Science.gov

Sample records for joint surface injury

  1. Registration of knee joint surfaces for the in vivo study of joint injuries based on magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Rita W. T.; Habib, Ayman F.; Frayne, Richard; Ronsky, Janet L.

    2006-03-01

    In-vivo quantitative assessments of joint conditions and health status can help to increase understanding of the pathology of osteoarthritis, a degenerative joint disease that affects a large population each year. Magnetic resonance imaging (MRI) provides a non-invasive and accurate means to assess and monitor joint properties, and has become widely used for diagnosis and biomechanics studies. Quantitative analyses and comparisons of MR datasets require accurate alignment of anatomical structures, thus image registration becomes a necessary procedure for these applications. This research focuses on developing a registration technique for MR knee joint surfaces to allow quantitative study of joint injuries and health status. It introduces a novel idea of translating techniques originally developed for geographic data in the field of photogrammetry and remote sensing to register 3D MR data. The proposed algorithm works with surfaces that are represented by randomly distributed points with no requirement of known correspondences. The algorithm performs matching locally by identifying corresponding surface elements, and solves for the transformation parameters relating the surfaces by minimizing normal distances between them. This technique was used in three applications to: 1) register temporal MR data to verify the feasibility of the algorithm to help monitor diseases, 2) quantify patellar movement with respect to the femur based on the transformation parameters, and 3) quantify changes in contact area locations between the patellar and femoral cartilage at different knee flexion angles. The results indicate accurate registration and the proposed algorithm can be applied for in-vivo study of joint injuries with MRI.

  2. Distal radioulnar joint injuries.

    PubMed

    Thomas, Binu P; Sreekanth, Raveendran

    2012-09-01

    Distal radioulnar joint is a trochoid joint relatively new in evolution. Along with proximal radioulnar joint, forearm bones and interosseous membrane, it allows pronosupination and load transmission across the wrist. Injuries around distal radioulnar joint are not uncommon, and are usually associated with distal radius fractures,fractures of the ulnar styloid and with the eponymous Galeazzi or Essex_Lopresti fractures. The injury can be purely involving the soft tissue especially the triangular fibrocartilage or the radioulnar ligaments. The patients usually present with ulnar sided wrist pain, features of instability, or restriction of rotation. Difficulty in carrying loads in the hand is a major constraint for these patients. Thorough clinical examination to localize point of tenderness and appropriate provocative tests help in diagnosis. Radiology and MRI are extremely useful, while arthroscopy is the gold standard for evaluation. The treatment protocols are continuously evolving and range from conservative, arthroscopic to open surgical methods. Isolated dislocation are uncommon. Basal fractures of the ulnar styloid tend to make the joint unstable and may require operative intervention. Chronic instability requires reconstruction of the stabilizing ligaments to avoid onset of arthritis. Prosthetic replacement in arthritis is gaining acceptance in the management of arthritis. PMID:23162140

  3. Management of acromioclavicular joint injuries.

    PubMed

    Li, Xinning; Ma, Richard; Bedi, Asheesh; Dines, David M; Altchek, David W; Dines, Joshua S

    2014-01-01

    Acromioclavicular joint injuries are among the most common shoulder girdle injuries in athletes and most commonly result from a direct force to the acromion with the arm in an adducted position. Acromioclavicular joint injuries often present with associated injuries to the glenohumeral joint, including an increased incidence of superior labrum anterior posterior (SLAP) tears that may warrant further evaluation and treatment. Anteroposterior stability of the acromioclavicular joint is conferred by the capsule and acromioclavicular ligaments, of which the posterior and superior ligaments are the strongest. Superior-inferior stability is maintained by the coracoclavicular (conoid and trapezoid) ligaments. Type-I or type-II acromioclavicular joint injuries have been treated with sling immobilization, early shoulder motion, and physical therapy, with favorable outcomes. Return to activity can occur when normal shoulder motion and strength are obtained and the shoulder is asymptomatic as compared with the contralateral normal extremity. The management of type-III injuries remains controversial and is individualized. While a return to the previous level of functional activity with nonsurgical treatment has been documented in a number of case series, surgical reduction and coracoclavicular ligament reconstruction has been associated with a favorable outcome and can be considered in patients who place high functional demands on their shoulders or in athletes who participate in overhead sports. Surgical management is indicated for high-grade (≥type IV) acromioclavicular joint injuries to achieve anatomic reduction of the acromioclavicular joint, reconstruction of the coracoclavicular ligaments, and repair of the deltotrapezial fascia. Outcomes after surgical reconstruction of the coracoclavicular ligaments have been satisfactory with regard to achieving pain relief and return to functional activities, but further improvements in the biomechanical strength of these

  4. Computationally efficient magnetic resonance imaging based surface contact modeling as a tool to evaluate joint injuries and outcomes of surgical interventions compared to finite element modeling.

    PubMed

    Johnson, Joshua E; Lee, Phil; McIff, Terence E; Toby, E Bruce; Fischer, Kenneth J

    2014-04-01

    Joint injuries and the resulting posttraumatic osteoarthritis (OA) are a significant problem. There is still a need for tools to evaluate joint injuries, their effect on joint mechanics, and the relationship between altered mechanics and OA. Better understanding of injuries and their relationship to OA may aid in the development or refinement of treatment methods. This may be partially achieved by monitoring changes in joint mechanics that are a direct consequence of injury. Techniques such as image-based finite element modeling can provide in vivo joint mechanics data but can also be laborious and computationally expensive. Alternate modeling techniques that can provide similar results in a computationally efficient manner are an attractive prospect. It is likely possible to estimate risk of OA due to injury from surface contact mechanics data alone. The objective of this study was to compare joint contact mechanics from image-based surface contact modeling (SCM) and finite element modeling (FEM) in normal, injured (scapholunate ligament tear), and surgically repaired radiocarpal joints. Since FEM is accepted as the gold standard to evaluate joint contact stresses, our assumption was that results obtained using this method would accurately represent the true value. Magnetic resonance images (MRI) of the normal, injured, and postoperative wrists of three subjects were acquired when relaxed and during functional grasp. Surface and volumetric models of the radiolunate and radioscaphoid articulations were constructed from the relaxed images for SCM and FEM analyses, respectively. Kinematic boundary conditions were acquired from image registration between the relaxed and grasp images. For the SCM technique, a linear contact relationship was used to estimate contact outcomes based on interactions of the rigid articular surfaces in contact. For FEM, a pressure-overclosure relationship was used to estimate outcomes based on deformable body contact interactions. The SCM

  5. Joint-sparing Corrections in Malunited Lisfranc Joint Injuries.

    PubMed

    Nery, Caio; Raduan, Fernando; Baumfeld, Daniel

    2016-03-01

    Lisfranc fracture-dislocations are very serious and potentially disabling injuries. Unfortunately, they are often misdiagnosed. Multiplanar midfoot deformities that result from these fracture-dislocations are precursors of joint degeneration and significant functional disabilities. Anatomic reduction with different types of internal fixation is an efficient method to reconstruct midfoot alignment and stability. Joint-preserving reconstruction techniques emerge as a viable alternative to corrective fusion as they achieve stable joint realignment with preserved motion. PMID:26915786

  6. Fracture dislocation of carpometacarpal joints: a missed injury.

    PubMed

    Gaheer, Rajinder Singh; Ferdinand, Rupert D

    2011-05-01

    Fracture dislocation of the carpometacarpal joints on the ulnar side of the hand is an uncommon injury. These are high-energy injuries seen in motorcyclists and boxers. The mechanism of injury involves violent, forceful dorsiflexion of the wrist combined with longitudinal impact on the closed hand. This article reports a case of fracture of the base of the middle finger with dislocation of the ring and little finger carpometacarpal joints. On first examination, a diagnosis of isolated, minimally-displaced, middle-metacarpal base fracture was made and deemed suitable for nonoperative management. The hand was splinted in a plaster-of-Paris slab. Later, a true lateral radiograph showed the exact nature of the injury. The fracture was successfully treated with closed reduction under general anesthesia and transfixation using Kirschner wires. Functional results were excellent with return to work at 10 weeks and excellent grip strength at 14 weeks. This injury may be missed in an acute setting in a busy accident and emergency unit. Swelling around the wrist with shortening of the knuckle should alert the clinician towards the possibility of such an injury. On routine anteroposterior view, overlap of joint surfaces, loss of parallelism, and asymmetry at the carpometacarpal joints should raise suspicion of the possibility of a subtle carpometacarpal injury. This article highlights the importance of a high index of suspicion, a true lateral radiograph, and careful evaluation of radiographs in diagnosing these injuries. Intensive postoperative physiotherapy is vital to achieving a satisfactory outcome. PMID:21598884

  7. [Chronic sports injuries of the knee joint].

    PubMed

    Mannil, M; Andreisek, G; Weishaupt, D; Fischer, M A

    2016-05-01

    Chronic sports injuries of the knee joint are common and mainly caused by repetitive (micro) trauma and exertion. Chronic insertion tendinopathies and avulsion fractures and symptoms related to entrapment, friction and impingement can be pathophysiologically distinguished in athletes. In this review, we depict the characteristic magnetic resonance imaging (MRI) findings of the most commonly occurring pathologies. PMID:27118369

  8. Pure Varus Injury to the Knee Joint.

    PubMed

    Yoo, Jae Ho; Lee, Jung Ha; Chang, Chong Bum

    2015-06-01

    A 30-year-old male was involved in a car accident. Radiographs revealed a depressed marginal fracture of the medial tibial plateau and an avulsion fracture of the fibular head. Magnetic resonance imaging showed avulsion fracture of Gerdy's tubercle, injury to the posterior cruciate ligament (PCL), posterior horn of the medial meniscus, and the attachments of the lateral collateral ligament and the biceps femoris tendon. The depressed fracture of the medial tibial plateau was elevated and stabilized using a cannulated screw and washer. The injured lateral and posterolateral corner (PLC) structures were repaired and augmented by PLC reconstruction. However, the avulsion fracture of Gerdy's tubercle was not fixed because it was minimally displaced and the torn PCL was also not repaired or reconstructed. We present a unique case of pure varus injury to the knee joint. This case contributes to our understanding of the mechanism of knee injury and provides insight regarding appropriate treatment plans for this type of injury. PMID:26217477

  9. Irreducible Fifth Metatarsophalangeal Joint after Car Crush Injury

    PubMed Central

    Turkmensoy, Fatih; Erinc, Samet; Ergin, Omer Naci; Ozkan, Korhan; Kemah, Bahattin

    2015-01-01

    Metatarsophalangeal joint dislocations are uncommon injuries. Herein, an irreducible dislocation of fifth metatarsophalangeal joint with fractures on the second, third, and fourth metatarsal head was reported. Joint reduction could not be achieved which necessitated open reduction. Six months after surgery the patient was walking and doing his daily activities without any complaints. He had returned to his pretrauma functional level. PMID:25861501

  10. Bilateral tarsometatarsal joint injuries: An unusual mechanism producing unusual variants.

    PubMed

    Young, P S; Clement, V L; Lomax, A; Badhesha, J; Miller, R J; Mahendra, A

    2015-06-01

    Tarsometatarsal (Lisfranc) joint injuries are rare but potentially devastating conditions requiring anatomical reduction and internal fixation or arthrodesis. We describe an unusual mechanism involving forced eversion and dorsiflexion on both fully supinated feet resulting in bilateral tarsometatarsal joint injury. The injury pattern involved incongruity between the medial and middle columns extending between the cuneiform bones with associated fracture of the cuboid on the right and the cuboid, os calcis and talus on the left. Operative fixation is discussed and the clinical outcome was good at 4 years post-operatively. We believe this introduces an additional and potentially serious mechanism of injury and pattern of ligamentous and osseous disruption into the pantheon of injuries classed as Lisfranc, which surgeons should be aware of. Furthermore, we recommend attention to the mechanism of injury in consideration with classification to aid in operative reduction and fixation. PMID:25510168

