation time that is achieved by its use in a number of queueing examples. We then develop an efficient simulation model for wireless integrated networks based on the use of the SC approach, which permits the rapid parallel simulation of a large number of admission-control policies. We have extended the basic SC approach by incorporating fixed strength data packets, whereas SC simulation is normally limited to systems with exponential interevent times. Using this model, we demonstrate the effectiveness of ordinal-optimization techniques, which provide a remarkable good ranking of admission-control policies after relatively short simulation runs, thereby facilitating the rapid determination of good policies. Moreover, we demonstrate that the use of crude, inaccurate analytical and simulation models can provide highly accurate policy rankings that can be used in conjunction with ordinal-optimization methods, provided that they incorporate the key aspects of system operation.

  20. Non-linear joint dynamics and controls of jointed flexible structures with active and viscoelastic joint actuators

    NASA Astrophysics Data System (ADS)

    Tzou, H. S.

    1990-12-01

    Studies on joint dominated flexible space structures have attracted much interest recently due to the rapid developments in large deployable space systems. This paper describes a study of the non-linear structural dynamics of jointed flexible structures with initial joint clearance and subjected to external excitations. Methods of using viscoelastic and active vibration control technologies, joint actuators, to reduce dynamic contact force and to stabilize the systems are proposed and evaluated. System dynamic equations of a discretized multi-degrees-of-freedom flexible system with initial joint clearances and joint actuators (active and viscoelastic passive) are derived. Dynamic contacts in an elastic joint are simulated by a non-linear joint model comprised of a non-linear spring and damper. A pseudo-force approximation method is used in numerical time-domain integration. Dynamic responses of a jointed flexible structure with and without viscoelastic and active joint actuators are presented and compared. Effectiveness of active/passive joint actuators is demonstrated.

  1. Mitigating Handoff Call Dropping in Wireless Cellular Networks: A Call Admission Control Technique

    NASA Astrophysics Data System (ADS)

    Ekpenyong, Moses Effiong; Udoh, Victoria Idia; Bassey, Udoma James

    2016-06-01

    Handoff management has been an important but challenging issue in the field of wireless communication. It seeks to maintain seamless connectivity of mobile users changing their points of attachment from one base station to another. This paper derives a call admission control model and establishes an optimal step-size coefficient (k) that regulates the admission probability of handoff calls. An operational CDMA network carrier was investigated through the analysis of empirical data collected over a period of 1 month, to verify the performance of the network. Our findings revealed that approximately 23 % of calls in the existing system were lost, while 40 % of the calls (on the average) were successfully admitted. A simulation of the proposed model was then carried out under ideal network conditions to study the relationship between the various network parameters and validate our claim. Simulation results showed that increasing the step-size coefficient degrades the network performance. Even at optimum step-size (k), the network could still be compromised in the presence of severe network crises, but our model was able to recover from these problems and still functions normally.

  2. Remote controlled vacuum joint closure mechanism

    DOEpatents

    Doll, David W.; Hager, E. Randolph

    1986-01-01

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange.

  3. Adaptive independent joint control of manipulators - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1988-01-01

    The author presents a simple decentralized adaptive control scheme for multijoint robot manipulators based on the independent joint control concept. The proposed control scheme for each joint consists of a PID (proportional integral and differential) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. The static and dynamic couplings that exist between the joint motions are compensated by the adaptive independent joint controllers while ensuring trajectory tracking. The proposed scheme is implemented on a MicroVAX II computer for motion control of the first three joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite strongly coupled, highly nonlinear joint dynamics. The results confirm that the proposed decentralized adaptive control of manipulators is feasible, in spite of strong interactions between joint motions. The control scheme presented is computationally very fast and is amenable to parallel processing implementation within a distributed computing architecture, where each joint is controlled independently by a simple algorithm on a dedicated microprocessor.

  4. Controlling the Front Gates: Effective Admissions Policies and Practices. Pathways to Juvenile Detention Reform 3.

    ERIC Educational Resources Information Center

    Orlando, Frank

    This report identifies policies and practices essential to overcoming problems with admissions to juvenile detention facilities, using information from the Juvenile Detention Alternatives Initiative (JDAI). Chapter 1, "Why Objective Admissions Policies and Practices Are Critical to Detention Reform," describes factors contributing to uncontrolled…

  5. Remote controlled vacuum joint closure mechanism

    DOEpatents

    Doll, D.W.; Hager, E.R.

    1984-02-22

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange and maintain the high vacuum seal established by the displacement of the flange assembly and extension of the bellows without displacing the entire duct.

  6. Control of joint motion simulators for biomechanical research

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.

    1992-01-01

    The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.

  7. Measuring Joint Stimulus Control by Complex Graph/Description Correspondences

    ERIC Educational Resources Information Center

    Fields, Lanny; Spear, Jack

    2012-01-01

    Joint stimulus control occurs when responding is determined by the correspondence of elements of a complex sample and a complex comparison stimulus. In academic settings, joint stimulus control of behavior would be evidenced by the selection of an accurate description of a complex graph in which each element of a graph corresponded to particular…

  8. Design of a telerobotic controller with joint torque sensors

    NASA Technical Reports Server (NTRS)

    Jansen, J. F.; Herndon, J. N.

    1990-01-01

    The purpose was to analytically show how to design a joint controller for a telerobotic system when joint torque sensors are available. Other sensors such as actuator position, actuator velocity, joint position, and joint velocity are assumed to be accessible; however, the results will also be useful when only partial measurements are available. The controller presented can be applied to either mode of operation of a manipulator (i.e., teleoperation or robotic). Mechanical manipulators with high levels of friction are assumed. The results are applied to a telerobotic system built for NASA. Very high levels of friction have been reduced using high-gain feedback while avoiding limit cycles.

  9. Decentralized control of Markovian decision processes: Existence Sigma-admissable policies

    NASA Technical Reports Server (NTRS)

    Greenland, A.

    1980-01-01

    The problem of formulating and analyzing Markov decision models having decentralized information and decision patterns is examined. Included are basic examples as well as the mathematical preliminaries needed to understand Markov decision models and, further, to superimpose decentralized decision structures on them. The notion of a variance admissible policy for the model is introduced and it is proved that there exist (possibly nondeterministic) optional policies from the class of variance admissible policies. Directions for further research are explored.

  10. An Improved Call Admission Control Mechanism with Prioritized Handoff Queuing Scheme for BWA Networks

    NASA Astrophysics Data System (ADS)

    Chowdhury, Prasun; Saha Misra, Iti

    2014-10-01

    Nowadays, due to increased demand for using the Broadband Wireless Access (BWA) networks in a satisfactory manner a promised Quality of Service (QoS) is required to manage the seamless transmission of the heterogeneous handoff calls. To this end, this paper proposes an improved Call Admission Control (CAC) mechanism with prioritized handoff queuing scheme that aims to reduce dropping probability of handoff calls. Handoff calls are queued when no bandwidth is available even after the allowable bandwidth degradation of the ongoing calls and get admitted into the network when an ongoing call is terminated with a higher priority than the newly originated call. An analytical Markov model for the proposed CAC mechanism is developed to analyze various performance parameters. Analytical results show that our proposed CAC with handoff queuing scheme prioritizes the handoff calls effectively and reduces dropping probability of the system by 78.57% for real-time traffic without degrading the number of failed new call attempts. This results in the increased bandwidth utilization of the network.

  11. Adaptive Postural Control for Joint Immobilization during Multitask Performance

    PubMed Central

    Hsu, Wei-Li

    2014-01-01

    Motor abundance is an essential feature of adaptive control. The range of joint combinations enabled by motor abundance provides the body with the necessary freedom to adopt different positions, configurations, and movements that allow for exploratory postural behavior. This study investigated the adaptation of postural control to joint immobilization during multi-task performance. Twelve healthy volunteers (6 males and 6 females; 21–29 yr) without any known neurological deficits, musculoskeletal conditions, or balance disorders participated in this study. The participants executed a targeting task, alone or combined with a ball-balancing task, while standing with free or restricted joint motions. The effects of joint configuration variability on center of mass (COM) stability were examined using uncontrolled manifold (UCM) analysis. The UCM method separates joint variability into two components: the first is consistent with the use of motor abundance, which does not affect COM position (VUCM); the second leads to COM position variability (VORT). The analysis showed that joints were coordinated such that their variability had a minimal effect on COM position. However, the component of joint variability that reflects the use of motor abundance to stabilize COM (VUCM) was significant decreased when the participants performed the combined task with immobilized joints. The component of joint variability that leads to COM variability (VORT) tended to increase with a reduction in joint degrees of freedom. The results suggested that joint immobilization increases the difficulty of stabilizing COM when multiple tasks are performed simultaneously. These findings are important for developing rehabilitation approaches for patients with limited joint movements. PMID:25329477

  12. Shocking Admission

    ERIC Educational Resources Information Center

    Hoover, Eric; Millman, Sierra

    2007-01-01

    Marilee Jones's career had been a remarkable success. She joined Massachusetts Institute of Technology's (MIT's) admissions office in 1979, landing a job in Cambridge at a time when boys ruled the sandbox of the admissions profession. Her job was to help MIT recruit more women, who then made up less than one-fifth of the institute's students. She…

  13. Controlling joint pain in older people.

    PubMed

    Paisley, Peter; Serpell, Mick

    2016-01-01

    Jont pain in oldder people The prevalence of chronic pain in older people in the community ranges from 25 to 76% and for those in residential care, it is even higher at 83 to 93%. The most common sites affected are the back, hip, or knee, and other joints. There is increased reporting of pain in women (79%) compared with men (53%). Common conditions include osteoarthritis and, to a lesser extent, the inflammatory arthropathies such as rheumatoid arthritis. The differential diagnosis includes non-articular pain such as vascular limb pain and nocturnal cramp, some neuropathic pain conditions (such as compressive neuropathies and postherpetic neuralgia), soft tissue disorders such as fibromyalgia and myofascial pain syndromes. In addition to an assessment of pain intensity, a biopsychosocial model should be adopted to ascertain the effect of the pain on the patient's degree of background pain at rest. The disease is often localised to the large load-bearing joints, predominantly the hips and knees. In contrast to osteoarthritis, the inflammatory arthritides typically present with symmetrical swollen, stiff, and painful small joints of the hands and feet, usually worse in the morning. PMID:27180497

  14. Health-related quality of life in patients waiting for major joint replacement. A comparison between patients and population controls

    PubMed Central

    Hirvonen, Johanna; Blom, Marja; Tuominen, Ulla; Seitsalo, Seppo; Lehto, Matti; Paavolainen, Pekka; Hietaniemi, Kalevi; Rissanen, Pekka; Sintonen, Harri

    2006-01-01

    Background Several quality-of-life studies in patients awaiting major joint replacement have focused on the outcomes of surgery. Interest in examining patients on the elective waiting list has increased since the beginning of 2000. We assessed health-related quality of life (HRQoL) in patients waiting for total hip (THR) or knee (TKR) replacement in three Finnish hospitals, and compared patients' HRQoL with that of population controls. Methods A total of 133 patients awaiting major joint replacement due to osteoarthritis (OA) of the hip or knee joint were prospectively followed from the time the patient was placed on the waiting list to hospital admission. A sample of controls matched by age, gender, housing and home municipality was drawn from the computerised population register. HRQoL was measured by the generic 15D instrument. Differences between patients and the population controls were tested by the independent samples t-test and between the measurement points by the paired samples t-test. A linear regression model was used to explain the variance in the 15D score at admission. Results At baseline, 15D scores were significantly different between patients and the population controls. Compared with the population controls, patients were worse off on the dimensions of moving (P < 0.001), sleeping (P < 0.001), sexual activity (P < 0.001), vitality (P < 0.001), usual activities (P < 0.001) and discomfort and symptoms (P < 0.001). Further, psychological factors – depression (P < 0.001) and distress (P = 0.004) – were worse among patients than population controls. The patients showed statistically significantly improved average scores at admission on the dimensions of moving (P = 0.026), sleeping (P = 0.004) and discomfort and symptoms (P = 0.041), but not in the overall 15D score compared with the baseline. In patients, 15D score at baseline (P < 0.001) and body mass index (BMI) (P = 0.020) had an independent effect on patients' 15D score at hospital admission

  15. Neural joint control for Space Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Atkins, Mark A.; Cox, Chadwick J.; Lothers, Michael D.; Pap, Robert M.; Thomas, Charles R.

    1992-01-01

    Neural networks are being used to control a robot arm in a telerobotic operation. The concept uses neural networks for both joint and inverse kinematics in a robotic control application. An upper level neural network is trained to learn inverse kinematic mappings. The output, a trajectory, is then fed to the Decentralized Adaptive Joint Controllers. This neural network implementation has shown that the controlled arm recovers from unexpected payload changes while following the reference trajectory. The neural network-based decentralized joint controller is faster, more robust and efficient than conventional approaches. Implementations of this architecture are discussed that would relax assumptions about dynamics, obstacles, and heavy loads. This system is being developed to use with the Space Shuttle Remote Manipulator System.

  16. The effect of knee joint angle on torque control.

    PubMed

    Sosnoff, Jacob J; Voudrie, Stefani J; Ebersole, Kyle T

    2010-01-01

    The purpose of the author's investigation was to examine the effect of knee joint angle on torque control of the quadriceps muscle group. In all, 12 healthy adults produced maximal voluntary contractions and submaximal torque (15, 30, and 45% MVC [maximal voluntary contraction]) at leg flexion angles of 15 degrees , 30 degrees , 60 degrees , and 90 degrees below the horizontal plane. As expected, MVC values changed with respect to joint angle with maximum torque output being greatest at 60 degrees and least at 15 degrees . During the submaximal tasks, participants appropriately scaled their torque output to the required targets. Absolute variability (i.e., standard deviation) of torque output was greatest at 60 degrees and 90 degrees knee flexion. However, relative variability as indexed by coefficient of variation (CV) decreased as joint angle increased, with the greatest CV occurring at 15 degrees . These results are congruent with the hypothesis that joint angle influences the control of torque. PMID:19906637

  17. Design of a telerobotic controller with joint torque sensors

    SciTech Connect

    Jansen, J.F.; Herndon, J.N.

    1990-01-01

    The purpose of this paper is to analytically show how to design a joint controller for a telerobotic system when joint torque sensors are available. Other sensors such as actuator position, actuator velocity, joint position, and joint velocity are assumed to be accessible; however, the results of this paper will also be useful when only partial measurements are available. The controller presented in this paper can be applied to either mode of operation of a manipulator (i.e., teleoperation or robotic). Mechanical manipulators with high levels of friction are assumed in this study. Finally, the results are applied to a telerobotic system built for NASA. Very high levels of friction have been reduced using high-grain feedback while avoiding limit cycles. 14 refs., 5 figs.

  18. A criterion for joint optimization of identification and robust control

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Yam, Y.; Mettler, E.

    1992-01-01

    A criterion for system identification is developed that is consistent with the intended used of the fitted model for modern robust control synthesis. Specifically, a joint optimization problem is posed which simultaneously solves the plant model estimate and control design, so as to optimize robust performance over the set of plants consistent with a specified experimental data set.

  19. Joint Forward Operating Base Elements of Command and Control

    NASA Astrophysics Data System (ADS)

    Summers, William C.

    2002-01-01

    Since the 1986 Goldwater-Nichols Act directed the Chairman of the Joint Chiefs of Staff to develop doctrine for the joint employment of the armed forces, tactics, techniques, and procedures have evolved at different rates depending on the competency. Whereas the command of joint air forces is well prescribed within the structure of the air operations center and its associated leadership, command of air assets at a joint forward operating base lacks guidance. Today, the United States prosecutes an air war over Afghanistan from bases in Uzbekistan, Pakistan, and Afghanistan. Elements of the United States Army, Air Force, and Marines combine at these geographically minute locations, each bringing a certain complement of support and command and control. Evidence from operations during the 1999 air war for Kosovo at Tirana Rinas Airport in Albania suggests that when these service elements meet at the airfield for the first time, there are problems associated with local procedure. At best, time is wasted creating local joint systems to overcome the difficulties. At worst, safety and mission accomplishment are jeopardized. This thesis will address the need to develop doctrine and a jointly integrated organization to support the command and control function at a forward operating base.

  20. Autonomous Quality Control of Joint Orientation Measured with Inertial Sensors

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Nguyen, Hung; Duval, Christian

    2016-01-01

    Clinical mobility assessment is traditionally performed in laboratories using complex and expensive equipment. The low accessibility to such equipment, combined with the emerging trend to assess mobility in a free-living environment, creates a need for body-worn sensors (e.g., inertial measurement units—IMUs) that are capable of measuring the complexity in motor performance using meaningful measurements, such as joint orientation. However, accuracy of joint orientation estimates using IMUs may be affected by environment, the joint tracked, type of motion performed and velocity. This study investigates a quality control (QC) process to assess the quality of orientation data based on features extracted from the raw inertial sensors’ signals. Joint orientation (trunk, hip, knee, ankle) of twenty participants was acquired by an optical motion capture system and IMUs during a variety of tasks (sit, sit-to-stand transition, walking, turning) performed under varying conditions (speed, environment). An artificial neural network was used to classify good and bad sequences of joint orientation with a sensitivity and a specificity above 83%. This study confirms the possibility to perform QC on IMU joint orientation data based on raw signal features. This innovative QC approach may be of particular interest in a big data context, such as for remote-monitoring of patients’ mobility. PMID:27399701

  1. Autonomous Quality Control of Joint Orientation Measured with Inertial Sensors.

    PubMed

    Lebel, Karina; Boissy, Patrick; Nguyen, Hung; Duval, Christian

    2016-01-01

    Clinical mobility assessment is traditionally performed in laboratories using complex and expensive equipment. The low accessibility to such equipment, combined with the emerging trend to assess mobility in a free-living environment, creates a need for body-worn sensors (e.g., inertial measurement units-IMUs) that are capable of measuring the complexity in motor performance using meaningful measurements, such as joint orientation. However, accuracy of joint orientation estimates using IMUs may be affected by environment, the joint tracked, type of motion performed and velocity. This study investigates a quality control (QC) process to assess the quality of orientation data based on features extracted from the raw inertial sensors' signals. Joint orientation (trunk, hip, knee, ankle) of twenty participants was acquired by an optical motion capture system and IMUs during a variety of tasks (sit, sit-to-stand transition, walking, turning) performed under varying conditions (speed, environment). An artificial neural network was used to classify good and bad sequences of joint orientation with a sensitivity and a specificity above 83%. This study confirms the possibility to perform QC on IMU joint orientation data based on raw signal features. This innovative QC approach may be of particular interest in a big data context, such as for remote-monitoring of patients' mobility. PMID:27399701

  2. Decentralized control of large flexible structures by joint decoupling

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Juang, Jer-Nan

    1992-01-01

    A decentralized control design method is presented for large complex flexible structures by using the idea of joint decoupling. The derivation is based on a coupled substructure state-space model, which is obtained from enforcing conditions of interface compatibility and equilibrium to the substructure state-space models. It is shown that by restricting the control law to be localized state feedback and by setting the joint actuator input commands to decouple joint 'degrees of freedom' (dof) from interior dof, the global structure control design problem can be decomposed into several substructure control design problems. The substructure control gains and substructure observers are designed based on modified substructure state-space models. The controllers produced by the proposed method can operate successfully at the individual substructure level as well as at the global structure level. Therefore, not only control design but also control implementation is decentralized. Stability and performance requirement of the closed-loop system can be achieved by using any existing state feedback control design method. A two-component mass-spring damper system and a three-truss structure are used as examples to demonstrate the proposed method.

  3. A hybrid joint based controller for an upper extremity exoskeleton

    NASA Astrophysics Data System (ADS)

    Mohd Khairuddin, Ismail; Taha, Zahari; Majeed, Anwar P. P. Abdul; Hakeem Deboucha, Abdel; Azraai Mohd Razman, Mohd; Aziz Jaafar, Abdul; Mohamed, Zulkifli

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton. The Euler-Lagrange formulation was used in deriving the dynamic modelling of both the human upper limb as well as the exoskeleton that consists of the upper arm and the forearm. The human model is based on anthropometrical measurements of the upper limb. The proportional-derivative (PD) computed torque control (CTC) architecture is employed in this study to investigate its efficacy performing joint-space control objectives specifically in rehabilitating the elbow and shoulder joints along the sagittal plane. An active force control (AFC) algorithm is also incorporated into the PD-CTC to investigate the effectiveness of this hybrid system in compensating disturbances. It was found that the AFC- PD-CTC performs well against the disturbances introduced into the system whilst achieving acceptable trajectory tracking as compared to the conventional PD-CTC control architecture.

  4. Robotic control in knee joint replacement surgery.

    PubMed

    Davies, B L; Rodriguez y Baena, F M; Barrett, A R W; Gomes, M P S F; Harris, S J; Jakopec, M; Cobb, J P

    2007-01-01

    A brief history of robotic systems in knee arthroplasty is provided. The place of autonomous robots is then discussed and compared to more recent 'hands-on' robotic systems that can be more cost effective. The case is made for robotic systems to have a clear justification, with improved benefits compared to those from cheaper navigation systems. A number of more recent, smaller, robot systems for knee arthroplasty are also described. A specific example is given of an active constraint medical robot, the ACROBOT system, used in a prospective randomized controlled trial of unicondylar robotic knee arthroplasty in which the robot was compared to conventional surgery. The results of the trial are presented together with a discussion of the need for measures of accuracy to be introduced so that the efficacy of the robotic surgery can be immediately identified, rather than have to wait for a number of years before long-term clinical improvements can be demonstrated. PMID:17315770

  5. Relationship between glycated hemoglobin, Intensive Care Unit admission blood sugar and glucose control with ICU mortality in critically ill patients

    PubMed Central

    Mahmoodpoor, Ata; Hamishehkar, Hadi; Shadvar, Kamran; Beigmohammadi, Mohammadtaghi; Iranpour, Afshin; Sanaie, Sarvin

    2016-01-01

    Background and Aims: The association between hyperglycemia and mortality is believed to be influenced by the presence of diabetes mellitus (DM). In this study, we evaluated the effect of preexisting hyperglycemia on the association between acute blood glucose management and mortality in critically ill patients. The primary objective of the study was the relationship between HbA1c and mortality in critically ill patients. Secondary objectives of the study were relationship between Intensive Care Unit (ICU) admission blood glucose and glucose control during ICU stay with mortality in critically ill patients. Materials and Methods: Five hundred patients admitted to two ICUs were enrolled. Blood sugar and hemoglobin A1c (HbA1c) concentrations on ICU admission were measured. Age, sex, history of DM, comorbidities, Acute Physiology and Chronic Health Evaluation II score, sequential organ failure assessment score, hypoglycemic episodes, drug history, mortality, and development of acute kidney injury and liver failure were noted for all patients. Results: Without considering the history of diabetes, nonsurvivors had significantly higher HbA1c values compared to survivors (7.25 ± 1.87 vs. 6.05 ± 1.22, respectively, P < 0.001). Blood glucose levels in ICU admission showed a significant correlation with risk of death (P < 0.006, confidence interval [CI]: 1.004–1.02, relative risk [RR]: 1.01). Logistic regression analysis revealed that HbA1c increased the risk of death; with each increase in HbA1c level, the risk of death doubled. However, this relationship was not statistically significant (P: 0.161, CI: 0.933–1.58, RR: 1.2). Conclusions: Acute hyperglycemia significantly affects mortality in the critically ill patients; this relation is also influenced by chronic hyperglycemia. PMID:27076705

  6. Sex Differences in Proximal Control of the Knee Joint

    PubMed Central

    Mendiguchia, Jurdan; Ford, Kevin R.; Quatman, Carmen E.; Alentorn-Geli, Eduard; Hewett, Timothy E.

    2014-01-01

    Following the onset of maturation, female athletes have a significantly higher risk for anterior cruciate ligament (ACL) injury compared with male athletes. While multiple sex differences in lower-extremity neuromuscular control and biomechanics have been identified as potential risk factors for ACL injury in females, the majority of these studies have focused specifically on the knee joint. However, increasing evidence in the literature indicates that lumbopelvic (core) control may have a large effect on knee-joint control and injury risk. This review examines the published evidence on the contributions of the trunk and hip to knee-joint control. Specifically, the sex differences in potential proximal controllers of the knee as risk factors for ACL injury are identified and discussed. Sex differences in trunk and hip biomechanics have been identified in all planes of motion (sagittal, coronal and transverse). Essentially, female athletes show greater lateral trunk displacement, altered trunk and hip flexion angles, greater ranges of trunk motion, and increased hip adduction and internal rotation during sport manoeuvres, compared with their male counterparts. These differences may increase the risk of ACL injury among female athletes. Prevention programmes targeted towards trunk and hip neuromuscular control may decrease the risk for ACL injuries. PMID:21688868

  7. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control.

    PubMed

    Dallmann, Chris J; Dürr, Volker; Schmitz, Josef

    2016-01-27

    Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa-trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax-coxa and femur-tibia joints were often directed opposite to fore-aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking. PMID:26791608

  8. Control of flexible arms with friction in the joints

    SciTech Connect

    Feliu, V.; Rattan, K.S.; Brown, H.B. Jr.

    1993-08-01

    The control of flexible arms with friction in the joints is studied. A method to identify the dynamics of a flexible arm from its frequency response (which is strongly distorted by Coulomb`s friction) is proposed. A robust control scheme that minimizes the effects of this friction is presented. The scheme consists of two nested feedback loops: an inner loop to control the motor position and an outer loop to control the tip position. It is shown that a proper design of the inner loop eliminates the effect so friction while controlling the tip position and significantly simplifies the design of the outer loop. The proposed scheme is applied to a class of lightweight flexible arms, and the experiments show that the control scheme results in a simple controller. As a result, the computations are minimized and, thus, high sampling rates may be used.

  9. Integrated, proportionally controlled, and naturally compliant universal joint actuator with controllable stiffness

    DOEpatents

    Borenstein, Johann; Granosik, Grzegorz

    2005-03-22

    An apparatus for traversing obstacles having an elongated, round, flexible body that includes a plurality of segments interconnected by an integrated joint actuator assembly. The integrated joint actuator assembly includes a plurality of bellows-type actuators individually coupling adjacent segments to permit pivotal actuation of the apparatus therebetween. A controller is employed to maintain proper positional control and stiffness control while minimize air flow.

  10. Integrated High-Speed Torque Control System for a Robotic Joint

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)

    2013-01-01

    A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).

