Science.gov

Sample records for joint advanced vertical

  1. Chord Panel Post, Vertical X Bracing & Horizontal Tie Joint ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Chord Panel Post, Vertical X Bracing & Horizontal Tie Joint Detail; Chord Joining Block & Spacer Block Detail; Cross Bracing Joint Detail; Chord Panel Post Diagonal & Horizontal Tie Joint Detail - Jackson Covered Bridge, Spanning Sugar Creek, CR 775N (Changed from Spanning Sugar Creek), Bloomingdale, Parke County, IN

  2. Advancements of vertically aligned liquid crystal displays.

    PubMed

    Kumar, Pankaj; Jaggi, Chinky; Sharma, Vandna; Raina, Kuldeep Kumar

    2016-02-01

    This review describes the recent advancements in the field of the vertical aligned (VA) liquid crystal displays. The process and formation of different vertical alignment modes such as conventional VA, patterned VA, multi-domain VA, and polymer stabilised VA etc are widely discussed. Vertical alignment of liquid crystal due to nano particle dispersion in LC host, bifunctional PR-SAM formed by silane coupling reaction to oxide surfaces, azo dye etc., are also highlighted and discussed. Overall, the article highlights the advances in the research of vertical aligned liquid crystal in terms of their scientific and technological aspects. PMID:26800482

  3. Civil benefits of the JVX. [Joint Services Advanced Lift Aircraft

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1984-01-01

    The inherently high productivity, VTOL capability, and low noise and vibration features of a civil version of the Joint Services Advanced Vertical Lift Aircraft, or 'JVX', are recommended for commercial exploitation. This tilt-rotor vehicle can provide ground and air traffic congestion relief through direct, city center-to-city center service, economically transporting 30 passengers for distances of up to 600 miles. Additional commercial opportunities emerge in the JVX's servicing of offshore, remote and infrastructureless areas. It is noted that Alaska, more than any other American state, would benefit from the JVX's VTOL access to natural resources and otherwise isolated settlements. The civilian development of the JVX could lead to the development of commercial tilt rotor aircraft for other size classes.

  4. Advanced tests of wet welded joints

    SciTech Connect

    Pachniuk, I.; Petershagen, H.; Pohl, R.; Szelagowski, P.; Drews, O.

    1994-12-31

    Wet Welding has in former times only been applied to secondary structural components. Nowadays wet welding has become an upcoming repair process due to high process flexibility, its low investment costs and its high versatility. Even the quality of the wet welded joints has been improved remarkably due to intensive and concentrated development activities. However, especially in the North Sea regions owners of offshore structures and classifying authorities still hesitate to recognize the process as a reliable alternative to dry hyperbaric welding repair methods. It therefore requires further activities especially in the field of data development for life prediction of such repaired components. Advanced testing methods are necessary, additional design criteria are to be developed and achievable weldment quality data are to be included in acknowledged and approved standards and recommendations to improve the credibility of the process and to solve the problem of quality assurance for wet welded joints. A comprehensive project, sponsored by the European Community under the Thermie Programme, is in progress to develop new testing procedures to generate the required data and design criteria for the future application of the wet welding process to main components of offshore structures. It is the aim of the project to establish additional fitness for purpose data for this process.

  5. Unilateral mandibular advancement with bilateral intraoral vertical ramus osteotomy.

    PubMed

    Chung, Seung-Won; Jung, Hwi-Dong; Park, Hyung-Sik; Jung, Young-Soo

    2015-05-01

    Intraoral vertical ramus osteotomy (IVRO) is an effective surgical procedure that is used for the correction of mandibular prognathism. However, application of IVRO for mandibular advancement has been limited because of the instability of the proximal segments caused by the gap between the distal and proximal segments. We report a case of unilateral mandibular advancement with bilateral IVRO for the correction of facial asymmetry. This case shows possible application of bilateral IVRO for unilateral mandibular advancement without any means of fixation. PMID:25974825

  6. Joint Institute for Advancement of Flight Sciences

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Aeroacoustics Research Program is an integral part of the Joint Institute for Advancement of Flight Sciences at The George Washington University. It is affiliated with many civil, mechanical, and environmental engineering courses, particularly those that stress theory and numerical or other analytic methods in engineering. This report lists the courses presented, the names of graduate research assistants, and bibliographic information regarding publications and presentations. Three graduate degrees were awarded and the abstracts of each dissertation is included. The dissertations were as follows: "A Numerical Investigation of Thermoacoustic Oscillations", which discusses advances in the study of acoustic phenomena through the use of computational aeroacoustics. "Computation of Vortex Shedding and Radiated Sound for a Circular Cylinder: Subcritical to Transcritical Reynolds Numbers", which discusses predicting tonal noise generated by vortex shedding from a circular cylinder. And finally, "The Radiated Field Generated by a Monopole Source in a Short, Rigid, Rectangular Duct", which develops a method for modeling the acoustic field generated by a monopole source placed in a moving rectangular duct.

  7. Advances in Small Joint Arthroplasty of the Hand

    PubMed Central

    Adkinson, Joshua M.; Chung, Kevin C.

    2016-01-01

    Substantial effort has been directed at the development of small joint prostheses for the hand. Despite advances in prosthetic joint design, outcomes have been relatively unchanged over the past 60 years. Pain relief and range of motion achieved after surgery have yet to mirror the success of large joint arthroplasty. Innovations in biotechnology and stem cell applications for damaged joint surfaces may someday make prostheses obsolete. The purpose of this review is to describe the current status, ongoing advances, and future of small joint arthroplasty of the hand. PMID:25415093

  8. Advances in reconstruction of digital joints.

    PubMed

    Schenck, R R

    1997-01-01

    The recent development of dynamic traction provides several advantages for the treatment of intra-articular fractures of the hand: Ligamentotaxis reduces fracture fragments and realigns joint surfaces, Contracture of joint ligament and periarticular structures is prevented, Collapse of fracture fragments is prevented, Cartilage healing and regeneration are enhanced, Joint mobility is retained, Extensive surgery may be avoided, As Leonardo da Vinci stated, "To understand motion is to understand nature." PMID:9211036

  9. Analysis and design of advanced composite bounded joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1974-01-01

    Advances in the analysis of adhesive-bonded joints are presented with particular emphasis on advanced composite structures. The joints analyzed are of double-lap, single-lap, scarf, stepped-lap and tapered-lap configurations. Tensile, compressive, and in-plane shear loads are covered. In addition to the usual geometric variables, the theory accounts for the strength increases attributable to adhesive plasticity (in terms of the elastic-plastic adhesive model) and the joint strength reductions imposed by imbalances between the adherends. The solutions are largely closed-form analytical results, employing iterative solutions on a digital computer for the more complicated joint configurations. In assessing the joint efficiency, three potential failure modes are considered. These are adherend failure outside the joint, adhesive failure in shear, and adherend interlaminar tension failure (or adhesive failure in peel). Each mode is governed by a distinct mathematical analysis and each prevails throughout different ranges of geometric sizes and proportions.

  10. Advanced composite vertical fin for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.

    1984-01-01

    The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.

  11. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1979-01-01

    Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.

  12. Recent Advances in Computational Mechanics of the Human Knee Joint

    PubMed Central

    Kazemi, M.; Dabiri, Y.; Li, L. P.

    2013-01-01

    Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling. PMID:23509602

  13. 3-D joint inversion of the magnetotelluric phase tensor and vertical magnetic transfer functions

    NASA Astrophysics Data System (ADS)

    Tietze, Kristina; Ritter, Oliver; Egbert, Gary D.

    2015-11-01

    With advancing computational resources, 3-D inversion techniques have become feasible in recent years and are now a more widely used tool for magnetotelluric (MT) data interpretation. Galvanic distortion caused by small-scale near-surface inhomogeneities remains an obstacle for 3-D MT inversion which so far has experienced little attention. If not considered properly, the effect on 3-D inversion can be immense and result in erroneous subsurface models and interpretations. To tackle the problem we implemented inversion of the distortion-free phase tensor into the ModEM inversion package. The dimensionless phase tensor components describe only variations of the conductivity structure. When inverting these data, particular care has to be taken of the conductivity structure in the a priori model, which provides the reference frame when transferring the information from phase tensors into absolute conductivity values. Our results obtained with synthetic data show that phase tensor inversion can recover the regional conductivity structure in presence of galvanic distortion if the a priori model provides a reasonable assumption for the regional resistivity average. Joint inversion of phase tensor data and vertical magnetic transfer functions improves recovery of the absolute resistivity structure and is less dependent on the prior model. We also used phase tensor inversion for a data set of more than 250 MT sites from the central San Andreas fault, California, where a number of sites showed significant galvanic distortion. We find the regional structure of the phase tensor inversion results compatible with previously obtained models from impedance inversion. In the vicinity of distorted sites, phase tensor inversion models exhibit more homogeneous/smoother conductivity structures.

  14. Joint Institute for Advancement of Flight Sciences

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The program objectives were defined in the original proposal entitled "Program of Research in Flight Dynamics in the JIAFS at NASA Langley Research Center" which was originated March 20, 1975, and in yearly renewals of the research program dated December 1, 1979 to December 1, 1998. The program included three major topics: 1) Improvement of existing methods and development of new methods for flight and wind tunnel data analysis based on system identification methodology. 2) Application of these methods to flight and wind tunnel data obtained from advanced aircraft. 3) Modeling and control of aircraft, space structures and spacecraft. The principal investigator of the program was Dr. Vladislav Klein, Professor at The George Washington University, Washington, D.C.. Thirty-seven Graduate Research Scholar Assistants, two of them doctoral students, also participated in the program. The results of the research conducted during nineteen years of the total co-operative period were published in 23 NASA technical reports, 2 D.Sc. Dissertations, 14 M.S. Theses and 33 papers. The list of these publications is included. The results were also reported in more than 30 seminar lectures presented at various research establishments world-wide. For contributions to the research supported by the co-operative agreement, three NASA Awards were received: 1) NASA LARC Group Achievement Award, May 30, 1990, to Dr. V. Klein as a member of the X-29 Drop Model Team. 2) NASA Medal for Exceptional Engineering Achievement, March 27, 1992, to Dr. V. Klein for innovative contributions in the development of advanced techniques and computer programs in the field of system identification. 3) NASA LaRC Team Excellence Award, May 7, 1994, to Dr. V. Klein as a member of the X-31 Drop Model Team.

  15. Hip and knee joint loading during vertical jumping and push jerking

    PubMed Central

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony MJ

    2014-01-01

    Background The internal joint contact forces experienced at the lower limb have been frequently studied in activities of daily living and rehabilitation activities. In contrast, the forces experienced during more dynamic activities are not well understood, and those studies that do exist suggest very high degrees of joint loading. Methods In this study a biomechanical model of the right lower limb was used to calculate the internal joint forces experienced by the lower limb during vertical jumping, landing and push jerking (an explosive exercise derived from the sport of Olympic weightlifting), with a particular emphasis on the forces experienced by the knee. Findings The knee experienced mean peak loadings of 2.4-4.6 × body weight at the patellofemoral joint, 6.9-9.0 × body weight at the tibiofemoral joint, 0.3-1.4 × body weight anterior tibial shear and 1.0-3.1 × body weight posterior tibial shear. The hip experienced a mean peak loading of 5.5-8.4 × body weight and the ankle 8.9-10.0 × body weight. Interpretation The magnitudes of the total (resultant) joint contact forces at the patellofemoral joint, tibiofemoral joint and hip are greater than those reported in activities of daily living and less dynamic rehabilitation exercises. The information in this study is of importance for medical professionals, coaches and biomedical researchers in improving the understanding of acute and chronic injuries, understanding the performance of prosthetic implants and materials, evaluating the appropriateness of jumping and weightlifting for patient populations and informing the training programmes of healthy populations. PMID:23146164

  16. Advanced Short Takeoff and Vertical Landing (ASTOVL) Concepts Tested

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this cooperative program between NASA, Lockheed Corporation, and the Advanced Research and Projects Agency (ARPA), an advanced short takeoff and vertical landing (ASTOVL) model was tested in the 9- by 15-Foot Low-Speed Wind Tunnel at the NASA Lewis Research Center. The 10-percent scaled model was tested over a range of headwind velocities from 25 to 120 kn. This inlet/forebody test was a key part of an important Department of Defense program investigation enabling technologies for future high-performance ASTOVL aircraft. The Lockheed concept is focused on a shaft-coupled lift fan system centered around Pratt & Whitney's F119 power plant. As envisioned, a conventional takeoff and landing version (CTOL) would replace the U.S. Air Force's F-16's. The ASTOVL version would eventually replace Marine and, possibly, British Harrier aircraft. The ASTOVL and CTOL versions are scheduled to begin their manufacturing development phases in 2000. The purpose of this test was to acquire data pertinent to the inlet-forebody model. The test was very successful. Both steady-state and dynamic data were obtained. This small-scale testing, which is directed at reducing risks, may greatly reduce the risks on a full-scale aircraft.

  17. Effect of Vertical Misfit on Screw Joint Stability of Implant-Supported Crowns

    NASA Astrophysics Data System (ADS)

    Assunção, Wirley Gonçalves; Delben, Juliana Aparecida; Tabata, Lucas Fernando; Barão, Valentim Adelino Ricardo; Gomes, Érica Alves

    2011-08-01

    The passive fit between prosthesis and implant is a relevant factor for screw joint stability and treatment success. The aim of this study was to evaluate the influence of vertical misfit in abutment-implant interface on preload maintenance of retention screw of implant-supported crowns. The crowns were fabricated with different abutments and veneering materials and divided into 5 groups ( n = 12): Gold UCLA abutments cast in gold alloy veneered with ceramic (Group I) and resin (Group II), UCLA abutments cast in titanium veneered with ceramic (Group III) and resin (Group IV), and zirconia abutments with ceramic veneering (Group V). The crowns were attached to implants by gold retention screws with 35-N cm insertion torque. Specimens were submitted to mechanical cycling up to 106 cycles. Measurements of detorque and vertical misfit in abutment-implant interface were performed before and after mechanical cycling. ANOVA revealed statistically significant difference ( P < 0.05) among groups for vertical misfit measured before and after mechanical cycling. The abutments cast in titanium exhibited the highest misfit values. Pearson correlation test did not demonstrate significant correlation ( P > 0.05) between vertical misfit and detorque value. It was concluded that vertical misfit did not influence torque maintenance and the abutments cast in titanium exhibited the highest misfit values.

  18. The joint DOD/NASA Advanced Launch System (ALS) programme

    NASA Astrophysics Data System (ADS)

    Wolfe, M. G.

    1989-08-01

    The joint Department of Defense (DOD)/NASA Advanced Launch Systems (ALS) program is described. The ALS is cost rather than performance optimized. It will use advanced technology and innovative management and design approaches to achieve a congressionally mandated cost goal of $300 per pound to low-earth orbit by the year 2005. The space system acquisition approach is described. The influence of acquisition and technological innovations on other U.S. space transportation, programs such as commercial programs and the National Aero-Space Plane, is discussed. Diagrams of possible launch configurations are presented.

  19. Advanced Si solid phase crystallization for vertical channel in vertical NANDs

    NASA Astrophysics Data System (ADS)

    Lee, Sangsoo; Son, Yong-Hoon; Hwang, Kihyun; Shin, Yoo Gyun; Yoon, Euijoon

    2014-07-01

    The advanced solid phase crystallization (SPC) method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND) devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM) when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers were shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.

  20. Advanced Si solid phase crystallization for vertical channel in vertical NANDs

    SciTech Connect

    Lee, Sangsoo; Son, Yong-Hoon; Hwang, Kihyun; Shin, Yoo Gyun; Yoon, Euijoon

    2014-07-01

    The advanced solid phase crystallization (SPC) method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND) devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM) when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers were shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.

  1. Advance in Vertical Buffered Electropolishing on Niobium for Particle Accelerators*

    SciTech Connect

    A.T. Wu, S. Jin, J.D. Mammosser, C.E. Reece, R.A. Rimmer,L. Lin, X.Y. Lu, K. Zhao

    2011-09-01

    Niobium (Nb) is the most popular material that has been employed for making superconducting radio frequency (SRF) cavities to be used in various particle accelerators over the last couple of decades. One of the most important steps in fabricating Nb SRF cavities is the final chemical removal of 150 {mu}m of Nb from the inner surfaces of the SRF cavities. This is usually done by either buffered chemical polishing (BCP) or electropolishing (EP). Recently a new Nb surface treatment technique called buffered electropolishing (BEP) has been developed at Jefferson Lab. It has been demonstrated that BEP can produce the smoothest surface finish on Nb ever reported in the literature while realizing a Nb removal rate as high as 10 {mu}m/min that is more than 25 and 5 times quicker than those of EP and BCP(112) respectively. In this contribution, recent advance in optimizing and understanding BEP treatment technique is reviewed. Latest results from RF measurements on BEP treated Nb single cell cavities by our unique vertical polishing system will be reported.

  2. Vertical Tracer Concentration Profiles Measured During the Joint Urban 2003 Dispersion Study

    SciTech Connect

    Flaherty, Julia E.; Lamb, Brian K.; Allwine, K Jerry; Allwine, Eugene J.

    2007-12-01

    An atmospheric tracer dispersion study known as Joint Urban 2003 was conducted in Oklahoma City, Oklahoma during the summer of 2003. As part of this field program, vertical concentration profiles were measured at approximately 1 km from downtown tracer gas release locations. These profiles indicated that the urban landscape was very effective in mixing the plume vertically. The height of the plume centerline (as determined by the maximum concentration over the depth of the measurements) for any specific 30 min period varied over the 65 m measurement range. Most of the variations in tracer concentration observed in the profile time series were related to changes in wind direction as opposed to changes in turbulence. As a simple analysis tool for emergency response, maximum normalized concentration curves were developed with 5-minute averaged measurements. These curves give the maximum concentration (normalized by the release rate) that would be observed as a function of downwind distance in an urban area. The 5-min data resulted in greater concentrations than predicted with a simple Gaussian plume model. However, the curve compared well with results from a computational fluid dynamics simulation. This dispersion dataset is a valuable asset not only for refining air quality models, but also for developing new tools for emergency response personnel in the event of a toxic release.

  3. Joint Use of PP and PS AVOA Data to Estimate Fluid Indicator in Vertically Fractured Medium

    NASA Astrophysics Data System (ADS)

    Pan, B.; Sen, M. K.; Gu, H.

    2015-12-01

    The existence of fractures induces anisotropy in medium. This anisotropy might be a comprehensive result of fractures' properties, such as the direction, spacing, apertures, intensity, microstructure, fluid infill, and so on. Among these properties, the preferential orientation of fracture networks makes the medium azimuthally anisotropic with respect to seismic wave propagation. To the medium containing a set of vertical fractures, the tangential weakness does not vary with the fluid content, however on which the normal weakness shows great dependence. Based on the theory of linear slip model and the sensitivity to fracture weakness of PP- and PS-reflection coefficients which can be derived by a Born formula, we did both the PP-AVOA and PS-AVOA numerical experiment and also the joint inversion of fluid indicator. Results show that when the fractures have low saturation of gas, the fluid indicator estimated from PP-AVOA data is precise enough; when gas saturation goes up to 70%, joint inversion can help to improve the poor quality of PP-AVOA data inversion. Under high gas-saturated case, both PP inversion and joint inversion are sensitive to the errors in g, where g is the square of the ratio of S- and P- wave velocity in the unfractured medium. This dependency can be reduced by adding a different weight to PP and PS data during the inversion.Based on the result of numerical experiment, we processed field data in Sichuan Basin in China. The inversion result is consistent with the well interpretation. The first column in figure represents the PP- and PS-reflectivity computed by matrix method(Fryer and Frazer,1984). The second column is the result of Born linearized method. In the last column, upper one shows the estimated fluid indicator in different gas saturation case and the below one consider the effect of error in g on the inversion results.

  4. Advanced high performance vertical hybrid synthetic jet actuator

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2011-01-01

    The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.

  5. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1978-01-01

    The structural design configuration for the Composite Vertical Stabilizer is described and the structural design, analysis, and weight activities are presented. The status of fabrication and test activities for the development test portion of the program is described. Test results are presented for the skin panels, spar web, spar cap to cover, and laminate properties specimens. Engineering drawings of vertification test panels and root fittings, rudder support specimens, titanium fittings, and rear spar specimen analysis models are included.

  6. Joint Leveling for Advanced Kienbock’s Disease

    PubMed Central

    Calfee, Ryan P.; Van Steyn, Marlo O.; Gyuricza, Cassie; Adams, Amelia; Weiland, Andrew J.; Gelberman, Richard H.

    2010-01-01

    PURPOSE The use of joint leveling procedures to treat Kienbock’s disease has been limited by the degree of disease advancement. This study was designed to compare clinical and radiographic outcomes of wrists with more advanced Kienbock’s disease (stage IIIB) to wrists with less advanced disease (stage II/IIIA) following radius shortening osteotomy. METHODS This retrospective study enrolled 31 adult wrists (30 patients, mean age 39 years), treated by radius shortening osteotomy between two institutions for either stage IIIB (n=14) or stage II/IIIA (n=17) disease. Evaluation was carried out at a mean of 74 months (IIIB, 77 months; II/IIIA, 72 months). Radiographic assessment determined disease progression. Clinical outcomes were determined by validated patient-based and objective measures. RESULTS Patient-based outcome ratings of wrists treated for stage IIIB were similar to those with stage II/IIIA [QuickDASH (15 vs 12:p=.63), MMWS (84 vs 87:p=.59), VAS pain (1.2 vs 1.7:p=.45), VAS function (2.6 vs 2.1:p=.59)]. The average flexion/extension arc was 102° for wrists with stage IIIB and 106° for wrists with stage II/IIIA Kienbock’s (p=.70). Grip strength was 77% of the opposite side for stage IIIB wrists versus 85% for stage II/IIIA (p=.25). Postoperative carpal height ratio and radioscaphoid angle were worse (p<.05) for wrists treated for stage IIIB (0.46:65°) than stage II/IIIA (0.53:53°) disease. Radiographic disease progression occurred in 7 wrists (6 stage II/IIIA: 1 stage IIIB). The one stage IIIB wrist that progressed underwent wrist arthrodesis. CONCLUSIONS In this limited series, clinical outcomes of radius shortening using validated, patient-based assessment instruments and objective measures failed to demonstrate predicted “clinically relevant” differences between stage II/IIIA and IIIB Kienbock’s. Provided the high percentage successful clinical outcomes in this case series of 14 stage IIIB wrists, we believe that static carpal malalignment

  7. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.