  11. Sideline evaluation and treatment of bone and joint injury.

    PubMed

    Schupp, Christian M

    2009-01-01

    Athletes can sustain a large variety of injuries, from simple soft-tissue sprains to complex fractures and dislocations. This article reviews and provides the most recent information for sports medicine professionals on the initial assessment and treatment from the sports sidelines without the benefit of imaging of bone and joint injuries (excluding facial injuries). This information will aid sports medicine professionals by giving them basic suggestions that may allow for the safe and prompt return of athletes to the field of play. PMID:19436166

  12. Generalized Models for Rock Joint Surface Shapes

    PubMed Central

    Du, Shigui; Hu, Yunjin; Hu, Xiaofei

    2014-01-01

    Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough. PMID:25152901

  13. Plantarflexion injury to the metatarsophalangeal joint ("sand toe").

    PubMed

    Frey, C; Andersen, G D; Feder, K S

    1996-09-01

    This is a retrospective study of 12 cases of hyperplantarflexion injuries to the great toe and the lesser toes sustained in professional beach volleyball players. The hyperplantarflexion injury to the metatarsophalangeal joint, referred to as "sand toe," can result in significant functional disability. Push-off, forward drive, running, and jumping are compromised. The average player in this series took 6 months to fully recover from the injury, and the most common problem after injury was the loss of dorsiflexion, seen in six players. Five players had residual discomfort in the injured toe, and two demonstrated an unstable toe. Individuals who experience sand toe injuries should be treated conservatively, with taping, anti-inflammatory medications, shoe wear modification, ice, and rest. A toe strengthening program is also presented. PMID:8886789

  14. Acromioclavicular joint dislocation with associated brachial plexus injury

    PubMed Central

    Gallagher, Charles Alexander; Blakeney, William; Zellweger, René

    2014-01-01

    We present the case of a 32-year-old female who sustained a left acromioclavicular (AC) joint type V injury and brachial plexus injury. The patient's AC joint injury was identified 6 days after she was involved in a motorbike accident where she sustained multiple other injuries. She required operative fixation of the AC joint using a locking compression medial proximal tibial plate. At 3 months post operatively, the patient was found to have a subluxed left shoulder as a result of an axonal injury to the upper trunk of the brachial plexus. In addition, the tibial plate had cut out. The plate was subsequently removed. At 8 months the glenohumeral articulation had been restored and the patient had clinically regained significant shoulder function. After 15 months the patient was pain free and could complete all her activities of daily living without impediment. She returned to playing competitive pool after 24 months. PMID:24855076

  15. An Interesting Case of Gunshot Injury to the Temporomandibular Joint

    PubMed Central

    Pires, Mário Sergio Medeiros; Giongo, Caroline Comis; Antonello, Guilherme de Marco; Couto, Ricardo Torres do; Filho, Ruy de Oliveira Veras; Junior, Otacílio Luiz Chagas

    2014-01-01

    The head and face are relatively common sites of gunshot injury, and the temporomandibular joint is often affected. These wounds usually produce major deformity and functional impairment, particularly when the temporomandibular joint is affected or when structures such as the facial nerve are damaged. Complications may include mandibular displacement at maximum mouth opening and in protrusion, limited mouth opening, limited lateral movement of the jaw, anterior open bite, and, more rarely, temporomandibular ankylosis. Projectiles that strike the mandible usually cause comminuted fractures; maxillary wounds, in turn, are most commonly perforating. The present report describes a case of gunshot injury in which the projectile lodged within the mandibular fossa but did not cause any fractures. Oral and maxillofacial trauma surgeons must be aware of the different types of gunshot injury, as they produce distinct patterns of tissue destruction due to projectile trajectory and release of kinetic energy into surrounding tissue. PMID:25709756

  16. Chopart joint injury: a study of outcome and morbidity.

    PubMed

    van Dorp, Karin B; de Vries, Mark R; van der Elst, Maarten; Schepers, Tim

    2010-01-01

    Injuries involving the Chopart joint complex are relatively rare and frequently missed or misdiagnosed, often leading to a poor functional outcome. This study was performed to determine the outcome and morbidity in patients with Chopart joint injuries, and to increase awareness of this severe injury. Patients with a Chopart dislocation or fracture-dislocation, treated between January 2004 and January 2010, were identified using the appropriate diagnosis code and reviewing all radiographs of patients diagnosed with hindfoot or midfoot injuries treated at our institution. Data on patient characteristics, trauma mechanism, delay, and treatment were collected using patient files, operation reports, and by reviewing radiographs. Outcome was determined using the American Orthopaedic Foot & Ankle Society midfoot score and a visual analog scale satisfaction score, in patients with a minimum follow-up of 6 months. Nine patients (1.5 per year) were identified, including 6 women. The mean patient age was 41.6 ± 25.1 years. The trauma mechanism was sprain or sports injury in 5 (55.6%), motor vehicle accident in 3 (33.33%), and a fall from height in 1 (11.11%) case. Seven patients with an average follow-up of 31.3 ± 19.2 months reported a mean American Orthopaedic Foot & Ankle Society midfoot score of 72 (range, 32-100) points and a mean visual analog scale score of 7.1 (range, 5-10). Four (57.14%) patients still experienced pain or had limitations in daily activities at the time of the final follow-up. This study supports the conclusion of previous studies, which stated that a higher level of awareness is needed to prevent permanent disability. PMID:21035040

  17. The Roles of Mechanical Stresses in the Pathogenesis of Osteoarthritis: Implications for Treatment of Joint Injuries.

    PubMed

    Buckwalter, Joseph A; Anderson, Donald D; Brown, Thomas D; Tochigi, Yuki; Martin, James A

    2013-10-01

    Excessive joint surface loadings, either single (acute impact event) or repetitive (cumulative contact stress), can cause the clinical syndrome of osteoarthritis (OA). Despite advances in treatment of injured joints, the risk of OA following joint injuries has not decreased in the last 50 years. Cumulative excessive articular surface contact stress that leads to OA results from post-traumatic joint incongruity and instability, and joint dysplasia, but also may cause OA in patients without known joint abnormalities. In vitro investigations show that excessive articular cartilage loading triggers release of reactive oxygen species (ROS) from mitochondria, and that these ROS cause chondrocyte death and matrix degradation. Preventing release of ROS or inhibiting their effects preserves chondrocytes and their matrix. Fibronectin fragments released from articular cartilage subjected to excessive loads also stimulate matrix degradation; inhibition of molecular pathways initiated by these fragments prevents this effect. Additionally, injured chondrocytes release alarmins that activate chondroprogentior cells in vitro that propogate and migrate to regions of damaged cartilage. These cells also release chemokines and cytokines that may contribute to inflammation that causes progressive cartilage loss. Distraction and motion of osteoarthritic human ankles can promote joint remodeling, decrease pain and improve joint function in patients with end-stage post-traumatic OA. These advances in understanding of how altering mechanical stresses can lead to remodeling of osteoarthritic joints and how excessive stress causes loss of articular cartilage, including identification of mechanically induced mediators of cartilage loss, provide the basis for new biologic and mechanical approaches to the prevention and treatment of OA. PMID:25067995

  18. Scapholunate ligament injury adversely alters in vivo wrist joint mechanics: an MRI-based modeling study.

    PubMed

    Johnson, Joshua E; Lee, Phil; McIff, Terence E; Toby, E Bruce; Fischer, Kenneth J

    2013-09-01

    We investigated the effects of scapholunate ligament injury on in vivo radiocarpal joint mechanics using image-based surface contact modeling. Magnetic resonance images of 10 injured and contralateral normal wrists were acquired at high resolution (hand relaxed) and during functional grasp. Three-dimensional surface models of the radioscaphoid and radiolunate articulations were constructed from the relaxed images, and image registration between the relaxed and grasp images provided kinematics. The displacement driven models were implemented in contact modeling software. Contact parameters were determined from interpenetration of interacting bodies and a linear contact rule. Peak and mean contact pressures, contact forces and contact areas were compared between the normal and injured wrists. Also measured were effective (direct) contact areas and intercentroid distances from the grasp images. Means of the model contact areas were within 10 mm(2) of the direct contact areas for both articulations. With injury, all contact parameters significantly increased in the radioscaphoid articulation, while only peak contact pressure and contact force significantly increased in the radiolunate articulation. Intercentroid distances also increased significantly with injury. This study provides novel in vivo contact mechanics data from scapholunate ligament injury and confirms detrimental alterations as a result of injury. PMID:23575966

  19. Resultant knee joint moments for lateral movement tasks on sliding and non-sliding sport surfaces.

    PubMed

    Nigg, Benno M; Stefanyshyn, Darren J; Rozitis, Antra I; Mundermann, Annegret

    2009-03-01

    The aim of this study was to compare ankle and knee joint moments observed when playing on sport surfaces that slide slightly relative to the ground with the moments observed when playing on conventional sport surfaces. Three-dimensional resultant internal joint moments and kinematic characteristics of the lower extremity were quantified for 21 university basketball players when performing v-cut and side-shuffle tasks on three types of sliding surface (interlocking tiles) and on two types of conventional surface (maple wood and rolled vinyl). Translational and rotational friction between the five test surfaces and a test shoe were also quantified. The five sport surfaces moved horizontally between 0.2 and 1.6 mm during the landing phase of the two tasks. The medio-lateral ground reaction forces were lowest for the surfaces with the highest horizontal movement. Resultant ankle joint moments were lower and resultant knee moments were higher on the sliding surfaces than the conventional surfaces. Sport surfaces that allow a few millimetres of horizontal movement during ground contact may reduce joint loading at the ankle joint, but increase joint loading at the knee joint, when compared with conventional sport surfaces, and thus may influence the prevalence of knee injuries. PMID:19253080

  20. Arthroscopic treatment of acromioclavicular joint injuries and results.

    PubMed

    Nuber, Gordon W; Bowen, Mark K

    2003-04-01

    Injuries and conditions that affect the AC joint are common. Low-grade separations, degenerative conditions, and osteolysis of the distal clavicle are frequently dealt with by the treating physician. Proper assessment requires a thorough history, examination, and radiologic work-up. An injection of bupivicaine into the AC joint can be a very useful test to evaluate the source of pain about the symptomatic shoulder. Most conditions affecting the AC joint can be treated conservatively, but patients who do not respond to these treatments or athletes who do not wish to modify their activities may require resection of the distal clavicle and the AC joint. Operative intervention can be performed as an open procedure with good results. Recent advances in operative arthroscopic procedures allow us to replicate and exceed the results of the open resection. Arthroscopic resection can be undertaken via a direct approach that does not violate the subacromial space or via an indirect or bursal approach. The indirect approach allows you to assess both the subacromial space and the AC joint because impingement pathology and subacromial compromise are frequently associated with AC change. The advantage of an arthroscopic resection is its ability to be performed as an outpatient procedure with less compromise of musculotendinous structures, shorter rehabilitation, and quicker return to activity. The amount of bone resection necessary is less than with the open procedure because of the ability to preserve the stabilizing properties of the superior AC ligaments. Resection of 4 mm to 8 mm of bone is all that may be required to give uniformly good results. Arthroscopic resection of the distal clavicle is technically demanding and requires skill and familiarity with other arthroscopic shoulder procedures. Complications related to this procedure are relatively infrequent and include infection, residual pain, lack of adequate bone resection, and instability, particularly in patients with

  1. Complete medial column dislocation at the cuneonavicular joint: an unusual Lisfranc-like injury.

    PubMed

    Schepers, T; de Jong, V M; Luitse, J S K

    2014-09-01

    Lisfranc injuries represent a wide spectrum of different injuries at the tarsometatarsal joint. Not all types fit the currently available classifications. This case illustrates a rare subtype of a Lisfranc injury, with a dislocation of the entire first ray. It is presented to create more awareness for midfoot injuries. This article reviews the literature and provides recommendations for the treatment of similar cases in the future. PMID:25063016

  2. 30 CFR 18.33 - Finish of surface joints.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Finish of surface joints. 18.33 Section 18.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... Requirements § 18.33 Finish of surface joints. Flat surfaces between bolt holes that form any part of a...

  3. 30 CFR 18.33 - Finish of surface joints.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Finish of surface joints. 18.33 Section 18.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... Requirements § 18.33 Finish of surface joints. Flat surfaces between bolt holes that form any part of a...