  11. Deficient cytokine control modulates temporomandibular joint pain in rheumatoid arthritis.

    PubMed

    Ahmed, Neveen; Catrina, Anca I; Alyamani, Ahmed O; Mustafa, Hamid; Alstergren, Per

    2015-08-01

    The aim was to investigate how endogenous cytokine control of tumor necrosis factor (TNF) influences temporomandibular joint (TMJ) pain in relation to the role of anti-citrullinated peptide antibodies (ACPA) in patients with rheumatoid arthritis (RA). Twenty-six consecutive patients with TMJ RA were included. Temporomandibular joint pain intensity was assessed at rest, on maximum mouth opening, on chewing, and on palpation. Mandibular movement capacity and degree of anterior open bite (a clinical sign of structural destruction of TMJ tissues) were also assessed. Systemic inflammatory activity was assessed using the Disease Activity Score in 28 joints (DAS28) for rheumatoid arthritis. Samples of TMJ synovial fluid and blood were obtained and analyzed for TNF, its soluble receptor, soluble TNF receptor II (TNFsRII), and ACPA. A high concentration of TNF in relation to the concentration of TNFsRII in TMJ synovial fluid was associated with TMJ pain on posterior palpation on maximum mouth opening. The ACPA concentration correlated significantly to the TNF concentration, but not to the TNFsRII concentration, indicating that increased inflammatory activity is mainly caused by an insufficient increase in anti-inflammatory mediators. This study indicates that TMJ pain on palpation in patients with RA is related to a deficiency in local cytokine control that contributes to increased inflammatory activity, including sensitization to mechanical stimuli over the TMJ. PMID:26010823

  12. Medical-Grade Channel Access and Admission Control in 802.11e EDCA for Healthcare Applications

    PubMed Central

    Son, Sunghwa; Park, Kyung-Joon; Park, Eun-Chan

    2016-01-01

    In this paper, we deal with the problem of assuring medical-grade quality of service (QoS) for real-time medical applications in wireless healthcare systems based on IEEE 802.11e. Firstly, we show that the differentiated channel access of IEEE 802.11e cannot effectively assure medical-grade QoS because of priority inversion. To resolve this problem, we propose an efficient channel access algorithm. The proposed algorithm adjusts arbitrary inter-frame space (AIFS) in the IEEE 802.11e protocol depending on the QoS measurement of medical traffic, to provide differentiated near-absolute priority for medical traffic. In addition, based on rigorous capacity analysis, we propose an admission control scheme that can avoid performance degradation due to network overload. Via extensive simulations, we show that the proposed mechanism strictly assures the medical-grade QoS and improves the throughput of low-priority traffic by more than several times compared to the conventional IEEE 802.11e. PMID:27490666

  13. Medical-Grade Channel Access and Admission Control in 802.11e EDCA for Healthcare Applications.

    PubMed

    Son, Sunghwa; Park, Kyung-Joon; Park, Eun-Chan

    2016-01-01

    In this paper, we deal with the problem of assuring medical-grade quality of service (QoS) for real-time medical applications in wireless healthcare systems based on IEEE 802.11e. Firstly, we show that the differentiated channel access of IEEE 802.11e cannot effectively assure medical-grade QoS because of priority inversion. To resolve this problem, we propose an efficient channel access algorithm. The proposed algorithm adjusts arbitrary inter-frame space (AIFS) in the IEEE 802.11e protocol depending on the QoS measurement of medical traffic, to provide differentiated near-absolute priority for medical traffic. In addition, based on rigorous capacity analysis, we propose an admission control scheme that can avoid performance degradation due to network overload. Via extensive simulations, we show that the proposed mechanism strictly assures the medical-grade QoS and improves the throughput of low-priority traffic by more than several times compared to the conventional IEEE 802.11e. PMID:27490666

  14. Patient Controlled Analgesia for Adults with Sickle Cell Disease Awaiting Admission from the Emergency Department

    PubMed Central

    Santos, Josue; Jones, Sasia; Wakefield, Daniel; Grady, James; Andemariam, Biree

    2016-01-01

    Background. A treatment algorithm for sickle cell disease (SCD) pain in adults presenting to a single emergency department (ED) was developed prioritizing initiation of patient controlled analgesia (PCA) for patients awaiting hospitalization. Objectives. Evaluate the proportion of ED visits in which PCA was started in the ED. Methods. A two-year retrospective chart review of consecutive SCD pain ED visits was undertaken. Data abstracted included PCA initiation, low versus high utilizer status, pain scores, bolus opioid number, treatment times, and length of hospitalization. Results. 258 visits resulted in hospitalization. PCA was initiated in 230 (89%) visits of which 157 (68%) were initiated in the ED. Time to PCA initiation was longer when PCA was begun after hospitalization versus in the ED (8.6 versus 4.5 hours, p < 0.001). ED PCA initiation was associated with fewer opioid boluses following decision to admit and less time without analgesic treatment (all p < 0.05). Mean pain intensity (MPI) reduction did not differ between groups. Among visits where PCA was begun in the ED, low utilizers demonstrated greater MPI reduction than high utilizers (2.8 versus 2.0, p = 0.04). Conclusions. ED PCA initiation for SCD-related pain is possible and associated with more timely analgesic delivery. PMID:27445606

  15. The Effect of Health-Facility Admission and Skilled Birth Attendant Coverage on Maternal Survival in India: A Case-Control Analysis

    PubMed Central

    Montgomery, Ann L.; Fadel, Shaza; Kumar, Rajesh; Bondy, Sue; Moineddin, Rahim; Jha, Prabhat

    2014-01-01

    Background Research in areas of low skilled attendant coverage found that maternal mortality is paradoxically higher in women who seek obstetric care. We estimated the effect of health-facility admission on maternal survival, and how this effect varies with skilled attendant coverage across India. Methods/Findings Using unmatched population-based case-control analysis of national datasets, we compared the effect of health-facility admission at any time (antenatal, intrapartum, postpartum) on maternal deaths (cases) to women reporting pregnancies (controls). Probability of maternal death decreased with increasing skilled attendant coverage, among both women who were and were not admitted to a health-facility, however, the risk of death among women who were admitted was higher (at 50% coverage, OR = 2.32, 95% confidence interval 1.85–2.92) than among those women who were not; while at higher levels of coverage, the effect of health-facility admission was attenuated. In a secondary analysis, the probability of maternal death decreased with increasing coverage among both women admitted for delivery or delivered at home but there was no effect of admission for delivery on mortality risk (50% coverage, OR = 1.0, 0.80–1.25), suggesting that poor quality of obstetric care may have attenuated the benefits of facility-based care. Subpopulation analysis of obstetric hemorrhage cases and report of ‘excessive bleeding’ in controls showed that the probability of maternal death decreased with increasing skilled attendant coverage; but the effect of health-facility admission was attenuated (at 50% coverage, OR = 1.47, 0.95–1.79), suggesting that some of the effect in the main model can be explained by women arriving at facility with complications underway. Finally, highest risk associated with health-facility admission was clustered in women with education 8 years. Conclusions The effect of health-facility admission did vary by skilled attendant coverage, and

  16. Regularization design and control of change admission in prior-image-based reconstruction

    NASA Astrophysics Data System (ADS)

    Dang, Hao; Siewerdsen, Jeffrey H.; Stayman, J. Webster

    2014-03-01

    Nearly all reconstruction methods are controlled through various parameter selections. Traditionally, such parameters are used to specify a particular noise and resolution trade-off in the reconstructed image volumes. The introduction of reconstruction methods that incorporate prior image information has demonstrated dramatic improvements in dose utilization and image quality, but has complicated the selection of reconstruction parameters including those associated with balancing information used from prior images with that of the measurement data. While a noise-resolution tradeoff still exists, other potentially detrimental effects are possible with poor prior image parameter values including the possible introduction of false features and the failure to incorporate sufficient prior information to gain any improvements. Traditional parameter selection methods such as heuristics based on similar imaging scenarios are subject to error and suboptimal solutions while exhaustive searches can involve a large number of time-consuming iterative reconstructions. We propose a novel approach that prospectively determines optimal prior image regularization strength to accurately admit specific anatomical changes without performing full iterative reconstructions. This approach leverages analytical approximations to the implicitly defined prior image-based reconstruction solution and predictive metrics used to estimate imaging performance. The proposed method is investigated in phantom experiments and the shift-variance and data-dependence of optimal prior strength is explored. Optimal regularization based on the predictive approach is shown to agree well with traditional exhaustive reconstruction searches, while yielding substantial reductions in computation time. This suggests great potential of the proposed methodology in allowing for prospective patient-, data-, and change-specific customization of prior-image penalty strength to ensure accurate reconstruction of specific

  17. Strategy of arm movement control is determined by minimization of neural effort for joint coordination.

    PubMed

    Dounskaia, Natalia; Shimansky, Yury

    2016-06-01

    Optimality criteria underlying organization of arm movements are often validated by testing their ability to adequately predict hand trajectories. However, kinematic redundancy of the arm allows production of the same hand trajectory through different joint coordination patterns. We therefore consider movement optimality at the level of joint coordination patterns. A review of studies of multi-joint movement control suggests that a 'trailing' pattern of joint control is consistently observed during which a single ('leading') joint is rotated actively and interaction torque produced by this joint is the primary contributor to the motion of the other ('trailing') joints. A tendency to use the trailing pattern whenever the kinematic redundancy is sufficient and increased utilization of this pattern during skillful movements suggests optimality of the trailing pattern. The goal of this study is to determine the cost function minimization of which predicts the trailing pattern. We show that extensive experimental testing of many known cost functions cannot successfully explain optimality of the trailing pattern. We therefore propose a novel cost function that represents neural effort for joint coordination. That effort is quantified as the cost of neural information processing required for joint coordination. We show that a tendency to reduce this 'neurocomputational' cost predicts the trailing pattern and that the theoretically developed predictions fully agree with the experimental findings on control of multi-joint movements. Implications for future research of the suggested interpretation of the trailing joint control pattern and the theory of joint coordination underlying it are discussed. PMID:26983620

  18. Cell cycle control of DNA joint molecule resolution.

    PubMed

    Wild, Philipp; Matos, Joao

    2016-06-01

    The establishment of stable interactions between chromosomes underpins vital cellular processes such as recombinational DNA repair and bipolar chromosome segregation. On the other hand, timely disengagement of persistent connections is necessary to assure efficient partitioning of the replicated genome prior to cell division. Whereas great progress has been made in defining how cohesin-mediated chromosomal interactions are disengaged as cells prepare to undergo chromosome segregation, little is known about the metabolism of DNA joint molecules (JMs), generated during the repair of chromosomal lesions. Recent work on Mus81 and Yen1/GEN1, two conserved structure-selective endonucleases, revealed unforeseen links between JM-processing and cell cycle progression. Cell cycle kinases and phosphatases control Mus81 and Yen1/GEN1 to restrain deleterious JM-processing during S-phase, while safeguarding chromosome segregation during mitosis. PMID:26970388

  19. Robust control of multi-jointed arm with a decentralized autonomous control mechanism

    NASA Technical Reports Server (NTRS)

    Kimura, Shinichi; Miyazaki, Ken; Suzuki, Yoshiaki

    1994-01-01

    A decentralized autonomous control mechanism applied to the control of three dimensional manipulators and its robustness to partial damage was assessed by computer simulation. Decentralized control structures are believed to be quite robust to time delay between the operator and the target system. A 10-jointed manipulator based on our control mechanism was able to continue its positioning task in three-dimensional space without revision of the control program, even after some of its joints were damaged. These results suggest that this control mechanism can be effectively applied to space telerobots, which are associated with serious time delay between the operator and the target system, and which cannot be easily repaired after being partially damaged.

  20. Can Computers Simplify Admissions?

    ERIC Educational Resources Information Center

    Bruker, Robert M.

    1978-01-01

    Based on experience with a simplified admissions concept, Southern Illinois University is satisfied that the admissions process has been made easier for prospective students, high school counselors, and admissions staff. The computer does not make decisions regarding admission of a student, but reduced work loads for everyone concerned. (Author)

  1. Effectiveness of telemonitoring integrated into existing clinical services on hospital admission for exacerbation of chronic obstructive pulmonary disease: researcher blind, multicentre, randomised controlled trial

    PubMed Central

    Hanley, Janet; McCloughan, Lucy; Todd, Allison; Krishan, Ashma; Lewis, Stephanie; Stoddart, Andrew; van der Pol, Marjon; MacNee, William; Sheikh, Aziz; Pagliari, Claudia; McKinstry, Brian

    2013-01-01

    Objective To test the effectiveness of telemonitoring integrated into existing clinical services such that intervention and control groups have access to the same clinical care. Design Researcher blind, multicentre, randomised controlled trial. Setting UK primary care (Lothian, Scotland). Participants Adults with at least one admission for chronic obstructive pulmonary disease (COPD) in the year before randomisation. We excluded people who had other significant lung disease, who were unable to provide informed consent or complete the study, or who had other significant social or clinical problems. Interventions Participants were recruited between 21 May 2009 and 28 March 2011, and centrally randomised to receive telemonitoring or conventional self monitoring. Using a touch screen, telemonitoring participants recorded a daily questionnaire about symptoms and treatment use, and monitored oxygen saturation using linked instruments. Algorithms, based on the symptom score, generated alerts if readings were omitted or breached thresholds. Both groups received similar care from existing clinical services. Main outcome measures The primary outcome was time to hospital admission due to COPD exacerbation up to one year after randomisation. Other outcomes included number and duration of admissions, and validated questionnaire assessments of health related quality of life (using St George’s respiratory questionnaire (SGRQ)), anxiety or depression (or both), self efficacy, knowledge, and adherence to treatment. Analysis was intention to treat. Results Of 256 patients completing the study, 128 patients were randomised to telemonitoring and 128 to usual care; baseline characteristics of each group were similar. The number of days to admission did not differ significantly between groups (adjusted hazard ratio 0.98, 95% confidence interval 0.66 to 1.44). Over one year, the mean number of COPD admissions was similar in both groups (telemonitoring 1.2 admissions per person

  2. Early magnetic resonance imaging control after temporomandibular joint arthrocentesis

    PubMed Central

    Ângelo, David Faustino; Sousa, Rita; Pinto, Isabel; Sanz, David; Gil, F. Monje; Salvado, Francisco

    2015-01-01

    Temporomandibular joint (TMJ) lysis and lavage arthrocentesis with viscosupplementation are an effective treatment for acute disc displacement (DD) without reduction. Clinical success seems to be related to multiple factors despite the lack of understanding of its mechanisms. The authors present a case report of 17-year-old women with acute open mouth limitation (12 mm), right TMJ pain-8/10 visual analog scale, right deviation when opening her mouth. The clinical and magnetic resonance imaging (MRI) diagnosis was acute DD without reduction of right TMJ. Right TMJ arthrocentesis was purposed to the patient with lysis, lavage, and viscosupplementation of the upper joint space. After 5 days, a new MRI was performed to confirm upper joint space distension and disc position. Clinical improvement was obtained 5 days and 1 month after arthrocentesis. Upper joint space increased 6 mm and the disc remained displaced. We report the first early TMJ MRI image postoperative, with measurable upper joint space. PMID:26981483

  3. Early magnetic resonance imaging control after temporomandibular joint arthrocentesis.

    PubMed

    Ângelo, David Faustino; Sousa, Rita; Pinto, Isabel; Sanz, David; Gil, F Monje; Salvado, Francisco

    2015-01-01

    Temporomandibular joint (TMJ) lysis and lavage arthrocentesis with viscosupplementation are an effective treatment for acute disc displacement (DD) without reduction. Clinical success seems to be related to multiple factors despite the lack of understanding of its mechanisms. The authors present a case report of 17-year-old women with acute open mouth limitation (12 mm), right TMJ pain-8/10 visual analog scale, right deviation when opening her mouth. The clinical and magnetic resonance imaging (MRI) diagnosis was acute DD without reduction of right TMJ. Right TMJ arthrocentesis was purposed to the patient with lysis, lavage, and viscosupplementation of the upper joint space. After 5 days, a new MRI was performed to confirm upper joint space distension and disc position. Clinical improvement was obtained 5 days and 1 month after arthrocentesis. Upper joint space increased 6 mm and the disc remained displaced. We report the first early TMJ MRI image postoperative, with measurable upper joint space. PMID:26981483

  4. Control of flexible robots with prismatic joints and hydraulic drives

    SciTech Connect

    Love, L.J.; Kress, R.L.; Jansen, J.F.

    1997-03-01

    The design and control of long-reach, flexible manipulators has been an active research topic for over 20 years. Most of the research to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long-reach systems. One example is the Modified Light Duty Utility Arm (MLDUA) designed and built by Spar Aerospace for Oak Ridge National Laboratory (ORNL). This arm operates in larger, underground waste storage tanks located at ORNL. The size and nature of the tanks require that the robot have a reach of approximately 15 ft and a payload capacity of 250 lb. In order to achieve these criteria, each joint is hydraulically actuated. Furthermore, the robot has a prismatic degree-of-freedom to ease deployment. When fully extended, the robot`s first natural frequency is 1.76 Hz. Many of the projected tasks, coupled with the robot`s flexibility, present an interesting problem. How will many of the existing flexure control algorithms perform on a hydraulic, long-reach manipulator with prismatic links? To minimize cost and risk of testing these algorithms on the MLDUA, the authors have designed a new test bed that contains many of the same elements. This manuscript described a new hydraulically actuated, long-reach manipulator with a flexible prismatic link at ORNL. Focus is directed toward both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies.

  5. The role of action prediction and inhibitory control for joint action coordination in toddlers.

    PubMed

    Meyer, M; Bekkering, H; Haartsen, R; Stapel, J C; Hunnius, S

    2015-11-01

    From early in life, young children eagerly engage in social interactions. Yet, they still have difficulties in performing well-coordinated joint actions with others. Adult literature suggests that two processes are important for smooth joint action coordination: action prediction and inhibitory control. The aim of the current study was to disentangle the potential role of these processes in the early development of joint action coordination. Using a simple turn-taking game, we assessed 2½-year-old toddlers' joint action coordination, focusing on timing variability and turn-taking accuracy. In two additional tasks, we examined their action prediction capabilities with an eye-tracking paradigm and examined their inhibitory control capabilities with a classic executive functioning task (gift delay task). We found that individual differences in action prediction and inhibitory action control were distinctly related to the two aspects of joint action coordination. Toddlers who showed more precision in their action predictions were less variable in their action timing during the joint play. Furthermore, toddlers who showed more inhibitory control in an individual context were more accurate in their turn-taking performance during the joint action. On the other hand, no relation between timing variability and inhibitory control or between turn-taking accuracy and action prediction was found. The current results highlight the distinct role of action prediction and inhibitory action control for the quality of joint action coordination in toddlers. Underlying neurocognitive mechanisms and implications for processes involved in joint action coordination in general are discussed. PMID:26150055

  6. Adaptive neural control for an uncertain robotic manipulator with joint space constraints

    NASA Astrophysics Data System (ADS)

    Tang, Zhong-Liang; Ge, Shuzhi Sam; Tee, Keng Peng; He, Wei

    2016-07-01

    In this paper, adaptive neural tracking control is proposed for a robotic manipulator with uncertainties in both manipulator dynamics and joint actuator dynamics. The manipulator joints are subject to inequality constraints, i.e., the joint angles are required to remain in some compact sets. Integral barrier Lyapunov functionals (iBLFs) are employed to address the joint space constraints directly without performing an additional mapping to the error space. Neural networks (NNs) are utilised to compensate for the unknown robot dynamics and external force. Adapting parameters are developed to estimate the unknown bounds on NN approximations. By the Lyapunov synthesis, the proposed control can guarantee the semi-global uniform ultimate boundedness of the closed-loop system, and the practical tracking of joint reference trajectory is achieved without the violation of predefined joint space constraints. Simulation results are given to validate the effectiveness of the proposed control scheme.

  7. Control of Human Limb Movements: The Leading Joint Hypothesis and Its Practical Applications

    PubMed Central

    Dounskaia, Natalia

    2010-01-01

    The leading joint hypothesis (LJH) offers a novel interpretation of control of human movements that involve multiple joints. The LJH makes control of each multijoint movement transparent. This review highlights effective applications of the LJH to learning of new motor skills and to analysis of movement changes caused by aging and motor disorders. PMID:20871237

  8. The Effect of Joint Control Training on the Acquisition and Durability of a Sequencing Task

    ERIC Educational Resources Information Center

    DeGraaf, Allison; Schlinger, Henry D., Jr.

    2012-01-01

    Gutierrez (2006) experimentally demonstrated the effects of joint control and particularly the role of response mediation in the sequencing behavior of adults using an unfamiliar language. The purpose of the current study was to replicate and extend the procedures used by Gutierrez by comparing the effects of joint control training with the…

  9. What tors tell us about controls on bedrock jointing and spatial variability in regolith formation

    NASA Astrophysics Data System (ADS)

    Stroeven, Arjen; Goodfellow, Bradley; Skelton, Alasdair; Martel, Steve; Jansson, Krister; Hättestrand, Clas

    2013-04-01

    Tors are striking features of many granitic landscapes that offer windows into processes of regolith formation that otherwise frequently remain inaccessible. In this study, we combine measurements of tor volumes, joint spacing, feldspar, quartz and biotite crystal lengths, and ground surface convexities with geochemical analyses to determine petrological and structural controls on differential weathering and the formation of granitic regolith and tors in the Cairngorm Mountains, Scotland. Our results show that the tors have formed in spatially defined kernels of widely jointed, relatively coarse grained granite surrounded by finer grained, more densely jointed granite, in which regolith mantles have developed. It further appears that this wide joint spacing was largely established by slow cooling of intruded melts, thereby revealing a control on bedrock joint spacing, and subsequent rates of regolith formation, that is little recognized in geomorphology. Sheet jointing is variably developed in the Cairngorms tors, with better developed sheet jointing on relatively high convexity surfaces. This variability strongly influences tor morphologies and indicates that the regional compressive stresses necessary for the formation of sheet jointing were of lower magnitude than in locations where sheet jointing displays less spatial variability, such as in the Sierra Nevada mountains of California. Although the source of this compressive stress remains uncertain, the presence of sheet jointing reaffirms that the Cairngorm tors have likely emerged from a thin regolith. This important implication of sheet jointing has been previously unrecognized in the tor literature and probably also applies to sheeted tors elsewhere. The location of tors in coarse grained granites, characterized by wide joint spacing but high matrix effective porosity, and regolith on finer grained granites, characterized by more closely spaced joints and lower matrix effective porosity, highlights the

  10. Seeking the Admission Hybrid

    ERIC Educational Resources Information Center

    Lucido, Jerome A.

    2012-01-01

    When one thinks of seminal publications in college admission, the first piece that comes to mind is B. Alden Thresher's "College Admissions in the Public Interest" (1966). Thresher's work, relevant to this day, is credited with being the foundational document of the admission profession. McDonough and Robertson's 1995 study, commissioned by NACAC,…

  11. Randomized Controlled Caregiver Mediated Joint Engagement Intervention for Toddlers with Autism

    ERIC Educational Resources Information Center

    Kasari, Connie; Gulsrud, Amanda C.; Wong, Connie; Kwon, Susan; Locke, Jill

    2010-01-01

    This study aimed to determine if a joint attention intervention would result in greater joint engagement between caregivers and toddlers with autism. The intervention consisted of 24 caregiver-mediated sessions with follow-up 1 year later. Compared to caregivers and toddlers randomized to the waitlist control group the immediate treatment (IT)…

  12. Development of process to control residual stress distribution of butt weld joint of cylinder

    SciTech Connect

    Nayama, Michisuke; Sakamoto, Naruo; Akitomo, Norio; Toyoda, Masao

    1995-12-31

    The authors develop new process to control residual stress distribution of butt weld joint of cylinder. This process, which is heating circularly at both side of butt weld joint and letting cool, can reduce tensile residual stress on inner surface near weld joint by operation from only outside of cylinder and its required temperature rise of this process is lower than ordinary PWHT (Post Weld Heat Treatment) process. This paper describes the procedure and conditions of the process named ``both side heating`` by authors. The appropriate range of process conditions to get sufficient effect is confirmed by FEM stress history analysis and experiment in this paper. Experiments show that the inner residual stress near weld is reduced to compression from over yield stress at as weld condition in austenitic stainless steel pipe to pipe joints, pipe to elbow joints and pipe to valve joint after application of the process.

  13. Student System, On-Line Admissions.

    ERIC Educational Resources Information Center

    White, Stephen R.

    This report provides technical information on an on-line admissions system developed by Montgomery College. Part I, Systems Development, describes the background, objectives and responsibilities, system design, and reports generated by the system. Part II, Operating Instructions, describes input forms and controls, admission system functions, file…

  14. Effects of joint controller on analytical modal analysis of rotational flexible manipulator

    NASA Astrophysics Data System (ADS)

    Chu, Ming; Zhang, Yanheng; Chen, Gang; Sun, Hanxu

    2015-04-01

    Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical structure and neglect feedback action of joint controller. In order to study the effects of joint controller on the modal analysis of rotational flexible manipulator, a closed-loop analytical modal analysis method is proposed. Firstly, two exact boundary constraints, namely servo feedback constraint and bending moment constraint, are derived to solve the vibration partial differential equation. It is found that the stiffness and damping gains of joint controller are both included in the boundary conditions, which lead to an unconventional secular term. Secondly, analytical algorithm based on Ritz approach is developed by using Laplace transform and complex modal approach to obtain the natural frequencies and mode shapes. And then, the numerical simulations are performed and the computational results show that joint controller has pronounced influence on the modal parameters: joint controller stiffness reduces the natural frequency, while joint controller damping makes the shape phase non-zero. Furthermore, the validity of the presented conclusion is confirmed through experimental studies. These findings are expected to improve the performance of dynamics simulation systems and model-based controllers.

  15. 42 CFR 456.123 - Admission review process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Admission review process. 456.123 Section 456.123... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Control: Hospitals Ur Plan: Review of Need for Admission 1 § 456.123 Admission review process. The UR plan must provide that— (a)...

  16. Improving air traffic control: Proving new tools or approving the joint human-machine system?

    NASA Technical Reports Server (NTRS)

    Gaillard, Irene; Leroux, Marcel

    1994-01-01

    From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.

  17. Sintered silver joints via controlled topography of electronic packaging subcomponents

    DOEpatents

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  18. Coordination of two- and one-joint muscles: functional consequences and implications for motor control.

