Science.gov

Sample records for joint assembly final

  1. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  2. Metal-ceramic joint assembly

    DOEpatents

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  3. Rotational joint assembly for the prosthetic leg

    NASA Technical Reports Server (NTRS)

    Owens, L. J.; Jones, W. C. (Inventor)

    1977-01-01

    A rotational joint assembly for a prosthetic leg has been devised, which enables an artificial foot to rotate slightly when a person is walking, running or turning. The prosthetic leg includes upper and lower tubular members with the rotational joint assembly interposed between them. The assembly includes a restrainer mechanism which consists of a pivotably mounted paddle element. This device applies limiting force to control the rotation of the foot and also restores torque to return the foot back to its initial position.

  4. Two-axis joint assembly and method

    NASA Technical Reports Server (NTRS)

    Le, Thang D. (Inventor); Lewis, James L. (Inventor); Carroll, Monty B. (Inventor)

    2010-01-01

    In an embodiment, a two-axis joint that utilizes planar reactions to handle moments applied to the side of the joint thereby allowing the device to remain low profile and compact with minimal intrusion to the mounting surface of the two-axis joint. To handle larger moments, the diameter of the planar member can be increased without increasing the overall height of the joint assembly thereby retaining the low profile thereof. Upper and lower antifriction bearings may be positioned within a housing engage the planar member to reduce rotational friction. The upper and lower bearings and a hub which supports the planar member transfer forces produced by moments applied to the side of the joint so as to spread the forces over the area of the housing.

  5. Parker Lecturers Gather at Joint Assembly

    NASA Astrophysics Data System (ADS)

    Crooker, Nancy

    2008-08-01

    Present and past Parker Lecturers, who are Bowie Lecturers of AGU's Space Physics and Aeronomy (SPA) section, gathered at the Joint Assembly in Fort Lauderdale, Fla., on the occasion of the fiftieth anniversary of the publication of Eugene Parker's famous paper predicting the existence of the supersonic solar wind (see Figure 1).

  6. Identification of bolted lap joints parameters in assembled structures

    NASA Astrophysics Data System (ADS)

    Ahmadian, Hamid; Jalali, Hassan

    2007-02-01

    Bolted lap joints have significant influence on the dynamical behaviour of the assembled structures due to creation of strong local flexibility and damping. In modelling the dynamical behaviour of assembled structures the joint interface model must be represented accurately. A nonlinear model for bolted lap joints and interfaces is proposed capable of representing the dominant physics involved in the joint such as micro/macro-slip. The joint interface is modelled using a combination of linear and nonlinear springs and a damper to simulate the damping effects of the joint. An estimate of the response of the structure with a nonlinear model for the bolted joint under external excitations is obtained using the method of multiple scales. The parameters of the model, i.e. the spring constants and the damper coefficient, are functions of normal and tangential stresses at the joint interface and are identified by minimizing the difference between the model predictions and the experimentally measured data.

  7. Development of assembly and joint concepts for erectable space structures

    NASA Technical Reports Server (NTRS)

    Jacquemin, G. G.; Bluck, R. M.; Grotbeck, G. H.; Johnson, R. R.

    1980-01-01

    The technology associated with the on-orbit assembly of tetrahedral truss platforms erected of graphite epoxy tapered columns is examined. Associated with the assembly process is the design and fabrication of nine member node joints. Two such joints demonstrating somewhat different technology were designed and fabricated. Two methods of automatic assembly using the node designs were investigated, and the time of assembly of tetrahedral truss structures up to 1 square km in size was estimated. The effect of column and node joint packaging on the Space Shuttle cargo bay is examined. A brief discussion is included of operating cost considerations and the selection of energy sources. Consideration was given to the design assembly machines from 5 m to 20 m. The smaller machines, mounted on the Space Shuttle, are deployable and restowable. They provide a means of demonstrating the capabilities of the concept and of erecting small specialized platforms on relatively short notice.

  8. Heavily loaded joints for assembling aerobrake support trusses

    NASA Technical Reports Server (NTRS)

    Bandel, Hannskarl; Olsson, Nils; Levintov, Boris

    1990-01-01

    The major emphasis was to develop erectable joints for large aerobrake support trusses. The truss joints must be able to withstand the large forces experienced by the truss during the aero-pass, as well as be easily assembled and disassembled on orbit by astronauts or robots. Other important design considerations include; strength, stiffness, and allowable error in strut length. Six mechanical joint designs, as well as a seventh joint design, where a high strength epoxy is injected to make the connection rigid, are presented.

  9. Rotational joint assembly and method for constructing the same

    NASA Technical Reports Server (NTRS)

    Bandera, Pablo (Inventor); Buchele, Paul (Inventor)

    2012-01-01

    A rotational joint assembly and a method for constructing a rotational joint assembly are provided. The rotational joint assembly includes a first rotational component, a second rotational component coupled to the first rotational component such that the second rotational component is rotatable relative to the first rotational component in first and second rotational directions about an axis, and a flexure member, being deflectable in first and second deflection directions, coupled to at least one of the first and second rotational components such that when the second rotational component is rotated relative to the first rotational component in each of the first and second rotational directions about the axis, the flexure member is deflected in the first deflection direction and exerts a force on the second rotational component opposing the rotation.

  10. 32 CFR 644.71 - Final Title Assembly.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Final Title Assembly. 644.71 Section 644.71 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL... Title Assembly. (a) Disposition of final title assemblies. The final title opinion and related...

  11. Neutron Activation of NIF Final Optics Assemblies

    SciTech Connect

    Sitaraman, S; Dauffy, L; Khater, H; Brereton, S

    2009-09-29

    Analyses were performed to characterize the radiation field in the vicinity of the Final Optics Assemblies (FOAs) at the National Ignition Facility (NIF) due to neutron activation following Deuterium-Deuterium (DD), Tritium-Hydrogen-Deuterium (THD), and Deuterium-Tritium (DT) shots associated with different phases of the NIF operations. The activation of the structural components of the FOAs produces one of the larger sources of gamma radiation and is a key factor in determining the stay out time between shots to ensure worker protection. This study provides estimates of effective dose rates in the vicinity of a single FOA and concludes that the DD and THD targets produce acceptable dose rates within 10 minutes following a shot while about 6-days of stay out time is suggested following DT shots. Studies are ongoing to determine the combined effects of multiple FOAs and other components present in the Target Bay on stay-out time and worker dose.

  12. Algorithm for genome contig assembly. Final report

    SciTech Connect

    1995-09-01

    An algorithm was developed for genome contig assembly which extended the range of data types that could be included in assembly and which ran on the order of a hundred times faster than the algorithm it replaced. Maps of all existing cosmid clone and YAC data at the Human Genome Information Resource were assembled using ICA. The resulting maps are summarized.

  13. Jointly Sponsored Research Program. Final report

    SciTech Connect

    1997-07-01

    The Jointly Sponsored Research Program (JSRP) is a US Department of Energy (DOE) program funded through the Office of Fossil Energy and administered at the Morgantown Energy Technology Center. Under this program, which has been in place since Fiscal Year 1990, DOE makes approximately $2.5 million available each year to the Energy and Environmental Research Center (EERC) to fund projects that are of current interest to industry but which still involve significant risk, thus requiring some government contribution to offset the risk if the research is to move forward. The program guidelines require that at least 50% of the project funds originate from nonfederal sources. Projects funded under the JSRP often originate under a complementary base program, which funds higher-risk projects. The projects funded in Fiscal Year 1996 addressed a wide range of Fossil Energy interests, including hot-gas filters for advanced power systems; development of cleaner, more efficient processing technologies; development of environmental control technologies; development of environmental remediation and reuse technologies; development of improved analytical techniques; and development of a beneficiation technique to broaden the use of high-sulfur coal. Descriptions and status for each of the projects funded during the past fiscal year are included in Section A of this document, Statement of Technical Progress.

  14. Fabrication and Assembly of High-Precision Hinge and Latch Joints for Deployable Optical Instruments

    NASA Technical Reports Server (NTRS)

    Phelps, James E.

    1999-01-01

    Descriptions are presented of high-precision hinge and latch joints that have been co-developed, for application to deployable optical instruments, by NASA Langley Research Center and Nyma/ADF. Page-sized versions of engineering drawings are included in two appendices to describe all mechanical components of both joints. Procedures for assembling the mechanical components of both joints are also presented. The information herein is intended to facilitate the fabrication and assembly of the high-precision hinge and latch joints, and enable the incorporation of these joints into the design of deployable optical instrument systems.

  15. Electromechanical assembly department manufacturing improvements. Final report

    SciTech Connect

    Voss, S.W.

    1991-12-01

    Techniques for streamlining the processing and flow of products is an electromechanical assembly department were evaluated. Areas looked at included a paperless system for lot identification records, automated tool and fixture storage, evaluation of product transfer methods, and queue time reduction.

  16. Smart sensor technology for joint test assembly flights.

    SciTech Connect

    Berry, Nina M.; Sheaffer, Donald A.; Bierbaum, Rene Lynn; Dimkoff, Jason L.; Walsh, Edward J.; Deyle, Travis Jay ); Marx, Kenneth D.; Pancerella, Carmen M.; Doser, Adele Beatrice; Armstrong, Robert C.

    2003-09-01

    The world relies on sensors to perform a variety of tasks from the mundane to sophisticated. Currently, processors associated with these sensors are sufficient only to handle rudimentary logic tasks. Though multiple sensors are often present in such devices, there is insufficient processing power for situational understanding. Until recently, no processors that met the electrical power constraints for embedded systems were powerful enough to perform sophisticated computations. Sandia performs many expensive tests using sensor arrays. Improving the efficacy, reliability and information content resulting from these sensor arrays is of critical importance. With the advent of powerful commodity processors for embedded use, a new opportunity to do just that has presented itself. This report describes work completed under Laboratory-Directed Research and Development (LDRD) Project 26514, Task 1. The goal of the project was to demonstrate the feasibility of using embedded processors to increase the amount of useable information derived from sensor arrays while improving the believability of the data. The focus was on a system of importance to Sandia: Joint Test Assemblies for ICBM warheads. Topics discussed include: (1) two electromechanical systems to provide data, (2) sensors used to monitor those systems, (3) the processors that provide decision-making capability and data manipulation, (4) the use of artificial intelligence and other decision-making software, and (5) a computer model for the training of artificial intelligence software.

  17. Grinding assembly, grinding apparatus, weld joint defect repair system, and methods

    DOEpatents

    Larsen, Eric D.; Watkins, Arthur D.; Bitsoi, Rodney J.; Pace, David P.

    2005-09-27

    A grinding assembly for grinding a weld joint of a workpiece includes a grinder apparatus, a grinder apparatus includes a grinding wheel configured to grind the weld joint, a member configured to receive the grinding wheel, the member being configured to be removably attached to the grinder apparatus, and a sensor assembly configured to detect a contact between the grinding wheel and the workpiece. The grinding assembly also includes a processing circuitry in communication with the grinder apparatus and configured to control operations of the grinder apparatus, the processing circuitry configured to receive weld defect information of the weld joint from an inspection assembly to create a contour grinding profile to grind the weld joint in a predetermined shape based on the received weld defect information, and a manipulator having an end configured to carry the grinder apparatus, the manipulator further configured to operate in multiple dimensions.

  18. Joint Technical Architecture for Robotic Systems (JTARS)-Final Report

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Holloway, Sidney E., III

    2006-01-01

    This document represents the final report for the Joint Technical Architecture for Robotic Systems (JTARS) project, funded by the Office of Exploration as part of the Intramural Call for Proposals of 2005. The project was prematurely terminated, without review, as part of an agency-wide realignment towards the development of a Crew Exploration Vehicle (CEV) and meeting the near-term goals of lunar exploration.

  19. The proto-type wrist joint assembly TACPAW (Triple Axis Common Pivot Arm Wrist), phase 2

    NASA Technical Reports Server (NTRS)

    Kersten, L.

    1978-01-01

    A wrist joint assembly is described for use with a mechanical manipulator arm for finely positioning an end-effector carried by the wrist joint on the terminal end of the manipulator arm. The wrist joint assembly is pivotable about a first axis to produce a yaw motion, a second axis to produce a pitch motion, and a third axis to produce a roll motion. The performance of the wrist configuration is indicative of the capability to produce the 15 ft lb torque in either one of the three motions and the smoothness of operation is notable.

  20. Mechanical joints and large components for pathfinder in-space assembly and construction

    NASA Technical Reports Server (NTRS)

    Finckenor, Jeff; Thomas, Frank

    1990-01-01

    This paper summarizes the background of the Pathfinder Project, In-Space Assembly, and Construction activity for fiscal year 1989. Work is presented on high strength mechanical truss joints and the definition of typical large components that might be required for assembly on-orbit and use on interplanetary space missions. Several mechanical joints were designed, and the most promising early design is presented in detail. The primary design drivers were the ability for robot assembly, the correction of up to a + or - 0.020 inch axial misalignment, and an axial load in the vicinity of + or - 100,000 lb. The most promising joint uses axisymmetric grooves to correct the misalignment and to transfer the load in a smooth path.

  1. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Thomas, F. P.

    1992-01-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  2. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, W. K.; Thomas, F. P.

    1992-10-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  3. Voltages across assembly joints due to direct-strike lightning currents

    SciTech Connect

    Dinallo, M.S.; Fisher, R.J.

    1994-08-01

    An extensive set of direct-strike lightning tests has been carried out on a set of facsimile assembly joints of the kinds employed in the design of nuclear weapon cases. Taken as a whole, the test hardware included all the conceptual design elements that are embodied, either singly or in combination, in any specific assembly joint incorporated into any stockpiled weapon. During the present testing, the effects of all key design parameters on the voltages developed across the interior of the joints were investigated under a range of lightning stroke current parameter values. Design parameter variations included the types and number of joint fasteners, mechanical preload, surface finish tolerance and coatings, and the material from which the joint assembly was fabricated. Variations of the simulated lightning stroke current included amplitude (30-, 100-, and 200-kA peak), rise time, and decay time. The maximum voltage observed on any of the test joints that incorporated proper metal-to-metal surface contact was 65 V. Typical response values were more on the order of 20 V. In order to assess the effect of the presence of a dielectric coating (either intentional or as a result of corrosion) between the mating surfaces of a joint, a special configuration was tested in which the mating parts of the test assembly were coated with a 1-mil-thick dielectric anodizing layer. First strokes to these test assemblies resulted in very narrow voltage spikes of amplitudes up to 900 V. The durations of these spikes were less than 0.1 {mu}s. However, beyond these initial spikes, the voltages typically had amplitudes of up to 400 V for durations of 3 to 5 {mu}s.

  4. Definition of large components assembled on-orbit and robot compatible mechanical joints

    NASA Technical Reports Server (NTRS)

    Williamsen, J.; Thomas, F.; Finckenor, J.; Spiegel, B.

    1990-01-01

    One of four major areas of project Pathfinder is in-space assembly and construction. The task of in-space assembly and construction is to develop the requirements and the technology needed to build elements in space. A 120-ft diameter tetrahedral aerobrake truss is identified as the focus element. A heavily loaded mechanical joint is designed to robotically assemble the defined aerobrake element. Also, typical large components such as habitation modules, storage tanks, etc., are defined, and attachment concepts of these components to the tetrahedral truss are developed.

  5. Theoretical method for calculating relative joint geometry of assembled robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Moore, M. C.

    1983-01-01

    Equations are developed to extract the relative joint parameters of an assembled robot arm. Specifically, the Denavit-Hartenberg parameters, which completely characterize the relative joint geometry, are calculated. These parameters are needed to control the hand of the robot arm by resolved rate. As an example, the parameter extraction equations are used with perfect simulated data (no measurement noise) obtained from a mathematical model of a six-degree-of-freedom robot arm. For an actual application, measurement data needed to estimate the relative joint parameters can be generated by moving a robot arm to different positions, measuring the location of the hand (or other extension) in base coordinates, and recording the corresponding joint angles.

  6. U. S. -Soviet joint venture near final terms

    SciTech Connect

    Not Available

    1991-11-18

    This paper reports that U.S. and Russian partners expect late this moth to register their second oil and gas joint venture in western Siberia. If plans proceed on schedule following registration, Golden Mammoth partners about June 1992 will begin drilling joint venture wells in the Bakhilovsk region.

  7. X-ray microscope assemblies. Final report and metrology report

    SciTech Connect

    Zehnpfennig, T.F.

    1981-04-13

    This is the Final Report and Metrology Report prepared under Lawrence Livermore Laboratory Subcontract 9936205, X-ray Microscope Assemblies. The purpose of this program was to design, fabricate, and perform detailed metrology on an axisymmetric grazing-incidence x-ray microscope (XRMS) to be used as a diagnostic instrument in the Lawrence Livermore Laser Fusion Program. The optical configuration chosen for this device consists of two internally polished surfaces of revolution: an hyperboloid facing the object; and a confocal, co-axial elliposid facing the image. This arrangement is known as the Wolter Type-I configuration. The grazing angle of reflection for both surfaces is approximately 1/sup 0/. The general optical performance goals under this program were to achieve a spatial resolution in the object plane in the soft x-ray region of approximately 1 micron, and to achieve an effective solid collecting angle which is an appreciable fraction of the geometric solid collecting angle.

  8. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1992-01-01

    In the future, some spacecraft will be so large that they must be assembled on-orbit. These spacecraft will be used for such tasks as manned missions to Mars or used as orbiting platforms for monitoring the Earth or observing the universe. Some large spacecraft will probably consist of planar truss structures to which will be attached special purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but most unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extra-vehicular activities. Some missions will involve very large loads. To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the Space Shuttle bay in late 1985. Here the development of a design of a welded joint for on-orbit, robotic truss assembly is described. Mechanical joints for this application have been considered previously. Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. In addition, welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose), and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints. Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973. A hand held electron beam welding apparatus is currently being prepared for use on the MIR space station

  9. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, William K.

    1992-12-01

    In the future, some spacecraft will be so large that they must be assembled on-orbit. These spacecraft will be used for such tasks as manned missions to Mars or used as orbiting platforms for monitoring the Earth or observing the universe. Some large spacecraft will probably consist of planar truss structures to which will be attached special purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but most unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extra-vehicular activities. Some missions will involve very large loads. To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the Space Shuttle bay in late 1985. Here the development of a design of a welded joint for on-orbit, robotic truss assembly is described. Mechanical joints for this application have been considered previously. Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. In addition, welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose), and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints. Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973. A hand held electron beam welding apparatus is currently being prepared for use on the MIR space station

  10. Academic Preparation for College: A Joint Project. Final Report.

    ERIC Educational Resources Information Center

    New Mexico Commission on Higher Education.

    A project to identify competencies needed by students entering college was undertaken jointly by the New Mexico Department of Education and the Commission on Higher Education. The first step was to review statewide data on enrollment in developmental/remedial college courses of graduates from New Mexico's public secondary schools. After a…

  11. New approach to telemetry development will significantly increase productivity of Joint Test Assembly (JTA) teams

    NASA Astrophysics Data System (ADS)

    Gee, K. T.

    1987-10-01

    We design telemetry systems which instrument weapons in the Joint DoD/DOE flight test program. These telemetry systems gather data which can be used to determine if a weapon system functioned as intended. A reusable telemetry electronics system to support new programs for the next decade and to replace old telemetry systems which can no longer be produced is being designed. This multisystem Joint Test Assembly, named JTAX, is being designed to be modular, flexible, and testable. The requirements for each program can be met by choosing the necessary circuitry from a list of off-the-shelf, flexible electronics modules. Present day electronics miniaturization will allow these modules to consist of a few integrated circuits. System-specific circuits can be added to the architecture via well-defined interfaces. Off-the-shelf and system-specific circuitry are connected on printed circuit boards which are designed to meet the unique mechanical constraints for each system.

  12. Numerical design and test on an assembled structure of a bolted joint with viscoelastic damping

    NASA Astrophysics Data System (ADS)

    Hammami, Chaima; Balmes, Etienne; Guskov, Mikhail

    2016-03-01

    Mechanical assemblies are subjected to many dynamic loads and modifications are often needed to achieve acceptable vibration levels. While modifications on mass and stiffness are well mastered, damping modifications are still considered difficult to design. The paper presents a case study on the design of a bolted connection containing a viscoelastic damping layer. The notion of junction coupling level is introduced to ensure that sufficient energy is present in the joints to allow damping. Static performance is then addressed and it is shown that localization of metallic contact can be used to meet objectives, while allowing the presence of viscoelastic materials. Numerical prediction of damping then illustrates difficulties in optimizing for robustness. Modal test results of three configurations of an assembled structure, inspired by aeronautic fuselages, are then compared to analyze the performance of the design. While validity of the approach is confirmed, the effect of geometric imperfections is shown and stresses the need for robust design.

  13. Development of a truss joint for robotic assembly of space structures

    NASA Technical Reports Server (NTRS)

    Parma, George F.

    1992-01-01

    This report presents the results of a detailed study of mechanical fasteners which were designed to facilitate robotic assembly of structures. Design requirements for robotic structural assembly were developed, taking into account structural properties and overall system design, and four candidate fasteners were designed to meet them. These fasteners were built and evaluated in the laboratory, and the Hammer-Head joint was chosen as superior overall. It had a high reliability of fastening under misalignments of 2.54 mm (0.1 in) and 3 deg, the highest end fixity (2.18), the simplest end effector, an integral capture guide, good visual verification, and the lightest weight (782 g, 1.72 lb). The study found that a good design should incorporate chamfers sliding on chamfers, cylinders sliding on chamfers, and hard surface finishes on sliding surfaces. The study also comments on robot flexibility, sag, hysteresis, thermal expansion, and friction which were observed during the testing.

  14. 40 CFR 1048.612 - What is the exemption for delegated final assembly?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Compliance Provisions § 1048.612 What is the exemption for delegated final assembly? The provisions of 40 CFR... following exceptions and clarifications: (a) The provisions related to reduced auditing rates in 40 CFR 1068... final assembly? 1048.612 Section 1048.612 Protection of Environment ENVIRONMENTAL PROTECTION...

  15. Flexible Assembly Solar Technology (FAST) Final Technical Report

    SciTech Connect

    Toister, Elad

    2014-11-06

    The Flexible Assembly Solar Technology (FAST) project was initiated by BrightSource in an attempt to provide potential solar field EPC contractors with an effective set of tools to perform specific construction tasks. These tasks are mostly associated with heliostat assembly and installation, and require customized non-standard tools. The FAST concept focuses on low equipment cost, reduced setup time and increased assembly throughput as compared to the Ivanpah solar field construction tools.

  16. Development of simulation tools for virus shell assembly. Final report

    SciTech Connect

    Berger, Bonnie

    2001-01-05

    Prof. Berger's major areas of research have been in applying computational and mathematical techniques to problems in biology, and more specifically to problems in protein folding and genomics. Significant progress has been made in the following areas relating to virus shell assembly: development has been progressing on a second-generation self-assembly simulator which provides a more versatile and physically realistic model of assembly; simulations are being developed and applied to a variety of problems in virus assembly; and collaborative efforts have continued with experimental biologists to verify and inspire the local rules theory and the simulator. The group has also worked on applications of the techniques developed here to other self-assembling structures in the material and biological sciences. Some of this work has been conducted in conjunction with Dr. Sorin Istrail when he was at Sandia National Labs.

  17. Streamlined Approach for Environmental Restoration Work Plan for Corrective Action Unit 461: Joint Test Assembly Sites and Corrective Action Unit 495: Unconfirmed Joint Test Assembly Sites Tonopah Test Range, Nevada

    SciTech Connect

    Jeff Smith

    1998-08-01

    This Streamlined Approach for Environmental Restoration plan addresses the action necessary for the clean closure of Corrective Action Unit 461 (Test Area Joint Test Assembly Sites) and Corrective Action Unit 495 (Unconfirmed Joint Test Assembly Sites). The Corrective Action Units are located at the Tonopah Test Range in south central Nevada. Closure for these sites will be completed by excavating and evaluating the condition of each artillery round (if found); detonating the rounds (if necessary); excavating the impacted soil and debris; collecting verification samples; backfilling the excavations; disposing of the impacted soil and debris at an approved low-level waste repository at the Nevada Test Site

  18. Final development report H1632 Adjustable Caster Assembly

    SciTech Connect

    Kibalo, E.F.

    1994-03-01

    The H1632 Adjustable Caster Assembly was developed for use on the H1501B Transportation Accident Resistant Container (TARC). The caster can be raised and lowered via its attached leveling jack or, by removing a locking pin, can be aligned horizontally or removed for transportational purposes. The H1632 is packaged as a single kit that contains two left and two right adjustable caster assemblies along with the required support plates and hardware.

  19. Aging of d-Limonene-cleaned assemblies. Final report

    SciTech Connect

    Somer, T.A.

    1995-08-01

    The performance of 1600 electronic circuit variables was monitored throughout an 8000-hour exposure to +160{degrees}F. The variables involve 36 electronic assemblies, cleaned with various solvents, including d-Limonene, as a replacement for trichloroethylene (TCE). The assemblies were divided into four groups, including a TCE-cleaned control group at room temperature. Of the three groups exposed at +160{degrees}F, one was cleaned in TCE, one was cleaned in d-Limonene, and one was kept in a saturated d-Limonene atmosphere. No performance degradation was observed with any of the groups, including the worst-case exposure in a saturated d-Limonene atmosphere.

  20. Prototype Spallation Neutron Source Rotating Target Assembly Final Test Report

    SciTech Connect

    McManamy, Thomas J; Graves, Van; Garmendia, Amaia Zarraoa; Sorda, Fernando; Etxeita, Borja; Rennich, Mark J

    2011-01-01

    A full-scale prototype of an extended vertical shaft, rotating target assembly based on a conceptual target design for a 1 to 3-MW spallation facility was built and tested. Key elements of the drive/coupling assembly implemented in the prototype include high integrity dynamic face seals, commercially available bearings, realistic manufacturing tolerances, effective monitoring and controls, and fail-safe shutdown features. A representative target disk suspended on a 3.5 meter prototypical shaft was coupled with the drive to complete the mechanical tests. Successful operation for 5400 hours confirmed the overall mechanical feasibility of the extended vertical shaft rotating target concept. The prototype system showed no indications of performance deterioration and the equipment did not require maintenance or relubrication.

  1. Hazardous material minimization for radar assembly. Final report

    SciTech Connect

    Biggs, P.M.

    1997-03-01

    The Clean Air Act Amendment, enacted in November 1990, empowered the Environmental Protection Agency (EPA) to completely eliminate the production and usage of chlorofluorocarbons (CFCs) by January 2000. A reduction schedule for methyl chloroform beginning in 1993 with complete elimination by January 2002 was also mandated. In order to meet the mandates, the processes, equipment, and materials used to solder and clean electronic assemblies were investigated. A vapor-containing cleaning system was developed. The system can be used with trichloroethylene or d-Limonene. The solvent can be collected for recycling if desired. Fluxless and no-clean soldering were investigated, and the variables for a laser soldering process were identified.

  2. Electron beam weld development on a Filter Pack Assembly. Final report

    SciTech Connect

    Dereskiewicz, J.P.

    1994-06-01

    A continuous electron beam welding procedure was developed to replace the manual gas tungsten arc welding procedure on the Filter Pack Assembly. A statistical study was used to evaluate the feasibility of electron beam welding 6061-T6 aluminum covers to A356 cast weldments throughout the joint tolerance range specified on product drawings. Peak temperature exposures were not high enough to degrade the heat sensitive electrical components inside the cast weldment. Actual weldments with alodine coating on the weld joint area were successfully cleaned using a nonmetallic fiberglass brush cleaning method.

  3. Neutral Buoyancy Simulator: MSFC-Langley joint test of large space structures component assembly:

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  4. Autonomous intelligent assembly systems LDRD 105746 final report.

    SciTech Connect

    Anderson, Robert J.

    2013-04-01

    This report documents a three-year to develop technology that enables mobile robots to perform autonomous assembly tasks in unstructured outdoor environments. This is a multi-tier problem that requires an integration of a large number of different software technologies including: command and control, estimation and localization, distributed communications, object recognition, pose estimation, real-time scanning, and scene interpretation. Although ultimately unsuccessful in achieving a target brick stacking task autonomously, numerous important component technologies were nevertheless developed. Such technologies include: a patent-pending polygon snake algorithm for robust feature tracking, a color grid algorithm for uniquely identification and calibration, a command and control framework for abstracting robot commands, a scanning capability that utilizes a compact robot portable scanner, and more. This report describes this project and these developed technologies.

  5. Weld joint concepts for on-orbit repair of Space Station Freedom fluid system tube assemblies

    NASA Technical Reports Server (NTRS)

    Jolly, Steven D.

    1993-01-01

    Because Space Station Freedom (SSF) is an independent satellite, not depending upon another spacecraft for power, attitude control, or thermal regulation, it has a variety of tubular, fluid-carrying assemblies on-board. The systems of interest in this analysis provide breathing air (oxygen and nitrogen), a working fluid (two-phase anhydrous ammonia) for thermal control, and a monopropellant (hydrazine) for station reboost. The tube assemblies run both internally and externally with respect to the habitats. They are found in up to 50 ft. continuous lengths constructed of mostly AISI 316L stainless steel tubing, but also including some Inconel 625 nickel-iron and Monel 400 nickel-copper alloy tubing. The outer diameters (OD) of the tubes range from 0.25-1.25 inches, and the wall thickness between 0.028-.095 inches. The system operational pressures range from 377 psi (for the thermal control system) to 3400 psi (for the high pressure oxygen and nitrogen supply lines in the ECLSS). SSF is designed for a fifteen to thirty year mission. It is likely that the tubular assemblies (TA's) will sustain damage or fail during this lifetime such that they require repair or replacement. The nature of the damage will be combinations of punctures, chips, scratches, and creases and may be cosmetic or actually leaking. The causes of these hypothetical problems are postulated to be: (1) faulty or fatigued fluid joints--both QD's and butt-welds; (2) micro-meteoroid impacts; (3) collison with another man-made object; and (4) over-pressure strain or burst (system origin). While the current NASA baseline may be to temporarily patch the lines by clamping metal c-sections over the defect, and then perform high pressure injection of a sealing compound, it is clear that permanent repair of the line(s) is necessary. This permanent repair could be to replace the entire TA in the segment, or perhaps the segment itself, both alternatives being extremely expensive and risky. The former would likely

  6. Weld joint concepts for on-orbit repair of Space Station Freedom fluid system tube assemblies

    NASA Astrophysics Data System (ADS)

    Jolly, Steven D.

    1993-11-01

    Because Space Station Freedom (SSF) is an independent satellite, not depending upon another spacecraft for power, attitude control, or thermal regulation, it has a variety of tubular, fluid-carrying assemblies on-board. The systems of interest in this analysis provide breathing air (oxygen and nitrogen), a working fluid (two-phase anhydrous ammonia) for thermal control, and a monopropellant (hydrazine) for station reboost. The tube assemblies run both internally and externally with respect to the habitats. They are found in up to 50 ft. continuous lengths constructed of mostly AISI 316L stainless steel tubing, but also including some Inconel 625 nickel-iron and Monel 400 nickel-copper alloy tubing. The outer diameters (OD) of the tubes range from 0.25-1.25 inches, and the wall thickness between 0.028-.095 inches. The system operational pressures range from 377 psi (for the thermal control system) to 3400 psi (for the high pressure oxygen and nitrogen supply lines in the ECLSS). SSF is designed for a fifteen to thirty year mission. It is likely that the tubular assemblies (TA's) will sustain damage or fail during this lifetime such that they require repair or replacement. The nature of the damage will be combinations of punctures, chips, scratches, and creases and may be cosmetic or actually leaking. The causes of these hypothetical problems are postulated to be: (1) faulty or fatigued fluid joints--both QD's and butt-welds; (2) micro-meteoroid impacts; (3) collison with another man-made object; and (4) over-pressure strain or burst (system origin). While the current NASA baseline may be to temporarily patch the lines by clamping metal c-sections over the defect, and then perform high pressure injection of a sealing compound, it is clear that permanent repair of the line(s) is necessary. This permanent repair could be to replace the entire TA in the segment, or perhaps the segment itself, both alternatives being extremely expensive and risky. The former would likely

  7. The human genome: Some assembly required. Final report

    SciTech Connect

    1994-12-31

    The Human Genome Project promises to be one of the most rewarding endeavors in modern biology. The cost and the ethical and social implications, however, have made this project the source of considerable debate both in the scientific community and in the public at large. The 1994 Graduate Student Symposium addresses the scientific merits of the project, the technical issues involved in accomplishing the task, as well as the medical and social issues which stem from the wealth of knowledge which the Human Genome Project will help create. To this end, speakers were brought together who represent the diverse areas of expertise characteristic of this multidisciplinary project. The keynote speaker addresses the project`s motivations and goals in the larger context of biological and medical sciences. The first two sessions address relevant technical issues, data collection with a focus on high-throughput sequencing methods and data analysis with an emphasis on identification of coding sequences. The third session explores recent advances in the understanding of genetic diseases and possible routes to treatment. Finally, the last session addresses some of the ethical, social and legal issues which will undoubtedly arise from having a detailed knowledge of the human genome.

  8. Understanding the complex needs of automotive training at final assembly lines.

    PubMed

    Hermawati, Setia; Lawson, Glyn; D'Cruz, Mirabelle; Arlt, Frank; Apold, Judith; Andersson, Lina; Lövgren, Maria Gink; Malmsköld, Lennart

    2015-01-01

    Automobile final assembly operators must be highly skilled to succeed in a low automation environment where multiple variants must be assembled in quick succession. This paper presents formal user studies conducted at OPEL and VOLVO Group to identify assembly training needs and a subset of requirements; and to explore potential features of a hypothetical game-based virtual training system. Stakeholder analysis, timeline analysis, link analysis, Hierarchical Task Analysis and thematic content analysis were used to analyse the results of interviews with various stakeholders (17 and 28 participants at OPEL and VOLVO, respectively). The results show that there is a strong case for the implementation of virtual training for assembly tasks. However, it was also revealed that stakeholders would prefer to use a virtual training to complement, rather than replace, training on pre-series vehicles. PMID:25130310

  9. National Ignition Facility subsystem design requirements final optics assembly subsystem SSDR 1.8.7

    SciTech Connect

    Adams, C.

    1996-10-20

    This SSDR establishes the performance, design, development and test requirements for the Final Optic Assembly (FOA). The FOA (WBS 1.8.7) as part of the Target Experimental System (1.8) includes vacuum windows, frequency conversion crystals, focus lens, debris shields and supporting mechanical equipment.

  10. 40 CFR 1054.610 - What is the exemption for delegated final assembly?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provisions of 40 CFR 1068.261 related to delegated final assembly do not apply for handheld engines certified under this part 1054. The provisions of 40 CFR 1068.261 apply for nonhandheld engines, with the... section and 40 CFR 1068.261. We may set additional conditions beyond the provisions specified in...

  11. 40 CFR 1054.610 - What is the exemption for delegated final assembly?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provisions of 40 CFR 1068.261 related to delegated final assembly do not apply for handheld engines certified under this part 1054. The provisions of 40 CFR 1068.261 apply for nonhandheld engines, with the... section and 40 CFR 1068.261. We may set additional conditions beyond the provisions specified in...

  12. 40 CFR 1054.610 - What is the exemption for delegated final assembly?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provisions of 40 CFR 1068.261 related to delegated final assembly do not apply for handheld engines certified under this part 1054. The provisions of 40 CFR 1068.261 apply for nonhandheld engines, with the... section and 40 CFR 1068.261. We may set additional conditions beyond the provisions specified in...

  13. 40 CFR 1054.610 - What is the exemption for delegated final assembly?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provisions of 40 CFR 1068.261 related to delegated final assembly do not apply for handheld engines certified under this part 1054. The provisions of 40 CFR 1068.261 apply for nonhandheld engines, with the... section and 40 CFR 1068.261. We may set additional conditions beyond the provisions specified in...

  14. 40 CFR 1054.610 - What is the exemption for delegated final assembly?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provisions of 40 CFR 1068.261 related to delegated final assembly do not apply for handheld engines certified under this part 1054. The provisions of 40 CFR 1068.261 apply for nonhandheld engines, with the... section and 40 CFR 1068.261. We may set additional conditions beyond the provisions specified in...

  15. Strut-node joint conjugates for the assembly of semi-permanent or reusable truss structures

    NASA Technical Reports Server (NTRS)

    Brewer, W. V.

    1989-01-01

    When strut and node components are used for truss construction an assembly problem occurs if a strut must be fitted between nodes whose separation distance is either closer or farther than the design intended. This condition is the result of normal dimensional variations that occur in any manufacturing process. In such circumstances two actions would permit continued assembly: change the effective strut length, and move the nodes. Assuming continued assembly is the most attractive alternative, attention is focused on accomplishing these actions as part of the assembly process.

  16. Photoinduced Electron Transfer in Ordered Macromolecular Assemblies. Final report for May 1, 1988 - June 30, 2002

    SciTech Connect

    Jones, G.

    2005-02-11

    The final report describes studies over a 13 year period having to do with photoinduced electron transfer for active chromophores and redox agents, including assembly of the components in water soluble polymers or polypeptides. The findings include observation of long range charge separation and electron transport using laser phototransient spectroscopy. The systems targeted in these studies include peptide assemblies for which helical conformations and aggregation are documented. Oligomeric peptides modified with non-native redox active groups were also selected for investigation. Highly charged polymers or peptides were investigated as host agents that resemble proteins. The overall goal of these investigations focused on the design and characterization of systems capable of artificial photosynthesis.

  17. End-effector - joint conjugates for robotic assembly of large truss structures in space: A second generation

    NASA Technical Reports Server (NTRS)

    Brewer, W. V.

    1988-01-01

    Current designs, a first generation intended for robotic assembly, have given priority to the ease and certainty of the assembly process under less than ideal conditions with a minimum of sensory feedback. As a consequence they are either heavy or expensive and all exhibit a relatively low packaging density. Low packaging density is caused by extensive scars applied to the node, increasing its envelope diameter by as much as 150 percent. Strut envelopes are violated to a lessor extent with diameters increased by 25 percent or more. This smaller percentage is still a significant problem owing to a much higher fraction of the packaged volume represented by struts. As structures in space become larger, packaging density becomes an important consideration. The objective is to develop end-effector-joint conjugates that do not violate the envelopes of a 2.5 inch diameter node or a 1.0 inch diameter strut.

  18. Virtual verification of the AIRBUS A400M final assembly line industrialization

    NASA Astrophysics Data System (ADS)

    Menéndez, J. L.; Mas, F.; Serván, J.; Ríos, J.

    2012-04-01

    This document describes the experience gained from the project of implementing the Digital Manufacturing methodology to validate the industrial design of the AIRBUS A400M Final Assembly Line (FAL) in a virtual environment using state of the art Product Lifecycle Management (PLM) tools. The project has generated a remarkable innovation in the industrialization methods and tools used in AIRBUS Military, contributing to the A400M program success. The document presents: the background and reasons motivating the project, the context and the main barriers identified, and the definition of a Final Assembly Line. An innovative concept of industrial Digital Mock-Up (iDMU) was coined, representing the interoperable grouping of product, processes and manufacturing resources data.

  19. Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study

    NASA Astrophysics Data System (ADS)

    El Garah, M.; Santana Bonilla, A.; Ciesielski, A.; Gualandi, A.; Mengozzi, L.; Fiorani, A.; Iurlo, M.; Marcaccio, M.; Gutierrez, R.; Rapino, S.; Calvaresi, M.; Zerbetto, F.; Cuniberti, G.; Cozzi, P. G.; Paolucci, F.; Samorì, P.

    2016-07-01

    Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to control their organization at the supramolecular level. Such a tuning is particularly important when applied to sophisticated molecules combining functional units which possess specific electronic properties, such as electron/energy transfer, in order to develop multifunctional systems. Here we have synthesized two tetraferrocene-porphyrin derivatives that by design can selectively self-assemble at the graphite/liquid interface into either face-on or edge-on monolayer-thick architectures. The former supramolecular arrangement consists of two-dimensional planar networks based on hydrogen bonding among adjacent molecules whereas the latter relies on columnar assembly generated through intermolecular van der Waals interactions. Scanning Tunneling Microscopy (STM) at the solid-liquid interface has been corroborated by cyclic voltammetry measurements and assessed by theoretical calculations to gain multiscale insight into the arrangement of the molecule with respect to the basal plane of the surface. The STM analysis allowed the visualization of these assemblies with a sub-nanometer resolution, and cyclic voltammetry measurements provided direct evidence of the interactions of porphyrin and ferrocene with the graphite surface and offered also insight into the dynamics within the face-on and edge-on assemblies. The experimental findings were supported by theoretical calculations to shed light on the electronic and other physical properties of both assemblies. The capability to engineer the functional nanopatterns through self-assembly of porphyrins containing ferrocene units is a key step toward the bottom-up construction of multifunctional molecular nanostructures and nanodevices.Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to

  20. Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study.

    PubMed

    El Garah, M; Santana Bonilla, A; Ciesielski, A; Gualandi, A; Mengozzi, L; Fiorani, A; Iurlo, M; Marcaccio, M; Gutierrez, R; Rapino, S; Calvaresi, M; Zerbetto, F; Cuniberti, G; Cozzi, P G; Paolucci, F; Samorì, P

    2016-07-14

    Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to control their organization at the supramolecular level. Such a tuning is particularly important when applied to sophisticated molecules combining functional units which possess specific electronic properties, such as electron/energy transfer, in order to develop multifunctional systems. Here we have synthesized two tetraferrocene-porphyrin derivatives that by design can selectively self-assemble at the graphite/liquid interface into either face-on or edge-on monolayer-thick architectures. The former supramolecular arrangement consists of two-dimensional planar networks based on hydrogen bonding among adjacent molecules whereas the latter relies on columnar assembly generated through intermolecular van der Waals interactions. Scanning Tunneling Microscopy (STM) at the solid-liquid interface has been corroborated by cyclic voltammetry measurements and assessed by theoretical calculations to gain multiscale insight into the arrangement of the molecule with respect to the basal plane of the surface. The STM analysis allowed the visualization of these assemblies with a sub-nanometer resolution, and cyclic voltammetry measurements provided direct evidence of the interactions of porphyrin and ferrocene with the graphite surface and offered also insight into the dynamics within the face-on and edge-on assemblies. The experimental findings were supported by theoretical calculations to shed light on the electronic and other physical properties of both assemblies. The capability to engineer the functional nanopatterns through self-assembly of porphyrins containing ferrocene units is a key step toward the bottom-up construction of multifunctional molecular nanostructures and nanodevices. PMID:27376633

  1. Joint research effort on vibrations of twisted plates, phase 1: Final results

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.; Leissa, A. W.; Macbain, J. C.; Carney, K. S.

    1985-01-01

    The complete theoretical and experimental results of the first phase of a joint government/industry/university research study on the vibration characteristics of twisted cantilever plates are given. The study is conducted to generate an experimental data base and to compare many different theoretical methods with each other and with the experimental results. Plates with aspect ratios, thickness ratios, and twist angles representative of current gas turbine engine blading are investigated. The theoretical results are generated by numerous finite element, shell, and beam analysis methods. The experimental results are obtained by precision matching a set of twisted plates and testing them at two laboratories. The second and final phase of the study will concern the effects of rotation.

  2. Diffusion welding of Cassegrainian concentrator cell stack assemblies. M.S. Thesis Final Report, Jun. 1983 - Sep. 1985

    NASA Technical Reports Server (NTRS)

    Gangl, K. J.

    1985-01-01

    Development of a procedure to join the components of the Cassegrainian concentrator photovoltaic cell stack assembly was studied. Diffusion welding was selected as the most promising process, and was concentrated on exclusively. All faying surfaces were coated with silver to promote welding. The first phase of the study consisted of developing the relationship between process parameters and joint strength using silver plated steel samples and an isostatic pressure system. In the second phase, mockups of the cell stack assembly were welded in a hot isostatic press. Excellent joint strength was achieved with parameters of 350 C and 10 ksi, but the delicate GaAs component could not survive the welding cycle without cracking. The tendency towards cracking was found to be affected by both temperature and pressure. Further work will be required in the future to solve this problem.

  3. Design, Analysis and Testing of a PRSEUS Pressure Cube to Investigate Assembly Joints

    NASA Technical Reports Server (NTRS)

    Yovanof, Nicolette; Lovejoy, Andrew E.; Baraja, Jaime; Gould, Kevin

    2012-01-01

    Due to its potential to significantly increase fuel efficiency, the current focus of NASA's Environmentally Responsible Aviation Program is the hybrid wing body (HWB) aircraft. Due to the complex load condition that exists in HWB structure, as compared to traditional aircraft configurations, light-weight, cost-effective and manufacturable structural concepts are required to enable the HWB. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is one such structural concept. A building block approach for technology development of the PRSEUS concept is being conducted. As part of this approach, a PRSEUS pressure cube was developed as a risk reduction test article to examine a new integral cap joint concept. This paper describes the design, analysis and testing of the PRSEUS pressure cube test article. The pressure cube was required to withstand a 2P, 18.4 psi, overpressure load requirement. The pristine pressure cube was tested to 2.2P with no catastrophic failure. After the addition of barely visible impact damage, the cube was pressure loaded to 48 psi where catastrophic failure occurred, meeting the scale-up requirement. Comparison of pretest and posttest analyses with the cube test response agree well, and indicate that current analysis methods can be used to accurately analyze PRSEUS structure for initial failure response.