  4. 30 CFR 18.33 - Finish of surface joints.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Finish of surface joints. 18.33 Section 18.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... Requirements § 18.33 Finish of surface joints. Flat surfaces between bolt holes that form any part of a...

  5. 30 CFR 18.33 - Finish of surface joints.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Finish of surface joints. 18.33 Section 18.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... Requirements § 18.33 Finish of surface joints. Flat surfaces between bolt holes that form any part of a...

  6. Decreased Knee Joint Loading Associated With Early Knee Osteoarthritis After Anterior Cruciate Ligament Injury

    PubMed Central

    Wellsandt, Elizabeth; Gardinier, Emily S.; Manal, Kurt; Axe, Michael J.; Buchanan, Thomas S.; Snyder-Mackler, Lynn

    2015-01-01

    Background Anterior cruciate ligament (ACL) injury predisposes individuals to early-onset knee joint osteoarthritis (OA). Abnormal joint loading is apparent after ACL injury and reconstruction. The relationship between altered joint biomechanics and the development of knee OA is unknown. Hypothesis Altered knee joint kinetics and medial compartment contact forces initially after injury and reconstruction are associated with radiographic knee OA 5 years after reconstruction. Study Design Case-control study; Level of evidence, 3. Methods Individuals with acute, unilateral ACL injury completed gait analysis before (baseline) and after (posttraining) preoperative rehabilitation and at 6 months, 1 year, and 2 years after reconstruction. Surface electromyographic and knee biomechanical data served as inputs to an electromyographically driven musculoskeletal model to estimate knee joint contact forces. Patients completed radiographic testing 5 years after reconstruction. Differences in knee joint kinetics and contact forces were compared between patients with and those without radiographic knee OA. Results Patients with OA walked with greater frontal plane interlimb differences than those without OA (nonOA) at baseline (peak knee adduction moment difference: 0.00 ± 0.08 N·m/kg·m [nonOA] vs −0.15 ± 0.09 N·m/kg·m [OA], P = .014; peak knee adduction moment impulse difference: −0.001 ± 0.032 N·m·s/kg·m [nonOA] vs −0.048 ± 0.031 N·m·s/kg·m [OA], P = .042). The involved limb knee adduction moment impulse of the group with osteoarthritis was also lower than that of the group without osteoarthritis at baseline (0.087 ± 0.023 N·m·s/kg·m [nonOA] vs 0.049 ± 0.018 N·m·s/kg·m [OA], P = .023). Significant group differences were absent at posttraining but reemerged 6 months after reconstruction (peak knee adduction moment difference: 0.02 ± 0.04 N·m/kg·m [nonOA] vs −0.06 ± 0.11 N·m/kg·m [OA], P = .043). In addition, the OA group walked with lower peak

  7. [Arthroscopically assisted techniques for treatment of acute and chronic acromioclavicular joint injuries].

    PubMed

    Braun, S; Imhoff, A B; Martetschläger, F

    2015-05-01

    Acute and chronic acromioclavicular (AC) joint dislocation is frequently encountered in the routine clinical practice. This injury can lead to significant impairment of shoulder girdle function. Therapy based on the severity of injury is recommended to re-establish correct shoulder function. The static radiographic Rockwood classification is used to define the degree of dislocation but the clinical aspects and functional x-ray imaging of horizontal AC joint instability should also be considered for selection of the appropriate procedure. Rockwood grades I and II injuries are treated non-operatively with early functional exercise. The approach for Rockwood grade III injuries should be individual and patient-specific, with non-surgical procedures for low functional requirement patients with a high risk for surgical interventions. For patients with high demands on shoulder function surgery is recommended. A detailed diagnostic assessment frequently reveals Rockwood grade III injuries to be type IV injuries. Rockwood types IV and V AC joint dislocations require surgery for sustained stability. Treatment of acute injuries is recommended within 1-3 weeks after trauma but there is no clear evidence of a cut-off for the presence of chronic injuries. Various surgical techniques have been described in the literature. This article presents an arthroscopically assisted technique that addresses both vertical and horizontal instability of the AC joint. PMID:25964020

  8. Thrombospondin-4 and excitatory synaptogenesis promote spinal sensitization after painful mechanical joint injury.

    PubMed

    Crosby, Nathan D; Zaucke, Frank; Kras, Jeffrey V; Dong, Ling; Luo, Z David; Winkelstein, Beth A

    2015-02-01

    Facet joint injury induces persistent pain that may be maintained by structural plasticity in the spinal cord. Astrocyte-derived thrombospondins, especially thrombospondin-4 (TSP4), have been implicated in synaptogenesis and spinal sensitization in neuropathic pain, but the TSP4 response and its relationship to synaptic changes in the spinal cord have not been investigated for painful joint injury. This study investigates the role of TSP4 in the development and maintenance of persistent pain following injurious facet joint distraction in rats and tests the hypothesis that excitatory synaptogenesis contributes to such pain. Painful facet joint loading induces dorsal horn excitatory synaptogenesis along with decreased TSP4 in the DRG and increased astrocytic release of TSP4 in the spinal cord, all of which parallel the time course of sustained tactile allodynia. Blocking injury-induced spinal TSP4 expression with antisense oligonucleotides or reducing TSP4 activity at its neuronal receptor in the spinal cord with gabapentin treatment both attenuate the allodynia and dorsal horn synaptogenesis that develop after painful facet joint loading. Increased spinal TSP4 also facilitates the development of allodynia and spinal hyperexcitability, even after non-painful physiological loading of the facet joint. These results suggest that spinal TSP4 plays an important role in the development and maintenance of persistent joint-mediated pain by inducing excitatory synaptogenesis and facilitating the transduction of mechanical loading of the facet joint that leads to spinal hyperexcitability. PMID:25483397

  9. Prevalence, injury rate and, symptom frequency in generalized joint laxity and joint hypermobility syndrome in a "healthy" college population.

    PubMed

    Russek, Leslie N; Errico, Deanna M

    2016-04-01

    Generalized joint hypermobility (GJH) and joint hypermobility syndrome (JHS) are gaining increased attention as potential sources of pain and injury. The aims of this study were to evaluate prevalence of GJH and JHS and to determine whether musculoskeletal injuries and symptoms commonly attributed to GJH and JHS were more common within a "healthy" college student population. The study involved a convenience sample of 267 college and graduate students, aged 17-26. GJH was assessed using the Beighton score with a cutoff of 5/9, while JHS was assessed using the Brighton criteria. Injury history and symptoms were assessed by recall. Prevalence of GJH was 26.2 % overall (females 36.7 %, males 13.7 %). Prevalence of JHS was 19.5 % overall (females 24.5 %, males 13.7 %). Injury rates were not significantly different for individuals who had GJH vs. those who did not have GJH. Individuals with JHS were significantly more likely to have had sprains, back pain, and stress fractures. Symptoms were no different between those with GJH and those who did not have GJH. However, individuals with JHS were significantly more likely to report clumsiness, easy bruising, and balance problems than those who did not have JHS. GJH and JHS were relatively common in this healthy college student population; GJH was not associated with increased incidence of injury or symptoms commonly attributed to JHS, but JHS was associated with increased incidence of some injuries and symptoms. PMID:25930211

  10. A Systems Biology Approach to Synovial Joint Lubrication in Health, Injury, and Disease

    PubMed Central

    Hui, Alexander Y.; McCarty, William J.; Masuda, Koichi; Firestein, Gary S.; Sah, Robert L.

    2013-01-01

    The synovial joint contains synovial fluid (SF) within a cavity bounded by articular cartilage and synovium. SF is a viscous fluid that has lubrication, metabolic, and regulatory functions within synovial joints. SF contains lubricant molecules, including proteoglycan-4 and hyaluronan. SF is an ultrafiltrate of plasma with secreted contributions from cell populations lining and within the synovial joint space, including chondrocytes and synoviocytes. Maintenance of normal SF lubricant composition and function are important for joint homeostasis. In osteoarthritis, rheumatoid arthritis, and joint injury, changes in lubricant composition and function accompany alterations in the cytokine and growth factor environment and increased fluid and molecular transport through joint tissues. Thus, understanding the synovial joint lubrication system requires a multi-faceted study of the various parts of the synovial joint and their interactions. Systems biology approaches at multiple scales are being used to describe the molecular, cellular, and tissue components and their interactions that comprise the functioning synovial joint. Analyses of the transcriptome and proteome of SF, cartilage, and synovium suggest that particular molecules and pathways play important roles in joint homeostasis and disease. Such information may be integrated with physicochemical tissue descriptions to construct integrative models of the synovial joint that ultimately may explain maintenance of health, recovery from injury, or development and progression of arthritis. PMID:21826801

  11. Anthropometric characteristics of wrists joint surfaces depending on lunate types.

    PubMed

    Dyankova, S

    2007-10-01

    It is well known that the lunate presents with two main types: lunate type I has one facet of its distal surface only for capitates, whereas lunate type II has two facets of the same surface for capitate and for hamate. Our previous anthropometric studies showed that the lunate type II wrists are of greater size than the lunate type I wrists. The aim of the present study was to determine whether the lunate types and the presence or absence of hamato-lunate joint correlate with anthropometric characteristics of the joint surfaces of other wrists. Sixteen sets of macerated wrists with the lunate type I and 21 with the lunate type II were studied. Two-thousand-four-hundred-and-forty-eight anthropometric measurements were done (for 68 anthropometric indicators) and 864 anthropometric indices were calculated (for 24 anthropometric indices) separately for the wrist joint surfaces. The absolute value of the anthropometric indicators of the joint surfaces of the separated wrists were greater in the wrists with the lunate type II, except for the indicators "Greatest length of the dorsal joint surface of pisiform", "Width of the proximal joint surface, measured in the middle" and "Greatest width of the proximal joint surface" for the trapezoid and "Greatest height of the ulnar joint surface" for the capitate. The enlargement of the joint surfaces for the scaphoid was mainly in proximo-distal direction. The enlargement for the triquetrum and pisiform was mainly in radio-ulnar direction. The enlargement for trapezium, trapezoid and capitate was mainly in dorso-volar direction (except for the ulnar joint surface of capitate). The enlargement for hamate was mainly in radio-ulnar and dorso-volar directions (except for the joint surfaces for capitate and triquetrum). The calculated indices illustrate the quantitative proportions of the variations mentioned above. The anthropometric differences are a good reason to make a clear distinction between both types of wrist joint

  12. Surface deformation over flexible joints using spline blending techniques

    NASA Astrophysics Data System (ADS)

    Haavardsholm, Birgitte; Bratlie, Jostein; Dalmo, Rune

    2014-12-01

    Skinning over a skeleton joint is the process of skin deformation based on joint transformation. Popular geometric skinning techniques include implicit linear blending and dual quaternions. Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended by Ck-smooth basis functions. A smooth skinning surface can be constructed over a transformable skeleton joint by combining various types of local surface constructions and applying local Hermite interpolation. Compared to traditional spline methods, increased flexibility and local control with respect to surface deformation can be achieved using the GERBS blending construction. We present a method using a blending-type spline surface for skinning over a flexible joint, where local geometry is individually adapted to achieve natural skin deformation based on skeleton transformations..

  13. [Closed injuries of the extensor hood of the metacarpophalangeal joint].

    PubMed

    Ferlemann, K; Zilch, H

    1997-12-01

    Closed traumatic lesions of the extensor tendon hood of a longfinger at the metacarpophalangeal joint are rare. Surgical treatment was done in 6 cases during the last 10 years in our department; in 5 cases the dorsoradial part, in one case the dorsoulnar part of the hood was injured. The tear extended longitudinal or diagonal through the transverse fibers of the hood. Respecting the accident mechanism there have been reported tangential forces at the extensor tendon hood and forced ulnar deviation in the bended metacarpophalangeal joint. A jerky dislocation of the extensor tendon to the ulnar side of the metacarpophalangeal head during increased bending of the metacarpophalangeal joint, sometimes with ulnar abduction of the longfinger, leads usually to the diagnosis. Misdiagnoses of cases sent to our department were: "trigger finger" and "recurrent dislocation of the metacarpophalangeal joint". Once the presurgical diagnosis was "rupture of the extensor tendon" because of a permanent extension deficit in 30 degree position of the metacarpophalangeal joint. Treatment is always surgical with suture of the hood and immobilization of the metacarpophalangeal joint in extension position for 4 weeks. Conservative treatment can not heal up a tear of the extensor tendon hood. PMID:9483789

  14. Effects of bearing surfaces on lap joint energy dissipation

    SciTech Connect

    Kess, H. R.; Rosnow, N. J.; Sidle, B. C.