    PubMed

    Prilutsky, B I

    2000-01-01

    The purpose of this paper is three-fold: (a) to summarize available data on coordination of major two- and one-joint muscles in multijoint tasks and identify basic features of muscle coordination, (b) to demonstrate that there may exist an optimization criterion that predicts essential features of electromyographic activity of individual muscles in a variety of tasks, and (c) to address the functional consequences of the observed muscle coordination and underlying mechanisms of its control. The analysis of the literature revealed that basic features of muscle coordination are similar among different voluntary motor tasks and reflex responses. It is demonstrated that these basic features of coordination of one- and two-joint muscles in two-dimensional tasks are qualitatively predicted by minimizing the sum of muscle stresses cubed. Functional consequences of the observed coordination of one- and two-joint muscles are (a) reduction of muscle force as well as stress, mechanical and metabolic energy expenditure, muscle fatigue, and perceived effort; (b) a spring-like behavior of a multi-joint limb during maintenance of an equilibrium posture; and (c) energy transfer between joints via two-joint muscles. A conceptual scheme of connections between motoneuron pools of one- and two-joint muscles, which accounts for the observed muscle coordination, is proposed. An important part of this scheme is the force-dependent inhibition and excitation from two-joint to one-joint synergists and antagonists, respectively. PMID:10675807

  19. Cost and Effects of Different Admission Screening Strategies to Control the Spread of Methicillin-resistant Staphylococcus aureus

    PubMed Central

    Gurieva, Tanya; Bootsma, Martin C. J.; Bonten, Marc J. M.

    2013-01-01

    Nosocomial infection rates due to antibiotic-resistant bacteriae, e.g., methicillin-resistant Staphylococcus aureus (MRSA) remain high in most countries. Screening for MRSA carriage followed by barrier precautions for documented carriers (so-called screen and isolate (S&I)) has been successful in some, but not all settings. Moreover, different strategies have been proposed, but comparative studies determining their relative effects and costs are not available. We, therefore, used a mathematical model to evaluate the effect and costs of different S&I strategies and to identify the critical parameters for this outcome. The dynamic stochastic simulation model consists of 3 hospitals with general wards and intensive care units (ICUs) and incorporates readmission of carriers of MRSA. Patient flow between ICUs and wards was based on real observations. Baseline prevalence of MRSA was set at 20% in ICUs and hospital-wide at 5%; ranges of costs and infection rates were based on published data. Four S&I strategies were compared to a do-nothing scenario: S&I of previously documented carriers (“flagged” patients); S&I of flagged patients and ICU admissions; S&I of flagged and group of “frequent” patients; S&I of all hospital admissions (universal screening). Evaluated levels of efficacy of S&I were 10%, 25%, 50% and 100%. Our model predicts that S&I of flagged and S&I of flagged and ICU patients are the most cost-saving strategies with fastest return of investment. For low isolation efficacy universal screening and S&I of flagged and “frequent” patients may never become cost-saving. Universal screening is predicted to prevent hardly more infections than S&I of flagged and “frequent” patients, albeit at higher costs. Whether an intervention becomes cost-saving within 10 years critically depends on costs per infection in ICU, costs of screening and isolation efficacy. PMID:23436984

  20. Applied Joint-Space Torque and Stiffness Control of Tendon-Driven Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Wampler, Charles W.; Hargrave, Brian

    2010-01-01

    Existing tendon-driven fingers have applied force control through independent tension controllers on each tendon, i.e. in the tendon-space. The coupled kinematics of the tendons, however, cause such controllers to exhibit a transient coupling in their response. This problem can be resolved by alternatively framing the controllers in the joint-space of the manipulator. This work presents a joint-space torque control law that demonstrates both a decoupled and significantly faster response than an equivalent tendon-space formulation. The law also demonstrates greater speed and robustness than comparable PI controllers. In addition, a tension distribution algorithm is presented here to allocate forces from the joints to the tendons. It allocates the tensions so that they satisfy both an upper and lower bound, and it does so without requiring linear programming or open-ended iterations. The control law and tension distribution algorithm are implemented on the robotic hand of Robonaut-2.

  1. Uncontrolled Manifold Reference Feedback Control of Multi-Joint Robot Arms

    PubMed Central

    Togo, Shunta; Kagawa, Takahiro; Uno, Yoji

    2016-01-01

    The brain must coordinate with redundant bodies to perform motion tasks. The aim of the present study is to propose a novel control model that predicts the characteristics of human joint coordination at a behavioral level. To evaluate the joint coordination, an uncontrolled manifold (UCM) analysis that focuses on the trial-to-trial variance of joints has been proposed. The UCM is a nonlinear manifold associated with redundant kinematics. In this study, we directly applied the notion of the UCM to our proposed control model called the “UCM reference feedback control.” To simplify the problem, the present study considered how the redundant joints were controlled to regulate a given target hand position. We considered a conventional method that pre-determined a unique target joint trajectory by inverse kinematics or any other optimization method. In contrast, our proposed control method generates a UCM as a control target at each time step. The target UCM is a subspace of joint angles whose variability does not affect the hand position. The joint combination in the target UCM is then selected so as to minimize the cost function, which consisted of the joint torque and torque change. To examine whether the proposed method could reproduce human-like joint coordination, we conducted simulation and measurement experiments. In the simulation experiments, a three-link arm with a shoulder, elbow, and wrist regulates a one-dimensional target of a hand through proposed method. In the measurement experiments, subjects performed a one-dimensional target-tracking task. The kinematics, dynamics, and joint coordination were quantitatively compared with the simulation data of the proposed method. As a result, the UCM reference feedback control could quantitatively reproduce the difference of the mean value for the end hand position between the initial postures, the peaks of the bell-shape tangential hand velocity, the sum of the squared torque, the mean value for the torque

  2. Uncontrolled Manifold Reference Feedback Control of Multi-Joint Robot Arms.

    PubMed

    Togo, Shunta; Kagawa, Takahiro; Uno, Yoji

    2016-01-01

    The brain must coordinate with redundant bodies to perform motion tasks. The aim of the present study is to propose a novel control model that predicts the characteristics of human joint coordination at a behavioral level. To evaluate the joint coordination, an uncontrolled manifold (UCM) analysis that focuses on the trial-to-trial variance of joints has been proposed. The UCM is a nonlinear manifold associated with redundant kinematics. In this study, we directly applied the notion of the UCM to our proposed control model called the "UCM reference feedback control." To simplify the problem, the present study considered how the redundant joints were controlled to regulate a given target hand position. We considered a conventional method that pre-determined a unique target joint trajectory by inverse kinematics or any other optimization method. In contrast, our proposed control method generates a UCM as a control target at each time step. The target UCM is a subspace of joint angles whose variability does not affect the hand position. The joint combination in the target UCM is then selected so as to minimize the cost function, which consisted of the joint torque and torque change. To examine whether the proposed method could reproduce human-like joint coordination, we conducted simulation and measurement experiments. In the simulation experiments, a three-link arm with a shoulder, elbow, and wrist regulates a one-dimensional target of a hand through proposed method. In the measurement experiments, subjects performed a one-dimensional target-tracking task. The kinematics, dynamics, and joint coordination were quantitatively compared with the simulation data of the proposed method. As a result, the UCM reference feedback control could quantitatively reproduce the difference of the mean value for the end hand position between the initial postures, the peaks of the bell-shape tangential hand velocity, the sum of the squared torque, the mean value for the torque change

  3. What Admissions Officials Think

    ERIC Educational Resources Information Center

    Hoover, Eric

    2008-01-01

    Over the past two decades, college admissions has become a prime-time preoccupation. Most people know at least something about the process, especially if they have a teenager in high school and a college guide on their coffee table. Nonetheless, widespread public misconceptions persist about admissions requirements, the selection process, and the…

  4. Technology in International Admissions

    ERIC Educational Resources Information Center

    White, Elizabeth

    2012-01-01

    In a relatively short time, technology applications have become an essential feature of the admissions business. They make the jobs of international admissions professionals easier in many ways, allowing for more robust communication with applicants and counselors, a streamlined application process, and quicker access to information about…

  5. An Admissions Officer's Credentials

    ERIC Educational Resources Information Center

    Chronicle of Higher Education, 2007

    2007-01-01

    Marilee Jones has resigned as a dean of admissions at the Massachusetts Institute of Technology after admitting that she had misrepresented her academic degrees when first applying to work at the university in 1979. As one of the nation's most prominent admissions officers--and a leader in the movement to make the application process less…

  6. Adaptive mechanically controlled lubrication mechanism found in articular joints

    PubMed Central

    Greene, George W.; Banquy, Xavier; Lee, Dong Woog; Lowrey, Daniel D.; Yu, Jing; Israelachvili, Jacob N.

    2011-01-01

    Articular cartilage is a highly efficacious water-based tribological system that is optimized to provide low friction and wear protection at both low and high loads (pressures) and sliding velocities that must last over a lifetime. Although many different lubrication mechanisms have been proposed, it is becoming increasingly apparent that the tribological performance of cartilage cannot be attributed to a single mechanism acting alone but on the synergistic action of multiple “modes” of lubrication that are adapted to provide optimum lubrication as the normal loads, shear stresses, and rates change. Hyaluronic acid (HA) is abundant in cartilage and synovial fluid and widely thought to play a principal role in joint lubrication although this role remains unclear. HA is also known to complex readily with the glycoprotein lubricin (LUB) to form a cross-linked network that has also been shown to be critical to the wear prevention mechanism of joints. Friction experiments on porcine cartilage using the surface forces apparatus, and enzymatic digestion, reveal an “adaptive” role for an HA-LUB complex whereby, under compression, nominally free HA diffusing out of the cartilage becomes mechanically, i.e., physically, trapped at the interface by the increasingly constricted collagen pore network. The mechanically trapped HA-LUB complex now acts as an effective (chemically bound) “boundary lubricant”—reducing the friction force slightly but, more importantly, eliminating wear damage to the rubbing/shearing surfaces. This paper focuses on the contribution of HA in cartilage lubrication; however, the system as a whole requires both HA and LUB to function optimally under all conditions. PMID:21383143

  7. Adaptive mechanically controlled lubrication mechanism found in articular joints.

    PubMed

    Greene, George W; Banquy, Xavier; Lee, Dong Woog; Lowrey, Daniel D; Yu, Jing; Israelachvili, Jacob N

    2011-03-29

    Articular cartilage is a highly efficacious water-based tribological system that is optimized to provide low friction and wear protection at both low and high loads (pressures) and sliding velocities that must last over a lifetime. Although many different lubrication mechanisms have been proposed, it is becoming increasingly apparent that the tribological performance of cartilage cannot be attributed to a single mechanism acting alone but on the synergistic action of multiple "modes" of lubrication that are adapted to provide optimum lubrication as the normal loads, shear stresses, and rates change. Hyaluronic acid (HA) is abundant in cartilage and synovial fluid and widely thought to play a principal role in joint lubrication although this role remains unclear. HA is also known to complex readily with the glycoprotein lubricin (LUB) to form a cross-linked network that has also been shown to be critical to the wear prevention mechanism of joints. Friction experiments on porcine cartilage using the surface forces apparatus, and enzymatic digestion, reveal an "adaptive" role for an HA-LUB complex whereby, under compression, nominally free HA diffusing out of the cartilage becomes mechanically, i.e., physically, trapped at the interface by the increasingly constricted collagen pore network. The mechanically trapped HA-LUB complex now acts as an effective (chemically bound) "boundary lubricant"--reducing the friction force slightly but, more importantly, eliminating wear damage to the rubbing/shearing surfaces. This paper focuses on the contribution of HA in cartilage lubrication; however, the system as a whole requires both HA and LUB to function optimally under all conditions. PMID:21383143

  8. An acoustic startle alters knee joint stiffness and neuromuscular control.

    PubMed

    DeAngelis, A I; Needle, A R; Kaminski, T W; Royer, T R; Knight, C A; Swanik, C B

    2015-08-01

    Growing evidence suggests that the nervous system contributes to non-contact knee ligament injury, but limited evidence has measured the effect of extrinsic events on joint stability. Following unanticipated events, the startle reflex leads to universal stiffening of the limbs, but no studies have investigated how an acoustic startle influences knee stiffness and muscle activation during a dynamic knee perturbation. Thirty-six individuals were tested for knee stiffness and muscle activation of the quadriceps and hamstrings. Subjects were seated and instructed to resist a 40-degree knee flexion perturbation from a relaxed state. During some trials, an acoustic startle (50 ms, 1000 Hz, 100 dB) was applied 100 ms prior to the perturbation. Knee stiffness, muscle amplitude, and timing were quantified across time, muscle, and startle conditions. The acoustic startle increased short-range (no startle: 0.044 ± 0.011 N·m/deg/kg; average startle: 0.047 ± 0.01 N·m/deg/kg) and total knee stiffness (no startle: 0.036 ± 0.01 N·m/deg/kg; first startle 0.027 ± 0.02 N·m/deg/kg). Additionally, the startle contributed to decreased [vastus medialis (VM): 13.76 ± 33.6%; vastus lateralis (VL): 6.72 ± 37.4%] but earlier (VM: 0.133 ± 0.17 s; VL: 0.124 ± 0.17 s) activation of the quadriceps muscles. The results of this study indicate that the startle response can significantly disrupt knee stiffness regulation required to maintain joint stability. Further studies should explore the role of unanticipated events on unintentional injury. PMID:25212407

  9. Axial-slot Air Admission for Controlling Performance of a One-quarter-annulus Turbojet Combustor and Comparison with Complete Engine

    NASA Technical Reports Server (NTRS)

    Mark, H; Mark, Herman; Zettle, Eugene V

    1952-01-01

    An investigation of a single-annulus turbojet combustor with slot-type air admission was conducted to demonstrate the application of certain design principles to the control of outlet-gas temperature distributions. Comparisons of performance of a one-quarter-annulus combustor (duct-type installation) and a full-annulus combustor (obtained in a full-scale turbojet engine) are presented to indicate the applicability of results obtained from combustion studies conducted in duct-type installations. A reasonable correlation existed between the performance of the one-quarter-annulus and full-annulus combustors except for temperature distribution. Sufficient trends did exist which made it possible to predict temperature distributions for the engine, although absolute correlation did not exist. A radial temperature distribution similar to that required for a given engine was obtained using a one-quarter-annulus duct-type setup to predict results.

  10. Performance limitations of joint variable-feedback controllers due to manipulator structural flexibility

    NASA Technical Reports Server (NTRS)

    Cetinkunt, Sabri; Book, Wayne J.

    1990-01-01

    The performance limitations of manipulators under joint variable-feedback control are studied as a function of the mechanical flexibility inherent in the manipulator structure. A finite-dimensional time-domain dynamic model of a two-link two-joint planar manipulator is used in the study. Emphasis is placed on determining the limitations of control algorithms that use only joint variable-feedback information in calculations of control decisions, since most motion control systems in practice are of this kind. Both fine and gross motion cases are studied. Results for fine motion agree well with previously reported results in the literature and are also helpful in explaining the performance limitations in fast gross motions.

  11. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  12. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George

    2011-11-22

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  13. Fault-tolerant analysis and control of SSRMS-type manipulators with single-joint failure

    NASA Astrophysics Data System (ADS)

    She, Yu; Xu, Wenfu; Su, Haijun; Liang, Bin; Shi, Hongliang

    2016-03-01

    Several space manipulators, whose configurations are similar to that of the Space Station Remote Manipulator System (SSRMS, also called Canadarm2), are playing important roles in the construction and maintenance of the International Space Station. Working in the harsh orbital environment, they are at high risk of single-joint failure. Fault-tolerant capability is critical for those manipulators to complete their on-orbital tasks. In this paper, we analysed and compared the manipulation capability of SSRMS-type manipulators with joints locked at arbitrary positions, and proposed efficient path planning via a fault-tolerant control method. First, a unified kinematic model of this type of manipulators was established. Second, the manipulation capability of the original 7-DOF (degrees of freedom) redundant manipulator was analysed and compared with its degraded 6-DOF counterparts formed by different joint locking configurations. Then, we identified those joints with large sensitivity to fault tolerance performance. The influences of different positions of all joints were also determined by numerical computation. Based on the analysis, the relatively safe and dangerous regions for each joint failure were identified. Finally, we proposed a path planning strategy and realized by a H∞ controller which enables the failure joint locked in the safe region, and simulations were carried on a degraded 3-DOF planar redundant manipulator to verify the planning strategy and control approach. This paper provided important analysis results and efficient methods to address the possible problems of SSRMS-type manipulators caused by single-joint failure that can be extended to other types of manipulators. Moreover, the proposed method is useful for designing the optimal configuration of a redundant manipulator.

  14. Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control

    PubMed Central

    Daley, M. A.; Felix, G.; Biewener, A. A.

    2008-01-01

    Summary We currently know little about how animals achieve dynamic stability when running over uneven and unpredictable terrain, often characteristic of their natural environment. Here we investigate how limb and joint mechanics of an avian biped, the helmeted guinea fowl Numida meleagris, respond to an unexpected drop in terrain during running. In particular, we address how joint mechanics are coordinated to achieve whole limb dynamics. Based on muscle–tendon architecture and previous studies of steady and incline locomotion, we hypothesize a proximo-distal gradient in joint neuromechanical control. In this motor control strategy, (1) proximal muscles at the hip and knee joints are controlled primarily in a feedforward manner and exhibit load-insensitive mechanical performance, and (2) distal muscles at the ankle and tarsometatarso-phalangeal (TMP) joints are highly load-sensitive, due to intrinsic mechanical effects and rapid, higher gain proprioceptive feedback. Limb kinematics and kinetics during the unexpected perturbation reveal that limb retraction, controlled largely by the hip, remains similar to level running throughout the perturbed step, despite altered limb loading. Individual joints produce or absorb energy during both level and perturbed running steps, such that the net limb work depends on the balance of energy among the joints. The hip maintains the same mechanical role regardless of limb loading, whereas the ankle and TMP switch between spring-like or damping function depending on limb posture at ground contact. Initial knee angle sets limb posture and alters the balance of work among the joints, although the knee contributes little work itself. This distribution of joint function results in posture-dependent changes in work performance of the limb, which allow guinea fowl to rapidly produce or absorb energy in response to the perturbation. The results support the hypothesis that a proximo-distal gradient exists in limb neuromuscular performance

  15. Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control.

    PubMed

    Daley, M A; Felix, G; Biewener, A A

    2007-02-01

    We currently know little about how animals achieve dynamic stability when running over uneven and unpredictable terrain, often characteristic of their natural environment. Here we investigate how limb and joint mechanics of an avian biped, the helmeted guinea fowl Numida meleagris, respond to an unexpected drop in terrain during running. In particular, we address how joint mechanics are coordinated to achieve whole limb dynamics. Based on muscle-tendon architecture and previous studies of steady and incline locomotion, we hypothesize a proximo-distal gradient in joint neuromechanical control. In this motor control strategy, (1) proximal muscles at the hip and knee joints are controlled primarily in a feedforward manner and exhibit load-insensitive mechanical performance, and (2) distal muscles at the ankle and tarsometatarso-phalangeal (TMP) joints are highly load-sensitive, due to intrinsic mechanical effects and rapid, higher gain proprioceptive feedback. Limb kinematics and kinetics during the unexpected perturbation reveal that limb retraction, controlled largely by the hip, remains similar to level running throughout the perturbed step, despite altered limb loading. Individual joints produce or absorb energy during both level and perturbed running steps, such that the net limb work depends on the balance of energy among the joints. The hip maintains the same mechanical role regardless of limb loading, whereas the ankle and TMP switch between spring-like or damping function depending on limb posture at ground contact. Initial knee angle sets limb posture and alters the balance of work among the joints, although the knee contributes little work itself. This distribution of joint function results in posture-dependent changes in work performance of the limb, which allow guinea fowl to rapidly produce or absorb energy in response to the perturbation. The results support the hypothesis that a proximo-distal gradient exists in limb neuromuscular performance and motor

  16. Influence of control parameters on the joint tracking performance of a coaxial weld vision system

    NASA Technical Reports Server (NTRS)

    Gangl, K. J.; Weeks, J. L.

    1985-01-01

    The first phase of a series of evaluations of a vision-based welding control sensor for the Space Shuttle Main Engine Robotic Welding System is described. The robotic welding system is presently under development at the Marshall Space Flight Center. This evaluation determines the standard control response parameters necessary for proper trajectory of the welding torch along the joint.

  17. PROCEEDINGS: 1985 JOINT SYMPOSIUM ON STATIONARY COMBUSTION NOX CONTROL. VOLUME 1. UTILITY BOILER APPLICATIONS

    EPA Science Inventory

    The two-volume proceedings document the more than 60 papers, describing recent advances in NOx control technology, that were presented at the 1985 Joint Symposium on Stationary Combustion NOx Control, May 6-9, 1985, in Boston, MA. The papers covered the following topics: the stat...

  18. Robust tracking control for a class of electrically driven flexible-joint robots without velocity measurements

    NASA Astrophysics Data System (ADS)

    Chang, Yeong-Chan; Yen, Hui-Min

    2012-02-01

    This article addresses the motion tracking control for a class of flexible-joint robotic manipulators actuated by brushed direct current motors. This class of electrically driven flexible-joint robots is perturbed by time-varying parametric uncertainties and external disturbances. A novel observer-based robust dynamic feedback tracking controller without velocity measurements will be developed such that the resulting closed-loop system is locally stable, all the states and signals are bounded and the trajectory tracking errors can be made as small as possible. Only the measurements of link position and armature current are required for feedback and so the number of sensors in the practical implementation of the developed control scheme can be greatly reduced. The observer structure is of reduced order in the sense that the observer is constructed only to estimate the velocity signals and whose dimension is half of the dimension of flexible-joint robots. Especially, for the set-point regulation problem, the developed controller is simplified to a linear time-invariant controller. Consequently, the robust tracking control scheme developed in this study can be extended to handle a broader class of uncertain electrically driven flexible-joint robots and the developed robust control schemes possess the properties of computational simplicity and easy implementation. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control algorithms.

  19. Motor control hierarchy in joint action that involves bimanual force production

    PubMed Central

    Masumoto, Junya

    2015-01-01

    The concept of hierarchical motor control has been viewed as a means of progressively decreasing the number of variables manipulated by each higher control level. We tested the hypothesis that turning an individual bimanual force-production task into a joint (two-participant) force-production task would lead to positive correlation between forces produced by the two hands of the individual participant (symmetric strategy) to enable negative correlation between forces produced by two participants (complementary strategy). The present study consisted of individual and joint tasks that involved both unimanual and bimanual conditions. In the joint task, 10 pairs of participants produced periodic isometric forces, such that the sum of forces that they produced matched a target force cycling between 5% and 10% of maximum voluntary contraction at 1 Hz. In the individual task, individuals attempted to match the same target force. In the joint bimanual condition, the two hands of each participant adopted a symmetric strategy of force, whereas the two participants adopted a complementary strategy of force, highlighting that the bimanual action behaved as a low level of a hierarchy, whereas the joint action behaved as an upper level. The complementary force production was greater interpersonally than intrapersonally. However, whereas the coherence was highest at 1 Hz in all conditions, the frequency synchrony was stronger intrapersonally than interpersonally. Moreover, whereas the bimanual action exhibited a smaller error and variability of force than the unimanual action, the joint action exhibited a less-variable interval and force than the individual action. PMID:25904710

  20. The Association of Tobacco Control Policies and the Risk of Acute Myocardial Infarction Using Hospital Admissions Data

    PubMed Central

    Jan, Carmen; Lee, Marcos; Roa, Reina; Herrera, Víctor; Politis, Michael; Motta, Jorge

    2014-01-01

    Objective To evaluate the association of a nationwide comprehensive smoking ban (CSB) and tobacco tax increase (TTI) on the risk of acute myocardial infarctions (AMI) in Panama for the period of 2006 – 2010 using hospital admissions data. Methods Data of AMI cases was gathered from public and private hospitals in the country for the period of January 1, 2006 to December 31, 2010. The number of AMI cases was calculated on a monthly basis. The risk of AMI was estimated for the pre-CSB period (January 2006 to April 2008) and was used as a reference point. Three post-intervention periods were examined: (1) post-CSB from May 2008 to April 2009 (12 months); (2) post-CSB from May 2009 to November 2009 (7 months); and (3) post-TTI from December 2009 to December 2010 (13 months). Relative risks (RR) of AMI were estimated for each post intervention periods by using a Poisson regression model. Mortality registries for the country attributed to myocardial infarction (MI) were obtained from January 2001 to December 2012. The annual percentage change (APC) of the number of deaths from MI was calculated using Joinpoint regression analysis. Results A total sample size of 2191 AMI cases was selected (monthly mean number of cases 36.52±8.24 SD). Using the pre-CSB as a reference point (RR = 1.00), the relative risk of AMI during the first CSB period, the second CSB period and post-TTI were 0.982, 1.049, and 0.985, respectively. The APC of deaths from MI from January 2001 to April 2008 was 0.5%. From January 2001 to June 2010 the APC trend was 0.47% and from July 2010 to December 2012 the APC was –0.3%. Conclusions The implementation of a CSB and TTI in Panama were associated with a decrease in tobacco consumption and a reduction of the RR of AMI. PMID:24520421

  1. Inverse Dynamics Control of Constrained Robots in the Presence of Joint Flexibility

    NASA Astrophysics Data System (ADS)

    IDER, S. KEMAL

    1999-07-01

    An inverse dynamics control algorithm for constrained flexible-joint robots is developed. It is shown that in a flexible-joint robot, the acceleration level inverse dynamic equations are singular because of the elastic media. Implicit numerical integration methods that account for the higher order derivative information are utilized for solving the singular set of differential equations. The control law proposed linearizes and decouples the system and achieves simultaneous and asymptotically stable trajectory tracking control of the end-effector motion and contact forces. Together with the integrators for improving robustness due to modelling errors and disturbances, a fifth order position error dynamics and a third order contact force error dynamics are obtained. A 3R spatial robot with all joints flexible is simulated to illustrate the performance of the method.

  2. Joint time-frequency domain identification of nonlinearly controlled structures

    NASA Astrophysics Data System (ADS)

    Jin, Gang; Sain, Michael K.; Spencer, Billie F., Jr.; Pham, Khanh D.

    2006-05-01

    This paper introduces a 3-step approach for the identification of a linear structure that is controlled by nonlinear damping devices. First, the structure with the integrated nonlinear damper is subjected to random vibration test and the frequency response function (FRF) of the structure is calculated from the input-output data of the physical system. Based on the frequency domain data, a state space model is then estimated using a recently developed FRF curve-fitting technique that is designed especially for lightly damped structures with control inputs. Finally an iterative process is used to optimize the model performance in the time domain and an integrated model of the nonlinearly controlled structure is derived by interconnecting the structure model with that of the nonlinear damper. The complete approach is illustrated by the modeling of a base-isolated structure controlled by a magnetorheological (MR) fluid damper.