  8. The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.

    2012-01-01

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  9. The analysis of adhesively bonded advanced composite joints using joint finite elements

    NASA Astrophysics Data System (ADS)

    Stapleton, Scott E.

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  10. [Advances on biomechanics and kinematics of sprain of ankle joint].

    PubMed

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint. PMID:26072625

  11. Generation of optimum vertical profiles for an advanced flight management system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Waters, M. H.

    1981-01-01

    Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined.

  12. Effects of vertical aperture on beam lifetime at the Advanced Photon Source (APS) storage ring

    SciTech Connect

    Bizek, H.M.

    1995-06-01

    When a positron`s energy deviation {delta}E/E exceeds the rf acceptance, or when it receives an angular kick for the betatron motion that exceeds some limiting admittance, the positron will be lost. The main contributions to the total beam lifetime come from single Coulomb and Touschek scattering. In this report we investigate the dependence of the residual gas pressure and the vertical aperture of the Advanced Photon Source storage ring on the total beam. lifetime. We present results of calculating the total beam lifetime as a function of vertical aperture for varying average ring pressure, beam current, and coupling coefficient.

  13. Measurement of groove features and dimensions of the vertical test cathode and the choke joint of the superconducting electron gun cavity of the Energy Recovery LINAC

    SciTech Connect

    Hammons, L.; Ke, M.

    2011-10-13

    vertical test cathode, the geometry of these grooves was altered, presenting the possibility that multipacting may, in fact, be occurring in this area and contributing to the low gradients that have been observed in the fine-grain cavity. Therefore, the Survey and Alignment group in C-AD engaged in measurements of the cavity joint, shown in Figure 2 and the cathode weldment, shown in Figure 3 for the purpose of characterizing the grooves in both the cavity and the vertical test cathode and comparing the dimensions of the cathode with those of the prints supplied by Advanced Energy Systems (AES), the original designer and manufacturer of both the test cathode and the electron gun cavity, in preparation to have a new one manufactured. The goal was to ensure that the articles as built matched the design prints in preparation for manufacturing a new vertical test cathode. This report describes the data collected by the Survey group in these efforts. The endeavor was challenging for the group given the millimeter-scale dimensions of the grooves and the requirement for high precision.

  14. Recent advances and future directions in the management of knee osteoarthritis: Can biological joint reconstruction replace joint arthroplasty and when?

    PubMed Central

    Paschos, Nikolaos K

    2015-01-01

    In this article, a concise description of the recent advances in the field of osteoarthritis management is presented. The main focus is to highlight the most promising techniques that emerge in both biological joint replacement and artificial joint arthroplasty. A critical view of high quality evidence regarding outcome and safety profile of these techniques is presented. The potential role of kinematically aligned total knee replacement, navigation, and robotic-assisted surgery is outlined. A critical description of both primary and stem cell-based therapies, the cell homing theory, the use of biologic factors and recent advancements in tissue engineering and regenerative medicine is provided. Based on the current evidence, some thoughts on a realistic approach towards answering these questions are attempted. PMID:26495242

  15. Recent advances and future directions in the management of knee osteoarthritis: Can biological joint reconstruction replace joint arthroplasty and when?

    PubMed

    Paschos, Nikolaos K

    2015-10-18

    In this article, a concise description of the recent advances in the field of osteoarthritis management is presented. The main focus is to highlight the most promising techniques that emerge in both biological joint replacement and artificial joint arthroplasty. A critical view of high quality evidence regarding outcome and safety profile of these techniques is presented. The potential role of kinematically aligned total knee replacement, navigation, and robotic-assisted surgery is outlined. A critical description of both primary and stem cell-based therapies, the cell homing theory, the use of biologic factors and recent advancements in tissue engineering and regenerative medicine is provided. Based on the current evidence, some thoughts on a realistic approach towards answering these questions are attempted. PMID:26495242

  16. Advances in commercial, mode-locked vertical external cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Hempler, Nils; Lubeigt, Walter; Bialkowski, Bartlomiej; Hamilton, Craig J.; Maker, Gareth T.; Malcolm, Graeme P. A.

    2016-03-01

    In launching the Dragonfly, M Squared Lasers has successfully commercialized recent advances in mode-locked vertical external cavity surface emitting laser technologies operating between 920 nm - 1050 nm. This paper will describe the latest advances in the development of a new generation of Dragonfly lasers. The improved system has been engineered to utilise low-cost semiconductor gain media and integrated diode pumping, whilst exhibiting minimal footprint, diffraction limited beam quality and low intrinsic noise. Early experiments have resulted in pulses with 540mW of average output power and 150fs of duration at 200MHz pulse repetition frequency.

  17. Advancing critical care: joint combat casualty research team and joint theater trauma system.

    PubMed

    Bridges, Elizabeth; Biever, Kimberlie

    2010-01-01

    Despite the severity and complexity of injuries, survival rates among combat casualties are equal to or better than those from civilian trauma. This article summarizes the evidence regarding innovations from the battlefield that contribute to these extraordinary survival rates, including preventing hemorrhage with the use of tourniquets and hemostatic dressings, damage control resuscitation, and the rapid evacuation of casualties via MEDEVAC and the US Air Force Critical Care Air Transport Teams. Care in the air for critically injured casualties with pulmonary injuries and traumatic brain injury is discussed to demonstrate the unique considerations required to ensure safe en route care. Innovations being studied to decrease sequelae associated with complex orthopedic and extremity trauma are also presented. The role and contributions of the Joint Combat Casualty Research Team and the Joint Theater Trauma System are also discussed. PMID:20683227

  18. Horizontal and Vertical Stabilization of Acute Unstable Acromioclavicular Joint Injuries Arthroscopy-Assisted

    PubMed Central

    Cisneros, Luis Natera; Sarasquete Reiriz, Juan; Besalduch, Marina; Petrica, Alexandru; Escolà, Ana; Rodriguez, Joaquim; Fallone, Jan Carlo

    2015-01-01

    We describe the technical aspects of an arthroscopy-assisted procedure indicated for the management of acute unstable acromioclavicular joint injuries, consisting of a synthetic augmentation of both the coracoclavicular and acromioclavicular ligaments, that anatomically reproduces the coracoclavicular biomechanics and offers fixation that keeps the torn ends of the ligaments facing one another, thus allowing healing of the native structures without the need for a second surgical procedure for metal hardware removal. PMID:26870653

  19. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    SciTech Connect

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  20. Advances in Zirconia Toughened Alumina Biomaterials for Total Joint Replacement

    PubMed Central

    Kurtz, Steven M.; Kocagöz, Sevi; Arnholt, Christina; Huet, Roland; Ueno, Masaru; Walter, William L.

    2014-01-01

    The objective of this article is to provide an up-to-date overview of zirconia-toughened alumina (ZTA) components used in total hip arthroplasties. The structure, mechanical properties, and available data regarding the clinical performance of ZTA are summarized. The advancements that have been made in understanding the in vivo performance of ZTA are investigated. This article concludes with a discussion of gaps in the literature related to ceramic biomaterials and avenues for future research. PMID:23746930

  1. Vertical and Horizontal Seismic Isolation Performance of the Advanced Virgo External Injection Bench Seismic Attenuation System

    NASA Astrophysics Data System (ADS)

    Blom, M. R.; Beker, M. G.; Bertolini, A.; van den Brand, J. F. J.; Bulten, H. J.; Doets, M.; Hennes, E.; Mul, F. A.; Rabeling, D. S.; Schimmel, A.

    During the combined commissioning and science run of Virgo in 2010, an extensive noise study revealed that vibrations of some of the injection/detection optics on the external injection bench (EIB) made a significant contribution to the interferometer's noise budget. Several resonances were identified between 10 and 100 Hz of the EIB support structure and between 200 and 300 Hz of the optics mounts. These resonances introduced a significant amount of beam jitter that would limit the sensitivity of Advanced Virgo. This beam jitter needed to be reduced for Advanced Virgo to reach its full potential. To eliminate this noise source we developed a seismic attenuation system to isolate the EIB from ground vibrations: EIB-SAS. It employs vertical and horizontal passive seismic filters based on negative stiffness technology to attenuate seismic noise by 40 dB above 10 Hz. The isolation capabilities of the system have been characterized up to 400 Hz with the aid of a custom designed piezoelectric actuated shaking platform. The results of the vertical and horizontal transfer function measurements are presented.

  2. Advanced BCD technology with vertical DMOS based on a semi-insulation structure

    NASA Astrophysics Data System (ADS)

    Kui, Ma; Xinghua, Fu; Jiexin, Lin; Fashun, Yang

    2016-07-01

    A new semi-insulation structure in which one isolated island is connected to the substrate was proposed. Based on this semi-insulation structure, an advanced BCD technology which can integrate a vertical device without extra internal interconnection structure was presented. The manufacturing of the new semi-insulation structure employed multi-epitaxy and selectively multi-doping. Isolated islands are insulated with the substrate by reverse-biased PN junctions. Adjacent isolated islands are insulated by isolation wall or deep dielectric trenches. The proposed semi-insulation structure and devices fixed in it were simulated through two-dimensional numerical computer simulators. Based on the new BCD technology, a smart power integrated circuit was designed and fabricated. The simulated and tested results of Vertical DMOS, MOSFETs, BJTs, resistors and diodes indicated that the proposed semi-insulation structure is reasonable and the advanced BCD technology is validated. Project supported by the National Natural Science Foundation of China (No. 61464002), the Science and Technology Fund of Guizhou Province (No. Qian Ke He J Zi [2014]2066), and the Dr. Fund of Guizhou University (No. Gui Da Ren Ji He Zi (2013)20Hao).

  3. Advanced Fluid--Structure Interaction Techniques in Application to Horizontal and Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Korobenko, Artem

    During the last several decades engineers and scientists put significant effort into developing reliable and efficient wind turbines. As a wind power production demands grow, the wind energy research and development need to be enhanced with high-precision methods and tools. These include time-dependent, full-scale, complex-geometry advanced computational simulations at large-scale. Those, computational analysis of wind turbines, including fluid-structure interaction simulations (FSI) at full scale is important for accurate and reliable modeling, as well as blade failure prediction and design optimization. In current dissertation the FSI framework is applied to most challenging class of problems, such as large scale horizontal axis wind turbines and vertical axis wind turbines. The governing equations for aerodynamics and structural mechanics together with coupled formulation are explained in details. The simulations are performed for different wind turbine designs, operational conditions and validated against field-test and wind tunnel experimental data.

  4. Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler

    NASA Astrophysics Data System (ADS)

    Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio

    2014-10-01

    The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).

  5. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  6. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  7. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.

    1980-01-01

    Results of an experimental program to develop several types of graphite/polyimide (GR/PI) bonded and bolted joints for lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Tasks accomplished include: a literature survey; design of static discriminator specimens; design allowables testing; fabrication of test panels and specimens; small specimen testing; and standard joint testing. Detail designs of static discriminator specimens for each of the four major attachment types are presented. Test results are given for the following: (1) transverse tension of Celion 3000/PMR-15 laminate; (2) net tension of a laminate for both a loaded and unloaded bolt hole; (3) comparative testing of bonded and co-cured doublers along with pull-off tests of single and double bonded angles; (4) single lap shear tests, transverse tension and coefficient of thermal expansion tests of A7F (LARC-13 amide-imide modified) adhesive; and (5) tension tests of standard single lap, double lap, and symmetric step lap bonded joints. Also, included are results of a finite element analysis of a single lap bonded composite joint.

  8. Joint modeling of progression-free survival and death in advanced cancer clinical trials.

    PubMed

    Dejardin, David; Lesaffre, Emmanuel; Verbeke, Geert

    2010-07-20

    Progression-related endpoints (such as time to progression or progression-free survival) and time to death are common endpoints in cancer clinical trials. It is of interest to study the link between progression-related endpoints and time to death (e.g. to evaluate the degree of surrogacy). However, current methods ignore some aspects of the definitions of progression-related endpoints. We review those definitions and investigate their impact on modeling the joint distribution. Further, we propose a multi-state model in which the association between the endpoints is modeled through a frailty term. We also argue that interval-censoring needs to be taken into account to more closely match the latent disease evolution. The joint distribution and an expression for Kendall's tau are derived. The model is applied to data from a clinical trial in advanced metastatic ovarian cancer. PMID:20572123

  9. Thermal and electrical joint test for the helical field coils in the Advanced Toroidal Facility

    SciTech Connect

    Brown, R.L.; Johnson, R.L.

    1985-01-01

    Initial feasibility studies of a number of configurations for the Advanced Toroidal Facility (ATF) resulted in the selection of a resistive copper continuous-coil torsatron as the optimum device considering the physics program, cost, and schedule. Further conceptual design work was directed toward optimization of this configuration and, if possible, a shorter schedule. It soon became obvious that in order to shorten the schedule, a number of design and fabrication activities should proceed in parallel. This was most critical for the vacuum vessel and the helical field (HF) coils. If the HF coils were wound in place on a completed vacuum vessel, the overall schedule would be significantly (greater than or equal to12 months) longer. The approach of parallel scheduel paths requires that the HF coils be segmented into parts of less than or equal to180 of poloidal angle and that joints be made on a turn-by-turn basis when the segments are installed. It was obvious from the outset that the compact and complex geometry of the joint design presented a special challenge in the areas of reliability, assembly, maintenance, disassembly, and cost. Also, electrical, thermal, and force excursions are significant for these joints. A number of soldered, welded, brazed, electroplated, and bolted joints were evaluated. The evaluations examined fabrication feasibility and complexity, thermal-electrical performance at approximately two-thirds of the steady-state design conditions, and installation and assembly processes. Results of the thermal-electrical tests were analyzed and extrapolated to predict performance at peak design parameters. The final selection was a lap-type joint clamped with insulated bolts that pass through the winding packing. 3 refs., 4 figs.

  10. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    SciTech Connect

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  11. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    NASA Astrophysics Data System (ADS)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving

  12. Impact of functional mandibular advancement appliances on the temporomandibular joint - a systematic review

    PubMed Central

    Ivorra-Carbonell, Laura; Montiel-Company, José-María; Almerich-Silla, José-Manuel; Paredes-Gallardo, Vanessa

    2016-01-01

    Background Although many orthodontists have no doubts about the effectiveness of functional appliances for mandibular advancement, the impact on the temporomandibular joint (TMJ) is still in dispute. The objective of this systematic review is to examine the main effects on the TMJ of using functional appliances, both in healthy patients and in patients with a pre-existing disorder. Material and Methods A systematic review of the literature was conducted in accordance with the PRISMA guidelines. Only systematic reviews, meta-analyses, randomized clinical trials (RCTs), case-control studies and cohort studies were included. A detailed language-independent electronic search was conducted in the Pubmed, Scopus, Cochrane Library and Embase databases. All studies published between 2000 and 2015 were included. Results A total of 401 articles were identified. Of these, 159 were duplicates and were excluded. On reading the title and abstract, 213 articles were excluded because they did not answer the research question, leaving a total of 29 articles. These articles were read and assessed. Following critical reading of the full text, eight articles were excluded: seven because they were considered of low quality and one because it published redundant data. As a result, 21 articles were included. Conclusions After treatment with functional appliances, the condyle was found to be in a more advanced position, with remodelling of the condyle and adaptation of the morphology of the glenoid fossa. No significant adverse effects on the TMJ were observed in healthy patients and the appliances could improve joints that initially presented forward dislocation of the disk. Key words:Temporomandibular joint, TMJ, orthodontic appliances, functional, mandibular advancement, herbst appliance, bionator. PMID:27475694

  13. MO-C-BRE-01: The WMIS-AAPM Joint Symposium: Advances in Molecular Imaging

    SciTech Connect

    Contag, C; Pogue, B; Lewis, J

    2014-06-15

    This joint symposium of the World Molecular Imaging Society (WMIS) and the AAPM includes three luminary speakers discussing work in new paradigms of molecular imaging in cancer (Contag), applications of optical imaging technologies to radiation therapy (Pogue) and an update on PET imaging as a surrogate biomarker for cancer progression and response to therapy. Learning Objectives: Appreciate the current trends in molecular and systems imaging. Understand how optical imaging technologies, and particularly Cerenkov detectors, can be used in advancing radiation oncology. Stay current on new PET tracers - and targets - of interest in cancer treatment.

  14. En bloc resection of the temporal bone and temporomandibular joint for advanced temporal bone carcinoma.

    PubMed

    Kutz, Joe Walter; Mitchell, Derek; Isaacson, Brandon; Roland, Peter S; Allen, Kyle P; Sumer, Baran D; Barnett, Sam; Truelson, John M; Myers, Larry L

    2015-03-01

    Advanced skin malignancies involving the temporal bone can involve the temporomandibular joint and glenoid fossa. Many of these tumors can be removed with a lateral temporal bone resection; however, extensive involvement of the glenoid fossa should include an en bloc resection of the temporal bone, glenoid fossa, and condyle. We describe a novel surgical approach that is an extension of a temporal bone resection that includes the glenoid fossa and condyle in an en bloc resection with the temporal bone. This procedure has been performed in 7 patients with advanced carcinoma of the temporal bone involving the glenoid fossa. There were no short-term complications as a result of the surgical approach. The addition of a middle fossa craniotomy and inclusion of the glenoid fossa and condyle as part of an en bloc resection of the temporal bone can be performed safely. PMID:25616770

  15. Testing the influence of vertical, pre-existing joints on normal faulting using analogue and 3D discrete element models (DEM)

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; von Hagke, Christoph; Virgo, Simon; Urai, Janos L.

    2015-04-01

    Brittle rocks are often affected by different generations of fractures that influence each other. We study pre-existing vertical joints followed by a faulting event. Understanding the effect of these interactions on fracture/fault geometries as well as the development of dilatancy and the formation of cavities as potential fluid pathways is crucial for reservoir quality prediction and production. Our approach combines scaled analogue and numerical modeling. Using cohesive hemihydrate powder allows us to create open fractures prior to faulting. The physical models are reproduced using the ESyS-Particle discrete element Modeling Software (DEM), and different parameters are investigated. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. We tested the influence of different angles between the strike of the basement fault and the joint set (0°, 4°, 8°, 12°, 16°, 20°, and 25°). During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. We observe that no faults or fractures occur parallel to basement-fault strike. Secondary fractures are mostly oriented normal to primary joints. At the final stage of the experiments we analyzed semi-quantitatively the number of connected joints, number of secondary fractures, degree of segmentation (i.e. number of joints accommodating strain), damage zone width, and the map-view area fraction of open gaps. Whereas the area fraction does not change

  16. A Multi-Objective Advanced Design Methodology of Composite Beam-to-Column Joints Subjected to Seismic and Fire Loads

    SciTech Connect

    Pucinotti, Raffaele; Ferrario, Fabio; Bursi, Oreste S.

    2008-07-08

    A multi-objective advanced design methodology dealing with seismic actions followed by fire on steel-concrete composite full strength joints with concrete filled tubes is proposed in this paper. The specimens were designed in detail in order to exhibit a suitable fire behaviour after a severe earthquake. The major aspects of the cyclic behaviour of composite joints are presented and commented upon. The data obtained from monotonic and cyclic experimental tests have been used to calibrate a model of the joint in order to perform seismic simulations on several moment resisting frames. A hysteretic law was used to take into account the seismic degradation of the joints. Finally, fire tests were conducted with the objective to evaluate fire resistance of the connection already damaged by an earthquake. The experimental activity together with FE simulation demonstrated the adequacy of the advanced design methodology.

  17. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  18. Joint Optimization of Vertical Component Gravity and Seismic P-wave First Arrivals by Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Basler-Reeder, K.; Kent, G. M.; Pullammanappallil, S. K.

    2015-12-01

    Simultaneous joint seismic-gravity optimization improves P-wave velocity models in areas with sharp lateral velocity contrasts. Optimization is achieved using simulated annealing, a metaheuristic global optimization algorithm that does not require an accurate initial model. Balancing the seismic-gravity objective function is accomplished by a novel approach based on analysis of Pareto charts. Gravity modeling uses a newly developed convolution algorithm, while seismic modeling utilizes the highly efficient Vidale eikonal equation traveltime generation technique. Synthetic tests show that joint optimization improves velocity model accuracy and provides velocity control below the deepest headwave raypath. Detailed first arrival picking followed by trial velocity modeling remediates inconsistent data. We use a set of highly refined first arrival picks to compare results of a convergent joint seismic-gravity optimization to the Plotrefa™ and SeisOpt® Pro™ velocity modeling packages. Plotrefa™ uses a nonlinear least squares approach that is initial model dependent and produces shallow velocity artifacts. SeisOpt® Pro™ utilizes the simulated annealing algorithm and is limited to depths above the deepest raypath. Joint optimization increases the depth of constrained velocities, improving reflector coherency at depth. Kirchoff prestack depth migrations reveal that joint optimization ameliorates shallow velocity artifacts caused by limitations in refraction ray coverage. Seismic and gravity data from the San Emidio Geothermal field of the northwest Basin and Range province demonstrate that joint optimization changes interpretation outcomes. The prior shallow-valley interpretation gives way to a deep valley model, while shallow antiformal reflectors that could have been interpreted as antiformal folds are flattened. Furthermore, joint optimization provides a clearer image of the rangefront fault. This technique can readily be applied to existing datasets and could

  19. A New Perspective on Fatigue Performance of Advanced High- Strength Steels (AHSS) GMAW Joints

    SciTech Connect

    Feng, Zhili; Chiang, Dr. John; Kuo, Dr. Min; Jiang, Cindy; Sang, Yan

    2008-01-01

    Weld fatigue performance is a critical aspect for application of advanced high-strength steels (AHSS) in automotive body structures. A comparative study has been conducted to evaluate the fatigue life of AHSS welds. The material studied included seven AHSS of various strength levels - DP 600, DP 780, DP 980, M130, M220, solution annealed boron and fully hardened boron steels. Two conventional steels, HSLA 590 and DR 210, were also included for baseline comparison. Lap fillet welds were made on 2-mm nominal thick sheets by the gas metal arc welding process (GMAW). Fatigue test was conducted under a number of stress levels to obtain the S/N curves of the weld joints. It was found that, unlike in the static and impact loading conditions, the fatigue performance of AHSS is not influenced by the HAZ softening in AHSS. There are appreciable differences in the fatigue lives among different AHSS. Changes in weld parameters can influence the fatigue life of the weld joints, particularly of these of higher strength AHSS. A model is developed to predict the fatigue performance of AHSS welds. The validity of the model is benchmarked with the experimental results. This model is capable to capture the effects of weld geometry and weld microstructure and strength on the fatigue performance experimentally observed. The theoretical basis and application of the newly developed fatigue modeling methodology will be discussed.