    2001-01-01

    Energy is dissipated in mechanical systems in several forms. The major contributor to damping in bolted lap joints is friction, and the level of damping is a function of stress distribution in the bearing surfaces. This study examines the effects of bearing surface configuration on lap joint energy dissipation. The examination is carried out through the analysis of experimental results in a nonlinear framework. Then finite element models are constructed in a nonlinear framework to simulate the results. The experimental data were analyzed using piecewise linear log decrement. Phenomenological and non-phenomenological mathematical models were used to simulate joint behavior. Numerical results of experiments and analyses are presented.

  15. Efficacy of stepwise application of orthosis and kinesiology tape for treating thumb metacarpophalangeal joint hyperextension injury

    PubMed Central

    Lee, Sun-Min; Lee, Jung-Hoon

    2015-01-01

    [Purpose] The purpose of this study was to investigate on the effects of the stepwise application of orthosis and kinesiology tape on a patient with thumb metacarpophalangeal joint hyperextension injury. [Subject] The patient was a 43-year-old man with severe thumb MCP pain and extremely limited thumb movement. [Methods] Stepwise application of orthosis and kinesiology taping were performed for 3 weeks and 4 weeks, respectively. [Results] After stepwise treatment, the patient was able to power grip, precision pinch, turn a key, and hold a pen without pain. [Conclusion] Stepwise application of thumb orthosis and kinesiology tape is a safe and effective treatment for thumb MCP joint hyperextension injury. PMID:26355325

  16. Simultaneous Volar Dislocation of Distal Interphalangeal Joint and Volar Fracture-Subluxation of Proximal Interphalangeal Joint of Little Finger: A New Mechanism of Injury.

    PubMed

    Mozaffarian, Kamran; Bayatpour, Abdollah; Vosoughi, Amir Reza

    2016-10-01

    Simultaneous volar dislocation of distal interphalangeal (DIP) joint and volar fracture-subluxation of proximal interphalangeal (PIP) joint of the same finger has not been reported yet. A 19-year-old man was referred due to pain on the deformed left little finger after a ball injury. Radiographs showed volar dislocation of the DIP joint and dorsal lip fracture of the middle phalanx with volar subluxation of PIP joint of the little finger. This case was unique in terms of the mechanism of injury which was hyperflexion type in two adjacent joints of the same finger. The patient was treated by closed reduction of DIP joint dislocation and open reduction and internal fixation of the PIP joint fracture-subluxation and application of dorsal external fixator due to instability. Finally, full flexion of the PIP joint and full extension of the DIP joint were obtained but with 10 degree extension lag at the PIP joint and DIP joint flexion ranging from 0 degree to 30 degrees. Some loss of motion in small joints of the fingers after hyperflexion injuries should be expected. PMID:27595966

  17. Case Series of First Metatarsophalangeal Joint Injuries in Division 1 College Athletes

    PubMed Central

    Faltus, John; Mullenix, Kerry; Moorman, Claude T.; Beatty, Kyle; Easley, Mark E.

    2014-01-01

    Context: Injuries of the first metatarsophalangeal (hallux MP) joint can be debilitating in the athletic population. Turf toe and plantar plate injuries are typically diagnosed similarly. However, variance in injury mechanism as well as compromised integrity of soft tissue and ligamentous structures make it difficult to accurately diagnose specific hallux MP injuries. Recent literature has supported the use of both radiographic imaging and the Lachman test as reliable indicators of joint instability in the presence of hallux MP injuries. To date, research supporting specific rehabilitation interventions and return-to-play decision making for hallux MP injuries has been limited to case studies and suggested guidelines from literature reviews. There is limited evidence suggesting specific criteria for surgical and nonsurgical decision making in conjunction with rehabilitation progressions to return an athlete to sport when managing hallux MP injuries. Evidence Acquisition: A literature search was performed using Medline, PubMed, and Google Scholar to find and review articles from 1970 to 2013 that addressed the basic anatomy of the plantar plate, injuries to this anatomical structure, and the evaluation, diagnosis, surgical and nonsurgical management, and rehabilitation of these injuries, specifically in the athletic population. Medical information for each case was gathered from electronic medical records from the individual athletes cited in this case series, which included imaging reports, rehabilitation documentation, and both evaluation and surgical reports. No statistical analysis was used. Study Design: Case series. Level of Evidence: Level 4. Results: Treatment plans for each case varied depending on surgical and nonsurgical intervention and rehabilitation outcomes. However, each athlete was able to return to sports-specific activities. Conclusion: Successful outcomes for hallux MP injuries are contingent on thorough evaluation, appropriate clinical decision

  18. The effect of hip joint muscle exercise on muscle strength and balance in the knee joint after meniscal injury.

    PubMed

    Park, Sun Ja; Kim, Young Mi; Kim, Ha Roo

    2016-04-01

    [Purpose] This study aimed to evaluate the effect of hip muscle strengthening on muscle strength and balance in the knee joint after a meniscal injury. [Subjects and Methods] This randomized control study enrolled 24 patients who had undergone arthroscopic treatment after a meniscal injury and began a rehabilitative exercise program 8 weeks after surgery. Subjects were divided into 2 groups of 12 subjects each: gluteus medius resistance exercise group and control group. This study investigated muscle strength and balance in the knee joint flexor, extensor, and abductor during an 8-week period. [Results] Measurements of knee extensor muscle strength revealed no significant difference between the control group and the experimental group. Measurements of abductor muscle strength, however, identified a significant difference between the 2 groups. The groups did not differ significantly with regard to balance measurements. [Conclusion] The results of this study suggest that this subject should be approached in light of the correlation between the hip abductor and injury to the lower extremities. PMID:27190461

  19. The effect of hip joint muscle exercise on muscle strength and balance in the knee joint after meniscal injury

    PubMed Central

    Park, Sun Ja; Kim, Young Mi; Kim, Ha Roo

    2016-01-01

    [Purpose] This study aimed to evaluate the effect of hip muscle strengthening on muscle strength and balance in the knee joint after a meniscal injury. [Subjects and Methods] This randomized control study enrolled 24 patients who had undergone arthroscopic treatment after a meniscal injury and began a rehabilitative exercise program 8 weeks after surgery. Subjects were divided into 2 groups of 12 subjects each: gluteus medius resistance exercise group and control group. This study investigated muscle strength and balance in the knee joint flexor, extensor, and abductor during an 8-week period. [Results] Measurements of knee extensor muscle strength revealed no significant difference between the control group and the experimental group. Measurements of abductor muscle strength, however, identified a significant difference between the 2 groups. The groups did not differ significantly with regard to balance measurements. [Conclusion] The results of this study suggest that this subject should be approached in light of the correlation between the hip abductor and injury to the lower extremities. PMID:27190461

  20. Non-terminal animal model of post-traumatic osteoarthritis induced by acute joint injury

    PubMed Central

    Boyce, Mary K.; Trumble, Troy N.; Carlson, Cathy S.; Groschen, Donna M.; Merritt, Kelly A.; Brown, Murray P.

    2013-01-01

    Objective Develop a non-terminal animal model of acute joint injury that demonstrates clinical and morphological evidence of early post-traumatic osteoarthritis (PTOA). Methods An osteochondral (OC) fragment was created arthroscopically in one metacarpophalangeal (MCP) joint of 11 horses and the contralateral joint was sham operated. Eleven additional horses served as unoperated controls. Every 2 weeks, force plate analysis, flexion response, joint circumference, and synovial effusion scores were recorded. At weeks 0 and 16, radiographs (all horses) and arthroscopic videos (OC injured and sham joints) were graded. At week 16, synovium and cartilage biopsies were taken arthroscopically from OC injured and sham joints for histologic evaluation and the OC fragment was removed. Results Osteochondral fragments were successfully created and horses were free of clinical lameness after fragment removal. Forelimb gait asymmetry was observed at week 2 (P=0.0012), while joint circumference (P<0.0001) and effusion scores (P<0.0001) were increased in injured limbs compared to baseline from weeks 2 to 16. Positive flexion response of injured limbs was noted at multiple time points. Capsular enthesophytes were seen radiographically in injured limbs. Articular cartilage damage was demonstrated arthroscopically as mild wear-lines and histologically as superficial zone chondrocyte death accompanied by mild proliferation. Synovial hyperemia and fibrosis were present at the site of OC injury. Conclusion Acute OC injury to the MCP joint resulted in clinical, imaging, and histologic changes in cartilage and synovium characteristic of early PTOA. This model will be useful for defining biomarkers of early osteoarthritis and for monitoring response to therapy and surgery. PMID:23467035

  1. Ultrasonographic characteristics of volar-lateral ligament constrains after proximal interphalangeal joint injuries.

    PubMed

    Saito, Susumu; Sawabe, Kazuma; Suzuki, Yoshihisa; Suzuki, Shigehiko

    2016-08-01

    Objective To characterise posttraumatic constrains of the volar-lateral ligaments by analysing volar plate (VP) dynamics after proximal interphalangeal (PIP) joint injuries using ultrasonography. Materials and methods From the anatomical and biomechanical perspectives of the VP and its surrounding structures, posttraumatic constrains of the volar-lateral ligament were evaluated by analysing the changes of VP motion. Using ultrasound, VP motion during active flexion of 0-60° was recorded in the central sagittal plane at 12 weeks after injury. VP trajectories visualised by 5-point tracing on the VP were analysed qualitatively to detect differential patterns of the ligament constrains. Quantitatively, correlation between averaged constrain index determined by measuring volar locational values of the 5 points on the VP and limitation in extension at the final follow-up was assessed. Results Eleven patients with PIP joint injuries involving five VP avulsions, three volar intra-articular fractures, or three dorsal fracture-dislocations were included. All patients with VP avulsion revealed a totally-constrained pattern, whereas patients with intra-articular or fracture-dislocation injuries showed distally-constrained pattern or normal. Averaged constrain index was negatively correlated with limitation in extension, indicating positive contribution of volar-lateral ligament constrains to residual flexion contracture. Conclusion Ultrasonographic visualisation of VP motion characterised posttraumatic constrained conditions of the volar-lateral ligaments. Knowledge of the manner of ligament damages might be useful to set treatment strategies for PIP joint injuries. PMID:26981745

  2. Ibuprofen in the treatment of acute ankle joint injuries. A double-blind study.

    PubMed

    Fredberg, U; Hansen, P A; Skinhøj, A

    1989-01-01

    Sixty-eight patients who presented to the casualty ward with acute ankle joint injuries were studied to examine the effect of ibuprofen on pain and ankle swelling. Thirty-two patients were treated with placebo tablets and 36 with 600 mg ibuprofen tablets taken four times a day for 4 to 6 days. All of the patients were immobilized and requested to keep the foot elevated. The results showed that ibuprofen had no effect on the ankle swelling. The need for additional analgesics was not influenced by treatment with ibuprofen, which means that ibuprofen has no effect on pain. The time elapsed from occurrence of the injury to arrival at the casualty ward was negatively correlated to the reduction of ankle joint swelling during the treatment period. Treatment with ice-sprays, icebags, or cold water during the acute stage of injury did not influence the reduction of swelling during the treatment period. PMID:2675651

  3. Cartilage Shear Kinematics During Tibio-Femoral Articulation: Effect of Acute Joint Injury & Tribosupplementation on Synovial Fluid Lubrication

    PubMed Central

    Wong, Benjamin L.; Kim, Seung Hyun Chris; Antonacci, Jennifer M.; McIlwraith, C. Wayne; Sah, Robert L.