  3. Comparison of CATs, CURB-65 and PMEWS as Triage Tools in Pandemic Influenza Admissions to UK Hospitals: Case Control Analysis Using Retrospective Data

    PubMed Central

    Myles, Puja R.; Nguyen-Van-Tam, Jonathan S.; Lim, Wei Shen; Nicholson, Karl G.; Brett, Stephen J.; Enstone, Joanne E.; McMenamin, James; Openshaw, Peter J. M.; Read, Robert C.; Taylor, Bruce L.; Bannister, Barbara; Semple, Malcolm G.

    2012-01-01

    Triage tools have an important role in pandemics to identify those most likely to benefit from higher levels of care. We compared Community Assessment Tools (CATs), the CURB-65 score, and the Pandemic Medical Early Warning Score (PMEWS); to predict higher levels of care (high dependency - Level 2 or intensive care - Level 3) and/or death in patients at or shortly after admission to hospital with A/H1N1 2009 pandemic influenza. This was a case-control analysis using retrospectively collected data from the FLU-CIN cohort (1040 adults, 480 children) with PCR-confirmed A/H1N1 2009 influenza. Area under receiver operator curves (AUROC), sensitivity, specificity, positive predictive values and negative predictive values were calculated. CATs best predicted Level 2/3 admissions in both adults [AUROC (95% CI): CATs 0.77 (0.73, 0.80); CURB-65 0.68 (0.64, 0.72); PMEWS 0.68 (0.64, 0.73), p<0.001] and children [AUROC: CATs 0.74 (0.68, 0.80); CURB-65 0.52 (0.46, 0.59); PMEWS 0.69 (0.62, 0.75), p<0.001]. CURB-65 and CATs were similar in predicting death in adults with both performing better than PMEWS; and CATs best predicted death in children. CATs were the best predictor of Level 2/3 care and/or death for both adults and children. CATs are potentially useful triage tools for predicting need for higher levels of care and/or mortality in patients of all ages. PMID:22509303

  4. Joint Random Access and Power Control Game in Ad Hoc Networks with Noncooperative Users

    NASA Astrophysics Data System (ADS)

    Long, Chengnian; Guan, Xinping

    We consider a distributed joint random access and power control scheme for interference management in wireless ad hoc networks. To derive decentralized solutions that do not require any cooperation among the users, we formulate this problem as non-cooperative joint random access and power control game, in which each user minimizes its average transmission cost with a given rate constraint. Using supermodular game theory, the existence and uniqueness of Nash equilibrium are established. Furthermore, we present an asynchronous distributed algorithm to compute the solution of the game based on myopic best response updates, which converges to Nash equilibrium globally.

  5. Camera Based Closed Loop Control for Partial Penetration Welding of Overlap Joints

    NASA Astrophysics Data System (ADS)

    Abt, F.; Heider, A.; Weber, R.; Graf, T.; Blug, A.; Carl, D.; Höfler, H.; Nicolosi, L.; Tetzlaff, R.

    Welding of overlap joints with partial penetration in automotive applications is a challenging process, since the laser power must be set very precisely to achieve a proper connection between the two joining partners without damaging the backside of the sheet stack. Even minor changes in welding conditions can lead to bad results. To overcome this problem a camera based closed loop control for partial penetration welding of overlap joints was developed. With this closed loop control it is possible to weld such configurations with a stable process result even under changing welding conditions.

  6. Trajectory tracking control of parallel robots in the presence of joint drive flexibility

    NASA Astrophysics Data System (ADS)

    Ider, S. Kemal; Korkmaz, Ozan

    2009-01-01

    Trajectory tracking control of parallel manipulators is aimed in the presence of flexibility at the joint drives. Joint structural damping is also considered in the dynamic model. The system is first converted into an open-tree structure by disconnecting a sufficient number of unactuated joints. The closed loops are then expressed by constraint equations. It is shown that, in a parallel robot with flexible joint drives, the acceleration level inverse dynamics equations are singular because the control torques do not have an instantaneous effect on the end-effector accelerations due to the elastic media. Eliminating the Lagrange multipliers and the intermediate variables, a fourth-order input-output relation is obtained between the actuator torques and the end-effector position variables. The proposed control law decouples and linearizes the system and achieves asymptotic stability by feedback of positions and velocities of the actuated joints and rotors. As a case study, a three degree of freedom, two legged planar parallel manipulator is simulated to illustrate the performance of the method. The end-effector desired trajectory is chosen such that the kinematic and drive singular positions are avoided.

  7. Direct Adaptive Control Methodologies for Flexible-Joint Space Manipulators with Uncertainties and Modeling Errors

    NASA Astrophysics Data System (ADS)

    Ulrich, Steve

    This work addresses the direct adaptive trajectory tracking control problem associated with lightweight space robotic manipulators that exhibit elastic vibrations in their joints, and which are subject to parametric uncertainties and modeling errors. Unlike existing adaptive control methodologies, the proposed flexible-joint control techniques do not require identification of unknown parameters, or mathematical models of the system to be controlled. The direct adaptive controllers developed in this work are based on the model reference adaptive control approach, and manage modeling errors and parametric uncertainties by time-varying the controller gains using new adaptation mechanisms, thereby reducing the errors between an ideal model and the actual robot system. More specifically, new decentralized adaptation mechanisms derived from the simple adaptive control technique and fuzzy logic control theory are considered in this work. Numerical simulations compare the performance of the adaptive controllers with a nonadaptive and a conventional model-based controller, in the context of 12.6 m xx 12.6 m square trajectory tracking. To validate the robustness of the controllers to modeling errors, a new dynamics formulation that includes several nonlinear effects usually neglected in flexible-joint dynamics models is proposed. Results obtained with the adaptive methodologies demonstrate an increased robustness to both uncertainties in joint stiffness coefficients and dynamics modeling errors, as well as highly improved tracking performance compared with the nonadaptive and model-based strategies. Finally, this work considers the partial state feedback problem related to flexible-joint space robotic manipulators equipped only with sensors that provide noisy measurements of motor positions and velocities. An extended Kalman filter-based estimation strategy is developed to estimate all state variables in real-time. The state estimation filter is combined with an adaptive

  8. Feedback control and steering laws for spacecraft using Canfield joint attitude manipulators

    NASA Astrophysics Data System (ADS)

    Moyer, Eamonn James

    A novel attitude control system using a reaction wheel mounted on a Canfield joint is introduced. The rotational equations of motion for a rigid body spacecraft equipped with a pair of Canfield joint attitude manipulators are derived. Stable feedback laws are developed for attitude control and momentum management of the spacecraft using Lyapunov theory. Steering laws to find the gimbal rates and accelerations to generate the torque required for a maneuver are derived in both a linear and a nonlinear form. Numerical simulations of representative spacecraft reorientation maneuvers demonstrate the utility of the control and steering laws developed in this research. The singularity problem associated with traditional configurations of single-gimbal control moment gyroscopes is discussed in relation to the attitude control system being presented.

  9. Comprehensive joint feedback control for standing by functional neuromuscular stimulation-a simulation study.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2010-12-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint feedback control against postural disturbances using a bipedal, 3-D computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage. PMID:20923741

  10. Comprehensive Joint Feedback Control for Standing by Functional Neuromuscular Stimulation – a Simulation Study

    PubMed Central

    Nataraj, Raviraj; Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2013-01-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint-feedback control against postural disturbances using a bipedal, three-dimensional computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint-feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage. PMID:20923741

  11. SUMMARY OF JOINT DOD, EPA RESEARCH TO CONTROL VOC AND TOXIC EMISSIONS

    EPA Science Inventory

    The paper summarizes the results of joint projects conducted during last 6 years by the Department of Defense and EPA to control volatile organic compounds (VOCs) and toxic emissions. ajor emphasis has been on product coating and metal finishing: (1) paint stripping using plastic...

  12. A Joint Learning Activity in Process Control and Distance Collaboration between Future Engineers and Technicians

    ERIC Educational Resources Information Center

    Deschênes, Jean-Sebastien; Barka, Noureddine; Michaud, Mario; Paradis, Denis; Brousseau, Jean

    2013-01-01

    A joint learning activity in process control is presented, in the context of a distance collaboration between engineering and technical-level students, in a similar fashion as current practices in the industry involving distance coordination and troubleshooting. The necessary infrastructure and the setup used are first detailed, followed by a…

  13. Identification of the contribution of the ankle and hip joints to multi-segmental balance control

    PubMed Central

    2013-01-01

    Background Human stance involves multiple segments, including the legs and trunk, and requires coordinated actions of both. A novel method was developed that reliably estimates the contribution of the left and right leg (i.e., the ankle and hip joints) to the balance control of individual subjects. Methods The method was evaluated using simulations of a double-inverted pendulum model and the applicability was demonstrated with an experiment with seven healthy and one Parkinsonian participant. Model simulations indicated that two perturbations are required to reliably estimate the dynamics of a double-inverted pendulum balance control system. In the experiment, two multisine perturbation signals were applied simultaneously. The balance control system dynamic behaviour of the participants was estimated by Frequency Response Functions (FRFs), which relate ankle and hip joint angles to joint torques, using a multivariate closed-loop system identification technique. Results In the model simulations, the FRFs were reliably estimated, also in the presence of realistic levels of noise. In the experiment, the participants responded consistently to the perturbations, indicated by low noise-to-signal ratios of the ankle angle (0.24), hip angle (0.28), ankle torque (0.07), and hip torque (0.33). The developed method could detect that the Parkinson patient controlled his balance asymmetrically, that is, the right ankle and hip joints produced more corrective torque. Conclusion The method allows for a reliable estimate of the multisegmental feedback mechanism that stabilizes stance, of individual participants and of separate legs. PMID:23433148

  14. Design and Vibration Control of Safe Robot Arm with MR-Based Passive Compliant Joint

    NASA Astrophysics Data System (ADS)

    Yun, Seung-Kook; Yoon, Seong-Sik; Kang, Sungchul; Kim, Munsang

    In this paper, vibration control of a safe arm with passive compliant joints and visco-elastic covering for a human-friendly service robot is presented. The passive compliant joint (PCJ) is designed to passively attenuate the applied force. The rotary spring gives the arm compliant property, and yet it can be a source of vibration. We use an input-preshaping method which is motivated by the input shaping technique (IST) based on impulse responses. Experiments prove that both of fast motion and force attenuation of the safe arm can be achieved.

  15. Structural development of laminar flow control aircraft chordwise wing joint designs

    NASA Technical Reports Server (NTRS)

    Fischler, J. E.; Jerstad, N. M.; Gallimore, F. H., Jr.; Pollard, T. J.

    1989-01-01

    For laminar flow to be achieved, any protuberances on the surface must be small enough to avoid transition to turbulent flow. However, the surface must have joints between the structural components to allow assembly or replacement of damaged parts, although large continuous surfaces can be utilized to minimize the number the number of joints. Aircraft structural joints usually have many countersunk bolts or rivets on the outer surface. To maintain no mismatch on outer surfaces, it is desirable to attach the components from the inner surface. It is also desirable for the panels to be interchangeable, without the need for shims at the joint, to avoid surface discontinuities that could cause turbulence. Fabricating components while pressing their outer surfaces against an accurate mold helps to ensure surface smoothness and continuity at joints. These items were considered in evaluating the advantages and disadvantages of the joint design concepts. After evaluating six design concepts, two of the leading candidates were fabricated and tested using many small test panels. One joint concept was also built and tested using large panels. The small and large test panel deflections for the leading candidate designs at load factors up to +1.5 g's were well within the step and waviness requirements for avoiding transition.The small panels were designed and tested for compression and tension at -65 F, at ambient conditions, and at 160 F. The small panel results for the three-rib and the sliding-joint concepts indicated that they were both acceptable. The three-rib concept, with tapered splice plates, was considered to be the most practical. A modified three-rib joint that combined the best attributes of previous candidates was designed, developed, and tested. This improved joint met all of the structural strength, surface smoothness, and waviness criteria for laminar flow control (LFC). The design eliminated all disadvantages of the initial three-rib concept except for

  16. A CAN bus based control system for a joint modular robot

    NASA Astrophysics Data System (ADS)

    Han, Qingkai; Wang, Li; Ren, Yunpeng; Zhang, Tianxia; Wen, Bangchun

    2007-12-01

    This paper is mainly about a new robot control system, which has open structures, and whose architecture is based on CAN bus for a joint modular robot. The hardware system of the joint control module is designed for signal sampling and processing, data storage and communication. ATmega64 SCM is selected as the core processor. A CAN card is used for communication. FM256 RAM is used for data storage and condensation. The monitoring software and lower level control processing software are developed with ZLGVCI interface functions of CAN bus, and in the ICC AVR IDE and AVR Studio online debug tool with C language. Some experiments are carried out to validate the basic functions of the control system.

  17. A robust control scheme for flexible arms with friction in the joints

    NASA Technical Reports Server (NTRS)

    Rattan, Kuldip S.; Feliu, Vicente; Brown, H. Benjamin, Jr.

    1988-01-01

    A general control scheme to control flexible arms with friction in the joints is proposed in this paper. This scheme presents the advantage of being robust in the sense that it minimizes the effects of the Coulomb friction existing in the motor and the effects of changes in the dynamic friction coefficient. A justification of the robustness properties of the scheme is given in terms of the sensitivity analysis.

  18. Models of Postural Control: Shared Variance in Joint and COM Motions

    PubMed Central

    Kilby, Melissa C.; Molenaar, Peter C. M.; Newell, Karl M.

    2015-01-01

    This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM) motions was analyzed using multivariate canonical correlation analysis (CCA). The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF), namely, an inverted pendulum ankle model (2DOF), ankle-hip model (4DOF), ankle-knee-hip model (5DOF), and ankle-knee-hip-neck model (7DOF). Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway) on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions. PMID:25973896

  19. Models of Postural Control: Shared Variance in Joint and COM Motions.

    PubMed

    Kilby, Melissa C; Molenaar, Peter C M; Newell, Karl M

    2015-01-01

    This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM) motions was analyzed using multivariate canonical correlation analysis (CCA). The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF), namely, an inverted pendulum ankle model (2DOF), ankle-hip model (4DOF), ankle-knee-hip model (5DOF), and ankle-knee-hip-neck model (7DOF). Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway) on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions. PMID:25973896

  20. Design of a torque-controlled manipulator to analyse the admittance of the wrist joint.

    PubMed

    Schouten, Alfred C; de Vlugt, Erwin; van Hilten, J J Bob; van der Helm, Frans C T

    2006-06-30

    This paper describes the design of a torque-controlled manipulator to identify the dynamics of the wrist joint. With torque disturbances, the subject can actively control the joint angle, giving a natural task. The application of a hybrid haptic controller guarantees linearity over a large bandwidth and adjustable virtual dynamics. The haptic controller has a bandwidth of 50 Hz, meaning that the virtual dynamics are realistically felt at up to 50 Hz. To let the subject 'feel' the torque, disturbances as well as possible the apparent, or virtual, dynamics of the device must be small. The minimal apparent inertia of the device is 1.6 g m(2), which is of the same order as for a normal wrist, and the minimal damping and stiffness are negligible. To judge the accuracy of the manipulator, loads of known physical properties were attached and their parameters were quantified. The parameters of the loads were estimated with a maximum error of 5%. As the eigenfrequency of a (co)-contracted human wrist is approximately 15 Hz, the 50-Hz bandwidth of the haptic device is sufficient to measure all relevant dynamics of the human wrist. With this device, the dynamics of the human wrist joint can be measured under varying virtual dynamics, as well as the effect of neurological dysfunction on human motor control, for example. PMID:16434105

  1. Neuro-sliding mode control with modular models for control of knee-joint angle using quadriceps electrical stimulation.

    PubMed

    Ajoudani, Arash; Erfanian, Abbas

    2007-01-01

    In this paper, we propose a control methodology which is based on synergistic combination of a single-neuron controller with sliding mode control (SMC) for control of knee-joint position in paraplegic subjects with quadriceps stimulation. The control law will be switched from the sliding mode control to neural control, when the state trajectory of system enters in some boundary layer around the sliding surface. The main drawback of the standard sliding modes is mostly related to the so-called chattering caused by the high-frequency control switching. The value of switching gain depends on the bounds of system uncertainties. The system with large uncertainties needs to use a higher switching gain. This will, however, result in the high-frequency control switching and chattering across the sliding surface. To avoid such a condition, it is necessary to decrease the system uncertainty. To decrease the uncertainty, an accurate model of the system is required. For this purpose, we present a modular approach to modeling the knee-joint dynamics. Extensive experiments on healthy and paraplegic subjects are provided to demonstrate the robustness, stability and tracking accuracy of the neuro-SMC. The experimental results show that the neuro-SMC provides excellent tracking control for different reference trajectories and could generate control signals to compensate the muscle fatigue. PMID:18002483

  2. Visual Experience Determines the Use of External Reference Frames in Joint Action Control

    PubMed Central

    Dolk, Thomas; Liepelt, Roman; Prinz, Wolfgang; Fiehler, Katja

    2013-01-01

    Vision plays a crucial role in human interaction by facilitating the coordination of one's own actions with those of others in space and time. While previous findings have demonstrated that vision determines the default use of reference frames, little is known about the role of visual experience in coding action-space during joint action. Here, we tested if and how visual experience influences the use of reference frames in joint action control. Dyads of congenitally-blind, blindfolded-sighted, and seeing individuals took part in an auditory version of the social Simon task, which required each participant to respond to one of two sounds presented to the left or right of both participants. To disentangle the contribution of external—agent-based and response-based—reference frames during joint action, participants performed the task with their respective response (right) hands uncrossed or crossed over one another. Although the location of the auditory stimulus was completely task-irrelevant, participants responded overall faster when the stimulus location spatially corresponded to the required response side than when they were spatially non-corresponding: a phenomenon known as the social Simon effect (SSE). In sighted participants, the SSE occurred irrespective of whether hands were crossed or uncrossed, suggesting the use of external, response-based reference frames. Congenitally-blind participants also showed an SSE, but only with uncrossed hands. We argue that congenitally-blind people use both agent-based and response-based reference frames resulting in conflicting spatial information when hands are crossed and, thus, canceling out the SSE. These results imply that joint action control functions on the basis of external reference frames independent of the presence or (transient/permanent) absence of vision. However, the type of external reference frames used for organizing motor control in joint action seems to be determined by visual experience. PMID

  3. Dynamic and static control of the human knee joint in abduction-adduction.

    PubMed

    Zhang, L Q; Wang, G

    2001-09-01

    It is unclear whether humans can voluntarily control dynamic and static properties in knee abduction-adduction, which may be important in performing functional tasks and preventing injuries, whether the main load is about the abduction axis or not. A joint-driving device was used to perturb the knee in abduction-adduction at full knee extension under both passive (muscle relaxed) and active (muscle contracted in abduction or adduction) conditions. Dynamic control properties in knee abduction-adduction were characterized by joint stiffness, viscosity, and limb inertia, and quasi-static knee torque-angle relationship was characterized by knee abduction-adduction laxity and quasi-static stiffness (at a 20Nm moment). It was found that the subjects were capable of generating net abduction and adduction moment through differential co-contraction of muscles crossing the medial and lateral sides of the knee, which helped to reduce the abduction-adduction joint laxity (p< or =0.01) and increase stiffness (p<0.027) and viscous damping. Knee abduction laxity was significantly lower than adduction laxity (p=0.043) and the quasi-static abduction stiffness was significantly higher than adduction stiffness (p<0.001). The knee joint showed significantly higher stiffness and viscosity in abduction-adduction than their counterparts in knee flexion-extension at comparable levels of joint torque (p<0.05). Similar to dynamic flexion-extension properties, the system damping ratio remained constant over different levels of contraction, indicating simplified control tasks for the central nervous system; while the natural undamped frequency increased considerably with abduction-adduction muscle contraction, presumably making the knee a quicker system during strenuous tasks involving strong muscle contraction. PMID:11506781

  4. The Admissions Equity Struggle

    ERIC Educational Resources Information Center

    Freedman, Eric

    2012-01-01

    It has been a long, litigious road from Heman Sweatt, an African-American mail carrier who wanted to attend the prestigious, all-White law school at the University of Texas at Austin in 1946, to Abigail Fisher, a White high school student who failed to win undergraduate admission to the same university a half-century later. Depending on what the…

  5. The control of tendon-driven dexterous hands with joint simulation.

    PubMed

    Chen, Jinbao; Han, Dong

    2013-01-01

    An adaptive impedance control algorithm for tendon-driven dexterous hands is presented. The main idea of this algorithm is to compensate the output of the classical impedance control by an offset that is a proportion-integration-differentiation (PID) expression of force error. The adaptive impedance control can adjust the impedance parameters indirectly when the environment position and stiffness are uncertain. In addition, the position controller and inverse kinematics solver are specially designed for the tendon-driven hand. The performance of the proposed control algorithm is validated by using MATLAB and ADAMS software for joint simulation. ADAMS is a great software for virtual prototype analysis. A tendon-driven hand model is built and a control module is generated in ADAMS. Then the control system is built in MATLAB using the control module. The joint simulation results demonstrate fast response and robustness of the algorithm when the environment is not exactly known, so the algorithm is suitable for the control of tendon-driven dexterous hands. PMID:24448167

  6. The Control of Tendon-Driven Dexterous Hands with Joint Simulation

    PubMed Central

    Chen, Jinbao; Han, Dong

    2014-01-01

    An adaptive impedance control algorithm for tendon-driven dexterous hands is presented. The main idea of this algorithm is to compensate the output of the classical impedance control by an offset that is a proportion-integration-differentiation (PID) expression of force error. The adaptive impedance control can adjust the impedance parameters indirectly when the environment position and stiffness are uncertain. In addition, the position controller and inverse kinematics solver are specially designed for the tendon-driven hand. The performance of the proposed control algorithm is validated by using MATLAB and ADAMS software for joint simulation. ADAMS is a great software for virtual prototype analysis. A tendon-driven hand model is built and a control module is generated in ADAMS. Then the control system is built in MATLAB using the control module. The joint simulation results demonstrate fast response and robustness of the algorithm when the environment is not exactly known, so the algorithm is suitable for the control of tendon-driven dexterous hands. PMID:24448167

  7. Primary motor cortex underlies multi-joint integration for fast feedback control

    PubMed Central

    Pruszynski, J. Andrew; Kurtzer, Isaac; Nashed, Joseph Y.; Omrani, Mohsen; Brouwer, Brenda; Scott, Stephen H.

    2016-01-01

    A basic difficulty for the nervous system is integrating locally ambiguous sensory information to form accurate perceptions about the outside world1–4. This local-to-global problem is also fundamental to motor control of the arm since complex mechanical interactions between the shoulder and elbow allow a particular amount of motion at one joint to arise from an infinite combination of shoulder and elbow torques5 (Fig. 1a). Here we show that a transcortical pathway through primary motor cortex (M1) resolves this ambiguity during fast feedback control. We demonstrate that single M1 neurons of behaving monkeys can integrate shoulder and elbow motion information into motor commands which appropriately counter the underlying torque within ~50 ms of a mechanical perturbation. Moreover, we reveal a causal link between M1 processing and multi-joint integration in humans by showing that shoulder muscle responses occurring ~50 ms after pure elbow displacement can be potentiated by transcranial magnetic stimulation. Our results show that M1 underlies multi-joint integration during fast feedback control, demonstrating that transcortical processing permits feedback responses to express a level of sophistication previously reserved for voluntary control and providing neurophysiological support for influential theories positing that voluntary movement is generated by the intelligent manipulation of sensory feedback6,7. PMID:21964335

  8. A compact roller-gear pitch-yaw joint module: Design and control issues

    NASA Technical Reports Server (NTRS)

    Dohring, Mark E.; Anderson, William J.; Newman, Wyatt S.; Rohn, Douglas A.

    1993-01-01

    Robotic systems have been proposed as a means of accomplishing assembly and maintenance tasks in space. The desirable characteristics of these systems include compact size, low mass, high load capacity, and programmable compliance to improve assembly performance. In addition, the mechanical system must transmit power in such a way as to allow high performance control of the system. Efficiency, linearity, low backlash, low torque ripple, and low friction are all desirable characteristics. This work presents a pitch-yaw joint module designed and built to address these issues. Its effectiveness as a two degree-of-freedom manipulator using natural admittance control, a method of force control, is demonstrated.

  9. Joint operation and dynamic control of flood limiting water levels for mixed cascade reservoir systems

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Liu, Pan; Xu, Chongyu

    2014-11-01

    Reservoirs are one of the most efficient infrastructures for integrated water resources development and management; and play a more and more important role in flood control and conservation. Dynamic control of the reservoir flood limiting water level (FLWL) is a valuable and effective approach to compromise the flood control, hydropower generation and comprehensive utilization of water resources of river basins during the flood season. The dynamic control models of FLWL for a single reservoir and cascade reservoirs have been extended for a mixed reservoir system in this paper. The proposed model consists of a dynamic control operation module for a single reservoir, a dynamic control operation module for cascade reservoirs, and a joint operation module for mixed cascade reservoir systems. The Three Gorges and Qingjiang cascade reservoirs in the Yangtze River basin of China are selected for a case study. Three-hour inflow data series for representative hydrological years are used to test the model. The results indicate that the proposed model can make an effective tradeoff between flood control and hydropower generation. Joint operation and dynamic control of FLWL can generate 26.4 × 108 kW h (3.47%) more hydropower for the mixed cascade reservoir systems and increase the water resource utilization rate by 3.72% for the Three Gorges reservoir and 2.42% for the Qingjiang cascade reservoirs without reducing originally designed flood prevention standards.