  20. Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform.

    PubMed

    Rider, Amanda Evelyn; Kumar, Shailesh; Furman, Scott A; Ostrikov, Kostya Ken

    2012-03-11

    A three-dimensional surface enhanced Raman scattering (SERS)/plasmonic sensing platform based on plasma-enabled, catalyst-free, few-layer vertical graphenes decorated with self-organized Au nanoparticle arrays is demonstrated. This platform is viable for multiple species detection and overcomes several limitations of two-dimensional sensors. PMID:22227575

  1. System-level performance of LTE-Advanced with joint transmission and dynamic point selection schemes

    NASA Astrophysics Data System (ADS)

    Määttänen, Helka-Liina; Hämäläinen, Kari; Venäläinen, Juha; Schober, Karol; Enescu, Mihai; Valkama, Mikko

    2012-12-01

    In this article, we present a practical coordinated multipoint (CoMP) system for LTE-Advanced. In this CoMP system, cooperation is enabled for cell-edge users via dynamic switching between the normal single-cell operation and CoMP. We first formulate a general CoMP system model of several CoMP schemes. We then investigate a practical finite-rate feedback design that simultaneously supports interference coordination, joint transmission (JT), and dynamic point selection (DPS) with a varying number of cooperating transmission points while operating a single-cell transmission as a fallback mode. We provide both link-level and system-level results for the evaluation of different feedback options for general CoMP operation. The results show that there are substantial performance gains in cell-edge throughputs for both JT and DPS CoMP over the baseline Release 10 LTE-Advanced with practical feedback options. We also show that CoMP can enable improved mobility management in real networks.

  2. Temporomandibular Joint Condylar Changes Following Maxillomandibular Advancement and Articular Disc Repositioning

    PubMed Central

    Goncalves, Joao Roberto; Wolford, Larry Miller; Cassano, Daniel Serra; da Porciuncula, Guilherme; Paniagua, Beatriz; Cevidanes, Lucia Helena

    2014-01-01

    Purpose To evaluate condylar changes 1 year after bimaxillary surgical advancement with or without articular disc repositioning using longitudinal quantitative measurements in 3-dimensional (3D) temporomandibular joint (TMJ) models. Methods Twenty-seven patients treated with maxillomandibular advancement (MMA) underwent cone-beam computed tomography before surgery immediately after surgery and at 1-year follow-up. All patients underwent magnetic resonance imaging before surgery to assess disc displacements. Ten patients without disc displacement received MMA only. Seventeen patients with articular disc displacement received MMA with simultaneous TMJ disc repositioning (MMA-Drep). Pre- and postsurgical 3D models were superimposed using a voxel-based registration on the cranial base. Results The location, direction, and magnitude of condylar changes were displayed and quantified by graphic semitransparent overlays and 3D color-coded surface distance maps. Rotational condylar displacements were similar in the 2 groups. Immediately after surgery, condylar translational displacements of at least 1.5 mm occurred in a posterior, superior, or mediolateral direction in patients treated with MMA, whereas patients treated with MMA-Drep presented more marked anterior, inferior, and mediolateral condylar displacements. One year after surgery, more than half the patients in the 2 groups presented condylar resorptive changes of at least 1.5 mm. Patients treated with MMA-Drep presented condylar bone apposition of at least 1.5 mm at the superior surface in 26.4%, the anterior surface in 23.4%, the posterior surface in 29.4%, the medial surface in 5.9%, or the lateral surface in 38.2%, whereas bone apposition was not observed in patients treated with MMA. Conclusions One year after surgery, condylar resorptive changes greater than 1.5 mm were observed in the 2 groups. Articular disc repositioning facilitated bone apposition in localized condylar regions in patients treated with MMA

  3. Advances in Vertical Cable Seismic (VCS) for Seafloor Massive Sulfide exploration

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Tara, K.; Lee, S.; Saito, S.

    2015-12-01

    In 2014, the Japanese government started the Cross-ministerial Strategic Innovation Promotion Program (SIP), which includes 'Next-generation Ocean Resource Exploration Techniques' as an area of interest. J-MARES aims to establish "Multi-stage and integrated approach for SMSs exploration" using effectual geophysical exploration method and tools. JGI proposed the Vertical Cable Seismic (VCS) technique which is a reflection seismic method that uses hydrophone arrays vertically moored from the seafloor. It is useful to delineate detailed structures in a spatially-limited efficiently. We have developed autonomous VCS systems and carried out several VCS surveys in actual hydrothermal area in Okinawa Trough. These results successfully delineated sub-seabed structures that suggest the existence of buried SMS deposits. Based on the successful results of these surveys, we are continuing to polish up the VCS system with data processing methods. To obtain more detailed structure, we have manufactured four new-type of VCS with 16 hydrophones. Then we carry out the VCS survey using deep-tow high frequency source. The key points are (1) a high-frequency source close to the target, (2)efficiency of the surveys and (3)wide-angle reflections to detect of bottom interface of sulfide ore body. The most crucial technical issue is the positioning the deep-tow source. As for the data processing, we have applied Prestack Depth Migration to obtain the subsurface structure but the velocity cannot be estimated adequately. We adopt CSP-EOM processing to VCS data. It is based on scattering phenomena which is useful for the scattering dominant area such as SMS area. This method gives us the velocity estimation of the SMS. We consider VCS has high-potential for SMS exploration. The system will continue to be improved as part of the SIP project, along with other geophysical exploration techniques such as EM, magnetic and gravity.

  4. Recent advances in the vertical coupling in the Atmosphere-Ionosphere System

    NASA Astrophysics Data System (ADS)

    Knížová, Petra Koucká; Georgieva, Katya; Ward, William; Yiğit, Erdal

    2015-12-01

    Welcome to this special issue of the Journal of Atmospheric and Solar-Terrestrial Physics, dedicated to the investigation of the coupling phenomena in the neutral Atmosphere-Ionosphere System. This special issue covers processes in the Atmosphere-Ionosphere System that significantly influence and/or rule the coupling within the regions. Earth's atmospheric regions are intricately coupled to one another via various dynamical, chemical, and electrodynamic processes. The coupling effects can be seen on the modulation of the waves from the lower to upper atmosphere as well as from low- to high-latitudes, electrodynamic and compositional changes, and plasma irregularities at different latitudinal regions around the globe due to the varying energy inputs. A special attention is paid to the Mesosphere-Lower Thermosphere region that represents a critical region in various coupling processes between the lower/middle atmosphere and the upper atmosphere/ionosphere since it forms physical processes filter and shape the flux of waves ascending through the mesosphere into the overlying thermosphere. Varying energy inputs from the Sun and from the lower atmosphere is one of the topics. Processes contributing to the vertical coupling in the atmosphere are discussed on theoretical basis and with respect to recent and long-term experimental measurements as well. Solar activity represents an important factor that directly or indirectly modulates the coupling processes.

  5. Recent advances in joint optical-digital design for optronics applications

    NASA Astrophysics Data System (ADS)

    Burcklen, Marie-Anne; Diaz, Frédéric; Leprêtre, François; Lee, Mane-Si Laure; Delboulbé, Anne; Loiseaux, Brigitte; Millet, Philippe; Duhem, François; Lemonnier, Fabrice; Sauer, Hervé; Goudail, François

    2016-05-01

    Increasing the capture volume of visible cameras while maintaining high image resolutions, low power consumption and standard video-frame rate operation is of utmost importance for hand-free night vision goggles or embedded surveillance systems. Since such imaging systems require to operate at high aperture, their optical design has become more complex and critical. Therefore new design alternatives have to be considered. Among them, wavefront coding changes and desensitizes the modulation transfer function (MTF) of the lens by inserting a phase mask in the vicinity of the aperture stop. This smart filter is combined with an efficient image processing that ensures optimal image quality over a larger depth of field. In this paper recent advances are discussed concerning design and integration of a compact imaging system based on wavefront coding. We address the design, the integration and the characterization of a High Definition (HD) camera of large aperture (F/1.2) operating in the visible and near infrared spectral ranges, endowed with wavefront coding. Two types of phase masks (pyramidal and polynomial) have been jointly optimized with their deconvolution algorithm in order to meet the best performance along an increased range of focus distances and manufactured. Real time deconvolution processing is implemented on a Field Programmable Gate Array. It is shown that despite the high data throughput of an HD imaging chain, the level of power consumption is far below the initial specifications. We have characterized the performances with and without wavefront coding through MTF measurements and image quality assessments. A depth-of- field increase up to x2.5 has been demonstrated in accordance with the theoretical predictions.

  6. Joint force protection advanced security system (JFPASS) "the future of force protection: integrate and automate"

    NASA Astrophysics Data System (ADS)

    Lama, Carlos E.; Fagan, Joe E.

    2009-09-01

    The United States Department of Defense (DoD) defines 'force protection' as "preventive measures taken to mitigate hostile actions against DoD personnel (to include family members), resources, facilities, and critical information." Advanced technologies enable significant improvements in automating and distributing situation awareness, optimizing operator time, and improving sustainability, which enhance protection and lower costs. The JFPASS Joint Capability Technology Demonstration (JCTD) demonstrates a force protection environment that combines physical security and Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) defense through the application of integrated command and control and data fusion. The JFPASS JCTD provides a layered approach to force protection by integrating traditional sensors used in physical security, such as video cameras, battlefield surveillance radars, unmanned and unattended ground sensors. The optimization of human participation and automation of processes is achieved by employment of unmanned ground vehicles, along with remotely operated lethal and less-than-lethal weapon systems. These capabilities are integrated via a tailorable, user-defined common operational picture display through a data fusion engine operating in the background. The combined systems automate the screening of alarms, manage the information displays, and provide assessment and response measures. The data fusion engine links disparate sensors and systems, and applies tailored logic to focus the assessment of events. It enables timely responses by providing the user with automated and semi-automated decision support tools. The JFPASS JCTD uses standard communication/data exchange protocols, which allow the system to incorporate future sensor technologies or communication networks, while maintaining the ability to communicate with legacy or existing systems.

  7. Advances in the analysis and design of adhesive-bonded joints in composite aerospace structures

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1974-01-01

    Several aspects of adhesive-bonded joint analysis and design are presented from the reference of size of structure or load intensity. This integrates the individual characterizations of double-lap, single-lap, stepped-lap, tapered-lap and scarf joints. The paper includes an overview of bonded joint selection from the standpoints of design, fabrication, and processing, each bearing in mind the influence of such considerations on the strength of the joint. A case study is presented of the optimization of a specific relatively thick titanium-to-graphite epoxy stepped-lap joint, using the digital computer analysis program A4EG. The factors accounted for are adhesive plasticity, adherend stiffness imbalance, adherend thermal mismatch, and change of material properties within the range of temperature environment and with load direction. The strength increases obtainable by refining the initial design are demonstrated.

  8. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Skoumal, D. E.

    1980-01-01

    Bonded and bolted designs are presented for each of four major attachment types. Prepreg processing problems are discussed and quality control data are given for lots 2W4604, 2W4632 and 2W4643. Preliminary design allowables test results for tension tests and compression tests of laminates are included. The final small specimen test matrix is defined and the configuration of symmetric step-lap joint specimens are shown. Finite element modeling studies of a double lap joint were performed to evaluate the number of elements required through the adhesive thickness to assess effects of various joint parameters on stress distributions. Results of finite element analyses assessing the effect of an adhesive fillet on the stress distribution in a double lap joint are examined.

  9. Advanced age and the mechanics of uphill walking: a joint-level, inverse dynamic analysis

    PubMed Central

    Franz, Jason R.; Kram, Rodger

    2013-01-01

    We sought to gain insight into age-related muscular limitations that may restrict the uphill walking ability of old adults. We hypothesized that: 1) old adults would exhibit smaller peak ankle joint kinetics and larger peak hip joint kinetics than young adults during both level and uphill walking and 2) these age-related differences in ankle and hip joint kinetics would be greatest during uphill vs. level walking. We quantified the sagittal plane ankle, knee, and hip joint kinetics of 10 old adults (mean ± SD, age: 72 ± 5 yrs) and 8 young adults (age: 27 ± 5 yrs) walking at 1.25 m/s on a dual-belt, force-measuring treadmill at four grades (0°, +3°, +6°, +9°). As hypothesized, old adults walked with smaller peak ankle joint kinetics (e.g., power generation: −18% at +9°) and larger peak hip joint kinetics (e.g., power generation: +119% at +9°) than young adults, most evident during the late stance phase of both level and uphill conditions. Old adults performed two to three times more single support positive work than young adults via muscles crossing the knee. In partial support of our second hypothesis, the age-related reduction in peak ankle joint moments was greater during uphill (−0.41 Nm/kg) vs. level (−0.30 Nm/kg) walking. However, old adults that exhibited reduced propulsive ankle function during level walking could perform 44% more trailing leg positive ankle joint work to walk uphill. Our findings indicate that maintaining ankle power generation and trailing leg propulsive function should be the primary focus of “prehabilitation” strategies for old adults to preserve their uphill walking ability. PMID:23850328

  10. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  11. Joint inversion of TEM and DC in roadway advanced detection based on particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Cheng, Jiulong; Li, Fei; Peng, Suping; Sun, Xiaoyun; Zheng, Jing; Jia, Jizhe

    2015-12-01

    Transient electromagnetic method (TEM)and direct current method (DC)are two key widely applied methods for practical roadway detection, but both have their limitations. To take the advantage of each method, a synchronous nonlinear joint inversion method is proposed based on TEM and DC by using particle swarm optimization (PSO)algorithm. Firstly, a model with double low resistance anomaly and interference is constructed to test the performance of the method. Then the independent inversion and joint inversion are calculated by using the model built above. It is demonstrated that the joint inversion helped in improving the interpretation of the data to get better results. It is because that the suppression of interference and separation of the resistivity anomalies ahead and the back of the roadway working face using the proposed method. Finally, the proposed method was successfully used in a coalmine in Huainan coalfield in east China to demonstrate its practical usefulness.

  12. Joint IAMAS/IAHS Symposium J1 on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere

    NASA Technical Reports Server (NTRS)

    Ohring, G.; Aoki, T.; Halpern D.; Henderson-Sellers, A.; Charlock, T.; Joseph, J.; Labitzke, K.; Raschke, E.; Smith, W.

    1994-01-01

    Seventy papers were presented at the two-and-a-half-day Symposium on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere. The symposium was jointly organized by the International Association of Meteorology and Atmospheric Sciences (IAMAS) and the International Association of Hydrological Sciences (IAHS). Global observing systems are receiving increased attention in connection with such problems as monitoring global climate change. The symposium included papers on observational requirements; measurement methodologies; descriptions of available datasets; results of analysis of observational data; plans for future observing systems, including the Global Climate Observing System (GCOS) and the Global Ocean Observing System (GOOS); and the programs and plans of the space agencies.

  13. The joint DoD/NASA advanced launch system. Pathway to low-cost, highly operable space transportation

    NASA Astrophysics Data System (ADS)

    Wolfe, Malcolm G.

    In response to changing needs, a major change in U.S. space transportation policy has occurred in the last few years. The joint Department of Defense/National Aeronautics and Space Administration Advanced Launch System program (ALS) intends to respond to this change in policy. The program, initiated in July 1987, completed Phase I at the end of August 1988 and is currently in Phase II. The ALS is cost optimized, rather than performance optimized, and will utilize advanced technology and innovative management and design approaches to achieve an ambitious congressionally mandated cost goal of $300/lb to low Earth orbit by the year 2005. The technological innovations will directly benefit other U.S. space transportation programs, such as the commercial programs and the National Aero Space Plane (NASP).

  14. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Principal program activities dealt with the literature survey, design of joint concepts, assessment of GR/PI material quality, fabrication of test panels and specimens, and small specimen testing. Bonded and bolted designs are presented for each of the four major attachment types. Quality control data are presented for prepreg Lots 2W4651 and 3W2020. Preliminary design allowables test results for tension tests and compression tests of laminates are also presented.

  15. Effects of mandibular advancement surgery on the temporomandibular joint and muscular and articular adaptive changes-a systematic review.

    PubMed

    Bermell-Baviera, A; Bellot-Arcís, C; Montiel-Company, J M; Almerich-Silla, J M

    2016-05-01

    The objective of this study was to assess the anatomical changes to the condyle and articular disc following mandibular advancement surgery, the adaptation of the masticatory muscles, and the improvement or worsening of temporomandibular disorders (TMD) in patients with pre-existing disorders and those who developed them following surgery. Four databases were searched systematically: PubMed, Scopus, Embase, and Cochrane Library. Of the 544 articles initially selected, 219 were duplicates and a further 165 were excluded on the basis of their titles and abstracts. On reading the full text, 89 were excluded because they were of no interest and 43 because they did not meet the inclusion criteria. Of the remaining 28 articles, six were excluded because they were considered of low quality and 22 articles were reviewed. Mandibular advancement surgery with condyle repositioning is associated with less TMD. Condylar resorption is a physiological process with a multifactorial aetiology. It is accelerated following mandibular advancement surgery but is not a contraindication to this procedure. Despite the large number of studies on the effects of mandibular advancement surgery on the temporomandibular joint (TMJ), this surgery can neither be said to improve nor to worsen TMJ health. PMID:26644217

  16. Sensitivity of Solder Joint Fatigue to Sources of Variation in Advanced Vehicular Power Electronics Cooling

    SciTech Connect

    Vlahinos, A.; O'Keefe, M.

    2010-06-01

    This paper demonstrates a methodology for taking variation into account in thermal and fatigue analyses of the die attach for an inverter of an electric traction drive vehicle. This method can be used to understand how variation and mission profile affect parameters of interest in a design. Three parameters are varied to represent manufacturing, material, and loading variation: solder joint voiding, aluminum nitride substrate thermal conductivity, and heat generation at the integrated gate bipolar transistor. The influence of these parameters on temperature and solder fatigue life is presented. The heat generation loading variation shows the largest influence on the results for the assumptions used in this problem setup.

  17. Distance Learning in Advanced Military Education: Analysis of Joint Operations Course in the Taiwan Military

    ERIC Educational Resources Information Center

    Tung, Ming-Chih; Huang, Jiung-yao; Keh, Huan-Chao; Wai, Shu-shen

    2009-01-01

    High-ranking officers require advanced military education in war tactics for future combat. However, line officers rarely have time to take such courses on campus. The conventional solution to this problem used to take the inefficient correspondence courses. Whereas Internet technologies progress, online course is the current trend for military…

  18. Joint System Prognostics For Increased Efficiency And Risk Mitigation In Advanced Nuclear Reactor Instrumentation and Control

    SciTech Connect

    Donald D. Dudenhoeffer; Tuan Q. Tran; Ronald L. Boring; Bruce P. Hallbert

    2006-08-01

    The science of prognostics is analogous to a doctor who, based on a set of symptoms and patient tests, assesses a probable cause, the risk to the patient, and a course of action for recovery. While traditional prognostics research has focused on the aspect of hydraulic and mechanical systems and associated failures, this project will take a joint view in focusing not only on the digital I&C aspect of reliability and risk, but also on the risks associated with the human element. Model development will not only include an approximation of the control system physical degradation but also on human performance degradation. Thus the goal of the prognostic system is to evaluate control room operation; to identify and potentially take action when performance degradation reduces plant efficiency, reliability or safety.

  19. Joint IAMAS/IAHS symposium J1 on global monitoring and advanced observing techniques in the atmosphere and hydrosphere

    SciTech Connect

    Ohring, G. ); Aoki, T. ); Halpern, D. ); Henderson-Sellers, A. ); Charlock, T. ); Joseph, J. ); Labitzke, K. ); Raschke, E. ); Smith, W. )

    1994-04-01

    Seventy papers were presented at the two-and-a-half-day Symposium on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere. The symposium was jointly organized by the International Association of Meteorology and Atmospheric Sciences (IAMAS) and the International Association of Hydrological Sciences (IAHS) and took place in Yokohama, Japan, 13-15 July 1993, as part of the IAMAS/IAHS Join Assembly. Global observing systems are receiving increased attention in connection with such problems as monitoring global climate change. The symposium included papers on observational requirements; measurement methodologies; descriptions of available datasets; results of analysis of observational data; plans for future observing systems, including the Global Climate Observing System (GCOS) and the Global Ocean Observing System (GOOS); and the programs and plans of the space agencies.

  20. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  1. Joint instability and osteoarthritis.

    PubMed

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  2. Advances in tribological testing of artificial joint biomaterials using multidirectional pin-on-disk testers

    PubMed Central

    Baykal, D.; Siskey, R.S.; Haider, H.; Saikko, V.; Ahlroos, T.; Kurtz, S.M.