    2009-01-01

    Objective To determine the effects of acute injury and tribosupplementation by hyaluronan (HA) on synovial fluid (SF) modulation of cartilage shear during tibio-femoral articulation. Methods Human osteochondral blocks from the lateral femoral condyle (LFC) and tibial plateau (LTP) were apposed, compressed 13%, and subjected to sliding under video microscopy. Tests were conducted with equine SF from normal joints (NL-SF), SF from acutely injured joints (AI-SF), and AI-SF to which HA was added (AI-SF+HA). Local and overall shear strain (Exz) and the lateral displacement (Δx) at which Exz reached 50% of peak values (Δx1/2) were determined. Results During articulation, LFC and LTP cartilage Exz increased with Δx and peaked when surfaces slid, with peak Exz being maintained during sliding. With AI-SF as lubricant, surface and overall Δx1/2 were ~40% and ~20% higher, respectively than values with NL-SF and AI-SF+HA as lubricant. Also, peak Exz was markedly higher with AI-SF as lubricant than with NL-SF as lubricant, both near the surface (~80%) and overall (50–200%). Following HA supplementation to AI-SF, Exz was reduced from values with AI-SF alone by 30–50% near the surface and 20–30% overall. Magnitudes of surface and overall Exz were markedly (~50–80%) higher in LTP cartilage than LFC cartilage for all lubricants. Conclusion Acute injury impairs SF function, elevating cartilage Exz markedly during tibio-femoral articulation; such elevated Exz may contribute to post-injury associated cartilage degeneration. Since HA partially restores the function of AI-SF, as indicated by Exz, tribosupplements may be beneficial in restoring cartilage mechanobiology. PMID:20004636

  4. Dynamic Evaluation of the Contact Characteristics and Three-Dimensional Motion for the Ankle Joint with Lateral Ligament Injuries

    NASA Astrophysics Data System (ADS)

    Kawakami, Kensaku; Omori, Go; Terashima, Shojiro; Sakamoto, Makoto; Hara, Toshiaki

    The purpose of this study was to clarify the dynamic changes in contact pressure distribution and three-dimensional ankle joint motion before and after lateral ligament injuries. Five fresh and frozen intact cadaveric ankles were examined. Each ankle was mounted on a specially designed frame that preserved five degrees of freedom motion. The direct linear transformation technique was used to measure the three-dimensional ankle motion, and a pressure-sensitive conductive rubber sensor was inserted into the talocrural joint space to determine the contact pressure distribution. The contact area on the talus for intact ankle moved anteriorly and laterally with increasing dorsiflexion. An area of high pressure was observed in the medial aspect of the articular surface after the ligament was cut. Supination significantly increased after a combined anterior talofibular ligament (ATF) and calcaneofibular ligament (CF) were cut in comparison with after only an ATF was cut, and no significant differences were observed in motional properties under each experimental condition.

  5. An analysis of pathomorphic forms and diagnostic difficulties in tarso-metatarsal joint injuries

    PubMed Central

    Tarczyńska, Marta; Modrzewski, Krzysztof; Turżańska, Karolina

    2007-01-01

    Tarso-metatarsal injuries are rare but frequently missed. Due to the large variation in pathomorphic forms of these injuries, great precision is required when carrying out clinical and X-ray diagnostic procedures. The aim of the study was to describe the different forms of Lisfranc joint injuries and analyse the causes of delayed treatment. The treatment results of acute and chronic injuries were compared in 41 patients, with an average follow-up period of 16 years. Statistically significant poorer results were obtained in the group of chronic cases, based on two functional scores – the AOFAS evaluation questionnaire and the Lublin functional questionnaire. The main factor delaying the start of the proper treatment was diagnostic error during initial admission. The best results were achieved after closed reduction and percutaneous Kirschner wire fixation in acute cases. PMID:17571261

  6. [Impingement syndrome following direct injuries of the shoulder joint].

    PubMed

    Volpin, G; Stahl, S; Stein, H

    1996-02-15

    Impingement is the most common cause of pain and limitation of movement in the shoulder, with painful arc syndrome its major clinical sign. It usually becomes manifest at between 70 degrees-120 degrees of abduction, but in severe cases, this may be reduced to only 50 degrees-70 degrees. We studied 22 patients who had developed shoulder impingement following direct injuries and who had been treated by anterior acromioplasty and decompression, with an average follow-up of 32 months. 5 had sustained fractures of the greater tuberosity of the humerus at the time of injury, 14 had tears of the rotator cuff of various sizes (1 in both shoulders) and 3 had developed fibrotic scars of the subacromial bursa. Excellent or good results were achieved in 86.6%. Healing time was shorter, and there was return of full range of shoulder movement in those with subacromial scars, undisplaced fractures of the greater tuberosity, or those with a small tear of the rotator cuff. Recovery took longer in those with larger tears of the rotator cuff and in those with displaced fractures of the greater tuberosity. Recovery time was proportional to the size of the rotator cuff tear. It is concluded that direct trauma to the shoulder bears a direct relationship to the development of impingement syndrome, and that at surgery a concomitant tear in the rotator cuff is seen more than 2/3. Because of the high rate of success in surgical treatment of this syndrome, operation is indicated when a few months of physical therapy and analgesics fail to provide relief. In the presence of fractures, decompression surgery should be postponed until the fracture has united. PMID:8675117

  7. Early diagnosis and treatment of trauma in knee joints accompanied with popliteal vascular injury

    PubMed Central

    Xu, Yun-Qin; Li, Qiang; Shen, Tu-Gang; Su, Pei-Hua; Zhu, Ya-Zhong

    2015-01-01

    Objective: The objective of the present study was to investigate the early diagnosis and treatment of trauma in the knee joints accompanied with popliteal vascular injury. Methods: Fifteen cases of patients with trauma in knee joints accompanied with popliteal vascular injury. These patients included 8 males and 6 females between the ages of 27 and 62, the average age being 39.2. Data of clinical symptoms and signs; blood oxygen saturation, color Doppler examination; vascular intervention by DSA angiography; and surgical operations were analyzed to clearly identify their role in early diagnosis and treatment. Results: In the patient group for this study there were: 1 death case; 4 stage I amputation cases; 4 stage II amputation cases due to failure to salvage limbs; and 6 cases with patients who had successful limb salvage. The six cases of limb survival patients were followed up for 12 to 60 months, with an average follow up time of 28.3 months. The excellent rate of joint function of these patients with successful limb salvage was 83.3%. Conclusions: For patients with injured limbs, unclear dorsalis pedis artery palpation, decreased skin temperature, and decreased oxygen saturation of the toes, clinical manifestations combined with proper auxiliary inspection (such as color Doppler and blood vessel angiography of interventional DSA) enabled early diagnose of peripheral trauma in the knee joint accompanied with popliteal vascular injury. PMID:26309604

  8. Lubricin protects the temporomandibular joint surfaces from degeneration.

    PubMed

    Hill, Adele; Duran, Juanita; Purcell, Patricia

    2014-01-01

    The temporomandibular joint (TMJ) is a specialized synovial joint essential for the mobility and function of the mammalian jaw. The TMJ is composed of the mandibular condyle, the glenoid fossa of the temporal bone, and a fibrocartilagenous disc interposed between these bones. A fibrous capsule, lined on the luminal surface by the synovial membrane, links these bones and retains synovial fluid within the cavity. The major component of synovial fluid is lubricin, a glycoprotein encoded by the gene proteoglycan 4 (Prg4), which is synthesized by chondrocytes at the surface of the articular cartilage and by synovial lining cells. We previously showed that in the knee joint, Prg4 is crucial for maintenance of cartilage surfaces and for regulating proliferation of the intimal cells in the synovium. Consequently, the objective of this study was to determine the role of lubricin in the maintenance of the TMJ. We found that mice lacking lubricin have a normal TMJ at birth, but develop degeneration resembling TMJ osteoarthritis by 2 months, increasing in severity over time. Disease progression in Prg4-/- mice results in synovial hyperplasia, deterioration of cartilage in the condyle, disc and fossa with an increase in chondrocyte number and their redistribution in clusters with loss of superficial zone chondrocytes. All articular surfaces of the joint had a prominent layer of protein deposition. Compared to the knee joint, the osteoarthritis-like phenotype was more severe and manifested earlier in the TMJ. Taken together, the lack of lubricin in the TMJ causes osteoarthritis-like degeneration that affects the articular cartilage as well as the integrity of multiple joint tissues. Our results provide the first molecular evidence of the role of lubricin in the TMJ and suggest that Prg4-/- mice might provide a valuable new animal model for the study of the early events of TMJ osteoarthritis. PMID:25188282

  9. The effect of surface and season on playground injury rates

    PubMed Central

    Branson, Lara Joan; Latter, John; Currie, Gillian R; Nettel-Aguirre, Alberto; Embree, Tania; Hagel, Brent Edward

    2012-01-01

    OBJECTIVE: To examine the effect of season on playground surface injury rates. METHODS: Injuries were identified through student incident report forms used in school districts in Calgary (Alberta) and the surrounding area. Playground surface exposure data were estimated based on school enrollment. RESULTS: A total of 539 injuries were reported during the 2007/2008 school year. Abrasions, bruises and inflammation were the most frequently reported injuries. The head, neck or face were most commonly injured. Injury rates per 1000 student days ranged between 0.018 (rubber crumb in spring) and 0.08 (poured-in-place and natural rock in the fall). Rubber crumb surfacing, compared with natural rock, had a significantly lower rate of injury in the spring, but no other season-surface comparisons were statistically significant. CONCLUSIONS: Rates of injury were similar for natural rock, poured-in-place, and crushed rock in the fall and winter. There was some evidence of a lower rate of injury on rubber crumb surfaces in the spring. PMID:24179416

  10. 30 CFR 18.33 - Finish of surface joints.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Finish of surface joints. 18.33 Section 18.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.33 Finish of...

  11. Textured bearing surface in artificial joints to reduce macrophage activation

    NASA Astrophysics Data System (ADS)

    Nakanishi, Yoshitaka; Nishi, Naoki; Chikaura, Hiroto; Nakashima, Yuta; Miura, Hiromasa; Higaki, Hidehiko; Mizuta, Hiroshi; Iwamoto, Yukihide; Fujiwara, Yukio; Komohara, Yoshihiro; Takeya, Motohiro

    2015-12-01

    Micro slurry-jet erosion has been proposed as a precision machining technique for the bearing surfaces of artificial joints in order to reduce the total amount of polyethylene wear and to enlarge the size of the wear debris. The micro slurry-jet erosion method is a wet blasting technique which uses alumina particles as the abrasive medium along with compressed air and water to create an ideal surface. Pin-on-disc wear tests with multidirectional sliding motion on the textured surface of a \\text{Co}-\\text{Cr}-\\text{Mo} alloy counterface for polyethylene resulted in both a reduction of wear as well as enlargement of the polyethylene debris size. In this study, primary human peripheral blood mononuclear phagocytes were incubated with the debris, and it was elucidated that the wear debris generated on the textured surface regulated secretion of the proinflammatory cytokines IL-6 and TNF-α, indicating a reduction in the induced tissue reaction and joint loosening.