  10. A prototype rehabilitation device with variable resistance and joint motion control

    PubMed Central

    Dong, Shufang; Lu, Ke-Qian; Sun, J.Q.; Rudolph, Katherine

    2008-01-01

    Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This paper presents the design of a versatile rehabilitation device in the form of a rotating joint arm mounted on the adjustable seat that provides passive resistance during strength training for muscles. The resistance is supplied by a magnetorheological damper. Intelligent controls are developed to produce resistance force based on the prescription of the therapist. The device provides both isometric and isokinetic strength training and is reconfigurable for several human joints. Special consideration has been given to the human–machine interaction in the adaptive control algorithms that can modify the behavior of the device to account for strength gains or muscle fatigue. PMID:16112598

  11. A prototype rehabilitation device with variable resistance and joint motion control.

    PubMed

    Dong, Shufang; Lu, Ke-Qian; Sun, J Q; Rudolph, Katherine

    2006-05-01

    Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This paper presents the design of a versatile rehabilitation device in the form of a rotating joint arm mounted on the adjustable seat that provides passive resistance during strength training for muscles. The resistance is supplied by a magnetorheological damper. Intelligent controls are developed to produce resistance force based on the prescription of the therapist. The device provides both isometric and isokinetic strength training and is reconfigurable for several human joints. Special consideration has been given to the human-machine interaction in the adaptive control algorithms that can modify the behavior of the device to account for strength gains or muscle fatigue. PMID:16112598

  12. Risk factors of direct heat-related hospital admissions during the 2009 heatwave in Adelaide, Australia: a matched case–control study

    PubMed Central

    Zhang, Ying; Nitschke, Monika; Krackowizer, Antoinette; Dear, Keith; Pisaniello, Dino; Weinstein, Philip; Tucker, Graeme; Shakib, Sepehr; Bi, Peng

    2016-01-01

    Objective The extreme heatwave of 2009 in South Australia dramatically increased morbidity, with a 14-fold increase in direct heat-related hospitalisation in metropolitan Adelaide. Our study aimed to identify risk factors for the excess morbidity. Design A matched case–control study of risk factors was conducted. Setting Patients and matched community controls were interviewed to gather data on demographics, living environment, social support, health status and behaviour changes during the heatwave. Participants Cases were all hospital admissions with heat-related diagnoses during the 5-day heatwave in 2009. Controls were randomly selected from communities. Outcome measures Descriptive analyses, simple and multiple conditional logistic regressions were performed. Adjusted ORs (AORs) were estimated. Results In total, 143 hospital patients and 143 matched community controls were interviewed, with a mean age of 73 years (SD 21), 96% European ethnicity, 63% retired, 36% with high school or higher education, and 8% institutional living. The regression model indicated that compared with the controls, cases were more likely to have heart disease (AOR=13.56, 95% CI 1.27 to 144.86) and dementia (AOR=26.43, 95% CI 1.99 to 350.73). The protective factors included higher education level (AOR=0.48, 95% CI 0.23 to 0.99), having air-conditioner in the bedroom (AOR=0.12, 95% CI 0.02 to 0.74), having an emergency button (AOR=0.09, 95% CI 0.01 to 0.96), using refreshment (AOR=0.10, 95% CI 0.01 to 0.84), and having more social activities (AOR=0.11, 95% CI 0.02 to 0.57). Conclusions Pre-existing heart disease and dementia significantly increase the risk of direct heat-related hospitalisations during heatwaves. The presence of an air-conditioner in the bedroom, more social activities, a higher education level, use of emergency buttons and refreshments reduce the risk during heatwaves. PMID:27256088

  13. Design, fabrication and test of graphite/polyimide composite joints and attachments. [spacecraft control surfaces

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    The design, analysis, and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561 K (550 F) are summarized. Material properties and small specimen tests were conducted to establish design data and to evaluate specific design details. Static discriminator tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours at 589 K (600 F)) and thermal cycled (116 K to 589 K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589 K (600 F) for 125 hours.

  14. Motion control of the ankle joint with a multiple contact nerve cuff electrode: a simulation study.

    PubMed

    Park, Hyun-Joo; Durand, Dominique M

    2014-08-01

    The flat interface nerve electrode (FINE) has demonstrated significant capability for fascicular and subfascicular stimulation selectivity. However, due to the inherent complexity of the neuromuscular skeletal systems and nerve-electrode interface, a trajectory tracking motion control algorithm of musculoskeletal systems for functional electrical stimulation using a multiple contact nerve cuff electrode such as FINE has not yet been developed. In our previous study, a control system was developed for multiple-input multiple-output (MIMO) musculoskeletal systems with little prior knowledge of the system. In this study, more realistic computational ankle/subtalar joint model including a finite element model of the sciatic nerve was developed. The control system was tested to control the motion of ankle/subtalar joint angles by modulating the pulse amplitude of each contact of a FINE placed on the sciatic nerve. The simulation results showed that the control strategy based on the separation of steady state and dynamic properties of the system resulted in small output tracking errors for different reference trajectories such as sinusoidal and filtered random signals. The proposed control method also demonstrated robustness against external disturbances and system parameter variations such as muscle fatigue. These simulation results under various circumstances indicate that it is possible to take advantage of multiple contact nerve electrodes with spatial selectivity for the control of limb motion by peripheral nerve stimulation even with limited individual muscle selectivity. This technology could be useful to restore neural function in patients with paralysis. PMID:24939581

  15. Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors.

    PubMed

    Sun, Zhijun; Xing, Rentao; Zhao, Chunsheng; Huang, Weiqing

    2007-11-01

    A three-joint robot is directly driven by ultrasonic motors with advantage of high torque at low speed. The speed of the ultrasonic motors is actually controlled by regulating their operating frequencies. The kinematic and kinetic analyses of the robot have been carried out using Adams. Due to the lack of accurate control model of ultrasonic motors and the time-varying motor parameters, a fuzzy auto-tuning proportional integral derivative (PID) controller for the robot is experimented, in which a simple method to tune parameters of the PID type fuzzy controller on-line is developed and a new position-speed feedback strategy is proposed and implemented. The effectiveness of the proposed control strategy and fuzzy logic controller is verified by experimental investigation. PMID:17540429

  16. STS payloads mission control study continuation phase A-1. Volume 2-C, task 3: Identification of joint activities and estimation of resources in preparation for joint flight operations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.

  17. A self-adjusting negative feedback joint controller for legs standing on moving substrates of unknown compliance

    NASA Astrophysics Data System (ADS)

    Schneider, Axel; Cruse, Holk; Fischer, Björn; Schmitz, Josef

    2007-05-01

    Some recent robot controllers for hexapod walking have been developed based on investigations of stick insects. These animals live in an unpredictable environment that consists of twigs and leaves. Supports like twigs, leaves and branches induce a considerable amount of movement to the legs and their elastic joints. Earlier studies proposed negative feedback PD-controllers to regulate the angles of the knee joints to handle this situation. Recent studies suggest that the behaviour of the joint controller depends on the compliance of the substrate the insect is standing on. On highly elastic substrates (e.g. leaves) the joint controller exhibits an I-characteristic. Deviations from the original position are compensated completely. On moderately elastic substrates (e.g. twigs) the joint controller comprises a P-characteristic. The leg attains a resting position that differs from the original position through application of a specific compensation force. On stiff substrates the knee joint seems to be controlled by a D-controller. If the leg endpoint is forced away from the original position by an external disturbance (e.g. a moving branch), the controller compensates this deviation by activation of the according muscle which results in a counter force. After some time the controller seems to "give up." The force decreases to zero. To model these results, we propose a self-adjusting joint controller that changes its own setpoint in dependance of the substrate stiffness. The substrate stiffness is determined by means of a correlator circuit that compares (superimposed) movement commands with the actual responses of the leg joint. The new controller can be used for the control of legged robots.

  18. Effects of Joint Attention Mediated Learning for Toddlers with Autism Spectrum Disorders: An Initial Randomized Controlled Study

    ERIC Educational Resources Information Center

    Schertz, Hannah H.; Odom, Samuel L.; Baggett, Kathleen M.; Sideris, John H.

    2013-01-01

    The purpose of this study was to determine effects of the Joint Attention Mediated Learning (JAML) intervention on acquisition of joint attention and other early social communication competencies for toddlers with autism spectrum disorders (ASD). Twenty-three parents and their toddlers were randomly assigned to JAML or a control condition.…

  19. Active vibration control of Flexible Joint Manipulator using Input Shaping and Adaptive Parameter Auto Disturbance Rejection Controller

    NASA Astrophysics Data System (ADS)

    Li, W. P.; Luo, B.; Huang, H.

    2016-02-01

    This paper presents a vibration control strategy for a two-link Flexible Joint Manipulator (FJM) with a Hexapod Active Manipulator (HAM). A dynamic model of the multi-body, rigid-flexible system composed of an FJM, a HAM and a spacecraft was built. A hybrid controller was proposed by combining the Input Shaping (IS) technique with an Adaptive-Parameter Auto Disturbance Rejection Controller (APADRC). The controller was used to suppress the vibration caused by external disturbances and input motions. Parameters of the APADRC were adaptively adjusted to ensure the characteristic of the closed loop system to be a given reference system, even if the configuration of the manipulator significantly changes during motion. Because precise parameters of the flexible manipulator are not required in the IS system, the operation of the controller was sufficiently robust to accommodate uncertainties in system parameters. Simulations results verified the effectiveness of the HAM scheme and controller in the vibration suppression of FJM during operation.

  20. Complexity analysis and control in joint channel protection system for wireless video communications

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Zhu, Guangxi

    2007-02-01

    In wireless communications, channel coding and error control are essential to protect the video data from wireless interference. The power it consumed, which is determined by the protection method it used, will directly affect the system performance especially on the decoding side. In this paper, a channel coding and error control system, called joint channel protection (JCP) system here, is proposed as an improvement of the hybrid automatic repeat request (HARQ) system to integrate the complexity controllability. The complexity models of the encoder and decoder are established based on theoretical analysis and statistical data retrieval using the time complexity concept, and the relative variation in the computational complexity is carefully studied to provide a proportional variation reference for complexity control. Based on the models, strategies are designed to control the system complexity by adjusting the packet length, iterative decoding times and retransmission ratio according to the decoding quality and complexity level.

  1. The Probabilistic Admissible Region with Additional Constraints

    NASA Astrophysics Data System (ADS)

    Roscoe, C.; Hussein, I.; Wilkins, M.; Schumacher, P.

    The admissible region, in the space surveillance field, is defined as the set of physically acceptable orbits (e.g., orbits with negative energies) consistent with one or more observations of a space object. Given additional constraints on orbital semimajor axis, eccentricity, etc., the admissible region can be constrained, resulting in the constrained admissible region (CAR). Based on known statistics of the measurement process, one can replace hard constraints with a probabilistic representation of the admissible region. This results in the probabilistic admissible region (PAR), which can be used for orbit initiation in Bayesian tracking and prioritization of tracks in a multiple hypothesis tracking framework. The PAR concept was introduced by the authors at the 2014 AMOS conference. In that paper, a Monte Carlo approach was used to show how to construct the PAR in the range/range-rate space based on known statistics of the measurement, semimajor axis, and eccentricity. An expectation-maximization algorithm was proposed to convert the particle cloud into a Gaussian Mixture Model (GMM) representation of the PAR. This GMM can be used to initialize a Bayesian filter. The PAR was found to be significantly non-uniform, invalidating an assumption frequently made in CAR-based filtering approaches. Using the GMM or particle cloud representations of the PAR, orbits can be prioritized for propagation in a multiple hypothesis tracking (MHT) framework. In this paper, the authors focus on expanding the PAR methodology to allow additional constraints, such as a constraint on perigee altitude, to be modeled in the PAR. This requires re-expressing the joint probability density function for the attributable vector as well as the (constrained) orbital parameters and range and range-rate. The final PAR is derived by accounting for any interdependencies between the parameters. Noting that the concepts presented are general and can be applied to any measurement scenario, the idea

  2. Joint Access Control Based on Access Ratio and Resource Utilization for High-Speed Railway Communications

    NASA Astrophysics Data System (ADS)

    Zhou, Yuzhe; Ai, Bo

    2015-05-01

    The fast development of high-speed rails makes people's life more and more convenient. However, provisioning of quality of service of multimedia applications for users on the high-speed train is a critical task for wireless communications. Therefore, new solutions are desirable to be found to address this kind of problem. Current researches mainly focus on providing seamless broadband wireless access for high-speed mobile terminals. In this paper, an algorithm to calculate the optimal resource reservation fraction of handovers is proposed. A joint access control scheme for high-speed railway communication handover scenario is proposed. Metrics of access ratio and resource utilization ratio are considered jointly in the analysis and the performance evaluation. Simulation results show that the proposed algorithm and the scheme improve quality of service compared with other conventional schemes.

  3. Chitosan-Based Thermosensitive Hydrogel for Controlled Drug Delivery to the Temporomandibular Joint.

    PubMed

    Talaat, Wael M; Haider, Mohamed; Kawas, Sausan Al; Kandil, Nadia G; Harding, David R K

    2016-05-01

    Intra-articular injections of hyaluronic acid (HA) and corticosteroids have been extensively used in treating temporomandibular disorders. However, rapid clearance from the site of injection is a major concern that is commonly managed by frequent dosing, which is not without complications. This study aimed to determine the suitability of thermosensitive chitosan-based hydrogels for intra-articular controlled release of drugs in the rabbit temporomandibular joint (TMJ). A series of hydrogels were prepared using different chitosan (Ch) to β-glycerophosphate (β-GP) ratios. The gelation time, swelling ratio, the shape, and surface morphology of the prepared gels were investigated to select the formulation with optimum characteristics. The left TMJ in 13 adult male New Zealand white rabbits was injected with 0.2 mL of Chitosan/β-glycerophosphate/HA while the right TMJ was injected with 0.2 mL of control solution of HA. Hyaluronic acid concentrations in experimental and control groups were measured using Hyaluronan Quantikine Enzyme-Linked Immunosorbent Assay Kit. In vitro characterization showed that both the Ch:β-GP ratio and incorporation of HA had a significant effect on gelation time, degree of swelling, and surface morphology of the hydrogels. No morphological changes were observed in the joints in both groups. The mean concentration of HA in the experimental joints after 7 days (1339.79 ± 244.98 μg/g) was significantly higher than that in the control (474.52 ± 79.36 μg/g). In conclusion, the chitosan-based thermosensitive hydrogel can be considered as a promising controlled drug release system to the TMJ in a rabbit model that would potentially overcome many of the current limitations of intra-articular formulations. PMID:27100649

  4. The development of goal-directed reaching in infants: hand trajectory formation and joint torque control.

    PubMed

    Konczak, J; Borutta, M; Topka, H; Dichgans, J

    1995-01-01

    Nine young infants were followed longitudinally from 4 to 15 months of age. We recorded early spontaneous movements and reaching movements to a stationary target. Time-position data of the hand (endpoint), shoulder, and elbow were collected using an optoelectronic measurement system (ELITE). We analyzed the endpoint kinematics and the intersegmental dynamics of the shoulder and elbow joint to investigate how changes in proximal torque control determined the development of hand trajectory formation. Two developmental phases of hand trajectory formation were identified: a first phase of rapid improvements between 16 and 24 weeks of age, the time of reaching onset for all infants. During that time period the number of movement units per reach and movement time decreased dramatically. In a second phase (28-64 weeks), a period of "fine-tuning" of the sensorimotor system, we saw slower, more gradual changes in the endpoint kinematics. The analysis of the underlying intersegmental joint torques revealed the following results: first, the range of muscular and motion-dependent torques (relative to body weight) did not change significantly with age. That is, early reaching was not confined by limitations in producing task-adequate levels of muscular torque. Second, improvements in the endpoint kinematics were not accomplished by minimizing amplitude of muscle and reactive torques. Third, the relative timing of muscular and motion-dependent torque peaks showed a systematic development toward an adult timing profile with increasing age. In conclusion, the development toward invariant characteristics of the hand trajectory is mirrored by concurrent changes in the control of joint forces. The acquisition of stable patterns of intersegmental coordination is not achieved by simply regulating force amplitude, but more so by modulating the correct timing of joint force production and by the system's use of reactive forces. Our findings support the view that development of reaching

  5. Regulating knee joint position by combining electrical stimulation with a controllable friction brake.

    PubMed

    Durfee, W K; Hausdorff, J M

    1990-01-01

    Hybrid FES gait restoration systems which combine stimulation with controllable mechanical damping elements at the joints show promise for providing good control of limb motion despite variations in muscle properties. In this paper we compared three controllers for position tracking of the free swinging shank in able-bodied subjects. The controllers were open-loop (OL), proportional-derivative closed-loop (PD), and bang-bang plus controlled-brake control (CB). Both OL and PD controllers contained a forward path element, which inverted a model of the electrically stimulated muscle and limb system. The CB control was achieved by maximally activating the appropriate muscle group and controlling the brake to be a "moving-wall" against which the limb pushed. The CB control resulted in superior tracking performance for a wide range of position tracking tasks and muscle fatigue states but required no calibration or knowledge of muscle properties. The disadvantages of CB control include excess mechanical power dissipation in the brake and impact forces applied to the skeletal system. PMID:2281882

  6. A self-organizing fuzzy control approach to arc sensor for weld joint tracking in gas metal arc welding of butt joints

    SciTech Connect

    Na, S.J. ); Kim, J.W.

    1993-02-01

    For the artificial intelligence (AI) approach to automatic control, the fuzzy rule-based control schemes have been successfully applied to the control of complex processes. The arc welding process is one of the processes due to the fact that it possesses complex and nonlinear characteristics such as a moving distributed heat source, a current path and metal transfer. One possible solution to the design of an effective controller suitable for such a process is to use the fuzzy control scheme. The fuzzy rule-based control can easily realize the heuristic rules obtained from human experiences that cannot be expressed in mathematical form. In this study, an arc sensor, which utilizes the electrical signal obtained from the welding arc itself, was developed for CO[sub 2] gas metal arc welding of butt joints using the fuzzy set theory. A simple fuzzy controller without any adaptation was implemented for the weld joint tracking. A set of fixed rules, which was designed based upon the experiments, and a self-organizing fuzzy controller, which could improve the control rules automatically, were examined. Through a series of experiments, the performance and learning action of the proposed self-organizing fuzzy controller were assessed.

  7. 40 CFR 85.1504 - Conditional admission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Conditional admission. 85.1504 Section 85.1504 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor Vehicles and Motor Vehicle Engines §...

  8. 40 CFR 85.1504 - Conditional admission.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Conditional admission. 85.1504 Section 85.1504 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor Vehicles and Motor Vehicle Engines §...

  9. Shearing along faults and stratigraphic joints controlled by land subsidence in the Valley of Queretaro, Mexico

    NASA Astrophysics Data System (ADS)

    Carreón-Freyre, D.; Cerca, M.; Ochoa-González, G.; Teatini, P.; Zuñiga, F. R.

    2016-03-01

    Slip of nearly vertical faults or horizontal stratigraphic joints has provoked the shearing of at least 16 well casings in a period of over 10 years in the Valley of Queretaro aquifer, Mexico. Evidence integrated from field observations, remote surface-deformation monitoring, in-situ monitoring, stratigraphic correlation, and numerical modeling indicate that groundwater depletion and land subsidence induce shearing. Two main factors conditioning the stress distribution and the location of sheared well casings have been identified: (1) slip on fault planes, and (2) slip on stratigraphic joints. Additionally, the distribution of piezometric gradients may be a factor that enhances shearing. Slip on faults can be generated either by the compaction of sedimentary units (passive faulting) or by slip of blocks delimited by pre-existing faults (reactivation). Major piezometric-level declines and the distribution of hydraulic gradients can also be associated with slip at stratigraphic joints. Faults and hydraulic contrasts in the heterogeneous rock sequence, along with groundwater extraction, influence the distribution of the gradients and delimit the compartments of groundwater in the aquifer. Analogue modeling allowed assessment of the distribution of stress-strain and displacements associated with the increase of the vertical stress. Fault-bounded aquifers in grabens are common in the central part of Mexico and the results obtained can be applied to other subsiding, structurally controlled aquifer systems elsewhere.

  10. Shearing along faults and stratigraphic joints controlled by land subsidence in the Valley of Queretaro, Mexico

    NASA Astrophysics Data System (ADS)

    Carreón-Freyre, D.; Cerca, M.; Ochoa-González, G.; Teatini, P.; Zuñiga, F. R.

    2016-05-01

    Slip of nearly vertical faults or horizontal stratigraphic joints has provoked the shearing of at least 16 well casings in a period of over 10 years in the Valley of Queretaro aquifer, Mexico. Evidence integrated from field observations, remote surface-deformation monitoring, in-situ monitoring, stratigraphic correlation, and numerical modeling indicate that groundwater depletion and land subsidence induce shearing. Two main factors conditioning the stress distribution and the location of sheared well casings have been identified: (1) slip on fault planes, and (2) slip on stratigraphic joints. Additionally, the distribution of piezometric gradients may be a factor that enhances shearing. Slip on faults can be generated either by the compaction of sedimentary units (passive faulting) or by slip of blocks delimited by pre-existing faults (reactivation). Major piezometric-level declines and the distribution of hydraulic gradients can also be associated with slip at stratigraphic joints. Faults and hydraulic contrasts in the heterogeneous rock sequence, along with groundwater extraction, influence the distribution of the gradients and delimit the compartments of groundwater in the aquifer. Analogue modeling allowed assessment of the distribution of stress-strain and displacements associated with the increase of the vertical stress. Fault-bounded aquifers in grabens are common in the central part of Mexico and the results obtained can be applied to other subsiding, structurally controlled aquifer systems elsewhere.

  11. Randomized Placebo-Controlled Study Evaluating Lateral Branch Radiofrequency Denervation for Sacroiliac Joint Pain

    PubMed Central

    Cohen, Steven P.; Hurley, Robert W.; Buckenmaier, Chester C.; Kurihara, Connie; Morlando, Benny; Dragovich, Anthony

    2009-01-01

    Background Sacroiliac joint pain is a challenging condition accounting for approximately 20% of cases of chronic low back pain. Currently, there are no effective long-term treatment options for sacroiliac joint pain. Methods A randomized, placebo-controlled study was conducted in 28 patients with injection-diagnosed sacroiliac joint pain. Fourteen patients received L4-5 primary dorsal rami and S1-3 lateral branch radiofrequency denervation using cooling-probe technology following a local anesthetic block, and 14 patients received the local anesthetic block followed by placebo denervation. Patients who failed to respond to placebo injections crossed over and were treated with radiofrequency denervation using conventional technology. Results One, 3 and 6-months post-procedure, 11 (79%), 9 (64%) and 8 (57%) of radiofrequency treated patients experienced ≥ 50% pain relief and significant functional improvement. In contrast, only 2 (14%) patients in the placebo group experienced significant improvement at their 1-month follow-up, and none experienced benefit 3-months post-procedure. In the crossover group (n=11), 7 (64%), 6 (55%) and 4 (36%) patients experienced improvement 1, 3 and 6-months post-procedure. One year after treatment, only 2 (14%) patients in the treatment group continued to demonstrate persistent pain relief. Conclusions These results provide preliminary evidence that L4 and L5 primary dorsal rami and S1-3 lateral branch radiofrequency denervation may provide intermediate-term pain relief and functional benefit in selected patients with suspected sacroiliac joint pain. Larger studies are needed to confirm our results, and determine the optimal candidates and treatment parameters for this poorly understood disorder. PMID:18648237

  12. Adaptive neuro-fuzzy sliding mode control of multi-joint movement using intraspinal microstimulation.

    PubMed

    Asadi, Ali-Reza; Erfanian, Abbas

    2012-07-01

    During the last decade, intraspinal microstimulation (ISMS) has been proposed as a potential technique for restoring motor function in paralyzed limbs. A major challenge to restoration of a desired functional limb movement through the use of ISMS is the development of a robust control strategy for determining the stimulation patterns. Accurate and stable control of limbs by functional intraspinal microstimulation is a very difficult task because neuromusculoskeletal systems have significant nonlinearity, time variability, large latency and time constant, and muscle fatigue. Furthermore, the controller must be able to compensate the effect of the dynamic interaction between motor neuron pools and electrode sites during ISMS. In this paper, we present a robust strategy for multi-joint control through ISMS in which the system parameters are adapted online and the controller requires no offline training phase. The method is based on the combination of sliding mode control with fuzzy logic and neural control. Extensive experiments on six rats are provided to demonstrate the robustness, stability, and tracking accuracy of the proposed method. Despite the complexity of the spinal neuronal networks, our results show that the proposed strategy could provide accurate tracking control with fast convergence and could generate control signals to compensate for the effects of muscle fatigue. PMID:22711783

  13. Joint Power and Multiple Access Control for Wireless Mesh Network with Rose Projection Method

    PubMed Central

    Tang, Meiqin; Shang, Lili; Xin, Yalin; Liu, Xiaohua; Wei, Xinjiang

    2014-01-01

    This paper investigates the utility maximization problem for the downlink of the multi-interface multichannel wireless mesh network with orthogonal frequency division multiple access. A cross-layer joint power and multiple access control algorithm are proposed. Rosen projection matrix is combined with Solodov projection techniques to build a three-memory gradient Rosen projection method, which is applied to solve this optimization problem. The convergence analysis is given and simulations show that the proposed solution achieves significant throughput compared with existing approaches. PMID:24883384

  14. Passivity/Lyapunov based controller design for trajectory tracking of flexible joint manipulators

    NASA Technical Reports Server (NTRS)

    Sicard, Pierre; Wen, John T.; Lanari, Leonardo

    1992-01-01

    A passivity and Lyapunov based approach for the control design for the trajectory tracking problem of flexible joint robots is presented. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. Feedforward selection and solution is analyzed for a general model for flexible joints, and for more specific and practical model structures. Passivity theory is used to design a motor state-based controller in order to input-output stabilize the error system formed by the feedforward. Observability conditions for asymptotic stability are stated and verified. In order to accommodate for modeling uncertainties and to allow for the implementation of a simplified feedforward compensation, the stability of the system is analyzed in presence of approximations in the feedforward by using a Lyapunov based robustness analysis. It is shown that under certain conditions, e.g., the desired trajectory is varying slowly enough, stability is maintained for various approximations of a canonical feedforward.

  15. Sodium inversion recovery MRI on the knee joint at 7 T with an optimal control pulse

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Xia, Ding; Madelin, Guillaume; Regatte, Ravinder R.

    2016-01-01

    In the field of sodium magnetic resonance imaging (MRI), inversion recovery (IR) is a convenient and popular method to select sodium in different environments. For the knee joint, IR has been used to suppress the signal from synovial fluids, which improves the correlation between the sodium signal and the concentration of glycosaminoglycans (GAGs) in cartilage tissues. For the better inversion of the magnetization vector under the spatial variations of the B0 and B1 fields, the IR sequence usually employ adiabatic pulses as the inversion pulse. On the other hand, it has been shown that RF shapes robust against the variations of the B0 and B1 fields can be generated by numerical optimization based on optimal control theory. In this work, we compare the performance of fluid-suppressed sodium MRI on the knee joint in vivo, between one implemented with an adiabatic pulse in the IR sequence and the other with the adiabatic pulse replaced by an optimal-control shaped pulse. While the optimal-control pulse reduces the RF power deposited to the body by 58%, the quality of fluid suppression and the signal level of sodium within cartilage are similar between two implementations.