    2013-01-01

    The introduction of numerous formulations of Ultra-high molecular weight polyethylene (UHMWPE), which is widely used as a bearing material in orthopedic implants, necessitated screening of bearing couples to identify promising iterations for expensive joint simulations. Pin-on-disk (POD) testers capable of multidirectional sliding can correctly rank formulations of UHMWPE with respect to their predictive in vivo wear behavior. However, there are still uncertainties regarding POD test parameters for facilitating clinically relevant wear mechanisms of UHMWPE. Studies on the development of POD testing were briefly summarized. We systematically reviewed wear rate data of UHMWPE generated by POD testers. To determine if POD testing was capable of correctly ranking bearings and if test parameters outlined in ASTM F732 enabled differentiation between wear behavior of various formulations, mean wear rates of non-irradiated, conventional (25–50 kGy) and highly crosslinked (≥90 kGy) UHMWPE were grouped and compared. The mean wear rates of non-irradiated, conventional and highly crosslinked UHMWPEs were 7.03, 5.39 and 0.67 mm3/MC. Based on studies that complied with the guidelines of ASTM F732, the mean wear rates of non-irradiated, conventional and highly crosslinked UHMWPEs were 0.32, 0.21 and 0.04 mm3/km, respectively. In both sets of results, the mean wear rate of highly crosslinked UHMPWE was smaller than both conventional and non-irradiated UHMWPEs (p<0.05). Thus, POD testers can compare highly crosslinked and conventional UHMWPEs despite different test parameters. Narrowing the allowable range for standardized test parameters could improve sensitivity of multi-axial testers in correctly ranking materials. PMID:23831149

  3. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    SciTech Connect

    Geiling, D.W.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  4. A vertical-oriented WS2 nanosheet sensitized by graphene: an advanced electrocatalyst for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Shifa, Tofik Ahmed; Wang, Fengmei; Cheng, Zhongzhou; Zhan, Xueying; Wang, Zhenxing; Liu, Kaili; Safdar, Muhammad; Sun, Lianfeng; He, Jun

    2015-08-01

    Electrocatalytic hydrogen production at low overpotential is a promising route towards a clean and sustainable energy. Layered transition metal dichalcogenides (LTMDs) have attracted copious attention for their outstanding activities in hydrogen evolution reaction (HER). However, the horizontally laid nanosheets suffer from a paucity of active edge sites. Herein, we report the successful synthesis of vertical-oriented WS2 nanosheets through a hydrothermal method followed by a facile sulfurization process. Furthermore, the surface of synthesized WS2 nanosheets was decorated by ultrathin reduced graphene oxide (rGO) nanoplates. This is achieved for the first time by bringing the rGO on the surface of vertical-oriented WS2 nanosheets, which is conducive to rapid electron transport during the HER process. Significantly, the as-synthesized rGO/WS2 nanosheets exhibit improved HER activity as compared to the undecorated ones. It needs a low overpotential of only 229 mV vs. RHE to afford a current density of 10 mA cm-2. We believe that this hybrid structure demonstrated remarkable HER activity brought about by a compatible synergism between rGO and WS2.Electrocatalytic hydrogen production at low overpotential is a promising route towards a clean and sustainable energy. Layered transition metal dichalcogenides (LTMDs) have attracted copious attention for their outstanding activities in hydrogen evolution reaction (HER). However, the horizontally laid nanosheets suffer from a paucity of active edge sites. Herein, we report the successful synthesis of vertical-oriented WS2 nanosheets through a hydrothermal method followed by a facile sulfurization process. Furthermore, the surface of synthesized WS2 nanosheets was decorated by ultrathin reduced graphene oxide (rGO) nanoplates. This is achieved for the first time by bringing the rGO on the surface of vertical-oriented WS2 nanosheets, which is conducive to rapid electron transport during the HER process. Significantly, the as

  5. Variation of plate fixation for mandibular advancement with intraoral vertical ramus osteotomy using endoscopically assisted intraoral rigid or semi-rigid internal fixation: Case series study: Postoperative condylar seating control for mandibular advancement.

    PubMed

    Hara, Shingo; Mitsugi, Masaharu; Tatemoto, Yukihiro

    2015-12-01

    The purpose of the present study was to evaluate the safety and efficacy associated with mandibular advancement by intraoral vertical ramus osteotomy (IVRO) with endoscopically assisted intraoral rigid or semi-rigid internal fixation. The study sample included all patients who had undergone an mandibular advancement by IVRO procedure with endoscopically assisted intraoral plate fixation from September 2008 to May 2012. An mandibular advancement by IVRO with endoscopically assisted intraoral rigid or semi-rigid internal fixation was used for mandibular advancement. The patients were analyzed prospectively, with more than 2 years of follow-up, and were evaluated in terms of functional results, postoperative complications, and skeletal stability. A total of 14 patients (bilateral, 7 patients with class II; unilateral, 7 patients with asymmetry) were included in the present study. The average degree of mandibular advancement was 5.5 ± 1.9 mm (range, 3-9 mm). Both the occlusal relationship and facial appearance in all patients were significantly improved by the surgical-orthodontic treatment, with no major harmful clinical symptoms. In addition, one-screw semi-rigid fixation could control postoperative passive condylar seating. This study showed that mandibular advancement by IVRO with endoscopically assisted, intraoral semi-rigid internal fixation offers a promising treatment alternative for patients with skeletal class II malocclusion or facial asymmetry. PMID:26610634

  6. Advances In Vertical Solid-State Current Limiters For Individual Field Emitter Regulation In High-Density Arrays

    NASA Astrophysics Data System (ADS)

    Hill, Frances A.; Velásquez-García, Luis F.

    2015-12-01

    We report the design, fabrication, and characterization of improved solid-state elements intended for individual regulation of field emitters part of high-density arrays. We demonstrate a high-yield, CMOS compatible fabrication process of single-crystal, vertical, ungated, n-type silicon field-effect transistors (FETs); each device behaves as a current source when is biased at a voltage larger than its drain-source saturation voltage. An ungated FET in saturation connected in series to a field emitter can compensate for the wide variation in current-voltage characteristics of the field emitters due to the tip radii spread present in any field emitter array, which should result in emitter burn-out protection, larger array utilization, and smaller array emission non-uniformity. Using 1-2 Ωcm single-crystal n-Si wafers, we fabricated arrays of 25 μm tall vertical ungated FETs with 0.5 μm diameter that span two orders of magnitude of array size. Experimental characterization of the arrays demonstrates that the current is limited with > 3.5 V bias voltage to the same ∼6 μA (6 A.cm-2) per-FET value. Finite element simulations of the device predict a saturation voltage close to the experimental value and a saturation current within a factor of two of the experimental value.

  7. A vertical-oriented WS2 nanosheet sensitized by graphene: an advanced electrocatalyst for hydrogen evolution reaction.

    PubMed

    Shifa, Tofik Ahmed; Wang, Fengmei; Cheng, Zhongzhou; Zhan, Xueying; Wang, Zhenxing; Liu, Kaili; Safdar, Muhammad; Sun, Lianfeng; He, Jun

    2015-09-21

    Electrocatalytic hydrogen production at low overpotential is a promising route towards a clean and sustainable energy. Layered transition metal dichalcogenides (LTMDs) have attracted copious attention for their outstanding activities in hydrogen evolution reaction (HER). However, the horizontally laid nanosheets suffer from a paucity of active edge sites. Herein, we report the successful synthesis of vertical-oriented WS2 nanosheets through a hydrothermal method followed by a facile sulfurization process. Furthermore, the surface of synthesized WS2 nanosheets was decorated by ultrathin reduced graphene oxide (rGO) nanoplates. This is achieved for the first time by bringing the rGO on the surface of vertical-oriented WS2 nanosheets, which is conducive to rapid electron transport during the HER process. Significantly, the as-synthesized rGO/WS2 nanosheets exhibit improved HER activity as compared to the undecorated ones. It needs a low overpotential of only 229 mV vs. RHE to afford a current density of 10 mA cm(-2). We believe that this hybrid structure demonstrated remarkable HER activity brought about by a compatible synergism between rGO and WS2. PMID:26287333

  8. A method for wafer level hermetic packaging of SOI-MEMS devices with embedded vertical feedthroughs using advanced MEMS process

    NASA Astrophysics Data System (ADS)

    Mert Torunbalci, Mustafa; Emre Alper, Said; Akin, Tayfun

    2015-12-01

    This paper presents a novel, inherently simple, and low-cost fabrication and hermetic packaging method developed for SOI-MEMS devices, where a single SOI wafer is used for the fabrication of MEMS structures as well as vertical feedthroughs, while a single glass cap wafer is used for hermetic encapsulation and routing metallization. Hermetic encapsulation can be achieved either with the silicon-glass anodic or Au-Si eutectic bonding techniques. The dies sealed with anodic and Au-Si eutectic bonding provide a low vertical feedthrough resistance around 50 Ω. Glass-to-silicon anodically and Au-Si eutectic bonded seals yield a very stable cavity pressure below 10 mTorr with thin-film getters, which are measured to be stable even after 311 d. The package pressure can be adjusted from 5 mTorr to 20 Torr by using different outgassing, cavity depth, and gettering options. The packaging yield is observed to be around 64% and 84% for the anodic and Au-Si eutectic packages, respectively. The average shear strength of the anodic and eutectic packages is measured to be higher than 17 MPa and 42 MPa, respectively. Temperature cycling, high temperature storage, and ultra-high temperature shock tests result in no degradation in the hermeticity of the packaged chips, proving perfect thermal reliability.

  9. Advances with vertical epitaxial heterostructure architecture (VEHSA) phototransducers for optical to electrical power conversion efficiencies exceeding 50 percent

    NASA Astrophysics Data System (ADS)

    Fafard, S.; Proulx, F.; York, M. C. A.; Wilkins, M.; Valdivia, C. E.; Bajcsy, M.; Ban, D.; Jaouad, A.; Bouzazi, B.; Arès, R.; Aimez, V.; Hinzer, K.; Masson, D. P.

    2016-03-01

    A monolithic compound semiconductor phototransducer optimized for narrow-band light sources was designed for and has achieved conversion efficiencies exceeding 50%. The III-V heterostructure was grown by MOCVD, based on the vertical stacking of a number of partially absorbing GaAs n/p junctions connected in series with tunnel junctions. The thicknesses of the p-type base layers of the diodes were engineered for optimal absorption and current matching for an optical input with wavelengths centered in the 830 nm to 850 nm range. The device architecture allows for improved open-circuit voltage in the individual base segments due to efficient carrier extraction while simultaneously maintaining a complete absorption of the input photons with no need for complicated fabrication processes or reflecting layers. Progress for device outputs achieving in excess of 12 V is reviewed in this study.

  10. Vertical electric sounding of selected Arctic and Antarctic soils: advances in express field investigation of the Cryosols

    NASA Astrophysics Data System (ADS)

    Abakumov, Evgeny

    2016-04-01

    Physical properties of the soils of the cold environments are underestimated. Soil and permafrost border and active layer thickness are the key classification indicators for the polar soils. That is why electrophysical research has been conducted with aim to determine the soil-permafrost layer heterogeneity and the depth of the uppermost permafrost layer on examples of selected plots in Antarctic region and Russian Arctic. The electric resistivity (ER) was measured directly in the soil profiles using the vertical electrical sounding (VERS) method, which provides data on the changes in the electrical resistivity throughout the profile from the soil surface without digging pits or drilling. This method allows dividing the soil layer vertically into genetic layers, which are different on main key properties and characteristics Different soil layers have different ER values, that is why the sharp changes in ER values in soil profile can be interpreted as results of transition of one horizon to another. In our study, the resistivity measurements were performed using four-electrode (AB + MN) arrays of the AMNB configuration with use of the Schlumberger geometry. A Landmapper ERM-03 instrument (Landviser, USA) was used for the VES measurements in this study. Electrodes were situated on the soil surface, distance between M and N was fixes, while distance from A to B were changed during the sounding. Vertical Electrical Resistivity Soundings (VERS) using Schlumberger array were carried out at stations, situated on the different plots of terrestrial ecosystems of Arctic and Antarctic. The resistance readings at every VERS point were automatically displayed on the digital readout screen and then written down on the field note book. The soils had been 'sounded' thoroughly and found to vary between 5 cm and 3-5 m in A-B distances. It was shown that use of VES methodology in soil survey is quite useful for identification of the permafrost depth without digging of soil pit. This

  11. The vertical lobe of cephalopods: an attractive brain structure for understanding the evolution of advanced learning and memory systems.

    PubMed

    Shomrat, T; Turchetti-Maia, A L; Stern-Mentch, N; Basil, J A; Hochner, B

    2015-09-01

    In this review we show that the cephalopod vertical lobe (VL) provides a good system for assessing the level of evolutionary convergence of the function and organization of neuronal circuitry for mediating learning and memory in animals with complex behavior. The pioneering work of JZ Young described the morphological convergence of the VL with the mammalian hippocampus, cerebellum and the insect mushroom body. Studies in octopus and cuttlefish VL networks suggest evolutionary convergence into a universal organization of connectivity as a divergence-convergence ('fan-out fan-in') network with activity-dependent long-term plasticity mechanisms. Yet, these studies also show that the properties of the neurons, neurotransmitters, neuromodulators and mechanisms of long-term potentiation (LTP) induction and maintenance are highly variable among different species. This suggests that complex networks may have evolved independently multiple times and that even though memory and learning networks share similar organization and cellular processes, there are many molecular ways of constructing them. PMID:26113381

  12. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Not Available

    1992-12-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  13. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  14. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Not Available

    1993-09-01

    Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  15. Fifth Joint Meeting of J-CaP and CaPSURE: advancing the global understanding of prostate cancer and its management.

    PubMed

    Akaza, Hideyuki; Carroll, Peter; Cooperberg, Matthew R; Hinotsu, Shiro

    2012-03-01

    This report summarizes the presentations and discussions that took place at the Fifth Joint Meeting of J-CaP and CaPSURE held in Tokyo, Japan, in July 2011. The J-CaP and CaPSURE Joint Initiative was established in 2007 with the objective of analyzing, reviewing, comparing and contrasting data on prostate cancer patients from Japan and the USA within the two important large-scale, longitudinal, observational databases-J-CaP and CaPSURE. Since its inception, the initiative has reviewed a wide range of topics and generated valuable data on the patterns of prostate cancer treatment and patient outcomes in the two geographical regions. The objectives of this 5th Joint Meeting were to provide an update on the current status of the J-CaP and CaPSURE databases, and also to discuss perspectives from a range of other Asian countries-Japan, China, Indonesia and Korea-on the use of androgen deprivation therapy for prostate cancer. The collaborators recognize that large databases, such as J-CaP and CaPSURE, provide valuable 'real-world' information, to complement data from clinical trials, which can help to advance the clinical management of prostate cancer patients worldwide. It is anticipated that in the near future, the Joint Initiative will expand globally to include patient registries from other countries so that best practice can be shared and regional differences in patients, treatments and outcomes can be explored. PMID:22217576

  16. PREFACE: Joint IPPP Durham/Cockcroft Institute/ICFA Workshop on Advanced QED methods for Future Accelerators

    NASA Astrophysics Data System (ADS)

    Bailey, I. R.; Barber, D. P.; Chattopadhyay, S.; Hartin, A.; Heinzl, T.; Hesselbach, S.; Moortgat-Pick, G. A.

    2009-11-01

    The joint IPPP Durham/Cockcroft Institute/ICFA workshop on advanced QED methods for future accelerators took place at the Cockcroft Institute in early March 2009. The motivation for the workshop was the need for a detailed consideration of the physics processes associated with beam-beam effects at the interaction points of future high-energy electron-positron colliders. There is a broad consensus within the particle physics community that the next international facility for experimental high-energy physics research beyond the Large Hadron Collider at CERN should be a high-luminosity electron-positron collider working at the TeV energy scale. One important feature of such a collider will be its ability to deliver polarised beams to the interaction point and to provide accurate measurements of the polarisation state during physics collisions. The physics collisions take place in very dense charge bunches in the presence of extremely strong electromagnetic fields of field strength of order of the Schwinger critical field strength of 4.4×1013 Gauss. These intense fields lead to depolarisation processes which need to be thoroughly understood in order to reduce uncertainty in the polarisation state at collision. To that end, this workshop reviewed the formalisms for describing radiative processes and the methods of calculation in the future strong-field environments. These calculations are based on the Furry picture of organising the interaction term of the Lagrangian. The means of deriving the transition probability of the most important of the beam-beam processes - Beamsstrahlung - was reviewed. The workshop was honoured by the presentations of one of the founders, V N Baier, of the 'Operator method' - one means for performing these calculations. Other theoretical methods of performing calculations in the Furry picture, namely those due to A I Nikishov, V I Ritus et al, were reviewed and intense field quantum processes in fields of different form - namely those

  17. Small joint arthroscopy in foot and ankle.

    PubMed

    Lui, Tun Hing; Yuen, Chi Pan

    2015-03-01

    The clinical application of small joint arthroscopies (metatarsophalangeal joint, Lisfranc joint, Chopart joint, and interphlangeal joint) in the foot has seen significant advancements in the past decades. This article reviews the clinical indications, technical details, outcomes, and potential complications of small joint arthroscopies of the foot. PMID:25726488

  18. Joint swelling

    MedlinePlus

    Swelling of a joint ... Joint swelling may occur along with joint pain . The swelling may cause the joint to appear larger or abnormally shaped. Joint swelling can cause pain or stiffness. After an ...

  19. Effect of tibial tuberosity advancement on cranial tibial subluxation in the feline cranial cruciate deficient stifle joint: An ex vivo experimental study.

    PubMed

    Retournard, M; Bilmont, A; Asimus, E; Palierne, S; Autefage, A

    2016-08-01

    The effects of Tibial Tuberosity Advancement (TTA) on Cranial Tibial Subluxation (CTS) and Tibial Rotation Angle (TRA) were evaluated in a model of feline Cranial Cruciate Ligament (CrCL)-deficient stifle joint. Ten hindlimbs of adult cats were used. Quadriceps and gastrocnemius muscles were simulated using cables, turnbuckles and a spring. An axial load of 30% body weight was applied. The stifle and talocrural joint angles were adjusted to 120°. Patellar tendon angle (PTA), CTS and TRA were measured radiographically before and after CrCL section, after TTA and after additional advancement by 1 and 2mm. CrCL section resulted in a CTS of 8.1±1.5mm and a TRA of 18.4±5.7 °. After TTA, PTA was significantly decreased from 99.1±1.7° to 89.1±0.7°; CTS and TRA did not change significantly (7.8±1.0mm and 15.9±5.7° respectively). Additional advancement of the tibial tuberosity by 1mm did not significantly affect CTS and TRA. Additional advancement of the tibial tuberosity by 2mm significantly reduced the PTA to 82.9±0.9°. A significant decrease of CTS (6.9±1.3mm) and TRA (14.7±3.6°) was also observed. A lack of stabilization of the CrCL deficient stifle was observed after TTA in this model of the feline stifle. Even though the validity of the model can be questioned, simple transposition of the technique of TTA from the cat to the dog appeared hazardous. PMID:27474002

  20. Maxillo-mandibular counter-clockwise rotation and mandibular advancement with TMJ Concepts total joint prostheses: part II--airway changes and stability.

    PubMed

    Coleta, K E D; Wolford, L M; Gonçalves, J R; Pinto, A dos Santos; Cassano, D S; Gonçalves, D A G

    2009-03-01

    The purpose of this study was to evaluate the anatomical changes and stability of the oropharyngeal airway and head posture following TMJ reconstruction and mandibular advancement with TMJ Concepts custom-made total joint prostheses and maxillary osteotomies with counter-clockwise rotation of the maxillo-mandibular complex. All patients were operated at Baylor University Medical Center, Dallas TX, USA, by one surgeon (Wolford). The lateral cephalograms of 47 patients were analyzed to determine surgical and post-surgical changes of the oropharyngeal airway, hyoid bone and head posture. Surgery increased the narrowest retroglossal airway space 4.9 mm. Head posture showed flexure immediately after surgery (-5.6+/-6.7 degrees) and extension long-term post surgery (1.8+/-6.7 degrees); cervical curvature showed no significant change. Surgery increased the distances between the third cervical vertebrae and the menton 11.7+/-9.1 mm and the third cervical vertebrae and hyoid 3.2+/-3.9 mm, and remained stable. The distance from the hyoid to the mandibular plane decreased during surgery (-3.8+/-5.8 mm) and after surgery (-2.5+/-5.2 mm). Maxillo-mandibular advancement with counter-clockwise rotation and TMJ reconstruction with total joint prostheses produced immediate increase in oropharyngeal airway dimension, which was influenced by long-term changes in head posture but remained stable over the follow-up period. PMID:19135866

  1. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Not Available

    1992-12-31

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  2. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993

    SciTech Connect

    Not Available

    1993-09-01

    Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

  3. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Joint, Vertical Cross Bracing End Detail - Ceylon Covered Bridge, Limberlost Park, spanning Wabash River at County Road 900 South, Geneva, Adams County, IN

  4. THE VERTICAL

    NASA Technical Reports Server (NTRS)

    Albert, Stephen L.; Spencer, Jeffrey B.

    1994-01-01

    'THE VERTICAL' computer keyboard is designed to address critical factors which contribute to Repetitive Motion Injuries (RMI) (including Carpal Tunnel Syndrome) in association with computer keyboard usage. This keyboard splits the standard QWERTY design into two halves and positions each half 90 degrees from the desk. In order to access a computer correctly. 'THE VERTICAL' requires users to position their bodies in optimal alignment with the keyboard. The orthopaedically neutral forearm position (with hands palms-in and thumbs-up) reduces nerve compression in the forearm. The vertically arranged keypad halves ameliorate onset occurrence of keyboard-associated RMI. By utilizing visually-reference mirrored mylar surfaces adjustable to the user's eye, the user is able to readily reference any key indicia (reversed) just as they would on a conventional keyboard. Transverse adjustability substantially reduces cumulative musculoskeletal discomfort in the shoulders. 'THE VERTICAL' eliminates the need for an exterior mouse by offering a convenient finger-accessible curser control while the hands remain in the vertically neutral position. The potential commercial application for 'THE VERTICAL' is enormous since the product can effect every person who uses a computer anywhere in the world. Employers and their insurance carriers are spending hundreds of millions of dollars per year as a result of RMI. This keyboard will reduce the risk.

  5. Development of ITER Divertor Vertical Target with Annular Flow Concept - II: Development of Brazing Technique for CFC/CuCrZr Joint and Heating Test of Large-Scale Mock-Up

    SciTech Connect

    Ezato, K.; Dairaku, M.; Taniguchi, M.; Sato, K.; Suzuki, S.; Akiba, M.; Ibbott, C.; Tivey, R.

    2004-12-15

    The first fabrication and heating test of a large-scale carbon-fiber-composite (CFC) monoblock divertor mock-up using an annular flow concept has been performed to demonstrate its manufacturability and thermomechanical performance. This mock-up is based on the design of the lower part of the vertical target of the International Thermonuclear Experimental Reactor (ITER) divertor adapted for the annular flow concept. The annular cooling tube consists of two concentric tubes: an outer tube made of CuCrZr and an inner stainless steel tube with a twisted external fin. Prior to the fabrication of the mock-up, brazed joint tests between the CFC monoblock and the CuCrZr tube have been carried out to find the suitable heat treatment mitigating loss of the high mechanical strength of the CuCrZr material. A basic mechanical examination of CuCrZr undergoing the brazing heat treatment and finite element method analyses are also performed to support the design of the mock-up. High heat flux tests on the large-scale divertor mock-up have been performed in an ion beam facility. The mock-up has successfully withstood more than 1000 thermal cycles of 20 MW/m{sup 2} for 15 s and 3000 cycles of >10 MW/m{sup 2} for 15 s, which simulates the heat load condition of the ITER divertor. No degradation of the thermal performance of the mock-up has been observed throughout the thermal cycle test although in the tile with exposure to the heat flux of 20 MW/m{sup 2}, the erosion depth has been measured as 5.8 and 8.8 mm at the 300th and 500th cycles.