  12. Acute plastic bowing of the radius with a distal radioulnar joint injury: a case report.

    PubMed

    Uehara, Masashi; Yamazaki, Hiroshi; Kato, Hiroyuki

    2010-01-01

    Acute plastic bowing is an incomplete fracture with a deformation that shows no obvious macroscopic fracture line or cortical discontinuity. Although cases of acute plastic bowing of the ulna with a dislocation of the radial head have been previously reported, we present here a rare case of acute plastic bowing of the radius with a distal radioulnar joint injury in a 16-year-old boy. Internal fixation of the detached fragment to the ulnar styloid and repair of the triangular fibrocartilagenous complex resulted in the disappearance of wrist pain. In cases of distal radioulnar joint injuries in children or adolescents, radiographs of the entire forearm should be taken to evaluate the existence of radial bowing. PMID:21089197

  13. Horizontal and Vertical Stabilization of Acute Unstable Acromioclavicular Joint Injuries Arthroscopy-Assisted

    PubMed Central

    Cisneros, Luis Natera; Sarasquete Reiriz, Juan; Besalduch, Marina; Petrica, Alexandru; Escolà, Ana; Rodriguez, Joaquim; Fallone, Jan Carlo

    2015-01-01

    We describe the technical aspects of an arthroscopy-assisted procedure indicated for the management of acute unstable acromioclavicular joint injuries, consisting of a synthetic augmentation of both the coracoclavicular and acromioclavicular ligaments, that anatomically reproduces the coracoclavicular biomechanics and offers fixation that keeps the torn ends of the ligaments facing one another, thus allowing healing of the native structures without the need for a second surgical procedure for metal hardware removal. PMID:26870653

  14. Designing prosthetic knee joints with bio-inspired bearing surfaces.

    PubMed

    Qiu, Mingfeng; Chyr, Anthony; Sanders, Anthony P; Raeymaekers, Bart

    2014-09-01

    It has long been known that articular cartilage exhibits a surface microtexture with shallow indentations. By contrast, prosthetic joints consist of ultra-smooth bearing surfaces, the longevity of which does not reach that of natural cartilage. We show that adding a microtexture to the smooth femoral component of a prosthetic knee joint reduces friction by increasing the lubricant film thickness between the bearing surfaces of the knee. We have implemented an elastohydrodynamic lubrication model to optimize the geometry of the microtexture, while taking into account the deformation of the polyethylene tibial insert. We have manufactured several microtexture designs on a surrogate femoral component, and experimentally demonstrate that the microtexture reduces friction between the surrogate femoral component and tibial insert. PMID:25049441

  15. Automated inspection of solder joints for surface mount technology

    NASA Technical Reports Server (NTRS)

    Savage, Robert M.; Park, Hyun Soo; Fan, Mark S.

    1993-01-01

    Researchers at NASA/GSFC evaluated various automated inspection systems (AIS) technologies using test boards with known defects in surface mount solder joints. These boards were complex and included almost every type of surface mount device typical of critical assemblies used for space flight applications: X-ray radiography; X-ray laminography; Ultrasonic Imaging; Optical Imaging; Laser Imaging; and Infrared Inspection. Vendors, representative of the different technologies, inspected the test boards with their particular machine. The results of the evaluation showed limitations of AIS. Furthermore, none of the AIS technologies evaluated proved to meet all of the inspection criteria for use in high-reliability applications. It was found that certain inspection systems could supplement but not replace manual inspection for low-volume, high-reliability, surface mount solder joints.

  16. Automated inspection of solder joints for surface mount technology

    NASA Astrophysics Data System (ADS)

    Savage, Robert M.; Park, Hyun Soo; Fan, Mark S.

    1993-03-01

    Researchers at NASA/GSFC evaluated various automated inspection systems (AIS) technologies using test boards with known defects in surface mount solder joints. These boards were complex and included almost every type of surface mount device typical of critical assemblies used for space flight applications: X-ray radiography; X-ray laminography; Ultrasonic Imaging; Optical Imaging; Laser Imaging; and Infrared Inspection. Vendors, representative of the different technologies, inspected the test boards with their particular machine. The results of the evaluation showed limitations of AIS. Furthermore, none of the AIS technologies evaluated proved to meet all of the inspection criteria for use in high-reliability applications. It was found that certain inspection systems could supplement but not replace manual inspection for low-volume, high-reliability, surface mount solder joints.

  17. A new approach for surface fitting method of articular joint surfaces.

    PubMed

    Hirokawa, Shunji; Ueki, Takashi; Ohtsuki, Ayaka

    2004-10-01

    The application of joint contact mechanics requires a precise configuration of the joint surfaces. B-Spline, and NURBS have been widely used to model joint surfaces, but because these formulations use a structured data set provided by a rectangular net first, then a grid, there is a limit to the accuracy of the models they can produce. However new imaging systems such as 3D laser scanners can provide more realistic unstructured data sets. What is needed is a method to manipulate the unstructured data. We created a parametric polynomial function and applied it to unstructured data sets obtained by scanning joint surfaces. We applied our polynomial model to unstructured data sets from an artificial joint, and confirmed that our polynomial produced a smoother and more accurate model than the conventional B-spline method. Next, we applied it to a diarthrodial joint surface containing many ripples, and found that our function's noise filtering characteristics smoothed out existing ripples. Since no formulation was found to be optimal for all applications, we used two formulations to model surfaces with ripples. First, we used our polynomial to describe the global shape of the objective surface. Minute undulations were then specifically approximated with a Fourier series function. Finally, both approximated surfaces were superimposed to reproduce the original surface in a complete fashion. PMID:15336930

  18. Joint power and kinematics coordination in load carriage running: Implications for performance and injury.

    PubMed

    Liew, Bernard X W; Morris, Susan; Netto, Kevin

    2016-06-01

    Investigating the impact of incremental load magnitude on running joint power and kinematics is important for understanding the energy cost burden and potential injury-causative mechanisms associated with load carriage. It was hypothesized that incremental load magnitude would result in phase-specific, joint power and kinematic changes within the stance phase of running, and that these relationships would vary at different running velocities. Thirty-one participants performed running while carrying three load magnitudes (0%, 10%, 20% body weight), at three velocities (3, 4, 5m/s). Lower limb trajectories and ground reaction forces were captured, and global optimization was used to derive the variables. The relationships between load magnitude and joint power and angle vectors, at each running velocity, were analyzed using Statistical Parametric Mapping Canonical Correlation Analysis. Incremental load magnitude was positively correlated to joint power in the second half of stance. Increasing load magnitude was also positively correlated with alterations in three dimensional ankle angles during mid-stance (4.0 and 5.0m/s), knee angles at mid-stance (at 5.0m/s), and hip angles during toe-off (at all velocities). Post hoc analyses indicated that at faster running velocities (4.0 and 5.0m/s), increasing load magnitude appeared to alter power contribution in a distal-to-proximal (ankle→hip) joint sequence from mid-stance to toe-off. In addition, kinematic changes due to increasing load influenced both sagittal and non-sagittal plane lower limb joint angles. This study provides a list of plausible factors that may influence running energy cost and injury risk during load carriage running. PMID:27264407

  19. Military Exercises, Knee and Ankle Joint Position Sense, and Injury in Male Conscripts: A Pilot Study

    PubMed Central

    Mohammadi, Farshid; Azma, Kamran; Naseh, Iman; Emadifard, Reza; Etemadi, Yasaman

    2013-01-01

    Context: The high incidence of lower limb injuries associated with physical exercises in military conscripts suggests that fatigue may be a risk factor for injuries. Researchers have hypothesized that lower limb injuries may be related to altered ankle and knee joint position sense (JPS) due to fatigue. Objective: To evaluate if military exercises could alter JPS and to examine the possible relation of JPS to future lower extremity injuries in military service. Design: Cohort study. Setting: Laboratory. Patients or Other Participants: A total of 50 male conscripts (age = 21.4 ± 2.3 years, height = 174.5 ± 6.4 cm, mass = 73.1 ± 6.3 kg) from a unique military base were recruited randomly. Main Outcome Measure(s): Participants performed 8 weeks of physical activities at the beginning of a military course. In the first part of the study, we instructed participants to recognize predetermined positions before and after military exercises so we could examine the effects of military exercise on JPS. The averages of the absolute error and the variable error of 3 trials were recorded. We collected data on the frequency of lower extremity injuries over 8 weeks. Next, the participants were divided into 2 groups: injured and uninjured. Separate 2 × 2 × 2 (group-by-time-by-joint) mixed-model analyses of variance were used to determine main effects and interactions of these factors for each JPS measure. In the second part of the study, we examined whether the effects of fatigue on JPS were related to the development of injury during an 8-week training program. We calculated Hedges effect sizes for JPS changes postexercise in each group and compared change scores between groups. Results: We found group-by-time interactions for all JPS variables (F range = 2.86–4.05, P < .01). All participants showed increases in JPS errors postexercise (P < .01), but the injured group had greater changes for all the variables (P < .01). Conclusions: Military conscripts who sustained lower

  20. Estimation of ligament strains and joint moments in the ankle during a supination sprain injury.

    PubMed

    Wei, Feng; Fong, Daniel Tik-Pui; Chan, Kai-Ming; Haut, Roger C

    2015-01-01

    This study presents the ankle ligament strains and ankle joint moments during an accidental injury event diagnosed as a grade I anterior talofibular ligament (ATaFL) sprain. A male athlete accidentally sprained his ankle while performing a cutting motion in a laboratory setting. The kinematic data were input to a three-dimensional rigid-body foot model for simulation analyses. Maximum strains in 20 ligaments were evaluated in simulations that investigated various combinations of the reported ankle joint motions. Temporal strains in the ATaFL and the calcaneofibular ligament (CaFL) were then compared and the three-dimensional ankle joint moments were evaluated from the model. The ATaFL and CaFL were highly strained when the inversion motion was simulated (10% for ATaFL and 12% for CaFL). These ligament strains were increased significantly when either or both plantarflexion and internal rotation motions were added in a temporal fashion (up to 20% for ATaFL and 16% for CaFL). Interestingly, at the time strain peaked in the ATaFL, the plantarflexion angle was not large but apparently important. This computational simulation study suggested that an inversion moment of approximately 23 N m plus an internal rotation moment of approximately 11 N m and a small plantarflexion moment may have generated a strain of 15-20% in the ATaFL to produce a grade I ligament injury in the athlete's ankle. This injury simulation study exhibited the potentially important roles of plantarflexion and internal rotation, when combined with a large inversion motion, to produce a grade I ATaFL injury in the ankle of this athlete. PMID:23654290

  1. Development of an Arthroscopic Joint Capsule Injury Model in the Canine Shoulder

    PubMed Central

    Kovacevic, David; Baker, Andrew R.; Staugaitis, Susan M.; Kim, Myung-Sun; Ricchetti, Eric T.; Derwin, Kathleen A.

    2016-01-01

    Background The natural history of rotator cuff tears can be unfavorable as patients develop fatty infiltration and muscle atrophy that is often associated with a loss of muscle strength and shoulder function. To facilitate study of possible biologic mechanisms involved in early degenerative changes to rotator cuff muscle and tendon tissues, the objective of this study was to develop a joint capsule injury model in the canine shoulder using arthroscopy. Methods Arthroscopic surgical methods for performing a posterior joint capsulectomy in the canine shoulder were first defined in cadavers. Subsequently, one canine subject underwent bilateral shoulder joint capsulectomy using arthroscopy, arthroscopic surveillance at 2, 4 and 8 weeks, and gross and histologic examination of the joint at 10 weeks. Results The canine subject was weight-bearing within eight hours after index and follow-up surgeries and had no significant soft tissue swelling of the shoulder girdle or gross lameness. Chronic synovitis and macroscopic and microscopic evidence of pathologic changes to the rotator cuff bony insertions, tendons, myotendinous junctions and muscles were observed. Conclusions This study demonstrates feasibility and proof-of-concept for a joint capsule injury model in the canine shoulder. Future work is needed to define the observed pathologic changes and their role in the progression of rotator cuff disease. Ultimately, better understanding of the biologic mechanisms of early progression of rotator cuff disease may lead to clinical interventions to halt or slow this process and avoid the more advanced and often irreversible conditions of large tendon tears with muscle fatty atrophy. PMID:26808837

  2. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    PubMed Central

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H. N.; Haudenschild, Dominik R.