  16. Application of a passivity based control methodology for flexible joint robots to a simplified Space Shuttle RMS

    NASA Technical Reports Server (NTRS)

    Sicard, Pierre; Wen, John T.

    1992-01-01

    A passivity approach for the control design of flexible joint robots is applied to the rate control of a three-link arm modeled after the shoulder yaw joint of the Space Shuttle Remote Manipulator System (RMS). The system model includes friction and elastic joint couplings modeled as nonlinear springs. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. A regulator approach with link state feedback is employed to define the desired motor state. Passivity theory is used to design a motor state-based controller to stabilize the error system formed by the feedforward. Simulation results show that greatly improved performance was obtained by using the proposed controller over the existing RMS controller.

  17. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions.

    PubMed

    Abusara, Ziad; Von Kossel, Markus; Herzog, Walter

    2016-01-01

    When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done using confined and unconfined loading configurations and indentation testing. These loading conditions can be well controlled and allow for accurate measurements of cartilage and cell deformations, but they have little to do with the contact mechanics occurring in a joint where non-congruent cartilage surfaces with different material and functional properties are pressed against each other by muscular forces. The aim of this study was to measure in vivo, real time articular cartilage deformations for precisely controlled static and dynamic muscular loading conditions in the knees of mice. Fifty and 80% of the maximal knee extensor muscular force (equivalent to approximately 0.4N and 0.6N) produced average peak articular cartilage strains of 10.5±1.0% and 18.3±1.3% (Mean ± SD), respectively, during 8s contractions. A sequence of 15 repeat, isometric muscular contractions (0.5s on, 3.5s off) of 50% and 80% of maximal muscular force produced cartilage strains of 3.0±1.1% and 9.6±1.5% (Mean ± SD) on the femoral condyles of the mouse knee. Cartilage thickness recovery following mechanical compression was highly viscoelastic and took almost 50s following force removal in the static tests. PMID:26807930

  18. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions

    PubMed Central

    Abusara, Ziad; Von Kossel, Markus; Herzog, Walter

    2016-01-01

    When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done using confined and unconfined loading configurations and indentation testing. These loading conditions can be well controlled and allow for accurate measurements of cartilage and cell deformations, but they have little to do with the contact mechanics occurring in a joint where non-congruent cartilage surfaces with different material and functional properties are pressed against each other by muscular forces. The aim of this study was to measure in vivo, real time articular cartilage deformations for precisely controlled static and dynamic muscular loading conditions in the knees of mice. Fifty and 80% of the maximal knee extensor muscular force (equivalent to approximately 0.4N and 0.6N) produced average peak articular cartilage strains of 10.5±1.0% and 18.3±1.3% (Mean ± SD), respectively, during 8s contractions. A sequence of 15 repeat, isometric muscular contractions (0.5s on, 3.5s off) of 50% and 80% of maximal muscular force produced cartilage strains of 3.0±1.1% and 9.6±1.5% (Mean ± SD) on the femoral condyles of the mouse knee. Cartilage thickness recovery following mechanical compression was highly viscoelastic and took almost 50s following force removal in the static tests. PMID:26807930

  19. Therapeutic Experience on Stance Control Knee-Ankle-Foot Orthosis With Electromagnetically Controlled Knee Joint System in Poliomyelitis

    PubMed Central

    Kim, Jung-Hwan; Ji, Sang-Goo; Jung, Kang-Jae

    2016-01-01

    A 54-year-old man with poliomyelitis had been using a conventional, passive knee-ankle-foot orthosis (KAFO) with a drop ring lock knee joint for about 40 years. A stance control KAFO (SCKAFO) with an electromagnetically controlled (E-MAG) knee joint system was prescribed. To correct his gait pattern, he also underwent rehabilitation therapy, which included muscle re-education, neuromuscular electrical stimulation, strengthening exercises for the lower extremities, and balance training twice a week for about 4 months. Both before and after rehabilitation, we conducted a gait analysis and assessed the physiological cost index in energy expended during walking in a locked-knee state and while he wore a SCKAFO with E-MAG. When compared with the pre-rehabilitation data, the velocity, step length, stride length, and knee kinematic data were improved after rehabilitation. Although the SCKAFO with E-MAG system facilitated the control of knee motion during ambulation, appropriate rehabilitative therapy was also needed to achieve a normal gait pattern. PMID:27152288

  20. Therapeutic Experience on Stance Control Knee-Ankle-Foot Orthosis With Electromagnetically Controlled Knee Joint System in Poliomyelitis.

    PubMed

    Kim, Jung-Hwan; Ji, Sang-Goo; Jung, Kang-Jae; Kim, Jae-Hyung

    2016-04-01

    A 54-year-old man with poliomyelitis had been using a conventional, passive knee-ankle-foot orthosis (KAFO) with a drop ring lock knee joint for about 40 years. A stance control KAFO (SCKAFO) with an electromagnetically controlled (E-MAG) knee joint system was prescribed. To correct his gait pattern, he also underwent rehabilitation therapy, which included muscle re-education, neuromuscular electrical stimulation, strengthening exercises for the lower extremities, and balance training twice a week for about 4 months. Both before and after rehabilitation, we conducted a gait analysis and assessed the physiological cost index in energy expended during walking in a locked-knee state and while he wore a SCKAFO with E-MAG. When compared with the pre-rehabilitation data, the velocity, step length, stride length, and knee kinematic data were improved after rehabilitation. Although the SCKAFO with E-MAG system facilitated the control of knee motion during ambulation, appropriate rehabilitative therapy was also needed to achieve a normal gait pattern. PMID:27152288

  1. Trends in Staphylococcus aureus bacteraemia and impacts of infection control practices including universal MRSA admission screening in a hospital in Scotland, 2006–2010: retrospective cohort study and time-series intervention analysis

    PubMed Central

    Edwards, Becky; López-Lozano, José-Maria; Gould, Ian

    2012-01-01

    Objectives To describe secular trends in Staphylococcus aureus bacteraemia (SAB) and to assess the impacts of infection control practices, including universal methicillin-resistant Staphylococcus aureus (MRSA) admission screening on associated clinical burdens. Design Retrospective cohort study and multivariate time-series analysis linking microbiology, patient management and health intelligence databases. Setting Teaching hospital in North East Scotland. Participants All patients admitted to Aberdeen Royal Infirmary between 1 January 2006 and 31 December 2010: n=420 452 admissions and 1 430 052 acute occupied bed days (AOBDs). Intervention Universal admission screening programme for MRSA (August 2008) incorporating isolation and decolonisation. Primary and secondary measures Hospital-wide prevalence density, hospital-associated incidence density and death within 30 days of MRSA or methicillin-sensitive Staphylococcus aureus (MSSA) bacteraemia. Results Between 2006 and 2010, prevalence density of all SAB declined by 41%, from 0.73 to 0.50 cases/1000 AOBDs (p=0.002 for trend), and 30-day mortality from 26% to 14% (p=0.013). Significant reductions were observed in MRSA bacteraemia only. Overnight admissions screened for MRSA rose from 43% during selective screening to >90% within 4 months of universal screening. In multivariate time-series analysis (R2 0.45 to 0.68), universal screening was associated with a 19% reduction in prevalence density of MRSA bacteraemia (−0.035, 95% CI −0.049 to −0.021/1000 AOBDs; p<0.001), a 29% fall in hospital-associated incidence density (−0.029, 95% CI −0.035 to −0.023/1000 AOBDs; p<0.001) and a 46% reduction in 30-day mortality (−15.6, 95% CI −24.1% to −7.1%; p<0.001). Positive associations with fluoroquinolone and cephalosporin use suggested that antibiotic stewardship reduced prevalence density of MRSA bacteraemia by 0.027 (95% CI 0.015 to 0.039)/1000 AOBDs. Rates of MSSA bacteraemia were not

  2. ADAPTIVE CONTROL OF CENTER OF MASS (GLOBAL) MOTION AND ITS JOINT (LOCAL) ORIGIN IN GAIT

    PubMed Central

    Yang, Feng; Pai, Yi-Chung

    2014-01-01

    Dynamic gait stability can be quantified by the relationship of the motion state (i.e. the position and velocity) between the body center of mass (COM) and its base of support (BOS). Humans learn how to adaptively control stability by regulating the absolute COM motion state (i.e., its position and velocity) or by controlling the BOS (through stepping) in a predictable manner, or by doing both simultaneously following an external perturbation that disrupts their regular relationship. Post repeated-slip perturbation training, for instance, older adults learned to forward shift their COM position while walking with a reduced step length, hence reduced their likelihood of falls. How and to what extent each individual joint influences such adaptive alterations is mostly unknown. A three-dimensional individualized human kinematic model was established. Based on the human model, sensitivity analysis was used to systematically quantify the influence of each lower limb joint on the COM position relative to the BOS and the step length during gait. It was found that the leading foot had the greatest effect on regulating the COM position relative to the BOS; and both hips bear the most influence on the step length. These findings could guide cost-effective but efficient fall-reduction training paradigm among older population. PMID:24998991

  3. Joint System Prognostics For Increased Efficiency And Risk Mitigation In Advanced Nuclear Reactor Instrumentation and Control

    SciTech Connect

    Donald D. Dudenhoeffer; Tuan Q. Tran; Ronald L. Boring; Bruce P. Hallbert

    2006-08-01

    The science of prognostics is analogous to a doctor who, based on a set of symptoms and patient tests, assesses a probable cause, the risk to the patient, and a course of action for recovery. While traditional prognostics research has focused on the aspect of hydraulic and mechanical systems and associated failures, this project will take a joint view in focusing not only on the digital I&C aspect of reliability and risk, but also on the risks associated with the human element. Model development will not only include an approximation of the control system physical degradation but also on human performance degradation. Thus the goal of the prognostic system is to evaluate control room operation; to identify and potentially take action when performance degradation reduces plant efficiency, reliability or safety.

  4. Issues in College Admissions Testing.

    ERIC Educational Resources Information Center

    Noble, Julie P.; Camara, Wayne J.

    College admissions tests provide a standardized and objective measure of student achievement and generalized skills. Unlike high school grades or rank, admission tests are a common measure for comparing students who have attended different high schools, completed different courses, received different grades in courses taught by different teachers,…

  5. The Changing College Admissions Scene.

    ERIC Educational Resources Information Center

    Sjogren, Cliff

    1983-01-01

    Discusses the status of college admissions and some of the forces that influenced college admissions policies during each of four three-year periods: the Sputnik Era (1957-60), the Postwar Baby Boom Era (1964-67), the "New Groups" Era (1971-74), and the Stable Enrollment Era (1978-81). (PGD)

  6. Toward More Effective Admissions Interviews.

    ERIC Educational Resources Information Center

    Maly, Nancy J.

    1983-01-01

    Suggests ways to improve college admissions interviews. Discusses the purpose, format, technique, and content, of the interview as well as selling the college, concluding the interview, and writing the final interview report. Emphasizes the benefits of good interviewing skills to admissions officers. (WAS)

  7. Joint nonlinearity effects in the design of a flexible truss structure control system

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1986-01-01

    Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.

  8. Structural tests and development of a laminar flow control wing surface composite chordwise joint

    NASA Technical Reports Server (NTRS)

    Lineberger, L. B.

    1984-01-01

    The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. The Lockheed-Georgia Company accomplished under NAS1-16235 Laminar-Flow-Control (LFC) Wing Panel Structural Design and Development (WSSD); design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joint was demonstrated by fabricating and testing complex, concept selection specimens. The Lockheed-Georgia Company accomplishments, Development of LFC Wind Surface Composite Structures (WSCS), are documented. Tests were conducted on two CV2 panels to verify the static tension and fatigue strength of LFC wing surface chordwise joints.

  9. A play and joint attention intervention for teachers of young children with autism: a randomized controlled pilot study.

    PubMed

    Wong, Connie S

    2013-05-01

    The aim of this study was to pilot test a classroom-based intervention focused on facilitating play and joint attention for young children with autism in self-contained special education classrooms. Thirty-three children with autism between the ages of 3 and 6 years participated in the study with their classroom teachers (n = 14). The 14 preschool special education teachers were randomly assigned to one of three groups: (1) symbolic play then joint attention intervention, (2) joint attention then symbolic intervention, and (3) wait-list control period then further randomized to either group 1 or group 2. In the intervention, teachers participated in eight weekly individualized 1-h sessions with a researcher that emphasized embedding strategies targeting symbolic play and joint attention into their everyday classroom routines and activities. The main child outcome variables of interest were collected through direct classroom observations. Findings indicate that teachers can implement an intervention to significantly improve joint engagement of young children with autism in their classrooms. Furthermore, multilevel analyses showed significant increases in joint attention and symbolic play skills. Thus, these pilot data emphasize the need for further research and implementation of classroom-based interventions targeting play and joint attention skills for young children with autism. PMID:23610236

  10. PROCEEDINGS: 1985 JOINT SYMPOSIUM ON STATIONARY COMBUSTION NOX CONTROL. VOLUME 2. INDUSTRIAL PROCESSES, FUNDAMENTAL STUDIES, AND SLAGGING COMBUSTORS

    EPA Science Inventory

    The two-volume proceedings document is more than 60 papers, describing recent advances in NOx control technology, that were presented at the 1985 Joint Symposium on Stationary Combustion NOx Control, May 6-9, 1985, in Boston, MA. The papers covered the following topics: the statu...

  11. PROCEEDINGS: 1989 JOINT SYMPOSIUM ON STATIONARY COMBUSTION NOX CONTROL, SAN FRANCISCO, CA, MARCH 6-9, 1989 VOLUME 2

    EPA Science Inventory

    The proceedings document presentations at the 1989 Joint Symposium on Stationary Combustion NOx Control, held March 6-9. 1989. in San Francisco, CA. The symposium, sponsored by the U.S. EPA and EPRI, was the fifth in a series devoted solely to the discussion of control of NOx emi...

  12. PROCEEDINGS: 1989 JOINT SYMPOSIUM ON STATIONARY COMBUSTION NOX CONTROL, SAN FRANCISCO, CA, MARCH 6-9, 1989 VOLUME 1

    EPA Science Inventory

    The proceedings document presentations at the 1989 Joint Symposium on Stationary Combustion NOx Control, held March 6-9, 1989, in San Francisco, CA. The symposium, sponsored by the U. S. EPA and EPRl, was the fifth in a series devoted solely to the discussion of control of NOx em...

  13. Graduate and Professional Education (Including Admissions and Financial Aid)

    ERIC Educational Resources Information Center

    College and University, 1977

    1977-01-01

    Topics covered at the AACRAO's 63rd annual meeting include: graduate education forecasting, admissions management, aid, and recruitment; quality control in nontraditional graduate education; and financial planning for the professional school student. (LBH)

  14. Feedback power control strategies in wireless sensor networks with joint channel decoding.

    PubMed

    Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio

    2009-01-01

    In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as "balanced SNR" and "unbalanced SNR," respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm. PMID:22291536

  15. Sealable joint steel sheet piling for groundwater control and remediation: Case histories

    SciTech Connect

    Smyth, D.; Jowett, R.; Gamble, M.

    1997-12-31

    The Waterloo Barrier{trademark} steel sheet piling (patents pending) incorporates a cavity at each interlocking joint that is flushed clean and injected with sealant after the piles have been driven into the ground to form a vertical cutoff wall. The installation and sealing procedures allow for a high degree of quality assurance and control. Bulk wall hydraulic conductivities of 10{sup -8} to 10{sup -10} cm/sec have been demonstrated at field installations. Recent case histories are presented in which Waterloo Barrier{trademark} cutoff walls are used to prevent off-site migration of contaminated groundwater or soil gases to adjacent property and waterways. Full enclosures to isolate DNAPL source zones or portions of contaminated aquifers for pilot-scale remediation testing will also be described. Monitoring data will be used to demonstrate the effectiveness of the Waterloo Barrier{trademark} in these applications.

  16. The Role of Joint Control in the Manded Selection Responses of Both Vocal and Non-vocal Children with Autism

    PubMed Central

    Tu, Joyce C

    2006-01-01

    In the present study, joint-control training was applied when teaching manded selection responses to children with autism. Four vocal children with autism participated in the first experiment, two males (ages seven and eight) and two females (ages seven and nine). The results showed that it was only after object-word naming was trained under joint control that the symmetrical performance of manded selection responses appeared with no additional training. Four non-vocal children with autism participated in the second experiment, two males (ages six and seven), and two females (ages twelve and thirteen). These results also showed that it was only after the joint tact/self-mimetic/sequelic control training that the symmetrical performance of manded selection responses appeared with no additional training. PMID:22477356

  17. A Joint Association Test for Multiple SNPs in Genetic Case-Control Studies

    PubMed Central

    Wang, Tao; Jacob, Howard; Ghosh, Soumitra; Wang, Xujing; Zeng, Zhao-Bang

    2009-01-01

    For a dense set of genetic markers such as single nucleotide polymorphisms (SNPs) on high linkage disequilibrium within a small candidate region, a haplotype-based approach for testing association between a disease phenotype and the set of markers is attractive in reducing the data complexity and increasing the statistical power. However, due to unknown status of the underlying disease variant, a comprehensive association test may require consideration of various combinations of the SNPs, which often leads to severe multiple testing problems. In this paper, we propose a latent variable approach to test for association of multiple tightly linked SNPs in case-control studies. First, we introduce a latent variable into the penetrance model to characterize a putative disease susceptible locus (DSL) that may consist of a marker allele, a haplotype from a subset of the markers, or an allele at a putative locus between the markers. Next, through using of a retrospective likelihood to adjust for the case-control sampling ascertainment and appropriately handle the Hardy-Weinberg equilibrium constraint, we develop an expectation-maximization (EM)-based algorithm to fit the penetrance model and estimate the joint haplotype frequencies of the DSL and markers simultaneously. With the latent variable to describe a flexible role of the DSL, the likelihood ratio statistic can then provide a joint association test for the set of markers without requiring an adjustment for testing of multiple haplotypes. Our simulation results also reveal that the latent variable approach may have improved power under certain scenarios comparing with classical haplotype association methods. PMID:18770519

  18. Subject specific coordination of two- and one-joint muscles during landings suggests multiple control criteria.

    PubMed

    McNitt-Gray, J L

    2000-01-01

    The target article, thoughtfully constructed by Dr. Prilutsky, effectively synthesizes available data on multijoint movements regarding coordination patterns of major two- and one-joint muscles, provides evidence for an optimization criterion that predicts critical features of muscle activation patterns, and explores the functional consequences of muscle coordination. This work also provides a clear set of definitions and an organizational framework that is currently needed for a productive interdisciplinary discussion regarding the underlying control mechanisms used during realistic multijoint movements. Although identification of an optimization criterion that predicts muscle recruitment strategies would greatly simplify control logic required for rehabilitation and musculoskeletal modeling, our experimental data during landings indicate more than one criterion may exist. Preliminary review of our experimental landing data suggests the rules identified by Prilutsky apparently hold for some subjects during portions of the landing movements. The presence of more than one muscle activation pattern used to achieve the same NJMs demonstrates there may be more than one optimization criterion that predicts critical features of muscle activation patterns. The functional consequences of more than one control criterion may also prove to be an asset, particularly when adapting to different environmental constraints. PMID:10675815

  19. Joint-space adaptive control of a 6 DOF end-effector with closed-kinematic chain mechanism

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1989-01-01

    The development is presented for a joint-space adaptive scheme that controls the joint position of a six-degree-of-freedom (DOF) robot end-effector performing fine and precise motion within a very limited workspace. The end-effector was built to study autonomous assembly of NASA hardware in space. The design of the adaptive controller is based on the concept of model reference adaptive control (MRAC) and Lyapunov direct method. In the development, it is assumed that the end-effector performs slowly varying motion. Computer simulation is performed to investigate the performance of the developed control scheme on position control of the end-effector. Simulation results manifest that the adaptive control scheme provides excellent tracking of several test paths.

  20. Compliant joint

    NASA Technical Reports Server (NTRS)

    Eklund, Wayne D. (Inventor); Kerley, James J. (Inventor)

    1990-01-01

    A compliant joint is provided for prosthetic and robotic devices which permits rotation in three different planes. The joint provides for the controlled use of cable under motion. Perpendicular outer mounting frames are joined by swaged cables that interlock at a center block. Ball bearings allow for the free rotation of the second mounting frame relative to the first mounting frame within a predetermined angular rotation that is controlled by two stop devices. The cables allow for compliance at the stops and the cables allow for compliance in six degrees of freedom enabling the duplication or simulation of the rotational movement and flexibility of a natural hip or knee joint, as well as the simulation of a joint designed for a specific robotic component for predetermined design parameters.

  1. Prediction of the Wrist Joint Position During a Postural Tremor Using Neural Oscillators and an Adaptive Controller

    PubMed Central

    Kobravi, Hamid Reza; Ali, Sara Hemmati; Vatandoust, Masood; Marvi, Rasoul

    2016-01-01

    The prediction of the joint angle position, especially during tremor bursts, can be useful for detecting, tracking, and forecasting tremors. Thus, this research proposes a new model for predicting the wrist joint position during rhythmic bursts and inter-burst intervals. Since a tremor is an approximately rhythmic and roughly sinusoidal movement, neural oscillators have been selected to underlie the proposed model. Two neural oscillators were adopted. Electromyogram (EMG) signals were recorded from the extensor carpi radialis and flexor carpi radialis muscles concurrent with the joint angle signals of a stroke subject in an arm constant-posture. The output frequency of each oscillator was equal to the frequency corresponding to the maximum value of power spectrum related to the rhythmic wrist joint angle signals which had been recorded during a postural tremor. The phase shift between the outputs of the two oscillators was equal to the phase shift between the muscle activation of the wrist flexor and extensor muscles. The difference between the two oscillators’ output signals was considered the main pattern. Along with a proportional compensator, an adaptive neural controller has adjusted the amplitude of the main pattern in such a way so as to minimize the wrist joint prediction error during a stroke patient's tremor burst and a healthy subject's generated artificial tremor. In regard to the range of wrist joint movement during the observed rhythmic motions, a calculated prediction error is deemed acceptable. PMID:27186540

  2. Management of painful temporomandibular joint clicking with different intraoral devices and counseling: a controlled study

    PubMed Central

    CONTI, Paulo César Rodrigues; CORRÊA, Ana Silvia da Mota; LAURIS, José Roberto Pereira; STUGINSKI-BARBOSA, Juliana

    2015-01-01

    Objective The benefit of the use of some intraoral devices in arthrogenous temporomandibular disorders (TMD) patients is still unknown. This study assessed the effectiveness of the partial use of intraoral devices and counseling in the management of patients with disc displacement with reduction (DDWR) and arthralgia. Materials and Methods A total of 60 DDWR and arthralgia patients were randomly divided into three groups: group I (n=20) wore anterior repositioning occlusal splints (ARS); group II (n=20) wore the Nociceptive Trigeminal Inhibition Clenching Suppression System devices (NTI-tss); and group III (n=20) only received counseling for behavioral changes and self-care (the control group). The first two groups also received counseling. Follow-ups were performed after 2 weeks, 6 weeks and 3 months. In these sessions, patients were evaluated by means of a visual analogue scale, pressure pain threshold (PPT) of the temporomandibular joint (TMJ), maximum range of motion and TMJ sounds. Possible adverse effects were also recorded, such as discomfort while using the device and occlusal changes. The results were analyzed with ANOVA, Tukey’s and Fisher Exact Test, with a significance level of 5%. Results Groups I and II showed improvement in pain intensity at the first follow-up. This progress was recorded only after 3 months in Group III. Group II showed an increased in joint sounds frequency. The PPT values, mandibular range of motion and the number of occlusal contacts did not change significantly. Conclusion The simultaneous use of intraoral devices (partial time) plus behavioral modifications seems to produce a more rapid pain improvement in patients with painful DDWR. The use of NTI-tss could increase TMJ sounds. Although intraoral devices with additional counseling should be considered for the management of painful DDWR, dentists should be aware of the possible side effects of the intraoral device’s design. PMID:26200526

  3. Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control

    PubMed Central

    Hoogland, Tycho M.; De Gruijl, Jornt R.; Witter, Laurens; Canto, Cathrin B.; De Zeeuw, Chris I.

    2015-01-01

    Summary It is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated to what extent motor coordination deficits can be correlated with abnormalities in coherent activity within these microzones and to what extent artificially evoked synchronous activity within PC ensembles can elicit multi-joint motor behavior. To study PC ensemble correlates of limb, trunk, and tail movements, we developed a transparent disk treadmill that allows quantitative readout of locomotion and posture parameters in head-fixed mice and simultaneous cellular-resolution imaging and/or optogenetic manipulation. We show that PC ensembles in the ataxic and dystonic mouse mutant tottering have a reduced level of complex spike co-activation, which is delayed relative to movement onset and co-occurs with prolonged swing duration and reduced phase coupling of limb movements as well as with enlarged deflections of body-axis and tail movements. Using optogenetics to increase simple spike rate in PC ensembles, we find that preferred locomotion and posture patterns can be elicited or perturbed depending on the behavioral state. At rest, preferred sequences of limb movements can be elicited, whereas during locomotion, preferred gait-inhibition patterns are evoked. Our findings indicate that synchronous activation of PC ensembles can facilitate initiation and coordination of limb and trunk movements, presumably by tuning downstream systems involved in the execution of behavioral patterns. PMID:25843032

  4. A Study on the Propulsive Mechanism of a Double Jointed Fish Robot Utilizing Self-Excitation Control

    NASA Astrophysics Data System (ADS)

    Nakashima, Motomu; Ohgishi, Norifumi; Ono, Kyosuke

    This paper describes a numerical and experimental study of a double jointed fish robot utilizing self-excitation control. The fish robot is composed of a streamlined body and a rectangular caudal fin. The body length is 280mm and it has a DC motor to actuate its first joint and a potentiometer to detect the angle of its second joint. The signal from the potentiometer is fed back into the DC motor, so that the system can be self-excited. In order to obtain a stable oscillation and a resultant stable propulsion, a torque limiter circuit is employed. From the experiment, it has been found that the robot can stably propel using this control and the maximum propulsive speed is 0.42m/s.