  4. Activation Analysis of the Final Optics Assemblies at the National Ignition Facility

    SciTech Connect

    Dauffy, L S; Khater, H Y; Sitaraman, S; Brereton, S J

    2008-10-14

    Commissioning shots have commenced at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory. Within a year, the 192 laser beam facility will be operational and the experimental phase will begin. At each shot, the emitted neutrons will interact in the facility's surroundings, activating them, especially inside the target bay where the neutron flux is the highest. We are calculating the dose from those activated structures and objects in order to plan and minimize worker exposures during maintenance and normal NIF operation. This study presents the results of the activation analysis of the optics of the Final Optics Assemblies (FOA), which are a key contributor to worker exposure. Indeed, there are 48 FOAs weighting three tons each, and routine change-out and maintenance of optics and optics modules is expected. The neutron field has been characterized using the three-dimensional Monte Carlo particle transport code MCNP with subsequent activation analysis performed using the activation code, ALARA.

  5. Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication

    PubMed Central

    2014-01-01

    Background Horseshoe crabs are marine arthropods with a fossil record extending back approximately 450 million years. They exhibit remarkable morphological stability over their long evolutionary history, retaining a number of ancestral arthropod traits, and are often cited as examples of “living fossils.” As arthropods, they belong to the Ecdysozoa, an ancient super-phylum whose sequenced genomes (including insects and nematodes) have thus far shown more divergence from the ancestral pattern of eumetazoan genome organization than cnidarians, deuterostomes and lophotrochozoans. However, much of ecdysozoan diversity remains unrepresented in comparative genomic analyses. Results Here we apply a new strategy of combined de novo assembly and genetic mapping to examine the chromosome-scale genome organization of the Atlantic horseshoe crab, Limulus polyphemus. We constructed a genetic linkage map of this 2.7 Gbp genome by sequencing the nuclear DNA of 34 wild-collected, full-sibling embryos and their parents at a mean redundancy of 1.1x per sample. The map includes 84,307 sequence markers grouped into 1,876 distinct genetic intervals and 5,775 candidate conserved protein coding genes. Conclusions Comparison with other metazoan genomes shows that the L. polyphemus genome preserves ancestral bilaterian linkage groups, and that a common ancestor of modern horseshoe crabs underwent one or more ancient whole genome duplications 300 million years ago, followed by extensive chromosome fusion. These results provide a counter-example to the often noted correlation between whole genome duplication and evolutionary radiations. The new, low-cost genetic mapping method for obtaining a chromosome-scale view of non-model organism genomes that we demonstrate here does not require laboratory culture, and is potentially applicable to a broad range of other species. PMID:24987520

  6. Wedge Joints for Trusses

    NASA Technical Reports Server (NTRS)

    Wood, Kenneth E.

    1987-01-01

    Structure assembled rapidly with simple hand tools. Proposed locking wedge joints enable rapid assembly of lightweight beams, towers, scaffolds, and other truss-type structures. Lightweight structure assembled from tubular struts joined at nodes by wedge pins fitting into mating slots. Joint assembled rapidly by seating wedge pin in V-shaped slots and deforming end of strut until primary pawl engages it.

  7. Ghost analysis visualization techniques for complex systems: examples from the NIF Final Optics Assembly

    SciTech Connect

    Beer, G K; Hendrix, J L; Rowe, J; Schweyen, J

    1998-06-26

    The stray light or "ghost" analysis of the National Ignition Facility's (NIP) Final Optics Assembly (FOA) has proved to be one of the most complex ghost analyses ever attempted. The NIF FOA consists of a bundle of four beam lines that: 1) provides the vacuum seal to the target chamber, 2) converts 1ω to 3ω light, 3) focuses the light on the target, 4) separates a fraction of the 3ω beam for energy diagnostics, 5) separates the three wavelengths to diffract unwanted 1ω & 2ω light away from the target, 6) provides spatial beam smoothing, and 7) provides a debris barrier between the target chamber and the switchyard mirrors. The three wavelengths of light and seven optical elements with three diffractive optic surfaces generate three million ghosts through 4th order. Approximately 24,000 of these ghosts have peak fluence exceeding 1 J/cm2. The shear number of ghost paths requires a visualization method that allows overlapping ghosts on optics and mechanical components to be summed and then mapped to the optical and mechanical component surfaces in 3D space. This paper addresses the following aspects of the NIF Final Optics Ghost analysis: 1) materials issues for stray light mitigation, 2) limitations of current software tools (especially in modeling diffractive optics), 3) computer resource limitations affecting automated coherent raytracing, 4) folding the stray light analysis into the opto-mechanical design process, 5) analysis and visualization tools from simple hand calculations to specialized stray light analysis computer codes, and 6) attempts at visualizing these ghosts using a CAD model and another using a high end data visualization software approach.

  8. National Ignition Facility final optics assembly thermal effects of maintenance operations

    SciTech Connect

    Parietti, L.; Martin, R.A.

    1998-04-01

    The National Ignition Facility (NIF), the world`s most powerful laser system, is being built at Lawrence Livermore National Laboratory (LLNL) to study inertial fusion and high-energy-density science. This billion-dollar facility consists of 192 beams focusing 1.8 MJ on a fusion target. The Final Optics Assembly (FOA), the last mechanical apparatus before the target chamber, converts the light from an incoming frequency of 1 {omega} to ia target-ready 3 {omega}, and focuses the laser beam. The performance of the frequency conversion crystals is very sensitive to temperature changes; crystal temperature must be maintained within a 0.1 C of a nominal temperature prior to a laser shot. Maximizing system availability requires minimizing thermal recovery times after thermal disturbances occurring in both normal and maintenance operations. To guide the design, it is important to have estimates of those recovery times. This report presents Computational Fluid Dynamics (CFD) design calculations to evaluate thermal effects of maintenance operations.

  9. Final Report: Photo-Directed Molecular Assembly of Multifunctional Inorganic Materials

    SciTech Connect

    B.G. Potter, Jr.

    2010-10-15

    This final report details results, conclusions, and opportunities for future effort derived from the study. The work involved combining the molecular engineering of photoactive Ti-alkoxide systems and the optical excitation of hydrolysis and condensation reactions to influence the development of the metal-oxygen-metal network at the onset of material formation. Selective excitation of the heteroleptic alkoxides, coupled with control of alkoxide local chemical environment, enabled network connectivity to be influenced and formed the basis for direct deposition and patterning of Ti-oxide-based materials. The research provided new insights into the intrinsic photoresponse and assembly of these complex, alkoxide molecules. Using a suite of electronic, vibrational, and nuclear spectroscopic probes, coupled with quantum chemical computation, the excitation wavelength and fluence dependence of molecular photoresponse and the nature of subsequent hydrolysis and condensation processes were probed in pyridine-carbinol-based Ti-alkoxides with varied counter ligand groups. Several methods for the patterning of oxide material formation were demonstrated, including the integration of this photoprocessing approach with conventional, dip-coating methodologies.

  10. LDRD final report: Automated planning and programming of assembly of fully 3D mechanisms

    SciTech Connect

    Kaufman, S.G.; Wilson, R.H.; Jones, R.E.; Calton, T.L.; Ames, A.L.

    1996-11-01

    This report describes the results of assembly planning research under the LDRD. The assembly planning problem is that of finding a sequence of assembly operations, starting from individual parts, that will result in complete assembly of a device specified as a CAD model. The automated assembly programming problem is that of automatically producing a robot program that will carry out a given assembly sequence. Given solutions to both of these problems, it is possible to automatically program a robot to assemble a mechanical device given as a CAD data file. This report describes the current state of our solutions to both of these problems, and a software system called Archimedes 2 we have constructed to automate these solutions. Because Archimedes 2 can input CAD data in several standard formats, we have been able to test it on a number of industrial assembly models more complex than any before attempted by automated assembly planning systems, some having over 100 parts. A complete path from a CAD model to an automatically generated robot program for assembling the device represented by the CAD model has also been demonstrated.

  11. Oklahoma School Finance: A Study with Recommendations. Final Report, Special Joint Committee on School Finance.

    ERIC Educational Resources Information Center

    Oklahoma State Legislature, Oklahoma City.

    The funding of public elementary and secondary schools in Oklahoma is examined in this report. In accordance with legislative requirements, a Special Joint Committee of the Oklahoma Legislature undertook an assessment of the current school finance formula for state aid and made recommendations on changes needed to provide equitable funding for…

  12. Advanced Stirling Radioisotope Generator Engineering Unit 2 (ASRG EU2) Final Assembly

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2015-01-01

    NASA Glenn Research Center (GRC) has recently completed the assembly of a unique Stirling generator test article for laboratory experimentation. Under the Advanced Stirling Radioisotope Generator (ASRG) flight development contract, NASA GRC initiated a task to design and fabricate a flight-like generator for in-house testing. This test article was given the name ASRG Engineering Unit 2 (EU2) as it was effectively the second engineering unit to be built within the ASRG project. The intent of the test article was to duplicate Lockheed Martin's qualification unit ASRG design as much as possible to enable system-level tests not previously possible at GRC. After the cancellation of the ASRG flight development project, the decision was made to continue the EU2 build, and make use of a portion of the hardware from the flight development project. GRC and Lockheed Martin engineers collaborated to develop assembly procedures, leveraging the valuable knowledge gathered by Lockheed Martin during the ASRG development contract. The ASRG EU2 was then assembled per these procedures at GRC with Lockheed Martin engineers on site. The assembly was completed in August 2014. This paper details the components that were used for the assembly, and the assembly process itself.

  13. All-in-one assembly based on 3D-intertangled and cross-jointed architectures of Si/Cu 1D-nanowires for lithium ion batteries

    PubMed Central

    Hwang, Chihyun; Kim, Tae-Hee; Cho, Yoon-Gyo; Kim, Jieun; Song, Hyun-Kon

    2015-01-01

    All-in-one assemblies of separator, electrode and current collector (SECA) for lithium ion batteries are presented by using 1D nanowires of Si and Cu (nwSi and nwCu). Even without binders, integrity of SECA is secured via structural joints based on ductility of Cu as well as entanglement of nwSi and nwCu. By controlling the ratio of the nanowires, the number of contact points and voids accommodating volume expansion of Si active material are tunable. Zero volume expansion and high energy density are simultaneously achievable by the architecture. PMID:25720334

  14. Reliability of CGA/LGA/HDI Package Board/Assembly (Final Report)

    NASA Technical Reports Server (NTRS)

    Ghaffaroam. Reza

    2014-01-01

    Package manufacturers are now offering commercial-off-the-shelf column grid array (COTS CGA) packaging technologies in high-reliability versions. Understanding the process and quality assurance (QA) indicators for reliability are important for low-risk insertion of these advanced electronics packages. The previous reports, released in January of 2012 and January of 2013, presented package test data, assembly information, and reliability evaluation by thermal cycling for CGA packages with 1752, 1517, 1509, and 1272 inputs/outputs (I/Os) and 1-mm pitch. It presented the thermal cycling (-55C either 100C or 125C) test results for up to 200 cycles. This report presents up to 500 thermal cycles with quality assurance and failure analysis evaluation represented by optical photomicrographs, 2D real time X-ray images, dye-and-pry photomicrographs, and optical/scanning electron Microscopy (SEM) cross-sectional images. The report also presents assembly challenge using reflowing by either vapor phase or rework station of CGA and land grid array (LGA) versions of three high I/O packages both ceramic and plastic configuration. A new test vehicle was designed having high density interconnect (HDI) printed circuit board (PCB) with microvia-in-pad to accommodate both LGA packages as well as a large number of fine pitch ball grid arrays (BGAs). The LGAs either were assembled onto HDI PCB as an LGA or were solder paste print and reflow first to form solder dome on pads before assembly. Both plastic BGAs with 1156 I/O and ceramic LGAs were assembled. It also presented the X-ray inspection results as well as failures due to 200 thermal cycles. Lessons learned on assembly of ceramic LGAs are also presented.

  15. The Quest for Community in a National Republic: A Bicentennial Reappraisal. Final Report and Keynote Address, Virginia Assembly (Richmond, Virginia, April 8-10, 1988).

    ERIC Educational Resources Information Center

    Virginia Univ., Charlottesville. Center for Public Service.

    This Virginia Assembly document focuses on the concept of community as defined by the Founding Fathers of the U.S. Constitution. The final report identifies and discusses problems related to the modern quest for community in a national republic. Recommendations by the Assembly are offered in eight areas: (1) civic responsibility; (2) corporate…

  16. INTX: Interactive Assembler Language Interpreter Users' Manual; Preliminary Programming Manual and Version II Extensions. Final Report.

    ERIC Educational Resources Information Center

    Silver, Steven S.

    INTX is an interactive programing and debugging system operating under UCLA's URSA interactive console system. Although originally designed as a debugging aid for interactive processor development, the addition of an on-line Assembler makes it a programing system in its own right. INTX operates only on the Computer Communications 301 graphics…

  17. The Acquisition of a Complex Assembly Task by Retarded Adolescents. Final Report.

    ERIC Educational Resources Information Center

    Gold, Marc William

    Sixty-four moderately and severely retarded individuals enrolled in four sheltered workshops learned to assemble a 15 piece and a 24 piece bicycle brake. Training procedures utilized information obtained from the basic psychological research on discrimination learning. One-half of the subjects worked with the parts of the training task brake as…

  18. Final report [FASEB Summer Research Conference ''Virus Assembly''--agenda and attendee list

    SciTech Connect

    Feiss, Michael

    2001-01-31

    The conference brought together researchers working on virus structure and virus assembly in diverse systems. Information was integrated from many viral systems, including plant bacterial and eukaryotic viruses, and many techniques such as biophysical approaches of x-ray diffraction, electron microscopy and spectroscopy, along with molecular biological and molecular genetic analysis.

  19. Development, assembly, and validation of an SMA-actuated two-joint nozzle and six-channel power supply for use in a smart inhaler system

    NASA Astrophysics Data System (ADS)

    Furst, Stephen J.; Hangekar, Rohan; Seelecke, Stefan

    2010-04-01

    The Smart Inhaler design concept recently developed at NC State University has the potential to target the delivery of inhaled aerosol medication to specified locations within the lung system. This targeted delivery could help patients with pulmonary ailments by reducing the exposure of healthy lung tissue to potentially harmful medications. However, controlled delivery can only be accomplished if medication is injected at a precise location in an inhaled stream of properly conditioned laminar flow. In particular, the medication must be injected into the inhaled flow using a small nozzle that can be positioned without disturbing the flow. This paper outlines the procedure used to assemble and control a key component of the smart inhaler: a shape memory alloy (SMA) based dual-joint flexible nozzle that exploits the sensing and actuating capabilities of thermally activated SMA wires. A novel 6-channel power-supply is used to control input power and measure the resistance across the SMA. Since a practical fabrication process may result in SMA wires with different contact resistances, the power supply employs an initialization procedure to self-calibrate and provide normalized power distribution 6 SMA wires simultaneously. Furthermore, a robust control scheme is used to ensure that a constant current is provided to the wires. In validation tests, a LabVIEW-based video positioning system was used to measure the deflection of the nozzle tip and joint rotation. Results show that the carefully controlled assembly of a stream-lined nozzle can produce a practical smart structure, and joint rotation is predictable and repeatable when power input is also controlled. Future work will assess the use of the SMA-resistance measurement as position feedback and PID position control power as a measurement of the convective cooling that results from the moving airflow.

  20. An evaluation of the spring finger solder joints on SA1358-10 and SA2052-4 connector assemblies (MC3617,W87).

    SciTech Connect

    Kilgo, Alice C.; Vianco, Paul Thomas; Hlava, Paul Frank; Zender, Gary L.

    2006-08-01

    The SA1358-10 and SA2052-4 circular JT Type plug connectors are used on a number of nuclear weapons and Joint Test Assembly (JTA) systems. Prototype units were evaluated for the following specific defects associated with the 95Sn-5Sb (Sn-Sb, wt.%) solder joint used to attach the beryllium-copper (BeCu) spring fingers to the aluminum (Al) connector shell: (1) extended cracking within the fillet; (2) remelting of the solder joint during the follow-on, soldering step that attached the EMR adapter ring to the connector shell (and/or soldering the EMR shell to the adapter ring) that used the lower melting temperature 63Sn-37Pb (Sn-Pb) alloy; and (3) spalling of the Cd (Cr) layer overplating layer from the fillet surface. Several pedigrees of connectors were evaluated, which represented older fielded units as well as those assemblies that were recently constructed at Kansas City Plant. The solder joints were evaluated that were in place on connectors made with the current soldering process as well as an alternative induction soldering process for attaching the EMR adapter ring to the shell. Very similar observations were made, which crossed the different pedigrees of parts and processes. The extent of cracking in the top side fillets varied between the different connector samples and likely the EMR adapter ring to the shell. Very similar observations were made, which crossed the different pedigrees of parts and processes. The extent of cracking in the top side fillets varied between the different connector samples and likely reflected the different extents to which the connector was mated to its counterpart assembly. In all cases, the spring finger solder joints on the SA1358-10 connectors were remelted as a result of the subsequent EMR adapter ring attachment process. Spalling of the Cd (Cr) overplating layer was also observed for these connectors, which was a consequence of the remelting activity. On the other hand, the SA2052-4 connector did not exhibit evidence of

  1. Confined cooperative self-assembly and synthesis of optically and electrically active nanostructures : final LDRD report

    SciTech Connect

    Coker, Eric Nicholas; Haddad, Raid Edward; Fan, Hongyou; Ta, Anh; Bai, Feng; Rodriguez, Mark Andrew; Huang, Jian Yu

    2011-10-01

    In this project, we developed a confined cooperative self-assembly process to synthesize one-dimensional (1D) j-aggregates including nanowires and nanorods with controlled diameters and aspect ratios. The facile and versatile aqueous solution process assimilates photo-active macrocyclic building blocks inside surfactant micelles, forming stable single-crystalline high surface area nanoporous frameworks with well-defined external morphology defined by the building block packing. Characterizations using TEM, SEM, XRD, N{sub 2} and NO sorption isotherms, TGA, UV-vis spectroscopy, and fluorescence imaging and spectroscopy indicate that the j-aggregate nanostructures are monodisperse and may further assemble into hierarchical arrays with multi-modal functional pores. The nanostructures exhibit enhanced and collective optical properties over the individual chromophores. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

  2. Designed supramolecular assemblies for biosensors and photoactive devices. LDRD final report

    SciTech Connect

    Song, X.Z.; Shelnutt, J.A.; Hobbs, J.D.; Cesarano, J.

    1997-02-01

    The objective of this project is the development of a new class of supramolecular assemblies for applications in biosensors and biodevices. The supramolecular assemblies are based on membranes and Langmuir-Blodgett (LB) films composed of naturally-occurring or synthetic lipids, which contain electrically and/or photochemically active components. The LB films are deposited onto electrically-active materials (metal, semiconductors). The active components film components (lipo-porphyrins) at the surface function as molecular recognition sites for sensing proteins and other biomolecules, and the porphyrins and other components (e.g., fullerenes) incorporated into the films serve as photocatalysts and vectorial electron-transport agents. Computer-aided molecular design (CAMD) methods are used to tailor the structure of these film components to optimize function. Molecular modeling is also used to predict the location, orientation, and motion of these molecular components within the films. The result is a variety of extended, self-assembled molecular structures that serve as devices for sensing proteins and biochemicals or as other bioelectronic devices.

  3. Effects of PCB Pad Metal Finishes on the Cu-Pillar/Sn-Ag Micro Bump Joint Reliability of Chip-on-Board (COB) Assembly

    NASA Astrophysics Data System (ADS)

    Kim, Youngsoon; Lee, Seyong; Shin, Ji-won; Paik, Kyung-Wook

    2016-06-01

    While solder bumps have been used as the bump structure to form the interconnection during the last few decades, the continuing scaling down of devices has led to a change in the bump structure to Cu-pillar/Sn-Ag micro-bumps. Cu-pillar/Sn-Ag micro-bump interconnections differ from conventional solder bump interconnections in terms of their assembly processing and reliability. A thermo-compression bonding method with pre-applied b-stage non-conductive films has been adopted to form solder joints between Cu pillar/Sn-Ag micro bumps and printed circuit board vehicles, using various pad metal finishes. As a result, various interfacial inter-metallic compounds (IMCs) reactions and stress concentrations occur at the Cu pillar/Sn-Ag micro bumps joints. Therefore, it is necessary to investigate the influence of pad metal finishes on the structural reliability of fine pitch Cu pillar/Sn-Ag micro bumps flip chip packaging. In this study, four different pad surface finishes (Thin Ni ENEPIG, OSP, ENEPIG, ENIG) were evaluated in terms of their interconnection reliability by thermal cycle (T/C) test up to 2000 cycles at temperatures ranging from -55°C to 125°C and high-temperature storage test up to 1000 h at 150°C. The contact resistances of the Cu pillar/Sn-Ag micro bump showed significant differences after the T/C reliability test in the following order: thin Ni ENEPIG > OSP > ENEPIG where the thin Ni ENEPIG pad metal finish provided the best Cu pillar/Sn-Ag micro bump interconnection in terms of bump joint reliability. Various IMCs formed between the bump joint areas can account for the main failure mechanism.

  4. Effects of PCB Pad Metal Finishes on the Cu-Pillar/Sn-Ag Micro Bump Joint Reliability of Chip-on-Board (COB) Assembly

    NASA Astrophysics Data System (ADS)

    Kim, Youngsoon; Lee, Seyong; Shin, Ji-won; Paik, Kyung-Wook

    2016-03-01

    While solder bumps have been used as the bump structure to form the interconnection during the last few decades, the continuing scaling down of devices has led to a change in the bump structure to Cu-pillar/Sn-Ag micro-bumps. Cu-pillar/Sn-Ag micro-bump interconnections differ from conventional solder bump interconnections in terms of their assembly processing and reliability. A thermo-compression bonding method with pre-applied b-stage non-conductive films has been adopted to form solder joints between Cu pillar/Sn-Ag micro bumps and printed circuit board vehicles, using various pad metal finishes. As a result, various interfacial inter-metallic compounds (IMCs) reactions and stress concentrations occur at the Cu pillar/Sn-Ag micro bumps joints. Therefore, it is necessary to investigate the influence of pad metal finishes on the structural reliability of fine pitch Cu pillar/Sn-Ag micro bumps flip chip packaging. In this study, four different pad surface finishes (Thin Ni ENEPIG, OSP, ENEPIG, ENIG) were evaluated in terms of their interconnection reliability by thermal cycle (T/C) test up to 2000 cycles at temperatures ranging from -55°C to 125°C and high-temperature storage test up to 1000 h at 150°C. The contact resistances of the Cu pillar/Sn-Ag micro bump showed significant differences after the T/C reliability test in the following order: thin Ni ENEPIG > OSP > ENEPIG where the thin Ni ENEPIG pad metal finish provided the best Cu pillar/Sn-Ag micro bump interconnection in terms of bump joint reliability. Various IMCs formed between the bump joint areas can account for the main failure mechanism.

  5. RSRM Nozzle-to-Case Joint J-leg Development

    NASA Technical Reports Server (NTRS)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  6. Environmental assessment for device assembly facility operations, Nevada Test Site, Nye County, Nevada. Final report

    SciTech Connect

    1995-05-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), has prepared an environmental assessment (EA), (DOE/EA-0971), to evaluate the impacts of consolidating all nuclear explosive operations at the newly constructed Device Assembly Facility (DAF) in Area 6 of the Nevada Test Site. These operations generally include assembly, disassembly or modification, staging, transportation, testing, maintenance, repair, retrofit, and surveillance. Such operations have previously been conducted at the Nevada Test Site in older facilities located in Area 27. The DAF will provide enhanced capabilities in a state-of-the-art facility for the safe, secure, and efficient handling of high explosives in combination with special nuclear materials (plutonium and highly enriched uranium). Based on the information and analyses in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (42 U.S.C. 4321 et seq.). Therefore, an environmental impact statement is not required, and DOE is issuing this finding of no significant impact.

  7. Fabrication, assembly, bench and drilling tests of two prototype downhole pneumatic turbine motors: Final technical report

    SciTech Connect

    Bookwalter, R.; Duettra, P.D.; Johnson, P.; Lyons, W.C.; Miska, S.

    1987-04-01

    The first and second prototype downhole pneumatic turbine motors have been fabricated, assembled and tested. All bench tests showed that the motor will produce horsepower and bit speeds approximating the predicted values. Specifically, the downhole pneumatic turbine motor produced approximately 50 horsepower at 100 rpm, while being supplied with about 3600 SCFM of compressed air. The first prototype was used in a drilling test from a depth of 389 feet to a depth of 789 feet in the Kirtland formation. This first prototype motor drilled at a rate exceeding 180 ft/hr, utilizing only 3000 SCFM of compressed air. High temperature tests (at approximately 460/sup 0/F) were carried out on the thrust assembly and the gearboxes for the two prototypes. These components operated successfully at these temperatures. Although the bench and drilling tests were successful, the tests revealed design changes that should be made before drilling tests are carried out in geothermal boreholes at the Geysers area, near Santa Rosa, California.

  8. Environmentally Conscious Manufacturing Solvent Substitution Program/switch tube assemblies final report

    SciTech Connect

    Lopez, E.P.; Ohlhausen, J.A.; Peebles, D.E.; Benkovich, M.G.

    1995-06-01

    As part of an Environmentally Conscious Manufacturing (ECM) Program, a study was conducted at Sandia National Laboratories to identify an alternative cleaning process that would effectively replace trichloroethylene (TCE) for cleaning mechanical piece parts of Switch Tube assemblies. Eight aqueous alkaline cleaners, as well as an isopropyl alcohol and isopropyl alcohol/Cyclohexane cleaning process, were studied as potential replacements. Cleaning efficacy, materials compatibility, etch rate and corrosion studies were conducted and used to screen potential candidates. Cleaning efficacy was determined using visual examination, goniometer/contact angle measurements, Auger electron spectroscopy, X-ray Photoelectron spectroscopy and an evaporative rate analysis technique known as MESERAN Surface Analysis. Several cleaners were identified as potential replacements for TCE based solely on the cleaning efficacy results. Some of the cleaners, however, left undesirable residues studies were completed, Brulin 815GD (an aqueous alkaline cleaner) was selected as the replacement for TCE.

  9. Final LDRD report : infrared detection and power generation using self-assembled quantum dots.

    SciTech Connect

    Cederberg, Jeffrey George; Ellis, Robert; Shaner, Eric Arthur

    2008-02-01

    Alternative solutions are desired for mid-wavelength and long-wavelength infrared radiation detection and imaging arrays. We have investigated quantum dot infrared photodetectors (QDIPs) as a possible solution for long-wavelength infrared (8 to 12 {mu}m) radiation sensing. This document provides a summary for work done under the LDRD 'Infrared Detection and Power Generation Using Self-Assembled Quantum Dots'. Under this LDRD, we have developed QDIP sensors and made efforts to improve these devices. While the sensors fabricated show good responsivity at 80 K, their detectivity is limited by high noise current. Following efforts concentrated on how to reduce or eliminate this problem, but with no clear path was identified to the desired performance improvements.

  10. Instantaneous engine frictional torque, its components and piston assembly friction. Final report

    SciTech Connect

    Nichols, F.A.; Henein, N.A.

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-{omega}) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, {omega}, have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-{omega}) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  11. Functional Materials for Microsystems: Smart Self-Assembled Photochromic Films: Final Report

    SciTech Connect

    BURNS, ALAN R.; SASAKI, DARRYL Y.; CARPICK, R.W.; SHELNUTT, JOHN A.; BRINKER, C. JEFFREY

    2001-11-01

    This project set out to scientifically-tailor ''smart'' interfacial films and 3-D composite nanostructures to exhibit photochromic responses to specific, highly-localized chemical and/or mechanical stimuli, and to integrate them into optical microsystems. The project involved the design of functionalized chromophoric self-assembled materials that possessed intense and environmentally-sensitive optical properties (absorbance, fluorescence) enabling their use as detectors of specific stimuli and transducers when interfaced with optical probes. The conjugated polymer polydiacetylene (PDA) proved to be the most promising material in many respects, although it had some drawbacks concerning reversibility. Throughout his work we used multi-task scanning probes (AFM, NSOM), offering simultaneous optical and interfacial force capabilities, to actuate and characterize the PDA with localized and specific interactions for detailed characterization of physical mechanisms and parameters. In addition to forming high quality mono-, bi-, and tri-layers of PDA via Langmuir-Blodgett deposition, we were successful in using the diacetylene monomer precursor as a surfactant that directed the self-assembly of an ordered, mesostructured inorganic host matrix. Remarkably, the diacetylene was polymerized in the matrix, thus providing a PDA-silica composite. The inorganic matrix serves as a perm-selective barrier to chemical and biological agents and provides structural support for improved material durability in microsystems. Our original goal was to use the composite films as a direct interface with microscale devices as optical elements (e.g., intracavity mirrors, diffraction gratings), taking advantage of the very high sensitivity of device performance to real-time dielectric changes in the films. However, our optical physics colleagues (M. Crawford and S. Kemme) were unsuccessful in these efforts, mainly due to the poor optical quality of the composite films.

  12. Development of the bus joint for the ITER Central Solenoid

    SciTech Connect

    Martovetsky, Nicolai N; Irick, David Kim; Kenney, Steven J

    2013-01-01

    The terminations of the Central Solenoid (CS) modules are connected to the bus extensions by joints located outside the CS in the gap between the CS and Torodial Field (TF) assemblies. These joints have very strict space limitations. Low resistance is a common requirement for all ITER joints. In addition, the CS bus joints will experience and must be designed to withstand significant variation in the magnetic field of several tenths of a Tesla per second during initiation of plasma. The joint resistance is specified to be less than 4 nOhm. The joints also have to be soldered in the field and designed with the possibility to be installed and dismantled in order to allow cold testing in the cold test facility. We have developed coaxial joints that meet these requirements and have demonstrated the feasibility to fabricate and assemble them in the vertical configuration. We introduced a coupling cylinder with superconducting strands soldered to the surface of the cable that can be installed in the ITER assembly hall and at the Cold Test Facility. This cylinder serves as a transition area between the CS module and the bus extension. We made two racetrack samples and tested four bus joints in our Joint Test Apparatus. Resistance of the bus joints was measured by a decay method and by a microvoltmeter; the value of the current was measured by the Hall probes. This measurement method was verified in the previous tests. The resistance of the joints varied insignificantly from 1.5 to 2 nOhm. One of the challenges associated with a soldered joint is the inability to use corrosive chemicals that are difficult to clean. This paper describes our development work on cable preparation, chrome removal, compaction, soldering, and final assembly and presents the test results.

  13. Low Distortion Welded Joints for NCSX

    SciTech Connect

    M. Denault, M Viola, W. England

    2009-02-19

    The National Compact Stellarator Experiment (NCSX) required precise positioning of the field coils in order to generate suitable magnetic fields. A set of three modular field coils were assembled to form the Half Field-Period Assemblies (HPA). Final assembly of the HPA required a welded shear plate to join individual coils in the nose region due to the geometric limitations and the strength constraints. Each of the modular coil windings was wound on a stainless steel alloy (Stellalloy) casting. The alloy is similar to austenitic 316 stainless steel. During the initial welding trials, severe distortion, of approximately 1/16", was observed in the joint caused by weld shrinkage. The distortion was well outside the requirements of the design. Solutions were attempted through several simultaneous routes. The joint design was modified, welding processes were changed, and specialized heat reduction techniques were utilized. A final joint design was selected to reduce the amount of weld material needed to be deposited, while maintaining adequate penetration and strength. Several welding processes and techniques using Miller Axcess equipment were utilized that significantly reduced heat input. The final assembly of the HPA was successful. Distortion was controlled to 0.012", well within the acceptable design tolerance range of 0.020" over a 3.5 foot length.

  14. Self-Assembled Monolayers Get Their Final Finish via a Quasi-Langmuir-Blodgett Transfer.

    PubMed

    Meltzer, Christian; Dietrich, Hanno; Zahn, Dirk; Peukert, Wolfgang; Braunschweig, Björn

    2015-04-28

    The growth of self-assembled monolayers (SAMs) of octadecylphosphonic acid (ODPA) molecules on α-Al2O3(0001) and subsequent dewetting of the SAMs were studied with a combination of in situ sum-frequency generation (SFG) and molecular dynamics (MD) simulations. Although SAM growth after deposition times >8 h reduces to nearly negligible values, the resultant ODPA SAMs in solution are still not in a well-ordered state with the alkyl chains in all-trans configurations. In fact, in situ SFG spectroscopy revealed a comparatively high concentration of gauche defects of the SAM in the ODPA 2-propanol solution even after a growth time of 16 h. Here, results of the MD simulations strongly suggest that defects can be caused by ODPA molecules which are not attached to the substrate but are incorporated into the SAM layer with the polar headgroup oriented into the 2-propanol solvent. This inverted adsorption geometry of additional ODPA molecules blocks adsorption sites and thus stabilizes the SAM without improving ordering to an extent that all molecules are in the all-trans configuration. While persistent in solution, the observed defects can be healed out when the SAMs are transferred from the solvent to a gas phase. During this process, a quasi-Langmuir-Blodgett transfer of molecules takes place which drives the SAM into a higher conformational state and significantly improves its quality. PMID:25835342

  15. Automated array assembly. Phase II. Final report, October 1977-December 1979

    SciTech Connect

    D'Aiello, R. V.

    1980-10-01

    The philosophy of this project was to establish an experimental process line starting with 3-in.-diameter silicon wafers and consisting of junction formation using POCl/sub 3/ gaseous diffusion, screen-printed thick-film metallization, reflow solder interconnect, and double-glass lamination panel assembly. This experimental production line produced a sufficient number of solar cells to demonstrate the technological readiness of each of those process steps. Variations (of each process) were made to set limits on the usable range of each process step and to determine the interaction with adjoining steps. Inspections, measurements, and tests were included to determine the output requirement characteristics of each step, obtain statistical variations, and evaluate the performance of the solar cells and panels. A description of this work, which was conducted from October 1977 through December 1978, is given. This was followed by an 18-month study in which three manufacturing sequences synthesized from the previous work and from studies conducted by other participants in the LSA program were exercised. The objectives were to assess the compatibility between process steps for each sequence, to generate sufficient data for comparative SAMICS cost analysis, and to make recommendations of the suitability of one or more of these sequences for the large-scale automated production of solar cells within the cost goal of $0.70/pW. The detailed experimental results of this study are described, followed by SAMICS cost analysis, recommendations, and conclusions.

  16. Ruminant methane reduction through livestock development in Tanzania. Final report for US Department of Energy and US Initiative on Joint Implementation--Activities Implemented Jointly

    SciTech Connect

    Livingston, Roderick

    1999-07-01

    This project was designed to help develop the US Initiative on Joint Implementation activities in Eastern Africa. It has been communicated in meetings with representatives from the Ministry of Environment of Tanzania and the consultant group that developed Tanzania's National Climate Change Action Plan, the Centre for Energy, Environment, Science and Technology, that this project fits very well with the developmental and environmental goals of the Government of Tanzania. The goal of the Activities Implemented Jointly ruminant livestock project is to reduce ruminant methane emissions in Eastern Africa. The project plans a sustainable cattle multiplication unit (CMU) at Mabuki Ranch in the Mwanza Region of Tanzania. This CMU will focus on raising genetically improved animals to be purchased by farmers, developmental organizations, and other CMUs in Tanzania. Through the purchase of these animals farmers will raise their income generation potential and reduce ruminant methane emissions.

  17. Joint instability and osteoarthritis.

    PubMed

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  18. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  19. Joints and terminations for pipe-type cable insulated with paper-polypropylene-paper tapes: Final report

    SciTech Connect

    Engelhardt, J.S.; Ernst, A.; Gear, R.B.

    1988-10-01

    This work developed optimized joint and terminal options for 138--550 kV paper-polypropylene-paper (PPP) cables using conventional materials. In the process, the state of the art of conventional jointing and terminating techniques worldwide was examined and a design process formulated and presented. Test data available on hand-taped joints suggested a maximum radial design stress level of 1750 V/mil at impulse for hand-taped PPP splices. Additional testing is recommended to confirm the maximum axial stress level, but available data indicate that levels much greater than present US practice are acceptable. 86 refs., 78 figs., 16 tabs.

  20. Final report : LDRD project 79824 carbon nanotube sorting via DNA-directed self-assembly.

    SciTech Connect

    Robinson, David B; Leung, Kevin; Rempe, Susan B.; Dossa, Paul D.; Frischknecht, Amalie Lucile; Martin, Marcus Gary

    2007-10-01

    large (on the order of electron volts) and may have important consequences for various SWNT applications. Finally, the adsorption of NMPs onto single-walled carbon nanotubes were studied experimentally. The nanotubes were sonicated in the presence of the nucleotides at various weight fractions and centrifuged before examining the ultraviolet absorbance of the resulting supernatant. A distinct Langmuir adsorption isotherm was obtained for each nucleotide. All of the nucleotides differ in their saturation value as well as their initial slope, which we attribute to differences both in nucleotide structure and in the binding ability of different types or clusters of tubes. Results from this simple system provide insights toward development of dispersion and separation methods for nanotubes: strongly binding nucleotides are likely to help disperse, whereas weaker ones may provide selectivity that may be beneficial to a separation process.

  1. Thermomechanical repository and shaft response analyses using the CAVS (Cracking And Void Strain) jointed rock model: Draft final report

    SciTech Connect

    Dial, B.W.; Maxwell, D.E.

    1986-12-01

    Numerical studies of the far-field repository and near-field shaft response for a nuclear waste repository in bedded salt have been performed with the STEALTH computer code using the CAVS model for jointed rock. CAVS is a constitutive model that can simulate the slip and dilatancy of fracture planes in a jointed rock mass. The initiation and/or propagation of fractures can also be modeled when stress intensity criteria are met. The CAVS models are based on the joint models proposed with appropriate modifications for numerical simulations. The STEALTH/CAVS model has been previously used to model (1) explosive fracturing of a wellbore, (2) earthquake effects on tunnels in a generic nuclear waste repository, (3) horizontal emplacement for a nuclear waste repository in jointed granite, and (4) tunnel response in jointed rock. The use of CAVS to model far-field repository and near-field shaft response was different from previous approaches because it represented a spatially oriented approach to rock response and failure, rather than the traditional stress invariant formulation for yielding. In addition, CAVS tracked the response of the joint apertures to the time-dependent stress changes in the far-field repository and near-field shaft regions. 28 refs., 21 figs., 11 tabs.

  2. Post-collisional granite complexes of the Southern Siberia as an indicator of final stage of Paleoproterozoic supercontinent assembly

    NASA Astrophysics Data System (ADS)

    Donskaya, T. V.; Gladkochub, D. P.; Sklyarov, E. V.; Mazukabzov, A. M.

    2003-04-01

    Paleoproterozoic post-collisional granitoids are widespread along the southern margin of the Siberian craton. These granitoids fix a final stage of amalgamation of the Siberian craton and were intruded after main collisional events of 1.9-2.0 Ga. 1.84-1.88 Ga post-collisional granitoids are represented in different blocks of the Siberian craton. The Sayan and Shumikha complexes occur within the Sayan marginal uplift, the Tarak complex is allocated at the Yenisei Ridge, the Primorsky complex occurs at the western Baikal region, the Kodar complex is allocated within the Aldan shield etc. The plutonic rocks of these complexes are represented mainly of biotite-, amphibole-biotite-, amphibole-bearing granodiorite, granosyenite, granite. The rapakivi-like granites occur in the Primorsky complex. Most of granitoids have a high-K calc-alkaline or sub-alkaline affinity. Granitoids are metaluminous to slightly peraluminous. Some trace and REE patterns of granitoids are close to A-type granites. The higher Ba (up to 4000 ppm) and higher Sr (up to 500 ppm) allow to distinguish investigated granitoids from typical A-type granite. The absence of negative Eu anomalies on REE patterns of some granite complexes also demonstrates difference from A-type granite. On various discrimination diagrams studied granitoids plot within the post-collisional granite fields. The biotites and amphiboles from granitoids are relatively iron-rich. Some differences in petrogeochemical features and main minerals compositions of the granitoids were recognized for various complexes. These differences are probably related to chemical variations in sources and conditions of crystallization of the granitic melts. Specific feature of Paleoproterozoic evolution of the Siberian craton is the forming of the intracratonic Akitkan volcano-plutonic belt of the same age as granitoids under consideration. The rock associations of the Akitkan volcano-plutonic belt have geochemical affinities of the anorogenic series

  3. Validation of the BERT Point Source Inversion Scheme Using the Joint Urban 2003 Tracer Experiment Dataset - Final Report

    SciTech Connect

    Brambilla, Sara; Brown, Michael J.

    2012-06-18

    zones. Due to a unique source inversion technique - called the upwind collector footprint approach - the tool runs fast and the source regions can be determined in a few minutes. In this report, we provide an overview of the BERT framework, followed by a description of the source inversion technique. The Joint URBAN 2003 field experiment held in Oklahoma City that was used to validate BERT is then described. Subsequent sections describe the metrics used for evaluation, the comparison of the experimental data and BERT output, and under what conditions the BERT tool succeeds and performs poorly. Results are aggregated in different ways (e.g., daytime vs. nighttime releases, 1 vs. 2 vs. 3 hit collectors) to determine if BERT shows any systematic errors. Finally, recommendations are given for how to improve the code and procedures for optimizing performance in operational mode.

  4. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability.

    PubMed

    Raymond, Sean N; Quinn, Thomas; Lunine, Jonathan I

    2007-02-01

    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties. PMID:17407404

  5. Joint application of AI techniques, PRA and disturbance analysis methodology to problems in the maintenance and design of nuclear power plants. Final report

    SciTech Connect

    Okrent, D.

    1989-03-01

    This final report summarizes the accomplishments of a two year research project entitled ``Joint Application of Artificial Intelligence Techniques, Probabilistic Risk Analysis, and Disturbance Analysis Methodology to Problems in the Maintenance and Design of Nuclear Power Plants. The objective of this project is to develop and apply appropriate combinations of techniques from artificial intelligence, (AI), reliability and risk analysis and disturbance analysis to well-defined programmatic problems of nuclear power plants. Reactor operations issues were added to those of design and maintenance as the project progressed.

  6. Quick acting gimbal joint

    NASA Technical Reports Server (NTRS)

    Wood, William B. (Inventor); Krch, Gary D. (Inventor)

    1993-01-01

    The present invention relates to an adjustable linkage assembly for selectively retaining the position of one member pivotable with respect to another member. More specifically, the invention relates to a linkage assembly commonly referred to as a gimbal joint, and particularly to a quick release or quick acting gimbal joint. The assembly is relatively simple in construction, compact in size, and has superior locking strength in any selected position. The device can be quickly and easily actuated, without separate tooling, by inexperienced personnel or by computer controlled equipment. It also is designed to prevent inadvertent actuation.

  7. Joint swelling

    MedlinePlus

    Swelling of a joint ... Joint swelling may occur along with joint pain . The swelling may cause the joint to appear larger or abnormally shaped. Joint swelling can cause pain or stiffness. After an ...

  8. The Majorqaq Belt: A record of Neoarchaean orogenesis during final assembly of the North Atlantic Craton, southern West Greenland

    NASA Astrophysics Data System (ADS)

    Dyck, Brendan; Reno, Barry L.; Kokfelt, Thomas F.

    2015-04-01

    belt formed from the collision of the Maniitsoq block with the proto-North Atlantic Craton following closure of an oceanic basin with south-dipping subduction, providing a potential source of volatiles for the ca. 2.55 Ga Qôrqut granite complex situated ~ 150 km further southwards. These conditions necessitate orogenesis and indicate that plate tectonics was active by ca. 2.56 Ga during the final assembly of the North Atlantic Craton.

  9. Diagnostic development for determining the joint temperature/soot statistics in hydrocarbon-fueled pool fires : LDRD final report.

    SciTech Connect

    Casteneda, Jaime N.; Frederickson, Kraig; Grasser, Thomas W.; Hewson, John C.; Kearney, Sean Patrick; Luketa, Anay Josephine

    2009-09-01

    A joint temperature/soot laser-based optical diagnostic was developed for the determination of the joint temperature/soot probability density function (PDF) for hydrocarbon-fueled meter-scale turbulent pool fires. This Laboratory Directed Research and Development (LDRD) effort was in support of the Advanced Simulation and Computing (ASC) program which seeks to produce computational models for the simulation of fire environments for risk assessment and analysis. The development of this laser-based optical diagnostic is motivated by the need for highly-resolved spatio-temporal information for which traditional diagnostic probes, such as thermocouples, are ill-suited. The in-flame gas temperature is determined from the shape of the nitrogen Coherent Anti-Stokes Raman Scattering (CARS) signature and the soot volume fraction is extracted from the intensity of the Laser-Induced Incandescence (LII) image of the CARS probed region. The current state of the diagnostic will be discussed including the uncertainty and physical limits of the measurements as well as the future applications of this probe.