    2015-01-01

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed invivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. PMID:25817731

  3. Treatment of Low Energy Lisfranc Joint Injuries in a Young Athletic Population

    PubMed Central

    Cochran, Grant; Renninger, Christopher; Tompane, Trevor; Bellamy, Joseph; Kuhn, Kevin

    2016-01-01

    Objectives: Acute Lisfranc joint injuries have historically been associated with high-energy trauma, and high quality data exists describing injury patterns and recommended treatment protocols. There is a lack of comparable data investigating injuries associated with low energy mechanisms. The objective of this study is to report low energy injury patterns and to retrospectively compare primary arthrodesis with open reduction and internal fixation in a young athletic population. Methods: All surgically managed low-energy (sustained during athletic activity, ground level twisting, or fall from less than three feet) Lisfranc injuries were identified at a single military tertiary referral center from July 2010 to June 2015. The injury pattern, time to diagnosis, and method of treatment (open reduction internal fixation (ORIF) or primary arthrodesis) were reviewed. Complication rates, secondary procedures, VAS pain score, and return to full military activity (defined as the ability to perform their primary job functions and participate in mandatory athletic activity) were reviewed. Results: Of the thirty-three injuries identified, twenty (60.6%) were primarily ligamentous. Only one patient had evidence of lateral column instability. Average patient age was twenty-eight. Eleven injuries (33%) were initially missed, delaying diagnosis an average of thirty-four days. Primary arthrodesis was performed in fifteen patients; most were secondary to subacute or chronic presentation. ORIF was performed on the remaining eighteen patients. All fixation constructs included solid screws, dorsal plates, or a combination of both. Minor complications occurred in twelve patients and included sensory changes, superficial infection treated with antibiotics, and symptomatic hardware. Complications requiring surgery other than hardware removal were seen in two patients including one ORIF patient who underwent secondary arthrodesis. VAS pain at final evaluation averaged 1.6. Thirty-one of

  4. Differences in Injury Pattern and Prevalence of Cartilage Lesions in Knee and Ankle Joints: A Retrospective Cohort Study

    PubMed Central

    Aurich, Matthias; Hofmann, Gunther O.; Rolauffs, Bernd; Gras, Florian

    2014-01-01

    Osteoarthritis (OA) is more common in the knee compared to the ankle joint. This can not be explained exclusively by anatomical and biomechanical differences. The aim of this study is to analyze and compare the injury pattern (clinically) and the cartilage lesions (arthroscopically) of knee and ankle joints in a cohort of patients from the same catchment area. A retrospective study of the clinical data of 3122 patients (2139 outpatients and 983 inpatients) was performed, who were treated due to an injury of the knee and ankle joint. Statistical analysis was performed using SigmaStat 3.0 (SPSS Inc, Chicago, USA). There is a higher prevalence of injuries in the ankle as compared to the knee joint in this population from the same catchment area. In contrast, high-grade cartilage lesions are more prevalent in the knee, whereas low grade cartilage lesions are equally distributed between knee and ankle. From this data it can be concluded that the frequency of injuries and the injury pattern of knee versus ankle joints do not correlate with the severity of cartilage lesions and may therefore have no direct influence on the differential incidence of OA in those two joints. PMID:25568732

  5. Differences in injury pattern and prevalence of cartilage lesions in knee and ankle joints: a retrospective cohort study.

    PubMed

    Aurich, Matthias; Hofmann, Gunther O; Rolauffs, Bernd; Gras, Florian

    2014-10-27

    Osteoarthritis (OA) is more common in the knee compared to the ankle joint. This can not be explained exclusively by anatomical and biomechanical differences. The aim of this study is to analyze and compare the injury pattern (clinically) and the cartilage lesions (arthroscopically) of knee and ankle joints in a cohort of patients from the same catchment area. A retrospective study of the clinical data of 3122 patients (2139 outpatients and 983 inpatients) was performed, who were treated due to an injury of the knee and ankle joint. Statistical analysis was performed using SigmaStat 3.0 (SPSS Inc, Chicago, USA). There is a higher prevalence of injuries in the ankle as compared to the knee joint in this population from the same catchment area. In contrast, high-grade cartilage lesions are more prevalent in the knee, whereas low grade cartilage lesions are equally distributed between knee and ankle. From this data it can be concluded that the frequency of injuries and the injury pattern of knee versus ankle joints do not correlate with the severity of cartilage lesions and may therefore have no direct influence on the differential incidence of OA in those two joints. PMID:25568732

  6. Tarsometatarsal (Lisfranc) Joint Injury in an Athlete With Persistent Foot Pain.

    PubMed

    Greenberg, Eric T; Queller, Hayley Rintel

    2016-06-01

    The patient was a 20-year-old female ultimate frisbee player who felt a "pop" in her left foot with resultant pain and bruising along the plantar aspect of her midfoot. She was seen by an orthopaedic physician, who ordered standard radiographs that were found to be unremarkable. Although initial non-weight-bearing films were normal, these findings do not rule out tarsometatarsal joint injury. Following presentation to physical therapy 4 months after the initial injury, the patient was referred to a sports medicine physician. Weight-bearing radiographs and magnetic resonance imaging were ordered and confirmed a high-grade Lisfranc ligament tear. J Orthop Sports Phys Ther 2016;46(6):494. doi:10.2519/jospt.2016.0408. PMID:27245490

  7. THE EFFECT OF CONSERVATIVELY TREATED ACL INJURY ON KNEE JOINT POSITION Sense

    PubMed Central

    Herrington, Lee

    2016-01-01

    ABSTRACT Background Proprioception is critical for effective movement patterns. However, methods of proprioceptive measurement in previous research have been inconsistent and lacking in reliability statistics making it applications to clinical practice difficult. Researchers have suggested that damage to the anterior cruciate ligament (ACL) can alter proprioceptive ability due to a loss of functioning mechanoreceptors. The majority of patients opt for reconstructive surgery following this injury. However, some patients chose conservative rehabilitation options rather than surgical intervention. Purpose The purpose of this study was to determine the effect of ACL deficiency on knee joint position sense following conservative, non-operative treatment and return to physical activity. A secondary purpose was to report the reliability and measurement error of the technique used to measure joint position sense, (JPS) and comment on the clinical utility of this measurement. Study Design Observational study design using a cross-section of ACL deficient patients and matched uninjured controls. Methods Twenty active conservatively treated ACL deficient patients who had returned to physical activity and twenty active matched controls were included in the study. Knee joint position sense was measured using a seated passive-active reproductive angle technique. The average absolute angle of error score, between 10 °-30 ° of knee flexion was determined. This error score was derived from the difference between the target and repositioning angle. Results The ACL deficient patients had a greater error score (7.9 °±3.6) and hence poorer static proprioception ability that both the contra-lateral leg (2.0 °±1.6; p = 0.0001) and the control group (2.6 °±0.9; p = 0.0001). The standard error of the mean (SEM) of this JPS technique was 0.5 ° and 0.2 ° and the minimum detectable change (MDC) was 1.3 ° and 0.4 ° on asymptomatic and symptomatic subjects

  8. Upper extremity interaction with a helicopter side airbag: injury criteria for dynamic hyperextension of the female elbow joint.

    PubMed

    Duma, Stefan M; Hansen, Gail A; Kennedy, Eric A; Rath, Amber L; McNally, Craig; Kemper, Andrew R; Smith, Eric P; Brolinson, P Gunnar; Stitzel, Joel D; Davis, Martin B; Bass, Cameron R; Brozoski, Frederick T; McEntire, B Joseph; Alem, Nabih M; Crowley, John S

    2004-11-01

    This paper describes a three part analysis to characterize the interaction between the female upper extremity and a helicopter cockpit side airbag system and to develop dynamic hyperextension injury criteria for the female elbow joint. Part I involved a series of 10 experiments with an original Army Black Hawk helicopter side airbag. A 5(th) percentile female Hybrid III instrumented upper extremity was used to demonstrate side airbag upper extremity loading. Two out of the 10 tests resulted in high elbow bending moments of 128 Nm and 144 Nm. Part II included dynamic hyperextension tests on 24 female cadaver elbow joints. The energy source was a drop tower utilizing a three-point bending configuration to apply elbow bending moments matching the previously conducted side airbag tests. Post-test necropsy showed that 16 of the 24 elbow joint tests resulted in injuries. Injury severity ranged from minor cartilage damage to more moderate joint dislocations and severe transverse fractures of the distal humerus. Peak elbow bending moments ranged from 42.4 Nm to 146.3 Nm. Peak bending moment proved to be a significant indicator of any elbow injury (p = 0.02) as well as elbow joint dislocation (p = 0.01). Logistic regression analyses were used to develop single and multiple variate injury risk functions. Using peak moment data for the entire test population, a 50% risk of obtaining any elbow injury was found at 56 Nm while a 50% risk of sustaining an elbow joint dislocation was found at 93 Nm for the female population. These results indicate that the peak elbow bending moments achieved in Part I are associated with a greater than 90% risk for elbow injury. Subsequently, the airbag was re-designed in an effort to mitigate this as well as the other upper extremity injury risks. Part III assessed the redesigned side airbag module to ensure injury risks had been reduced prior to implementing the new system. To facilitate this, 12 redesigned side airbag deployments were conducted

  9. Risk of nerve injury during arthroscopy portal placement in the elbow joint: A cadaveric study

    PubMed Central

    Chaware, Prashant N; Santoshi, John A; Pakhare, Abhijit P; Rathinam, Bertha A D

    2016-01-01

    Background: Elbow arthroscopy has become a routine procedure now. However, placing portals is fraught with dangers of injuring the neurovascular structures around elbow. There are not enough data documenting the same amongst the Indians. We aimed to determine the relative distances of nerves around the elbow to the arthroscopy portals and risk of injury in different positions of the elbow. Materials and Methods: Six standard elbow arthroscopy portals were established in 12 cadaveric upper limbs after joint distension. Then using standard dissection techniques all the nerves around the elbow were exposed, and their distances from relevant portals were measured using digital vernier caliper in 90° elbow flexion and 0° extension. Descriptive statistical analysis was used for describing distance of the nerves from relevant portal. Wilcoxon-signed rank test and Friedman's test were used for comparison. Results: There was no major nerve injury at all the portals studied in both positions of the elbow. The total incidence of cutaneous nerve injury was 8.3% (12/144); medial cutaneous nerve of forearm 10/48 and posterior cutaneous nerve of forearm 2/24. No significant changes were observed in the distance of a nerve to an individual portal at 90° flexion or 0° extension position of the elbow. Conclusion: This study demonstrates the risk of injury to different nerves at the standard portals of elbow arthroscopy. In practice, the actual incidence of nerve injury may still be lower. We conclude that elbow arthroscopy is a safe procedure when all precautions as described are duly followed. PMID:26952128

  10. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    SciTech Connect

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H.N.; Haudenschild, Dominik R.

    2015-05-08

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively.

  11. Comparison of treatment results of acute and late injuries of the lisfranc joint

    PubMed Central

    Tarczyńska, Marta; Gawęda, Krzysztof; Dajewski, Zbigniew; Kowalska, Elżbieta; Gągała, Jacek

    2013-01-01

    Objective A retrospective comparison of treatment difficulties and treatment outcomes in Lisfranc joint injuries with late and early diagnosis. Methods The study group consisted of 10 patients diagnosed and treated properly within six months to 20 years of the accident causing the injury (mean six years). The control group consisted of the same number of randomly selected patients with a similar type of injury treated immediately after the accident. Mean follow-up was 13 years in the study group and eight years in the control group. The analysis evaluated the causes of the delay and the foot function at the time of follow up, measured using the AOFAS Midfoot Scale and the Lublin Foot Functional Score. The scores of the patients were analyzed using the non-parametric Mann-Whitney U test and the non-parametric Wilcoxon test. Results The control group had statistically significantly better scores on both scales. Conclusion The main cause of treatment delay was misdiagnosis by the primary care physician. Level of Evidence III, Retrospective Comparative Study. PMID:24453695

  12. Farm machinery injuries: the 15-year experience at an urban joint trauma center system in a rural state.

    PubMed

    Jawa, Randeep S; Young, David H; Stothert, Joseph C; Yetter, Diane; Dumond, Robbie; Shostrom, Valerie K; Cemaj, Samuel; Rautiainen, Risto H; Mercer, David W

    2013-01-01

    Farm machinery is a major source of injury. The objective of this study is to characterize the incidence, injury characteristics, and outcomes of patients admitted with farm machinery injuries (FMIs) to an urban joint trauma system in a rural state. A retrospective 15-year review of the trauma registries of the two trauma centers that function as a single state-designated Level I joint trauma center system was conducted. There were 65 admissions for FMIs at hospital A and 41 at hospital B; this represents under 0.4% of total trauma admissions. The patients ranged in age from 2 to 87 years. At hospital A, 89% of admitted patients sustained extremity injuries, 16% sustained torso trauma, 92% required surgical intervention, and the mortality rate was 0%. At hospital B, 60% of admitted patients sustained extremity injuries, 36.6% of patients sustained torso trauma, 63% required surgical intervention, and the mortality rate was 14.6%. Tractor-related injuries were responsible for 17% of admissions at hospital A and 69% at hospital B. Of the six fatalities, five were tractor related. The data demonstrate that FMIs affect people in nearly all decades of life. FMIs at the two hospitals had differing injury characteristics and outcomes, in large part secondary to the differing frequency of tractor-related injuries. FMIs frequently required surgical intervention. PMID:23540300

  13. Modelling and updating of large surface-to-surface joints in the AWE-MACE structure

    NASA Astrophysics Data System (ADS)

    Ahmadian, Hamid; Mottershead, John E.; James, Simon; Friswell, Michael I.; Reece, Carole A.