  5. Differential Freshman Admission by Sex

    ERIC Educational Resources Information Center

    Suddick, David E.; McBee, M. Louise

    1974-01-01

    The authors report on a study whose purpose was to determine if, after adjusting for initial differences in high school averages and SAT scores via separate regression equations, differential admissions criterion by sex is justifiable. No justification is found. (RP)

  6. ED navigators prevent unnecessary admissions.

    PubMed

    2012-02-01

    RN Navigators in the emergency department at Montefiore Medical Center work with social workers to prevent unnecessary admissions. Program targets the homeless and patients with tenuous living situations. CMs work with the emergency department staff to identify patients who don't meet admission criteria but can't be safely discharged. The hospital collaborates with a local housing assistance agency which sends a van to transport appropriate patients to a shelter. PMID:22299178

  7. A commercialized dietary supplement alleviates joint pain in community adults: a double-blind, placebo-controlled community trial

    PubMed Central

    2013-01-01

    % versus ↓12%, respectively, interaction effect P = 0.081). Patterns of change in SF-36, systemic inflammation biomarkers, and the 6-minute walk test did not differ significantly between groups during the 8-week study Conclusions Results from this randomized, double blind, placebo-controlled community trial support the use of the Instaflex™ dietary supplement in alleviating joint pain severity in middle-aged and older adults, with mitigation of difficulty performing daily activities most apparent in subjects with knee pain. Trial registration ClinicalTrials.gov Identifier: NCT01956500 PMID:24274358

  8. Hospital outbreak control requires joint efforts from hospital management, microbiology and infection control.

    PubMed

    Ransjö, U; Lytsy, B; Melhus, A; Aspevall, O; Artinger, C; Eriksson, B-M; Günther, G; Hambraeus, A

    2010-09-01

    An outbreak of multidrug-resistant Klebsiella pneumoniae producing the extended-spectrum beta-lactamase CTX-M15 affected 247 mainly elderly patients in more than 30 wards in a 1000-bedded swedish teaching hospital between May 2005 and August 2007. A manual search of the hospital administrative records for possible contacts between cases in wards and outpatient settings revealed a complex chain of transmission. Faecal screening identified twice as many cases as cultures from clinical samples. Transmission occurred by direct and indirect patient-to-patient contact, facilitated by patient overcrowding. Interventions included formation of a steering group with economic power, increased bed numbers, better compliance with alcohol hand disinfection and hospital dress code, better hand hygiene for patients and improved cleaning. The cost of the interventions was estimated to be euro3 million. Special infection control policies were not necessary, but resources were needed to make existing policies possible to follow, and for educational efforts to improve compliance. PMID:20359768

  9. A passivity based control methodology for flexible joint robots with application to a simplified shuttle RMS arm

    NASA Technical Reports Server (NTRS)

    Sicard, Pierre; Wen, John T.

    1991-01-01

    The main goal is to develop a general theory for the control of flexible robots, including flexible joint robots, flexible link robots, rigid bodies with flexible appendages, etc. As part of the validation, the theory is applied to the control law development for a test example which consists of a three-link arm modeled after the shoulder yaw joint of the space shuttle remote manipulator system (RMS). The performance of the closed loop control system is then compared with the performance of the existing RMS controller to demonstrate the effectiveness of the proposed approach. The theoretical foundation of this new approach to the control of flexible robots is presented and its efficacy is demonstrated through simulation results on the three-link test arm.

  10. Overview of Carbon Dioxide Control Issues During International Space Station/Space Shuttle Joint Docked Operations

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.

    2010-01-01

    Crewed space vehicles have a common requirement to remove the carbon dioxide (CO2) created by the metabolic processes of the crew. The space shuttle [Space Transportation System (STS)] and International Space Station (ISS) each have systems in place that allow control and removal of CO2 from the habitable cabin environment. During periods in which the space shuttle is docked to the ISS, known as "joint docked operations," the space shuttle and ISS share a common atmosphere environment. During this period, an elevated amount of CO2 is produced through the combined metabolic activity of the STS and ISS crews. This elevated CO2 production, together with the large effective atmosphere created by collective volumes of the docked vehicles, creates a unique set of requirements for CO2 removal. This paper will describe individual CO2 control plans implemented by STS and ISS engineering teams, as well as the integrated plans used when both vehicles are docked. The paper will also discuss some of the issues and anomalies experienced by both engineering teams.

  11. Overview of Carbon Dioxide Control Issues During International Space Station/Space Shuttle Joint Docked Operations

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.; Hayley, Elizabeth P.

    2009-01-01

    Manned space vehicles have a common requirement to remove the Carbon Dioxide (CO2) created by the metabolic processes of the crew. The Space Shuttle and International Space Station (ISS) each have systems in place to allow control and removal of CO2 from the habitable cabin environment. During periods where the Space Shuttle is docked to ISS, known as joint docked operations, the Space Shuttle and ISS share a common atmosphere environment. During this period there is an elevated production of CO2 caused by the combined metabolic activity of the Space Shuttle and ISS crew. This elevated CO2 production, combined with the large effective atmosphere created by the collective volumes of the docked vehicles, creates a unique set of requirements for CO2 removal. This paper will describe the individual CO2 control plans implemented by the Space Shuttle and ISS engineering teams, as well as the integrated plans used when both vehicles are docked. In addition, the paper will discuss some of the issues and anomalies experienced by both engineering teams.

  12. The feasibility of a randomised controlled trial of physiotherapy for adults with joint hypermobility syndrome.

    PubMed Central

    Palmer, Shea; Cramp, Fiona; Clark, Emma; Lewis, Rachel; Brookes, Sara; Hollingworth, William; Welton, Nicky; Thom, Howard; Terry, Rohini; Rimes, Katharine A; Horwood, Jeremy

    2016-01-01

    BACKGROUND Joint hypermobility syndrome (JHS) is a heritable disorder associated with laxity and pain in multiple joints. Physiotherapy is the mainstay of treatment, but there is little research investigating its clinical effectiveness. OBJECTIVES To develop a comprehensive physiotherapy intervention for adults with JHS; to pilot the intervention; and to conduct a pilot randomised controlled trial (RCT) to determine the feasibility of conducting a future definitive RCT. DESIGN Patients' and health professionals' perspectives on physiotherapy for JHS were explored in focus groups (stage 1). A working group of patient research partners, clinicians and researchers used this information to develop the physiotherapy intervention. This was piloted and refined on the basis of patients' and physiotherapists' feedback (stage 2). A parallel two-arm pilot RCT compared 'advice' with 'advice and physiotherapy' (stage 3). Random allocation was via an automated randomisation service, devised specifically for the study. Owing to the nature of the interventions, it was not possible to blind clinicians or patients to treatment allocation. SETTING Stage 1 - focus groups were conducted in four UK locations. Stages 2 and 3 - piloting of the intervention and the pilot RCT were conducted in two UK secondary care NHS trusts. PARTICIPANTS Stage 1 - patient focus group participants (n = 25, three men) were aged > 18 years, had a JHS diagnosis and had received physiotherapy within the preceding 12 months. The health professional focus group participants (n = 16, three men; 14 physiotherapists, two podiatrists) had experience of managing JHS. Stage 2 - patient participants (n = 8) were aged > 18 years, had a JHS diagnosis and no other musculoskeletal conditions causing pain. Stage 3 - patient participants for the pilot RCT (n = 29) were as for stage 2 but the lower age limit was 16 years. INTERVENTION For the pilot RCT (stage 3) the advice intervention was a one

  13. An fMRI study of joint action-varying levels of cooperation correlates with activity in control networks.

    PubMed

    Chaminade, Thierry; Marchant, Jennifer L; Kilner, James; Frith, Christopher D

    2012-01-01

    As social agents, humans continually interact with the people around them. Here, motor cooperation was investigated using a paradigm in which pairs of participants, one being scanned with fMRI, jointly controlled a visually presented object with joystick movements. The object oscillated dynamically along two dimensions, color and width of gratings, corresponding to the two cardinal directions of joystick movements. While the overall control of each participant on the object was kept constant, the amount of cooperation along the two dimensions varied along four levels, from no (each participant controlled one dimension exclusively) to full (each participant controlled half of each dimension) cooperation. Increasing cooperation correlated with BOLD signal in the left parietal operculum and anterior cingulate cortex (ACC), while decreasing cooperation correlated with activity in the right inferior frontal and superior temporal gyri, the intraparietal sulci and inferior temporal gyri bilaterally, and the dorsomedial prefrontal cortex. As joint performance improved with the level of cooperation, we assessed the brain responses correlating with behavior, and found that activity in most of the areas associated with levels of cooperation also correlated with the joint performance. The only brain area found exclusively in the negative correlation with cooperation was in the dorso medial frontal cortex, involved in monitoring action outcome. Given the cluster location and condition-related signal change, we propose that this region monitored actions to extract the level of cooperation in order to optimize the joint response. Our results, therefore, indicate that, in the current experimental paradigm involving joint control of a visually presented object with joystick movements, the level of cooperation affected brain networks involved in action control, but not mentalizing. PMID:22715326

  14. An fMRI study of joint action–varying levels of cooperation correlates with activity in control networks

    PubMed Central

    Chaminade, Thierry; Marchant, Jennifer L.; Kilner, James; Frith, Christopher D.

    2012-01-01

    As social agents, humans continually interact with the people around them. Here, motor cooperation was investigated using a paradigm in which pairs of participants, one being scanned with fMRI, jointly controlled a visually presented object with joystick movements. The object oscillated dynamically along two dimensions, color and width of gratings, corresponding to the two cardinal directions of joystick movements. While the overall control of each participant on the object was kept constant, the amount of cooperation along the two dimensions varied along four levels, from no (each participant controlled one dimension exclusively) to full (each participant controlled half of each dimension) cooperation. Increasing cooperation correlated with BOLD signal in the left parietal operculum and anterior cingulate cortex (ACC), while decreasing cooperation correlated with activity in the right inferior frontal and superior temporal gyri, the intraparietal sulci and inferior temporal gyri bilaterally, and the dorsomedial prefrontal cortex. As joint performance improved with the level of cooperation, we assessed the brain responses correlating with behavior, and found that activity in most of the areas associated with levels of cooperation also correlated with the joint performance. The only brain area found exclusively in the negative correlation with cooperation was in the dorso medial frontal cortex, involved in monitoring action outcome. Given the cluster location and condition-related signal change, we propose that this region monitored actions to extract the level of cooperation in order to optimize the joint response. Our results, therefore, indicate that, in the current experimental paradigm involving joint control of a visually presented object with joystick movements, the level of cooperation affected brain networks involved in action control, but not mentalizing. PMID:22715326

  15. Neuromodulation and Synaptic Plasticity for the Control of Fast Periodic Movement: Energy Efficiency in Coupled Compliant Joints via PCA

    PubMed Central

    Stratmann, Philipp; Lakatos, Dominic; Albu-Schäffer, Alin

    2016-01-01

    There are multiple indications that the nervous system of animals tunes muscle output to exploit natural dynamics of the elastic locomotor system and the environment. This is an advantageous strategy especially in fast periodic movements, since the elastic elements store energy and increase energy efficiency and movement speed. Experimental evidence suggests that coordination among joints involves proprioceptive input and neuromodulatory influence originating in the brain stem. However, the neural strategies underlying the coordination of fast periodic movements remain poorly understood. Based on robotics control theory, we suggest that the nervous system implements a mechanism to accomplish coordination between joints by a linear coordinate transformation from the multi-dimensional space representing proprioceptive input at the joint level into a one-dimensional controller space. In this one-dimensional subspace, the movements of a whole limb can be driven by a single oscillating unit as simple as a reflex interneuron. The output of the oscillating unit is transformed back to joint space via the same transformation. The transformation weights correspond to the dominant principal component of the movement. In this study, we propose a biologically plausible neural network to exemplify that the central nervous system (CNS) may encode our controller design. Using theoretical considerations and computer simulations, we demonstrate that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic neuromodulation for the output mapping can extract the dominant principal component of sensory signals. Our simulations show that our network can reliably control mechanical systems of different complexity and increase the energy efficiency of ongoing cyclic movements. The proposed network is simple and consistent with previous biologic experiments. Thus, our controller could serve as a candidate to describe the neural control of fast, energy

  16. Neuromodulation and Synaptic Plasticity for the Control of Fast Periodic Movement: Energy Efficiency in Coupled Compliant Joints via PCA.

    PubMed

    Stratmann, Philipp; Lakatos, Dominic; Albu-Schäffer, Alin

    2016-01-01

    There are multiple indications that the nervous system of animals tunes muscle output to exploit natural dynamics of the elastic locomotor system and the environment. This is an advantageous strategy especially in fast periodic movements, since the elastic elements store energy and increase energy efficiency and movement speed. Experimental evidence suggests that coordination among joints involves proprioceptive input and neuromodulatory influence originating in the brain stem. However, the neural strategies underlying the coordination of fast periodic movements remain poorly understood. Based on robotics control theory, we suggest that the nervous system implements a mechanism to accomplish coordination between joints by a linear coordinate transformation from the multi-dimensional space representing proprioceptive input at the joint level into a one-dimensional controller space. In this one-dimensional subspace, the movements of a whole limb can be driven by a single oscillating unit as simple as a reflex interneuron. The output of the oscillating unit is transformed back to joint space via the same transformation. The transformation weights correspond to the dominant principal component of the movement. In this study, we propose a biologically plausible neural network to exemplify that the central nervous system (CNS) may encode our controller design. Using theoretical considerations and computer simulations, we demonstrate that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic neuromodulation for the output mapping can extract the dominant principal component of sensory signals. Our simulations show that our network can reliably control mechanical systems of different complexity and increase the energy efficiency of ongoing cyclic movements. The proposed network is simple and consistent with previous biologic experiments. Thus, our controller could serve as a candidate to describe the neural control of fast, energy

  17. The Effects of Improvisational Music Therapy on Joint Attention Behaviors in Autistic Children: A Randomized Controlled Study

    ERIC Educational Resources Information Center

    Kim, Jinah; Wigram, Tony; Gold, Christian

    2008-01-01

    The purpose of this study was to investigate the effects of improvisational music therapy on joint attention behaviors in pre-school children with autism. It was a randomized controlled study employing a single subject comparison design in two different conditions, improvisational music therapy and play sessions with toys, and using standardized…

  18. A Randomized Controlled Trial of Preschool-Based Joint Attention Intervention for Children with Autism

    ERIC Educational Resources Information Center

    Kaale, Anett; Smith, Lars; Sponheim, Eili

    2012-01-01

    Background: Deficits in joint attention (JA) and joint engagement (JE) represent a core problem in young children with autism as these affect language and social development. Studies of parent-mediated and specialist-mediated JA-intervention suggest that such intervention may be effective. However, there is little knowledge about the success of…

  19. 45 CFR 618.300 - Admission.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 618.300 Admission. (a) General. No person shall, on the basis of sex, be denied admission, or be subjected to discrimination in admission, by...

  20. 44 CFR 68.9 - Admissible evidence.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Admissible evidence. 68.9 Section 68.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF... admissible. (b) Documentary and oral evidence shall be admissible. (c) Admissibility of non-expert...

  1. Reactive arthritis in relation to internal derangements of the temporomandibular joint: a case control study.

    PubMed

    Lund, Bodil; Holmlund, Anders; Wretlind, Bengt; Jalal, Shah; Rosén, Annika

    2015-09-01

    The aim of this study was to find out if reactive arthritis was involved in the aetiology of chronic closed lock of the temporomandibular joint (TMJ) by looking for bacterial antigens in the synovial membrane of the TMJ, and by studying the antibody serology and carriage of human leucocyte antigen (HLA) B27 in patients with chronic closed lock. Patients with reciprocal clicking and healthy subjects acted as controls. We studied a total of 43 consecutive patients, 15 with chronic closed lock, 13 with reciprocal clicking, and 15 healthy controls with no internal derangements of the TMJ. Venous blood samples were collected from all subjects for measurement of concentrations of HLA tissue antigen and serology against Chlamydia trachomatis, Yersinia enterocolitica, Salmonella spp., Campylobacter jejuni, and Mycoplasma pneumoniae. Samples of synovial tissue from patients with closed lock and reciprocal clicking were obtained during discectomy and divided into two pieces, the first of which was tested by strand displacement amplification for the presence of C trachomatis, and the second of which was analysed for the presence of species-specific bacterial DNA using 16s rRNA pan-polymerase chain reaction (PCR). There were no significant differences between the groups in the incidence of antibodies against M pneumoniae, Salmonella spp. or Y enterocolitica. No patient had antibodies towards C trachomatis or C jejuni. We found no bacterial DNA in the synovial fluid from any patient. The HLA B27 antigen was present in 2/15 subjects in both the closed lock and control groups, and none in the reciprocal clicking group. In conclusion, reactive arthritis does not seem to be the mechanism of internal derangement of the TMJ. PMID:25957137

  2. Expecting ankle tilts and wearing an ankle brace influence joint control in an imitated ankle sprain mechanism during walking.

    PubMed

    Gehring, Dominic; Wissler, Sabrina; Lohrer, Heinz; Nauck, Tanja; Gollhofer, Albert

    2014-03-01

    A thorough understanding of the functional aspects of ankle joint control is essential to developing effective injury prevention. It is of special interest to understand how neuromuscular control mechanisms and mechanical constraints stabilize the ankle joint. Therefore, the aim of the present study was to determine how expecting ankle tilts and the application of an ankle brace influence ankle joint control when imitating the ankle sprain mechanism during walking. Ankle kinematics and muscle activity were assessed in 17 healthy men. During gait rapid perturbations were applied using a trapdoor (tilting with 24° inversion and 15° plantarflexion). The subjects either knew that a perturbation would definitely occur (expected tilts) or there was only the possibility that a perturbation would occur (potential tilts). Both conditions were conducted with and without a semi-rigid ankle brace. Expecting perturbations led to an increased ankle eversion at foot contact, which was mediated by an altered muscle preactivation pattern. Moreover, the maximal inversion angle (-7%) and velocity (-4%), as well as the reactive muscle response were significantly reduced when the perturbation was expected. While wearing an ankle brace did not influence muscle preactivation nor the ankle kinematics before ground contact, it significantly reduced the maximal ankle inversion angle (-14%) and velocity (-11%) as well as reactive neuromuscular responses. The present findings reveal that expecting ankle inversion modifies neuromuscular joint control prior to landing. Although such motor control strategies are weaker in their magnitude compared with braces, they seem to assist ankle joint stabilization in a close-to-injury situation. PMID:24365326

  3. Osteoarthritis of weight bearing joints of lower limbs in former élite male athletes.

    PubMed Central

    Kujala, U. M.; Kaprio, J.; Sarna, S.

    1994-01-01

    OBJECTIVE--To compare the cumulative 21 year incidence of admission to hospital for osteoarthritis of the hip, knee, and ankle in former élite athletes and control subjects. DESIGN--National population based study. SETTING--Finland. SUBJECTS--2049 male athletes who had represented Finland in international events during 1920-65 and 1403 controls who had been classified healthy at the age of 20. MAIN OUTCOME MEASURES--Hospital admissions for osteoarthritis of the hip, knee, and ankle joints identified from the national hospital discharge registry between 1970 and 1990. RESULTS--Athletes doing endurance sports, mixed sports, and power sports all had higher incidences of admission to hospital for osteoarthritis than controls. Age adjusted odds ratios compared with controls were 1.73 (95% confidence interval 0.99 to 3.01, P = 0.063) in endurance, 1.90 (1.24 to 2.92, P = 0.003) in mixed sports athletes, and 2.17 (1.41 to 3.32, P = 0.0003) in power sports athletes. The mean age at first admission to hospital was higher in endurance athletes (70.6) than in other groups (58.2 in mixed sports, 61.9 in power sports, and 61.2 in controls). Among the 2046 respondents to a questionnaire in 1985, the odds ratios for admission to hospital were similar in all three groups after adjusting for age, occupation, and body mass index at 20 (2.37, 2.42, 2.68). CONCLUSIONS--Athletes from all types of competitive sports are at slightly increased risk of requiring hospital care because of osteoarthritis of the hip, knee, or ankle. Mixed sports and power sports lead to increased admissions for premature osteoarthritis, but in endurance athletes the admissions are at an older age. PMID:8111258

  4. Control strategy for stabilizing force with goal-equivalent joint torques is frequency-dependent during human hopping.

    PubMed

    Yen, Jasper T; Chang, Young-Hui

    2009-01-01

    Normal human locomotion requires the ability to control a complex, redundant neuromechanical system to repetitively cycle the legs in a stable manner. In a reduced paradigm of locomotion, hopping, we investigated the ability of human subjects to exploit motor redundancy in the legs to coordinate joint torques fluctuations to minimize force fluctuations generated against the ground. Although we saw invariant performance in terms of force stabilization across frequencies, we found that the role of joint torque coordination in stabilizing force was most important at slow hopping frequencies. Notably, the role of this coordinated variation strategy decreased as hopping frequency increased, giving way to an independent joint variation strategy. At high frequencies, the control strategy to stabilize force was more dependent on a direct reduction in ankle torque fluctuations. Through the systematic study of how joint-level variances affect task-level end-point function, we can gain insight into the underlying control strategies in place for automatically counteracting cycle-to-cycle deviations during normal human locomotion. PMID:19964783

  5. Postural control and torque of the knee joint after healed tibial shaft fracture.

    PubMed

    Karladani, A H; Svantesson, U; Granhed, H; Styf, J

    2001-01-01

    Muscular atrophy occurs as a consequence of trauma and immobilisation. This cohort comparison study was conducted to evaluate the limb function after healed tibial shaft fractures, which were treated by casting versus nailing. Balance (as centre of pressure) and muscle strength (as torque of the knee joint during knee extension) have been measured in 27 patients with tibial shaft fractures with a mean age of 39 (19-73) years, 1 year after fracture healing. Fourteen patients were treated by intramedullary nailing 'nailed group' and 13 by plaster cast with or without minimal internal fixation 'casted group'. Centre of pressure was measured on a force platform. Knee extension torque was measured during isometric and concentric muscle actions by an isokinetic dynamometer. Centre of pressure tended to be more towards the uninjured leg in patients who had been treated by plaster cast (P<0.05). Side-to-side differences for isometric torque were significantly higher within the casted group (P<0.05). Patients with tibial shaft fractures treated by intramedullary nailing showed better postural control, one-leg standing test, and side-to-side differences for isometric muscle strength compared with patients treated by cast. Therefore, we recommend intramedullary nailing as a better method of treatment for tibial shaft fractures, with regard to recovery of muscle function. PMID:11164404

  6. Joint control of terrestrial gross primary productivity by plant phenology and physiology

    PubMed Central

    Xia, Jianyang; Niu, Shuli; Ciais, Philippe; Janssens, Ivan A.; Chen, Jiquan; Ammann, Christof; Arain, Altaf; Blanken, Peter D.; Cescatti, Alessandro; Bonal, Damien; Buchmann, Nina; Curtis, Peter S.; Chen, Shiping; Dong, Jinwei; Flanagan, Lawrence B.; Frankenberg, Christian; Georgiadis, Teodoro; Gough, Christopher M.; Hui, Dafeng; Kiely, Gerard; Li, Jianwei; Lund, Magnus; Magliulo, Vincenzo; Marcolla, Barbara; Merbold, Lutz; Olesen, Jørgen E.; Piao, Shilong; Raschi, Antonio; Roupsard, Olivier; Suyker, Andrew E.; Vaccari, Francesco P.; Varlagin, Andrej; Vesala, Timo; Wilkinson, Matthew; Weng, Ensheng; Yan, Liming; Luo, Yiqi

    2015-01-01

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space. PMID:25730847

  7. Joint control of terrestrial gross primary productivity by plant phenology and physiology.

    PubMed

    Xia, Jianyang; Niu, Shuli; Ciais, Philippe; Janssens, Ivan A; Chen, Jiquan; Ammann, Christof; Arain, Altaf; Blanken, Peter D; Cescatti, Alessandro; Bonal, Damien; Buchmann, Nina; Curtis, Peter S; Chen, Shiping; Dong, Jinwei; Flanagan, Lawrence B; Frankenberg, Christian; Georgiadis, Teodoro; Gough, Christopher M; Hui, Dafeng; Kiely, Gerard; Li, Jianwei; Lund, Magnus; Magliulo, Vincenzo; Marcolla, Barbara; Merbold, Lutz; Montagnani, Leonardo; Moors, Eddy J; Olesen, Jørgen E; Piao, Shilong; Raschi, Antonio; Roupsard, Olivier; Suyker, Andrew E; Urbaniak, Marek; Vaccari, Francesco P; Varlagin, Andrej; Vesala, Timo; Wilkinson, Matthew; Weng, Ensheng; Wohlfahrt, Georg; Yan, Liming; Luo, Yiqi

    2015-03-01

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate-carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy-covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000-2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r(2) = 0.90) and GPP recovery after a fire disturbance in South Dakota (r(2) = 0.88). Additional analysis of the eddy-covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space. PMID:25730847

  8. Joint Network Selection and Discrete Power Control in Heterogeneous MIMO Networks: A Game Theoretical Approach

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Tian, Hua; Xie, Wei; Zhong, Wei

    2013-09-01

    Next-generation wireless networks will integrate multiple wireless access technologies and the users will access the network using one of several available radio access technologies. In this paper, we study the spectrum access problem in heterogeneous multipleinput multiple-output (MIMO) networks through a game theoretic approach. The spectrum access problem in the considered system model is defined as joint network selection and discrete power control. We formulate the problem as a noncooperative game where the players are the multi-mode terminals and. The proposed common utility function takes both transmission rate and the power consumption into account. This game is shown to be a potential game which possess at least one pure strategy Nash equilibrium (NE) and the optimal strategy profile which maximizes the total energy efficiency of the heterogeneous MIMO network constitutes a pure strategy NE of our proposed game. Furthermore, we prove that the price of anarchy of the proposed game is equal to 1. In order to achieve the pure strategy NE, we design an iterative spectrum access algorithm. The convergence and the complexity of our designed algorithm is discussed. It is shown that the designed algorithm can achieve optimal performance with low complexity.

  9. Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion

    NASA Astrophysics Data System (ADS)

    Commer, Michael; Newman, Gregory A.

    2009-09-01

    The growing use of the controlled-source electromagnetic method (CSEM) and magnetotellurics (MT) for exploration applications has been driving the development of data acquisition technologies, and three-dimensional (3-D) modelling and imaging techniques. However, targeting increasingly complex geological environments also further enhances the problems inherent in large-scale inversion, such as non-uniqueness and resolution issues. In this paper, we report on two techniques to mitigate these problems. We use 3-D joint CSEM and MT inversion to improve the model resolution. To avoid the suppression of the resolution capacities of one data type, and thus to balance the use of inherent, and ideally complementary information content, different data reweighting schemes are proposed. Further, a hybrid model parametrization approach is presented, where traditional cell-based model parameters are used simultaneously within a parametric inversion. The idea is to limit the non-uniqueness problem, typical for 3-D imaging problems, in order to allow for a more focusing inversion. The methods are demonstrated using synthetic data generated from models with a strong practical relevance.