  10. Saving Lives on the Battlefield (Part II) ? One Year Later A Joint Theater Trauma System and Joint Trauma System Review of Prehospital Trauma Care in Combined Joint Operations Area?Afghanistan (CJOA-A) Final Report, 30 May 2014.

    PubMed

    Sauer, Samual W; Robinson, John B; Smith, Michael P; Gross, Kirby R; Kotwal, Russ S; Mabry, Robert L; Butler, Frank K; Stockinger, Zsolt T; Bailey, Jeffrey A; Mavity, Mark E; Gillies, Duncan A

    2015-01-01

    The United States has achieved unprecedented survival rates, as high as 98%, for casualties arriving alive at the combat hospital. Our military medical personnel are rightly proud of this achievement. Commanders and Servicemembers are confident that if wounded and moved to a Role II or III medical facility, their care will be the best in the world. Combat casualty care, however, begins at the point of injury and continues through evacuation to those facilities. With up to 25% of deaths on the battlefield being potentially preventable, the prehospital environment is the next frontier for making significant further improvements in battlefield trauma care. Strict adherence to the evidence-based Tactical Combat Casualty Care (TCCC) Guidelines has been proven to reduce morbidity and mortality on the battlefield. However, full implementation across the entire force and commitment from both line and medical leadership continue to face ongoing challenges. This report on prehospital trauma in the Combined Joint Operations Area?Afghanistan (CJOA-A) is a follow-on to the one previously conducted in November 2012 and published in January 2013. Both assessments were conducted by the US Central Command (USCENTCOM) Joint Theater Trauma System (JTTS). Observations for this report were collected from December 2013 to January 2014 and were obtained directly from deployed prehospital providers, medical leaders, and combatant leaders. Significant progress has been made between these two reports with the establishment of a Prehospital Care Division within the JTTS, development of a prehospital trauma registry and weekly prehospital trauma conferences, and CJOA-A theater guidance and enforcement of prehospital documentation. Specific prehospital trauma-care achievements include expansion of transfusion capabilities forward to the point of injury, junctional tourniquets, and universal approval of tranexamic acid. PMID:26125162

  11. Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report.

    SciTech Connect

    Tentner, A.; Nuclear Engineering Division

    2009-10-13

    A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.

  12. Rnnotator Assembly Pipeline

    SciTech Connect

    Martin, Jeff

    2010-06-03

    Jeff Martin of the DOE Joint Genome Institute discusses a de novo transcriptome assembly pipeline from short RNA-Seq reads on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  13. A Complexity Science-Based Framework for Global Joint Operations Analysis to Support Force Projection: LDRD Final Report.

    SciTech Connect

    Lawton, Craig R.

    2015-01-01

    The military is undergoing a significant transformation as it modernizes for the information age and adapts to address an emerging asymmetric threat beyond traditional cold war era adversaries. Techniques such as traditional large-scale, joint services war gaming analysis are no longer adequate to support program evaluation activities and mission planning analysis at the enterprise level because the operating environment is evolving too quickly. New analytical capabilities are necessary to address modernization of the Department of Defense (DoD) enterprise. This presents significant opportunity to Sandia in supporting the nation at this transformational enterprise scale. Although Sandia has significant experience with engineering system of systems (SoS) and Complex Adaptive System of Systems (CASoS), significant fundamental research is required to develop modeling, simulation and analysis capabilities at the enterprise scale. This report documents an enterprise modeling framework which will enable senior level decision makers to better understand their enterprise and required future investments.

  14. Survey of tracking systems and rotary joints for coolant piping. Final report, August 15, 1978-August 14, 1978. [Includes patents

    SciTech Connect

    Furaus, J P; Gruchalla, M E; Sower, G D

    1980-01-01

    Problems were surveyed and evaluated with respect to solar tracking mechanisms and rotary joints for coolant piping. An analytical development of celestial mechanics, one- and two-axis tracking configurations and the effect of tracking accuracy versus collector efficiency are reported. Daily operational requirements and tracking modes were defined and evaluated. A literature and patent search on solar tracking technology was performed. Tracking system and control system performance specifications were determined. Alternative conceptual tracking approaches were defined and a cost and performance evaluation of a mechanical tracking concept was performed. Fluid coupling service specifications were determined. The cost and performance of several types of actuators and error detectors were evaluated with respect to solar tracking mechanisms.

  15. Appraisal and analysis of opportunities for a joint DOE/DOD energy demonstration program. Final report. [Includes possible site information

    SciTech Connect

    Ziem, R.W.

    1980-05-01

    The basic objective of this study was to assess the potential for cooperative projects between the Department of Energy (DOE) and the Department of Defense (DOD) in areas concerned with the development of Total Energy (TE) Systems and to do the groundwork and liaison necessary to initiate those projects. The scope of the potential joint projects includes cooperative effort in the development and test of a variety of heat engines (prime movers) capable of utilizing coal as well as synthetic liquid fuels derived from coal and oil shale; as well as the indication of potential Military Department sites which would be suitable for the demonstration of TE systems based on a variety of such prime movers. In order to accomplish the objective of the study, it was necessary to review a large number of DOD studies and plans and to discuss the objective of the TETAS studies with a large number of Military Department people. The DOD recognizes the requirement for an assured energy supply and the need to learn how to use the synthetic fuels from coal and shale being developed by the DOE. The need to modify engine systems to adapt them to differing fuel characteristics and make those engines more flexible relative to the range of fuels they will accept is clear. What is not so clear is the fact that the DOD has a much greater opportunity to conserve energy in now inefficient facility operations than it has in mobility operations which must continue to stress mission and high performance. This report indicates guidelines for the conduct of joint projects between the DOE and the DOD which can aid both in meeting their energy objective.

  16. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    SciTech Connect

    Strait, E. J.; Park, J. -K.; Marmar, E. S.; Ahn, J. -W.; Berkery, J. W.; Burrell, K. H.; Canik, J. M.; Delgado-Aparicio, L.; Ferraro, N. M.; Garofalo, A. M.; Gates, D. A.; Greenwald, M.; Kim, K.; King, J. D.; Lanctot, M. J.; Lazerson, S. A.; Liu, Y. Q.; Lore, J. D.; Menard, J. E.; Nazikian, R.; Shafer, M. W.; Paz-Soldan, C.; Reiman, A. H.; Rice, J. E.; Sabbagh, S. A.; Sugiyama, L.; Turnbull, A. D.; Volpe, F.; Wang, Z. R.; Wolfe, S. M.

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  17. Dose reconstruction for the Urals population. Joint Coordinating Committee on Radiation Effects Research, Project 1.1 -- Final report

    SciTech Connect

    Degteva, M.O.; Drozhko, E.; Anspaugh, L.R.; Napier, B.A.; Bouville, A.C.; Miller, C.W.

    1996-02-01

    This work is being carried out as a feasibility study to determine if a long-term course of work can be implemented to assess the long-term risks of radiation exposure delivered at low to moderate dose rates to the populations living in the vicinity of the Mayak Industrial Association (MIA). This work was authorized and conducted under the auspices of the US-Russian Joint Coordinating Committee on Radiation Effects Research (JCCRER) and its Executive Committee (EC). The MIA was the first Russian site for the production and separation of plutonium. This plant began operation in 1948, and during its early days there were technological failures that resulted in the release of large amounts of waste into the rather small Techa River. There were also gaseous releases of radioiodines and other radionuclides during the early days of operation. In addition, there was an accidental explosion in a waste storage tank in 1957 that resulted in a significant release. The Techa River Cohort has been studied for several years by scientists from the Urals Research Centre for Radiation Medicine and an increase in both leukemia and solid tumors has been noted.

  18. Environmental Shortcourse Final report [Joint US-EC Short Course on Environmental Biotechnology: Microbial Catalysts for the Environment

    SciTech Connect

    Zylstra, Gerben; van der Meer, Jan Roelof

    2013-03-05

    The Joint US-EC Short Course on Environmental Biotechnology is designed for several purposes. One of the central tenets is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that will set the groundwork for future overseas collaborative interactions. The course is also designed to give the scientists hands-on experience in modern, up-to-date biotechnological methods for the analysis of microbes and their activities pertinent to the remediation of pollutants in the environment. The 2011 course covered multiple theoretical and practical topics in environmental biotechnology. The practical part was centered around a full concise experiment to demonstrate the possibility for targeted remediation of contaminated soil. Experiments included chemical, microbiological, and molecular analyses of sediments and/or waters, contaminant bioavailability assessment, seeded bioremediation, gene probing, PCR amplification, microbial community analysis based on 16S rRNA gene diversity, and microarray analyses. Each of these topics is explained in detail. The practical part of the course was complemented with two lectures per day, given by distinguished scientists from the US and from Europe, covering a research area related to what the students are doing in the course.

  19. Development of ASTM Standard for SiC-SiC Joint Testing Final Scientific/Technical Report

    SciTech Connect

    Jacobsen, George; Back, Christina

    2015-10-30

    As the nuclear industry moves to advanced ceramic based materials for cladding and core structural materials for a variety of advanced reactors, new standards and test methods are required for material development and licensing purposes. For example, General Atomics (GA) is actively developing silicon carbide (SiC) based composite cladding (SiC-SiC) for its Energy Multiplier Module (EM2), a high efficiency gas cooled fast reactor. Through DOE funding via the advanced reactor concept program, GA developed a new test method for the nominal joint strength of an endplug sealed to advanced ceramic tubes, Fig. 1-1, at ambient and elevated temperatures called the endplug pushout (EPPO) test. This test utilizes widely available universal mechanical testers coupled with clam shell heaters, and specimen size is relatively small, making it a viable post irradiation test method. The culmination of this effort was a draft of an ASTM test standard that will be submitted for approval to the ASTM C28 ceramic committee. Once the standard has been vetted by the ceramics test community, an industry wide standard methodology to test joined tubular ceramic components will be available for the entire nuclear materials community.

  20. RF window assembly comprising a ceramic disk disposed within a cylindrical waveguide which is connected to rectangular waveguides through elliptical joints

    DOEpatents

    Tantawi, Sami G.; Dolgashev, Valery A.; Yeremian, Anahid D.

    2016-03-15

    A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.

  1. FRF based joint dynamics modeling and identification

    NASA Astrophysics Data System (ADS)

    Mehrpouya, Majid; Graham, Eldon; Park, Simon S.

    2013-08-01

    Complex structures, such as machine tools, are comprised of several substructures connected to each other through joints to form the assembled structures. Joints can have significant contributions on the behavior of the overall assembly and ignoring joint effects in the design stage may result in considerable deviations from the actual dynamic behavior. The identification of joint dynamics enables us to accurately predict overall assembled dynamics by mathematically combining substructure dynamics through the equilibrium and compatibility conditions at the joint. The essence of joint identification is the determination of the difference between the measured overall dynamics and the rigidly coupled substructure dynamics. In this study, we investigate the inverse receptance coupling (IRC) method and the point-mass joint model, which considers the joint as lumped mass, damping and stiffness elements. The dynamic properties of the joint are investigated using both methods through a finite element (FE) simulation and experimental tests. `100

  2. Experimental and numerical investigation of ADP square crystal with large aperture in the new Final Optics Assembly under the non-critical phase matching

    NASA Astrophysics Data System (ADS)

    Sun, Fuzhong; Zhang, Peng; Bai, Qingshun; Lu, Lihua; Xiang, Yong

    2016-04-01

    This paper presented a new Final Optics Assembly (FOA) of ammonium dihydrogen phosphate (ADP) square crystal with large aperture under the non-critical phase matching (NCPM), which controlled by the constant temperature water, and the temperature distribution was analyzed by simulation and experiment. Firstly, thermal analysis was carried out, as well as the temperature distribution of the cavity only heated under different velocities was analyzed. Then, the temperature distributions of ADP square crystal in the cavity were achieved using the Finite Volume Method (FVM), and this prediction was validated by the experiment results when the velocity is 0.1 m/s and 0.5 m/s. Finally, the optimal FHG conversion efficiency was obtained and the comparison of different heating methods was also highlighted.

  3. Final Report for the Joint Urban 2003 Atmospheric Dispersion Study in Oklahoma City: Lawrence Livermore National Laboratory participation

    SciTech Connect

    Leach, M J

    2005-10-12

    The Joint Urban 2003 (JU2003) field study was designed to collect meteorological and tracer data resolving atmospheric dispersion at scales-of-motion ranging from flows in and around a single city block, in and around several blocks in the downtown Central Business District (CBD), and into the suburban Oklahoma City area a few km from the CBD. Indoor tracer and flow measurements within four downtown study buildings were also made in conjunction with detailed outdoor measurements investigating the outdoor-indoor exchange rates and mechanisms. The movement of tracer within the study buildings was also studied. The data from the field experiment is being used to evaluate models that are being developed for predicting dispersion of contaminants in urban areas. These models may be fast-response models based on semi-empirical algorithms that are used in real-time emergencies, or highly sophisticated computational fluid dynamics models that resolve individual building faces and crevices. The data from the field experiment, together with the models, can then be used to develop other advanced tools that are especially valuable in the efforts to thwart terrorists. These include tools for finding location and characteristics of a contaminant source; tools that can be used for real-time response or for forensic investigation. The tools will make use of monitoring networks for biological agents that are being established in several sensitive cities throughout the nation. This major urban study was conducted beginning June 28 and ending July 31, 2003. It included several integrated scientific components necessary to describe and understand the physical processes governing dispersion within and surrounding an urban area and into and within building environments. The components included characterizing: (1) the urban boundary layer and the development of the urban boundary layer within the atmospheric boundary layer, (2) the flows within and downwind of the tall-building core, (3

  4. 20 CFR 410.645 - Joint hearings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Joint hearings. 410.645 Section 410.645..., Finality of Decisions, and Representation of Parties § 410.645 Joint hearings. When two or more hearings... joint hearing, a joint hearing may not be held. Where joint hearings are held, a single record of...

  5. 20 CFR 410.645 - Joint hearings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Joint hearings. 410.645 Section 410.645..., Finality of Decisions, and Representation of Parties § 410.645 Joint hearings. When two or more hearings... joint hearing, a joint hearing may not be held. Where joint hearings are held, a single record of...

  6. Systematic assembly homogenization and local flux reconstruction for nodal method calculations. Final report, January 1, 1990--September 30, 1992

    SciTech Connect

    Dorning, J.J.

    1993-05-01

    The report is divided into three parts. The main mathematical development of the new systematic simultaneous lattice-cell and fuel-assembly homogenization theory derived from the transport equation is summarized in Part I. Also included in Part I is the validation of this systematic homogenization theory and the resulting calculational procedures for coarse-mesh nodal diffusion methods that follow from it, in the form of their application to a simple one-dimensional test problem. The results of the application of this transport-equation-based systematic homogenization theory are summarized in Part II in which its superior accuracy over traditional flux and volume weighted homogenization procedures and over generalized equivalence theory is demonstrated for small and large practical two-dimensional PWR problems. The mathematical development of a second systematic homogenization theory -- this one derived starting from the diffusion equation -- is summarized in Part III where its application to a practical two-dimensional PWR model also is summarized and its superior accuracy over traditional homogenization methods and generalized equivalence theory is demonstrated for this problem.

  7. Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test

    SciTech Connect

    Schweitzer, J. K.; Smith, J. D.

    1981-03-01

    The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

  8. Conductance Degradation in HTS Coated Conductor Solder Joints

    NASA Astrophysics Data System (ADS)

    Canavan, Edgar R.; Leidecker, Henning; Panashchenko, Lyudmyla

    2015-12-01

    Solder joints between YBCO coated conductors and normal metal traces have been analysed as part of an effort to develop a robust HTS lead assembly for a spaceflight mission. Measurements included critical current and current transfer profiles. X-ray micrographs were used to verify proper solder flow and to determine the extent of voiding. SEM of cross-sections with EDS analysis was crucial in understanding the diffusion of the protective silver layer over the YBCO into the solder for different solder processes. The assembly must be stored for an extended period of time prior to final cool-down and operation. Measurements of the joint resistance over the course of months show a significant increase with time. Understanding the interface condition suggests an explanation for the change.

  9. Self-Alining Quick-Connect Joint

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1983-01-01

    Quick connect tapered joint used with minimum manipulation and force. Split ring retainer holds locking ring in place. Minimal force required to position male in female joint, at which time split-ring retainers are triggered to release split locking rings. Originally developed to assemble large space structures, joint is simple, compact, strong, lightweight, self alining, and has no loose parts.

  10. Accomplishments in Field Period Assembly for NCSX* This is how we did it

    SciTech Connect

    Michael Viola, J. Edwards, T. Brown, L. Dudek, R. Ellis, P. Heitzenroeder, R. Strykowsky and Michael Cole

    2009-09-14

    The National Compact Stellarator Experiment (NCSX) was a collaborative effort between ORNL and PPPL. PPPL provided the assembly techniques with guidance from ORNL to meet design criteria. The individual vacuum vessel segments, modular coils, trim coils, and toroidal field coils components were delivered to the Field Period Assembly (FPA) crew who then would complete the component assemblies and then assemble the final three field period assemblies, each consisting of two sets of three modular coils assembled over a 120o vacuum vessel segment with the trim coils and toroidal field coils providing the outer layer. The requirements for positioning the modular coils were found to be most demanding. The assembly tolerances required for accurate positioning of the field coil windings in order to generate sufficiently accurate magnetic fields strained state of the art techniques in metrology and alignment and required constant monitoring of assembly steps with laser trackers, measurement arms, and photogrammetry. The FPA activities were being performed concurrently while engineering challenges were being resolved. For example, it was determined that high friction electrically isolated shims were needed between the modular coil interface joints and low distortion welding was required in the nose region of those joints. This took months of analysis and development yet the assembly was not significantly impacted because other assembly tasks could be performed in parallel with ongoing assembly tasks as well as tasks such as advance tooling setup preparation for the eventual welding tasks. The crew technicians developed unique, accurate time saving techniques and tooling which provided significant cost and schedule savings. Project management displayed extraordinary foresight and every opportunity to gain advanced knowledge and develop techniques was taken advantage of. Despite many risk concerns, the cost and schedule performance index was maintained nearly 1.0 during the

  11. Joint for deployable structures

    NASA Technical Reports Server (NTRS)

    Craighead, N. D., II; Preliasco, R. J.; Hult, T. D. (Inventor)

    1985-01-01

    A joint is described for connecting a pair of beams to pivot them between positions in alignment or beside one another, which is of light weight and which operates in a controlled manner. The joint includes a pair of fittings and at least one center link having opposite ends pivotally connected to opposite fittings and having axes that pass through centerplates of the fittings. A control link having opposite ends pivotally connected to the different fittings controls their relative orientations, and a toggle assemly holds the fittings in the deployed configuration wherein they are aligned. The fittings have stops that lie on one side of the centerplane opposite the toggle assembly.

  12. Final Report for Grant # DE-FG02-02ER46000 Simulations of Self-Assembly of Tethered Nanoparticle Shape Amphiphiles

    SciTech Connect

    Glotzer, Sharon C.

    2014-08-25

    Self-assembly of nanoparticle building blocks including nanospheres, nanorods, nanocubes, nano plates, nanoprisms, etc., may provide a promising means for manipulating these building blocks into functional and useful materials. One increasingly popular method for self-assembly involves functionalizing nanoparticles and nanostructured molecules with “tethers” of organic polymers or biomolecules with specific or nonspecific interactions to facilitate their assembly. However, there is little theory and little understanding of the general principles underlying self-assembly in these complex materials. Using computer simulation to elucidate the principles of self-assembly and develop a predictive theoretical framework was the central goal of this project.

  13. Temperature effects of cement joints in ceramic-stack resonators

    NASA Astrophysics Data System (ADS)

    Goodhart, C. L.

    1983-06-01

    A temperature-related performance degradation has been observed in certain sonar transducers that employ ceramic-stack 33-mode resonators that contain joints. This study sought to identify the cause of this performance degradation and to determine resonator design or assembly methods that limit or eliminate this degradation. Experimental and computer modeling results show that the performance degradation is extreme for little or no final stress bias on the resonators and does not appear to be affected by the initial stress bias (the bias during cement curing). The degradation results from a temperature sensitivity of the stiffness of the cement/electrode joints. A high final stress bias of 28 million Pa essentially eliminates the performance degradation.

  14. Determination of Parachute Joint Factors using Seam and Joint Testing

    NASA Technical Reports Server (NTRS)

    Mollmann, Catherine

    2015-01-01

    This paper details the methodology for determining the joint factor for all parachute components. This method has been successfully implemented on the Capsule Parachute Assembly System (CPAS) for the NASA Orion crew module for use in determining the margin of safety for each component under peak loads. Also discussed are concepts behind the joint factor and what drives the loss of material strength at joints. The joint factor is defined as a "loss in joint strength...relative to the basic material strength" that occurs when "textiles are connected to each other or to metals." During the CPAS engineering development phase, a conservative joint factor of 0.80 was assumed for each parachute component. In order to refine this factor and eliminate excess conservatism, a seam and joint testing program was implemented as part of the structural validation. This method split each of the parachute structural joints into discrete tensile tests designed to duplicate the loading of each joint. Breaking strength data collected from destructive pull testing was then used to calculate the joint factor in the form of an efficiency. Joint efficiency is the percentage of the base material strength that remains after degradation due to sewing or interaction with other components; it is used interchangeably with joint factor in this paper. Parachute materials vary in type-mainly cord, tape, webbing, and cloth -which require different test fixtures and joint sample construction methods. This paper defines guidelines for designing and testing samples based on materials and test goals. Using the test methodology and analysis approach detailed in this paper, the minimum joint factor for each parachute component can be formulated. The joint factors can then be used to calculate the design factor and margin of safety for that component, a critical part of the design verification process.

  15. Hypermobile joints

    MedlinePlus

    ... too far. In children with hypermobility syndrome, those ligaments are loose or weak. This may lead to: Arthritis, which may develop over time Dislocated joints, which is a separation of two bones where they meet at a joint Sprains and strains Children with hypermobile joints also often have flat ...

  16. Joint Disorders

    MedlinePlus

    A joint is where two or more bones come together, like the knee, hip, elbow, or shoulder. Joints can be damaged by many types of injuries or diseases, including Arthritis - inflammation of a joint. It causes pain, stiffness, and swelling. Over time, ...

  17. Prosthetic elbow joint

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce C. (Inventor)

    1994-01-01

    An artificial, manually positionable elbow joint for use in an upper extremity, above-elbow, prosthetic is described. The prosthesis provides a locking feature that is easily controlled by the wearer. The instant elbow joint is very strong and durable enough to withstand the repeated heavy loadings encountered by a wearer who works in an industrial, construction, farming, or similar environment. The elbow joint of the present invention comprises a turntable, a frame, a forearm, and a locking assembly. The frame generally includes a housing for the locking assembly and two protruding ears. The forearm includes an elongated beam having a cup-shaped cylindrical member at one end and a locking wheel having a plurality of holes along a circular arc on its other end with a central bore for pivotal attachment to the protruding ears of the frame. The locking assembly includes a collar having a central opening with a plurality of internal grooves, a plurality of internal cam members each having a chamfered surface at one end and a V-shaped slot at its other end; an elongated locking pin having a crown wheel with cam surfaces and locking lugs secured thereto; two coiled compression springs; and a flexible filament attached to one end of the elongated locking pin and extending from the locking assembly for extending and retracting the locking pin into the holes in the locking wheel to permit selective adjustment of the forearm relative to the frame. In use, the turntable is affixed to the upper arm part of the prosthetic in the conventional manner, and the cup-shaped cylindrical member on one end of the forearm is affixed to the forearm piece of the prosthetic in the conventional manner. The elbow joint is easily adjusted and locked between maximum flex and extended positions.

  18. Assembly Test Article (ATA)

    NASA Technical Reports Server (NTRS)

    Ricks, Glen A.

    1988-01-01

    The assembly test article (ATA) consisted of two live loaded redesigned solid rocket motor (RSRM) segments which were assembled and disassembled to simulate the actual flight segment stacking process. The test assembly joint was flight RSRM design, which included the J-joint insulation design and metal capture feature. The ATA test was performed mid-November through 24 December 1987, at Kennedy Space Center (KSC), Florida. The purpose of the test was: certification that vertical RSRM segment mating and separation could be accomplished without any damage; verification and modification of the procedures in the segment stacking/destacking documents; and certification of various GSE to be used for flight assembly and inspection. The RSRM vertical segment assembly/disassembly is possible without any damage to the insulation, metal parts, or seals. The insulation J-joint contact area was very close to the predicted values. Numerous deviations and changes to the planning documents were made to ensure the flight segments are effectively and correctly stacked. Various GSE were also certified for use on flight segments, and are discussed in detail.

  19. Common Bolted Joint Analysis Tool

    NASA Technical Reports Server (NTRS)

    Imtiaz, Kauser

    2011-01-01

    Common Bolted Joint Analysis Tool (comBAT) is an Excel/VB-based bolted joint analysis/optimization program that lays out a systematic foundation for an inexperienced or seasoned analyst to determine fastener size, material, and assembly torque for a given design. Analysts are able to perform numerous what-if scenarios within minutes to arrive at an optimal solution. The program evaluates input design parameters, performs joint assembly checks, and steps through numerous calculations to arrive at several key margins of safety for each member in a joint. It also checks for joint gapping, provides fatigue calculations, and generates joint diagrams for a visual reference. Optimum fastener size and material, as well as correct torque, can then be provided. Analysis methodology, equations, and guidelines are provided throughout the solution sequence so that this program does not become a "black box:" for the analyst. There are built-in databases that reduce the legwork required by the analyst. Each step is clearly identified and results are provided in number format, as well as color-coded spelled-out words to draw user attention. The three key features of the software are robust technical content, innovative and user friendly I/O, and a large database. The program addresses every aspect of bolted joint analysis and proves to be an instructional tool at the same time. It saves analysis time, has intelligent messaging features, and catches operator errors in real time.

  20. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    2005-01-01

    The fulfillment of the new US. National Vision for Space Exploration requires many new enabling technologies to accomplish the goal of utilizing space for commercial activities and for returning humans to the moon and extraterrestrial environments. Traditionally, flight structures are manufactured as complete systems and require humans to complete the integration and assembly in orbit. These structures are bulky and require the use of heavy launch vehicles to send the units to the desired location, e.g. International Space Station (ISS). This method requires a high degree of safety, numerous space walks and significant cost for the humans to perform the assembly in orbit. For example, for assembly and maintenance of the ISS, 52 Extravehicular Activities (EVA's) have been performed so far with a total EVA time of approximately 322 hours. Sixteen (16) shuttle flights haw been to the ISS to perform these activities with an approximate cost of $450M per mission. For future space missions, costs have to be reduced to reasonably achieve the exploration goals. One concept that has been proposed is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly operations. Assembly is autonomously performed when two components containing onboard electronics join after recognizing that the joint is appropriate and in the precise position and orientation required for assembly. The mechanism only activates when the specifications are correct and m a nominal range. After assembly, local sensors and electronics monitor the integrity of the joint for feedback to a master controller. To achieve this concept will require a shift in the methods for designing space structures. In addition, innovative techniques will be required to perform the assembly autonomously. Monitoring of the assembled joint will be necessary for safety and structural integrity. If a very large structure is to be assembled in orbit, then

  1. Ceramic joints

    DOEpatents

    Miller, Bradley J.; Patten, Jr., Donald O.

    1991-01-01

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  2. Improved Assembly for Gas Shielding During Welding or Brazing

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Baker, Kevin; Weeks, Jack

    2009-01-01

    An improved assembly for inert-gas shielding of a metallic joint is designed to be useable during any of a variety of both laser-based and traditional welding and brazing processes. The basic purpose of this assembly or of a typical prior related assembly is to channel the flow of a chemically inert gas to a joint to prevent environmental contamination of the joint during the welding or brazing process and, if required, to accelerate cooling upon completion of the process.

  3. Final Assembly and Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

    SciTech Connect

    S. B. Grover

    2007-05-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing.1,2 The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The final design phase for the first experiment was completed in 2005, and the fabrication and assembly of the first experiment test train (designated AGR-1) as well as the support systems and fission product monitoring system that will monitor and control the experiment

  4. Final assembly of Gondwana along its northern margin: Revising the suture geometry based on evidence from the Iranian-Turkish Plateau

    NASA Astrophysics Data System (ADS)

    Jamali Ashtiani, Rezvaneh; Hassanzadeh, Jamshid; Schmitt, Axel K.; Rahgoshay, Mohammad; Sobel, Edward

    2016-04-01

    -day coordinates) that linked the Menderes Massif to the Sanandaj-Sirjan zone of Iran and then to the Afghan and Tibet blocks. We also examine another possible reconstruction through the Sanandaj-Sirjan zone onto the high-P terrain of south India. The ensuing results are expected to considerably revise plate tectonic and paleogeographic view of the final assembly of the Gondwana at its northern borders.

  5. Temporomandibular Joint, Closed

    MedlinePlus

    ... Oral Health > The Temporomandibular Joint, Closed The Temporomandibular Joint, Closed Main Content Title: The Temporomandibular Joint, Closed Description: The temporomandibular joint connects the lower ...

  6. 77 FR 39560 - International Joint Commission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... International Joint Commission International Joint Commission Invites Public Comment on Upper Great Lakes Report The International Joint Commission (IJC) announced today that it is inviting public comment on the final report of its International Upper Great Lakes Study Board, Lake Superior Regulation:...

  7. Joint Problems

    MedlinePlus

    ... ankles and toes. Other types of arthritis include gout or pseudogout. Sometimes, there is a mechanical problem ... for more information on osteoarthritis, rheumatoid arthritis and gout. How Common are Joint Problems? Osteoarthritis, which affects ...

  8. Joint pain

    MedlinePlus

    ... or conditions. It may be linked to arthritis , bursitis , and muscle pain . No matter what causes it, ... Autoimmune diseases such as rheumatoid arthritis and lupus Bursitis Chondromalacia patellae Crystals in the joint: gout (especially ...

  9. Compliant joint

    NASA Technical Reports Server (NTRS)

    Eklund, Wayne D. (Inventor); Kerley, James J. (Inventor)

    1990-01-01

    A compliant joint is provided for prosthetic and robotic devices which permits rotation in three different planes. The joint provides for the controlled use of cable under motion. Perpendicular outer mounting frames are joined by swaged cables that interlock at a center block. Ball bearings allow for the free rotation of the second mounting frame relative to the first mounting frame within a predetermined angular rotation that is controlled by two stop devices. The cables allow for compliance at the stops and the cables allow for compliance in six degrees of freedom enabling the duplication or simulation of the rotational movement and flexibility of a natural hip or knee joint, as well as the simulation of a joint designed for a specific robotic component for predetermined design parameters.

  10. Optical rotary joint

    NASA Astrophysics Data System (ADS)

    May, R. G., Jr.

    1982-06-01

    The primary objective of this contract is the design, fabrication, and testing of an optical rotary joint which permits transmission of signals through optical fibers across the interface of two environments rotating relative to each other. Outstanding optical performance is achieved through the use of gradient index lenses to couple radiation across the separation between two fibers. The salient features of this device are bidirectional operation at two wavelengths (850 nm and 1300 nm), low insertion loss, low rotationally induced variation of attenuation, a seven-circuit electrical slip-ring assembly, and rugged construction. The device is designed to facilitate the application of future designs to pressurized, subsea environments.

  11. Joint EPA-EPRI (Environmental Protection Agency-Electric Power Research Institute) Cold Weather Plume Study (CWPS): overview of measurements and data base. Final report

    SciTech Connect

    Gillani, N.V.; Bohm, V.L.

    1987-03-01

    The Cold Weather Plume Study (CWPS) was a field measurement program carried out in February 1981 under the joint sponsorship of the U.S. Environmental Protection Agency and the Electric Power Research Institute. Its objective was to generate a data base suitable for quantitative analysis of the mesoscale physical dynamics and SOx, NOx chemistry of the plume of the 1320-MW coal-fired Kincaid power plant near Springfield, Illinois. The data base was intended to complement similar measurements made by other EPA and EPRI studies in the same region during other seasons. Measurements included in-situ chemical measurements from two instrumented aircraft, remote-sensing lidar measurements and meteorological measurements from a surface station, two towers, and from vertical soundings. The report provides a brief overview of the measurement platforms, the measured parameters, and the daily experiments, and describes and documents the data base available on magnetic tapes and in hard copy form.

  12. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  13. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  14. Heat-shrinkable sleeve aids in insulating universal joints

    NASA Technical Reports Server (NTRS)

    Green, W. S.; Thompson, F. W.

    1980-01-01

    Tubing stiffens joint so that it can be alined with spline fitting; unsleeved joint would normally droop, making it difficult to attach to splines. Sleeve technique saves time and effort when assembling nonrigid parts by making special holding tools or fixtures unnecessary. Tubing also protects joint from dust and other contamination.

  15. Feasibility Assessment of Thermal Barriers for RSRM Nozzle Joint Locations

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.

    1999-01-01

    Solid rockets, including the Space Shuttle solid rocket motor, are generally manufactured in large segments which are then shipped to their final destination where they are assembled. These large segments are sealed with a system of primary and secondary 0-rings to contain combustion gases inside the rocket which are at pressures of up to 900 psi and temperatures of up to 5500 F. The seals are protected from hot combustion gases by thick layers of phenolic insulation and by joint-filling compounds between these layers. Recently, though, routine inspections of nozzle-to-case joints in the Shuttle solid rocket motors during disassembly revealed erosion of the primary O-rings. Jets of hot gas leaked through gaps in the joint-filling compound between the layers of insulation and impinged on the O-rings. This is not supposed to take place, so NASA and Thiokol, the manufacturer of the rockets, initiated an investigation and found that design improvements could be made in this joint. One such improvement would involve using NASA Lewis braided thermal barriers as another level of protection for the O-ring seals against the hot combustion gases.

  16. VIII Asamblea Nacional Plenaria del Consejo Nacional Tecnico de la Educacion, Mexico, 29 julio-2 agosto 1969 (Informe Final) (Eighth National Plenary Assembly of the National Technical Council for Education, Mexico, July 29-August 2, 1969. Final Report).

    ERIC Educational Resources Information Center

    Consejo Nacional Tecnico de la Educacion (Mexico).

    This document is an English-language abstract (approximately 1500 words) summarizing the work of the Plenary Assembly and its four work sessions: doctrine and legislation, educational system and national development, educational planning, and interrelations between home, school and community. Decentralization was the major theme of the first…

  17. Joint lubrication.

    PubMed

    McCutchen, C W

    1983-01-01

    The fine-pored, easily compressed articular cartilage provides animal joints with self-pressurized hydrostatic (weeping) lubrication. The solid skeletons of the cartilages press against each other, but so lightly that their rubbing is lubricated successfully by synovial fluid--a boundary lubricant too weak to lubricate ordinary bearings. PMID:6317095

  18. An automatic assembly planning system

    NASA Astrophysics Data System (ADS)

    Huang, Y. F.; Lee, C. S. G.

    An automatic assembly planning system which takes the CAD description of a product as input and automatically generates an assembly plan subject to the resource constraint of a given assembly cell is presented. The system improves the flexibility and productivity of flexible manufacturing systems and is composed of five modules: world database, simulated world model, knowledge acquisition mechanism, planning knowledge base, and assembly planner. The acquired knowledge forms the planning knowledge base. The simulated world model keeps track of the current state of the assembly world. In the initial state, all the components are separated, while in the final state, all the components are assembled. The assembly planner is made up of a set of production rules which models the effects of real assembly tasks. By repeatedly applying these production rules to the simulated world state, the planner transforms the initial state into the final state. The set of rules applied during this transformation process forms the assembly plan to actually assemble the product in the given assembly cell. Examples are given to illustrate the concepts in these five modules.

  19. Identifying research priorities in anaesthesia and perioperative care: final report of the joint National Institute of Academic Anaesthesia/James Lind Alliance Research Priority Setting Partnership

    PubMed Central

    Boney, Oliver; Bell, Madeline; Bell, Natalie; Conquest, Ann; Cumbers, Marion; Drake, Sharon; Galsworthy, Mike; Gath, Jacqui; Grocott, Michael P W; Harris, Emma; Howell, Simon; Ingold, Anthony; Nathanson, Michael H; Pinkney, Thomas; Metcalf, Leanne

    2015-01-01

    Objective To identify research priorities for Anaesthesia and Perioperative Medicine. Design Prospective surveys and consensus meetings guided by an independent adviser. Setting UK. Participants 45 stakeholder organisations (25 professional, 20 patient/carer) affiliated as James Lind Alliance partners. Outcomes First ‘ideas-gathering’ survey: Free text research ideas and suggestions. Second ‘prioritisation’ survey: Shortlist of ‘summary’ research questions (derived from the first survey) ranked by respondents in order of priority. Final ‘top ten’: Agreed by consensus at a final prioritisation workshop. Results First survey: 1420 suggestions received from 623 respondents (49% patients/public) were refined into a shortlist of 92 ‘summary’ questions. Second survey: 1718 respondents each nominated up to 10 questions as research priorities. Top ten: The 25 highest-ranked questions advanced to the final workshop, where 23 stakeholders (13 professional, 10 patient/carer) agreed the 10 most important questions: ▸ What can we do to stop patients developing chronic pain after surgery? ▸ How can patient care around the time of emergency surgery be improved? ▸ What long-term harm may result from anaesthesia, particularly following repeated anaesthetics? ▸ What outcomes should we use to measure the ‘success’ of anaesthesia and perioperative care? ▸ How can we improve recovery from surgery for elderly patients? ▸ For which patients does regional anaesthesia give better outcomes than general anaesthesia? ▸ What are the effects of anaesthesia on the developing brain? ▸ Do enhanced recovery programmes improve short and long-term outcomes? ▸ How can preoperative exercise or fitness training, including physiotherapy, improve outcomes after surgery? ▸ How can we improve communication between the teams looking after patients throughout their surgical journey? Conclusions Almost 2000 stakeholders contributed their views

  20. Development and test of the ITER SC conductor joints

    SciTech Connect

    Gung, C. Y.; Jayakumar, R.; Manahan, R.; Martovetsky, N.; Michael, P.; Minervini, J.; Randall, A.

    1998-08-05

    Joints for the ITER superconducting Central Solenoid should perform in rapidly varying magnetic field with low losses and low DC resistance. This paper describes the design of the ITER joint and presents its assembly process. Two joints were built and tested at the PTF facility at MIT. Test results are presented; losses in transverse and parallel field and the DC performance are discussed. The developed joint demonstrates sufficient margin for baseline ITRR operating scenarios.

  1. Development and test of the ITER conductor joints

    SciTech Connect

    Martovetsky, N., LLNL

    1998-05-14

    Joints for the ITER superconducting Central Solenoid should perform in rapidly varying magnetic field with low losses and low DC resistance. This paper describes the design of the ITER joint and presents its assembly process. Two joints were built and tested at the PTF facility at MIT. Test results are presented, losses in transverse and parallel field and the DC performance are discussed. The developed joint demonstrates sufficient margin for baseline ITER operating scenarios.

  2. The ASLOTS concept: An interactive, adaptive decision support concept for Final Approach Spacing of Aircraft (FASA). FAA-NASA Joint University Program

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1993-01-01

    This presentation outlines a concept for an adaptive, interactive decision support system to assist controllers at a busy airport in achieving efficient use of multiple runways. The concept is being implemented as a computer code called FASA (Final Approach Spacing for Aircraft), and will be tested and demonstrated in ATCSIM, a high fidelity simulation of terminal area airspace and airport surface operations. Objectives are: (1) to provide automated cues to assist controllers in the sequencing and spacing of landing and takeoff aircraft; (2) to provide the controller with a limited ability to modify the sequence and spacings between aircraft, and to insert takeoffs and missed approach aircraft in the landing flows; (3) to increase spacing accuracy using more complex and precise separation criteria while reducing controller workload; and (4) achieve higher operational takeoff and landing rates on multiple runways in poor visibility.

  3. Study of joint designing on composite structures

    NASA Astrophysics Data System (ADS)

    Kazushi, Haruna

    In this paper, strength design techniques of CFRP mechanical joints and adhesively bonded joints were examined. Remarkable stress concentration generates at the mechanical hole edge and the adhesive edge, therefore an unskillful design of joints often causes a reduction in the strength of composite structures. In mechanical joints, a study on predicting the joint strength has been performed, but bearing failure that is most important failure mode for designing joints can not be predicted. So in this paper, the strength prediction method in consideration with bearing failure was examined. On the other hand, the criterion using the intensity of stress singularity was suggested in adhesive joints, but it was clarified in this paper, that this method can not be applied the prediction of the final failure strength. So the critical stress distribution of single-lap adhesive bonded carbon/epoxy joints was examined to obtain the failure criterion of the final failure. Moreover the simulation method for an internal stress generated by cure shrinkage of adhesive was also examined. In the proposed method for mechanical joint, 2-parameter criterion, that is combined the characteristic length with the Yamada-Sun criterion, was applied and the characteristic length for compression was determined from "bearing failure test" that was newly conceived to take bearing failure into consideration. In case of adhesive joints, it was thought that 2-parameter criterion was effective. So the prediction method using 2-parameter criterion was applied to other adhesive joints. Good agreement was obtained between predicted and experimental results in both mechanical and adhesive joints. And it was cleared that an internal stress could be simulated by the proposed method. Moreover, in mechanical joints, the most suitable stacking sequence, the reduction technique of interlaminar stress, and the elevation of joint strength by application of high toughness matrix were also shown. Consequently

  4. Mechanical seal assembly

    DOEpatents

    Kotlyar, Oleg M.

    2002-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transfering it to the mechanical diode.

  5. Mechanical seal assembly

    DOEpatents

    Kotlyar, Oleg M.

    2001-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.

  6. A space crane concept for performing on-orbit assembly

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.

    1992-01-01

    The topics are presented in viewgraph form and include: in-space assembly and construction enhances future mission planning flexibility; in-space assembly and construction facility concept; space crane concept with mobile base; fundamental characteristics; space crane research approach; spacecraft component positioning and assembly test-bed; and articulating joint testbed.

  7. Effects of barrel joints on hypervelocity projectiles

    SciTech Connect

    Shahinpoor, M.; Asay, J.R.; Dixon, W.R.; Hawke, R.S.

    1987-01-01

    Development of new hypervelocity launchers is necessary for equation of state (EOS) studies at high impact velocities. The requirements for barrel joint alignment and concentricity at high velocities place severe constraints on fabrication and assembly procedures; small steps or longitudinal direction changes at joints may cause major damage to precision projectiles. Research has been initiated to identify the technical limits of fabrication and assembly tolerances for hypervelocity gun barrels. Numerical and experimental studies have evaluated projectile performance at velocities of 6 to 15 km/s and have identified failure modes for Lexan projectiles with thin metal facings.

  8. Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks

    PubMed Central

    Petkau-Milroy, Katja; Sonntag, Michael H.; Colditz, Alexander; Brunsveld, Luc

    2013-01-01

    Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard to streptavidin. Next to tetravalent streptavidin, monovalent streptavidin was used to study the protein assembly along the supramolecular polymer in detail without the interference of cross-linking. Upon self-assembly of the monovalent biotinylated discotics, multivalent proteins can be assembled along the supramolecular polymer. The concentration of discotics, which influences the length of the final polymers at the same time dictates the amount of assembled proteins. PMID:24152447

  9. State Oversight of Commercial Driver-Training Schools in Virginia. House Document No. 5. Report of the Joint Legislative Audit and Review Commission to the Governor and the General Assembly of Virginia.

    ERIC Educational Resources Information Center

    Virginia State General Assembly, Richmond. Joint Legislative Audit and Review Commission.

    In 1998, Virginia's Joint Legislative Audit and Review Commission (JLARC) was directed to evaluate the effectiveness of the Virginia Department of Motor Vehicle's (DMV's) oversight of commercial driver training schools (CDTS) in Virginia. The evaluation included the following research activities: mail surveys of DMV CDTS oversight staff and CDTS…

  10. Dynamic Nanoparticles Assemblies

    PubMed Central

    WANG, LIBING; XU, LIGUANG; KUANG, HUA; XU, CHUANLAI; KOTOV, NICHOLAS A.