  6. ADVANCED BIOMASS REBURNING FOR HIGH EFFICIENCY NOx CONTROL AND BIOMASS REBURNING - MODELING/ENGINEERING STUDIES JOINT FINAL REPORT

    SciTech Connect

    Vladimir M. Zamansky; Mark S. Sheldon; Vitali V. Lissianski; Peter M. Maly; David K. Moyeda; Antonio Marquez; W. Randall Seeker

    2000-10-01

    This report presents results of studies under a Phase II SBIR program funded by the U. S. Department of Agriculture, and a closely coordinated project sponsored by the DOE National Energy Technology Laboratory (NETL, formerly FETC). The overall Phase II objective of the SBIR project is to experimentally optimize the biomass reburning technologies and conduct engineering design studies needed for process demonstration at full scale. The DOE project addresses supporting issues for the process design including modeling activities, economic studies of biomass handling, and experimental evaluation of slagging and fouling. The performance of biomass has been examined in a 300 kW (1 x 10{sup 6} Btu/hr) Boiler Simulator Facility under different experimental conditions. Fuels under investigation include furniture waste, willow wood and walnut shells. Tests showed that furniture pellets and walnut shells provided similar NO{sub x} control as that of natural gas in basic reburning at low heat inputs. Maximum NO{sub x} reduction achieved with walnut shell and furniture pellets was 65% and 58% respectively. Willow wood provided a maximum NO{sub x} reduction of 50% and was no better than natural gas at any condition tested. The efficiency of biomass increases when N-agent is injected into reburning and/or burnout zones, or along with OFA (Advanced Reburning). Co-injection of Na{sub 2}CO{sub 3} with N-agent further increases efficiency of NO{sub x} reduction. Maximum NO{sub x} reduction achieved with furniture pellets and willow wood in Advanced Reburning was 83% and 78% respectively. All combustion experiments of the Phase II project have been completed. All objectives of the experimental tasks were successfully met. The kinetic model of biomass reburning has been developed. Model agrees with experimental data for a wide range of initial conditions and thus correctly represents main features of the reburning process. Modeling suggests that the most important factors that provide

  7. Navigating Joint Projects in Telephone Conversations

    ERIC Educational Resources Information Center

    Bangerter, Adrian; Clark, Herbert H.; Katz, Anna R.

    2004-01-01

    Conversation coordinates joint activities and the joint projects that compose them. Participants coordinate (1) vertical transitions on entering and exiting joint projects; and (2) horizontal transitions in continuing within them. Transitions are coordinated using project markers such as uh-huh, yeah, right, and okay. In the authors' proposal,…

  8. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  9. Pre-Launch Characterization of the Advanced Technology Microwave Sounder (ATMS) on the Joint Polar Satellite System-1 Satellite (JPSS-1)

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Leslie, Vince; Lyu, Joseph; Smith, Craig; McCormick, Lisa; Anderson, Kent

    2016-04-01

    The Advanced Technology Microwave Sounder (ATMS) is the newest generation of microwave sounder in the international fleet of polar-orbiting weather satellites, replacing the Advanced Microwave Sounding Unit (AMSU) which first entered service in 1998. The first ATMS was launched aboard the Suomi NPP (S-NPP) satellite in late 2011. The second ATMS is manifested on the Joint Polar Satellite System-1 Satellite (JPSS-1). ATMS provides 22 channels of temperature and humidity sounding observations over a frequency range from 23 to 183 GHz. These microwave soundings provide the highest impact data ingested by operational Numerical Weather Prediction (NWP) models, and are the most critical of the polar-orbiting satellite observations, particularly because microwave sensing can penetrate clouds. This paper will present performance characterizations from pre-launch calibration measurements of the JPSS-1 ATMS just completed in December, 2015. The measurements were conducted in a thermal vacuum chamber with blackbody targets simulating cold space, ambient, and a variable Earth scene. They represent the best opportunity for calibration characterization of the instrument since the environment can be carefully controlled. We will present characterizations of the sensitivity (NEDT), accuracy, nonlinearity, noise spectral characteristics, gain stability, repeatability, and inter-channel correlation. An estimate of expected "striping" will be presented, and a discussion of reflector emissivity effects will also be provided. Comparisons will be made with the S-NPP flight unit. Finally, we will describe planned on-orbit characterizations - such as pitch and roll maneuvers - that will further improve both the measurement quality and the understanding of various error contributions.

  10. Performance Enhancement of a Full-Scale Vertical Tail Model Equipped with Active Flow Control

    NASA Technical Reports Server (NTRS)

    Whalen, Edward A.; Lacy, Douglas; Lin, John C.; Andino, Marlyn Y.; Washburn, Anthony E.; Graff, Emilio; Wygnanski, Israel J.

    2015-01-01

    This paper describes wind tunnel test results from a joint NASA/Boeing research effort to advance active flow control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jet actuators was tested at the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel (40x80) at NASA Ames Research Center. The model was tested at a nominal airspeed of 100 knots and across rudder deflections and sideslip angles that covered the vertical tail flight envelope. A successful demonstration of AFC-enhanced vertical tail technology was achieved. A 31- actuator configuration significantly increased side force (by greater than 20%) at a maximum rudder deflection of 30deg. The successful demonstration of this application has cleared the way for a flight demonstration on the Boeing 757 ecoDemonstrator in 2015.

  11. Hypermobile joints

    MedlinePlus

    ... too far. In children with hypermobility syndrome, those ligaments are loose or weak. This may lead to: Arthritis, which may develop over time Dislocated joints, which is a separation of two bones where they meet at a joint Sprains and strains Children with hypermobile joints also often have flat ...

  12. Joint Disorders

    MedlinePlus

    A joint is where two or more bones come together, like the knee, hip, elbow, or shoulder. Joints can be damaged by many types of injuries or diseases, including Arthritis - inflammation of a joint. It causes pain, stiffness, and swelling. Over time, ...

  13. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    NASA Astrophysics Data System (ADS)

    Johnson, K.; Kim, R.; Echeverry, J.

    The Joint Space Operations Center (JSpOC) is a command and control center focused on executing the Space Control mission of the Joint Functional Component Command for Space (JFCC-SPACE) to ensure freedom of action of United States (US) space assets, while preventing adversary use of space against the US. To accomplish this, the JSpOC tasks a network of space surveillance sensors to collect Space Situational Awareness (SSA) data on resident space objects (RSOs) in near earth and deep space orbits. SSA involves the ingestion of data sources and use of algorithms and tools to build, maintain, and disseminate situational awareness of RSOs in space. On the heels of emergent and complex threats to space assets, the JSpOC's capabilities are limited by legacy systems and CONOPs. The JSpOC Mission System (JMS) aims to consolidate SSA efforts across US agencies, international partners, and commercial partners. The JMS program is intended to deliver a modern service-oriented architecture (SOA) based infrastructure with increased process automation and improved tools to remove the current barriers to JSpOC operations. JMS has been partitioned into several developmental increments. Increment 1, completed and operational in early 2013, and Increment 2, which is expected to be completed in 2016, will replace the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities. In 2017 JMS Increment 3 will continue to provide additional SSA and C2 capabilities that will require development of new applications and procedures as well as the exploitation of new data sources. Most importantly, Increment 3 is uniquely postured to evolve the JSpOC into the centralized and authoritative source for all Space Control applications by using its SOA to aggregate information and capabilities from across the community. To achieve this goal, Scitor Corporation has supported the JMS Program Office as it has entered into a partnership with AFRL/RD (Directed

  14. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    NASA Astrophysics Data System (ADS)

    Johnson, K.; Kim, R.; Echeverry, J.

    The Joint Space Operations Center (JSpOC) is a command and control center focused on executing the Space Control mission of the Joint Functional Component Command for Space (JFCC-SPACE) to ensure freedom of action of United States (US) space assets, while preventing adversary use of space against the US. To accomplish this, the JSpOC tasks a network of space surveillance sensors to collect Space Situational Awareness (SSA) data on resident space objects (RSOs) in near earth and deep space orbits. SSA involves the ingestion of data sources and use of algorithms and tools to build, maintain, and disseminate situational awareness of RSOs in space. On the heels of emergent and complex threats to space assets, the JSpOC's capabilities are limited by legacy systems and CONOPs. The JSpOC Mission System (JMS) aims to consolidate SSA efforts across US agencies, international partners, and commercial partners. The JMS program is intended to deliver a modern service-oriented architecture (SOA) based infrastructure with increased process automation and improved tools to remove the current barriers to JSpOC operations. JMS has been partitioned into several developmental increments. Increment 1, completed and operational in early 2013, and Increment 2, which is expected to be completed in 2016, will replace the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities. In 2017 JMS Increment 3 will continue to provide additional SSA and C2 capabilities that will require development of new applications and procedures as well as the exploitation of new data sources. Most importantly, Increment 3 is uniquely postured to evolve the JSpOC into the centralized and authoritative source for all Space Control applications by using its SOA to aggregate information and capabilities from across the community. To achieve this goal, Scitor Corporation has supported the JMS Program Office as it has entered into a partnership with AFRL/RD (Directed

  15. Disorders of the distal radioulnar joint.

    PubMed

    Houdek, Matthew T; Wagner, Eric R; Moran, Steven L; Berger, Richard A

    2015-01-01

    The distal radioulnar joint is responsible for stable forearm rotation. Injury to this joint can occur following a variety of mechanisms, including wrist fractures, ligamentous damage, or degenerative wear. Accurate diagnosis requires a clear understanding of the anatomy and mechanics of the ulnar aspect of the wrist. Injuries can be divided into three major categories for diagnostic purposes, and these include pain without joint instability, pain with joint instability, and joint arthritis. New advancements in imaging and surgical technique can allow for earlier detection of injuries, potentially preserving joint function. In this article, the authors review the pertinent anatomy, biomechanics, and major abnormality involving the distal radioulnar joint. PMID:25285686

  16. Effect of formation and state of interface on joint strength in friction stir spot welding for advanced high strength steel sheets

    NASA Astrophysics Data System (ADS)

    Taniguchi, Koichi; Matsushita, Muneo; Ikeda, Rinsei; Oi, Kenji

    2014-08-01

    The tensile shear strength and cross tension strength of friction stir spot welded joints were evaluated in the cases of lap joints of 270 N/mm2 grade and 980 N/mm2 grade cold rolled steel sheets with respect to the stir zone area, hardness distribution, and interface condition between the sheets. The results suggested that both the tensile shear strength and cross tension strength were based on the stir zone area and its hardness in both grades of steel. The "hook" shape of the interface also affected the joint strength. However, the joining that occurred across the interfaces had a significant influence on the value of the joint strength in the case of the 270 N/mm2 grade steel.

  17. Segmental and Kinetic Contributions in Vertical Jumps Performed with and without an Arm Swing

    ERIC Educational Resources Information Center

    Feltner, Michael E.; Bishop, Elijah J.; Perez, Cassandra M.

    2004-01-01

    To determine the contributions of the motions of the body segments to the vertical ground reaction force ([F.sub.z]), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm…

  18. Ceramic joints

    DOEpatents

    Miller, Bradley J.; Patten, Jr., Donald O.

    1991-01-01

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  19. Characteristics of temporomandibular joint in patients with temporomandibular joint complaint

    PubMed Central

    Li, Yanfeng; Guo, Xiaoqian; Sun, Xiaoxue; Wang, Ning; Xie, Min; Zhang, Jianqiang; Lv, Yuan; Han, Weili; Hu, Min; Liu, Hongchen

    2015-01-01

    Introduction: This study was to investigate whether there was statistical difference between the bilateral temporomandibular joint (TMJ) in patients with unilateral TMJ pain or joint sounds, using cone beam computed tomography (CBCT). Methods: TMJ CBCT images of 123 cases were used to preliminarily determine the indicators suitable for the measuring method. TMJ CBCT image reconstruction was performed and 19 indicators were measured. Thirty-six cases without TMJ complaint served as controls. The comparison of bilateral TMJs was analyzed by paired t-test to find out the indicators without statistical significance. Twenty-nine patients with unilateral TMJ pain or joint sounds who underwent CBCT at the hospital were enrolled for the comparative study. The measured values were analyzed by paired t-test to determine the indicators with statistical difference. Results: In the control group, only radius value of bilateral TMJ was different statistically (P < 0.05). In the TMJ complaint group, the vertical 60° joint space of the bilateral TMJ was statistically different (P < 0.05) and the rest of the measured values showed no statistical difference. Conclusions: In the patients with unilateral TMJ pain or joint sounds, the vertical 60° joint space of the symptomatic side was significantly increased comparing with the asymptomatic side. PMID:26629112

  20. 32. VERTICAL / STRUT / UPPER CHORD DETAIL AT PINCONNECTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VERTICAL / STRUT / UPPER CHORD DETAIL AT PIN-CONNECTED EXPANSION JOINT BETWEEN CANTILEVER ARM AND SUSPENDED SPAN. VIEW TO NORTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  1. TOPICAL REVIEW: Recent advances in jointed quantum mechanics and molecular mechanics calculations of biological macromolecules: schemes and applications coupled to ab initio calculations

    NASA Astrophysics Data System (ADS)

    Hagiwara, Yohsuke; Tateno, Masaru

    2010-10-01

    We review the recent research on the functional mechanisms of biological macromolecules using theoretical methodologies coupled to ab initio quantum mechanical (QM) treatments of reaction centers in proteins and nucleic acids. Since in most cases such biological molecules are large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Instead, simulations that are jointed with molecular mechanics (MM) calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. Thus, we focus our attention on the methodologies/schemes and applications of jointed QM/MM calculations, and discuss the critical issues to be elucidated in biological macromolecular systems.

  2. Engineering design of vertical test stand cryostat

    SciTech Connect

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.; /Fermilab

    2011-03-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN{sub 2}) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface <1 {micro}T. Thermal analysis for LN{sub 2} shield has been performed to check the effectiveness of LN{sub 2} cooling and for compliance with ASME piping code allowable stresses.

  3. Screw Placement and Osteoplasty Under Computed Tomographic-Fluoroscopic Guidance in a Case of Advanced Metastatic Destruction of the Iliosacral Joint

    SciTech Connect

    Trumm, Christoph Gregor; Rubenbauer, Bianca; Piltz, Stefan; Reiser, Maximilian F.; Hoffmann, Ralf-Thorsten

    2011-02-15

    We present a case of combined surgical screw placement and osteoplasty guided by computed tomography-fluoroscopy (CTF) in a 68-year-old man with unilateral osteolytic destruction and a pathological fracture of the iliosacral joint due to a metastasis from renal cell carcinoma. The patient experienced intractable lower back pain that was refractory to analgesia. After transarterial particle and coil embolization of the tumor-feeding vessels in the angiography unit, the procedure was performed under general anesthesia by an interdisciplinary team of interventional radiologists and trauma surgeons. Under intermittent single-shot CTF, two K wires were inserted into the left iliosacral joint from a lateral transiliac approach at the S1 level followed by two self-tapping surgical screws. Continuous CTF was used for monitoring of the subsequent polymethylmethacrylate injection through two vertebroplasty cannulas for further stabilization of the screw threads within the osteolytic sacral ala. Both the screw placement and cement injection were successful, with no complications occurring during or after the procedure. With additional nonsteroidal anti-inflammatory and opioid medication, the patient reported a marked decrease in his lower back pain and was able to move independently again at the 3-month follow-up assessment. In our patient with intolerable back pain due to tumor destruction and consequent pathological fracture of the iliosacral joint, CTF-guided iliosacral screw placement combined with osteoplasty was successful with respect to joint stabilization and a reduction in the need for analgesic therapy.

  4. Temporomandibular Joint, Closed

    MedlinePlus

    ... Oral Health > The Temporomandibular Joint, Closed The Temporomandibular Joint, Closed Main Content Title: The Temporomandibular Joint, Closed Description: The temporomandibular joint connects the lower ...

  5. Compliant joint

    NASA Technical Reports Server (NTRS)

    Eklund, Wayne D. (Inventor); Kerley, James J. (Inventor)

    1990-01-01

    A compliant joint is provided for prosthetic and robotic devices which permits rotation in three different planes. The joint provides for the controlled use of cable under motion. Perpendicular outer mounting frames are joined by swaged cables that interlock at a center block. Ball bearings allow for the free rotation of the second mounting frame relative to the first mounting frame within a predetermined angular rotation that is controlled by two stop devices. The cables allow for compliance at the stops and the cables allow for compliance in six degrees of freedom enabling the duplication or simulation of the rotational movement and flexibility of a natural hip or knee joint, as well as the simulation of a joint designed for a specific robotic component for predetermined design parameters.

  6. Joint pain

    MedlinePlus

    ... or conditions. It may be linked to arthritis , bursitis , and muscle pain . No matter what causes it, ... Autoimmune diseases such as rheumatoid arthritis and lupus Bursitis Chondromalacia patellae Crystals in the joint: gout (especially ...

  7. Joint Problems

    MedlinePlus

    ... ankles and toes. Other types of arthritis include gout or pseudogout. Sometimes, there is a mechanical problem ... for more information on osteoarthritis, rheumatoid arthritis and gout. How Common are Joint Problems? Osteoarthritis, which affects ...

  8. Arthritis at the shoulder joint.

    PubMed

    Sankaye, Prashant; Ostlere, Simon

    2015-07-01

    The shoulder is a complex joint with numerous structures contributing to mobility and stability. Shoulder pain is a common clinical complaint that may be due to a wide spectrum of disorders including rotator cuff disease, instability, and arthropathy. Primary osteoarthritis of the shoulder joint is uncommon because it is a non-weight-bearing joint. Significant osteoarthritis of the glenohumeral joint is unusual in the absence of trauma, and the detection of advanced degenerative changes in patients without a known history of trauma should alert the clinician to search for other disorders. This article reviews the pathogenesis, clinical manifestations, and key imaging findings of the common categories of the arthritis affecting the glenohumeral joint. PMID:26021591

  9. The impact of strain, bedding plane friction and overburden pressure on joint spacing

    NASA Astrophysics Data System (ADS)

    Arslan, Arzu; Schöpfer, Martin P. J.; Walsh, John J.; Childs, Conrad

    2010-05-01

    In layered sequences, rock joints usually best develop within the more brittle layers and commonly display a regular spacing that scales with layer thickness. A variety of conceptual and mechanical models have been advanced to explain this relationship. A limitation of previous approaches, however, is that fracture initiation and associated bedding-parallel slip are not explicitly simulated; instead, fractures were predefined and interfaces were welded. To surmount this problem, we have modelled the formation and growth of joints in layered sequences by using the two-dimensional Distinct Element Method (DEM) as implemented in the Particle Flow Code (PFC-2D). In PFC-2D, rock is represented by an assemblage of circular particles that are bonded at particle-particle contacts, with failure occurring when either the tensile or shear strength of a bond is exceeded. Model materials with different rheological properties can be generated by calibrating the results of synthetic mechanical test procedures with those of real rocks. Our simple models of jointing comprise a central brittle layer with high Young's modulus, which is embedded in a low Young's modulus matrix. The interfaces between the layers (i.e. bedding planes) are defined by ‘smooth joint' contacts, a modelling feature that eliminates interparticle bumpiness and associated interlocking friction. Consequently, this feature allows the user to assign macroscopic properties such as friction along layer interfaces in a controlled manner. Layer parallel extension is applied by assigning a velocity to particles at the lateral boundaries of the model while maintaining a constant vertical confining pressure. Models were extended until joint saturation was reached in the central layer. We thereby explored the impact of strain, bedding plane friction and overburden pressure on joint spacing. The modelling revealed that joint spacing decreases as strain, bedding plane friction and overburden pressure are increased

  10. Dissociated Vertical Deviation

    MedlinePlus

    ... Eye Terms Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Dissociated Vertical Deviation En Español Read in Chinese What is Dissociated Vertical Deviation (DVD)? DVD is ...

  11. Vertical Map Storage.

    ERIC Educational Resources Information Center

    Perry, Joanne M.

    1982-01-01

    Discusses the superiority of vertical filing of maps in compressor-style vertical units over horizontal filing in drawers, emphasizing such factors as physical protection of the collection, ease of filing and retrieval, and efficient use of space. Disadvantages of vertical filing are also reviewed. (Author/JL)

  12. Joint lubrication.

    PubMed

    McCutchen, C W

    1983-01-01

    The fine-pored, easily compressed articular cartilage provides animal joints with self-pressurized hydrostatic (weeping) lubrication. The solid skeletons of the cartilages press against each other, but so lightly that their rubbing is lubricated successfully by synovial fluid--a boundary lubricant too weak to lubricate ordinary bearings. PMID:6317095

  13. Small Joint Arthroscopy in the Foot.

    PubMed

    Reeves, Christopher L; Shane, Amber M; Payne, Trevor; Cavins, Zac

    2016-10-01

    Arthroscopy has advanced in the foot and ankle realm, leading to new innovative techniques designed toward treatment of small joint abnormality. A range of abnormalities that are currently widespread for arthroscopic treatment in larger joints continues to be translated to congruent modalities in the small joints. Small joint arthroscopy offers relief from foot ailments with a noninvasive element afforded by arthroscopy. Early studies have found comparable results from arthroscopic soft tissue procedures as well as arthrodesis of the small joints when compared with the standard open approach. PMID:27599441

  14. Human temporomandibular joint morphogenesis.

    PubMed

    Carini, Francesco; Scardina, Giuseppe Alessandro; Caradonna, Carola; Messina, Pietro; Valenza, Vincenzo

    2007-01-01

    Temporomandibular joint morphogenesis was studied. Ranging in age of fetuses examined was from 6 to14 weeks' gestation. Our results showed the condyle so first element that appear between 6 degrees and 8 degrees week (condylar blastema). After a week appear temporal elements. Disk appear at the same time of glenoid blastema and it reaches an advanced differentation before of the condyle and temporal element, so these don't effect machanical compression on mesenchyma where we find the disk. So we think that the disk result of genetic expression and it isn't the result of mechanical compression. The inferior joint cavity appear to 12 week. The superior joint cavity appear to 13-14 week. In conclusion, the appearance of the condyle is the first event during TMJ morphogenesis, with its initial bud, in form of a mesenchymal thickening, becoming detectable between the sixth and eight week of development, when all the large joints of the limbs are already well defined. PMID:18333411

  15. Vertical Tears of the Lateral Meniscus

    PubMed Central

    Goyal, Kanu S.; Pan, Tiffany J.; Tran, Diane; Dumpe, Samuel C.; Zhang, Xudong; Harner, Christopher D.