  10. Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion

    NASA Astrophysics Data System (ADS)

    Commer, M.; Newman, G. A.

    2009-12-01

    The growing use of the controlled-source electromagnetic method (CSEM) and magnetotellurics (MT) for exploration applications has been driving the development of data acquisition technologies, and three-dimensional (3D) modeling and imaging techniques. However, targeting increasingly complex geological environments also further enhances the problems inherent in large-scale inversion, such as non-uniqueness and resolution issues. In this paper, we report on two techniques to mitigate these problems. We use 3D joint CSEM and MT inversion to improve the model resolution. To avoid the suppression of the resolution capacities of one data type, and thus to balance the use of inherent, and ideally complementary information content, different data re-weighting schemes are proposed. Further, a hybrid model parametrization approach is presented, where traditional cell-based model parameters are used simultaneously within a parametric inversion. The idea is to limit the non-uniqueness problem, typical for 3D imaging problems, in order to allow for a more focusing inversion. The methods are demonstrated using synthetic data generated from models with a strong practical relevance.

  11. Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion

    SciTech Connect

    Commer, M.; Newman, G.A.

    2009-02-15

    The growing use of the controlled-source electromagnetic method (CSEM) and magnetotellurics (MT) for exploration applications has been driving the development of data acquisition technologies, and three-dimensional (3-D) modeling and imaging techniques. However, targeting increasingly complex geological environments also further enhances the problems inherent in large-scale inversion, such as non-uniqueness and resolution issues. In this paper, we report on two techniques to mitigate these problems. We use 3-D joint CSEM and MT inversion to improve the model resolution. To avoid the suppression of the resolution capacities of one data type, and thus to balance the use of inherent, and ideally complementary information content, different data reweighting schemes are proposed. Further, a hybrid model parameterization approach is presented, where traditional cell-based model parameters are used simultaneously within a parametric inversion. The idea is to limit the non-uniqueness problem, typical for 3-D imaging problems, in order to allow for a more focusing inversion. The methods are demonstrated using synthetic data generated from models with a strong practical relevance.

  12. New insights into input relegation control for inverse kinematics of a redundant manipulator. Part 3: An application to joint limit avoidance

    NASA Astrophysics Data System (ADS)

    Unseren, M. A.

    1995-07-01

    In Part 2 of this report it was argued that a single secondary performance criteria defined as the square of the Euclidean norm of the error between the vector of joint velocities dot-q and a vector of 'corrective' joint velocities dot-q(*) can be minimized using input relegation control to yield a solution for dot-q that satisfies the end effector trajectory tracking requirement for an N joint, serial link redundant manipulator. The solution is an explicit function of dot-q(*). In Part 3 of this report, a new approach for joint limit avoidance during motion of the manipulator is presented which requires defining ranges of motion in close proximity to the upper and lower physical hardware limits of each joint by specifying upper and lower tolerances, respectively. When a joint lies in either of these ranges, it is regarded that a shutdown or damage to the manipulator are imminent due to the joint reaching a limit. Therefore when one or more joints lie within their respective prohibitive outer ranges, two methods for calculating the corrective joint velocities dot-q(sub i)(*) corresponding to those joints are proposed. In both methods a corrective velocity is calculated as a scaled function of the maximum allowable velocity for the joint whose magnitude is based on how close the joint is to its limit. On the other hand, when a joint does not lie in either prohibitive outer range, the corrective velocity corresponding to that joint is set to zero. The effectiveness of the proposed joint limit avoidance scheme is demonstrated by simulation studies. The approach is compared to how others have solved the joint limit avoidance problem using the gradient projection scheme.

  13. Admission, Heal Thyself: A Prescription for Reclaiming College Admission as a Profession

    ERIC Educational Resources Information Center

    Jump, Jim

    2004-01-01

    Is college admission a business or a profession? This question is timeless because no issue (with possible exception of the perennial debate about whether admission(s) is singular or plural) sparks as much passion among admission practitioners, and it is timely because many of the controversial issues found in college admission today beg the…

  14. Self management, joint protection and exercises in hand osteoarthritis: a randomised controlled trial with cost effectiveness analyses

    PubMed Central

    2011-01-01

    Background There is limited evidence for the clinical and cost effectiveness of occupational therapy (OT) approaches in the management of hand osteoarthritis (OA). Joint protection and hand exercises have been proposed by European guidelines, however the clinical and cost effectiveness of each intervention is unknown. This multicentre two-by-two factorial randomised controlled trial aims to address the following questions: • Is joint protection delivered by an OT more effective in reducing hand pain and disability than no joint protection in people with hand OA in primary care? • Are hand exercises delivered by an OT more effective in reducing hand pain and disability than no hand exercises in people with hand OA in primary care? • Which of the four management approaches explored within the study (leaflet and advice, joint protection, hand exercise, or joint protection and hand exercise combined) provides the most cost-effective use of health care resources Methods/Design Participants aged 50 years and over registered at three general practices in North Staffordshire and Cheshire will be mailed a health survey questionnaire (estimated mailing sample n = 9,500). Those fulfilling the eligibility criteria on the health survey questionnaire will be invited to attend a clinical assessment to assess for the presence of hand or thumb base OA using the ACR criteria. Eligible participants will be randomised to one of four groups: leaflet and advice; joint protection (looking after your joints); hand exercises; or joint protection and hand exercises combined (estimated n = 252). The primary outcome measure will be the OARSI/OMERACT responder criteria combining hand pain and disability (measured using the AUSCAN) and global improvement, 6 months post-randomisation. Secondary outcomes will also be collected for example pain, functional limitation and quality of life. Outcomes will be collected at baseline and 3, 6 and 12 months post-randomisation. The main analysis will

  15. Joint swelling

    MedlinePlus

    Swelling of a joint ... Joint swelling may occur along with joint pain . The swelling may cause the joint to appear larger or abnormally shaped. Joint swelling can cause pain or stiffness. After an ...

  16. Effect of joint imperfections on static control of adaptive structures as space cranes

    NASA Technical Reports Server (NTRS)

    Ramesh, A. V.; Utku, Senol; Wada, B. K.; Chen, G. S.

    1990-01-01

    Effect of imperfections in the joints of an adaptive structure on its slow (no inertia forces) motion along a prescribed trajectory as a space crane is studied. Two mathematical models to predict the effect of joint imperfections are proposed. The two models are used to obtain estimates of the deviations of the node of the space crane to which the end-effector is attached, from its prescribed trajectory. An application of the models to a two-section space crane is given.

  17. Persistence, localization, and external control of transgene expression after single injection of adeno-associated virus into injured joints.

    PubMed

    Lee, Hannah H; O'Malley, Michael J; Friel, Nicole A; Payne, Karin A; Qiao, Chunping; Xiao, Xiao; Chu, Constance R

    2013-04-01

    A single intra-articular injection of adeno-associated virus (AAV) results in stable and controllable transgene expression in normal rat knees. Because undamaged joints are unlikely to require treatment, the study of AAV delivery in joint injury models is crucial to potential therapeutic applications. This study tests the hypotheses that persistent and controllable AAV-transgene expression are (1) highly localized to the cartilage when AAV is injected postinjury and (2) localized to the intra-articular soft tissues when AAV is injected preinjury. Two AAV injection time points, postinjury and preinjury, were investigated in osteochondral defect and anterior cruciate ligament transection models of joint injury. Rats injected with AAV tetracycline response element (TRE)-luciferase received oral doxycycline for 7 days. Luciferase expression was evaluated longitudinally for 6 months. Transgene expression was persistent and controllable with oral doxycycline for 6 months in all groups. However, the location of transgene expression was different: postinjury AAV-injected knees had luciferase expression highly localized to the cartilage, while preinjury AAV-injected knees had more widespread signal from intra-articular soft tissues. The differential transgene localization between preinjury and postinjury injection can be used to optimize treatment strategies. Highly localized postinjury injection appears advantageous for treatments targeting repair cells. The more generalized and controllable reservoir of transgene expression following AAV injection before anterior cruciate ligament transection (ACLT) suggests an intriguing concept for prophylactic delivery of joint protective factors to individuals at high risk for early osteoarthritis (OA). Successful external control of intra-articular transgene expression provides an added margin of safety for these potential clinical applications. PMID:23496155

  18. Restricted random labeling: testing for between-group interaction after controlling for joint population and within-group spatial structure

    NASA Astrophysics Data System (ADS)

    Kronenfeld, Barry J.; Leslie, Timothy F.

    2015-01-01

    Statistical measures of spatial interaction between multiple types of entities are commonly assessed against a null model of either toroidal shift (TS), which controls for spatial structure of individual subpopulations, or random labeling (RL), which controls for spatial structure of the joint population. Neither null model controls for both types of spatial structure simultaneously, although this may sometimes be desirable when more than two subpopulations are present. To address this, we propose a flexible framework for specifying null models that we refer to as restricted random labeling (rRL). Under rRL, a specified subset of individuals is restricted and other individuals are randomly relabeled. Within this framework, two specific null models are proposed for pairwise analysis within populations consisting of three or more subpopulations, to simultaneously control for spatial structure in the joint population and one or the other of the two subpopulations being analyzed. Formulas are presented for calculating expected nearest neighbor counts and co-location quotients within the proposed framework. Differences between TS, RL and rRL are illustrated by application to six types of generating processes in a simulation study, and to empirical datasets of tree species in a forest and crime locations in an urban setting. These examples show that rRL null models are typically stricter than either TS or RL, which often detect "interactions" that are an expected consequence either of the joint population pattern or of individual subpopulation patterns.

  19. "APEC blue"-The effects and implications of joint pollution prevention and control program.

    PubMed

    Wang, Hongbo; Zhao, Laijun; Xie, Yujing; Hu, Qingmi

    2016-05-15

    To ensure good air quality in Beijing during Asia-Pacific Economic Cooperation (APEC) China 2014, Beijing and its neighboring five provinces and the associated cities were combined under the Joint Prevention and Control of Atmospheric Pollution (JPCAP) program, which implemented rigorous cooperative emission reduction measures. The program was a unique and large-scale artificial experiment that showed that such measures can achieve excellent results, and it led to the popular "APEC blue" catchphrase (i.e., Beijing's skies became blue as pollution levels decreased). This artificial experiment provided the means to effectively conduct JPCAP strategies in the future. Accordingly, our research focused on the characteristics of the six primary pollutants in Beijing. We found that the JPCAP measures directly reduced concentrations of all pollutants except O3. Through correlation analysis, we found that the band distribution of the cities with strong correlations in PM2.5 and PM10 concentrations was affected by wind conditions. Therefore, JPCAP measures should account for specific seasonal and climatic conditions. Based on cluster analysis using the results from the correlation analysis, we divided 13 cities within a 300-km radius of Beijing into different groups according to the similarity of their PM2.5 and PM10 correlation coefficients. For JPCAP measures relevant to PM2.5 and PM10, we found differences in the degrees of collaboration among cities. Therefore, depending upon the pollutant type, the JPCAP strategy should account for the cities involved, the scope of the core area, and the optimal cities to involve in the collaborative efforts based on cost-effectiveness and collaborative difficulty among the involved cities. PMID:26930315

  20. College Admissions: Beyond Conventional Testing

    ERIC Educational Resources Information Center

    Sternberg, Robert J.

    2012-01-01

    Standardized admissions tests such as the SAT (originally stood for "Scholastic Aptitude Test") and the ACT measure only a narrow segment of the skills needed to become an active citizen and possibly a leader who makes a positive, meaningful, and enduring difference to the world. The problem with these tests is that they promised, under what have…

  1. Admission Conditions and Graduates' Employability

    ERIC Educational Resources Information Center

    Alexandre, Fernando; Portela, Miguel; Sa, Carla

    2009-01-01

    In a context of increasing competition for students, admission conditions have been used as an instrument in a strategy of differentiation. Such a strategy is guided by short-run concerns, that is, the immediate need to attract more students. This article takes a longer term view, by examining graduates' employability. The authors find that…

  2. Using Multimedia for Admission Recruitment.

    ERIC Educational Resources Information Center

    Gudema, Louis

    1995-01-01

    Multimedia can grab the attention of prospective students in an engaging, appealing way, while giving admission officers the opportunity to deliver information about every facet of campus life. Describes multimedia, its potential, and the production process as well as five current distribution methods. Discusses appropriateness of multimedia for…

  3. Personal Qualities and College Admissions.

    ERIC Educational Resources Information Center

    Willingham, Warren W.; Breland, Hunter M.

    The extent to which personal and academic factors are important in college admission decisions was studied in 1978, based on data on 25,000 applicants to 9 colleges (Colgate University, Williams College, Ohio Wesleyan University, Kenyon College, Kalamazoo College, Occidental College, Hartwick College, University of Richmond, and Bucknell…

  4. Admission to Selective Schools, Alphabetically

    ERIC Educational Resources Information Center

    Jurajda, Stepan; Munich, Daniel

    2010-01-01

    One's position in an alphabetically sorted list may be important in determining access to over-subscribed public services. Motivated by anecdotal evidence, we investigate the importance of the position in the alphabet of Czech students for their admission chances into over-subscribed schools. Empirical evidence based on the population of students…

  5. Admissions Plan Goes beyond Numbers

    ERIC Educational Resources Information Center

    Hoover, Eric

    2007-01-01

    Northeastern University's Torch Scholars Program is designed to seek out first-generation students who would not qualify under the university's regular admissions process. The scholarships go to motivated students who have shown determination in overcoming personal challenges. Northeastern believes the experiment will enhance the socioeconomic…

  6. Prevention and control of haemophilia: memorandum from a joint WHO/WFH meeting (World Federation of Haemophilia)

    PubMed Central

    1991-01-01

    Haemophilia, the commonest hereditary bleeding disorder, arises because of the absence of, decrease in, or deficient functioning of plasma coagulation factor VIII or factor IX. With rare exceptions, exclusively males are affected. This Memorandum summarizes the discussions and recommendations for the prevention and control of haemophilia made by participants at a joint WHO/World Federation of Haemophilia Meeting, held in Geneva on 26-28 March 1990. PMID:1905206

  7. Introduction to the special issue on the 2011 Joint IEEE International Frequency Control Symposium and European Frequency and Time Forum.

    PubMed

    Burt, Eric; Gill, Patrick

    2012-03-01

    The 8 invited and 17 contributed papers in this special issue focus on the following topical areas covered at the 2011 Joint IEEE International Frequency Control Symposium and European Frequency and Time Forum, held in San Francisco, California: 1) Materials and Resonators; 2) Oscillators, Synthesizers, and Noise; 3) Microwave Frequency Standards; 4) Sensors and Transducers; 5) Timekeeping and Time and Frequency Transfer; and 6) Optical Frequency Standards. PMID:22481765

  8. Collaborative research on V/STOL control system/cockpit display tradeoffs under the NASA/MOD joint aeronautical program

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Nicholas, O. P.

    1992-01-01

    Summarized here are activities that have taken place from 1979 to the present in a collaborative program between NASA Ames Research Center and the Royal Aerospace Establishment (now Defence Research Agency), Bedford on flight control system and cockpit display tradeoffs for low-speed and hover operations of future V/STOL aircraft. This program was created as Task 8A of the Joint Aeronautical Program between NASA in the United States and the Ministry of Defence (Procurement Executive) in the United Kingdom. The program was initiated based on a recognition by both parties of the strengths of the efforts of their counterparts and a desire to participate jointly in future simulation and flight experiments. In the ensuing years, teams of NASA and RAE engineers and pilots have participated in each other's simulation experiments to evaluate control and display concepts and define design requirements for research aircraft. Both organizations possess Harrier airframes that have undergone extensive modification to provide in-flight research capabilities in the subject areas. Both NASA and RAE have profited by exchanges of control/display concepts, design criteria, fabrication techniques, software development and validation, installation details, and ground and flight clearance techniques for their respective aircraft. This collaboration has permitted the two organizations to achieve jointly substantially more during the period than if they had worked independently. The two organizations are now entering the phase of flight research for the collaborative program as currently defined.

  9. Forecasting paediatric malaria admissions on the Kenya Coast using rainfall

    PubMed Central

    Karuri, Stella Wanjugu; Snow, Robert W.

    2016-01-01

    Background Malaria is a vector-borne disease which, despite recent scaled-up efforts to achieve control in Africa, continues to pose a major threat to child survival. The disease is caused by the protozoan parasite Plasmodium and requires mosquitoes and humans for transmission. Rainfall is a major factor in seasonal and secular patterns of malaria transmission along the East African coast. Objective The goal of the study was to develop a model to reliably forecast incidences of paediatric malaria admissions to Kilifi District Hospital (KDH). Design In this article, we apply several statistical models to look at the temporal association between monthly paediatric malaria hospital admissions, rainfall, and Indian Ocean sea surface temperatures. Trend and seasonally adjusted, marginal and multivariate, time-series models for hospital admissions were applied to a unique data set to examine the role of climate, seasonality, and long-term anomalies in predicting malaria hospital admission rates and whether these might become more or less predictable with increasing vector control. Results The proportion of paediatric admissions to KDH that have malaria as a cause of admission can be forecast by a model which depends on the proportion of malaria admissions in the previous 2 months. This model is improved by incorporating either the previous month's Indian Ocean Dipole information or the previous 2 months’ rainfall. Conclusions Surveillance data can help build time-series prediction models which can be used to anticipate seasonal variations in clinical burdens of malaria in stable transmission areas and aid the timing of malaria vector control. PMID:26842613

  10. Intelligent self-tuning of PID control for the robotic testing system for human musculoskeletal joints test.

    PubMed

    Tian, Lianfang

    2004-06-01

    In this paper, an intelligent proportional-integral-derivative (PID) control method is introduced to the robotic testing system for the biomechanical study of human musculoskeletal joints. For the testing system, the robot is a highly nonlinear and heavily coupled complicated system, and the human spinal specimen also demonstrates nonlinear property when undergoing testing. Although the conventional PID control approach is extensively used in most industrial control systems, it will break down for nonlinear systems, particularly for complicated systems that have no precise mathematical models. To overcome those difficulties, an intelligent fuzzy PID controller is proposed replacing the widely used conventional PID controllers. The fuzzy PID algorithm is outlined using the fuzzy set theory. The design techniques are developed based on the linguistic phase plane approach. The heuristic rules of syntheses are summarized into a rule-based expert system. Experiments are carried out and the results demonstrate the good performance of the robotic testing system using the proposed control method. PMID:15255220

  11. PROCEEDINGS: JOINT SYMPOSIUM ON DRY SO2 AND SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGIES (1ST): VOLUME 2. POWER PLANT INTEGRATION, ECONOMICS, AND FULL-SCALE EXPERIENCE

    EPA Science Inventory

    The proceedings document the First Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, held November 13-16, 1984, in San Diego, CA. The symposium, sponsored jointly by EPRI and EPA, was the first meeting of its kind devoted solely to the discussion of emissi...

  12. Human Arm-Like Robot Control Based on Human Multi-Joint Arm Viscoelastic Properties and A Modified Forward Gaze Model

    NASA Astrophysics Data System (ADS)

    Wang, Aihui; Deng, Mingcong

    In this paper, a human arm-like robot control scheme is proposed based on time-varying viscoelastic properties which consist of multi-joint stiffness and multi-joint viscosity during human arm movements and a modified forward gaze model. In general, in human multi-joint arm movements, the multi-joint torque is assumed to be a function of multi-joint stiffness matrix, multi-joint viscosity matrix, and motor command descending from central nervous system (CNS). In order to make the present human arm-like robot move like a human multi-joint arm, a feedback controller and a modified forward gaze model are presented in the human arm-like robot control system. That is, the feedback controller is designed to obtain desired motion mechanism based on real measured data from viscoelastic properties of human multi-joint arm, and the forward gaze model in which steering gains are modified using a cost function is used to compensate the term related to the effect of CNS. The effectiveness of the proposed method is confirmed by the simulation results based on experimental data.

  13. Advising and Admission: Partners in Enrollment Management.

    ERIC Educational Resources Information Center

    Devine, Joseph E.

    1987-01-01

    Focuses on marketing strategies for college admission and examines the essential interaction between admission and academic units as a means of enhancing retention and producing informed, satisfied consumers/students. (KS)

  14. 49 CFR 1114.1 - Admissibility.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Admissibility. Any evidence which is sufficiently reliable and probative to support a decision under the provisions of the Administrative Procedure Act, or which would be admissible under the general statutes...

  15. 10 CFR 2.708 - Admissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... admission of the genuineness and authenticity of any relevant document described in or attached to the... document for which an admission of genuineness and authenticity is requested must be delivered with...

  16. New insights into input relegation control for inverse kinematics of a redundant manipulator. Part 2, The optimization of a secondary criteria involving self motion of the joints

    SciTech Connect

    Unseren, M.A.

    1995-07-01

    The input relegation control (IRC) technique for redundancy resolution is extended to solve the problem of optimizing a scalar performance criteria representing a secondary objective to be accomplished via self motion of the joints. The criteria is defined to be the error between the vector of joint velocities and a new vector of ``corrective` joint velocities, which is minimized in a Eudidean norm sense. The corrective velocities represent a `corrective` action to be applied to the system and axe projected into the null space of the Jacoblan in the solution for the joint velocities. The report demonstrates that there exists a component in the solution for the joint velocities that induces self motion of the joints but is not a function of the ``corrective action``. A technique for eliminating this undesired component is presented. The method is compared to the well known gradient projection technique and its advantages are discussed.

  17. Exact and explicit optimal solutions for trajectory planning and control of single-link flexible-joint manipulators

    NASA Technical Reports Server (NTRS)

    Chen, Guanrong

    1991-01-01

    An optimal trajectory planning problem for a single-link, flexible joint manipulator is studied. A global feedback-linearization is first applied to formulate the nonlinear inequality-constrained optimization problem in a suitable way. Then, an exact and explicit structural formula for the optimal solution of the problem is derived and the solution is shown to be unique. It turns out that the optimal trajectory planning and control can be done off-line, so that the proposed method is applicable to both theoretical analysis and real time tele-robotics control engineering.

  18. Active Vibration Control of a Large Flexible Manipulator by Inertial Force and Joint Torque. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Soo Han

    1988-01-01

    The efficiency and positional accuracy of a lightweight flexible manipulator are limited by its flexural vibrations, which last after a gross motion is completed. The vibration delays subsequent operations. In the proposed work, the vibration is suppressed by inertial force of a small arm in addition to the joint actuators and passive damping treatment. The proposed approach is: (1) Dynamic modeling of a combined system, a large flexible manipulator and a small arm, (2) Determination of optimal sensor location and controller algorithm, and (3) Verification of the fitness of model and the performance of controller.

  19. Topical non-steroidal anti-inflammatory drugs and admission to hospital for upper gastrointestinal bleeding and perforation: a record linkage case-control study.

    PubMed Central

    Evans, J. M.; McMahon, A. D.; McGilchrist, M. M.; White, G.; Murray, F. E.; McDevitt, D. G.; MacDonald, T. M.

    1995-01-01

    OBJECTIVE--To evaluate the relation between topically applied non-steroidal anti-inflammatory drugs and upper gastrointestinal bleeding and perforation. DESIGN--A case-control study with 1103 patients admitted to hospital for upper gastrointestinal bleeding or perforation between January 1990 and December 1992 (cases). Two different control groups were used, with six community controls and with two hospital controls for each case. Previous exposure to topical and oral non-steroidal anti-inflammatory drugs and ulcer healing drugs was assessed. STUDY POPULATION--The population of 319,465 people who were resident in Tayside and were registered with a Tayside general practitioner between January 1989 and October 1994. A record linkage database containing all data on hospital events and dispensed drugs between 1989 and 1992 was used for this population. MAIN OUTCOME MEASURES--Unadjusted and adjusted odds ratios of exposure in those admitted to hospital compared with controls. RESULTS--Significant unadjusted associations were detected between all three classes of drug and upper gastrointestinal complications. The significant association detected for topical non-steroidal anti-inflammatory drugs was no longer evident in analyses which adjusted for the confounding effect of concomitant exposure to oral anti-inflammatories and ulcer healing drugs (odds ratio = 1.45; 95% confidence interval 0.84 to 2.50 with community controls; 1.06; 0.60 to 1.88 with hospital controls). CONCLUSION--In this study topical non-steroidal anti-inflammatory drugs were not significantly associated with upper gastrointestinal bleeding and perforation after adjustment for the confounding effects of concomitant use of oral anti-inflammatories and ulcer healing drugs. PMID:7613317

  20. 29 CFR 36.300 - Admission.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Secretary of Labor NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 36.300 Admission. (a) General. No person shall, on the basis of sex, be denied admission, or...

  1. 18 CFR 1317.300 - Admission.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Admission. 1317.300... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 1317.300 Admission. (a) General....

  2. 7 CFR 15a.21 - Admission.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 15a.21 Admission. (a) General. No person shall, on the basis of sex, be denied admission, or be subjected to... 15a.18. (b) Specific prohibitions. (1) In determining whether a person satisfies any policy...

  3. 18 CFR 1317.300 - Admission.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Admission. 1317.300... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 1317.300 Admission. (a) General....

  4. 18 CFR 1317.300 - Admission.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Admission. 1317.300... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 1317.300 Admission. (a) General....

  5. 7 CFR 15a.21 - Admission.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 15a.21 Admission. (a) General. No person shall, on the basis of sex, be denied admission, or be subjected to... 15a.18. (b) Specific prohibitions. (1) In determining whether a person satisfies any policy...

  6. 7 CFR 15a.21 - Admission.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 15a.21 Admission. (a) General. No person shall, on the basis of sex, be denied admission, or be subjected to... 15a.18. (b) Specific prohibitions. (1) In determining whether a person satisfies any policy...

  7. 18 CFR 1317.300 - Admission.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Admission. 1317.300... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 1317.300 Admission. (a) General....

  8. 18 CFR 1317.300 - Admission.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Admission. 1317.300... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 1317.300 Admission. (a) General....

  9. An Economic Model for Selective Admissions

    ERIC Educational Resources Information Center

    Haglund, Alma

    1978-01-01

    The author presents an economic model for selective admissions to postsecondary nursing programs. Primary determinants of the admissions model are employment needs, availability of educational resources, and personal resources (ability and learning potential). As there are more applicants than resources, selective admission practices are…

  10. Policies Governing Admission to Jordanian Public Universities

    ERIC Educational Resources Information Center

    Massadeh, Nassar

    2012-01-01

    This paper intends to discuss the policy of admission to Jordanian public universities. This admission rules are variable and open to almost 100% of the graduates from secondary schools. This might refer to the historical events and economic conditions that the country has gone through since its establishment. Furthermore, the admission policy is…