    2012-01-01

    in the field may include different size dimensionalities: discrete assemblies (artificial molecules), one-dimensional (spaced chains) and two-dimensional (sheets) and three-dimensional (superlattices, twisted structures) assemblies. Notably, these dimensional attributes must be regarded as primarily topological in nature because all of these superstructures can acquire complex three-dimensional shapes. Preparation We discuss three primary strategies used to prepare NP superstructures: (1) anisotropy-based assemblies utilizing either intrinsic force field anisotropy around NPs or external anisotropy associated with templates and/or applied fields; (2) assembly methods utilizing uniform NPs with isotropic interactions; and (3) methods based on mutual recognition of biomolecules, such as DNA and antigen-antibody interactions. Applications We consider optical, electronic, and magnetic properties of dynamic superstructures, focusing primarily on multiparticle effects in NP superstructures as represented by surface plasmon resonance, NP-NP charge transport, and multibody magnetization. Unique properties of NP superstructures are being applied to biosensing, drug delivery, and nanoelectronics. For both Class 1 and Class 2 dynamic assemblies, biosensing is the most dominant and well-developed area of dynamic nanostructures being successfully transitioned into practice. We can foresee the rapid development of dynamic NP assemblies toward applications in harvesting of dissipated energy, photonics, and electronics. The final part of the review is devoted to the fundamental questions facing dynamic assemblies of NPs in the future. PMID:22449243

  11. Porosity in collapsible Ball Grid Array solder joints

    SciTech Connect

    Gonzalez, C.A. |

    1998-05-01

    Ball Grid Array (BGA) technology has taken off in recent years due to the increased need for high interconnect density. Opposite to all the advantages BGA packages offer, porosity in collapsible BGA solder joints is often a major concern in the reliability of such packages. The effect of pores on the strength of collapsible BGA solder-joints was studied by manufacturing samples with different degrees of porosity and testing them under a shear load. It was found that the shear strength of the solder joints decreased in a linear fashion with increasing porosity. Failure occurred by internal necking of the interpore matrix. It was confirmed that entrapment of flux residues leads to porosity by manufacturing fluxless samples in a specially made furnace, and comparing them with samples assembled using flux. Also, contamination of Au electrodeposits (in substrate metallization) was determined to cause significant porosity. It was found that hard-Au (Co hardened Au) electrodeposits produce high degrees of porosity even in the absence of flux. Finally, increasing the time the solder spends in the molten state was proven to successfully decrease porosity.

  12. Development of flexible joint for 500kV Al-sheathed O. F. cable

    SciTech Connect

    Komaba, T.; Kanai, K. ); Yoshida, S.; Shigetoshi, I.; Amano, K. )

    1992-10-01

    This paper reports on a flexible dimensionaly flush joint for 500kV aluminum-sheathed oil-filled cables capable of being assembled, pulled an installed in a similar manner to cables at site which has been developed. This joint is intended for use at intermediate points on long bridges or tunnels where local assembly and installation of conventional joints would be difficult. In developing the joint various novel and original techniques have been employed, including the flexible flush jointing of segmental conductors, the flexible jointing of paper insulation by a combination of wrapping-back and stepping methods, plus on-site aluminum sheath corrugating and sealing methods.

  13. Crew Assembly

    NASA Video Gallery

    Train to improve your dexterity and hand-eye coordination by assembling a puzzle.The Train Like an Astronaut project uses the excitement of exploration to challenge students to set goals, practice ...

  14. Joint HVDC Agricultural Study : Final Project Report.

    SciTech Connect

    Raleigh, Robert J.

    1989-02-01

    A 3-year long study was conducted in central Oregon to determine the possible effects of a +-500-kV d-c transmission line on cattle and crops. Two herds totaling 100 beef cows and 6 bulls were confined in pens beneath the d-c line. The cows were paired and the other members of the pairs were maintained in two herds in control pens 2000 ft west of the line. The management facilities under the power line were duplicated in the control area. There were no significant differences in consumption of feed, minerals or water between the line and control herds. Also, no effects were found on breeding, conception, calving, calf birth date, calving interval, average daily gain, adjusted weaning weight, cow weight, condition, carcass weight, and mortality. Differences were found between years for calf birth date, average daily gain, adjusted weaning weight, and cow weight. These differences were attributed to condition and age of the cows entering the study and their adjustment to pen confinement. 67 refs., 50 figs., 106 tabs.

  15. 2012 Joint Research Target (JRT) Final Report

    SciTech Connect

    Team, JRT

    2012-09-30

    The report summarizes: [1] Diagnostic upgrades and analysis improvements that support the JRT; [2] Descriptions of new experiments and a brief summary of our findings; [3] New analysis of previous experiments; [4] Plans for further data analysis and recommendations for further work; [5] Scientific publications that are derived from or contributed directly to the JRT. The report is organized as follows: Section 1: Describes inter-machine comparisons that were facilitated by the JRT focus. Similarities and differences found on the different facilities are outlined and plans for additional analysis of data and supporting simulations are described.Section 2: Reviews diagnostic development, experiments and results from C-Mod. C-Mod dedicated 13.1 run days to the JRT divided among 10 experimental proposals. These were organized into three general thrust areas that represent distinct experimental approaches to realizing the regimes called for in the JRT description. Initial comparisons with linear and nonlinear simulation have been carried out for these experiments and plans for an extensive campaign of analysis has been outlined. Section 3: Reviews results from DIII-D including new experiments, detailed comparisons of simulations to previously collected data and connections between the new work and past research. Four experimental days were dedicated to the JRT in 2012. These included studies of L-modes, H-modes and QH-modes. Section 4: Summarizes new analysis of data collected before the NSTX shutdown. The work focuses on the roles of low and high-k turbulence; collisionality scans and impurity particle transport.

  16. Seal assembly

    SciTech Connect

    Johnson, Roger Neal; Longfritz, William David

    2001-01-01

    A seal assembly that seals a gap formed by a groove comprises a seal body, a biasing element, and a connection that connects the seal body to the biasing element to form the seal assembly. The seal assembly further comprises a concave-shaped center section and convex-shaped contact portions at each end of the seal body. The biasing element is formed from an elastic material and comprises a convex-shaped center section and concave-shaped biasing zones that are opposed to the convex-shaped contact portions. The biasing element is adapted to be compressed to change a width of the seal assembly from a first width to a second width that is smaller than the first width. In the compressed state, the seal assembly can be disposed in the groove. After release of the compressing force, the seal assembly expands. The contact portions will move toward a surface of the groove and the biasing zones will move into contact with another surface of the groove. The biasing zones will bias the contact portions of the seal body against the surface of the groove.

  17. Synergistic self-assembly of scaffolds and building blocks for directed synthesis of organic nanomaterials

    SciTech Connect

    Dergunov, Sergey; Richter, Andrew G; Kim, Mariya D.; Pingali, Sai Venkatesh; Urban, Volker S; Pinkhassik, Eugene

    2013-01-01

    Surfactants and hydrophobic monomers spontaneously assemble into vesicles containing monomers within the bilayer. The joint action of monomers and surfactants is essential in this synergistic self-assembly. Polymerization in the bilayer formed hollow polymer nanocapsules.

  18. Research on microwave joining of SiC. Final report

    SciTech Connect

    1993-06-30

    Work on microwave joining of sintered SiC has showed that small samples could be jointed using Si interlayer (applied as pressed powder); SEM showed a smooth, homogeneous interlayer 50 {mu}m wide. Objective of this contract is to optimize these joints. Results showed that the interlayer could be reduced to 10-20 {mu}m using an oil-based slurry made from Si powder, and to less than 5 {mu}m by plasma spraying Si on one of the SiC surfaces. Direct joints were made in reaction bonded SiC, using the residual Si. Excellent joints with good mechanical properties were obtained in both small specimens and in small scale tube assemblies like in heat exchanger and radiant burner tubes. In situ reaction synthesis from powders to produce a SiC-TiC-SiC joint was demonstrated, as well feasibility of producing SiC from microwave-assisted decomposition of polymer precursors. Finally, new applicator designs, including a compound adjustable iris and a mitered bend single mode cavity, were demonstrated to provide improved heating of larger and longer specimens. This work provides the foundation for scaleup of microwave joining to SiC components for industrial applications.

  19. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  20. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  1. Dynamic characterization of bolted joints using FRF decoupling and optimization

    NASA Astrophysics Data System (ADS)

    Tol, Şerife; O¨zgu¨ven, H. Nevzat

    2015-03-01

    Mechanical connections play a significant role in predicting dynamic characteristics of assembled structures. Therefore, equivalent dynamic models for joints are needed. Due to the complexity of joints, it is difficult to describe joint dynamics with analytical models. Reliable models are generally obtained using experimental measurements. In this paper an experimental identification method based on FRF decoupling and optimization algorithm is proposed for modeling joints. In the method the FRFs of two substructures connected with a joint are measured, while the FRFs of the substructures are obtained numerically or experimentally. Then the joint properties are calculated in terms of translational, rotational and cross-coupling stiffness and damping values by using FRF decoupling. In order to eliminate the numerical errors associated with matrix inversion an optimization algorithm is used to update the joint values obtained from FRF decoupling. The validity of the proposed method is demonstrated with experimental studies with bolted joints.

  2. Solid rocket booster joint seal analyses

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.

    1987-01-01

    O-ring response and sealing in pressurized shell structures is examined. The study found that the key elements in the failure of the seal to be joint opening and rotation, assembly out of roundness, and O-ring seal response.

  3. Investigation of proposed process sequence for the array automated assembly task. Phase I and II. Final report, October 1, 1977-June 30, 1980

    SciTech Connect

    Mardesich, N.; Garcia, A.; Eskenas, K.

    1980-08-01

    A selected process sequence for the low cost fabrication of photovoltaic modules was defined during this contract. Each part of the process sequence was looked at regarding its contribution to the overall dollars per watt cost. During the course of the research done, some of the initially included processes were dropped due to technological deficiencies. The printed dielectric diffusion mask, codiffusion of the n+ and p+ regions, wraparound front contacts and retention of the diffusion oxide for use as an AR coating were all the processes that were removed for this reason. Other process steps were retained to achieve the desired overall cost and efficiency. Square wafers, a polymeric spin-on PX-10 diffusion source, a p+ back surface field and silver front contacts are all processes that have been recommended for use in this program. The printed silver solderable pad for making contact to the aluminum back was replaced by an ultrasonically applied tin-zinc pad. Also, the texturized front surface was dropped as inappropriate for the sheet silicon likely to be available in 1986. Progress has also been made on the process sequence for module fabrication. A shift from bonding with a conformal coating to laminating with ethylene vinyl acetate and a glass superstrate is recommended for further module fabrication. The finalized process sequence is described.

  4. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  5. [Divorce and joint physical custody].

    PubMed

    Golse, B

    2014-04-01

    This work first recalls the definition of joint physical custody, as well as the current legal procedure for obtaining it, its practical implementation, the financial implications for parents, and finally some statistics. Some psychological and psychopathological reflections on the impact of divorce on children are then presented before considering the question of joint physically custody with regard to attachment theory and depending on the age of the child (a great caution seems to be required before three years). The article concludes with a brief discussion of parental alienation syndrome. PMID:24630624

  6. Geometric reasoning about assembly tools

    SciTech Connect

    Wilson, R.H.

    1997-01-01

    Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.

  7. Probe assembly

    SciTech Connect

    Avera, C.J.

    1981-01-06

    A hand-held probe assembly, suitable for monitoring a radioactive fibrinogen tracer, is disclosed comprising a substantially cylindrically shaped probe handle having an open end. The probe handle is adapted to be interconnected with electrical circuitry for monitoring radioactivity that is sensed or detected by the probe assembly. Mounted within the probe handle is a probe body assembly that includes a cylindrically shaped probe body inserted through the open end of the probe handle. The probe body includes a photomultiplier tube that is electrically connected with a male connector positioned at the rearward end of the probe body. Mounted at the opposite end of the probe body is a probe head which supports an optical coupler therewithin. The probe head is interconnected with a probe cap which supports a detecting crystal. The probe body assembly, which consists of the probe body, the probe head, and the probe cap is supported within the probe handle by means of a pair of compressible o-rings which permit the probe assembly to be freely rotatable, preferably through 360*, within the probe handle and removable therefrom without requiring any disassembly.

  8. Modular, security enclosure and method of assembly

    DOEpatents

    Linker, Kevin L.; Moyer, John W.

    1995-01-01

    A transportable, reusable rapidly assembled and disassembled, resizable modular, security enclosure utilizes a stepped panel construction. Each panel has an inner portion and an outer portion which form joints. A plurality of channels can be affixed to selected joints of the panels. Panels can be affixed to a base member and then affixed to one another by the use of elongated pins extending through the channel joints. Alternatively, the base member can be omitted and the panels themselves can be used as the floor of the enclosure. The pins will extend generally parallel to the joint in which they are located. These elongated pins are readily inserted into and removable from the channels in a predetermined sequence to allow assembly and disassembly of the enclosure. A door constructed from panels is used to close the opening to the enclosure.

  9. Spacesuit mobility knee joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1979-01-01

    Pressure suit mobility joints are for use in interconnecting adjacent segments of an hermetically sealed spacesuit in which low torques, low leakage and a high degree of reliability are required. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics and includes linkages which restrain the joint from longitudinal distension and includes a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  10. Spacesuit mobility joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1978-01-01

    Joints for use in interconnecting adjacent segments of an hermetically sealed spacesuit which have low torques, low leakage and a high degree of reliability are described. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics. Linkages which restrain the joint from longitudinal distension and a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli are featured. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  11. Hinge assembly

    DOEpatents

    Vandergriff, D.H.

    1999-08-31

    A hinge assembly is disclosed having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf. 8 figs.

  12. Hinge assembly

    DOEpatents

    Vandergriff, David Houston

    1999-01-01

    A hinge assembly having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf.

  13. Thermal and electrical joint test for the helical field coils in the Advanced Toroidal Facility

    SciTech Connect

    Brown, R.L.; Johnson, R.L.

    1985-01-01

    Initial feasibility studies of a number of configurations for the Advanced Toroidal Facility (ATF) resulted in the selection of a resistive copper continuous-coil torsatron as the optimum device considering the physics program, cost, and schedule. Further conceptual design work was directed toward optimization of this configuration and, if possible, a shorter schedule. It soon became obvious that in order to shorten the schedule, a number of design and fabrication activities should proceed in parallel. This was most critical for the vacuum vessel and the helical field (HF) coils. If the HF coils were wound in place on a completed vacuum vessel, the overall schedule would be significantly (greater than or equal to12 months) longer. The approach of parallel scheduel paths requires that the HF coils be segmented into parts of less than or equal to180 of poloidal angle and that joints be made on a turn-by-turn basis when the segments are installed. It was obvious from the outset that the compact and complex geometry of the joint design presented a special challenge in the areas of reliability, assembly, maintenance, disassembly, and cost. Also, electrical, thermal, and force excursions are significant for these joints. A number of soldered, welded, brazed, electroplated, and bolted joints were evaluated. The evaluations examined fabrication feasibility and complexity, thermal-electrical performance at approximately two-thirds of the steady-state design conditions, and installation and assembly processes. Results of the thermal-electrical tests were analyzed and extrapolated to predict performance at peak design parameters. The final selection was a lap-type joint clamped with insulated bolts that pass through the winding packing. 3 refs., 4 figs.

  14. Latch assembly

    DOEpatents

    Frederickson, J.R.; Harper, W.H.; Perez, R.

    1984-08-17

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing. 2 figs.

  15. Latch assembly

    SciTech Connect

    Frederickson, James R.; Harper, William H.; Perez, Raymond

    1986-01-01

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing.

  16. Generation of precedence relations for mechanical assemblies

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Sanderson, A. C.

    1989-01-01

    Planning of assembly sequences is essential to the manufacturing system design process. Several methodologies have been proposed to represent all the feasible assembly sequences. In this thesis, three algorithms are presented to generate three sets of precedence relations based on all the infeasible assembly tasks, all the infeasible assembly states, and all the feasible assembly sequences, respectively. The equivalence of the resulting sets of precedence relations to the AND/OR graph is established. A new property, the real time property, of a representation of assembly sequences is defined and discussed. A representation of assembly sequences is said to have the real time property, if it is possible to generate the next assembly task by testing locally in the representation, and it will guarantee that the generated assembly task will not lead the assembly sequence to a dead end situation, in which no feasible assembly task can be performed any more. It is shown that the correctness and completeness of one representation can not guarantee the real time property of the representation. It is proven that the directed graph representation and the set of precedence relations based on all the infeasible assembly states have the real time property, while the AND/OR graph representation and the set of precedence relations based on all the infeasible assembly tasks do not have the real time property. Finally in the thesis, the PLEIDEAS system, a PLanning Environment for Integrated DEsign of Assembly Systems, is described and illustrated by an example.

  17. Development of a Enhanced Thermal Barrier for RSRM Nozzle Joints

    NASA Technical Reports Server (NTRS)

    Bauer, P. H.; McCool, A. (Technical Monitor)

    2000-01-01

    A carbon fiber rope is being considered as replacement for the RTV thermal barrier that is currently used to protect o-rings in RSRM nozzle joints, Performance requirements include its ability to cool propellant gases filter slag and particulates, and conform to various joint assembly conditions as well as dynamic flight motion. Testing has shown its superior heat resistance, even in oxidative and corrosive environments. Testing has also demonstrated excellent performance of this system in sub-scale motors. Cold flow testing, has demonstrated its ability to conform to motor dynamics. Manufacture and assembly testing have demonstrated the ease of gland machining as well as assembly in a full-scale nozzle.

  18. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  19. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  20. Method of forming a ceramic to ceramic joint

    DOEpatents

    Cutler, Raymond Ashton; Hutchings, Kent Neal; Kleinlein, Brian Paul; Carolan, Michael Francis

    2010-04-13

    A method of joining at least two sintered bodies to form a composite structure, includes: providing a joint material between joining surfaces of first and second sintered bodies; applying pressure from 1 kP to less than 5 MPa to provide an assembly; heating the assembly to a conforming temperature sufficient to allow the joint material to conform to the joining surfaces; and further heating the assembly to a joining temperature below a minimum sintering temperature of the first and second sintered bodies. The joint material includes organic component(s) and ceramic particles. The ceramic particles constitute 40-75 vol. % of the joint material, and include at least one element of the first and/or second sintered bodies. Composite structures produced by the method are also disclosed.

  1. Joint fluid Gram stain

    MedlinePlus

    Gram stain of joint fluid ... A sample of joint fluid is needed. The fluid sample is sent to a lab where a small drop is placed in a ... on how to prepare for the removal of joint fluid, see joint fluid aspiration .

  2. Generic element formulation for modelling bolted lap joints

    NASA Astrophysics Data System (ADS)

    Ahmadian, Hamid; Jalali, Hassan

    2007-07-01

    Joints have significant effects on the dynamic response of the assembled structures due to existence of two non-linear mechanisms in their interface, namely slipping and slapping. These mechanisms affect the structural response by adding considerable damping into the structure and lowering the natural frequencies due to the stiffness softening. Neglecting these effects in modelling of joints produces errors in predictions of the structure responses. In this paper, a non-linear generic element formulation is developed for modelling bolted lap joints. The generic element is formed by satisfying all conditions that are known for a joint interface and hence providing a non-linear parametric formulation for the families of allowable joint models. Dynamic response of the developed model for the assembled structure including the generic joint interface element is obtained using the incremental harmonic balance (IHB) method. The generic parameters of the joint are identified by minimising the difference between the model response obtained from IHB method and the observed behaviour of the structure. The procedure is demonstrated by modelling an actual structure containing a single lap bolted joint in the middle. The frequency responses of the structure around the first two resonance frequencies are measured by exciting the structure using a sinusoidal force at each individual frequency. The measured responses are compared with the predictions of the model containing a parametric generic joint element. The parameters of the joint interface model are successfully identified by minimising the difference between the measured responses and the model predictions.

  3. Modeling of joints for the dynamic analysis of truss structures

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1987-01-01

    An experimentally-based method for determining the stiffness and damping of truss joints is described. The analytical models use springs and both viscous and friction dampers to simulate joint load-deflection behavior. A least-squares algorithm is developed to identify the stiffness and damping coefficients of the analytical joint models from test data. The effects of nonlinear joint stiffness such as joint dead band are also studied. Equations for predicting the sensitivity of beam deformations to changes in joint stiffness are derived and used to show the level of joint stiffness required for nearly rigid joint behavior. Finally, the global frequency sensitivity of a truss structure to random perturbations in joint stiffness is discussed.

  4. The effects of bolted joints on dynamic response of structures

    NASA Astrophysics Data System (ADS)

    Zaman, I.; Khalid, A.; Manshoor, B.; Araby, S.; Ghazali, M. I.

    2013-12-01

    Joint is an universal fastening technology for structural members; in particular bolted joints are extensively used in mechanical structures due to their simple maintenance and low cost. However, the components of bolted joints are imperative because failure could be catastrophic and endanger lives. Hence, in this study, the effects of bolted joints on vibrating structures are investigated by determining the structural dynamic properties, such as mode shapes, damping ratios and natural frequencies, and these are compared with the monolithic structures (welding). Two approaches of experimental rigs are developed: a beam and a frame where both are subjected to dynamic loading. The analysis reveals the importance of bolted joints in increasing the damping properties and minimizing the vibration magnitude of structures, this indicates the significant influence of bolted joints on the dynamic behaviour of assembled structures. The outcome of this study provides a good model for predicting the experimental variable response in different types of structural joints.

  5. Supply coordination based on bonus policy in assembly under uncertain delivery time

    NASA Astrophysics Data System (ADS)

    Li, Guo; Liu, Mengqi; Wang, Zhaohua; Peng, Bingzong

    2013-03-01

    The existing research of supply coordination under uncertain delivery time mainly focuses on the collaboration between the supplier and the manufacturer, which aim at minimizing the total cost of each side and finding comparative optimal solutions under decentralized decision. In the supply coordination, the collaboration between suppliers in assembly system is usually not considered. As a result, the manufacturer's production is often delayed due to mismatching delivery of components between suppliers. Therefore, to ensure supply coordination in assembly system, collaboration between suppliers should be taken into consideration. In this paper, an assembly system with two suppliers and one manufacturer under uncertain delivery time is considered. The model is established and optimal solution is given under decentralized decision. Furthermore, the cost functions of two suppliers are both convex, and a unique Nash equilibrium exists between two suppliers. Then the optimal decision under supply coordination is analyzed, which is regarded as a benchmark for supply coordination. Additionally, the total cost of the assembly system is jointly convex in agreed delivery time. To achieve supply coordination a bonus policy is explored in the assembly system under uncertain delivery time, and the total cost under bonus policy must be lower than under decentralized decision. Finally the numerical and sensitivity analysis shows the cost of assembly system under bonus policy equals that under supply coordination, and the cost of each side in assembly system under bonus policy is lower compared to that under decentralized decision. The proposed research minimizes the total cost of each side with bonus policy in assembly system, ensures the supply coordination between suppliers and the manufacturer, and improves the competiveness of the whole supply chain.

  6. The Fast Changing Landscape of Sequencing Technologies and Their Impact on Microbial Genome Assemblies and Annotation

    SciTech Connect

    Mavromatis, K; Land, Miriam L; Brettin, Thomas S; Quest, Daniel J; Copeland, A; Clum, Alicia; Goodwin, Lynne A.; Woyke, Tanja; Lapidus, Alla L.; Klenk, Hans-Peter; Cottingham, Robert W; Kyrpides, Nikos C

    2012-01-01

    Background: The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. Methodology/Principal Findings: In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. Conclusion: These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).

  7. Accelerator-Driven Subcritical Reactors in Japanese Universities: Experimental Study Using the Kyoto University Critical Assembly

    SciTech Connect

    Shiroya, S.; Unesaki, H.; Misawa, T.

    2001-06-17

    A series of basic experiments for an accelerator-driven sub-critical reactor (ADSR) was officially launched in financial year 2000 at the Kyoto University Critical Assembly (KUCA) as a joint-use program among Japanese universities. These experiments are closely related to the future plan of the Kyoto University Research Reactor Institute. A final goal of this plan is to establish a next-generation neutron source as a substitute for the 5-MW Kyoto University Reactor and based on the ADSR concept to promote joint research among Japanese universities. An attractive point of the ADSR system is that either pulsed or steady neutrons can be provided depending on the accelerator's operation mode.

  8. Cartwheel assembly

    PubMed Central

    Hirono, Masafumi

    2014-01-01

    The cartwheel is a subcentriolar structure consisting of a central hub and nine radially arranged spokes, located at the proximal end of the centriole. It appears at the initial stage of the centriole assembly process as the first ninefold symmetrical structure. The cartwheel was first described more than 50 years ago, but it is only recently that its pivotal role in establishing the ninefold symmetry of the centriole was demonstrated. Significant progress has since been made in understanding its fine structure and assembly mechanism. Most importantly, the central part of the cartwheel, from which the ninefold symmetry originates, is shown to form by self-association of nine dimers of the protein SAS-6. This finding, together with emerging data on other components of the cartwheel, has opened new avenues in centrosome biology. PMID:25047612

  9. Life Estimation of Hip Joint Prosthesis

    NASA Astrophysics Data System (ADS)

    Desai, C.; Hirani, H.; Chawla, A.

    2014-11-01

    Hip joint is one of the largest weight-bearing structures in the human body. In the event of a failure of the natural hip joint, it is replaced with an artificial hip joint, known as hip joint prosthesis. The design of hip joint prosthesis must be such so as to resist fatigue failure of hip joint stem as well as bone cement, and minimize wear caused by sliding present between its head and socket. In the present paper an attempt is made to consider both fatigue and wear effects simultaneously in estimating functional-life of the hip joint prosthesis. The finite element modeling of hip joint prosthesis using HyperMesh™ (version 9) has been reported. The static analysis (load due to the dead weight of the body) and dynamic analysis (load due to walking cycle) have been described. Fatigue life is estimated by using the S-N curve of individual materials. To account for progressive wear of hip joint prosthesis, Archard's wear law, modifications in socket geometry and dynamic analysis have been used in a sequential manner. Using such sequential programming reduction in peak stress has been observed with increase in wear. Finally life is estimated on the basis of socket wear.

  10. Electronic hidden solder joint geometry characterization

    NASA Astrophysics Data System (ADS)

    Hsieh, Sheng-Jen

    2009-05-01

    To reduce the size of electronic equipment, multi-layer printed circuit board structures have become popular in recent years. As a result, the inspection of hidden solder joints between layers of boards has become increasingly difficult. Xray machines have been used for ball grid array (BGA) and hidden solder joint inspection; however, the equipment is costly and the inspection process is time consuming. In this paper, we investigate an active thermography approach to probing solder joint geometry. A set of boards having the same number of solder joints and amount of solder paste (0.061 g) was fabricated. Each solder joint had a different geometry. A semi-automated system was built to heat and then transfer each board to a chamber where an infrared camera was used to scan the board as it was cooling down. Two-thirds of the data set was used for model development and one-third was used for model evaluation. Both artificial neural network (ANN) and binary logistic regression models were constructed. Results suggest that solder joints with more surface area cool much faster than those with less surface area. In addition, both modeling approaches are consistent in predicting solder geometry; ANN had 85% accuracy and the regression model had 80%. This approach can potentially be used to test for cold solder joints prior to BGA assembly, since cold solder joints may have air gaps between the joint and the board and air is a poor heat conductor. Therefore, a cold solder joint may have a slower cooling rate than a normal one.

  11. Sensor assembly

    DOEpatents

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  12. Butt Joint Tool Commissioning

    SciTech Connect

    Martovetsky, N N

    2007-12-06

    ITER Central Solenoid uses butt joints for connecting the pancakes in the CS module. The principles of the butt joining of the CICC were developed by the JAPT during CSMC project. The difference between the CSMC butt joint and the CS butt joint is that the CS butt joint is an in-line joint, while the CSMC is a double joint through a hairpin jumper. The CS butt joint has to carry the hoop load. The straight length of the joint is only 320 mm, and the vacuum chamber around the joint has to have a split in the clamp shell. These requirements are challenging. Fig.1 presents a CSMC joint, and Fig.2 shows a CS butt joint. The butt joint procedure was verified and demonstrated. The tool is capable of achieving all specified parameters. The vacuum in the end was a little higher than the target, which is not critical and readily correctable. We consider, tentatively that the procedure is established. Unexpectedly, we discover significant temperature nonuniformity in the joint cross section, which is not formally a violation of the specs, but is a point of concern. All testing parameters are recorded for QA purposes. We plan to modify the butt joining tool to improve its convenience of operation and provide all features necessary for production of butt joints by qualified personnel.

  13. [Emergencies with the back and joints?].

    PubMed

    Beyeler, Ch

    2005-06-01

    General practitioners are frequently consulted for back and joint pain. Rarely, they are caused by serious diseases necessitating quick action to prevent complications such as irreversible neurological deficits or cartilage destruction. These include infections, haemorrhages and tumours, as well as diseases of various internal organs. A detailed history and physical examination provide red flags for specific causes of pain. In addition, synovia analyses allow differentiation between various causes of joint swelling. Finally, yellow flags point to exaggerated pain behaviour. PMID:15999937

  14. Dump assembly

    DOEpatents

    Goldmann, L.H.

    1984-12-06

    This is a claim for a dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough. 4 figs.

  15. Pushrod assembly

    DOEpatents

    Potter, Jerry D.

    1987-01-01

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing said magnet away from said carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  16. Shingle assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2007-02-20

    A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. The first edge of one base may be interengageable with the second edge of an adjacent base to be capable of resisting first and second disengaging forces oriented perpendicular to the edges and along planes oriented parallel to and perpendicular to the base. A deflector may be used to help reduce wind uplift forces.

  17. Metatarsal phalangeal joint arthroscopy.

    PubMed

    Shonka, T E

    1991-01-01

    An overview of metatarsophalangeal joint (MPJ) arthroscopy is presented. Indications, technique, and perioperative management are discussed. The author believes it is the operative treatment of choice for various pathology encountered in this joint. PMID:2002183

  18. Culture - joint fluid

    MedlinePlus

    Joint fluid culture ... fungi, or viruses grow. This is called a culture. If these germs are detected, other tests may ... is no special preparation needed for the lab culture. How to prepare for the removal of joint ...

  19. Hip joint replacement - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100006.htm Hip joint replacement - series—Normal anatomy To use the sharing ... to slide 5 out of 5 Overview The hip joint is made up of two major parts: the ...

  20. Hip joint injection

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007633.htm Hip joint injection To use the sharing features on this ... injection is a shot of medicine into the hip joint. The medicine helps relieve pain and inflammation. It ...

  1. Hip joint replacement

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002975.htm Hip joint replacement To use the sharing features on this page, please enable JavaScript. Hip joint replacement is surgery to replace all or part ...

  2. Knee joint replacement - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100088.htm Knee joint replacement - series—Normal anatomy To use the sharing ... of 4 Overview The knee is a complex joint. It contains the distal end of the femur ( ...

  3. Knee joint replacement

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002974.htm Knee joint replacement To use the sharing features on this page, please enable JavaScript. Knee joint replacement is a surgery to replace a knee ...

  4. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  5. Temporomandibular Joint Dysfunction

    MedlinePlus

    The temporomandibular joint (TMJ) connects your jaw to the side of your head. When it works well, it enables you to ... For people with TMJ dysfunction, problems with the joint and muscles around it may cause Pain that ...

  6. Sacroiliac joint pain - aftercare

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000610.htm Sacroiliac joint pain - aftercare To use the sharing features on this page, please enable JavaScript. The sacroiliac joint (SIJ) is a term used to describe the ...

  7. Sierra Nevada's Dream Chaser Model Assembly

    NASA Video Gallery

    This time lapse video shows the assembly of a scale model of Sierra Nevada Space Systems' Dream Chaser vehicle. The Dream Chaser model is undergoing final preparations for buffet tests at the Trans...

  8. Thermal Barriers Developed for Solid Rocket Motor Nozzle Joints

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.

    2000-01-01

    Space shuttle solid rocket motor case assembly joints are sealed with conventional O-ring seals that are shielded from 5500 F combustion gases by thick layers of insulation and by special joint-fill compounds that fill assembly splitlines in the insulation. On a number of occasions, NASA has observed hot gas penetration through defects in the joint-fill compound of several of the rocket nozzle assembly joints. In the current nozzle-to-case joint, NASA has observed penetration of hot combustion gases through the joint-fill compound to the inboard wiper O-ring in one out of seven motors. Although this condition does not threaten motor safety, evidence of hot gas penetration to the wiper O-ring results in extensive reviews before resuming flight. The solid rocket motor manufacturer (Thiokol) approached the NASA Glenn Research Center at Lewis Field about the possibility of applying Glenn's braided fiber preform seal as a thermal barrier to protect the O-ring seals. Glenn and Thiokol are working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design and by using a braided carbon fiber thermal barrier that would resist any hot gases that the J-leg does not block.

  9. Mechanical end joint system for connecting structural column elements

    NASA Technical Reports Server (NTRS)

    Bush, Harold G. (Inventor); Mikulas, Martin M., Jr. (Inventor); Wallsom, Richard E. (Inventor)

    1990-01-01

    A mechanical end joint system is presented that eliminates the possibility of free movements between the joint halves during loading or vibration. Both node joint body (NJB) and column end joint body (CEJB) have cylindrical engaging ends. Each of these ends has an integral semicircular tongue and groove. The two joint halves are engaged transversely - the tongue of the NJB mating with the groove of the CEJB and vice versa. The joint system employs a spring loaded internal latch mechanism housed in the CEJB. During mating, this mechanism is pushed away from the NJB and enters the NJB when mating is completed. In order to lock the joint and add a preload across the tongue and groove faces, an operating ring collar is rotated through 45 deg causing an internal mechanism to compress a Belleville washer preload mechanism. This causes an equal and opposite force to be exerted on the latch bolt and the latch plunger. This force presses the two joint halves tightly together. In order to prevent inadvertent disassembly, a secondary lock is also engaged when the joint is closed. Plungers are carried in the operating ring collar. When the joint is closed, the plungers fall into tracks on the CEJB, which allows the joint to be opened only when the operating ring collar and plungers are pushed directly away from the joining end. One application of this invention is the rapid assembly and disassembly of diverse skeletal framework structures which is extremely important in many projects involving the exploration of space.

  10. Sacroiliac joint imaging.

    PubMed

    Tuite, Michael J

    2008-03-01

    The sacroiliac (SI) joint has several unique anatomical features that make it one of the more challenging joints to image. The joint is difficult to profile well on radiographic views, and therefore the radiographic findings of sacroiliitis are often equivocal. Computed tomography images can usually show the findings of sacroiliitis and osteoarthritis earlier than radiographs. Magnetic resonance imaging performed with proper sequences is excellent for diagnosing even very early sacroiliitis and for following treatment response. The SI joint is often involved in patients with osteoarthritis or one of the inflammatory spondyloarthritides, most notably ankylosing spondylitis. Ankylosing spondylitis often presents with sacroiliitis, which appears as erosions, sclerosis, and joint space narrowing, eventually leading to ankylosis. Several disorders can cause sacroiliitis-like changes of the joint, including hyperparathyroidism and repetitive shear-stress injuries in athletes. The joint can become painful during pregnancy as it widens and develops increased motion, and some postpartum women develop iliac sclerosis adjacent to the joint termed osteitis condensans ilii. Another cause of SI joint pain is a disorder called sacroiliac joint dysfunction, which typically has few abnormal imaging findings. Patients with SI joint dysfunction, as well as sacroiliitis, often get relief from image-guided SI joint therapeutic injections. PMID:18382946

  11. Joint Enrollment Report, 2014

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2014

    2014-01-01

    The Iowa Department of Education collects information on joint enrollment in Iowa's 15 community colleges. Jointly enrolled students are high school students enrolled in community college credit coursework. Most jointly enrolled students enroll through Senior Year Plus (SYP) programs such as Postsecondary Enrollment Options (PSEO) and concurrent…

  12. Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, Panel Post, Tie & Diagonal Brace Joint Detail; Chord, Panel Post, Tie & Crossbracing Joint Detail - Dunlapsville Covered Bridge, Spanning East Fork Whitewater River, Dunlapsville, Union County, IN

  13. Mechanically Induced g-Jitter from Space Station Rotary Joints

    NASA Technical Reports Server (NTRS)

    Boucher, Robert L.

    2000-01-01

    The mission of the International Space Station is to provide a working laboratory in orbit for research in engineering, life sciences, and microgravity. Among the microgravity disciplines that are preparing to utilize this international resource are materials processing, combustion, fluid dynamics, biotechnology, and fundamental physics. The Station promises to enable significant advances in each of these areas by making available a research facility in which gravitational and other accelerations, and their corresponding buoyancy and diffusion effects on various physical processes, are orders of magnitude lower than they are on Earth. In order to fulfill this promise, it is not enough for the Space Station to simply replicate a typical terrestrial scientific laboratory in orbit. Although an orbiting laboratory is free of most of the effects of gravitational acceleration by virtue of its free fall condition, it also produces structural vibration or jitter that can interfere with the processes under study. To ensure the quality of the acceleration environment and enable a successful mission, the Space Station Program has limited potential disturbances in two ways: first, by isolating the most sensitive payloads from the vehicle structure, and second, by quieting major disturbances at their sources. The first area, payload isolation, is implemented inside the pressurized modules at the rack level. Sub-rack level isolators have also been developed. This paper addresses the second area, disturbance source limits, for one of the major sources of mechanical noise on the Space Station: the Solar Alpha Rotary Joints. Due to the potential for large disturbances to the microgravity environment, an initial analytical prediction of rotary joint vibration output was made. Key components were identified and tested to validate the analytical predictions. Based on the component test results, the final vibration output of the joints was verified by a test on each fully assembled

  14. Swivel assembly

    DOEpatents

    Hall, David R.; Pixton, David S.; Briscoe, Michael; Bradford, Kline; Rawle, Michael; Bartholomew, David B.; McPherson, James

    2007-03-20

    A swivel assembly for a downhole tool string comprises a first and second coaxial housing cooperatively arranged. The first housing comprises a first transmission element in communication with surface equipment. The second housing comprises a second transmission element in communication with the first transmission element. The second housing further comprises a third transmission element adapted for communication with a network integrated into the downhole tool string. The second housing may be rotational and adapted to transmit a signal between the downhole network and the first housing. Electronic circuitry is in communication with at least one of the transmission elements. The electronic circuitry may be externally mounted to the first or second housing. Further, the electronic circuitry may be internally mounted in the second housing. The electronic circuitry may be disposed in a recess in either first or second housing of the swivel.

  15. RETORT ASSEMBLY

    DOEpatents

    Loomis, C.C.; Ash, W.J.

    1957-11-26

    An improved retort assembly useful in the thermal reduction of volatilizable metals such as magnesium and calcium is described. In this process a high vacuum is maintained in the retort, however the retort must be heated to very high temperatures while at the same time the unloading end must bo cooled to condense the metal vapors, therefore the retention of the vacuum is frequently difficult due to the thermal stresses involved. This apparatus provides an extended condenser sleeve enclosed by the retort cover which forms the vacuum seal. Therefore, the seal is cooled by the fluid in the condenser sleeve and the extreme thermal stresses found in previous designs together with the deterioration of the sealing gasket caused by the high temperatures are avoided.

  16. Thermocouple assembly

    DOEpatents

    Thermos, Anthony Constantine; Rahal, Fadi Elias

    2002-01-01

    A thermocouple assembly includes a thermocouple; a plurality of lead wires extending from the thermocouple; an insulating jacket extending along and enclosing the plurality of leads; and at least one internally sealed area within the insulating jacket to prevent fluid leakage along and within the insulating jacket. The invention also provides a method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple including the steps of a) attaching a plurality of lead wires to a thermocouple; b) adding a heat sensitive pseudo-wire to extend along the plurality of lead wires; c) enclosing the lead wires and pseudo-wire inside an insulating jacket; d) locally heating axially spaced portions of the insulating jacket to a temperature which melts the pseudo-wire and fuses it with an interior surface of the jacket.

  17. Beam connector apparatus and assembly

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F. (Inventor)

    1983-01-01

    An apparatus and assembly for connecting beams and like structural members is disclosed which is particularly advantageous for connecting two members which are moved laterally into place. The connector apparatus requires no relative longitudinal movement between the ends of the beams or members being connected to make a connection joint. The apparatus includes a receptacle member and a connector housing carried by opposed ends of the structural member being connected. A spring-loaded connector member is carried by the connector housing which may be released for extension and engagement into the receptacle member.

  18. Preliminary High-Throughput Metagenome Assembly

    SciTech Connect

    Dusheyko, Serge; Furman, Craig; Pangilinan, Jasmyn; Shapiro, Harris; Tu, Hank

    2007-03-26

    Metagenome data sets present a qualitatively different assembly problem than traditional single-organism whole-genome shotgun (WGS) assembly. The unique aspects of such projects include the presence of a potentially large number of distinct organisms and their representation in the data set at widely different fractions. In addition, multiple closely related strains could be present, which would be difficult to assemble separately. Failure to take these issues into account can result in poor assemblies that either jumble together different strains or which fail to yield useful results. The DOE Joint Genome Institute has sequenced a number of metagenomic projects and plans to considerably increase this number in the coming year. As a result, the JGI has a need for high-throughput tools and techniques for handling metagenome projects. We present the techniques developed to handle metagenome assemblies in a high-throughput environment. This includes a streamlined assembly wrapper, based on the JGI?s in-house WGS assembler, Jazz. It also includes the selection of sensible defaults targeted for metagenome data sets, as well as quality control automation for cleaning up the raw results. While analysis is ongoing, we will discuss preliminary assessments of the quality of the assembly results (http://fames.jgi-psf.org).

  19. Automated solar panel assembly line

    NASA Technical Reports Server (NTRS)

    Somberg, H.

    1981-01-01

    The initial stage of the automated solar panel assembly line program was devoted to concept development and proof of approach through simple experimental verification. In this phase, laboratory bench models were built to demonstrate and verify concepts. Following this phase was machine design and integration of the various machine elements. The third phase was machine assembly and debugging. In this phase, the various elements were operated as a unit and modifications were made as required. The final stage of development was the demonstration of the equipment in a pilot production operation.

  20. Bonus Organisms in High-Throughput Eukaryotic Whole-Genome Shorgun Assembly

    SciTech Connect

    Pangilinan, Jasmyn; Shapiro, Harris; Tu, Hank; Platt, Darren

    2006-02-06

    The DOE Joint Genome Institute has sequenced over 50 eukaryotic genomes, ranging in size from 15 MB to 1.6 GB, over a wide range of organism types. In the course of doing so, it has become clear that a substantial fraction of these data sets contains bonus organisms, usually prokaryotes, in addition to the desired genome. While some of these additional organisms are extraneous contamination, they are sometimes symbionts, and so can be of biological interest. Therefore, it is desirable to assemble the bonus organisms along with the main genome. This transforms the problem into one of metagenomic assembly, which is considerably more challenging than traditional whole-genome shotgun (WGS) assembly. The different organisms will usually be present at different sequence depths, which is difficult to handle in most WGS assemblers. In addition, with multiple distinct genomes present, chimerism can produce cross-organism combinations. Finally, there is no guarantee that only a single bonus organism will be present. For example, one JGI project contained at least two different prokaryotic contaminants, plus a 145 KB plasmid of unknown origin. We have developed techniques to routinely identify and handle such bonus organisms in a high-throughput sequencing environment. Approaches include screening and partitioning the unassembled data, and iterative subassemblies. These methods are applicable not only to bonus organisms, but also to desired components such as organelles. These procedures have the additional benefit of identifying, and allowing for the removal of, cloning artifacts such as E.coli and spurious vector inclusions.

  1. Seal assembly

    NASA Astrophysics Data System (ADS)

    Salt, Jonathan G.; Korzun, Ronald W.; Abbott, David R.

    1993-01-01

    A unitary annular seal structure is provided for attachment to a turbine nozzle in a gas turbine engine. The nozzle includes an annular platform disposed about a longitudinal axis of the engine. An annular array of vanes is secured to the platform. The seal structure includes an abradable annular seal member, a seal backing member, and a seal attachment ring. The ring includes an annular, radially extending, axially acting spring member positioned to cooperate with a plurality of radially extending tabs on the backing member. In use, the seal structure is positioned within a circular opening within the turbine nozzle. The nozzle includes a radially depending appendage formed as part of the nozzle platform. The spring member abuts one side of the appendage and the tabs are positioned to abut another side of the appendage for holding the annular spring member in gas sealing engagement with the appendage to thus provide a seal against gas leakage and to restrain the seal structure axially. The spring member and tabs comprise a radially slideable joint for the seal structure. To restrict circumferential motion of the structure, slots are formed in the appendage for receiving the tabs. The seal is easily replaced by bending the tabs and sliding the seal structure axially out of the nozzle. Differential thermal expansion is accommodated by the slideable seal arrangement.

  2. Integrated High-Speed Torque Control System for a Robotic Joint

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)

    2013-01-01

    A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).