    2014-01-01

    Background: Lateral meniscal tears are often seen with acute anterior cruciate ligament (ACL) injury and may be left in situ, repaired, or treated with meniscectomy. Clinical studies have shown good outcomes with vertical tears left in situ and poor outcomes following meniscectomy. However, clinically relevant studies are needed to establish a biomechanical foundation for treatment of these tears, particularly regarding the effects of meniscectomy. Purpose: To compare tibiofemoral joint mechanics following vertical lateral meniscal tears and meniscectomies. We hypothesized that a peripheral vertical tear of the lateral meniscus would alter joint mechanics, increasing contact pressure and area, and that more drastic effects would be seen following meniscectomy, at higher knee flexion angles, and with increased loads. Study Design: Controlled laboratory study. Methods: Ten fresh-frozen cadaveric knees (average age, 55 ± 12 years) were tested with 5 lateral meniscus states: intact, short vertical tear, extended vertical tear, posterior horn partial meniscectomy (rim intact), and posterior horn subtotal meniscectomy (rim excised). The specimens were loaded axially at knee flexion angles of 0°, 30°, and 60°, and musculotendinous forces were applied, simulating a 2-legged squat. Intra-articular contact pressures were measured using pressure-sensitive Fuji film. Kinematic data were acquired through digitization of fiducial markers. Results: Vertical tears did not cause a significant change in contact pressure or area. Partial meniscectomy increased maximum contact pressures in the lateral compartment at 30° and 60° from 5.3 MPa to 7.2 MPa and 7.6 MPa, respectively (P = .02, P = .007). Subtotal meniscectomy (8.4 MPa) significantly increased contact pressure compared with partial meniscectomy (7.6 MPa) at 60° (P = .04). Both meniscectomy states significantly increased contact pressures with increasing flexion from 0° to 60° (P < .001, P < .001). Conclusion

  16. Vertical bounce of two vertically aligned balls

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2007-11-01

    When a tennis ball rests on top of a basketball and both drop to the floor together, the tennis ball is projected vertically at high speed. A mass-spring model of the impact, as well as air track data, suggest that the tennis ball should be projected at relatively low speed. Measurements of the forces on each ball and the bounce of vertically aligned superballs are used to resolve the discrepancy.

  17. Scientific and educational advancements across a socio-economic gradient: Experiences from a joint USA-South Africa project on water resources modeling

    NASA Astrophysics Data System (ADS)

    Wagener, T.; Hughes, D.

    2011-12-01

    One might be tempted to assume that joint projects between partners in developed and developing countries follow a one-way path in which scientific knowledge is passed on from developed to less developed regions of the world. However, experience shows that projects of this type are generally neither successful nor sustainable unless a strong two-way exchange can be established. We present results of a multi-year collaboration focused on establishing a water resources modeling framework for South Africa that combines local knowledge with state-of-the-art modeling strategies to improve regional decision making. The result is a modeling framework that allows for the use of diverse data sources to reduce predictive uncertainty in a data sparse environment with limited local resources. We will present scientific study results, personal experience from the interaction and a broader outlook on scientific and educational needs for hydrology in Africa.

  18. Vertical axis wind turbines

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  19. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  20. Jointly Sponsored Research Program

    SciTech Connect

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  1. Joint BioEnergy Institute

    SciTech Connect

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2015-06-15

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  2. Joint Genome Institute's Automation Approach and History

    SciTech Connect

    Roberts, Simon

    2006-07-05

    Department of Energy/Joint Genome Institute (DOE/JGI) collaborates with DOE national laboratories and community users, to advance genome science in support of the DOE missions of clean bio-energy, carbon cycling, and bioremediation.

  3. Offset vertical radar profiling

    USGS Publications Warehouse

    Witten, A.; Lane, J.

    2003-01-01

    Diffraction tomography imaging was applied to VRP data acquired by vertically moving a receiving antenna in a number of wells. This procedure simulated a vertical downhole receiver array. Similarly, a transmitting antenna was sequentially moved along a series of radial lines extending outward from the receiver wells. This provided a sequence of multistatic data sets and, from each data set, a two-dimensional vertical cross-sectional image of spatial variations in wave speed was reconstructed.

  4. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (ESTSC)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  5. Tendon action of two-joint muscles: transfer of mechanical energy between joints during jumping, landing, and running.

    PubMed

    Prilutsky, B I; Zatsiorsky, V M

    1994-01-01

    The amount of mechanical energy transferred by two-joint muscles between leg joints during squat vertical jumps, during landings after jumping down from a height of 0.5 m, and during jogging were evaluated experimentally. The experiments were conducted on five healthy subjects (body height, 1.68-1.86 m; and mass, 64-82 kg). The coordinates of the markers on the body and the ground reactions were recorded by optical methods and a force platform, respectively. By solving the inverse problem of dynamics for the two-dimensional, four-link model of a leg with eight muscles, the power developed by the joint (net muscular) moments and the power developed by each muscle were determined. The energy transferred by two-joint muscles from and to each joint was determined as a result of the time integration of the difference between the power developed at the joint by the joint moment, and the total power of the muscles serving a given joint. It was shown that during a squat vertical jump and in the push-off phase during running, the two-joint muscles (rectus femoris and gastrocnemius) transfer mechanical energy from the proximal joints of the leg to the distal ones. At landing and in the shock-absorbing phase during running, the two-joint muscles transfer energy from the distal to proximal joints. The maximum amount of energy transferred from the proximal joints to distal ones was equal to 178.6 +/- 45.7 J (97.1 +/- 27.2% of the work done by the joint moment at the hip joint) at the squat vertical jump. The maximum amount of energy transferred from the distal to proximal joints was equal to 18.6 +/- 4.2 J (38.5 +/- 36.4% of work done by the joint moment at the ankle joint) at landing. The conclusion was made that the one-joint muscles of the proximal links compensate for the deficiency in work production of the distal one-joint muscles by the distribution of mechanical energy between joints through the two-joint muscles. During the push-off phase, the muscles of the proximal

  6. Nano-scale topography of bearing surface in advanced alumina/zirconia hip joint before and after severe exposure in water vapor environment.

    PubMed

    Pezzotti, Giuseppe; Saito, Takuma; Padeletti, Giuseppina; Cossari, Pierluigi; Yamamoto, Kengo

    2010-06-01

    The aim of this study was to perform a surface morphology assessment with nanometer scale resolution on femoral heads made of an advanced zirconia toughened alumina (ZTA) composite. Femoral heads were characterized to a degree of statistical accuracy in the as-received state and after exposures up to 100 h in severe vapor-moist environment. Surface screening was made using an atomic force microscope (AFM). Scanning was systematically repeated on portions of surface as large as several tens of micrometers, randomly selected on the head surface, to achieve sufficient statistical reliability without lowering the nanometer-scale spatial resolution of the roughness measurement. No significant difference was found in the recorded values of surface roughness after environmental exposure (at 134 degrees C, under 2 bar), which was always comparable to that of the as-received head. Surface roughness safely lay <10 nm after environmental exposures up to 100 h, which corresponded to an exposure time in vivo of several human lifetimes (i.e., according to an experimentally derived thermal activation energy). In addition, the roughness results were significantly (about one order of magnitude) lower as compared to those recorded on femoral heads made of monolithic zirconia tested under the same conditions. PMID:20058275

  7. Study of vertical breakwater reliability based on copulas

    NASA Astrophysics Data System (ADS)

    Dong, Sheng; Li, Jingjing; Li, Xue; Wei, Yong

    2016-04-01

    The reliability of a vertical breakwater is calculated using direct integration methods based on joint density functions. The horizontal and uplifting wave forces on the vertical breakwater can be well fitted by the lognormal and the Gumbel distributions, respectively. The joint distribution of the horizontal and uplifting wave forces is analyzed using different probabilistic distributions, including the bivariate logistic Gumbel distribution, the bivariate lognormal distribution, and three bivariate Archimedean copulas functions constructed with different marginal distributions simultaneously. We use the fully nested copulas to construct multivariate distributions taking into account related variables. Different goodness fitting tests are carried out to determine the best bivariate copula model for wave forces on a vertical breakwater. We show that a bivariate model constructed by Frank copula gives the best reliability analysis, using marginal distributions of Gumbel and lognormal to account for uplifting pressure and horizontal wave force on a vertical breakwater, respectively. The results show that failure probability of the vertical breakwater calculated by multivariate density function is comparable to those by the Joint Committee on Structural Safety methods. As copulas are suitable for constructing a bivariate or multivariate joint distribution, they have great potential in reliability analysis for other coastal structures.

  8. [Condylar fracture and temporomandibular joint ankylosis].

    PubMed

    Zhang, Yi

    2016-03-01

    This article summarized the advances in treatment and research of temporomandibular joint surgery in the last 5 years which was presented in "The 2nd Condyle Fracture and Temporomandibular Joint Ankylosis Symposium". The content includes 5 parts: non-surgical treatment of children condyle fracture and long-term follow-up, the improvement of operative approach for condyle fracture and key techniques, the importance and the method for the simultanesous reduction of disc in condylar fracture treatment, the development of traumatic temporomandibular joint ankylosis similar to hypertrophic non-union and the improved safety and accuracy by applying digital surgery in joint surgery. PMID:26980648

  9. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    NASA Astrophysics Data System (ADS)

    Runco, A.; Echeverry, J.; Kim, R.; Sabol, C.; Zetocha, P.; Murray-Krezan, J.

    2014-09-01

    The JSpOC Mission System is a modern service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA). The JMS program has already delivered Increment 1 in April 2013 as initial capability to operations. The programs current focus, Increment 2, will be completed by 2016 and replace the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities. Post 2016, JMS Increment 3 will continue to provide additional SSA and C2 capabilities that will require development of new applications and procedures as well as the exploitation of new data sources with more agility. In 2012, the JMS Program Office entered into a partnership with AFRL/RD (Directed Energy) and AFRL/RV (Space Vehicles) to create the Advanced Research, Collaboration, and Application Development Environment (ARCADE). The purpose of the ARCADE is to: (1) serve as a centralized testbed for all research and development (R&D) activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. AFRL/RV and AFRL/RD have created development environments at both unclassified and classified levels that together allow developers to develop applications and work with data sources. The unclassified ARCADE utilizes the Maui high performance computing (HPC) Portal, and can be accessed using a CAC or Kerberos using Yubikey. This environment gives developers a sandbox

  10. Vertical sleeve gastrectomy

    MedlinePlus

    ... smaller stomach is about the size of a banana. It limits the amount of food you can ... staples. This creates a long vertical tube or banana-shaped stomach. The surgery does not involve cutting ...

  11. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  12. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  13. Rheumatoid arthritis affecting temporomandibular joint

    PubMed Central

    Sodhi, Amandeep; Naik, Shobha; Pai, Anuradha; Anuradha, Ardra

    2015-01-01

    Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune inflammatory disorder that is characterized by joint inflammation, erosive properties and symmetric multiple joint involvement. Temporomandibular joint (TMJ) is very rare to be affected in the early phase of the disease, thus posing diagnostic challenges for the dentist. Conventional radiographs fail to show the early lesions due to its limitations. More recently cone-beam computed tomography (CBCT) has been found to diagnose the early degenerative changes of TMJ and hence aid in the diagnosis of the lesions more accurately. Our case highlights the involvement of TMJ in RA and the role of advanced imaging (CBCT) in diagnosing the bony changes in the early phase of the disease. PMID:25684928

  14. Spacesuit mobility knee joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1979-01-01

    Pressure suit mobility joints are for use in interconnecting adjacent segments of an hermetically sealed spacesuit in which low torques, low leakage and a high degree of reliability are required. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics and includes linkages which restrain the joint from longitudinal distension and includes a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  15. Spacesuit mobility joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1978-01-01

    Joints for use in interconnecting adjacent segments of an hermetically sealed spacesuit which have low torques, low leakage and a high degree of reliability are described. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics. Linkages which restrain the joint from longitudinal distension and a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli are featured. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  16. 31. DECK / VERTICAL / UPPER CHORD DETAIL OF THROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DECK / VERTICAL / UPPER CHORD DETAIL OF THROUGH TRUSS AT PIN-CONNECTED EXPANSION JOINT BETWEEN CANTILEVER ARM AND SUSPENDED SPAN. VIEW TO NORTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  17. The behavior of reinforced concrete knee joints under earthquake loads

    NASA Astrophysics Data System (ADS)

    Angelakos, Bill

    The poor performance of knee joint connections during recent earthquakes motivated a number of experimental investigations of knee joint behavior under reversed cyclic loading. In this work the knee joint design problem is studied through a collective evaluation of the available experimental results and analytical modeling. The objective is to identify the critical response variables controlling the mechanics of knee joints under earthquake loads and to quantify the influence they have on the strength and deformation capacity of the joint. A knee joint model is derived from simple mechanical constructs of equilibrium and compatibility. The parametric dependence of knee joint behavior is investigated for critical design parameters such as concrete strength, amounts and yield strengths of horizontal and vertical transverse reinforcement, and bond demand. Three different limiting equations are developed from the model limiting the joint shear resistance according with the three alternative modes of joint shear failure. These are: (i) yielding of horizontal and vertical transverse reinforcement, (ii) and (iii) yielding in either of the two principal reinforcing directions accompanied by crushing of the concrete in compression (here the softening influence of orthogonal tensile deformations is considered). For those test specimens from the experimental database that experienced a joint shear failure, the simple knee joint model predicts their joint shear capacity well. Consistent with observations from interior connections it is shown that anchorage of the main reinforcement in the knee joint region prevails as the determining factor of the response of the joint panel. In addition, the same basic physical model that describes the source of resistance in interior connections also applies to knee joints; truss action, and diagonal strut action. By favorably anchoring the beam and column bars it is possible to develop the joint shear strength which is associated with one

  18. Intermetallic Layers in Soldered Joints

    Energy Science and Technology Software Center (ESTSC)

    1998-12-10

    ILAG solves the one-dimensional partial differential equations describing the multiphase, multicomponent, solid-state diffusion-controlled growth of intermetallic layers in soldered joints. This software provides an analysis capability for materials researchers to examine intermetallic growth mechanisms in a wide variety of defense and commercial applications involving both traditional and advanced materials. ILAG calculates the interface positions of the layers, as well as the spatial distribution of constituent mass fractions, and outputs the results at user-prescribed simulation times.

  19. Propulsion systems for vertical flight aircraft

    SciTech Connect

    Brooks, A.

    1990-01-01

    The present evaluation of VTOL airframe/powerplant integration configurations combining high forward flight speed with safe and efficient vertical flight identifies six configurations that can be matched with one of three powerplant types: turboshafts, convertible-driveshaft lift fans, and gas-drive lift fans. The airframes configurations are (1) tilt-rotor, (2) folded tilt-rotor, (3) tilt-wing, (4) rotor wing/disk wing, (5) lift fan, and (6) variable-diameter rotor. Attention is given to the lift-fan VTOL configuration. The evaluation of these configurations has been conducted by both a joint NASA/DARPA program and the NASA High Speed Rotorcraft program. 7 refs.

  20. Vertical Seismoelectric Profiling

    NASA Astrophysics Data System (ADS)

    Araji, A.

    2011-12-01

    The seismoelectric method corresponds to the measurement of electromagnetic disturbances associated with the passage of seismic waves in a porous medium. The coupling is due to the existence of the electric double layer at the solid/water interfaces. We consider the case of vertical seismoelectric profiling in which we trigger a seismic source in a vertical borehole and measure the seismoelectric response on the surface. We aim to image hetrogeneities in that section of the subsurface by utilizing the seismoelectric sources created at interfaces. An iterative source localization inversion algorithm is used to achieve the imaging of interfaces.

  1. Advanced thermionic energy conversion: Joint highlights

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A theoretical model was used to study the effects of structured electrodes on converter I-V characteristics and results are given. An auxiliary-ion-source triode operated as a plasmatron was used for studying the enhancement distribution and magnetic effects, and results are reported. Design features of the high current-zero power (ZEPO) converter tests are given.

  2. Joint fluid Gram stain

    MedlinePlus

    Gram stain of joint fluid ... A sample of joint fluid is needed. The fluid sample is sent to a lab where a small drop is placed in a ... on how to prepare for the removal of joint fluid, see joint fluid aspiration .

  3. Vertical shaft windmill

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Inge, S. V., Jr. (Inventor)

    1983-01-01

    A vertical shaft has several equally spaced blades mounted. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  4. Aiding Vertical Guidance Understanding

    NASA Technical Reports Server (NTRS)

    Feary, Michael; McCrobie, Daniel; Alkin, Martin; Sherry, Lance; Polson, Peter; Palmer, Everett; McQuinn, Noreen

    1998-01-01

    A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance.

  5. Vertical Alignment and Collaboration.

    ERIC Educational Resources Information Center

    Bergman, Donna; Calzada, Lucio; LaPointe, Nancy; Lee, Audra; Sullivan, Lynn

    This study investigated whether vertical (grade level sequence) alignment of the curriculum in conjunction with teacher collaboration would enhance student performance on the Texas Assessment of Academic Skills (TAAS) test in south Texas school districts of various sizes. Surveys were mailed to the office of the superintendent of 47 school…

  6. Vertical beam emittance correction with independent component analysis measurement method

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    The storage ring performance is determined by the vertical beam size, that is by the vertical emittance, which is determined by two factors: the vertical dispersion generated in the bending magnets, and the coupling of the oscillations in the vertical and horizontal plane. In this dissertation, a detailed study of the main source of the vertical emittance and effective correction methods are presented. Simulations show that the vertical emittance is dominated by the contribution due to photon emission with non-zero vertical dispersion in bending magnets. An effective method to make vertical dispersion correction is to analysis the harmonics of the vertical dispersion and to eliminate the largest components of the stopband integral with harmonics near the vertical betatron tune. A stopband correction scheme is being implemented in which the excitation of skew-quadrupole correctors is determined from measurements of the resonance strengths (stopband widths) of major resonances. This method can correct the vertical dispersion function and the coupling strength simultaneously without identifying the source of errors. Studies show the coupling strength and the vertical dispersion can be controlled individually in the quadruple-bend achromatic low emittance lattice. Resulting improvement in machine performance is that the equilibrium vertical emittance is reduced by the factor of 7. Effective correction depends on precise beam measurements. Independent component analysis for BPM turn-by-turn data has shown the potential to be a useful tool for diagnostics and optics verification. The effectiveness of employing the independent component analysis (ICA) method to measure the vertical dispersion function is studied. This method for extracting the beta function and phase advance for the beam position monitors is presented. The accuracy of optical functions thus calculated is affected by different factors in a different manner. The most influent factors on the accuracy are

  7. Experimental Vertical Stability Studies for ITER Performance and Design Guidance

    SciTech Connect

    Humphreys, D A; Casper, T A; Eidietis, N; Ferrera, M; Gates, D A; Hutchinson, I H; Jackson, G L; Kolemen, E; Leuer, J A; Lister, J; LoDestro, L L; Meyer, W H; Pearlstein, L D; Sartori, F; Walker, M L; Welander, A S; Wolfe, S M

    2008-10-13

    Operating experimental devices have provided key inputs to the design process for ITER axisymmetric control. In particular, experiments have quantified controllability and robustness requirements in the presence of realistic noise and disturbance environments, which are difficult or impossible to characterize with modeling and simulation alone. This kind of information is particularly critical for ITER vertical control, which poses some of the highest demands on poloidal field system performance, since the consequences of loss of vertical control can be very severe. The present work describes results of multi-machine studies performed under a joint ITPA experiment on fundamental vertical control performance and controllability limits. We present experimental results from Alcator C-Mod, DIII-D, NSTX, TCV, and JET, along with analysis of these data to provide vertical control performance guidance to ITER. Useful metrics to quantify this control performance include the stability margin and maximum controllable vertical displacement. Theoretical analysis of the maximum controllable vertical displacement suggests effective approaches to improving performance in terms of this metric, with implications for ITER design modifications. Typical levels of noise in the vertical position measurement which can challenge the vertical control loop are assessed and analyzed.

  8. Butt Joint Tool Commissioning

    SciTech Connect

    Martovetsky, N N

    2007-12-06

    ITER Central Solenoid uses butt joints for connecting the pancakes in the CS module. The principles of the butt joining of the CICC were developed by the JAPT during CSMC project. The difference between the CSMC butt joint and the CS butt joint is that the CS butt joint is an in-line joint, while the CSMC is a double joint through a hairpin jumper. The CS butt joint has to carry the hoop load. The straight length of the joint is only 320 mm, and the vacuum chamber around the joint has to have a split in the clamp shell. These requirements are challenging. Fig.1 presents a CSMC joint, and Fig.2 shows a CS butt joint. The butt joint procedure was verified and demonstrated. The tool is capable of achieving all specified parameters. The vacuum in the end was a little higher than the target, which is not critical and readily correctable. We consider, tentatively that the procedure is established. Unexpectedly, we discover significant temperature nonuniformity in the joint cross section, which is not formally a violation of the specs, but is a point of concern. All testing parameters are recorded for QA purposes. We plan to modify the butt joining tool to improve its convenience of operation and provide all features necessary for production of butt joints by qualified personnel.

  9. Quantitative Radiological Diagnosis Of The Temporomandibular Joint

    NASA Astrophysics Data System (ADS)

    Jordan, Steven L.; Heffez, Leslie B.

    1989-05-01

    Recent impressive technological advances in imaging techniques for the human temporomandibular (tm) joint, and in enabling geometric algorithms have outpaced diagnostic analyses. The authors present a basis for systematic quantitative diagnoses that exploit the imaging advancements. A reference line, coordinate system, and transformations are described that are appropriate for tomography of the tm joint. These yield radiographic measurements (disk displacement) and observations (beaking of radiopaque dye and disk shape) that refine diagnostic classifications of anterior displacement of the condylar disk. The relevance of these techniques has been clinically confirmed. Additional geometric invariants and procedures are proposed for future clinical verification.