  3. Wear analysis of revolute joints with clearance in multibody systems

    NASA Astrophysics Data System (ADS)

    Bai, ZhengFeng; Zhao, Yang; Wang, XingGui

    2013-08-01

    In this work, the prediction of wear for revolute joint with clearance in multibody systems is investigated using a computational methodology. The contact model in clearance joint is established using a new hybrid nonlinear contact force model and the friction effect is considered by using a modified Coulomb friction model. The dynamics model of multibody system with clearance is established using dynamic segmentation modeling method and the computational process for wear analysis of clearance joint in multibody systems is presented. The main computational process for wear analysis of clearance joint includes two steps, which are dynamics analysis and wear analysis. The dynamics simulation of multibody system with revolute clearance joint is carried out and the contact forces are drawn and used to calculate the wear amount of revolute clearance joint based on the Archard's wear model. Finally, a four-bar multibody mechanical system with revolute clearance joint is used as numerical example application to perform the simulation and show the dynamics responses and wear characteristics of multibody systems with revolute clearance joint. The main results of this work indicate that the contact between the joint elements is wider and more frequent in some specific regions and the wear phenomenon is not regular around the joint surface, which causes the clearance size increase non-regularly after clearance joint wear. This work presents an effective method to predict wear of revolute joint with clearance in multibody systems.

  4. Seismic response of rock joints and jointed rock mass

    SciTech Connect

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    1996-06-01

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts and the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs.

  5. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael D. (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The phenolic in the tape is cured and the end of the wrap is machined. The remainder of the mandrel is wrapped with a third silica tape. The resin in the third tape is cured and the assembly is machined. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  6. Pipeline joint protector

    SciTech Connect

    Baker, R.

    1989-02-28

    This patent describes a weight coated pipeline joint protective apparatus for protecting pipeline joints against impact or high stress concentrations. It consists of a high density plastic sheet wrapped around a pipeline joint with the opposite edges of such sheet overlaying the weight of coat material on the abutting pipes forming the joint. The first end of the sheet overlaps the wrapped sheet with means for securing such first end to the sheet surface near or adjacent to the opposite end of such sheet.

  7. Colloidosome like structures: self-assembly of silica microrods

    DOE PAGESBeta

    Datskos, P.; Polizos, G.; Bhandari, M.; Cullen, D. A.; Sharma, J.

    2016-03-07

    Self-assembly of one-dimensional structures is attracting a great deal of interest because assembled structures can provide better properties compared to individual building blocks. We demonstrate silica microrod self-assembly by exploiting Pickering emulsion based strategy. Micron-sized silica rods were synthesized employing previously reported methods based on polyvinylpyrrolidone/ pentanol emulsion droplets. Moreover, rods self-assembled to make structures in the range of z10 40 mm. Smooth rods assembled better than segmented rods. Finally, the assembled structures were bonded by weak van der Waals forces.

  8. TEXAS JOINT CENTER FOR AIR QUALITY

    EPA Science Inventory

    Status of Subawards
     
    Five of the six subaward projects are complete.  Final reporting from the Texas A&M Galveston project was prevented due to Hurricane Ike in August 2008.  Joint Center staff visited project sites i...

  9. Valve stem and packing assembly

    DOEpatents

    Wordin, John J.

    1991-01-01

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  10. Valve stem and packing assembly

    DOEpatents

    Wordin, J.J.

    1991-09-03

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.

  11. Temporomandibular joint diagnostics using CBCT

    PubMed Central

    Abrahamsson, A-K; Kristensen, M; Arvidsson, L Z

    2015-01-01

    The present review will give an update on temporomandibular joint (TMJ) imaging using CBCT. It will focus on diagnostic accuracy and the value of CBCT compared with other imaging modalities for the evaluation of TMJs in different categories of patients; osteoarthritis (OA), juvenile OA, rheumatoid arthritis and related joint diseases, juvenile idiopathic arthritis and other intra-articular conditions. Finally, sections on other aspects of CBCT research related to the TMJ, clinical decision-making and concluding remarks are added. CBCT has emerged as a cost- and dose-effective imaging modality for the diagnostic assessment of a variety of TMJ conditions. The imaging modality has been found to be superior to conventional radiographical examinations as well as MRI in assessment of the TMJ. However, it should be emphasized that the diagnostic information obtained is limited to the morphology of the osseous joint components, cortical bone integrity and subcortical bone destruction/production. For evaluation of soft-tissue abnormalities, MRI is mandatory. There is an obvious need for research on the impact of CBCT examinations on patient outcome. PMID:25369205

  12. Superfluid Helium Testing of a Stainless Steel to Titanium Piping Transition Joint

    NASA Astrophysics Data System (ADS)

    Soyars, W.; Basti, A.; Bedeschi, F.; Budagov, J.; Foley, M.; Harms, E.; Klebaner, A.; Nagaitsev, S.; Sabirov, B.

    2010-04-01

    Stainless steel-to-titanium bimetallic transitions have been fabricated with an explosively bonded joint. This novel joining technique was conducted by the Russian Federal Nuclear Center, working under contract for the Joint Institute for Nuclear Research. These bimetallic transitions are being considered for use in future superconducting radio-frequency cavity cryomodule assemblies. This application requires cryogenic testing to demonstrate that this transition joint remains leak-tight when sealing superfluid helium. To simulate a titanium cavity vessel connection to a stainless steel service pipe, bimetallic transition joints were paired together to fabricate piping assemblies. These piping assemblies were then tested in superfluid helium conditions at Fermi National Accelerator Laboratory test facilities. The transition joint test program will be described. Fabrication experience and test results will be presented.

  13. Superfluid helium testing of a stainless steel to titanium piping transition joint

    SciTech Connect

    Soyars, W.; Basti, A.; Bedeschi, F.; Budagov, J.; Foley, M.; Harms, E.; Klebaner, A.; Nagaitsev, S.; Sabirov, B.; Dubna, JINR

    2009-11-01

    Stainless steel-to-titanium bimetallic transitions have been fabricated with an explosively bonded joint. This novel joining technique was conducted by the Russian Federal Nuclear Center, working under contract for the Joint Institute for Nuclear Research. These bimetallic transitions are being considered for use in future superconducting radio-frequency cavity cryomodule assemblies. This application requires cryogenic testing to demonstrate that this transition joint remains leak-tight when sealing superfluid helium. To simulate a titanium cavity vessel connection to a stainless steel service pipe, bimetallic transition joints were paired together to fabricate piping assemblies. These piping assemblies were then tested in superfluid helium conditions at Fermi National Accelerator Laboratory test facilities. The transition joint test program will be described. Fabrication experience and test results will be presented.

  14. Coronal joint spaces of the Temporomandibular joint: Systematic review and meta-analysis

    PubMed Central

    Silva, Joana-Cristina; Pires, Carlos A.; Ponces-Ramalhão, Maria-João-Feio; Lopes, Jorge-Dias

    2015-01-01

    Introduction The joint space measurements of the temporomandibular joint have been used to determine the condyle position variation. Therefore, the aim of this study is to perform a systematic review and meta-analysis on the coronal joint spaces measurements of the temporomandibular joint. Material and Methods An electronic database search was performed with the terms “condylar position”; “joint space”AND”TMJ”. Inclusionary criteria included: tomographic 3D imaging of the TMJ, presentation of at least two joint space measurements on the coronal plane. Exclusionary criteria were: mandibular fractures, animal studies, surgery, presence of genetic or chronic diseases, case reports, opinion or debate articles or unpublished material. The risk of bias of each study was judged as high, moderate or low according to the “Cochrane risk of bias tool”. The values used in the meta-analysis were the medial, superior and lateral joint space measurements and their differences between the right and left joint. Results From the initial search 2706 articles were retrieved. After excluding the duplicates and all the studies that did not match the eligibility criteria 4 articles classified for final review. All the retrieved articles were judged as low level of evidence. All of the reviewed studies were included in the meta-analysis concluding that the mean coronal joint space values were: medial joint space 2.94 mm, superior 2.55 mm and lateral 2.16 mm. Conclusions the analysis also showed high levels of heterogeneity. Right and left comparison did not show statistically significant differences. Key words:Temporomandibular joint, systematic review, meta-analysis. PMID:26330944

  15. Failure analysis of beryllium tile assembles following high heat flux testing for the ITER program

    SciTech Connect

    B. C. Odegard, Jr.; C. H. Cadden; N. Y. C. Yang

    2000-05-01

    The following document describes the processing, testing and post-test analysis of two Be-Cu assemblies that have successfully met the heat load requirements for the first wall and dome sections for the ITER (International Thermonuclear Experimental Reactor) fusion reactor. Several different joint assemblies were evaluated in support of a manufacturing technology investigation aimed at diffusion bonding or brazing a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Judicious selection of materials and coatings for these assemblies was essential to eliminate or minimize interactions with the highly reactive beryllium armor material. A thin titanium layer was used as a diffusion barrier to isolate the copper heat sink from the beryllium armor. To reduce residual stresses produced by differences in the expansion coefficients between the beryllium and copper, a compliant layer of aluminum or aluminum-beryllium (AlBeMet-150) was used. Aluminum was chosen because it does not chemically react with, and exhibits limited volubility in, beryllium. Two bonding processes were used to produce the assemblies. The primary process was a diffusion bonding technique. In this case, undesirable metallurgical reactions were minimized by keeping the materials in a solid state throughout the fabrication cycle. The other process employed an aluminum-silicon layer as a brazing filler material. In both cases, a hot isostatic press (HIP) furnace was used in conjunction with vacuum-canned assemblies in order to minimize oxidation and provide sufficient pressure on the assemblies for full metal-to-metal contact and subsequent bonding. The two final assemblies were subjected to a suite of tests including: tensile tests and electron and optical metallography. Finally, high heat flux testing was conducted at the electron beam testing system (EBTS) at Sandia National Laboratories, New Mexico. Here, test mockups were fabricated and subjected to normal heat loads to

  16. Integrated, proportionally controlled, and naturally compliant universal joint actuator with controllable stiffness

    DOEpatents

    Borenstein, Johann; Granosik, Grzegorz

    2005-03-22

    An apparatus for traversing obstacles having an elongated, round, flexible body that includes a plurality of segments interconnected by an integrated joint actuator assembly. The integrated joint actuator assembly includes a plurality of bellows-type actuators individually coupling adjacent segments to permit pivotal actuation of the apparatus therebetween. A controller is employed to maintain proper positional control and stiffness control while minimize air flow.

  17. Experimental Investigations of an Inclined Lap-Type Bolted Joint

    SciTech Connect

    GREGORY, DANNY LYNN; RESOR, BRIAN R.; COLEMAN, RONALD G.; SMALLWOOD, DAVID ORA

    2003-04-01

    The dynamic response of critical aerospace components is often strongly dependent upon the dynamic behavior of bolted connections that attach the component to the surrounding structure. These bolted connections often provide the only structural load paths to the component. The bolted joint investigated in this report is an inclined lap-type joint with the interface inclined with respect to the line of action of the force acting on the joint. The accurate analytical modeling of these bolted connections is critical to the prediction of the response of the component to normal and high-level shock environmental loadings. In particular, it is necessary to understand and correctly model the energy dissipation (damping) of the bolted joint that is a nonlinear function of the forces acting on the joint. Experiments were designed and performed to isolate the dynamics of a single bolted connection of the component. Steady state sinusoidal and transient experiments were used to derive energy dissipation curves as a function of input force. Multiple assemblies of the bolted connection were also observed to evaluate the variability of the energy dissipation of the connection. These experiments provide insight into the complex behavior of this bolted joint to assist in the postulation and development of reduced order joint models to capture the important physics of the joint including stiffness and damping. The experiments are described and results presented that provide a basis for candidate joint model calibration and comparison.

  18. Laboratory experiments on columnar jointing

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Morris, S. W.

    2003-12-01

    The mechanism causing columnar jointing has remained an enticing mystery since the basalt columns of the Giant's Causeway in N. Ireland were first reported to science in the 17th century. This phenomenon, in which shrinkage cracks form a quasi-hexagonal arrangement, has been shown to produce columns in starch, glass, coal, sandstone, and ice, as well as in a variety of lava flows. This suggests that this pattern-forming process is very general in nature. However, most studies of columnar jointing have been confined to field studies of basalt flows. Following Muller, we have experimented with desiccating corn starch in an effort to understand this pattern from a more general point of view. The diffusion and evaporation of water in starch is thought to be analogous to the diffusion and extraction of heat from a basalt flow. By combining direct sampling and x-ray tomography, fully 3D descriptions of columnar jointing were obtained with starch samples. We have characterized the pattern with several statistical indices, which describe its structure and relative disorder. These methods can resolve the ordering of the colonnade near the free surface. We identified two distinct mechanisms by which the mean column area increases during pattern evolution. We found both a slow, almost power-law increase in column area, as well as episodes of sudden catastrophic jumps in scale. The latter suggests that the column scale is not a simple single-valued function of drying rate, but rather a metastable state subject to hysteresis. Such metastable behaviour might explain a fundamental question about columnar jointing -- why the columns are so regular in the direction of their growth. Moreover, these experiments may help discriminate between the various theoretical models of this pattern forming process. Finally, our results lead to predictions that could be tested by field measurements on basaltic colonnades.

  19. Compound solder joints

    NASA Technical Reports Server (NTRS)

    Batista, R. I.; Simonson, R. B.

    1976-01-01

    Joining technique prevents contamination, may be used to join dissimilar metal tubes, minimizes fluid and gas entrapment, expedites repairs, and can yield joints having leakage rates less than 0.000001 standard cubic cm He/min. Components of joint are solder sleeve, two solder rings, Teflon sleeve, and tubing to be joined.

  20. "Nonfloating" universal joint

    NASA Technical Reports Server (NTRS)

    Appleberry, W. T.

    1978-01-01

    Modified crowned-spline joint is lightweight, durable, and requires minimum of parts. It does not use rubber cushions to limit play and is useful over wide temperature range. It has inner ball and socket to provide rigid connection with no axial play. Joint can be adapted to form pinned connection between segmented torque tubes.

  1. Sacroiliac joint pain - aftercare

    MedlinePlus

    The sacroiliac joint (SIJ) is a term used to describe the place where the sacrum and the iliac bones join. The ... The main purpose of the joint is to connect the spine and the pelvis. As a result, there is very little movement at the SIJ. Major reasons ...

  2. Pull strength evaluation of Sn-Pb solder joints made to Au-Pt-Pd and Au thick film structures on low-temperature co-fired ceramic -final report for the MC4652 crypto-coded switch (W80).

    SciTech Connect

    Uribe, Fernando; Vianco, Paul Thomas; Zender, Gary L.

    2006-06-01

    A study was performed that examined the microstructure and mechanical properties of 63Sn-37Pb (wt.%, Sn-Pb) solder joints made to thick film layers on low-temperature co-fired (LTCC) substrates. The thick film layers were combinations of the Dupont{trademark} 4596 (Au-Pt-Pd) conductor and Dupont{trademark} 5742 (Au) conductor, the latter having been deposited between the 4596 layer and LTCC substrate. Single (1x) and triple (3x) thicknesses of the 4596 layer were evaluated. Three footprint sizes were evaluated of the 5742 thick film. The solder joints exhibited excellent solderability of both the copper (Cu) lead and thick film surface. In all test sample configurations, the 5742 thick film prevented side wall cracking of the vias. The pull strengths were in the range of 3.4-4.0 lbs, which were only slightly lower than historical values for alumina (Al{sub 2}O{sub 3}) substrates. General (qualitative) observations: (a) The pull strength was maximized when the total number of thick film layers was between two and three. Fewer that two layers did not develop as strong of a bond at the thick film/LTCC interface; more than three layers and of increased footprint area, developed higher residual stresses at the thick film/LTCC interface and in the underlying LTCC material that weakened the joint. (b) Minimizing the area of the weaker 4596/LTCC interface (e.g., larger 5742 area) improved pull strength. Specific observations: (a) In the presence of vias and the need for the 3x 4596 thick film, the preferred 4596:5742 ratio was 1.0:0.5. (b) For those LTCC components that require the 3x 4596 layer, but do not have vias, it is preferred to refrain from using the 5742 layer. (c) In the absence of vias, the highest strength was realized with a 1x thick 5742 layer, a 1x thick 4596 layer, and a footprint ratio of 1.0:1.0.

  3. Latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.

  4. Self-assembling Functionalized Single-walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Gao, Yan

    Single-walled carbon nanotubes (SWCNTs) are promising bottom-up building materials due to their superior properties. However, the lack of an effective method to arrange large quantities of SWCNTs poses an obstacle toward their applications. Existing studies to functionalize, disperse, position, and assemble SWCNTs provide a broad understandings regarding SWCNTs behavior, especially in aqueous electrolyte solution. Inspired by ionic polymer metal composite (IPMC) materials, this dissertation envisions fabrication of orderly SWCNTs network structure via their ionic clustering-mediated self-assembly. SWCNTs tend to bundle together due to inter-nanotube VDW attractions, which increase with nanotube length. The author seeks short SWCNTs with long chain molecules bearing ionic termini to facilitate debundling and self-assembly in aqueous electrolyte solution through end-clustering. First, a simple model was applied based on essential physical factors. The results indicated that SWCNTs must be shorter than ˜100 nm to achieve stable network structures. Experiments were then carried out based upon the results. Short SWCNTs (50-100 nm) were end-functionalized with hexaethylene glycol (HEG) linkers bearing terminal carboxylate anions. Both 2D and 3D network structures were observed after placing the functionalized SWCNTs in aqueous electrolyte (sodium ion). The network structures were characterized by microscopic and spectroscopic methods. A novel approach was applied via electron tomography to study the 3D structures of SWCNTs structure in aqueous electrolyte. Free energy analysis of the SWCNTs network structure was implemented with the assistance of both analytical tools and molecular simulations. The results indicate that, when a cluster is formed by three functionalized SWCNTs ends, the resulting network structure is most stable. Indeed, 72% of the clusters/joints were formed by three nanotubes, as observed in experiments. Finally, Monte Carlo simulations of coarse

  5. Identifying wrong assemblies in de novo short read primary sequence assembly contigs.

    PubMed

    Chawla, Vandna; Kumar, Rajnish; Shankar, Ravi

    2016-09-01

    With the advent of short-reads-based genome sequencing approaches, large number of organisms are being sequenced all over the world. Most of these assemblies are done using some de novo short read assemblers and other related approaches. However, the contigs produced this way are prone to wrong assembly. So far, there is a conspicuous dearth of reliable tools to identify mis-assembled contigs. Mis-assemblies could result from incorrectly deleted or wrongly arranged genomic sequences. In the present work various factors related to sequence, sequencing and assembling have been assessed for their role in causing mis-assembly by using different genome sequencing data. Finally, some mis-assembly detecting tools have been evaluated for their ability to detect the wrongly assembled primary contigs, suggesting a lot of scope for improvement in this area. The present work also proposes a simple unsupervised learning-based novel approach to identify mis-assemblies in the contigs which was found performing reasonably well when compared to the already existing tools to report mis-assembled contigs. It was observed that the proposed methodology may work as a complementary system to the existing tools to enhance their accuracy. PMID:27581937

  6. Atlantis Rollover to the Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle orbiter Atlantis rolls over from Orbiter Processing Facility Bay 3 to the Vehicle Assembly Building April 20, 1995, atop the orbiter transporter for mating to its external tank and solid rocket boosters in preparation for the STS-71 mission. Atlantis will dock with the Russian Space Station Mir during the 11-day mission. Later, both Mir and STS-71 flight crew members will conduct joint medical investigations in the Spacelab-Mir module located in the orbiter's payload bay.

  7. Inlet nozzle assembly

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.

    1987-01-01

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  8. Inlet nozzle assembly

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.

    1985-09-09

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  9. Structural assembly in space

    NASA Technical Reports Server (NTRS)

    Stokes, J. W.; Pruett, E. C.

    1980-01-01

    A cost algorithm for predicting assembly costs for large space structures is given. Assembly scenarios are summarized which describe the erection, deployment, and fabrication tasks for five large space structures. The major activities that impact total costs for structure assembly from launch through deployment and assembly to scientific instrument installation and checkout are described. Individual cost elements such as assembly fixtures, handrails, or remote minipulators are also presented.

  10. Low-energy gamma ray inspection of brazed aluminum joints

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1967-01-01

    Americium 241 serves as a suitable radioisotope /gamma ray source/ and exposure probe for radiographic inspection of brazed aluminum joints in areas of limited accessibility. The powdered isotope is contained in a sealed capsule mounted at the end of a spring-loaded pushrod in the probe assembly.

  11. Self-assembled nanomaterials for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  12. Finishing bacterial genome assemblies with Mix

    PubMed Central

    2013-01-01

    Motivation Among challenges that hamper reaping the benefits of genome assembly are both unfinished assemblies and the ensuing experimental costs. First, numerous software solutions for genome de novo assembly are available, each having its advantages and drawbacks, without clear guidelines as to how to choose among them. Second, these solutions produce draft assemblies that often require a resource intensive finishing phase. Methods In this paper we address these two aspects by developing Mix , a tool that mixes two or more draft assemblies, without relying on a reference genome and having the goal to reduce contig fragmentation and thus speed-up genome finishing. The proposed algorithm builds an extension graph where vertices represent extremities of contigs and edges represent existing alignments between these extremities. These alignment edges are used for contig extension. The resulting output assembly corresponds to a set of paths in the extension graph that maximizes the cumulative contig length. Results We evaluate the performance of Mix on bacterial NGS data from the GAGE-B study and apply it to newly sequenced Mycoplasma genomes. Resulting final assemblies demonstrate a significant improvement in the overall assembly quality. In particular, Mix is consistent by providing better overall quality results even when the choice is guided solely by standard assembly statistics, as is the case for de novo projects. Availability Mix is implemented in Python and is available at https://github.com/cbib/MIX, novel data for our Mycoplasma study is available at http://services.cbib.u-bordeaux2.fr/mix/. PMID:24564706

  13. Self-assembled nanomaterials for photoacoustic imaging.

    PubMed

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging. PMID:26757620

  14. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  15. MISR JOINT_AS Data

    Atmospheric Science Data Center

    2014-07-21

    Joint Aerosol Product (JOINT_AS) The MISR Level 3 Products are global or regional ... field campaigns at daily and monthly time scales. The Joint Aerosol product provides a monthly global statistical summary of MISR ...

  16. Maximum aposteriori joint source/channel coding

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Gibson, Jerry D.

    1991-01-01

    A maximum aposteriori probability (MAP) approach to joint source/channel coder design is presented in this paper. This method attempts to explore a technique for designing joint source/channel codes, rather than ways of distributing bits between source coders and channel coders. For a nonideal source coder, MAP arguments are used to design a decoder which takes advantage of redundancy in the source coder output to perform error correction. Once the decoder is obtained, it is analyzed with the purpose of obtaining 'desirable properties' of the channel input sequence for improving overall system performance. Finally, an encoder design which incorporates these properties is proposed.

  17. Pressure vessel flex joint

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor)

    1992-01-01

    An airtight, flexible joint is disclosed for the interfacing of two pressure vessels such as between the Space Station docking tunnel and the Space Shuttle Orbiter bulkhead adapter. The joint provides for flexibility while still retaining a structural link between the two vessels required due to the loading created by the internal/external pressure differential. The joint design provides for limiting the axial load carried across the joint to a specific value, a function returned in the Orbiter/Station tunnel interface. The flex joint comprises a floating structural segment which is permanently attached to one of the pressure vessels through the use of an inflatable seal. The geometric configuration of the joint causes the tension between the vessels created by the internal gas pressure to compress the inflatable seal. The inflation pressure of the seal is kept at a value above the internal/external pressure differential of the vessels in order to maintain a controlled distance between the floating segment and pressure vessel. The inflatable seal consists of either a hollow torus-shaped flexible bladder or two rolling convoluted diaphragm seals which may be reinforced by a system of straps or fabric anchored to the hard structures. The joint acts as a flexible link to allow both angular motion and lateral displacement while it still contains the internal pressure and holds the axial tension between the vessels.

  18. Wormhole Formation in RSRM Nozzle Joint Backfill

    NASA Technical Reports Server (NTRS)

    Stevens, J.

    2000-01-01

    The RSRM nozzle uses a barrier of RTV rubber upstream of the nozzle O-ring seals. Post flight inspection of the RSRM nozzle continues to reveal occurrence of "wormholes" into the RTV backfill. The term "wormholes", sometimes called "gas paths", indicates a gas flow path not caused by pre-existing voids, but by a little-understood internal failure mode of the material during motor operation. Fundamental understanding of the mechanics of the RSRM nozzle joints during motor operation, nonlinear viscoelastic characterization of the RTV backfill material, identification of the conditions that predispose the RTV to form wormholes, and screening of candidate replacement materials is being pursued by a joint effort between Thiokol Propulsion, NASA, and the Army Propulsion & Structures Directorate at Redstone Arsenal. The performance of the RTV backfill in the joint is controlled by the joint environment. Joint movement, which applies a tension and shear load on the material, coupled with the introduction of high pressure gas in combination create an environment that exceeds the capability of the material to withstand the wormhole effect. Little data exists to evaluate why the material fails under the modeled joint conditions, so an effort to characterize and evaluate the material under these conditions was undertaken. Viscoelastic property data from characterization testing will anchor structural analysis models. Data over a range of temperatures, environmental pressures, and strain rates was used to develop a nonlinear viscoelastic model to predict material performance, develop criteria for replacement materials, and quantify material properties influencing wormhole growth. Three joint simulation analogs were developed to analyze and validate joint thermal barrier (backfill) material performance. Two exploratory tests focus on detection of wormhole failure under specific motor operating conditions. A "validation" test system provides data to "validate" computer models and

  19. Controlling and imaging biomimetic self-assembly

    NASA Astrophysics Data System (ADS)

    Aliprandi, Alessandro; Mauro, Matteo; de Cola, Luisa

    2016-01-01

    The self-assembly of chemical entities represents a very attractive way to create a large variety of ordered functional structures and complex matter. Although much effort has been devoted to the preparation of supramolecular nanostructures based on different chemical building blocks, an understanding of the mechanisms at play and the ability to monitor assembly processes and, in turn, control them are often elusive, which precludes a deep and comprehensive control of the final structures. Here the complex supramolecular landscape of a platinum(II) compound is characterized fully and controlled successfully through a combination of supramolecular and photochemical approaches. The supramolecular assemblies comprise two kinetic assemblies and their thermodynamic counterpart. The monitoring of the different emission properties of the aggregates, used as a fingerprint for each species, allows the real-time visualization of the evolving self-assemblies. The control of multiple supramolecular pathways will help the design of complex systems in and out of their thermodynamic equilibrium.

  20. First metatarsophalangeal joint arthrodesis.

    PubMed

    Rajczy, Robert M; McDonald, Patrick R; Shapiro, Howard S; Boc, Steven F

    2012-01-01

    Arthrodesis of the first metatarsophalangeal joint (MTPJ) is used primarily for end-stage hallux rigidus whereby pain, crepitus, and limitation of motion is noted at the joint. Arthrodesis at the first MTPJ also has it uses as a primary procedure for rheumatoid arthritis when severe deformity is present, as well as for salvage procedures for failed joint arthroplasties with or without implant, fractures with intra-articular extension, avascular necrosis, and infection management. A first MTPJ arthrodesis should provide stable fixation, attain suitable positioning for a reasonable gait, maintain adequate length, and create a stable platform for a plantigrade foot type. PMID:22243568

  1. Compliant Joints For Robots

    NASA Technical Reports Server (NTRS)

    Kerley, James J., Jr.

    1990-01-01

    Compliant joints devised to accommodate misalignments of tools and/or workpieces with respect to robotic manipulators. Has characteristics and appearance of both universal-joint and cable-spring-type flexible shaft coupling. Compliance derived from elastic properties of short pieces of cable. Compliance of joint determined by lengths, distances between, relative orientations, thickness of strands, number of strands, material, amount of pretwist, and number of short pieces of cable. Worm-drive mechanism used to adjust lengths to vary compliance as needed during operation.

  2. Fermilab Failure Analysis of TeV I (TIE) Array Soldier Joints

    SciTech Connect

    Runge-Marchese, Jude M.; Daehn, Ralph C.; /Fermilab

    1987-09-02

    Failure of TIE array loop assembly solder joints within Stochastic Cooling Tanks during system operation resulted in the loop base plate dropping into the beam region. This caused a non-operational condition to exist within the system. In order to understand the failure mechanism, several loop assemblies were submitted to Midwest Materials and Engineering Consultants for complete metallurgical evaluation and failure analysis. Because of the similarity between the loop assembly material construction and the TIE resistor assemblies, several resistor assemblies were also evaluated.

  3. Structural assembly demonstration experiment

    NASA Technical Reports Server (NTRS)

    Stokes, J. W.

    1982-01-01

    The experiment is of an operational variety, designed to assess crew capability in Large Space System (LSS) assembly. The six Structural Assembly Demonstration Experiment objectives include: (1) the establishment of a quantitative correlation between LSS neutral buoyancy simulation and on-orbit assembly operations in order to enhance the validity of those assembly simulations; (2) the quantitative study of the capabilities and mechanics of human assembly in an Extravehicular Activity environment; (3) the further corroboration of the LSS Assembly Analysis cost algorithm through the obtainment of hard data base information; (4) the verification of LSS assembly techniques and timeless, as well as the identification of crew imposed loads and assembly aid requirements and concepts; (5) verification of a Launch/Assembly Platform structure concept for other LSS missions; and (6) lastly, to advance thermal control concepts through a flexible heat pipe.

  4. Aerobrake assembly with minimum Space Station accommodation

    NASA Technical Reports Server (NTRS)

    Katzberg, Steven J.; Butler, David H.; Doggett, William R.; Russell, James W.; Hurban, Theresa

    1991-01-01

    The minimum Space Station Freedom accommodations required for initial assembly, repair, and refurbishment of the Lunar aerobrake were investigated. Baseline Space Station Freedom support services were assumed, as well as reasonable earth-to-orbit possibilities. A set of three aerobrake configurations representative of the major themes in aerobraking were developed. Structural assembly concepts, along with on-orbit assembly and refurbishment scenarios were created. The scenarios were exercised to identify required Space Station Freedom accommodations. Finally, important areas for follow-on study were also identified.

  5. Nondeterministic self-assembly with asymmetric interactions.

    PubMed

    Tesoro, S; Göpfrich, K; Kartanas, T; Keyser, U F; Ahnert, S E

    2016-08-01

    We investigate general properties of nondeterministic self-assembly with asymmetric interactions, using a computational model and DNA tile assembly experiments. By contrasting symmetric and asymmetric interactions we show that the latter can lead to self-limiting cluster growth. Furthermore, by adjusting the relative abundance of self-assembly particles in a two-particle mixture, we are able to tune the final sizes of these clusters. We show that this is a fundamental property of asymmetric interactions, which has potential applications in bioengineering, and provides insights into the study of diseases caused by protein aggregation. PMID:27627332

  6. Nondeterministic self-assembly with asymmetric interactions

    NASA Astrophysics Data System (ADS)

    Tesoro, S.; Göpfrich, K.; Kartanas, T.; Keyser, U. F.; Ahnert, S. E.

    2016-08-01

    We investigate general properties of nondeterministic self-assembly with asymmetric interactions, using a computational model and DNA tile assembly experiments. By contrasting symmetric and asymmetric interactions we show that the latter can lead to self-limiting cluster growth. Furthermore, by adjusting the relative abundance of self-assembly particles in a two-particle mixture, we are able to tune the final sizes of these clusters. We show that this is a fundamental property of asymmetric interactions, which has potential applications in bioengineering, and provides insights into the study of diseases caused by protein aggregation.

  7. Comparing de novo assemblers for 454 transcriptome data

    PubMed Central

    2010-01-01

    Background Roche 454 pyrosequencing has become a method of choice for generating transcriptome data from non-model organisms. Once the tens to hundreds of thousands of short (250-450 base) reads have been produced, it is important to correctly assemble these to estimate the sequence of all the transcripts. Most transcriptome assembly projects use only one program for assembling 454 pyrosequencing reads, but there is no evidence that the programs used to date are optimal. We have carried out a systematic comparison of five assemblers (CAP3, MIRA, Newbler, SeqMan and CLC) to establish best practices for transcriptome assemblies, using a new dataset from the parasitic nematode Litomosoides sigmodontis. Results Although no single assembler performed best on all our criteria, Newbler 2.5 gave longer contigs, better alignments to some reference sequences, and was fast and easy to use. SeqMan assemblies performed best on the criterion of recapitulating known transcripts, and had more novel sequence than the other assemblers, but generated an excess of small, redundant contigs. The remaining assemblers all performed almost as well, with the exception of Newbler 2.3 (the version currently used by most assembly projects), which generated assemblies that had significantly lower total length. As different assemblers use different underlying algorithms to generate contigs, we also explored merging of assemblies and found that the merged datasets not only aligned better to reference sequences than individual assemblies, but were also more consistent in the number and size of contigs. Conclusions Transcriptome assemblies are smaller than genome assemblies and thus should be more computationally tractable, but are often harder because individual contigs can have highly variable read coverage. Comparing single assemblers, Newbler 2.5 performed best on our trial data set, but other assemblers were closely comparable. Combining differently optimal assemblies from different programs

  8. Robotic Joints Support Horses and Humans

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A rehabilitative device first featured in Spinoff 2003 is not only helping human patients regain the ability to walk, but is now helping our four-legged friends as well. The late James Kerley, a prominent Goddard Space Flight Center researcher, developed cable-compliant mechanisms in the 1980s to enable sounding rocket assemblies and robots to grip or join objects. In cable-compliant joints (CCJs), short segments of cable connect structural elements, allowing for six directions of movement, twisting, alignment, and energy damping. Kerley later worked with Goddard s Wayne Eklund and Allen Crane to incorporate the cable-compliant mechanisms into a walker for human patients to support the pelvis and imitate hip joint movement.

  9. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  10. Exploration of Metagenome Assemblies with an Interactive Visualization Tool

    SciTech Connect

    Cantor, Michael; Nordberg, Henrik; Smirnova, Tatyana; Andersen, Evan; Tringe, Susannah; Hess, Matthias; Dubchak, Inna

    2014-07-09

    Metagenomics, one of the fastest growing areas of modern genomic science, is the genetic profiling of the entire community of microbial organisms present in an environmental sample. Elviz is a web-based tool for the interactive exploration of metagenome assemblies. Elviz can be used with publicly available data sets from the Joint Genome Institute or with custom user-loaded assemblies. Elviz is available at genome.jgi.doe.gov/viz

  11. Improved orthopedic arm joint

    NASA Technical Reports Server (NTRS)

    Dane, D. H.

    1971-01-01

    Joint permits smooth and easy movement of disabled arm and is smaller, lighter and less expensive than previous models. Device is interchangeable and may be used on either arm at the shoulder or at the elbow.

  12. Knee joint replacement

    MedlinePlus

    The results of a total knee replacement are often excellent. The operation relieves pain for most people. Most people do not need help walking after they fully recover. Most artificial knee joints last 10 ...

  13. Joint fluid Gram stain

    MedlinePlus

    Gram stain of joint fluid ... result means no bacteria are present on the Gram stain. Normal value ranges may vary slightly among ... Abnormal results mean bacteria were seen on the Gram stain. This may be a sign of a ...

  14. Temporomandibular Joint Disorder

    MedlinePlus

    ... 2008 Previous Next Related Articles: Temporomandibular Joint Disorder (TMD) Are You Biting Off More Than You Can Chew? Equilibration May Lessen TMD Pain Fender-benders: Source of TMD? First Comes ...

  15. Autonomous electrochromic assembly

    DOEpatents

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  16. Firearm trigger assembly

    DOEpatents

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  17. A symptomatic coracoclavicular joint.

    PubMed

    Cheung, T F S; Boerboom, A L; Wolf, R F E; Diercks, R L

    2006-11-01

    Bilateral coracoclavicular joints were found in a 44-year-old male patient following a fall. He had an Indonesian mother and a Dutch father. Prior to the injury he was asymptomatic and had full range of movement in both shoulders but the trauma resulted in pain and limitation of movement in the left shoulder which required resection of the anomalous joint, after which full pain-free movement was restored. PMID:17075101

  18. NASA Research Announcement Phase 2 Final Report for the Development of a Power Assisted Space Suit Glove

    NASA Technical Reports Server (NTRS)

    Lingo, Robert; Cadogan, Dave; Sanner, Rob; Sorenson, Beth

    1997-01-01

    The main goal of this program was to develop an unobtrusive power-assisted EVA glove metacarpalphalangeal (MCP) joint that could provide the crew member with as close to nude body performance as possible, and to demonstrate the technology feasibility of power assisted space suit components in general. The MCP joint was selected due to its being representative of other space suit joints, such as the shoulder, hip and carpometacarpal joint, that would also greatly benefit from this technology. In order to meet this objective, a development team of highly skilled and experienced personnel was assembled. The team consisted of two main entities. The first was comprised of ILC's experienced EVA space suit glove designers, who had the responsibility of designing and fabricating a low torque MCP joint which would be compatible with power assisted technology. The second part of the team consisted of space robotics experts from the University of Maryland's Space Systems Laboratory. This team took on the responsibility of designing and building the robotics aspects of the power-assist system. Both parties addressed final system integration responsibilities.

  19. High pressure ceramic joint

    DOEpatents

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  20. High pressure ceramic joint

    DOEpatents

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  1. Panel Post & Diagonal Brace Joint Detail; Crossbracing Center Joint ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Panel Post & Diagonal Brace Joint Detail; Crossbracing Center Joint Detail; Chord, Panel Post, Tie Bar, & Diagonal Brace Joint Detail; Chord, Tie Bar, & Crossbracing Joint Detail - Medora Bridge, Spanning East Fork of White River at State Route 235, Medora, Jackson County, IN

  2. Protein-mediated assembly of succinate dehydrogenase and its cofactors.

    PubMed

    Van Vranken, Jonathan G; Na, Un; Winge, Dennis R; Rutter, Jared

    2015-01-01

    Succinate dehydrogenase (or complex II; SDH) is a heterotetrameric protein complex that links the tribarboxylic acid cycle with the electron transport chain. SDH is composed of four nuclear-encoded subunits that must translocate independently to the mitochondria and assemble into a mature protein complex embedded in the inner mitochondrial membrane. Recently, it has become clear that failure to assemble functional SDH complexes can result in cancer and neurodegenerative syndromes. The effort to thoroughly elucidate the SDH assembly pathway has resulted in the discovery of four subunit-specific assembly factors that aid in the maturation of individual subunits and support the assembly of the intact complex. This review will focus on these assembly factors and assess the contribution of each factor to the assembly of SDH. Finally, we propose a model of the SDH assembly pathway that incorporates all extant data. PMID:25488574

  3. Protein-mediated assembly of succinate dehydrogenase and its cofactors

    PubMed Central

    Van Vranken, Jonathan G.; Na, Un; Winge, Dennis R.; Rutter, Jared

    2015-01-01

    Succinate dehydrogenase (or Complex II; SDH) is a heterotetrameric protein complex that links the tribarboxylic acid cycle with the electron transport chain. SDH is composed of four nuclear-encoded subunits that must translocate independently to the mitochondria and assemble into a mature protein complex embedded in the inner mitochondrial membrane. Recently, it has become clear that failure to assemble functional SDH complexes can result in cancer and neurodegenerative syndromes. The effort to thoroughly elucidate the SDH assembly pathway has resulted in the discovery of four subunit-specific assembly factors that aid in the maturation of individual subunits and support the assembly of the intact complex. This review will focus on these assembly factors and assess the contribution of each factor to the assembly of SDH. Finally, we propose a model of the SDH assembly pathway that incorporates all extant data. PMID:25488574

  4. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas M. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Askew, Scott R. (Inventor); Valvo, Michael C. (Inventor)

    2013-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  5. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert J., Jr. (Inventor); Hargrave, Brian (Inventor); Askew, Scott R. (Inventor); Valvo, Michael C. (Inventor)

    2014-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  6. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel having the configuration of an assembly having a combustion chamber portion connected to a nozzle portion through a throat portion is wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The width of the tape is positioned at an angle of 30 to 50 deg. to the axis of the mandrel such that one edge of the tape contacts the mandrel while the other edge is spaced from the mandrel. The phenolic in the tape is cured and the end of the wrap is machined to provide a frusto-conical surface extending at an angle of 15 to 30 deg. with respect to the axis of the mandrel for starting a second wrap on the mandrel to cover the throat portion. The remainder of the mandrel is wrapped with a third silica tape having its width positioned at a angle of 5 to 20 deg. from the axis of the mandrel. The resin in the third tape is cured and the assembly is machined to provide a smooth outer surface. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  7. Peptide assembly for nanoscale control of materials

    NASA Astrophysics Data System (ADS)

    Pochan, Darrin

    2011-03-01

    Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic, charged synthetic molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. Design strategies for materials self-assembly based on small (less than 24 amino acids) beta-hairpin peptides will be discussed. Self-assembly of the peptides is predicated on an intramolecular folding event caused by desired solution properties. Importantly, kinetics of self-assembly can be tuned in order to control gelation time. The final gel behaves as a shear thinning, but immediately rehealing, solid that is potentially useful for cell injection therapies. The morphological, and viscoelastic properties of these peptide hydrogels will be discussed. In addition, slight changes in peptide primary sequence can have drastic effects on the self-assembled morphology. Additional sequences will be discussed that do not form hydrogels but rather form nanoscale templates for inorganic material assembly.

  8. Multifunctional self-assembled monolayers

    SciTech Connect

    Zawodzinski, T.; Bar, G.; Rubin, S.; Uribe, F.; Ferrais, J.

    1996-06-01

    This is the final report of at three year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The specific goals of this research project were threefold: to develop multifunctional self-assembled monolayers, to understand the role of monolayer structure on the functioning of such systems, and to apply this knowledge to the development of electrochemical enzyme sensors. An array of molecules that can be used to attach electrochemically active biomolecules to gold surfaces has been synthesized. Several members of a class of electroactive compounds have been characterized and the factors controlling surface modification are beginning to be characterized. Enzymes have been attached to self-assembled molecules arranged on the gold surface, a critical step toward the ultimate goal of this project. Several alternative enzyme attachment strategies to achieve robust enzyme- modified surfaces have been explored. Several means of juxtaposing enzymes and mediators, electroactive compounds through which the enzyme can exchange electrons with the electrode surface, have also been investigated. Finally, the development of sensitive biosensors based on films loaded with nanoscale-supported gold particles that have surface modified with the self-assembled enzyme and mediator have been explored.

  9. Remote controlled vacuum joint closure mechanism

    DOEpatents

    Doll, David W.; Hager, E. Randolph

    1986-01-01

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange.

  10. Programmed Nanomaterial Assemblies in Large Scales: Applications of Synthetic and Genetically- Engineered Peptides to Bridge Nano-Assemblies and Macro-Assemblies

    SciTech Connect

    Matsui, Hiroshi

    2014-09-09

    Work is reported in these areas: Large-scale & reconfigurable 3D structures of precise nanoparticle assemblies in self-assembled collagen peptide grids; Binary QD-Au NP 3D superlattices assembled with collagen-like peptides and energy transfer between QD and Au NP in 3D peptide frameworks; Catalytic peptides discovered by new hydrogel-based combinatorial phage display approach and their enzyme-mimicking 2D assembly; New autonomous motors of metal-organic frameworks (MOFs) powered by reorganization of self-assembled peptides at interfaces; Biomimetic assembly of proteins into microcapsules on oil-in-water droplets with structural reinforcement via biomolecular recognition-based cross-linking of surface peptides; and Biomimetic fabrication of strong freestanding genetically-engineered collagen peptide films reinforced by quantum dot joints. We gained the broad knowledge about biomimetic material assembly from nanoscale to microscale ranges by coassembling peptides and NPs via biomolecular recognition. We discovered: Genetically-engineered collagen-like peptides can be self-assembled with Au NPs to generate 3D superlattices in large volumes (> μm{sup 3}); The assembly of the 3D peptide-Au NP superstructures is dynamic and the interparticle distance changes with assembly time as the reconfiguration of structure is triggered by pH change; QDs/NPs can be assembled with the peptide frameworks to generate 3D superlattices and these QDs/NPs can be electronically coupled for the efficient energy transfer; The controlled assembly of catalytic peptides mimicking the catalytic pocket of enzymes can catalyze chemical reactions with high selectivity; and, For the bacteria-mimicking swimmer fabrication, peptide-MOF superlattices can power translational and propellant motions by the reconfiguration of peptide assembly at the MOF-liquid interface.

  11. [Old age and joint disease].