  10. 75 FR 24973 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Advanced Coatings...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... Coatings for Infrastructure Joint Venture Agreement Notice is hereby given that, on March 10, 2010... seq. (``the Act''), Advanced Coatings for Infrastructure Joint Venture Agreement (``Advanced Coatings... EMTEC, The Edison Materials Technology Center, Dayton, OH. The general area of Advanced...

  11. Vertical organic transistors

    NASA Astrophysics Data System (ADS)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-01

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  12. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Steel, Fiona

    2011-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains in a vertical channel. Grain heights are less than their diameter so the grains resemble antacid tablets, coins, or poker chips. These grains are allowed to fall through a vertical channel with a square cross section where the channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. Grains are sometimes observed to form jams, stable structures supported by the channel walls with no support beneath them. The probability of jam occurrence and the strength or robustness of a jam is effected by grain and channel sizes. We will present experimental measurements of the jamming probability and jam strength in this system and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  13. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; McCausland, Jeffrey; Steel, Fiona

    2010-03-01

    We experimentally study jamming of cylindrical grains in a vertical channel. The grains have a low aspect-ratio (height/diameter < 1) so their shape is like antacid tablets or poker chips. They are allowed to fall through a vertical channel with a square cross section. The channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. It is observed that grains sometimes jam in this apparatus. In a jam, grains form a stable structure from one side of the channel to the other with nothing beneath them. Jams may be strong enough to support additional grains above. The probability of a jam occurring is a function of the grain height and diameter. We will present experimental measurements of the jamming probability in this system and discuss the relationship of these results to other experiments and theories.

  14. Direct sagital computed tomography of the temporomandibular joint

    SciTech Connect

    Manzione, J.V.; Seltzer, S.E.; Katzberg, R.W.; Hammerschlag, S.B.; Chiango, B.F.

    1983-01-01

    Temporomandibular joint dysfunction is a common clinical problem that has been reported to affect 4%-28% of adults. Temporomandibular joint arthrography has shown that many of these patients have intraarticular abnormalities involving the meniscus. A noninvasive test that could demonstrate the meniscus as well as bony abnormalities of the joint would be an important advance. In an attempt to develop such a noninvasive test, we have performed direct sagittal computed tomography (CT) on cadaver temporomandibular joints and have correlated the images with anatomic sections. We are currently applying this technique clinically and report one representative example in which direct sagittal computed tomography of the temporomandibular joint accurately demonstrated an anteriorly displaced meniscus.

  15. [Joint morphogenesis and development of permanent articular cartilage].

    PubMed

    Ohta, Yoichi; Iwamoto, Masahiro

    2011-06-01

    During limb skeletogenesis progenitor mesenchymal cells aggregate at specific times and sites to form continuous precartilaginous condensations. With time the condensations undergo chondrogenesis and give rise to cartilaginous anlagen that exhibit incipient synovial joints at each end. A multitude of factors regulates subdivision into discrete skeletal elements and the formation, organization, morphogenesis and structure of the joints. This review summarizes recent advance of joint morphogenesis and actions of key players of joint and articular cartilage formation. In addition, we would like to discuss possible direction to translate basic research findings towards treatment of joint diseases. PMID:21628794

  16. Vertical bloch line memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-chuan (Inventor)

    1995-01-01

    A new read gate design for the vertical Bloch line (VBL) memory is disclosed which offers larger operating margin than the existing read gate designs. In the existing read gate designs, a current is applied to all the stripes. The stripes that contain a VBL pair are chopped, while the stripes that do not contain a VBL pair are not chopped. The information is then detected by inspecting the presence or absence of the bubble. The margin of the chopping current amplitude is very small, and sometimes non-existent. A new method of reading Vertical Bloch Line memory is also disclosed. Instead of using the wall chirality to separate the two binary states, the spatial deflection of the stripe head is used. Also disclosed herein is a compact memory which uses vertical Bloch line (VBL) memory technology for providing data storage. A three-dimensional arrangement in the form of stacks of VBL memory layers is used to achieve high volumetric storage density. High data transfer rate is achieved by operating all the layers in parallel. Using Hall effect sensing, and optical sensing via the Faraday effect to access the data from within the three-dimensional packages, an even higher data transfer rate can be achieved due to parallel operation within each layer.

  17. Simulating the Structural Response of a Preloaded Bolted Joint

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2008-01-01

    The present paper describes the structural analyses performed on a preloaded bolted-joint configuration. The joint modeled was comprised of two L-shaped structures connected together using a single bolt. Each L-shaped structure involved a vertical flat segment (or shell wall) welded to a horizontal segment (or flange). Parametric studies were performed using elasto-plastic, large-deformation nonlinear finite element analyses to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, washer-surface-bearing size, edge boundary conditions, joint segment length, and loading history. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted-joint response; however, the washer-bearing-surface size affected the response significantly.

  18. The Temporal Structure of Vertical Arm Movements

    PubMed Central

    Gaveau, Jérémie; Papaxanthis, Charalambos

    2011-01-01

    The present study investigates how the CNS deals with the omnipresent force of gravity during arm motor planning. Previous studies have reported direction-dependent kinematic differences in the vertical plane; notably, acceleration duration was greater during a downward than an upward arm movement. Although the analysis of acceleration and deceleration phases has permitted to explore the integration of gravity force, further investigation is necessary to conclude whether feedforward or feedback control processes are at the origin of this incorporation. We considered that a more detailed analysis of the temporal features of vertical arm movements could provide additional information about gravity force integration into the motor planning. Eight subjects performed single joint vertical arm movements (45° rotation around the shoulder joint) in two opposite directions (upwards and downwards) and at three different speeds (slow, natural and fast). We calculated different parameters of hand acceleration profiles: movement duration (MD), duration to peak acceleration (D PA), duration from peak acceleration to peak velocity (D PA-PV), duration from peak velocity to peak deceleration (D PV-PD), duration from peak deceleration to the movement end (D PD-End), acceleration duration (AD), deceleration duration (DD), peak acceleration (PA), peak velocity (PV), and peak deceleration (PD). While movement durations and amplitudes were similar for upward and downward movements, the temporal structure of acceleration profiles differed between the two directions. More specifically, subjects performed upward movements faster than downward movements; these direction-dependent asymmetries appeared early in the movement (i.e., before PA) and lasted until the moment of PD. Additionally, PA and PV were greater for upward than downward movements. Movement speed also changed the temporal structure of acceleration profiles. The effect of speed and direction on the form of acceleration

  19. Hip joint replacement - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100006.htm Hip joint replacement - series—Normal anatomy To use the sharing ... to slide 5 out of 5 Overview The hip joint is made up of two major parts: the ...

  20. Hip joint injection

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007633.htm Hip joint injection To use the sharing features on this ... injection is a shot of medicine into the hip joint. The medicine helps relieve pain and inflammation. It ...

  1. Hip joint replacement

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002975.htm Hip joint replacement To use the sharing features on this page, please enable JavaScript. Hip joint replacement is surgery to replace all or part ...

  2. Metatarsal phalangeal joint arthroscopy.

    PubMed

    Shonka, T E

    1991-01-01

    An overview of metatarsophalangeal joint (MPJ) arthroscopy is presented. Indications, technique, and perioperative management are discussed. The author believes it is the operative treatment of choice for various pathology encountered in this joint. PMID:2002183

  3. Culture - joint fluid

    MedlinePlus

    Joint fluid culture ... fungi, or viruses grow. This is called a culture. If these germs are detected, other tests may ... is no special preparation needed for the lab culture. How to prepare for the removal of joint ...

  4. Knee joint replacement - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100088.htm Knee joint replacement - series—Normal anatomy To use the sharing ... of 4 Overview The knee is a complex joint. It contains the distal end of the femur ( ...

  5. Knee joint replacement

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002974.htm Knee joint replacement To use the sharing features on this page, please enable JavaScript. Knee joint replacement is a surgery to replace a knee ...

  6. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  7. Temporomandibular Joint Dysfunction

    MedlinePlus

    The temporomandibular joint (TMJ) connects your jaw to the side of your head. When it works well, it enables you to ... For people with TMJ dysfunction, problems with the joint and muscles around it may cause Pain that ...

  8. Sacroiliac joint pain - aftercare

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000610.htm Sacroiliac joint pain - aftercare To use the sharing features on this page, please enable JavaScript. The sacroiliac joint (SIJ) is a term used to describe the ...

  9. [Vertical talus: current diagnostic and therapy options].

    PubMed

    Arbab, D; Rath, B; Quack, V; Lüring, C; Tingart, M

    2013-06-01

    Congenital vertical talus is a rare condition which presents as an isolated deformity or in association with neuromuscular and/or genetic disorders. Pathoanatomically the deformity shows a dislocated talonavicular and subtalar joint. The etiology and pathogenesis are still not finally determined although in some cases a genetic basis has been identified. The clinical picture is that of a flat, convex longitudinal arch with abduction and dorsiflexion of the forefoot and an elevated heel. Clinical diagnosis is confirmed by plain radiographic imaging. Congenital vertical talus should not be confused with other deformities of the foot, such as congenital oblique talus, flexible flat feet or pes calcaneus. The object of treatment of congenital vertical talus is to restore a normal anatomical relationship between the talus, navicular and calcaneus to obtain a pain-free foot. Major reconstructive surgery has been reported to be effective but is associated with substantial complications. Good early results of a modified non-operative treatment using serial manipulation, cast treatment and minimally invasive surgery may change therapeutic concepts. PMID:23685500

  10. Prevention of Periprosthetic Joint Infection

    PubMed Central

    Shahi, Alisina; Parvizi, Javad

    2015-01-01

    Prosthetic joint infection (PJI) is a calamitous complication with high morbidity and substantial cost. The reported incidence is low but it is probably underestimated due to the difficulty in diagnosis. PJI has challenged the orthopaedic community for several years and despite all the advances in this field, it is still a real concern with immense impact on patients, and the healthcare system. Eradication of infection can be very difficult. Therefore, prevention remains the ultimate goal. The medical community has executed many practices with the intention to prevent infection and treat it effectively when it encounters. Numerous factors can predispose patients to PJI. Identifying the host risk factors, patients’ health modification, proper wound care, and optimizing operative room environment remain some of the core fundamental steps that can help minimizing the overall incidence of infection. In this review we have summarized the effective prevention strategies along with the recommendations of a recent International Consensus Meeting on Surgical Site and Periprosthetic Joint Infection. PMID:26110171

  11. Adhesive joint and composites modeling in SIERRA.

    SciTech Connect

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  12. Sacroiliac joint imaging.

    PubMed

    Tuite, Michael J

    2008-03-01

    The sacroiliac (SI) joint has several unique anatomical features that make it one of the more challenging joints to image. The joint is difficult to profile well on radiographic views, and therefore the radiographic findings of sacroiliitis are often equivocal. Computed tomography images can usually show the findings of sacroiliitis and osteoarthritis earlier than radiographs. Magnetic resonance imaging performed with proper sequences is excellent for diagnosing even very early sacroiliitis and for following treatment response. The SI joint is often involved in patients with osteoarthritis or one of the inflammatory spondyloarthritides, most notably ankylosing spondylitis. Ankylosing spondylitis often presents with sacroiliitis, which appears as erosions, sclerosis, and joint space narrowing, eventually leading to ankylosis. Several disorders can cause sacroiliitis-like changes of the joint, including hyperparathyroidism and repetitive shear-stress injuries in athletes. The joint can become painful during pregnancy as it widens and develops increased motion, and some postpartum women develop iliac sclerosis adjacent to the joint termed osteitis condensans ilii. Another cause of SI joint pain is a disorder called sacroiliac joint dysfunction, which typically has few abnormal imaging findings. Patients with SI joint dysfunction, as well as sacroiliitis, often get relief from image-guided SI joint therapeutic injections. PMID:18382946

  13. Joint Enrollment Report, 2014

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2014

    2014-01-01

    The Iowa Department of Education collects information on joint enrollment in Iowa's 15 community colleges. Jointly enrolled students are high school students enrolled in community college credit coursework. Most jointly enrolled students enroll through Senior Year Plus (SYP) programs such as Postsecondary Enrollment Options (PSEO) and concurrent…

  14. Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, Panel Post, Tie & Diagonal Brace Joint Detail; Chord, Panel Post, Tie & Crossbracing Joint Detail - Dunlapsville Covered Bridge, Spanning East Fork Whitewater River, Dunlapsville, Union County, IN

  15. Closeup view of a pinconnected joint where eyebar and builtup ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of a pin-connected joint where eye-bar and built-up members are connected with a single pin. This joint is at the apex of a small secondary truss added in each subdivided panel to help support the bottom chord. The vertical member shown is referred to as a hanger (or floorbeam hanger) and carries direct tension loads only. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  16. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    NASA Technical Reports Server (NTRS)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  17. The vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Hosein, Todd

    1988-01-01

    Today's flight simulators, such as NASA's multimillion dollar Vertical Motion Simulator (VMS), recreate an authentic aircraft environment, and reproduce the sensations of flight by mechanically generating true physical events. In addition to their application as a training tool for pilots, simulators have become essential in the design, construction, and testing of new aircraft. Simulators allow engineers to study an aircraft's flight performance and characteristics without the cost or risk of an actual test flight. Because of their practicality, simulators will become more and more important in the development and design of new, safer aircraft.

  18. 'Endurance' Untouched (vertical)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a vertical projection, with geometric and radiometric seam correction.

  19. Vertical wind turbine

    SciTech Connect

    Danson, D.P.

    1988-08-16

    This patent describes a wind driven turbine of the vertical axis type comprising: (a) a support base; (b) a generally vertical column rotatably mounted to the support base; (c) upper and lower support means respectively mounted on the column for rotation therewith; wind driven blades connected between the upper and lower support means for rotation about the column and each blade being individually rotatable about a blade axis extending longitudinally through the blade to vary a blade angle of attach thereof relative to wind velocity during rotation about the column; and (e) control means for variably adjusting angles of attack of each blade to incident wind, the control means including a connecting rod means having drive means for rotating each blade about the associated blade axis in response to radial movement of the connecting rod means and control shaft pivotally mounted within the column and having a first shaft portion connected to the connecting rod means and a second shaft portion radially offset from the first shaft portion and pivotally connected to radially displace the first portion and thereby the connecting rod means to vary the blade angles of attack during rotation about the column.

  20. Vertical organic transistors.

    PubMed

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-11

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted. PMID:26466388

  1. Joint services electronics program

    NASA Astrophysics Data System (ADS)

    Peters, Leon, Jr.

    1992-11-01

    The report represents the fifteenth annual summary of The Ohio State University Joint Services Electronics Program (JSEP). The transfer of the compact range identification technology initiated under JSEP support for time domain studies continues to make large advances. We are also assisting Rockwell (Tulsa) to update their RCS facilities. This work is on a subcontract to the ESL from the Air Force. This has lead to involvement in the study of Ultra Wide Band radar systems. The research activities devoted to the Generalized Ray and Gaussian Beams continues. Our JSEP research continues to be expanded by external funding. This program is being expanded by use of such funds which are more focussed on the requirements of the sponsors which includes both the Air Force and the Navy. Our JSEP research continues to focus on electromagnetic related topics. There are four major electromagnetics areas that were pursued in the past year. The Diffraction Studies Work Unit has initiated research on a time domain version of the Uniform Theory of Diffraction. A second topic under the Diffraction Studies Work Unit involves further extensions of the generalized resistive boundary condition and the generalized impedance boundary condition. These have been applied to scattering from a chiral slab. A third topic of interest is the diffraction from a corner. A fourth task involves the reflection/diffraction of a Gaussian beam. This represents an approach to replace the usual ray optics solution for very complex geometries where the versatile ray optics solution becomes cumbersome.

  2. 5-foot Vertical Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1932-01-01

    The researcher is sitting above the exit cone of the 5-foot Vertical Wind Tunnel and is examining the new 6-component spinning balance. This balance was developed between 1930 and 1933. It was an important advance in the technology of rotating or rolling balances. As M.J. Bamber and C.H. Zimmerman wrote in NACA TR 456: 'Data upon the aerodynamic characteristics of a spinning airplane may be obtained in several ways; namely, flight tests with full-scale airplanes, flight tests with balanced models, strip-method analysis of wind-tunnel force and moment tests, and wind-tunnel tests of rotating models.' Further, they note: 'Rolling-balance data have been of limited value because it has not been possible to measure all six force and moment components or to reproduce a true spinning condition. The spinning balance used in this investigation is a 6-component rotating balance from which it is possible to obtain wind-tunnel data for any of a wide range of possible spinning conditions.' Bamber and Zimmerman described the balance as follows: 'The spinning balance consists of a balance head that supports the model and contains the force-measuring units, a horizontal turntable supported by streamline struts in the center of the jet and, outside the tunnel, a direct-current driving motor, a liquid tachometer, an air compressor, a mercury manometer, a pair of indicating lamps, and the necessary controls. The balance head is mounted on the turntable and it may be set to give any radius of spin between 0 and 8 inches.' In an earlier report, NACA TR 387, Carl Wenzinger and Thomas Harris supply this description of the tunnel: 'The vertical open-throat wind tunnel of the National Advisory Committee for Aeronautics ... was built mainly for studying the spinning characteristics of airplane models, but may be used as well for the usual types of wind-tunnel tests. A special spinning balance is being developed to measure the desired forces and moments with the model simulating the actual

  3. Laser drilling of vertical vias in silicon

    SciTech Connect

    Miller, W.D.; Gassman, R.A.; Keicher, D.M.

    1993-08-01

    Any advance beyond the density of standard 2D Multichip Modules (MCM) will require a vertical interconnect technology that can produce reliable area array interconnection with small feature sizes. Laser drilled vertical vias have been controllably produced in standard silicon (Si) wafers down to 0.035mm (0.0014 inches) in diameter. Several laser systems and their system parameters have been explored to determine the optimum parametric set for repeatable vias in Si. The vias produced have exhibited clean smooth interior surfaces with an aspect ratio of up to 20:1 with little or no taper. All laser systems used, their system parameters, design modifications, theory of operation, and drilling results are discussed.

  4. Multicolored Vertical Silicon Nanowires

    SciTech Connect

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  5. Measurement of ultralow vertical emittance using a calibrated vertical undulator

    NASA Astrophysics Data System (ADS)

    Wootton, K. P.; Boland, M. J.; Rassool, R. P.

    2014-11-01

    Very few experimental techniques are useful for the direct observation of ultralow vertical emittance in electron storage rings. In this work, quantitative measurements of ultralow (pm rad) electron beam vertical emittance using a vertical undulator are presented. An undulator radiation model was developed using the measured magnetic field of the APPLE-II type undulator. Using calibrated experimental apparatus, a geometric vertical emittance of ɛy=0.9 ±0.3 pm rad has been observed. These measurements could also inform modeling of the angular distribution of undulator radiation at high harmonics, for proposed diffraction-limited storage ring light sources.

  6. Observation of Picometer Vertical Emittance with a Vertical Undulator

    NASA Astrophysics Data System (ADS)

    Wootton, K. P.; Boland, M. J.; Dowd, R.; Tan, Y.-R. E.; Cowie, B. C. C.; Papaphilippou, Y.; Taylor, G. N.; Rassool, R. P.

    2012-11-01

    Using a vertical undulator, picometer vertical electron beam emittances have been observed at the Australian Synchrotron storage ring. An APPLE-II type undulator was phased to produce a horizontal magnetic field, which creates a synchrotron radiation field that is very sensitive to the vertical electron beam emittance. The measured ratios of undulator spectral peak heights are evaluated by fitting to simulations of the apparatus. With this apparatus immediately available at most existing electron and positron storage rings, we find this to be an appropriate and novel vertical emittance diagnostic.

  7. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    SciTech Connect

    Wootton, Kent

    2015-09-17

    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 #6;± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  8. Vertical-Axis Wind Turbine Mesh Generator

    Energy Science and Technology Software Center (ESTSC)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitatesmore » specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.« less

  9. Vertical-Axis Wind Turbine Mesh Generator

    SciTech Connect

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitates specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.

  10. Pipeline joint protector

    SciTech Connect

    Baker, R.

    1989-02-28

    This patent describes a weight coated pipeline joint protective apparatus for protecting pipeline joints against impact or high stress concentrations. It consists of a high density plastic sheet wrapped around a pipeline joint with the opposite edges of such sheet overlaying the weight of coat material on the abutting pipes forming the joint. The first end of the sheet overlaps the wrapped sheet with means for securing such first end to the sheet surface near or adjacent to the opposite end of such sheet.

  11. ON-LINE TOOLS FOR PROPER VERTICAL POSITIONING OF VERTICAL SAMPLING INTERVALS DURING SITE ASSESSMENT

    EPA Science Inventory

    This presentation presents on-line tools for proper vertical positioning of vertical sampling intervals during site assessment. Proper vertical sample interval selection is critical for generate data on the vertical distribution of contamination. Without vertical delineation, th...

  12. 4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe (VTL). Machining the fixture for GE Turboshroud. G.S. O'Brien, operator. - Juniata Shops, Machine Shop No. 1, East of Fourth Avenue at Third Street, Altoona, Blair County, PA

  13. Vertically reciprocating auger

    NASA Technical Reports Server (NTRS)

    Etheridge, Mark; Morgan, Scott; Fain, Robert; Pearson, Jonathan; Weldi, Kevin; Woodrough, Stephen B., Jr.

    1988-01-01

    The mathematical model and test results developed for the Vertically Reciprocating Auger (VRA) are summarized. The VRA is a device capable of transporting cuttings that result from below surface drilling. It was developed chiefly for the lunar surface, where conventional fluid flushing while drilling would not be practical. The VRA uses only reciprocating motion and transports material through reflections with the surface above. Particles are reflected forward and land ahead of radially placed fences, which prevent the particles from rolling back down the auger. Three input wave forms are considered to drive the auger. A modified sawtooth wave form was chosen for testing, over a modified square wave or sine wave, due to its simplicity and effectiveness. The three-dimensional mathematical model predicted a sand throughput rate of 0.2667 pounds/stroke, while the actual test setup transported 0.075 pounds/stroke. Based on this result, a correction factor of 0.281 is suggested for a modified sawtooth input.