    PubMed

    d'Harcourt, G; Meignan-Debray, S; Mémin, Y

    1987-01-01

    The seriousness of articular diseases in old persons is related to the loss of function and the rapid way this can lead to them being bed ridden. Rheumatoid polyarthritis is often difficult to distinguish from rhizomelic pseudopolyarthritis, these two diseases resemble each other at this age with the asthenia and loss of general health, the inflammatory pains which are peripheral and of nerve root origin. Among the metabolic arthropathies, articular chondrocalcinosis is frequent, and often latent, but sometimes it is destructive in particular in the hips and knees; septic arthritis today mainly occurs in the elderly, and the algoneurodystrophies are more frequent in old persons than in young subjects, following trauma or a hemiplegia. Arthrosis is obviously the main articular disease of senescence especially involving the joints of the lower limb, hip disease being less incapacitating than knee disease where surgical treatment is less often considered. The arthroses of the upper limbs especially of the shoulder are well tolerated. Osteochondromatosis, osteonecrosis of the internal condyle of the knee, the rapidly destructive arthropathies and hemarthrosis can develop as a complication of a simple arthrosis. In the spine vertebral hyperostosis is especially a disease of the elderly, it can occur alone or with an arthrosis of the posterior vertebral joints, a narrow spinal canal straight or narrowed. Medical treatment, physiotherapy, and finally surgery can give very satisfactory results in an old patient, avoiding loss of function, a miserable existence and becoming bed ridden. PMID:3496925

  12. Flaw Tolerance in Lap Shear Brazed Joints. Part 1

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Li-Qin

    2003-01-01

    Furnace brazing is a joining process used in the aerospace and other industries to produce strong permanent and hermetic structural joints. As in any joining process, brazed joints have various imperfections and defects. At the present time, our understanding of the influence of the internal defects on the strength of the brazed joints is not adequate. The goal of this 3-part investigation is to better understand the properties and failure mechanisms of the brazed joints containing defects. This study focuses on the behavior of the brazed lap shear joints because of their importance in manufacturing aerospace structures. In Part 1, an average shear strength capability and failure modes of the single lap joints are explored. Stainless steel specimens brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the failure loads and the ultimate shear strength with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap widths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. A damage zone criterion is shown to work quite well in understanding the failure of the braze joints. In Part 2, the findings of the Part 1 will be verified on the larger test specimens. Also, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify that behavior of the flawed ductile lap joints is similar to joints with a reduced braze area. Finally, in Part 3, the results obtained in Parts 1 and 2 will be applied to the actual brazed structure to evaluate the load-carrying capability of a structural lap joint containing discontinuities. In addition, a simplified engineering procedure will be offered for the laboratory testing of the lap shear specimens.

  13. High temperature control rod assembly

    DOEpatents

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  14. Space assembly methodology

    NASA Astrophysics Data System (ADS)

    Stokes, J. W.; Watters, H. H.

    1981-02-01

    Large space structure assembly analysis techniques are defined and simulation activities are described. The simulations included are: an extravehicular activity assembly simulation; a fabricated beam assembly series using a beam generating machine end caps, and cross beam brackets; deployment of a deployable truss, using the neutral buoyancy remote manipulator system with crewman assistance; and a series aboard the KC-135 zero g aircraft.

  15. Membrane module assembly

    DOEpatents

    Kaschemekat, Jurgen

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  16. Membrane module assembly

    DOEpatents

    Kaschemekat, J.

    1994-03-15

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  17. Electrical characterization of a Space Station Freedom alpha utility transfer assembly

    NASA Technical Reports Server (NTRS)

    Yenni, Edward J.

    1994-01-01

    Electrical power, command signals and data are transferred across the Space Station Freedom solar alpha rotary joint by roll rings, which are incorporated within the Utility Transfer Assembly (UTA) designed and manufactured by Honeywell Space Systems Operations. A developmental Model of the UTA was tested at the NASA Lewis Research Center using the Power Management and Distribution DC test bed. The objectives of these tests were to obtain data for calibrating system models and to support final design of qualification and flight units. This testing marked the first time the UTA was operated at high power levels and exposed to electrical conditions similar to that which it will encounter on the actual Space Station. Satisfactory UTA system performance was demonstrated within the scope of this testing.

  18. Toward a mechanistic understanding of the damage evolution of SnAgCu solder joints in accelerated thermal cycling test

    NASA Astrophysics Data System (ADS)

    Mahin Shirazi, Sam

    Accelerated thermal cycling (ATC) tests are the most commonly used tests for the thermo-mechanical performance assessment of microelectronics assemblies. Currently used reliability models have failed to incorporate the microstructural dependency of lead free solder joint behavior and its microstructure evolution during cycling. Thus, it is essential to have a mechanistic understanding of the effect of cycling parameters on damage evolution and failure of lead free solder joints in ATC. Recrystallization has been identified as the damage rate controlling mechanism in ATC. Usually it takes 1/3 of life for completion of recrystallization regardless of cycling parameters. Thus, the life of the solder joints can be predicted by estimating global recrystallization. The objective of the first part of the study was to examine whether the damage scenario applies in service is the same as the harsh thermal cycling tests (i.e. 0/100 °C and -40/125 °C) commonly used in industry. Microstructure analysis results on a variety of lead free solder SnAgCu assemblies subjected to the both harsh (0/100 °C) and mild (20/80 °C) ATC confirmed similar failure mechanism under the both testing conditions. Sn grain morphology (interlaced versus beach ball) has a significant effect on the thermo-mechanical performance (and thus the model) of the lead free solder joints. The longer thermal cycling lifetime observed in the interlaced solder joints subjected to the ATC compared to the beach ball structure was correlated to the different initial microstructure and the microstructure evolution during cycling. For the modeling proposes, the present study was focused on Sn-Ag-Cu solder joints with either a single Sn grain or beach ball structure. Microstructural analysis results of the simulated thermal cycling experiment revealed that, the life can be approximated as determined by the accumulation of a certain amount of work during the high temperature dwells. Finally the effect of precipitates

  19. Nonequilibrium structure in sequential assembly

    NASA Astrophysics Data System (ADS)

    Popov, Alexander V.; Craven, Galen T.; Hernandez, Rigoberto

    2015-11-01

    The assembly of monomeric constituents into molecular superstructures through sequential-arrival processes has been simulated and theoretically characterized. When the energetic interactions allow for complete overlap of the particles, the model is equivalent to that of the sequential absorption of soft particles on a surface. In the present work, we consider more general cases by including arbitrary aggregating geometries and varying prescriptions of the connectivity network. The resulting theory accounts for the evolution and final-state configurations through a system of equations governing structural generation. We find that particle geometries differ significantly from those in equilibrium. In particular, variations of structural rigidity and morphology tune particle energetics and result in significant variation in the nonequilibrium distributions of the assembly in comparison to the corresponding equilibrium case.

  20. Sensor mount assemblies and sensor assemblies

    DOEpatents

    Miller, David H.

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  1. Magnetic self-assembly of small parts

    NASA Astrophysics Data System (ADS)

    Shetye, Sheetal B.

    used to characterize part-to-substrate MSA. It is shown that the assembly rate and the yield are most dependent on the rotational symmetry of the magnet pattern. Simultaneous and sequential heterogeneous assembly of two types of parts with selective bonding is also demonstrated, with the average assembly yield of 93% in 60 s and 99% in 3.5 min respectively. Finally, MSA with functional electrical interconnects is also demonstrated with a yield of 90.5%.

  2. Distal radioulnar joint injuries.

    PubMed

    Thomas, Binu P; Sreekanth, Raveendran

    2012-09-01

    Distal radioulnar joint is a trochoid joint relatively new in evolution. Along with proximal radioulnar joint, forearm bones and interosseous membrane, it allows pronosupination and load transmission across the wrist. Injuries around distal radioulnar joint are not uncommon, and are usually associated with distal radius fractures,fractures of the ulnar styloid and with the eponymous Galeazzi or Essex_Lopresti fractures. The injury can be purely involving the soft tissue especially the triangular fibrocartilage or the radioulnar ligaments. The patients usually present with ulnar sided wrist pain, features of instability, or restriction of rotation. Difficulty in carrying loads in the hand is a major constraint for these patients. Thorough clinical examination to localize point of tenderness and appropriate provocative tests help in diagnosis. Radiology and MRI are extremely useful, while arthroscopy is the gold standard for evaluation. The treatment protocols are continuously evolving and range from conservative, arthroscopic to open surgical methods. Isolated dislocation are uncommon. Basal fractures of the ulnar styloid tend to make the joint unstable and may require operative intervention. Chronic instability requires reconstruction of the stabilizing ligaments to avoid onset of arthritis. Prosthetic replacement in arthritis is gaining acceptance in the management of arthritis. PMID:23162140

  3. Dissimilar metals joint evaluation

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.; Apodaca, L. E.

    1974-01-01

    Dissimilar metals tubular joints between 2219-T851 aluminum alloy and 304L stainless steel were fabricated and tested to evaluate bonding processes. Joints were fabricated by four processes: (1) inertia (friction) weldings, where the metals are spun and forced together to create the weld; (2) explosive welding, where the metals are impacted together at high velocity; (3) co-extrusion, where the metals are extruded in contact at high temperature to promote diffusion; and (4) swaging, where residual stresses in the metals after a stretching operation maintain forced contact in mutual shear areas. Fifteen joints of each type were prepared and evaluated in a 6.35 cm (2.50 in.) O.D. size, with 0.32 cm (0.13 in.) wall thickness, and 7.6 cm (3.0 in) total length. The joints were tested to evaluate their ability to withstand pressure cycle, thermal cycle, galvanic corrosion and burst tests. Leakage tests and other non-destructive test techniques were used to evaluate the behavior of the joints, and the microstructure of the bond areas was analyzed.

  4. Low-Friction, High-Stiffness Joint for Uniaxial Load Cell

    NASA Technical Reports Server (NTRS)

    Lewis, James L.; Le, Thang; Carroll, Monty B.

    2007-01-01

    A universal-joint assembly has been devised for transferring axial tension or compression to a load cell. To maximize measurement accuracy, the assembly is required to minimize any moments and non-axial forces on the load cell and to exhibit little or no hysteresis. The requirement to minimize hysteresis translates to a requirement to maximize axial stiffness (including minimizing backlash) and a simultaneous requirement to minimize friction. In practice, these are competing requirements, encountered repeatedly in efforts to design universal joints. Often, universal-joint designs represent compromises between these requirements. The improved universal-joint assembly contains two universal joints, each containing two adjustable pairs of angular-contact ball bearings. One might be tempted to ask why one could not use simple ball-and-socket joints rather than something as complex as universal joints containing adjustable pairs of angularcontact ball bearings. The answer is that ball-and-socket joints do not offer sufficient latitude to trade stiffness versus friction: the inevitable result of an attempt to make such a trade in a ball-and-socket joint is either too much backlash or too much friction. The universal joints are located at opposite ends of an axial subassembly that contains the load cell. The axial subassembly includes an axial shaft, an axial housing, and a fifth adjustable pair of angular-contact ball bearings that allows rotation of the axial housing relative to the shaft. The preload on each pair of angular-contact ball bearings can be adjusted to obtain the required stiffness with minimal friction, tailored for a specific application. The universal joint at each end affords two degrees of freedom, allowing only axial force to reach the load cell regardless of application of moments and non-axial forces. The rotational joint on the axial subassembly affords a fifth degree of freedom, preventing application of a torsion load to the load cell.

  5. Refractory Arthrographis kalrae native knee joint infection

    PubMed Central

    Boan, Peter; Arthur, Ian; Golledge, Clay; Ellis, David

    2012-01-01

    Rare reports of infection with Arthrographis kalrae have often demonstrated a protracted clinical course. We describe refractory infection of the native knee with Arthrographis kalrae after a penetrating injury and Yttrium synovectomy, finally controlled with two stage joint revision and combination antifungal therapy. The paucity of worldwide data about such uncommon invasive fungal infections contributes to the diagnostic and therapeutic challenges of these cases. PMID:24371754

  6. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  7. Periprosthetic joint infection.

    PubMed

    Kapadia, Bhaveen H; Berg, Richard A; Daley, Jacqueline A; Fritz, Jan; Bhave, Anil; Mont, Michael A

    2016-01-23

    Periprosthetic joint infections are a devastating complication after arthroplasty and are associated with substantial patient morbidity. More than 25% of revisions are attributed to these infections, which are expected to increase. The increased prevalence of obesity, diabetes, and other comorbidities are some of the reasons for this increase. Recognition of the challenge of surgical site infections in general, and periprosthetic joint infections particularly, has prompted implementation of enhanced prevention measures preoperatively (glycaemic control, skin decontamination, decolonisation, etc), intraoperatively (ultraclean operative environment, blood conservation, etc), and postoperatively (refined anticoagulation, improved wound dressings, etc). Additionally, indications for surgical management have been refined. In this Review, we assess risk factors, preventive measures, diagnoses, clinical features, and treatment options for prosthetic joint infection. An international consensus meeting about such infections identified the best practices and further research needs. Orthopaedics could benefit from enhanced preventive, diagnostic, and treatment methods. PMID:26135702

  8. Ultra-precision positioning assembly

    DOEpatents

    Montesanti, Richard C.; Locke, Stanley F.; Thompson, Samuel L.

    2002-01-01

    An apparatus and method is disclosed for ultra-precision positioning. A slide base provides a foundational support. A slide plate moves with respect to the slide base along a first geometric axis. Either a ball-screw or a piezoelectric actuator working separate or in conjunction displaces the slide plate with respect to the slide base along the first geometric axis. A linking device directs a primary force vector into a center-line of the ball-screw. The linking device consists of a first link which directs a first portion of the primary force vector to an apex point, located along the center-line of the ball-screw, and a second link for directing a second portion of the primary force vector to the apex point. A set of rails, oriented substantially parallel to the center-line of the ball-screw, direct movement of the slide plate with respect to the slide base along the first geometric axis and are positioned such that the apex point falls within a geometric plane formed by the rails. The slide base, the slide plate, the ball-screw, and the linking device together form a slide assembly. Multiple slide assemblies can be distributed about a platform. In such a configuration, the platform may be raised and lowered, or tipped and tilted by jointly or independently displacing the slide plates.

  9. Telerobotic truss assembly

    NASA Technical Reports Server (NTRS)

    Sheridan, Philip L.

    1987-01-01

    The ACCESS truss was telerobotically assembled in order to gain experience with robotic assembly of hardware designed for astronaut extravehicular (EVA) assembly. Tight alignment constraints of the ACCESS hardware made telerobotic assembly difficult. A wider alignment envelope and a compliant end effector would have reduced the problem. The manipulator had no linear motion capability, but many of the assembly operations required straight line motion. The manipulator was attached to a motion table in order to provide the X, Y, and Z translations needed. A programmable robot with linear translation capability would have eliminated the need for the motion table and streamlined the assembly. Poor depth perception was a major problem. Shaded paint schemes and alignment lines were helpful in reducing this problem. The four cameras used worked well for only some operations. It was not possible to identify camera locations that worked well for all assembly steps. More cameras or movable cameras would have simplified some operations. The audio feedback system was useful.

  10. Reusable Solid Rocket Motor Nozzle Joint-4 Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2001-01-01

    This study provides for development and test verification of a thermal model used for prediction of joint heating environments, structural temperatures and seal erosions in the Space Shuttle Reusable Solid Rocket Motor (RSRM) Nozzle Joint-4. The heating environments are a result of rapid pressurization of the joint free volume assuming a leak path has occurred in the filler material used for assembly gap close out. Combustion gases flow along the leak path from nozzle environment to joint O-ring gland resulting in local heating to the metal housing and erosion of seal materials. Analysis of this condition was based on usage of the NASA Joint Pressurization Routine (JPR) for environment determination and the Systems Improved Numerical Differencing Analyzer (SINDA) for structural temperature prediction. Model generated temperatures, pressures and seal erosions are compared to hot fire test data for several different leak path situations. Investigated in the hot fire test program were nozzle joint-4 O-ring erosion sensitivities to leak path width in both open and confined joint geometries. Model predictions were in generally good agreement with the test data for the confined leak path cases. Worst case flight predictions are provided using the test-calibrated model. Analysis issues are discussed based on model calibration procedures.

  11. Prosthetic Joint Infection

    PubMed Central

    Tande, Aaron J.

    2014-01-01

    SUMMARY Prosthetic joint infection (PJI) is a tremendous burden for individual patients as well as the global health care industry. While a small minority of joint arthroplasties will become infected, appropriate recognition and management are critical to preserve or restore adequate function and prevent excess morbidity. In this review, we describe the reported risk factors for and clinical manifestations of PJI. We discuss the pathogenesis of PJI and the numerous microorganisms that can cause this devastating infection. The recently proposed consensus definitions of PJI and approaches to accurate diagnosis are reviewed in detail. An overview of the treatment and prevention of this challenging condition is provided. PMID:24696437

  12. Development of a machine vision guidance system for automated assembly of space structures

    NASA Technical Reports Server (NTRS)

    Cooper, Eric G.; Sydow, P. Daniel

    1992-01-01

    The topics are presented in viewgraph form and include: automated structural assembly robot vision; machine vision requirements; vision targets and hardware; reflective efficiency; target identification; pose estimation algorithms; triangle constraints; truss node with joint receptacle targets; end-effector mounted camera and light assembly; vision system results from optical bench tests; and future work.

  13. Space Shuttle production verification motor 1 (PV-1) field joint protection system, volume 7

    NASA Technical Reports Server (NTRS)

    Wilkinson, J. P.

    1990-01-01

    The performance of the field joint protection system (FJPS) of the Space Shuttle Production Verification Motor 1 (PV-1), as evaluated by postfire hardware inspection. Compliance with the specifications is shown for the FJPS assembly and components. The simplified FJPS and field joint heaters performed nominally, maintaining all joint seal temperatures within the required range. One anomally was noted on the igniter-to-case joint heater during postfire inspection. The heater buckled off the surface in two areas, resulting in two hot spots on the heater and darkened heater insulation. The condition did not affect heater performance during ignition countdown and all igniter seals were maintained within required temperature limits.

  14. Finding of No Significant Impact and Final Environmental Assessment for the Future Location of Heat Source/Radioisotope Power System Assembly and Testing and Operations Currently Located at the Mound Site

    SciTech Connect

    N /A

    2002-08-30

    The U.S. Department of Energy (the Department) has completed an Environmental Assessment for the Future Location of the Heat Source/Radioisotope Power System Assembly and Test. Operations Currently Located at the Mound Site. Based on the analysis in the environmental assessment, the Department has determined that the proposed action, the relocation of the Department's heat source and radioisotope power system operations, does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the ''National Environmental Policy Act'' of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required, and the Department is issuing this Finding of No Significant Impact (FONSI).

  15. Microfluidic device for the assembly and transport of microparticles

    DOEpatents

    James, Conrad D.; Kumar, Anil; Khusid, Boris; Acrivos, Andreas

    2010-06-29

    A microfluidic device comprising independently addressable arrays of interdigitated electrodes can be used to assembly and transport large-scale microparticle structures. The device and method uses collective phenomena in a negatively polarized suspension exposed to a high-gradient strong ac electric field to assemble the particles into predetermined locations and then transport them collectively to a work area for final assembly by sequentially energizing the electrode arrays.

  16. Programs for Assembling SBH Experiments

    SciTech Connect

    Salbego, David

    1995-11-28

    DB EXP ASSEMBLY is a suite of programs that enable selection of bundles of data, which are referred to as experiments, from the DB SBH archival database. In other words, an experiment is a bundle of data which is analyzed as a unit. Program DBJ creates raw experiments based on initial specification. Program DBK then tests the experiments for a number of consistemcy and completeness criteria, reports bugs in the experiment and recommends solutions, and performs the desired corrections. An experiment that has passed the final DBK test is ready for analysis by the DB DISCOVERY programs.

  17. Programs for Assembling SBH Experiments

    Energy Science and Technology Software Center (ESTSC)

    1995-11-28

    DB EXP ASSEMBLY is a suite of programs that enable selection of bundles of data, which are referred to as experiments, from the DB SBH archival database. In other words, an experiment is a bundle of data which is analyzed as a unit. Program DBJ creates raw experiments based on initial specification. Program DBK then tests the experiments for a number of consistemcy and completeness criteria, reports bugs in the experiment and recommends solutions, andmore » performs the desired corrections. An experiment that has passed the final DBK test is ready for analysis by the DB DISCOVERY programs.« less

  18. Remote controlled vacuum joint closure mechanism

    DOEpatents

    Doll, D.W.; Hager, E.R.

    1984-02-22

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange and maintain the high vacuum seal established by the displacement of the flange assembly and extension of the bellows without displacing the entire duct.

  19. Assembly design system based on engineering connection

    NASA Astrophysics Data System (ADS)

    Yin, Wensheng

    2016-05-01

    An assembly design system is an important part of computer-aided design systems, which are important tools for realizing product concept design. The traditional assembly design system does not record the connection information of production on the engineering layer; consequently, the upstream design idea cannot be fully used in the downstream design. An assembly design model based on the relationship of engineering connection is presented. In this model, all nodes are divided into two categories: The component and the connection. Moreover, the product is constructed on the basis of the connection relationship of the components. The model is an And/Or graph and has the ability to record all assembly schemes. This model records only the connection information that has engineering application value in the product design. In addition, this model can significantly reduce the number of combinations, and is very favorable for the assembly sequence planning in the downstream. The system contains a connection knowledge system that can be mapped to the connection node, and the connection knowledge obtained in practice can be returned to the knowledge system. Finally, VC++ 6.0 is used to develop a prototype system called Connect-based Assembly Planning (CAP). The relationship between the CAP system and the commercial assembly design system is also established.

  20. Deterministic Squeezed States with Joint Measurements and Feedback

    NASA Astrophysics Data System (ADS)

    Greve, Graham P.; Cox, Kevin C.; Wu, Baochen; Thompson, James K.

    2016-05-01

    Joint measurement of many qubits or atoms is a powerful way to create entanglement for precision measurement and quantum information science. However, the random quantum collapse resulting from the joint measurement also leads to randomness in which entangled state is created. We present an experiment in which we apply real-time feedback to eliminate the randomness generated during the joint measurement of 5 ×104 laser-cooled Rb atoms. The feedback effectively steers the quantum state to a desired squeezed state. After feedback, the final state achieves a directly observed phase resolution variance up to 7.4(6) dB below the standard quantum limit for unentangled atoms. The entanglement and improved measurement capability of these states can be realized without retaining knowledge of the joint measurement's outcome, possibly opening new applications for spin squeezed states generated via joint measurement.

  1. Transverse Vibrations of Single Bellows Expansion Joint Restrained Against Rotation

    SciTech Connect

    Kameswara, Rao C.; Radhakrishna, M.

    2002-07-01

    The paper presents the results of investigation of transverse vibrations of single bellows expansion joint restrained against rotation on either end. A theoretical model is developed based on the Bernoulli-Euler beam theory and includes added mass of the fluid flowing inside the pipe-bellow-pipe assembly. Neglecting effects of shear and rotary inertia an exact frequency equation is derived for the transverse vibrations of single bellows expansion joint including the effects of end elastic restraints against rotation. Numerical results are presented for an example bellow showing the effects of variation of elastic restraints and internal pressure on the first four modes of vibration. (authors)

  2. Transverse Vibrations of Double Bellows Expansion Joint Restrained Against Rotation

    SciTech Connect

    Kameswara, Rao C.; Radhakrishna, M.

    2002-07-01

    The paper presents the results of investigation of transverse vibrations of double bellows expansion joint restrained against rotation on either end. A theoretical model is developed based on the Bernoulli-Euler beam theory and includes added mass of the fluid flowing inside the pipe-bellow-pipe assembly. Neglecting effect of shear, an exact frequency equation is derived for the transverse vibrations of double bellows expansion joint including the effects of end elastic restraints against rotation. Numerical results are presented for an example bellow showing the effects of variation of elastic restraints and internal pressure on the first two modes of vibration. (authors)

  3. Equipment for removal of the TMI-2 plenum assembly

    SciTech Connect

    Ales, M W; Connell, J D; DeMars, R V; Nitti, D A

    1984-06-01

    Preliminary examinations have shown that the plenum assembly is distorted and possibly might bind against the dreactor vessel and core support shield as it is lifted. Further, fuel assembly components are stuck to the bottom of the plenum assembly and particulate fuel debris is deposited in the plenum assembly. These conditions require special equipment to free the plenum assembly from the reactor internals, to dislodge suspended fuel assembly remnants and to lift, transfer, and store the plenum assembly in the shallow end of the refueling canal. The special equipment to remove the plenum assembly is being designed and built. This equipment includes an integrated video/communication inspection system; a hydraulic jack system with a 240-ton capacity; specially designed tools to dislodge the end fuel assembly fittings from the plenum assembly; a portable work platform; and final lifting equipment and a transfer contamination barrier that will be used in conjunction with the polar crane to lift and transfer the plenum assembly. Test assemblies necessary to check out the performance of equipment and train personnel are also being provided.

  4. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    SciTech Connect

    Wu Dianliang; Zhu Hongmin

    2010-05-21

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

  5. Modelling the self-assembly of virus capsids

    NASA Astrophysics Data System (ADS)

    Johnston, Iain G.; Louis, Ard A.; Doye, Jonathan P. K.

    2010-03-01

    We use computer simulations to study a model, first proposed by Wales (2005 Phil. Trans. R. Soc. A 363 357), for the reversible and monodisperse self-assembly of simple icosahedral virus capsid structures. The success and efficiency of assembly as a function of thermodynamic and geometric factors can be qualitatively related to the potential energy landscape structure of the assembling system. Even though the model is strongly coarse-grained, it exhibits a number of features also observed in experiments, such as sigmoidal assembly dynamics, hysteresis in capsid formation and numerous kinetic traps. We also investigate the effect of macromolecular crowding on the assembly dynamics. Crowding agents generally reduce capsid yields at optimal conditions for non-crowded assembly, but may increase yields for parameter regimes away from the optimum. Finally, we generalize the model to a larger triangulation number T = 3, and observe assembly dynamics more complex than that seen for the original T = 1 model.

  6. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Dianliang; Zhu, Hongmin

    2010-05-01

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

  7. Genetic variation and the de novo assembly of human genomes

    PubMed Central

    Chaisson, Mark J. P.; Wilson, Richard K.; Eichler, Evan E.

    2016-01-01

    The discovery of genetic variation and the assembly of genome sequences are both inextricably linked to advances in DNA-sequencing technology. Short-read massively parallel sequencing has revolutionized our ability to discover genetic variation but is insufficient to generate high-quality genome assemblies or resolve most structural variation. Full resolution of variation is only guaranteed by complete de novo assembly of a genome. Here, we review approaches to genome assembly, the nature of gaps or missing sequences, and biases in the assembly process. We describe the challenges of generating a complete de novo genome assembly using current technologies and the impact that being able to perfectly sequence the genome would have on understanding human disease and evolution. Finally, we summarize recent technological advances that improve both contiguity and accuracy and emphasize the importance of complete de novo assembly as opposed to read mapping as the primary means to understanding the full range of human genetic variation. PMID:26442640

  8. Whisker Formation on SAC305 Soldered Assemblies

    NASA Astrophysics Data System (ADS)

    Meschter, S.; Snugovsky, P.; Bagheri, Z.; Kosiba, E.; Romansky, M.; Kennedy, J.; Snugovsky, L.; Perovic, D.

    2014-11-01

    This article describes the results of a whisker formation study on SAC305 assemblies, evaluating the effects of lead-frame materials and cleanliness in different environments: low-stress simulated power cycling (50-85°C thermal cycling), thermal shock (-55°C to 85°C), and high temperature/high humidity (85°C/85% RH). Cleaned and contaminated small outline transistors, large leaded quad flat packs (QFP), plastic leaded chip carrier packages, and solder balls with and without rare earth elements (REE) were soldered to custom designed test boards with Sn3Ag0.5Cu (SAC305) solder. After assembly, all the boards were cleaned, and half of them were recontaminated (1.56 µg/cm2 Cl-). Whisker length, diameter, and density were measured. Detailed metallurgical analysis on components before assembly and on solder joints before and after testing was performed. It was found that whiskers grow from solder joint fillets, where the thickness is less than 25 µm, unless REE was present. The influence of lead-frame and solder ball material, microstructure, cleanliness, and environment on whisker characteristics is discussed. This article provides detailed metallurgical observations and select whisker length data obtained during this multiyear testing program.

  9. SP-100 nuclear assembly test: Test assembly functional requirements and system arrangement

    NASA Astrophysics Data System (ADS)

    Fallas, T. Ted; Gluck, Robert; Motwani, Kumar; Clay, Harold; O'Neill, Gerald

    1991-01-01

    This paper describes the functional requirements and the system that will be tested to validate the reactor, flight shield, and flight controller of the SP-100 Generic Flight System (GFS). The Nuclear Assembly Test (NAT) consists of the test article (SP-100 reactor with control devices and the flight shield) and its supporting systems. The NAT test assembly is being designed by GE. Westinghouse Hanford Company (WHC) is designing the test cell and vacuum vessel system that will contain the NAT test assembly (Renkey et al. 1989). Preliminary design reviews have been completed and the final design is under way.

  10. Flux distributions in jointed ? tapes

    NASA Astrophysics Data System (ADS)

    Koblischka, M. R.; Johansen, T. H.; Bratsberg, H.; Vase, P.

    1998-06-01

    Superconducting joints between monofilamentary, Ag-sheathed 0953-2048/11/6/005/img8 tapes were investigated by means of magneto-optic imaging. Two types of joint were studied; one joint with direct contact between the tape cores, and the other one with an Ag layer between them. The local flux distributions directly reveal the obstacles hindering the current flow through the joints. The direct contact of the tape cores provides joints which can carry about 80% of the current of the original tape, whereas the joints with the Ag layer are considerably worse. This difference becomes even more drastic in applied magnetic fields.

  11. First metatarsophalangeal joint arthrodesis.

    PubMed

    Yu, Gerard V; Gorby, Paul O

    2004-01-01

    First MTP joint arthrodesis continues to be a time-honored, effective, and valuable procedure as a primary or secondary surgery for various pathologies afflicting the first ray segment. Though commonly thought of as a salvage procedure, it has proven beneficial in the management of primary hallux limitus and rigidus, geriatric hallux valgus deformity, severe arthritis of any etiology, and conditions in which joint instability or deformity are not readily correctable by more traditional approaches. Since its initial description in the 1800s, the procedure has continued to be popular among orthopedic and podiatric surgeons. Success of the procedure is highly dependent on the position of fusion. Though surgeons are often fascinated and at times obsessed with a particular fixation technique, it cannot be over-emphasized that this takes a back seat to the importance of achieving proper position to meet the needs of an individual patient. Unlike joint resection or implant arthroplasty procedures, which commonly leave the hallux lacking stability and propulsion, first MPJ fusion has been shown to be effective during weight bearing and propulsion. The success enjoyed by the senior author continues to reinforce that motion is not necessary at the first MTP joint for good, pain-free function. PMID:15012033

  12. Human temporomandibular joint morphogenesis.

    PubMed

    Carini, Francesco; Scardina, Giuseppe Alessandro; Caradonna, Carola; Messina, Pietro; Valenza, Vincenzo

    2007-01-01

    Temporomandibular joint morphogenesis was studied. Ranging in age of fetuses examined was from 6 to14 weeks' gestation. Our results showed the condyle so first element that appear between 6 degrees and 8 degrees week (condylar blastema). After a week appear temporal elements. Disk appear at the same time of glenoid blastema and it reaches an advanced differentation before of the condyle and temporal element, so these don't effect machanical compression on mesenchyma where we find the disk. So we think that the disk result of genetic expression and it isn't the result of mechanical compression. The inferior joint cavity appear to 12 week. The superior joint cavity appear to 13-14 week. In conclusion, the appearance of the condyle is the first event during TMJ morphogenesis, with its initial bud, in form of a mesenchymal thickening, becoming detectable between the sixth and eight week of development, when all the large joints of the limbs are already well defined. PMID:18333411

  13. Imaging the temporomandibular joint

    SciTech Connect

    Katzberg, R.W.; Manzione, J.V.; Westesson, P.L.

    1988-01-01

    This book encompasses all imaging modalities as they apply to the Temporomandibular Joint and its disorders. The volume employs correlative line drawings to elaborate on diagnostic images. It helps teach methods of TMJ imaging and describes findings identified by different imaging modalities to both radiologists and dental clinicians.

  14. Stud Reinforcement in Beam-Column Joints under Seismic Loads

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hatem Hassan Ali

    Current codes recommend large amounts of shear reinforcement for reinforced concrete beam-column joints causing significant congestion. This research aims at investigating experimentally and numerically the efficiency of using studs with a head at each end in lieu of conventional closed hoops in reinforced concrete beam-column joints. The proposed reinforcement reduces congestion and ensures easier assembly of the reinforcing cage, saving labour cost and enhancing performance of the joint. Based on this research, a recommended arrangement and detailing of headed studs and their design for exterior beam-column joint are presented. The experimental investigation consisted of testing ten full-scale beam-column joint specimens under quasi-static cyclic loading. The specimens represented an exterior beam-column joint subassembly isolated at the points of contra-flexure from a typical multi-storey, multi-bay reinforced concrete frame. A test setup was developed to simulate the lateral inter-storey drift. The test parameters included: the type, arrangement and amount of shear reinforcement, the load history and rate of loading, and the amount of reinforcement for out-of-plane confinement of the joint. Envelopes of the hysteretic behaviour of the specimens and the joint deformation under shear stress are presented. The stiffness degradation, the strain levels in the joint reinforcement, the contribution of joint, beam, and column to the inter-storey drift, and the energy dissipation were compared. All the test specimens reinforced with headed studs in the joint achieved considerable enhancement in their behaviour under cyclic loads and exhibited a performance close to that of a joint reinforced with closed hoops and cross ties according to the code. All the specimens with adequate out-of-plane confinement had an equivalent behaviour compared with the code-based specimen and achieved a desirable mode of failure. Use of double-headed studs proved to be a viable option for

  15. New Joint Sealants. Criteria, Design and Materials.

    ERIC Educational Resources Information Center

    Building Research Inst., Inc., Washington, DC.

    Contents include--(1) sealing concrete joints, (2) sealing glass and metal joints, (3) metal and glass joint sealants from a fabricator's viewpoint, (4) a theory of adhesion for joint sealants, (5) geometry of simple joint seals under strain, (6) joint sealant specifications from a manufacturer's viewpoint, (7) joint sealant requirements from an…

  16. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly

    PubMed Central

    Moore, Tyler G.; Garzon, Max H.; Deaton, Russell J.

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are “strong” assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly

  17. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly.

    PubMed

    Moore, Tyler G; Garzon, Max H; Deaton, Russell J

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are "strong" assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly systems

  18. Reconstitutable control assembly having removable control rods with detachable split upper end plugs

    SciTech Connect

    Gjertsen, R.K.; Knott, R.P.; Sparrow, J.A.

    1989-12-19

    This patent describes, in a reconstitutable control assembly for use with a nuclear fuel assembly, the control assembly including a spider structure and at least one control rod, an attachment joint for detachable fastening the control rod to the spider structure. The attachment joint comprising: a hollow connecting finger on the spider structure; and an elongated detachable split upper end plug on the control rod having a pair of separate upper and lower plug portions, the upper plug portion having integrally-connected tandemly- arranged upper, middle and lower sections. The lower plug portion having integrally-connected tandemly-arranged upper, middle and lower segments.

  19. Wind turbine rotor assembly

    SciTech Connect

    Kaiser, H. W.

    1984-11-20

    A vertical axis wind turbine having a horizontal arm member which supports an upright blade assembly. Bearing structure coupling the blade assembly to the turbine arm permits blade movement about its longitudinal axis as well as flexing motion of the blade assembly about axes perpendicular to the longitudinal axis. A latching mechanism automatically locks the blade assembly to its supporting arm during normal turbine operation and automatically unlocks same when the turbine is at rest. For overspeed prevention, a centrifugally actuated arm functions to unlatch the blade assembly permitting same to slipstream or feather into the wind. Manually actuated means are also provided for unlatching the moving blade assembly. The turbine arm additionally carries a switching mechanism in circuit with a turbine generator with said mechanism functioning to open and hence protect the generator circuit in the event of an overspeed condition of the turbine.

  20. Automated solar module assembly line

    NASA Technical Reports Server (NTRS)

    Bycer, M.

    1980-01-01

    The solar module assembly machine which Kulicke and Soffa delivered under this contract is a cell tabbing and stringing machine, and capable of handling a variety of cells and assembling strings up to 4 feet long which then can be placed into a module array up to 2 feet by 4 feet in a series of parallel arrangement, and in a straight or interdigitated array format. The machine cycle is 5 seconds per solar cell. This machine is primarily adapted to 3 inch diameter round cells with two tabs between cells. Pulsed heat is used as the bond technique for solar cell interconnects. The solar module assembly machine unloads solar cells from a cassette, automatically orients them, applies flux and solders interconnect ribbons onto the cells. It then inverts the tabbed cells, connects them into cell strings, and delivers them into a module array format using a track mounted vacuum lance, from which they are taken to test and cleaning benches prior to final encapsulation into finished solar modules. Throughout the machine the solar cell is handled very carefully, and any contact with the collector side of the cell is avoided or minimized.

  1. Shoulder Joint For Protective Suit

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Smallcombe, Richard D.

    1994-01-01

    Shoulder joint allows full range of natural motion: wearer senses little or no resisting force or torque. Developed for space suit, joint offers advantages in protective garments for underwater work, firefighting, or cleanup of hazardous materials.

  2. Composite turbine bucket assembly

    DOEpatents

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  3. Cellular Pressure-Actuated Joint

    NASA Technical Reports Server (NTRS)

    McGuire, John R.

    2003-01-01

    A modification of a pressure-actuated joint has been proposed to improve its pressure actuation in such a manner as to reduce the potential for leakage of the pressurizing fluid. The specific joint for which the modification is proposed is a field joint in a reusable solid-fuel rocket motor (RSRM), in which the pressurizing fluid is a mixture of hot combustion gases. The proposed modification could also be applicable to other pressure-actuated joints of similar configuration.

  4. Cooperative synchronized assemblies enhance orientation discrimination

    PubMed Central

    Samonds, Jason M.; Allison, John D.; Brown, Heather A.; Bonds, A. B.

    2004-01-01

    There is no clear link between the broad tuning of single neurons and the fine behavioral capabilities of orientation discrimination. We recorded from populations of cells in the cat visual cortex (area 17) to examine whether the joint activity of cells can support finer discrimination than found in individual responses. Analysis of joint firing yields a substantial advantage (i.e., cooperation) in fine-angle discrimination. This cooperation increases to more considerable levels as the population of an assembly is increased. The cooperation in a population of six cells provides encoding of orientation with an information advantage that is at least 2-fold in terms of requiring either fewer cells or less time than independent coding. This cooperation suggests that correlated or synchronized activity can increase information. PMID:15096595

  5. Strategies for joint geophysical survey design

    NASA Astrophysics Data System (ADS)

    Shakas, Alexis; Maurer, Hansruedi

    2015-04-01

    In recent years, the use of multiple geophysical techniques to image the subsurface has become a popular option. Joint inversions of geophysical datasets are based on the assumption that the spatial variations of the different physical subsurface parameters exhibit structural similarities. In this work, we combine the benefits of joint inversions of geophysical datasets with recent innovations in optimized experimental design. These techniques maximize the data information content while minimizing the data acquisition costs. Experimental design has been used in geophysics over the last twenty years, but it has never been attempted to combine various geophysical imaging methods. We combine direct current geoelectrics, magnetotellurics and seismic refraction travel time tomography data to resolve synthetic 1D layered Earth models. An initial model for the subsurface structure can be taken from a priori geological information and an optimal joint geophysical survey can be designed around the initial model. Another typical scenario includes an existing data set from a past survey and a subsequent survey that is planned to optimally complement the existing data. Our results demonstrate that the joint design methodology provides optimized combinations of data sets that include only a few data points. Nevertheless, they allow constraining the subsurface models equally well as data from a densely sampled survey. Furthermore, we examine the dependency of optimized survey design on the a priori model assumptions. Finally, we apply the methodology to geoelectric and seismic field data collected along 2D profiles.

  6. Some logical functions of joint control.

    PubMed Central

    Lowenkron, B

    1998-01-01

    Constructing a behavioral account of the language-related performances that characterize responding to logical and symbolic relations between stimuli is commonly viewed as a problem for the area of stimulus control. In response to this problem, the notion of joint control is presented here, and its ability to provide an interpretative account of these kinds of performances is explored. Joint control occurs when the currently rehearsed topography of a verbal operant, as evoked by one stimulus, is simultaneously evoked by another stimulus. This event, the onset of joint stimulus control by two stimuli over a common response topography, then sets the occasion for a response appropriate to this special relation between the stimuli. Although the mechanism described is simple, it seems to have broad explanatory properties. In what follows, these properties are applied to provide a behavioral interpretation of two sorts of fundamental, putatively cognitive, performances: those based on logical relations and those based on semantic relations. The first includes responding to generalized conceptual relations such as identity, order, relative size, distance, and orientation. The second includes responding to relations usually ascribed to word meaning. These include relations between words and objects, the specification of objects by words, name-object bidirectionality, and the recognition of objects from their description. Finally, as a preview of some further possibilities, the role of joint control in goal-oriented behavior is considered briefly. PMID:9599452

  7. Simultaneous Volar Dislocation of Distal Interphalangeal Joint and Volar Fracture-Subluxation of Proximal Interphalangeal Joint of Little Finger: A New Mechanism of Injury.

    PubMed

    Mozaffarian, Kamran; Bayatpour, Abdollah; Vosoughi, Amir Reza

    2016-10-01

    Simultaneous volar dislocation of distal interphalangeal (DIP) joint and volar fracture-subluxation of proximal interphalangeal (PIP) joint of the same finger has not been reported yet. A 19-year-old man was referred due to pain on the deformed left little finger after a ball injury. Radiographs showed volar dislocation of the DIP joint and dorsal lip fracture of the middle phalanx with volar subluxation of PIP joint of the little finger. This case was unique in terms of the mechanism of injury which was hyperflexion type in two adjacent joints of the same finger. The patient was treated by closed reduction of DIP joint dislocation and open reduction and internal fixation of the PIP joint fracture-subluxation and application of dorsal external fixator due to instability. Finally, full flexion of the PIP joint and full extension of the DIP joint were obtained but with 10 degree extension lag at the PIP joint and DIP joint flexion ranging from 0 degree to 30 degrees. Some loss of motion in small joints of the fingers after hyperflexion injuries should be expected. PMID:27595966

  8. Reusable Solid Rocket Motor Nozzle Joint 5 Redesign

    NASA Technical Reports Server (NTRS)

    Lui, R. C.; Stratton, T. C.; LaMont, D. T.

    2003-01-01

    Torque tension testing of a newly designed Reusable Solid Rocket Motor nozzle bolted assembly was successfully completed. Test results showed that the 3-sigma preload variation was as expected at the required input torque level and the preload relaxation were within the engineering limits. A shim installation technique was demonstrated as a simple process to fill a shear lip gap between nozzle housings in the joint region. A new automated torque system was successfully demonstrated in this test. This torque control tool was found to be very precise and accurate. The bolted assembly performance was further evaluated using the Nozzle Structural Test Bed. Both current socket head cap screw and proposed multiphase alloy bolt configurations were tested. Results indicated that joint skip and bolt bending were significantly reduced with the new multiphase alloy bolt design. This paper summarizes all the test results completed to date.

  9. Achieving joint benefits from joint implementation

    SciTech Connect

    Moomaw, W.R.

    1995-11-01

    Joint Implementation (JI) appears to have been born with Applied Energy Services Guatemala project in 1988. That project, to plant 52 million trees, protect existing forests from cutting and fire, and enhance rural development, is being implemented by CARE Guatemala to offset 120 per cent of the emissions of a small coal burning power plant that has been built in Connecticut. Since that time, several utilities and governments have initiated additional projects. Not all of these necessarily consist of tree planting in other countries, but may consist of energy efficiency or energy conservation programs designed to reduce carbon emissions by at least as much as the additional releases from a new facility. All JI projects share the characteristic of linking the release of greenhouse gases in an industrial country with an offset that reduces or absorbs a comparable amount in another country. The emitter in the industrial country is willing to pay for the reduction elsewhere because costs are less than they would be at home.

  10. Swivel Joint For Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  11. Double slotted socket spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2001-05-22

    A new class of spherical joints is disclosed. These spherical joints are capable of extremely large angular displacements (full cone angles in excess of 270.degree.), while exhibiting no singularities or dead spots in their range of motion. These joints can improve or simplify a wide range of mechanical devices.

  12. Method for reinforcing tubing joints

    NASA Technical Reports Server (NTRS)

    Kinzler, J.; Lee, W. S.

    1968-01-01

    Joint repair technique uses a longitudinally split aluminum shield over the joint ferrule and immediately adjacent tubing to reseal or reinforce leaking or weak joints in small tubing. Epoxy resin coating on inside surfaces of the two shield halves provides a tightly sealed bond between shield and tubing.

  13. Phase 1 Program Joint Report

    NASA Technical Reports Server (NTRS)

    Nield, George C. (Editor); Vorobiev, Pavel Mikhailovich (Editor)

    1999-01-01

    This report consists of inputs from each of the Phase I Program Joint Working Groups. The Working Groups were tasked to describe the organizational structure and work processes that they used during the program, joint accomplishments, lessons learned, and applications to the International Space Station Program. This report is a top-level joint reference document that contains information of interest to both countries.