  14. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  15. Annual Joint Report on Pre-Kindergarten through Higher Education in Tennessee, 2009

    ERIC Educational Resources Information Center

    Tennessee State Board of Education, 2009

    2009-01-01

    This 2009 Annual Joint Report of the State Board of Education and the Tennessee Higher Education Commission identifies four joint priorities and nine associated goals addressing areas of need in both student learning and educator development for the advancement of education in Tennessee. The joint priorities and initiatives focus on points of…

  16. Joint Effects of Ambient Air Pollutants on Pediatric AsthmaEmergency Department Visits in Atlanta, 1998–2004

    EPA Science Inventory

    Background: Because ambient air pollution exposure occurs in the form of mixtures, consideration of joint effects of multiple pollutants may advance our understanding of air pollution health effects. Methods: We assessed the joint effect of selected ambient air pollutant com...

  17. Joint Effects of Ambient Air Pollutants on Pediatric Asthma Emergency Department Visits in Atlanta, 1998–2004

    EPA Science Inventory

    Background: Because ambient air pollution exposure occurs in the form of mixtures, consideration of joint effects of multiple pollutants may advance our understanding of air pollution health effects. Methods: We assessed the joint effect of selected ambient air pollutant com...

  18. Sacroiliac joint pain - aftercare

    MedlinePlus

    The sacroiliac joint (SIJ) is a term used to describe the place where the sacrum and the iliac bones join. The ... The main purpose of the joint is to connect the spine and the pelvis. As a result, there is very little movement at the SIJ. Major reasons ...

  19. Compound solder joints

    NASA Technical Reports Server (NTRS)

    Batista, R. I.; Simonson, R. B.

    1976-01-01

    Joining technique prevents contamination, may be used to join dissimilar metal tubes, minimizes fluid and gas entrapment, expedites repairs, and can yield joints having leakage rates less than 0.000001 standard cubic cm He/min. Components of joint are solder sleeve, two solder rings, Teflon sleeve, and tubing to be joined.

  20. Wedge Joints for Trusses

    NASA Technical Reports Server (NTRS)

    Wood, Kenneth E.

    1987-01-01

    Structure assembled rapidly with simple hand tools. Proposed locking wedge joints enable rapid assembly of lightweight beams, towers, scaffolds, and other truss-type structures. Lightweight structure assembled from tubular struts joined at nodes by wedge pins fitting into mating slots. Joint assembled rapidly by seating wedge pin in V-shaped slots and deforming end of strut until primary pawl engages it.

  1. "Nonfloating" universal joint

    NASA Technical Reports Server (NTRS)

    Appleberry, W. T.

    1978-01-01

    Modified crowned-spline joint is lightweight, durable, and requires minimum of parts. It does not use rubber cushions to limit play and is useful over wide temperature range. It has inner ball and socket to provide rigid connection with no axial play. Joint can be adapted to form pinned connection between segmented torque tubes.

  2. The Gains from Vertical Scaling

    ERIC Educational Resources Information Center

    Briggs, Derek C.; Domingue, Ben

    2013-01-01

    It is often assumed that a vertical scale is necessary when value-added models depend upon the gain scores of students across two or more points in time. This article examines the conditions under which the scale transformations associated with the vertical scaling process would be expected to have a significant impact on normative interpretations…

  3. Scale Shrinkage in Vertical Equating.

    ERIC Educational Resources Information Center

    Camilli, Gregory; And Others

    1993-01-01

    Three potential causes of scale shrinkage (measurement error, restriction of range, and multidimensionality) in item response theory vertical equating are discussed, and a more comprehensive model-based approach to establishing vertical scales is described. Test data from the National Assessment of Educational Progress are used to illustrate the…

  4. Unweaving the joints in Entrada Sandstone, Arches National Park, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Cruikshank, Kenneth M.; Aydin, Atilla

    1995-03-01

    On the southwest limb of Salt Valley Anticline, Arches National Park, Utah three sets of joints are developed in the Entrada Sandstone covering an area of about 6 km 2. Within the 20 m thick Moab Member, a single joint set is is found in three distinct areas, separated by a second set of joints at a 35° angle to the first set. Joint interaction features show that the second set is younger than the first. This illustrates that joints of a single set do not have to fill the entire area across which the stresses that formed the joints were acting. The underlying Slickrock Member contains a third set of joints, which is at an angle of 5°-35° to joints in the Moab Member. The Slickrock set nucleated from the lower edges of joints of all orientations in the overlying Moab Member. Thus, the fracture pattern evolved both horizontally, within the same unit, and vertically between units. The sequence of jointing is determined by establishing the relative ages of each joint set. Each joint orientation is best interpreted as representing a direction of maximum compression, ruling out the possibility that the joints are a conjugate set. The joints, and an earlier set of deformation bands, record a 95° counterclockwise rotation of the direction of maximum compression.

  5. Development of the bus joint for the ITER Central Solenoid

    SciTech Connect

    Martovetsky, Nicolai N; Irick, David Kim; Kenney, Steven J

    2013-01-01

    The terminations of the Central Solenoid (CS) modules are connected to the bus extensions by joints located outside the CS in the gap between the CS and Torodial Field (TF) assemblies. These joints have very strict space limitations. Low resistance is a common requirement for all ITER joints. In addition, the CS bus joints will experience and must be designed to withstand significant variation in the magnetic field of several tenths of a Tesla per second during initiation of plasma. The joint resistance is specified to be less than 4 nOhm. The joints also have to be soldered in the field and designed with the possibility to be installed and dismantled in order to allow cold testing in the cold test facility. We have developed coaxial joints that meet these requirements and have demonstrated the feasibility to fabricate and assemble them in the vertical configuration. We introduced a coupling cylinder with superconducting strands soldered to the surface of the cable that can be installed in the ITER assembly hall and at the Cold Test Facility. This cylinder serves as a transition area between the CS module and the bus extension. We made two racetrack samples and tested four bus joints in our Joint Test Apparatus. Resistance of the bus joints was measured by a decay method and by a microvoltmeter; the value of the current was measured by the Hall probes. This measurement method was verified in the previous tests. The resistance of the joints varied insignificantly from 1.5 to 2 nOhm. One of the challenges associated with a soldered joint is the inability to use corrosive chemicals that are difficult to clean. This paper describes our development work on cable preparation, chrome removal, compaction, soldering, and final assembly and presents the test results.

  6. Parameter identification for joint elements in a revolute-joint detector manipulator

    NASA Astrophysics Data System (ADS)

    Preissner, Curt; Shu, Deming; Royston, Thomas J.

    2005-08-01

    A revolute-joint robot is being developed for the spatial positioning of an x-ray detector at the Advanced Photon Source. Commercially available revolute-joint manipulators do not meet our size, positioning, or payload specifications. One idea being considered is the modification of a commercially available robot, with the goal of improving the repeatability and trajectory accuracy. Theoretical, computational, and experimental procedures are being used to (1) identify, (2) simulate the dynamics of an existing robot system using a multibody approach, and eventually (3) design an improved version, with low dynamic positioning uncertainty. A key aspect of the modeling and performance prediction is accurate stiffness and damping values for the robot joints. This paper discusses the experimental identification of the stiffness and damping parameters for one robot harmonic drive joint.

  7. Parameter identification for joint elements in a revolute-joint detector manipulator.

    SciTech Connect

    Preissner, C.; Shu, D.; Royston, T.; Experimental Facilities Division; Univ. of Illinois at Chicago

    2005-01-01

    A revolute-joint robot is being developed for the spatial positioning of an x-ray detector at the Advanced Photon Source. Commercially available revolute-joint manipulators do not meet our size, positioning, or payload specifications. One idea being considered is the modification of a commercially available robot, with the goal of improving the repeatability and trajectory accuracy. Theoretical, computational, and experimental procedures are being used to (1) identify, (2) simulate the dynamics of an existing robot system using a multibody approach, and eventually (3) design an improved version, with low dynamic positioning uncertainty. A key aspect of the modeling and performance prediction is accurate stiffness and damping values for the robot joints. This paper discusses the experimental identification of the stiffness and damping parameters for one robot harmonic drive joint.

  8. MISR JOINT_AS Data

    Atmospheric Science Data Center

    2014-07-21

    Joint Aerosol Product (JOINT_AS) The MISR Level 3 Products are global or regional ... field campaigns at daily and monthly time scales. The Joint Aerosol product provides a monthly global statistical summary of MISR ...

  9. Vertical bloch line memory

    NASA Technical Reports Server (NTRS)

    Katti, R.; Wu, J.; Stadler, H.

    1990-01-01

    Vertical Bloch Line (VBL) memory is a recently conceived, integrated, solid-state, block-access, VLSI memory which offers the potential of 1Gbit/sq cm real storage density, gigabit per second data rates, and sub-millisecond average access times simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBL's are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of VBL pairs are used to store binary information. At present, efforts are being directed at developing a single-chip memory using 25Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. This paper describes the current design architecture, functional elements, and supercomputer simulation results which are used to assist the design process. The current design architecture uses three metal layers, two ion implantation steps for modulating the thickness of the magnetic layer, one ion implantation step for assisting propagation in the major line track, one NiFe soft magnetic layer, one CoPt hard magnetic layer, and one reflective Cr layer for facilitating magneto-optic observation of magnetic structure. Data are stored in a series of elongated magnetic domains, called stripes, which serve as storage sites for arrays of VBL pairs. The ends of these stripes are placed near conductors which serve as VBL read/write gates. A major line track is present to provide a source and propagation path for magnetic bubbles. Writing and reading, respectively, are achieved by converting magnetic bubbles to VBL's and vice versa. The output function is effected by stretching a magnetic bubble and detecting it magnetoresistively. Experimental results from the past design cycle created four design goals for the current design cycle. First, the bias field ranges

  10. Pressure vessel flex joint

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor)

    1992-01-01

    An airtight, flexible joint is disclosed for the interfacing of two pressure vessels such as between the Space Station docking tunnel and the Space Shuttle Orbiter bulkhead adapter. The joint provides for flexibility while still retaining a structural link between the two vessels required due to the loading created by the internal/external pressure differential. The joint design provides for limiting the axial load carried across the joint to a specific value, a function returned in the Orbiter/Station tunnel interface. The flex joint comprises a floating structural segment which is permanently attached to one of the pressure vessels through the use of an inflatable seal. The geometric configuration of the joint causes the tension between the vessels created by the internal gas pressure to compress the inflatable seal. The inflation pressure of the seal is kept at a value above the internal/external pressure differential of the vessels in order to maintain a controlled distance between the floating segment and pressure vessel. The inflatable seal consists of either a hollow torus-shaped flexible bladder or two rolling convoluted diaphragm seals which may be reinforced by a system of straps or fabric anchored to the hard structures. The joint acts as a flexible link to allow both angular motion and lateral displacement while it still contains the internal pressure and holds the axial tension between the vessels.

  11. Imaging of the temporomandibular joint: An update

    PubMed Central

    Bag, Asim K; Gaddikeri, Santhosh; Singhal, Aparna; Hardin, Simms; Tran, Benson D; Medina, Josue A; Curé, Joel K

    2014-01-01

    Imaging of the temporomandibular joint (TMJ) is continuously evolving with advancement of imaging technologies. Many different imaging modalities are currently used to evaluate the TMJ. Magnetic resonance imaging is commonly used for evaluation of the TMJ due to its superior contrast resolution and its ability to acquire dynamic imaging for demonstration of the functionality of the joint. Computed tomography and ultrasound imaging have specific indication in imaging of the TMJ. This article focuses on state of the art imaging of the temporomandibular joint. Relevant normal anatomy and biomechanics of movement of the TMJ are discussed for better understanding of many TMJ pathologies. Imaging of internal derangements is discussed in detail. Different arthropathies and common tumors are also discussed in this article. PMID:25170394

  12. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media

    SciTech Connect

    Vorobiev, O; Antoun, T

    2009-12-11

    This study presents discrete and continuum simulations of shock wave propagating through jointed media. The simulations were performed using the Lagrangian hydrocode GEODYN-L with joints treated explicitly using an advanced contact algorithm. They studied both isotropic and anisotropic joint representations. For an isotropically jointed geologic medium, the results show that the properties of the joints can be combined with the properties of the intact rock to develop an equivalent continuum model suitable for analyzing wave propagation through the jointed medium. For an anisotropically jointed geologic medium, they found it difficult to develop an equivalent continuum (EC) model that matches the response derived from mesoscopic simulation. They also performed simulations of wave propagation through jointed media. Two appraoches are suggested for modeling the rock mass. In one approach, jointed are modeled explicitly in a Lagrangian framework with appropriate contact algorithms used to track motion along the interfaces. In the other approach, the effect of joints is taken into account using a constitutive model derived from mesoscopic simulations.

  13. First metatarsophalangeal joint arthrodesis.

    PubMed

    Rajczy, Robert M; McDonald, Patrick R; Shapiro, Howard S; Boc, Steven F

    2012-01-01

    Arthrodesis of the first metatarsophalangeal joint (MTPJ) is used primarily for end-stage hallux rigidus whereby pain, crepitus, and limitation of motion is noted at the joint. Arthrodesis at the first MTPJ also has it uses as a primary procedure for rheumatoid arthritis when severe deformity is present, as well as for salvage procedures for failed joint arthroplasties with or without implant, fractures with intra-articular extension, avascular necrosis, and infection management. A first MTPJ arthrodesis should provide stable fixation, attain suitable positioning for a reasonable gait, maintain adequate length, and create a stable platform for a plantigrade foot type. PMID:22243568

  14. Compliant Joints For Robots

    NASA Technical Reports Server (NTRS)

    Kerley, James J., Jr.

    1990-01-01

    Compliant joints devised to accommodate misalignments of tools and/or workpieces with respect to robotic manipulators. Has characteristics and appearance of both universal-joint and cable-spring-type flexible shaft coupling. Compliance derived from elastic properties of short pieces of cable. Compliance of joint determined by lengths, distances between, relative orientations, thickness of strands, number of strands, material, amount of pretwist, and number of short pieces of cable. Worm-drive mechanism used to adjust lengths to vary compliance as needed during operation.

  15. Wave Propagation in Jointed Geologic Media

    SciTech Connect

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  16. Improved orthopedic arm joint

    NASA Technical Reports Server (NTRS)

    Dane, D. H.

    1971-01-01

    Joint permits smooth and easy movement of disabled arm and is smaller, lighter and less expensive than previous models. Device is interchangeable and may be used on either arm at the shoulder or at the elbow.

  17. Knee joint replacement

    MedlinePlus

    The results of a total knee replacement are often excellent. The operation relieves pain for most people. Most people do not need help walking after they fully recover. Most artificial knee joints last 10 ...

  18. Joint fluid Gram stain

    MedlinePlus

    Gram stain of joint fluid ... result means no bacteria are present on the Gram stain. Normal value ranges may vary slightly among ... Abnormal results mean bacteria were seen on the Gram stain. This may be a sign of a ...

  19. Temporomandibular Joint Disorder

    MedlinePlus

    ... 2008 Previous Next Related Articles: Temporomandibular Joint Disorder (TMD) Are You Biting Off More Than You Can Chew? Equilibration May Lessen TMD Pain Fender-benders: Source of TMD? First Comes ...

  20. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  1. Horizontal and Vertical Line Designs.

    ERIC Educational Resources Information Center

    Johns, Pat

    2003-01-01

    Presents an art lesson in which students learn about the artist Piet Mondrian and create their own abstract artworks. Focuses on geometric shapes using horizontal and vertical lines. Includes background information about the artist. (CMK)

  2. A Novel Methodology for the Simulation of Athletic Tasks on Cadaveric Knee Joints with Respect to In Vivo Kinematics.

    PubMed

    Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E

    2015-10-01

    Six degree of freedom (6-DOF) robotic manipulators have simulated clinical tests and gait on cadaveric knees to examine knee biomechanics. However, these activities do not necessarily emulate the kinematics and kinetics that lead to anterior cruciate ligament (ACL) rupture. The purpose of this study was to determine the techniques needed to derive reproducible, in vitro simulations from in vivo skin-marker kinematics recorded during simulated athletic tasks. Input of raw, in vivo, skin-marker-derived motion capture kinematics consistently resulted in specimen failure. The protocol described in this study developed an in-depth methodology to adapt in vivo kinematic recordings into 6-DOF knee motion simulations for drop vertical jumps and sidestep cutting. Our simulation method repeatably produced kinetics consistent with vertical ground reaction patterns while preserving specimen integrity. Athletic task simulation represents an advancement that allows investigators to examine ACL-intact and graft biomechanics during motions that generate greater kinetics, and the athletic tasks are more representative of documented cases of ligament rupture. Establishment of baseline functional mechanics within the knee joint during athletic tasks will serve to advance the prevention, repair and rehabilitation of ACL injuries. PMID:25869454

  3. A symptomatic coracoclavicular joint.

    PubMed

    Cheung, T F S; Boerboom, A L; Wolf, R F E; Diercks, R L

    2006-11-01

    Bilateral coracoclavicular joints were found in a 44-year-old male patient following a fall. He had an Indonesian mother and a Dutch father. Prior to the injury he was asymptomatic and had full range of movement in both shoulders but the trauma resulted in pain and limitation of movement in the left shoulder which required resection of the anomalous joint, after which full pain-free movement was restored. PMID:17075101

  4. Biomaterials in total joint replacement.

    PubMed

    Katti, Kalpana S

    2004-12-10

    The current state of materials systems used in total hip replacement is presented in this paper. An overview of the various material systems used in total hip replacement reported in literature is presented in this paper. Metals, polymers, ceramics and composites are used in the design of the different components of hip replacement implants. The merits and demerits of these material systems are evaluated in the context of mechanical properties most suitable for total joint replacement such as a hip implant. Current research on advanced polymeric nanocomposites and biomimetic composites as novel materials systems for bone replacement is also discussed. This paper examines the current research in the materials science and the critical issues and challenges in these materials systems that require further research before application in biomedical industry. PMID:15556342

  5. Arthroscopically assisted acromioclavicular joint reconstruction.

    PubMed

    Baumgarten, Keith M; Altchek, David W; Cordasco, Frank A

    2006-02-01

    Arthroscopically assisted acromioclavicular joint reconstruction avoids the large incisions necessary with open reconstructions. This acromioclavicular joint reconstruction technique via the subacromial space does not violate the rotator interval or require screw removal. The patient is placed in a modified beach-chair position. The arthroscope is placed into the subacromial space, and a bursectomy is performed through a lateral subacromial portal. The coracoacromial ligament is released from the acromion with an electrocautery and an arthroscopic elevator. A nonabsorbable suture is passed through the coracoacromial ligament with a suture passer, and an arthroscopic suture grasper is used to deliver both ends of the suture out through the lateral portal. The coracoid is identified and isolated using a radiofrequency ablator placed through the anterior portal while visualizing through the lateral portal. A percutaneous shuttle device is passed through the skin superomedial to the coracoid. The shuttle is visualized entering superior to the coracoid and is passed just medial to the coracoid. Once the tip of the shuttle can be visualized in the recess inferior to the coracoid, the shuttle loop is advanced. A suture grasper is used to deliver both ends of the shuttle out through the anterior portal. A semitendinosus allograft is used to reconstruct the coracoclavicular ligament. A nonabsorbable suture is passed through both ends of the allograft. Three strands of nonabsorbable suture are braided together. The tendon and the braided suture are shuttled around the coracoid. At this point, both the braided suture and the allograft tendon enter the anterior portal, wrap around the coracoid base, and exit the anterior portal. A 3-cm incision is made over the distal clavicle. A hole is drilled through the clavicle with a 5-mm drill. A loop of 22-gauge wire is passed through the hole in the clavicle, and a looped suture is shuttled through the hole. A curved clamp is used to

  6. Panel Post & Diagonal Brace Joint Detail; Crossbracing Center Joint ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Panel Post & Diagonal Brace Joint Detail; Crossbracing Center Joint Detail; Chord, Panel Post, Tie Bar, & Diagonal Brace Joint Detail; Chord, Tie Bar, & Crossbracing Joint Detail - Medora Bridge, Spanning East Fork of White River at State Route 235, Medora, Jackson County, IN

  7. High pressure ceramic joint

    DOEpatents

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  8. High pressure ceramic joint

    DOEpatents

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  9. Process control improvements realized in a vertical reactor cluster tool

    NASA Astrophysics Data System (ADS)

    Werkhoven, Chris J.; Granneman, E. H.; Lindow, E.

    1993-04-01

    Advance cell structures present in high-density memories and logic devices require high quality, ultra thin dielectric and conductor films. By controlling the interface properties of such films, remarkable process control enhancements of manufacturing proven, vertical LPCVD and oxidation processes are realized. To this end, an HF/H2O vapor etch reactor is integrated in a vacuum cluster tool comprising vertical reactors for the various LPCVD and oxidation processes. Data of process control improvement are provided for polysilicon emitters, polysilicon contacts, polysilicon gates, and NO capacitors. Finally, the cost of ownership of cluster tool use is compared with that of stand-along equipment.

  10. Kinematic implications of joint zones and isolated joints in the Navajo Sandstone at Zion National Park, Utah: Evidence for Cordilleran relaxation

    NASA Astrophysics Data System (ADS)

    Rogers, Christie M.; Myers, Douglas A.; Engelder, Terry

    2004-02-01

    At Zion National Park (ZNP) the landscape is a consequence of differential weathering of the Navajo Sandstone where closely spaced vertical joints constitute joint zones that erode to form regularly spaced (half kilometer) slot canyons striking 351°. Between these joint zones is a set of isolated joints striking 339°. Fracture interaction and horsetail/wing crack development indicate that the 339° striking joint set is younger than the 351° striking joint zones, despite the lateral extent of stress reduction shadows in the vicinity of the large-scale joint zones. In addition to an older, less pervasive, ˜020° joint set, this sequence of jointing records a counterclockwise rotation of the regional extension directed from WNW to WSW in the Navajo Sandstone at ZNP. ZNP is located at the western margin of the Colorado Plateau, ˜100 km east of the major normal faults of the northeastern central Basin and Range subprovince. Extension within the eastern central Basin and Range initiated during the Miocene and exhibited a WSW extension direction [, 1971; , 1988; , 2000]. The correlation between nearby Basin and Range extension and the extension direction for the 351° tending joint zones of ZNP is so close that the jointing at ZNP is interpreted as evidence for modest, yet pervasive Basin and Range extension in the western margin of the Colorado Plateau.