  14. Joint hypermobility syndrome pain.

    PubMed

    Grahame, Rodney

    2009-12-01

    Joint hypermobility syndrome (JHS) was initially defined as the occurrence of musculoskeletal symptoms in the presence of joint laxity and hypermobility in otherwise healthy individuals. It is now perceived as a commonly overlooked, underdiagnosed, multifaceted, and multisystemic heritable disorder of connective tissue (HDCT), which shares many of the phenotypic features of other HDCTs such as Marfan syndrome and Ehlers-Danlos syndrome. Whereas the additional flexibility can confer benefits in terms of mobility and agility, adverse effects of tissue laxity and fragility can give rise to clinical consequences that resonate far beyond the confines of the musculoskeletal system. There is hardly a clinical specialty to be found that is not touched in one way or another by JHS. Over the past decade, it has become evident that of all the complications that may arise in JHS, chronic pain is arguably the most menacing and difficult to treat. PMID:19889283

  15. Integrated automation for manufacturing of electronic assemblies

    NASA Technical Reports Server (NTRS)

    Sampite, T. Joseph

    1991-01-01

    Since 1985, the Naval Ocean Systems Center has been identifying and developing needed technology for flexible manufacturing of hybrid microelectronic assemblies. Specific projects have been accomplished through contracts with manufacturing companies, equipment suppliers, and joint efforts with other government agencies. The resulting technology has been shared through semi-annual meetings with government, industry, and academic representatives who form an ad hoc advisory panel. More than 70 major technical capabilities have been identified for which new development is needed. Several of these developments have been completed and are being shared with industry.

  16. Analysis of minor fractures associated with joints and faulted joints

    NASA Astrophysics Data System (ADS)

    Cruikshank, Kenneth M.; Zhao, Guozhu; Johnson, Arvid M.

    In this paper, we use fracture mechanics to interpret conditions responsible for secondary cracks that adorn joints and faulted joints in the Entrada Sandstone in Arches National Park, U.S.A. Because the joints in most places accommodated shearing offsets of a few mm to perhaps 1 dm, and thus became faulted joints, some of the minor cracks are due to faulting. However, in a few places where the shearing was zero, one can examine minor cracks due solely to interaction of joint segments at the time they formed. We recognize several types of minor cracks associated with subsequent faulting of the joints. One is the kink, a crack that occurs at the termination of a straight joint and whose trend is abruptly different from that of the joint. Kinks are common and should be studied because they contain a great deal of information about conditions during fracturing. The sense of kinking indicates the sense of shear during faulting: a kink that turns clockwise with respect to the direction of the main joint is a result of right-lateral shear, and a kink that turns counterclockwise is a result of left-lateral shear. Furthermore, the kink angle is related to the ratio of the shear stress responsible for the kinking to the normal stress responsible for the opening of the joint. The amount of opening of a joint at the time it faulted or even at the time the joint itself formed can be estimated by measuring the kink angle and the amount of strike-slip at some point along the faulted joint. Other fractures that form near terminations of pre-existing joints in response to shearing along the joint are horsetail fractures. Similar short fractures can occur anywhere along the length of the joints. The primary value in recognizing these fractures is that they indicate the sense of faulting accommodated by the host fracture and the direction of maximum tension. Even where there has been insignificant regional shearing in the Garden Area, the joints can have ornate terminations. Perhaps

  17. Trailer shield assembly for a welding torch

    NASA Technical Reports Server (NTRS)

    Dyer, Gerald E. (Inventor)

    1989-01-01

    This invention relates generally to trailer shields for gas shielded arc welding torches, and more particularly to a trailer shield assembly provided with a shield gas manifold for providing an even dispersion of shield gas to the interior of the shield assembly, which generally encloses a joint being welded and a welding trailing portion of hot welded metal. The novelty of the invention lies in providing trailer shield with a manifold tube having a plurality of openings from which shield gas is distributed. A gas manifold region ahead of the torch is also provided with shield gas from a tube to protect metal preheated by the torch. Further novelty lies in constructing portions of sides and housing and portions of side walls of the guide of stainless steel screen having a tight mesh.

  18. Structural testing of the North Wind 250 composite rotor joint

    SciTech Connect

    Musial, W; Link, H; Coleman, C

    1994-05-01

    The North Wind 250 wind turbine is under development at Northern Power Systems (NPS) in Moretown, VT. The turbine uses a unique, flow-through, teetered-rotor design. This design eliminates structural discontinuities at the blade/hub interface by fabricating the rotor as one continuous structural element. To accomplish this, the two blade spars are joined at the center of the rotor using a proprietary bonding technique. Fatigue tests were conducted on the full-scale rotor joint at the National Renewable Energy Laboratory (NREL). Subsequent tests are now underway to test the full-scale rotor and hub assembly to verify the design assumptions. The test articles were mounted in dedicated test fixtures. For the joint test, a constant moment was generated across the joint and parent material. Hydraulic actuators applied sinusoidal loading to the test article at levels equivalent to 90% of the extreme wind load for over one million cycles. When the loading was increased to 112% of the extreme wind load, the joint failed by buckling. Strain levels were monitored at 14 locations inside and outside of the blade joint during the test. The tests were used to qualify this critical element of the rotor for field testing and to provide information needed to improve the structural design of the joint.

  19. Progressive Damage Modeling of Durable Bonded Joint Technology

    NASA Technical Reports Server (NTRS)

    Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.

  20. Optimized bolted joint

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.; Bunin, B. L.; Watts, D. J. (Inventor)

    1986-01-01

    A method is disclosed for joining segments of the skin of an aircraft. The ends of the skin are positioned in close proximity or abutt each other. The skin is of constant thickness throughout the joint and is sandwiched between splice plates, which taper in thickness from the last to the first bolt rows in order to reduce the stiffness of the splice plate and thereby reduce the load transfer at the location where bypass loads are the highest.

  1. Temporomandibular joint dislocation.

    PubMed

    Sharma, Naresh Kumar; Singh, Akhilesh Kumar; Pandey, Arun; Verma, Vishal; Singh, Shreya

    2015-01-01

    Temporomandibular joint (TMJ) dislocation is an uncommon but debilitating condition of the facial skeleton. The condition may be acute or chronic. Acute TMJ dislocation is common in clinical practice and can be managed easily with manual reduction. Chronic recurrent TMJ dislocation is a challenging situation to manage. In this article, we discuss the comprehensive review of the different treatment modalities in managing TMJ dislocation. PMID:26668447

  2. Temporomandibular joint dislocation

    PubMed Central

    Sharma, Naresh Kumar; Singh, Akhilesh Kumar; Pandey, Arun; Verma, Vishal; Singh, Shreya

    2015-01-01

    Temporomandibular joint (TMJ) dislocation is an uncommon but debilitating condition of the facial skeleton. The condition may be acute or chronic. Acute TMJ dislocation is common in clinical practice and can be managed easily with manual reduction. Chronic recurrent TMJ dislocation is a challenging situation to manage. In this article, we discuss the comprehensive review of the different treatment modalities in managing TMJ dislocation. PMID:26668447

  3. Assessing De Novo transcriptome assembly metrics for consistency and utility

    PubMed Central

    2013-01-01

    Background Transcriptome sequencing and assembly represent a great resource for the study of non-model species, and many metrics have been used to evaluate and compare these assemblies. Unfortunately, it is still unclear which of these metrics accurately reflect assembly quality. Results We simulated sequencing transcripts of Drosophila melanogaster. By assembling these simulated reads using both a “perfect” and a modern transcriptome assembler while varying read length and sequencing depth, we evaluated quality metrics to determine whether they 1) revealed perfect assemblies to be of higher quality, and 2) revealed perfect assemblies to be more complete as data quantity increased. Several commonly used metrics were not consistent with these expectations, including average contig coverage and length, though they became consistent when singletons were included in the analysis. We found several annotation-based metrics to be consistent and informative, including contig reciprocal best hit count and contig unique annotation count. Finally, we evaluated a number of novel metrics such as reverse annotation count, contig collapse factor, and the ortholog hit ratio, discovering that each assess assembly quality in unique ways. Conclusions Although much attention has been given to transcriptome assembly, little research has focused on determining how best to evaluate assemblies, particularly in light of the variety of options available for read length and sequencing depth. Our results provide an important review of these metrics and give researchers tools to produce the highest quality transcriptome assemblies. PMID:23837739

  4. The neuropathic joint.

    PubMed

    Sequeira, W

    1994-01-01

    Neuropathic arthritis is a destructive arthropathy frequently associated with loss of proprioception. A third of patients, however, may have no demonstrable neurological deficit. Patients with diabetes, syphilis, syringomyelia and other neuropathies are particularly prone to developing this joint disease. The diagnosis of Charcot's joints should be considered in anyone who develops what appears to be a severe osteoarthritis or a transverse fracture of the tibia or fibula after minor trauma. Scoliosis with particularly destructive changes on radiography should prompt a search for syringomyelia or syphilis. The most common radiographic abnormalities are those of distension in 3D (Dislocation, Destruction and Degeneration). An atrophic form with resorption of the proximal humerus, most frequently described in syringomyelia, has been observed in diabetes. Loss of the distal end of the clavicle has not been described before in the neuropathies. These changes coupled with speckled calcification or shards of bone in the periarticular soft tissue confirm the diagnosis. Infection and CPPD crystal disease can be difficult to exclude. The joint fluid may be inflammatory and infection may be a complication. Treatment includes anti-inflammatories and splinting. Indications for surgery are limited. PMID:8070170

  5. Formation of tough composite joints

    SciTech Connect

    Brun, M.K.

    1997-05-01

    Joints which exhibit tough fracture behavior were formed in a composite with a Si/SiC matrix reinforced with Textron SCS-6 fibers with either boron nitride or silicon nitride fiber coatings. In composites with BN coatings fibers were aligned uniaxially, while composites with Si{sub 3}N{sub 4}-coated fibers had a 0/90{degree} architecture. Lapped joints (joints with overlapping fingers) were necessary to obtain tough behavior. Geometrical requirements necessary to avoid brittle joint failure have been proposed. Joints with a simple overlap geometry (only a few fingers) would have to be very long in order to prevent brittle failure. Typical failure in these joints is caused by a crack propagating along the interfaces between the joint fingers. Joints of the same overall length, but with geometry changed to be symmetric about the joint centerline and with an extra shear surface exhibited tough fractures accompanied with extensive fiber pullout. The initial matrix cracking of these joints was relatively low because cracks propagated easily through the ends of the fingers. Joints with an optimized stepped sawtooth geometry produced composite-like failures with the stress/strain curves containing an elastic region followed by a region of rising stress with an increase of strain. Increasing the fiber/matrix interfacial strength from 9 to 25 MPa, by changing the fiber coating, increased matrix cracking and ultimate strength of the composite significantly. The best joints had matrix cracking stress and ultimate strength of 138 and 240 MPa, respectively. Joint failure was preceded by multiple matrix cracking in the entire composite. The high strength of the joints will permit building of structures containing joints with only a minor reduction of design stresses.

  6. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  7. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  8. Turbine disc sealing assembly

    DOEpatents

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  9. High speed door assembly

    DOEpatents

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  10. High speed door assembly

    DOEpatents

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  11. Permanent magnet assembly

    DOEpatents

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  12. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.

  13. NIF Target Assembly Metrology Methodology and Results

    SciTech Connect

    Alger, E. T.; Kroll, J.; Dzenitis, E. G.; Montesanti, R.; Hughes, J.; Swisher, M.; Taylor, J.; Segraves, K.; Lord, D. M.; Reynolds, J.; Castro, C.; Edwards, G.

    2011-01-01

    During our inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) we require cryogenic targets at the 1-cm scale to be fabricated, assembled, and metrologized to micron-level tolerances. During assembly of these ICF targets, there are physical dimensmetrology is completed using optical coordinate measurement machines that provide repeatable measurements with micron precision, while also allowing in-process data collection for absolute accuracy in assembly. To date, 51 targets have been assembled and metrologized, and 34 targets have been successfully fielded on NIF relying on these metrology data. In the near future, ignition experiments on NIF will require tighter tolerances and more demanding target assembly and metrology capability. Metrology methods, calculations, and uncertainty estimates will be discussed. Target diagnostic port alignment, target position, and capsule location results will be reviewed for the 2009 Energetics Campaign. The information is presented via control charts showing the effect of process improvements that were made during target production. Certain parameters, including capsule position, met the 2009 campaign specifications but will have much tighter requirements in the future. Finally, in order to meet these new requirements assembly process changes and metrology capability upgrades will be necessary.

  14. Assembly: a resource for assembled genomes at NCBI.

    PubMed

    Kitts, Paul A; Church, Deanna M; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D; Pruitt, Kim D; Kimchi, Avi

    2016-01-01

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580

  15. Assembly: a resource for assembled genomes at NCBI

    PubMed Central

    Kitts, Paul A.; Church, Deanna M.; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G.; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D.; Pruitt, Kim D.; Kimchi, Avi

    2016-01-01

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580

  16. Special test equipment and fixturing for MSAT reflector assembly alignment

    NASA Technical Reports Server (NTRS)

    Young, Jeffrey A.; Zinn, Michael R.; Mccarten, David R.

    1994-01-01

    The MSAT Reflector Assembly is a state of the art subsystem for Mobile Satellite (MSAT), a geosynchronous-based commercial mobile telecommunication satellite program serving North America. The Reflector Assembly consisted of a deployable, three-hinge, folding-segment Boom, deployable 5.7 x 5.3-meter 16-rib Wrap-Rib Reflector, and a Reflector Pointing Mechanism (RPM). The MSAT spacecraft was based on a Hughes HS601 spacecraft bus carrying two Reflector Assemblies independently dedicated for L-band transmit and receive operations. Lockheed Missiles and Space Company (LMSC) designed and built the Reflector Assembly for MSAT under contract to SPAR Aerospace Ltd. Two MSAT satellites were built jointly by SPAR Aerospace Ltd. and Hughes Space and Communications Co. for this program, the first scheduled for launch in 1994. When scaled for wavelength, the assembly and alignment requirements for the Reflector Assembly were in many instances equivalent to or exceeded that of a diffraction-limited visible light optical system. Combined with logistical constraints inherent to large, compliant, lightweight structures; 'bolt-on' alignment; and remote, indirect spacecraft access; the technical challenges were formidable. This document describes the alignment methods, the special test equipment, and fixturing for Reflector Assembly assembly and alignment.

  17. Mechanisms of Virus Assembly

    PubMed Central

    Perlmutter, Jason D.; Hagan, Michael F.

    2015-01-01

    Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid, and in some cases surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assembles within their host cells and in vitro. We describe the thermodynamics and kinetics for assembly of protein subunits into icosahedral capsid shells, and how these are modified in cases where the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques that have been used to characterize capsid assembly, and we highlight aspects of virus assembly which are likely to receive significant attention in the near future. PMID:25532951

  18. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  19. Constrained space camera assembly

    DOEpatents

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  20. Automated assembly in space

    NASA Technical Reports Server (NTRS)

    Srivastava, Sandanand; Dwivedi, Suren N.; Soon, Toh Teck; Bandi, Reddy; Banerjee, Soumen; Hughes, Cecilia

    1989-01-01

    The installation of robots and their use of assembly in space will create an exciting and promising future for the U.S. Space Program. The concept of assembly in space is very complicated and error prone and it is not possible unless the various parts and modules are suitably designed for automation. Certain guidelines are developed for part designing and for an easy precision assembly. Major design problems associated with automated assembly are considered and solutions to resolve these problems are evaluated in the guidelines format. Methods for gripping and methods for part feeding are developed with regard to the absence of gravity in space. The guidelines for part orientation, adjustments, compliances and various assembly construction are discussed. Design modifications of various fasteners and fastening methods are also investigated.

  1. Improved high-temperature gimbal joint

    NASA Technical Reports Server (NTRS)

    Winemiller, J. R.; Yee, S. T.; Neal, B. H.

    1972-01-01

    Development and characteristics of bellows gimbal joint for reduction of thermal stress effects are discussed. Reactions of designed joint to changes in temperature are described. Illustrations of conventional gimbal joint and improved gimbal joint are provided.

  2. From self-assembled vesicles to protocells.

    PubMed

    Chen, Irene A; Walde, Peter

    2010-07-01

    Self-assembled vesicles are essential components of primitive cells. We review the importance of vesicles during the origins of life, fundamental thermodynamics and kinetics of self-assembly, and experimental models of simple vesicles, focusing on prebiotically plausible fatty acids and their derivatives. We review recent work on interactions of simple vesicles with RNA and other studies of the transition from vesicles to protocells. Finally we discuss current challenges in understanding the biophysics of protocells, as well as conceptual questions in information transmission and self-replication. PMID:20519344

  3. From Self-Assembled Vesicles to Protocells

    PubMed Central

    Chen, Irene A.; Walde, Peter

    2010-01-01

    Self-assembled vesicles are essential components of primitive cells. We review the importance of vesicles during the origins of life, fundamental thermodynamics and kinetics of self-assembly, and experimental models of simple vesicles, focusing on prebiotically plausible fatty acids and their derivatives. We review recent work on interactions of simple vesicles with RNA and other studies of the transition from vesicles to protocells. Finally we discuss current challenges in understanding the biophysics of protocells, as well as conceptual questions in information transmission and self-replication. PMID:20519344

  4. Adhesive joint and composites modeling in SIERRA.

    SciTech Connect

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  5. Dual resin bonded joints in polyetheretherketone (PEEK) matrix composites

    NASA Astrophysics Data System (ADS)

    Zelenak, Steve; Radford, Donald W.; Dean, Michael W.

    1993-04-01

    The paper describes applications of the dual resin (miscible polymer) bonding technique (Smiley, 1989) developed as an alternative to traditional bonding approaches to joining thermoplastic matrix composite subassemblies into structures. In the experiments, the performance of joint geometries, such as those that could be used to assemble large truss structures in space, are investigated using truss joint models consisting of woven carbon fiber/PEEK tubes of about 1 mm wall thickness. Specific process conditions and hand-held hardware used to apply heat and pressure were chosen to simulate a field asembly technique. Results are presented on tube/cruciform double lap shear tests, pinned-pinned tube compression tests, and single lap shear bond tests of joints obtained using the dual resin bonding technique.

  6. Experimental component mode systhesis of structures with nonlinear joints

    NASA Technical Reports Server (NTRS)

    Blackwood, Gary H.; Vonflotow, A. H.

    1988-01-01

    The accuracy of component mode synthesis is investigated experimentally for substructures coupled by non-ideal joints. The work is based upon a segmented experimental beam for which the free-interface frequency response matrices are measured for each segment. These measurements are used directly in component mode synthesis to predict the behavior of the assembled structure; the segments are then physically joined and the resulting frequency response of the superstructure is compared to the prediction. Rotational freeplay is then introduced into the connecting joint and the new superstructure frequency response is compared to the original linear CMS prediction. The level of accuracy to be expected in component mode synthesis is discussed in terms of the degree of nonlinearity in the joints, mode number and mode shapes.

  7. Experimental component mode synthesis of structures with sloppy joints

    NASA Technical Reports Server (NTRS)

    Blackwood, Gary H.; Von Flotow, A. H.

    1988-01-01

    The accuracy of component mode synthesis is investigated experimentally for substructures coupled by nonideal joints. The work is based upon a segmented experimental beam for which free-interface frequency response matrices are measured for each segment. These measurements are used directly in component mode synthesis to predict the behavior of the assembled structure; the segments are then physically joined, and the resulting frequency response of the superstructure is compared to the prediction. Rotational freeplay is then introduced into the connecting joint, and the new superstructure frequency response is compared to the original linear component mode synthesis prediction. The level of accuracy to be expected in component mode synthesis is discussed in terms of the degree of nonlinearity in the joints, mode number, and mode shapes.

  8. Formation of tough composite joints

    SciTech Connect

    Brun, M.K.

    1998-12-01

    Joints that exhibited tough fracture behavior were formed in a Si/SiC matrix reinforced with Textron SCS-6 fibers with either boron nitride or silicon nitride fiber coatings. Lapped joints (joints with overlapping fingers) were necessary to obtain tough behavior. Geometrical requirements necessary to avoid brittle joint failure were proposed. Joints with a simple overlap geometry (only a few fingers) had to be very long in order to prevent brittle failure. Joints with an optimized stepped sawtooth geometry produced composite-like failures with the stress/strain curves containing an elastic region followed by a region of rising stress with an increase of strain. Increasing the fiber/matrix interfacial strength, by changing the fiber coating, significantly increased matrix cracking and ultimate strength of the joints. The best joints had matrix cracking stress and ultimate strength of 138 and 240 MPa, respectively. Joint failure was preceded by multiple matrix cracking in the entire composite. The high strength of the joints should permit building of structures containing joints with only a minor reduction of design stresses.

  9. Development of a machine vision system for automated structural assembly

    NASA Technical Reports Server (NTRS)

    Sydow, P. Daniel; Cooper, Eric G.

    1992-01-01

    Research is being conducted at the LaRC to develop a telerobotic assembly system designed to construct large space truss structures. This research program was initiated within the past several years, and a ground-based test-bed was developed to evaluate and expand the state of the art. Test-bed operations currently use predetermined ('taught') points for truss structural assembly. Total dependence on the use of taught points for joint receptacle capture and strut installation is neither robust nor reliable enough for space operations. Therefore, a machine vision sensor guidance system is being developed to locate and guide the robot to a passive target mounted on the truss joint receptacle. The vision system hardware includes a miniature video camera, passive targets mounted on the joint receptacles, target illumination hardware, and an image processing system. Discrimination of the target from background clutter is accomplished through standard digital processing techniques. Once the target is identified, a pose estimation algorithm is invoked to determine the location, in three-dimensional space, of the target relative to the robots end-effector. Preliminary test results of the vision system in the Automated Structural Assembly Laboratory with a range of lighting and background conditions indicate that it is fully capable of successfully identifying joint receptacle targets throughout the required operational range. Controlled optical bench test results indicate that the system can also provide the pose estimation accuracy to define the target position.

  10. 17 CFR 300.105 - Joint accounts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Joint accounts. 300.105... Customers of Sipc Members § 300.105 Joint accounts. (a) A joint account shall be deemed to be a “qualifying joint account” if it is owned jointly, whether by the owners thereof as joint tenants with the right...

  11. 49 CFR 213.351 - Rail joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Rail joints. 213.351 Section 213.351... Rail joints. (a) Each rail joint, insulated joint, and compromise joint shall be of a structurally sound design and dimensions for the rail on which it is applied. (b) If a joint bar is cracked,...

  12. 49 CFR 213.351 - Rail joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Rail joints. 213.351 Section 213.351... Rail joints. (a) Each rail joint, insulated joint, and compromise joint shall be of a structurally sound design and dimensions for the rail on which it is applied. (b) If a joint bar is cracked,...

  13. 17 CFR 300.105 - Joint accounts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Joint accounts. 300.105... Customers of Sipc Members § 300.105 Joint accounts. (a) A joint account shall be deemed to be a “qualifying joint account” if it is owned jointly, whether by the owners thereof as joint tenants with the right...

  14. 49 CFR 213.351 - Rail joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Rail joints. 213.351 Section 213.351... Rail joints. (a) Each rail joint, insulated joint, and compromise joint shall be of a structurally sound design and dimensions for the rail on which it is applied. (b) If a joint bar is cracked,...

  15. 17 CFR 300.105 - Joint accounts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Joint accounts. 300.105... Customers of Sipc Members § 300.105 Joint accounts. (a) A joint account shall be deemed to be a “qualifying joint account” if it is owned jointly, whether by the owners thereof as joint tenants with the right...

  16. 17 CFR 300.105 - Joint accounts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Joint accounts. 300.105... Customers of Sipc Members § 300.105 Joint accounts. (a) A joint account shall be deemed to be a “qualifying joint account” if it is owned jointly, whether by the owners thereof as joint tenants with the right...

  17. 49 CFR 213.351 - Rail joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Rail joints. 213.351 Section 213.351... Rail joints. (a) Each rail joint, insulated joint, and compromise joint shall be of a structurally sound design and dimensions for the rail on which it is applied. (b) If a joint bar is cracked,...

  18. 17 CFR 300.105 - Joint accounts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Joint accounts. 300.105... Customers of Sipc Members § 300.105 Joint accounts. (a) A joint account shall be deemed to be a “qualifying joint account” if it is owned jointly, whether by the owners thereof as joint tenants with the right...

  19. Small joint arthroscopy in foot and ankle.

    PubMed

    Lui, Tun Hing; Yuen, Chi Pan

    2015-03-01

    The clinical application of small joint arthroscopies (metatarsophalangeal joint, Lisfranc joint, Chopart joint, and interphlangeal joint) in the foot has seen significant advancements in the past decades. This article reviews the clinical indications, technical details, outcomes, and potential complications of small joint arthroscopies of the foot. PMID:25726488

  20. Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins

    PubMed Central

    Whitmire, Rachel E.; Wilson, D. Scott; Singh, Ankur; Levenston, Marc E.; Murthy, Niren; García, Andrés J.

    2012-01-01

    Intra-articular delivery of therapeutics to modulate osteoarthritis (OA) is challenging. Delivery of interleukin-1 receptor antagonist (IL-1Ra), the natural protein inhibitor of IL-1, to modulate IL-1-based inflammation through gene therapy or bolus protein injections has emerged as a promising therapy for OA. However, these approaches suffer from rapid clearance and reduced potency over time. Nano/microparticles represent a promising strategy for overcoming the shortcomings of intra-articular drug delivery. However, these delivery vehicles are limited for delivery of protein therapeutics due to their hydrophobic character, low drug loading efficiency, and harsh chemical conditions during particle processing. We designed a new block copolymer that assembles into submicron-scale particles and provides for covalently tethering proteins to the particle surface for controlled intra-articular protein delivery. This block copolymer self-assembles into 300 nm-diameter particles with a protein-tethering moiety for surface covalent conjugation of IL-1Ra protein. This copolymer particle system efficiently bound IL-1Ra and maintained protein bioactivity in vitro. Furthermore, particle-tethered IL-1Ra bound specifically to target synoviocyte cells via surface IL-1 receptors. Importantly, IL-1Ra-nanoparticles inhibited IL-1-mediated signaling to equivalent levels as soluble IL-1Ra. Finally, the ability of nanoparticles to retain IL-1Ra in the rat stifle joint was evaluated by in vivo imaging over 14 days. IL-1Ra-tethered nanoparticles significantly increased the retention time of IL-1Ra in the rat stifle joint over 14 days with enhanced IL-1Ra half-life (3.01 days) compared to that of soluble IL-1Ra (0.96 days) and without inducing degenerative changes in cartilage structure or composition. PMID:22818981

  1. Experimental evaluation of stress intensity factors for corner cracks in bolted joints

    SciTech Connect

    Guengoer, S.; Patterson, E.A.

    1994-12-31

    Stress freezing photoelasticity was used to measure mode one stress intensity factors of corner cracks in a double shear bolted joint. A model of the joint assembly was manufactured from a photoelastic material and three different corner cracks were introduced using a cutting wheel. After stress freezing process slices along the crack fronts were cut and analyzed using photoelastic procedures. Stress intensity factors of these cracks were found to be larger near the hole.

  2. GAViT: Genome Assembly Visualization Tool for Short Read Data

    SciTech Connect

    Syed, Aijazuddin; Shapiro, Harris; Tu, Hank; Pangilinan, Jasmyn; Trong, Stephan

    2008-03-14

    It is a challenging job for genome analysts to accurately debug, troubleshoot, and validate genome assembly results. Genome analysts rely on visualization tools to help validate and troubleshoot assembly results, including such problems as mis-assemblies, low-quality regions, and repeats. Short read data adds further complexity and makes it extremely challenging for the visualization tools to scale and to view all needed assembly information. As a result, there is a need for a visualization tool that can scale to display assembly data from the new sequencing technologies. We present Genome Assembly Visualization Tool (GAViT), a highly scalable and interactive assembly visualization tool developed at the DOE Joint Genome Institute (JGI).

  3. Joint bone radiobiology workshop

    SciTech Connect

    Tomich, P.A.

    1991-01-01

    The Joint Bone Radiobiology Workshop was held on July 12--13, 1991 in Toronto, Canada. This document contains the papers presented at the meeting. The five sections were: Dose-effects, Endogenous Cofactors, Tumorigenesis, New Methods and Medical Implications. The papers covered risk assessment, tissue distribution of radionuclides, lifetime studies, biological half-lifes, the influence of age at time of exposure, tumor induction by different radionuclides, microscopic localization of radionuclides, and nuclear medicine issues including tissue distribution in the skeleton and bone marrow transplantation. (MHB)

  4. Joint hypermobility syndrome.

    PubMed

    Fikree, Asma; Aziz, Qasim; Grahame, Rodney

    2013-05-01

    Although perceived as a rare condition, joint hypermobility syndrome is common. Its prevalence in rheumatology clinics is extremely high. Early estimates suggest that it may be the most common of all rheumatologic conditions. The problem lies in the general lack of awareness of the syndrome, its means of recognition, and the resultant failure to diagnose it correctly when present. It is a worldwide problem. This article provides an overview of hypermobility and hypermobility syndrome, stressing its multisystemic nature and the negative impact that it may have on quality of life, with particular reference to gastrointestinal involvement. PMID:23597972

  5. Tarsometatarsal/Lisfranc joint.

    PubMed

    DiDomenico, Lawrence A; Cross, Davi

    2012-04-01

    Accurate early diagnosis with adequate reduction and maintenance of anatomic alignment of the dislocation or fracture within the Lisfranc joint complex have been found to be the key to successful outcomes regarding this injury. Because of the anatomic variations, the thin soft tissue envelop, and the abundance of ligamentous and capsular structures in the region, repair of these injuries can be a challenge. The classification systems used to describe these injuries aid in describing the mechanism of injury or displacement type present, which may aid in determining what treatment modality can provide the best outcome. PMID:22424486

  6. Posttraumatic temporomandibular joint disorders.

    PubMed

    Giannakopoulos, Helen E; Quinn, Peter D; Granquist, Eric; Chou, Joli C

    2009-05-01

    The temporomandibular joint (TMJ) has many essential functions. None of its components are exempt from injury. Facial asymmetry, malocclusion, disturbances in growth, osteoarthritis, and ankylosis can manifest as complications from trauma to the TMJ. The goals of initial treatment include achievement of pretraumatic function, restoration of facial symmetry, and resolution of pain. These same objectives hold true for late repairs and reconstruction of the TMJ apparatus. Treatment is demanding, and with opposing approaches. The following article explores various treatment options for problems presenting as a result of a history of trauma to the TMJ. PMID:22110802

  7. Bladder operated robotic joint

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (Inventor)

    1993-01-01

    This invention is a robotic joint which is operated by inflatable bladders and which can be used in applications where it is desired to move or hold an object. A support block supports an elongated plate to which is pivotally attached a finger. A tension strip passes over a lever attached to the finger and is attached at its ends to the support block on opposite sides of the plate. Bladders positioned between the plate and the tension strip on opposite sides of the plate can be inflated by pumps to pivot the finger, with one of the bladders being inflated while the other is being deflated.

  8. Protective helmet assembly

    NASA Technical Reports Server (NTRS)

    Dawn, Frederic S. (Inventor); Weiss, Fred R. (Inventor); Eck, John D. (Inventor)

    1992-01-01

    The invention is a protective helmet assembly with improved safety and impact resistance, high resistance to ignition and combustion, and reduced offgassing. The assembly comprises a hard rigid ballistic outer shell with one or more impact absorbing pads fitted to the interior surface. The pads are made of open cell flexible polyimide foam material, each of which is attached to the inner surface of the ballistic outer shell by cooperative VELCRO fastener strips of hook-and-loop material affixed respectively to the rigid outer shell and the impact absorbing pads. The helmet assembly with shell and pads is sized to fit relatively close over a wearer's head.

  9. DC source assemblies

    DOEpatents

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  10. Magnetic assembly-mediated enhancement of differentiation of mouse bone marrow cells cultured on magnetic colloidal assemblies

    NASA Astrophysics Data System (ADS)

    Sun, Jianfei; Liu, Xuan; Huang, Jiqing; Song, Lina; Chen, Zihao; Liu, Haoyu; Li, Yan; Zhang, Yu; Gu, Ning

    2014-05-01

    Here we reported an interesting phenomenon that the field-induced assemblies of magnetic nanoparticles can promote the differentiation of primary mouse bone marrow cells into osteoblasts. The reason was thought to lie in the remnant magnetic interaction inside the assemblies which resulted from the magnetic field-directed assembly. Influence of the assemblies on the cells was realized by means of interface effect rather than the internalization effect. We fabricated a stripe-like assemblies array on the glass plate and cultured cells on this surface. We characterized the morphology of assemblies and measured the mechanic property as well as the magnetic property. The cellular differentiation was measured by staining and quantitative PCR. Finally, Fe uptake was excluded as the reason to cause the phenomenon.

  11. Magnetic assembly-mediated enhancement of differentiation of mouse bone marrow cells cultured on magnetic colloidal assemblies

    PubMed Central

    Sun, Jianfei; Liu, Xuan; Huang, Jiqing; Song, Lina; Chen, Zihao; Liu, Haoyu; Li, Yan; Zhang, Yu; Gu, Ning

    2014-01-01

    Here we reported an interesting phenomenon that the field-induced assemblies of magnetic nanoparticles can promote the differentiation of primary mouse bone marrow cells into osteoblasts. The reason was thought to lie in the remnant magnetic interaction inside the assemblies which resulted from the magnetic field-directed assembly. Influence of the assemblies on the cells was realized by means of interface effect rather than the internalization effect. We fabricated a stripe-like assemblies array on the glass plate and cultured cells on this surface. We characterized the morphology of assemblies and measured the mechanic property as well as the magnetic property. The cellular differentiation was measured by staining and quantitative PCR. Finally, Fe uptake was excluded as the reason to cause the phenomenon. PMID:24874764

  12. Joint-sparing Corrections in Malunited Lisfranc Joint Injuries.

    PubMed

    Nery, Caio; Raduan, Fernando; Baumfeld, Daniel

    2016-03-01

    Lisfranc fracture-dislocations are very serious and potentially disabling injuries. Unfortunately, they are often misdiagnosed. Multiplanar midfoot deformities that result from these fracture-dislocations are precursors of joint degeneration and significant functional disabilities. Anatomic reduction with different types of internal fixation is an efficient method to reconstruct midfoot alignment and stability. Joint-preserving reconstruction techniques emerge as a viable alternative to corrective fusion as they achieve stable joint realignment with preserved motion. PMID:26915786

  13. Final Technical Report

    SciTech Connect

    Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes

    2003-08-04

    OAK B202 Final Technical Report. The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.

  14. Development of Thermal Barriers for Solid Rocket Motor Nozzle Joints

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.

    1999-01-01

    The Space Shuttle solid rocket motor case assembly joints are sealed using conventional 0-ring seals. The 5500+F combustion gases are kept a safe distance away from the seals by thick layers of insulation. Special joint-fill compounds are used to fill the joints in the insulation to prevent a direct flowpath to the seals. On a number of occasions. NASA has observed in several of the rocket nozzle assembly joints hot gas penetration through defects in the joint- fill compound. The current nozzle-to-case joint design incorporates primary, secondary and wiper (inner-most) 0-rings and polysulfide joint-fill compound. In the current design, 1 out of 7 motors experience hot gas to the wiper 0-ring. Though the condition does not threaten motor safety, evidence of hot gas to the wiper 0-ring results in extensive reviews before resuming flight. NASA and solid rocket motor manufacturer Thiokol are working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design and a thermal barrier, This paper presents burn-resistance, temperature drop, flow and resiliency test results for several types of NASA braided carbon-fiber thermal barriers. Burn tests were performed to determine the time to burn through each of the thermal barriers when exposed to the flame of an oxy-acetylene torch (5500 F), representative of the 5500 F solid rocket motor combustion temperatures. Thermal barriers braided out of carbon fibers endured the flame for over 6 minutes, three times longer than solid rocket motor burn time. Tests were performed on two thermal barrier braid architectures, denoted Carbon-3 and Carbon-6, to measure the temperature drop across and along the barrier in a compressed state when subjected to the flame of an oxyacetylene torch. Carbon-3 and Carbon-6 thermal barriers were excellent insulators causing temperature drops through their diameter of up to a 2800 and 2560 F. respectively. Gas temperature 1/4" downstream of the thermal barrier were within the

  15. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome.

    PubMed

    Honaas, Loren A; Wafula, Eric K; Wickett, Norman J; Der, Joshua P; Zhang, Yeting; Edger, Patrick P; Altman, Naomi S; Pires, J Chris; Leebens-Mack, James H; dePamphilis, Claude W

    2016-01-01

    Whereas de novo assemblies of RNA-Seq data are being published for a growing number of species across the tree of life, there are currently no broadly accepted methods for evaluating such assemblies. Here we present a detailed comparison of 99 transcriptome assemblies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS and NextGENe. Controlled analyses of de novo assemblies for Arabidopsis thaliana and Oryza sativa transcriptomes provide new insights into the strengths and limitations of transcriptome assembly strategies. We find that the leading assemblers generate reassuringly accurate assemblies for the majority of transcripts. At the same time, we find a propensity for assemblers to fail to fully assemble highly expressed genes. Surprisingly, the instance of true chimeric assemblies is very low for all assemblers. Normalized libraries are reduced in highly abundant transcripts, but they also lack 1000s of low abundance transcripts. We conclude that the quality of de novo transcriptome assemblies is best assessed through consideration of a combination of metrics: 1) proportion of reads mapping to an assembly 2) recovery of conserved, widely expressed genes, 3) N50 length statistics, and 4) the total number of unigenes. We provide benchmark Illumina transcriptome data and introduce SCERNA, a broadly applicable modular protocol for de novo assembly improvement. Finally, our de novo assembly of the Arabidopsis leaf transcriptome revealed ~20 putative Arabidopsis genes lacking in the current annotation. PMID:26731733

  16. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome

    PubMed Central

    Honaas, Loren A.; Wafula, Eric K.; Wickett, Norman J.; Der, Joshua P.; Zhang, Yeting; Edger, Patrick P.; Altman, Naomi S.; Pires, J. Chris; Leebens-Mack, James H.; dePamphilis, Claude W.

    2016-01-01

    Whereas de novo assemblies of RNA-Seq data are being published for a growing number of species across the tree of life, there are currently no broadly accepted methods for evaluating such assemblies. Here we present a detailed comparison of 99 transcriptome assemblies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS and NextGENe. Controlled analyses of de novo assemblies for Arabidopsis thaliana and Oryza sativa transcriptomes provide new insights into the strengths and limitations of transcriptome assembly strategies. We find that the leading assemblers generate reassuringly accurate assemblies for the majority of transcripts. At the same time, we find a propensity for assemblers to fail to fully assemble highly expressed genes. Surprisingly, the instance of true chimeric assemblies is very low for all assemblers. Normalized libraries are reduced in highly abundant transcripts, but they also lack 1000s of low abundance transcripts. We conclude that the quality of de novo transcriptome assemblies is best assessed through consideration of a combination of metrics: 1) proportion of reads mapping to an assembly 2) recovery of conserved, widely expressed genes, 3) N50 length statistics, and 4) the total number of unigenes. We provide benchmark Illumina transcriptome data and introduce SCERNA, a broadly applicable modular protocol for de novo assembly improvement. Finally, our de novo assembly of the Arabidopsis leaf transcriptome revealed ~20 putative Arabidopsis genes lacking in the current annotation. PMID:26731733

  17. On representations for joint moments using a joint coordinate system.

    PubMed

    O'Reilly, Oliver M; Sena, Mark P; Feeley, Brian T; Lotz, Jeffrey C

    2013-11-01

    In studies of the biomechanics of joints, the representation of moments using the joint coordinate system has been discussed by several authors. The primary purpose of this technical brief is to emphasize that there are two distinct, albeit related, representations for moment vectors using the joint coordinate system. These distinct representations are illuminated by exploring connections between the Euler and dual Euler bases, the "nonorthogonal projections" presented in a recent paper by Desroches et al. (2010, "Expression of Joint Moment in the Joint Coordinate System," ASME J. Biomech. Eng., 132(11), p. 11450) and seminal works by Grood and Suntay (Grood and Suntay, 1983, "A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee," ASME J. Biomech. Eng., 105(2), pp. 136-144) and Fujie et al. (1996, "Forces and Moment in Six-DOF at the Human Knee Joint: Mathematical Description for Control," Journal of Biomechanics, 29(12), pp. 1577-1585) on the knee joint. It is also shown how the representation using the dual Euler basis leads to straightforward definition of joint stiffnesses. PMID:24008987

  18. Advanced membrane electrode assemblies for fuel cells

    DOEpatents

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  19. Advanced membrane electrode assemblies for fuel cells

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  20. Electron beam weld development on a Filter Pack Assembly

    NASA Astrophysics Data System (ADS)

    Dereskiewicz, J. P.

    1994-06-01

    A continuous electron beam welding procedure was developed to replace the manual gas tungsten arc welding procedure on the Filter Pack Assembly. A statistical study was used to evaluate the feasibility of electron beam welding 6061-T6 aluminum covers to A356 cast weldments throughout the joint tolerance range specified on product drawings. Peak temperature exposures were not high enough to degrade the heat sensitive electrical components inside the cast weldment. Actual weldments with alodine coating on the weld joint area were successfully cleaned using a nonmetallic fiberglass brush cleaning method.

  1. Dataglove measurement of joint angles in sign language handshapes

    PubMed Central

    Eccarius, Petra; Bour, Rebecca; Scheidt, Robert A.

    2012-01-01

    In sign language research, we understand little about articulatory factors involved in shaping phonemic boundaries or the amount (and articulatory nature) of acceptable phonetic variation between handshapes. To date, there exists no comprehensive analysis of handshape based on the quantitative measurement of joint angles during sign production. The purpose of our work is to develop a methodology for collecting and visualizing quantitative handshape data in an attempt to better understand how handshapes are produced at a phonetic level. In this pursuit, we seek to quantify the flexion and abduction angles of the finger joints using a commercial data glove (CyberGlove; Immersion Inc.). We present calibration procedures used to convert raw glove signals into joint angles. We then implement those procedures and evaluate their ability to accurately predict joint angle. Finally, we provide examples of how our recording techniques might inform current research questions. PMID:23997644

  2. Review on failure prediction techniques of composite single lap joint

    NASA Astrophysics Data System (ADS)

    Ab Ghani A., F.; Rivai, Ahmad

    2016-03-01

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint. The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.

  3. Design of a telerobotic controller with joint torque sensors

    SciTech Connect

    Jansen, J.F.; Herndon, J.N.

    1990-01-01

    The purpose of this paper is to analytically show how to design a joint controller for a telerobotic system when joint torque sensors are available. Other sensors such as actuator position, actuator velocity, joint position, and joint velocity are assumed to be accessible; however, the results of this paper will also be useful when only partial measurements are available. The controller presented in this paper can be applied to either mode of operation of a manipulator (i.e., teleoperation or robotic). Mechanical manipulators with high levels of friction are assumed in this study. Finally, the results are applied to a telerobotic system built for NASA. Very high levels of friction have been reduced using high-grain feedback while avoiding limit cycles. 14 refs., 5 figs.

  4. Joint collaborative technology experiment

    NASA Astrophysics Data System (ADS)

    Wills, Michael; Ciccimaro, Donny; Yee, See; Denewiler, Thomas; Stroumtsos, Nicholas; Messamore, John; Brown, Rodney; Skibba, Brian; Clapp, Daniel; Wit, Jeff; Shirts, Randy J.; Dion, Gary N.; Anselmo, Gary S.

    2009-05-01

    Use of unmanned systems is rapidly growing within the military and civilian sectors in a variety of roles including reconnaissance, surveillance, explosive ordinance disposal (EOD), and force-protection and perimeter security. As utilization of these systems grows at an ever increasing rate, the need for unmanned systems teaming and inter-system collaboration becomes apparent. Collaboration provides a means of enhancing individual system capabilities through relevant data exchange that contributes to cooperative behaviors between systems and enables new capabilities not possible if the systems operate independently. A collaborative networked approach to development holds the promise of adding mission capability while simultaneously reducing the workload of system operators. The Joint Collaborative Technology Experiment (JCTE) joins individual technology development efforts within the Air Force, Navy, and Army to demonstrate the potential benefits of interoperable multiple system collaboration in a force-protection application. JCTE participants are the Air Force Research Laboratory, Materials and Manufacturing Directorate, Airbase Technologies Division, Force Protection Branch (AFRL/RXQF); the Army Aviation and Missile Research, Development, and Engineering Center Software Engineering Directorate (AMRDEC SED); and the Space and Naval Warfare Systems Center - Pacific (SSC Pacific) Unmanned Systems Branch operating with funding provided by the Joint Ground Robotics Enterprise (JGRE). This paper will describe the efforts to date in system development by the three partner organizations, development of collaborative behaviors and experimentation in the force-protection application, results and lessons learned at a technical demonstration, simulation results, and a path forward for future work.

  5. Jointly Sponsored Research Program

    SciTech Connect

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  6. Analytical Study for Stress Wave Interaction with Rock Joints Having Unequally Close-Open Behavior

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Zhao, X. B.; Li, H. B.; Chai, S. B.; Zhao, Q. H.

    2016-08-01

    Stress wave interaction with rock joints during wave propagation is usually dependent on the dynamic response of the joints. During wave propagation, joints may be closed and open under the effects of the stress wave and the in situ stress. A joint in nature can only resist load during close process. In this paper, the close and open behaviors of rock joints are considered to be different. The joints are assumed to be linearly elastic in close status but turn into free surfaces in open status. Wave propagation equation across joints with unequally close-open behavior is first derived and expressed as a time-differential form based on the displacement discontinuity method. SHPB test recording is then adopted to verify the present approach, which is also compared with the results from existing methods for joints with equally close-open behavior. Next, analysis is conduced for wave propagation across a single joint and a set of parallel joints with unequally close-open behavior, respectively. From the analysis, effects of unequally close-open behavior of a joint on wave propagation and the dynamic response of the joint are studied finally.

  7. Station Assembly Animation

    NASA Video Gallery

    This animation depicts the assembly of the International Space Station since Nov. 20, 1998, with the delivery of the Zarya module, through May 16, 2011, with the delivery of the EXPRESS Logistics C...

  8. Hypergolic Ignitor Assembly

    NASA Technical Reports Server (NTRS)

    Taylor, Eric S. (Inventor); Myers, W. Neill (Inventor); Martin, Michael A. (Inventor)

    2002-01-01

    An ignitor for use with the MC-I rocket engine has a cartridge bounded by two end caps with rupture disc assemblies connected thereto. A piston assembly within the cartridge moves from one end of the cartridge during the ignition process. The inlet of the ignitor communicates with a supply taken from the discharge of the fuel pump. When the pump is initially started, the pressure differential bursts the first rupture disc to begin the movement of the piston assembly toward the discharge end. The pressurization of the cartridge causes the second rupture to rupture and hypergolic fluid contained within the cartridge is discharged out the outlet. Once the piston assembly reaches the discharge end of the cartridge, purge grooves allow for fuel and remaining hypergolic fluid, to be discharged out the ignitor outlet into the combustion chamber to purge the ignitor of any remaining hypergolic fluid.

  9. Swipe transfer assembly

    DOEpatents

    Christiansen, Robert M.; Mills, William C.

    1992-01-01

    The swipe transfer assembly is a mechanical assembly which is used in conjunction with glove boxes and other sealed containments. It is used to pass small samples into or out of glove boxes without an open breach of the containment, and includes a rotational cylinder inside a fixed cylinder, the inside cylinder being rotatable through an arc of approximately 240.degree. relative to the outer cylinder. An offset of 120.degree. from end to end allows only one port to be opened at a time. The assembly is made of stainless steel or aluminum and clear acrylic plastic to enable visual observation. The assembly allows transfer of swipes and smears from radiological and other specially controlled environments.

  10. Automated Assembly Center (AAC)

    NASA Technical Reports Server (NTRS)

    Stauffer, Robert J.

    1993-01-01

    The objectives of this project are as follows: to integrate advanced assembly and assembly support technology under a comprehensive architecture; to implement automated assembly technologies in the production of high-visibility DOD weapon systems; and to document the improved cost, quality, and lead time. This will enhance the production of DOD weapon systems by utilizing the latest commercially available technologies combined into a flexible system that will be able to readily incorporate new technologies as they emerge. Automated assembly encompasses the following areas: product data, process planning, information management policies and framework, three schema architecture, open systems communications, intelligent robots, flexible multi-ability end effectors, knowledge-based/expert systems, intelligent workstations, intelligent sensor systems, and PDES/PDDI data standards.

  11. Magnetostrictive valve assembly

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2008-01-01

    A magnetostrictive valve assembly includes a housing that defines a passage with a seat being formed therein. A magnetically-biased and axially-compressed magnetostrictive assembly slidingly fitted in the passage is configured as a hollow and open-ended conduit adapted to support a flow of a fluid therethrough. Current-carrying coil(s) disposed about the passage in the region of the magnetostrictive assembly generate a magnetic field in the passage when current flows through the coil(s). A hollow valve body with side ports is coupled on one end thereof to an axial end of the magnetostrictive assembly. The other end of the valve body is designed to seal with the seat formed in the housing's passage when brought into contact therewith.

  12. IAHS General Assembly

    NASA Astrophysics Data System (ADS)

    Peters, Helen J.

    The International Association of Hydrological Sciences (IAHS) General Assembly, held as part of the International Union of Geodesy and Geophysics (IUGG) Assembly, August 9-22, 1987, in Vancouver, Canada, had an estimated 500 attendees. At least 20 countries were represented by official delegates. Attendance from the United States is estimated at 120, with Helen J. Peters (California Department of Water Resources, Sacramento) as chief delegate and Marshall E. Moss (U.S. Geological Survey (USGS), Reston, Va.) as alternate delegate and future chief delegate for the 1991 General Assembly.The Canadian Organizing Committee had done a masterful job of organizing the assembly, with excellent housing and meeting facilities on the University of British Columbia campus. In addition to five symposia and nine workshops, the IAHS Bureau and all commissions and the committees held several meetings. Some excellent social events and tours were included.

  13. Core assembly storage structure

    DOEpatents

    Jones, Jr., Charles E.; Brunings, Jay E.

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  14. Integrated thruster assembly program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program is reported which has provided technology for a long life, high performing, integrated ACPS thruster assembly suitable for use in 100 typical flights of a space shuttle vehicle over a ten year period. The four integrated thruster assemblies (ITA) fabricated consisted of: propellant injector; a capacitive discharge, air gap torch type igniter assembly; fast response igniter and main propellant valves; and a combined regen-dump film cooled chamber. These flightweight 6672 N (1500 lb) thruster assemblies employed GH2/GO2 as propellants at a chamber pressure of 207 N/sq cm (300 psia). Test data were obtained on thrusted performance, thermal and hydraulic characteristics, dynamic response in pulsing, and cycle life. One thruster was fired in excess of 42,000 times.

  15. Steam separator latch assembly

    DOEpatents

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  16. Steam separator latch assembly

    DOEpatents

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  17. The proteasome assembly line

    PubMed Central

    Madura, Kiran

    2013-01-01

    The assembly of the proteasome — the cellular machine that eliminates unwanted proteins — is a carefully choreographed affair, involving a complex sequence of steps overseen by dedicated protein chaperones. PMID:19516331

  18. [Fractures of the elbow joint].

    PubMed

    Nowak, T E; Dietz, S O; Burkhart, K J; Müller, L P; Rommens, P M

    2012-02-01

    Fractures around the elbow joint comprise fractures of the distal humerus, the radial head, the olecranon and the coronoid process. Combined lesions are particularly demanding for the surgeon. Accurate knowledge of the anatomy and of the biomechanics is an essential requirement for a specific diagnosis and therapy. A stable and painless movable elbow joint is essential for most of the activities of daily living. Risk factors for the development of posttraumatic elbow joint arthrosis are non-anatomically reconstructed joint surfaces, axial malalignment of the joint axis and untreated concomitant injuries. Modern angular stable and anatomically preshaped implants facilitate a biomechanically adequate osteosynthesis and avoid or decrease functional impairment. In consideration of an increasing number of osteoporotic elbow joint fractures, endoprosthetic replacement has gained significance. PMID:22271056

  19. Strength of Welded Aircraft Joints

    NASA Technical Reports Server (NTRS)

    Brueggeman, W C

    1937-01-01

    This investigation is a continuation of work started in 1928 and described in NACA-TR-348 which shows that the insertion of gusset plates was the most satisfactory way of strengthening a joint. Additional tests of the present series show that joints of this type could be improved by cutting out the portion of the plate between the intersecting tubes. T and lattice joints in thin-walled tubing 1 1/2 by 0.020 inch have somewhat lower strengths than joints in tubing of greater wall thickness because of failure by local buckling. In welding the thin-walled tubing, the recently developed "carburizing flux" process was found to be the only method capable of producing joints free from cracks. The "magnetic powder" inspection was used to detect cracks in the joints and flaws in the tubing.

  20. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  1. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, John V.; Novak, Robert F.; McBride, James R.

    1991-01-01

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  2. Dynamic characteristics of vibration isolation platforms considering the joints of the struts

    NASA Astrophysics Data System (ADS)

    Zhang, Jingrui; Guo, Zixi; Zhang, Yao

    2016-09-01

    This paper discusses the dynamic characteristics of the impacts and corresponding frictions generated by the clearances of joints of vibration isolation platforms for control moment gyroscopes (CMGs) on spacecraft. A contact force model is applied using a nonlinear contact force model, and the frictions in the joints are considered in the dynamic analysis. First, the dynamic characteristics of a single isolation strut with spherical joints were studied, and joints with different initial clearance sizes were separately analyzed. Then, dynamic models of the vibration isolation platform for a CMG cluster with both perfect joints and joints with clearances were established. During the numeral simulation, joints with different elastic moduli were used to study the nonlinear characteristics. Finally, the distributions of the collision points, which can serve as a reference for the reliability and lifetime of a platform, were given.

  3. Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: a new perspective for rational construction of multilayer assemblies.

    PubMed

    Xiao, Fang-Xing; Pagliaro, Mario; Xu, Yi-Jun; Liu, Bin

    2016-05-31

    Over the past few decades, layer-by-layer (LbL) assembly of multilayer thin films has garnered considerable interest on account of its ability to modulate nanometer control over film thickness and its extensive choice of usable materials for coating planar and particulate substrates, thus allowing for the fabrication of responsive and functional thin films for their potential applications in a myriad of fields. Herein, we provide elaborate information on the current developments of LbL assembly techniques including different properties, molecular interactions, and assembly methods associated with this promising bottom-up strategy. In particular, we highlight the principle for rational design and fabrication of a large variety of multilayer thin film systems including multi-dimensional capsules or spatially hierarchical nanostructures based on the LbL assembly technique. Moreover, we discuss how to judiciously choose the building block pairs when exerting the LbL assembly buildup which enables the engineering of multilayer thin films with tailor-made physicochemical properties. Furthermore, versatile applications of the diverse LbL-assembled nanomaterials are itemized and elucidated in light of specific technological fields. Finally, we provide a brief perspective and potential future challenges of the LbL assembly technology. It is anticipated that our current review could provide a wealth of guided information on the LbL assembly technique and furnish firm grounds for rational design of LbL assembled multilayer assemblies toward tangible applications. PMID:27003471

  4. Recuperator assembly and procedures

    DOEpatents

    Kang, Yungmo; McKeirnan, Jr., Robert D.

    2008-08-26

    A construction of recuperator core segments is provided which insures proper assembly of the components of the recuperator core segment, and of a plurality of recuperator core segments. Each recuperator core segment must be constructed so as to prevent nesting of fin folds of the adjacent heat exchanger foils of the recuperator core segment. A plurality of recuperator core segments must be assembled together so as to prevent nesting of adjacent fin folds of adjacent recuperator core segments.

  5. High speed door assembly

    SciTech Connect

    Shapiro, C.

    1991-12-31

    This invention is comprised of a high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  6. ASSEMBLY OF PARALLEL PLATES

    DOEpatents

    Groh, E.F.; Lennox, D.H.

    1963-04-23

    This invention is concerned with a rigid assembly of parallel plates in which keyways are stamped out along the edges of the plates and a self-retaining key is inserted into aligned keyways. Spacers having similar keyways are included between adjacent plates. The entire assembly is locked into a rigid structure by fastening only the outermost plates to the ends of the keys. (AEC)

  7. Recuperator assembly and procedures

    DOEpatents

    Kang, Yungmo; McKeirnan, Jr., Robert D.

    2006-06-27

    A construction of recuperator core segments is provided which insures proper assembly of the components of the recuperator core segment, and of a plurality of recuperator core segments. Each recuperator core segment must be constructed so as to prevent nesting of fin folds of the adjacent heat exchanger foils of the recuperator core segment. A plurality of recuperator core segments must be assembled together so as to prevent nesting of adjacent fin folds of adjacent recuperator core segments.

  8. Ball-joint grounding ring

    NASA Technical Reports Server (NTRS)

    Aperlo, P. J. A.; Buck, P. A.; Weldon, V. A.

    1981-01-01

    In ball and socket joint where electrical insulator such as polytetrafluoroethylene is used as line to minimize friction, good electrical contact across joint may be needed for lightning protection or to prevent static-charge build-up. Electrical contact is maintained by ring of spring-loaded fingers mounted in socket. It may be useful in industry for cranes, trailers, and other applications requiring ball and socket joint.

  9. F-1 Engine Installation at the Michoud Assembly Facility

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This image depicts a Boeing worker installing an F-1 engine on the Saturn V S-IC flight stage at the Michoud Assembly Facility (MAF). The Saturn IB and Saturn V first stages were manufactured at the MAF, located 24 kilometers (approximately 15 miles) east of downtown New Orleans, Louisiana. The prime contractors, Chrysler and Boeing, jointly occupied the MAF. The basic manufacturing building boasted 43 acres under one roof. By 1964, NASA added a separate engineering and office building, vertical assembly building, and test stage building.

  10. F-1 Engine Installation at the Michoud Assembly Facility

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This image depicts an F-1 engine being installed on the Saturn V S-IC flight stage at the Michoud Assembly Facility (MAF). The Saturn IB and Saturn V first stages were manufactured at the MAF, located at 24 kilometers (approximately 15 miles) east of downtown New Orleans, Louisiana. The prime contractors, Chrysler and Boeing, jointly occupied the MAF. The basic manufacturing building boasted 43 acres under one roof. By 1964, NASA added a separate engineering and office building, vertical assembly building, and test stage building.

  11. Lightweight, all-metal hose assembly has high flexibility and strength over wide range of temperature and pressure

    NASA Technical Reports Server (NTRS)

    Bessing, L. L.

    1966-01-01

    Lightweight flexible, metal braid reinforced hose assembly is used in high and low pressure oxygen, helium, and hydrogen systems. These hose assemblies have been successfully used on the Saturn-2 stage to provide joints of sufficient flexibility to absorb movement resulting from temperature variations.

  12. Task representation in individual and joint settings

    PubMed Central

    Prinz, Wolfgang

    2015-01-01

    This paper outlines a framework for task representation and discusses applications to interference tasks in individual and joint settings. The framework is derived from the Theory of Event Coding (TEC). This theory regards task sets as transient assemblies of event codes in which stimulus and response codes interact and shape each other in particular ways. On the one hand, stimulus and response codes compete with each other within their respective subsets (horizontal interactions). On the other hand, stimulus and response code cooperate with each other (vertical interactions). Code interactions instantiating competition and cooperation apply to two time scales: on-line performance (i.e., doing the task) and off-line implementation (i.e., setting the task). Interference arises when stimulus and response codes overlap in features that are irrelevant for stimulus identification, but relevant for response selection. To resolve this dilemma, the feature profiles of event codes may become restructured in various ways. The framework is applied to three kinds of interference paradigms. Special emphasis is given to joint settings where tasks are shared between two participants. Major conclusions derived from these applications include: (1) Response competition is the chief driver of interference. Likewise, different modes of response competition give rise to different patterns of interference; (2) The type of features in which stimulus and response codes overlap is also a crucial factor. Different types of such features give likewise rise to different patterns of interference; and (3) Task sets for joint settings conflate intraindividual conflicts between responses (what), with interindividual conflicts between responding agents (whom). Features of response codes may, therefore, not only address responses, but also responding agents (both physically and socially). PMID:26029085

  13. Self-assembly from milli- to nanoscales: methods and applications

    PubMed Central

    Mastrangeli, M; Abbasi, S; Varel, C; Van Hoof, C; Celis, J-P; Böhringer, K F

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. PMID:20209016

  14. Non destructive evaluation of adhesively bonded carbon fiber reinforced composite lap joints with varied bond quality

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R. L.; Bhat, M. R.; Murthy, C. R. L.

    2012-05-01

    Structural adhesive bonding is widely used to execute assemblies in automobile and aerospace structures. The quality and reliability of these bonded joints must be ensured during service. In this context non destructive evaluation of these bonded structures play an important role. Evaluation of adhesively bonded composite single lap shear joints has been attempted through experimental approach. Series of tests, non-destructive as well as destructive were performed on different sets of carbon fiber reinforced polymer (CFRP) composite lap joint specimens with varied bond quality. Details of the experimental investigations carried out and the outcome are presented in this paper.

  15. Efficient Synergistic Single-Cell Genome Assembly

    PubMed Central

    Movahedi, Narjes S.; Embree, Mallory; Nagarajan, Harish; Zengler, Karsten; Chitsaz, Hamidreza

    2016-01-01

    As the vast majority of all microbes are unculturable, single-cell sequencing has become a significant method to gain insight into microbial physiology. Single-cell sequencing methods, currently powered by multiple displacement genome amplification (MDA), have passed important milestones such as finishing and closing the genome of a prokaryote. However, the quality and reliability of genome assemblies from single cells are still unsatisfactory due to uneven coverage depth and the absence of scattered chunks of the genome in the final collection of reads caused by MDA bias. In this work, our new algorithm Hybrid De novo Assembler (HyDA) demonstrates the power of coassembly of multiple single-cell genomic data sets through significant improvement of the assembly quality in terms of predicted functional elements and length statistics. Coassemblies contain significantly more base pairs and protein coding genes, cover more subsystems, and consist of longer contigs compared to individual assemblies by the same algorithm as well as state-of-the-art single-cell assemblers SPAdes and IDBA-UD. Hybrid De novo Assembler (HyDA) is also able to avoid chimeric assemblies by detecting and separating shared and exclusive pieces of sequence for input data sets. By replacing one deep single-cell sequencing experiment with a few single-cell sequencing experiments of lower depth, the coassembly method can hedge against the risk of failure and loss of the sample, without significantly increasing sequencing cost. Application of the single-cell coassembler HyDA to the study of three uncultured members of an alkane-degrading methanogenic community validated the usefulness of the coassembly concept. HyDA is open source and publicly available at http://chitsazlab.org/software.html, and the raw reads are available at http://chitsazlab.org/research.html. PMID:27243002

  16. Efficient Synergistic Single-Cell Genome Assembly.

    PubMed

    Movahedi, Narjes S; Embree, Mallory; Nagarajan, Harish; Zengler, Karsten; Chitsaz, Hamidreza

    2016-01-01

    As the vast majority of all microbes are unculturable, single-cell sequencing has become a significant method to gain insight into microbial physiology. Single-cell sequencing methods, currently powered by multiple displacement genome amplification (MDA), have passed important milestones such as finishing and closing the genome of a prokaryote. However, the quality and reliability of genome assemblies from single cells are still unsatisfactory due to uneven coverage depth and the absence of scattered chunks of the genome in the final collection of reads caused by MDA bias. In this work, our new algorithm Hybrid De novo Assembler (HyDA) demonstrates the power of coassembly of multiple single-cell genomic data sets through significant improvement of the assembly quality in terms of predicted functional elements and length statistics. Coassemblies contain significantly more base pairs and protein coding genes, cover more subsystems, and consist of longer contigs compared to individual assemblies by the same algorithm as well as state-of-the-art single-cell assemblers SPAdes and IDBA-UD. Hybrid De novo Assembler (HyDA) is also able to avoid chimeric assemblies by detecting and separating shared and exclusive pieces of sequence for input data sets. By replacing one deep single-cell sequencing experiment with a few single-cell sequencing experiments of lower depth, the coassembly method can hedge against the risk of failure and loss of the sample, without significantly increasing sequencing cost. Application of the single-cell coassembler HyDA to the study of three uncultured members of an alkane-degrading methanogenic community validated the usefulness of the coassembly concept. HyDA is open source and publicly available at http://chitsazlab.org/software.html, and the raw reads are available at http://chitsazlab.org/research.html. PMID:27243002

  17. Radiological characterization of spent control rod assemblies

    SciTech Connect

    Lepel, E.A.; Robertson, D.E.; Thomas, C.W.; Pratt, S.L.; Haggard, D.L.

    1995-10-01

    This document represents the final report of an ongoing study to provide radiological characterizations, classifications, and assessments in support of the decommissioning of nuclear power stations. This report describes the results of non-destructive and laboratory radionuclide measurements, as well as waste classification assessments, of BWR and PWR spent control rod assemblies. The radionuclide inventories of these spent control rods were determined by three separate methodologies, including (1) direct assay techniques, (2) calculational techniques, and (3) by sampling and laboratory radiochemical analyses. For the BWR control rod blade (CRB) and PWR burnable poison rod assembly (BPRA), {sup 60}Co and {sup 63}Ni, present in the stainless steel cladding, were the most abundant neutron activation products. The most abundant radionuclide in the PWR rod cluster control assembly (RCCA) was {sup 108m}Ag (130 yr halflife) produced in the Ag-In-Cd alloy used as the neutron poison. This radionuclide will be the dominant contributor to the gamma dose rate for many hundreds of years. The results of the direct assay methods agree very well ({+-}10%) with the sampling/radiochemical measurements. The results of the calculational methods agreed fairly well with the empirical measurements for the BPRA, but often varied by a factor of 5 to 10 for the CRB and the RCCA assemblies. If concentration averaging and encapsulation, as allowed by 10CFR61.55, is performed, then each of the entire control assemblies would be classified as Class C low-level radioactive waste.

  18. Early assembly of the most massive galaxies.

    PubMed

    Collins, Chris A; Stott, John P; Hilton, Matt; Kay, Scott T; Stanford, S Adam; Davidson, Michael; Hosmer, Mark; Hoyle, Ben; Liddle, Andrew; Lloyd-Davies, Ed; Mann, Robert G; Mehrtens, Nicola; Miller, Christopher J; Nichol, Robert C; Romer, A Kathy; Sahlén, Martin; Viana, Pedro T P; West, Michael J

    2009-04-01

    The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic-sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 billion years after the Big Bang, having grown to more than 90 per cent of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark-matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22 per cent of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly. PMID:19340075

  19. Self-Assembly of Tetraphenylalanine Peptides.

    PubMed

    Mayans, Enric; Ballano, Gema; Casanovas, Jordi; Díaz, Angélica; Pérez-Madrigal, Maria M; Estrany, Francesc; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos

    2015-11-16

    Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists of three FFFF molecules defining a ring through head-to-tail NH3(+)⋅⋅⋅(-)OOC interactions, which in turn stack to produce deformed channels with internal diameters between 12 and 16 Å. Depending on the experimental conditions used for the peptide incubation, N-fluorenylmethoxycarbonyl (Fmoc) protected FFFF self-assembles into a variety of polymorphs: ultra-thin nanoplates, fibrils, and star-like submicrometric aggregates. DFT calculations indicate that Fmoc-FFFF prefers a parallel rather than an antiparallel β-sheet assembly. Finally, coexisting multiple assemblies (up to three) were observed for Fmoc-FFFF-OBzl (OBzl = benzyl ester), which incorporates aromatic protecting groups at the two peptide terminals. This unusual and noticeable feature is attributed to the fact that the assemblies obtained by combining the Fmoc and OBzl groups contained in the peptide are isoenergetic. PMID:26419936

  20. Nondestructive Evaluation of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    The final report consists of 5 published papers in referred journals and a technical letter to the technical monitor. These papers include the following: (1) Comparison of the effects of debonds and voids in adhesive; (2) On the peak shear stresses in adhesive joints with voids; (3) Nondestructive evaluation of adhesively bonded joints by acousto-ultrasonic technique and acoustic emission; (4) Multiaxial fatigue life evaluation of tubular adhesively bonded joints; (5) Theoretical and experimental evaluation of the bond strength under peeling loads. The letter outlines the progress of the research. Also included is preliminary information on the study of nondestructive evaluation of composite materials subjected to localized heat damage. The investigators studied the effects of localized heat on unidirectional fiber glass epoxy composite panels. Specimens of the fiber glass epoxy composites were subjected to 400 C heat for varying lengths of time. The specimens were subjected to nondestructive tests. The specimens were then pulled to their failure and acoustic emission of these specimens were measured. The analysis of the data was continuing as of the writing of the letter, and includes a finite element stress analysis of the problem.

  1. Human Assisted Assembly Processes

    SciTech Connect

    CALTON,TERRI L.; PETERS,RALPH R.

    2000-01-01

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  2. High performance low cost interconnections for flip chip attachment with electrically conductive adhesive. Final report

    SciTech Connect

    1998-05-01

    This final report is a compilation of final reports from each of the groups participating in the program. The main three groups involved in this effort are the Thomas J. Watson Research Center of IBM Corporation in Yorktown Heights, New York, Assembly Process Design of IBM Corporation in Endicott, New York, and SMT Laboratory of Universal Instruments Corporation in Binghamton, New York. The group at the research center focused on the conductive adhesive materials development and characterization. The group in process development focused on processing of the Polymer-Metal-Solvent Paste (PMSP) to form conductive adhesive bumps, formation of the Polymer-Metal Composite (PMC) on semiconductor devices and study of the bonding process to circuitized organic carriers, and the long term durability and reliability of joints formed using the process. The group at Universal Instruments focused on development of an equipment set and bonding parameters for the equipment to produce bond assembly tooling. Reports of each of these individual groups are presented here reviewing their technical efforts and achievements.

  3. Mechanical Joint Laxity Associated With Chronic Ankle Instability

    PubMed Central

    Cordova, Mitchell L.; Sefton, JoEllen M.; Hubbard, Tricia J.

    2010-01-01

    Context: Lateral ankle sprains can manifest into chronic mechanical joint laxity when not treated effectively. Joint laxity is often measured through the use of manual stress tests, stress radiography, and instrumented ankle arthrometers. Purpose: To systematically review the literature to establish the influence of chronic ankle instability (CAI) on sagittal and frontal plane mechanical joint laxity. Data Sources: Articles were searched with MEDLINE (1966 to October 2008), CINAHL (1982 to October 2008), and the Cochrane Database of Systematic Reviews (to October 2008) using the key words chronic ankle instability and joint laxity, functional ankle instability and joint laxity, and lateral ankle sprains and joint laxity. Study Selection: To be included, studies had to employ a case control design; mechanical joint laxity had to be measured via a stress roentogram, an instrumented ankle arthrometer, or ankle/foot stress-testing device; anteroposterior inversion or eversion ankle-subtalar joint complex laxity had to be measured; and means and standard deviations of CAI and control groups had to be provided. Data Extraction: One investigator assessed each study based on the criteria to ensure its suitability for analysis. The initial search yielded 1378 potentially relevant articles, from which 8 were used in the final analysis. Once the study was accepted for inclusion, its quality was assessed with the PEDro scale. Data Synthesis: Twenty-one standardized effect sizes and their 95% confidence intervals were computed for each group and dependent variable. CAI produced the largest effect on inversion joint laxity; 45% of the effects ranged from 0.84 to 2.61. Anterior joint laxity measures were influenced second most by CAI (effects, 0.32 to 1.82). CAI had similar but less influence on posterior joint laxity (effects, −0.06 to 0.68) and eversion joint laxity (effects, 0.03 to 0.69). Conclusion: CAI has the largest effect with the most variability on anterior and

  4. A mobile work station concept for mechanically aided astronaut assembly of large space trusses

    NASA Technical Reports Server (NTRS)

    Heard, W. L., Jr.; Bush, H. G.; Wallson, R. E.; Jensen, J. K.

    1983-01-01

    This report presents results of a series of truss assembly tests conducted to evaluate a mobile work station concept intended to mechanically assist astronaut manual assembly of erectable space trusses. The tests involved assembly of a tetrahedral truss beam by a pair of test subjects with and without pressure (space) suits, both in Earth gravity and in simulated zero gravity (neutral buoyancy in water). The beam was assembled from 38 identical graphite-epoxy nestable struts, 5.4 m in length with aluminum quick-attachment structural joints. Struts and joints were designed to closely simulate flight hardware. The assembled beam was approximately 16.5 m long and 4.5 m on each of the four sides of its diamond-shaped cross section. The results show that average in-space assembly rates of approximately 38 seconds per strut can be expected for struts of comparable size. This result is virtually independent of the overall size of the structure being assembled. The mobile work station concept would improve astronaut efficiency for on-orbit manual assembly of truss structures, and also this assembly-line method is highly competitive with other construction methods being considered for large space structures.

  5. Passive Ball Capture Joint

    NASA Technical Reports Server (NTRS)

    Cloyd, Richard A. (Inventor); Bryan, Thomas C. (Inventor)

    2003-01-01

    A passive ball capture joint has a sleeve with a plurality of bores distributed about a circumference thereof and formed therethrough at an acute angle relative to the sleeve's longitudinal axis. A spring-loaded retainer is slidingly fitted in each bore and is biased such that, if allowed, will extend at least partially into the sleeve to retain a ball therein. A ring, rotatably mounted about the bores, has an interior wall defining a plurality of shaped races that bear against the spring-loaded retainers. A mechanized rotational force producer is coupled to the ring. The ring can be rotated from a first position (that presses the retainers into the sleeve to lock the ball in place) to a second position (that allows the retainers to springback out of the sleeve to release the ball).

  6. CRUCIFORM CONTROL ROD JOINT

    DOEpatents

    Thorp, A.G. II

    1962-08-01

    An invention is described which relates to nuclear reactor control rod components and more particularly to a joint between cruciform control rod members and cruciform control rod follower members. In one embodiment this invention provides interfitting crossed arms at adjacent ends of a control rod and its follower in abutting relation. This holds the members against relative opposite longitudinal movement while a compression member keys the arms against relative opposite rotation around a common axis. Means are also provided for centering the control rod and its follower on a common axis and for selectively releasing the control rod from its follower for the insertion of a replacement of the control rod and reuse of the follower. (AEC)

  7. Corynebacterium Prosthetic Joint Infection

    PubMed Central

    Cazanave, Charles; Greenwood-Quaintance, Kerryl E.; Hanssen, Arlen D.

    2012-01-01

    Identification of Corynebacterium species may be challenging. Corynebacterium species are occasional causes of prosthetic joint infection (PJI), but few data are available on the subject. Based on the literature, C. amycolatum, C. aurimucosum, C. jeikeium, and C. striatum are the most common Corynebacterium species that cause PJI. We designed a rapid PCR assay to detect the most common human Corynebacterium species, with a specific focus on PJI. A polyphosphate kinase gene identified using whole-genome sequence was targeted. The assay differentiates the antibiotic-resistant species C. jeikeium and C. urealyticum from other species in a single assay. The assay was applied to a collection of human Corynebacterium isolates from multiple clinical sources, and clinically relevant species were detected. The assay was then tested on Corynebacterium isolates specifically associated with PJI; all were detected. We also describe the first case of C. simulans PJI. PMID:22337986

  8. Three-Year-Olds’ Understanding of the Consequences of Joint Commitments

    PubMed Central

    Gräfenhain, Maria; Carpenter, Malinda; Tomasello, Michael

    2013-01-01

    Here we investigate the extent of children’s understanding of the joint commitments inherent in joint activities. Three-year-old children either made a joint commitment to assemble a puzzle with a puppet partner, or else the child and puppet each assembled their own puzzle. Afterwards, children who had made the joint commitment were more likely to stop and wait for their partner on their way to fetch something, more likely to spontaneously help their partner when needed, and more likely to take over their partner’s role when necessary. There was no clear difference in children’s tendency to tattle on their partner’s cheating behavior or their tendency to distribute rewards equally at the end. It thus appears that by 3 years of age making a joint commitment to act together with others is beginning to engender in children a “we”-intentionality which holds across at least most of the process of the joint activity until the shared goal is achieved, and which withstands at least some of the perturbations to the joint activity children experience. PMID:24023805

  9. Three-year-olds' understanding of the consequences of joint commitments.

    PubMed

    Gräfenhain, Maria; Carpenter, Malinda; Tomasello, Michael

    2013-01-01

    Here we investigate the extent of children's understanding of the joint commitments inherent in joint activities. Three-year-old children either made a joint commitment to assemble a puzzle with a puppet partner, or else the child and puppet each assembled their own puzzle. Afterwards, children who had made the joint commitment were more likely to stop and wait for their partner on their way to fetch something, more likely to spontaneously help their partner when needed, and more likely to take over their partner's role when necessary. There was no clear difference in children's tendency to tattle on their partner's cheating behavior or their tendency to distribute rewards equally at the end. It thus appears that by 3 years of age making a joint commitment to act together with others is beginning to engender in children a "we"-intentionality which holds across at least most of the process of the joint activity until the shared goal is achieved, and which withstands at least some of the perturbations to the joint activity children experience. PMID:24023805

  10. Flight set 360T004 (STS-30) field joint protection system, volume 7

    NASA Technical Reports Server (NTRS)

    Hale, Elgie

    1989-01-01

    The Redesigned Solid Rocket Motors (RSRM) of the Space Transportation System have three field joints that are protected by the Joint Protection Systems (JPS). The igniter heater was mounted on the igniter flange. This report documents the performance of the JPS and igniter heaters on the pad and the post-flight condition of the JPS components. All observations that were written up as Squawks and/or Problem Reports are also discussed. The primary heaters performed satisfactorily and maintained the field joint temperatures within the required temperature range. A secondary heater failed Dielectric Withstanding Voltage (DWV) test during the joint closeout prior to launch. This heater was not used, however, since the primary heater functioned properly. Post-test inspection revealed that pin A of the heater power cable was shorted to the connector shell. Design changes have been implemented to resolve the heater power cable problem. All field joint assemblies met all of the performance requirements.

  11. Ultrasonic scanning system for in-place inspection of brazed tube joints

    NASA Technical Reports Server (NTRS)

    Haynes, J. L.; Wages, C. G.; Haralson, H. S. (Inventor)

    1973-01-01

    A miniaturized ultrasonic scanning system for nondestructive in-place, non-immersion testing of brazed joints in stainless-steel tubing is described. The system is capable of scanning brazed tube joints, with limited clearance access, in 1/4 through 5/8 inch union, tee, elbow and cross configurations. The system has the capability to detect defective conditions now associated with material density changes in addition to those which are depended upon density variations. The system includes a miniaturized scanning head assembly that fits around a tube joint and rotates the transducer around and down the joint in a continuous spiral motion. The C-scan recorder is similar in principle to conventional models except that it was specially designed to track the continuous spiral scan of the tube joint. The scanner and recorder can be operated with most commercially available ultrasonic flaw detectors.

  12. Inaudible temporomandibular joint vibrations.

    PubMed

    Widmalm, Sven E; Bae, Hanna E K; Djurdjanovic, Dragan; McKay, Duane C

    2006-07-01

    The aim was to test the hypothesis that inaudible vibrations with significant amounts of energy increasing during jaw movements can be recorded in the temporomandibular joint (TMJ) area. Twenty one subjects, who could perform wide opening movements without feeling discomfort, 12 with and 9 without TMJ sounds audible at conventional auscultation with a stethoscope, were included. Recordings were made during opening-closing, 2/s without tooth contact, and during mandibular rest, using accelerometers with a flat frequency response between the filter cutoff frequencies 0.1 Hz and 1000 Hz. The signals were digitized using a 24 bits card and sampled with the rate 96000 Hz. Power spectral analyses, and independent and paired samples t-tests were used in the analysis of the vibration power observed in frequency bands corresponding to audible and inaudible frequencies. An alpha-level of 5% was chosen for accepting a difference as being significant. In the group with audible sounds, about 47% of the total vibration energy was in the inaudible area below 20 Hz during opening-closing and about 76% during mandibular rest. In the group without audible sounds, the corresponding proportions were significantly different, 85% vs. 69%. The energy content of the vibrations, both those below and those above 20 Hz, increased significantly during jaw movement in both groups. Furthermore, percentage of signal energy above 20 Hz showed a noticeable increase in the group of subjects with audible sounds. This can physically be explained by decreased damping properties of damaged tissues surrounding the TMJ. Vibrations in the TMJ area can be observed with significant portions in the inaudible area below 20 Hz both during mandibular rest and during jaw movements whether or not the subjects have audible joint sounds. Further studies are needed to identify sources and evaluate possible diagnostic value. PMID:16933462

  13. Hybrid microcircuit board assembly with lead-free solders

    SciTech Connect

    Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.

    2000-01-11

    An assessment was made of the manufacturability of hybrid microcircuit test vehicles assembled using three Pb-free solder compositions 96.5Sn--3.5Ag (wt.%), 91.84Sn--3.33Ag--4.83Bi, and 86.85Sn--3.15Ag--5.0Bi--5.0Au. The test vehicle substrate was 96% alumina; the thick film conductor composition was 76Au--21Pt--3Pd. Excellent registration between the LCCC or chip capacitor packages and the thick film solder pads was observed. Reduced wetting of bare (Au-coated) LCCC castellations was eliminated by hot solder dipping the I/Os prior to assembly of the circuit card. The Pb-free solders were slightly more susceptible to void formation, but not to a degree that would significantly impact joint functionality. Microstructural damage, while noted in the Sn-Pb solder joints, was not observed in the Pb-free interconnects.

  14. Assemblies of Conformal Tanks

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2009-01-01

    Assemblies of tanks having shapes that conform to each other and/or conform to other proximate objects have been investigated for use in storing fuels and oxidizers in small available spaces in upper stages of spacecraft. Such assemblies might also prove useful in aircraft, automobiles, boats, and other terrestrial vehicles in which space available for tanks is limited. The basic concept of using conformal tanks to maximize the utilization of limited space is not new in itself: for example, conformal tanks are used in some automobiles to store windshield -washer liquid and coolant that overflows from radiators. The novelty of the present development lies in the concept of an assembly of smaller conformal tanks, as distinguished from a single larger conformal tank. In an assembly of smaller tanks, it would be possible to store different liquids in different tanks. Even if the same liquid were stored in all the tanks, the assembly would offer an advantage by reducing the mechanical disturbance caused by sloshing of fuel in a single larger tank: indeed, the requirement to reduce sloshing is critical in some applications. The figure shows a prototype assembly of conformal tanks. Each tank was fabricated by (1) copper plating a wax tank mandrel to form a liner and (2) wrapping and curing layers of graphite/epoxy composite to form a shell supporting the liner. In this case, the conformal tank surfaces are flat ones where they come in contact with the adjacent tanks. A band of fibers around the outside binds the tanks together tightly in the assembly, which has a quasi-toroidal shape. For proper functioning, it would be necessary to maintain equal pressure in all the tanks.

  15. WHO: World Health Assembly.

    PubMed

    McGregor, A

    1992-05-23

    1200 delegates from 175 member countries attended the 45th World Health Assembly in Geneva. Everyone at the Assembly ratified measures to prevent and control AIDS. 12 countries intended to do long term planning for community based care for AIDS patients. Further the Assembly denounced instances where countries and individuals denied the gravity of the AIDS pandemic. In fact, it expressed the importance for urgent and intensive action against HIV/AIDS. The assembly backed proposals to prevent and control sexually transmitted diseases that affect AIDS patients, especially hepatitis B. For example, in countries with hepatitis B prevalence 8% (many countries in Sub-Sahara Africa, Asia, the Pacific region, and South America), health officials should introduce hepatitis B vaccine into their existing immunization programs by 1995. By 1997, this vaccine should be part of all immunization programs. The Assembly was aware of the obstacles of establishing reliable cold chains for nationwide distribution, however. Delegates in Committee A objected to the fact that 50% of the populations of developing countries continued to have limited access to essential drugs. They also expressed disapproval in implementation of WHO's 1988 ethical criteria for promotion of drugs which WHO entrusted to the Council for International Organisations of Medical Sciences (CIOMS). CIOMS lacked WHO's status and thus could not effectively monitor drug advertising. In fact, the pharmaceutical industry as well as WHO provided the funds for a meeting of 25 experts to discuss principles included in the ethical criteria. At least 4 countries insisted that WHO have the ultimate authority in monitoring drug advertising. Delegates did adopt a compromise resolution on this topic which required that industry promotion methods be reported to the 1994 Assembly via the Executive Board. The Assembly requested WHO to establish an international advisory committee on nursing and midwifery and to improve the network of

  16. Investigation Leads to Improved Understanding of Space Shuttle RSRM Internal Insulation Joints

    NASA Technical Reports Server (NTRS)

    McWhorter, Bruce B.; Bolton, Doug E.; Hicken, Steve V.; Allred, Larry D.; Cook, Dave J.

    2003-01-01

    The Space Shuttle Reusable Solid Rocket Motor (RSRM) uses an internal insulation J-joint design for the mated insulation interface between two assembled RSRM segments. In this assembled (mated) segment configuration, this J-joint design serves as a thermal barrier to prevent hot gases from affecting the case field joint metal surfaces and O-rings. A pressure sensitive adhesive (PSA) provides some adhesion between the two mated insulation surfaces. In 1995, after extensive testing, a new ODC-free PSA (free of ozone depleting chemicals) was selected for flight on RSRM-55 (STS-78). Post-flight inspection revealed that the J-joint, equipped with the new ODC-free PSA, did not perform well. Hot gas seeped inside the J-joint interface. Although not a flight safety threat, the J-joint hot gas intrusion on RSRM-55 was a mystery to the investigators since the PSA had previously worked well on a full-scale static test. A team was assembled to study the J-joint and PSA further. All J-joint design parameters, measured data, and historical performance data were re-reviewed and evaluated by subscale testing and analysis. Although both the ODC-free and old PSA were weakened by humidity, the ODC-free PSA strength was lower to start with. Another RSRM full-scale static test was conducted in 1998 and intentionally duplicated the gas intrusion. This test, along with many concurring tests, showed that if a J-joint was 1) mated with the new ODC-free PSA, 2) exposed to a history of high humidity (Kennedy Space Center levels), and 3) also a joint which experienced significant but normal joint motion (J-joint deformation resulting from motor pressurization dynamics) then that J-joint would open (allow gas intrusion) during motor operation. When all of the data from the analyses, subscale tests, and full-scale tests were considered together, a theory emerged. Most of the joint motion on the RSRM occurs early in motor operation at which point the J-joints are pulled into tension. If the new

  17. Use of high and low frequency dielectric measurements in the NDE of adhesively bonded composite joints

    NASA Astrophysics Data System (ADS)

    Pethrick, R. A.; Hayward, D.; McConnell, B. K.; Crane, R. L.

    2005-05-01

    Dielectric spectroscopy has been developed as a non-destructive technique for assessment of moisture content and structural integrity of adhesively bonded joints. Knowledge of these parameters is particularly crucial for the aerospace industry, since environmental degradation of adhesive joints presents a major limit on their utilization. High and low frequency measurements have been carried out on joints assembled from CFRP adherend, and a commercially available adhesive (AF 163-2K). The samples have been aged in deionised water at 75oC to chart the effect water ingress has on bond durability. In addition, some joints have been exposed to cryogenic temperatures to mimic the conditions joints experience whilst an aircraft is in flight. In this way it has been possible to determine the extent of degradation caused by freezing of water within the joint structure. Dielectric behaviour of the joints was studied in both the frequency and in the time domain. Frequency domain analysis allows the amount and effects of moisture ingress in the bondline to be assessed, whereas the time domain highlights the onset of joint defects with increasing exposure time. Mechanical testing of the joints has been carried out to enable correlation between changes in strength and failure mechanism due to moisture ingress, with changes in the dielectric data. In addition, dielectric studies of the neat adhesive have been undertaken, as have gravimetric and dynamic mechanical thermal analysis. These have helped reveal the effects of ageing upon the adhesive layer itself.

  18. Bone and Joint Infections in Older Adults.

    PubMed

    Mears, Simon C; Edwards, Paul K

    2016-08-01

    Bone and joint infections in the elderly patient include septic native joints, osteomyelitis, and prosthetic joint infection. Infections are difficult to treat and require a team approach. Surgical debridement and intravenous antibiotics are the keys to treatment. Prosthetic joint infections often need a two-stage approach to treatment. First the infected joint is removed and the infection treated, then a second prosthetic joint is placed. Prosthetic joint infection is becoming the most common complication after joint replacement surgery. Outcomes of treatment of bone and joint infections are related to the severity of the infection and condition of the host. Because the elderly are often frail, treatment is challenging. PMID:27394023

  19. Robotic joint experiments under ultravacuum

    NASA Technical Reports Server (NTRS)

    Borrien, A.; Petitjean, L.

    1988-01-01

    First, various aspects of a robotic joint development program, including gearbox technology, electromechanical components, lubrication, and test results, are discussed. Secondly, a test prototype of the joint allowing simulation of robotic arm dynamic effects is presented. This prototype is tested under vacuum with different types of motors and sensors to characterize the functional parameters: angular position error, mechanical backlash, gearbox efficiency, and lifetime.

  20. Exercise and the Knee Joint.

    ERIC Educational Resources Information Center

    Clarke, H. Harrison, Ed.

    1976-01-01

    This report by the President's Council on Physical Fitness and Sports examines the effects of various forms of physical exercise on the knee joint which, because of its vulnerability, is especially subject to injury. Discussion centers around the physical characteristics of the joint, commonly used measurements for determining knee stability,…