    2006-05-01

    Model updating of joints in the AWE-MACE system is carried out using a sensitivity method. The joints are characterised by large surface-to-surface contact regions and are excited in vibration tests within the linear range. The joints are modelled using a layer of special interface elements having material properties that may be adjusted to improve the prediction of the complete model. A series of three updating exercises are described and it is shown that by using only six parameters based upon the circumferential-wave and bending modes that the prediction of the axial and torsional modes is improved sufficiently to be of practical usefulness for many applications. Fewer numbers of updating parameters are found to be sufficient to correct different subsets of vibration modes. Linear equivalent models identified by this approach are found to be valid within the usual range of vibration tests.

  14. Multi-component joint analysis of surface waves

    NASA Astrophysics Data System (ADS)

    Dal Moro, Giancarlo; Moura, Rui Miguel Marques; Moustafa, Sayed S. R.

    2015-08-01

    Propagation of surface waves can occur with complex energy distribution amongst the various modes. It is shown that even simple VS (shear-wave velocity) profiles can generate velocity spectra that, because of a complex mode excitation, can be quite difficult to interpret in terms of modal dispersion curves. In some cases, Rayleigh waves show relevant differences depending on the considered component (radial or vertical) and the kind of source (vertical impact or explosive). Contrary to several simplistic assumptions often proposed, it is shown, both via synthetic and field datasets, that the fundamental mode of Rayleigh waves can be almost completely absent. This sort of evidence demonstrates the importance of a multi-component analysis capable of providing the necessary elements to properly interpret the data and adequately constrain the subsurface model. It is purposely shown, also through the sole use of horizontal geophones, how it can be possible to efficiently and quickly acquire both Love and Rayleigh (radial-component) waves. The presented field dataset reports a case where Rayleigh waves (both their vertical and radial components) appear largely dominated by higher modes with little or no evidence of the fundamental mode. The joint inversion of the radial and vertical components of Rayleigh waves jointly with Love waves is performed by adopting a multi-objective inversion scheme based on the computation of synthetic seismograms for the three considered components and the minimization of the whole velocity spectra misfits (Full Velocity Spectra - FVS - inversion). Such a FVS multi-component joint inversion can better handle complex velocity spectra thus providing a more robust subsurface model not affected by erroneous velocity spectra interpretations and non-uniqueness of the solution.

  15. Upper limb joint muscle/tendon injury and anthropometric adaptations in French competitive tennis players.

    PubMed

    Rogowski, Isabelle; Creveaux, Thomas; Genevois, Cyril; Klouche, Shahnaz; Rahme, Michel; Hardy, Philippe

    2016-01-01

    The purpose of this study was to examine the relationship between the upper limb anthropometric dimensions and a history of dominant upper limb injury in tennis players. Dominant and non-dominant wrist, forearm, elbow and arm circumferences, along with a history of dominant upper limb injuries, were assessed in 147 male and female players, assigned to four groups based on location of injury: wrist (n = 9), elbow (n = 25), shoulder (n = 14) and healthy players (n = 99). From anthropometric dimensions, bilateral differences in circumferences and in proportions were calculated. The wrist group presented a significant bilateral difference in arm circumference, and asymmetrical bilateral proportions between wrist and forearm, as well as between elbow and arm, compared to the healthy group (6.6 ± 3.1% vs. 4.9 ± 4.0%, P < 0.01; -3.6 ± 3.0% vs. -0.9 ± 2.9%, P < 0.05; and -2.2 ± 2.2% vs. 0.1 ± 3.4%, P < 0.05, respectively). The elbow group displayed asymmetrical bilateral proportions between forearm and arm compared to the healthy group (-0.4 ± 4.3% vs. 1.5 ± 4.0%, P < 0.01). The shoulder group showed significant bilateral difference in elbow circumference, and asymmetrical bilateral proportions between forearm and elbow when compared to the healthy group (5.8 ± 4.7% vs. 3.1 ± 4.8%, P < 0.05 and -1.7 ± 4.5% vs. 1.4 ± 4.3%, P < 0.01, respectively). These findings suggest that players with a history of injury at the upper limb joint present altered dominant upper limb proportions in comparison with the non-dominant side, and such asymmetrical proportions would appear to be specific to the location of injury. Further studies are needed to confirm the link between location of tennis injury and asymmetry in upper limb proportions using high-tech measurements in symptomatic tennis players. PMID:25881663

  16. Chronic unilateral locked facet joint with spinal cord injury in a 26-month-old child: A case report

    PubMed Central

    Wu, Ai-Min; Wang, Xiang-Yang; Luo, Peng; Xu, Hua-Zi; Chi, Yong-Long

    2015-01-01

    Objectives This study presents the successful posterior surgical reduction and fusion on a 26-month-old child with chronic unilateral locked facet joint and spinal cord injury (SCI). Methods A 26-month-old child with chronic unilateral locked facet joint and SCI treated by posterior surgical reduction and fusion. Plaster external fixation was applied and rehabilitation exercise was trained post-operatively. Results Chronic unilateral locked facet joint was reduced successfully and bone fusion of C4/5 was achieved 3 months after surgery. The function of both lower limbs was improved 1 year after surgery, aided with physical rehabilitation. Conclusion Unilateral locked facet joint in pediatric population is rare. Few clinical experiences were found in the literature. Non-surgical treatment has advantages of not being invasive and is preferred for acute patients; however, it may not be suitable for chronic unilateral locked facet joint with SCI, in which surgical intervention is needed. PMID:24673578

  17. THE PROSTAGLANDIN E2 RECEPTOR, EP2, IS UPREGULATED IN THE DRG AFTER PAINFUL CERVICAL FACET JOINT INJURY IN THE RAT

    PubMed Central

    Kras, Jeffrey V.; Dong, Ling; Winkelstein, Beth A.

    2012-01-01

    Study Design This study implemented immunohistochemistry to assay prostaglandin E2 (PGE2) receptor EP2 expression in the dorsal root ganglion (DRG) of rats after painful cervical facet joint injury. Objective The objective of this study was to identify if inflammatory cascades are induced in association with cervical facet joint distraction-induced pain by investigating the time course of EP2 expression in the DRG. Summary of Background Data The cervical facet joint is a common source of neck pain and non-physiological stretch of the facet capsular ligament can initiate pain from the facet joint via mechanical injury. PGE2 levels are elevated in painful inflamed and arthritic joints, and PGE2 sensitizes joint afferents to mechanical stimulation. Although in vitro studies suggest the EP2 receptor subtype contributes to painful joint disease the EP2 response has not been investigated for any association with painful mechanical joint injury. Methods Separate groups of male Holtzman rats underwent either a painful cervical facet joint distraction injury or sham procedure. Bilateral forepaw mechanical allodynia was assessed, and immunohistochemical techniques were used to quantify EP2 expression in the DRG at days 1 and 7. Results Facet joint distraction induced mechanical allodynia that was significant (p<0.024) at all time points. Painful joint injury also significantly elevated total EP2 expression in the DRG at day 1 (p=0.009), which was maintained also at day 7 (p<0.001). Neuronal expression of EP2 in the DRG was only increased over sham levels at day 1 (p=0.013). Conclusions Painful cervical facet joint distraction induces an immediate and sustained increase of EP2 expression in the DRG, implicating peripheral inflammation in the initiation and maintenance of facet joint pain. The transient increase in neuronal EP2 suggests, as in other painful joint conditions, that after joint injury non-neuronal cells may migrate to the DRG, some of which likely express EP2

  18. Assessment of the responsibility between a road traffic accident and medical defects after the traffic accident injury of knee joint.

    PubMed

    Chen, Jiemin; Xia, Wentao

    2012-04-01

    A 48-year-old Chinese woman was hit by a car in a road traffic accident. Local county hospital considered that her right knee was injured, but didn't find any sign of fracture from X-ray imaging. Then the hospital gave diagnosis of soft tissue contusion and the patient started to exercise with burden 21 days after her right lower limb was fixed by plaster slab. Four months later, she had to go back to the county hospital for recheck due to persistent pain on her right knee. Then, the right tibia outer plateau fracture was found. The patient rejected the advice of open reduction and internal fixation of right tibia plateau fracture. Instead, she accepted the unicompartmental knee arthroplasty in a hospital affiliated to a medical college. The patient felt the knee pain alleviated after surgery However, the joint dysfunction was aggravated even more. The patient used the legal procedure for personal compensation. Both driver and the insurance company disputed that the final consequence of the injured knee was due to not only the traffic accident, but also poor medical practice involved. Therefore the court consigned us to make judicial judgment of expertise. After investigation, we found the earliest X-ray graph after the accident had shown the fracture of right tibia outer plateau and right knee valgum, with articular surface involvement, and the traffic accident was considered as the primary cause of sequelae. At the same time, the county hospital missed the diagnosis of fracture, and led to insufficient fixation of right lower limb, which was not good for rehabilitation from fracture and joint injury. This was the secondary cause of sequelae. Additionally, instead of the standard therapy, the affiliated hospital of medical college made the unicompartmental knee arthroplasty four months later, which also had a little defect. It was the minor reason for the result. PMID:22391004

  19. Small Finger Snapping due to Retinacular Ligament Injury at the Level of Proximal Interphalangeal Joint

    PubMed Central

    Lee, Young-Keun; Lee, Jun-Mo; Lee, Malrey

    2015-01-01

    Abstract Pathological snapping secondary to posttraumatic subluxation of the extensor tendon at proximal interphalangeal joint (PIPJ) of the finger is rare. Here, we want to describe a patient with snapping of the left small finger at PIPJ due to retinacular ligament injury. A 24-year-old man was admitted because of a 5-year history of a snapping sound in the left small finger. On examination, the radial side lateral band of the small finger was dislocated volarly at the level PIPJ with flexion of >50°, which was clearly felt over the skin. There was an obvious snapping sound at the time of dislocation. There was no specific radiographic abnormality. With the patient under regional anesthesia, exploration through a zigzag skin incision over the dorsum of the PIPJ revealed that the retinacular ligament complex was injured. We also found a partial tear in PIPJ capsule, through the incision of the injured retinacular ligament complex. We repaired the joint capsule and retinacular ligament complex with prolene 4–0. Postoperatively the small finger was immobilized in a below-elbow plaster splint with full extension of the fingers for 1 week, then dynamic splinting was advised for another 5 weeks and unrestricted full active motion was allowed at the 6th week. At the 6-month follow-up, the patient had regained full range of motion with no discomfort, and there was no sign of recurrence. We stress that when there is snapping over the dorsum of the PIPJ of the finger, the clinician should suspect rupture of the retinacular ligaments, especially in minor trauma patients. Primary repair of retinacular ligaments and dynamic splinting provided satisfactory results without recurrence in our patient.

  20. Small Finger Snapping due to Retinacular Ligament Injury at the Level of Proximal Interphalangeal Joint

    PubMed Central

    Lee, Young-Keun; Lee, Jun-Mo; Lee, Malrey

    2015-01-01

    Abstract Pathological snapping secondary to posttraumatic subluxation of the extensor tendon at proximal interphalangeal joint (PIPJ) of the finger is rare. Here, we want to describe a patient with snapping of the left small finger at PIPJ due to retinacular ligament injury. A 24-year-old man was admitted because of a 5-year history of a snapping sound in the left small finger. On examination, the radial side lateral band of the small finger was dislocated volarly at the level PIPJ with flexion of >50°, which was clearly felt over the skin. There was an obvious snapping sound at the time of dislocation. There was no specific radiographic abnormality. With the patient under regional anesthesia, exploration through a zigzag skin incision over the dorsum of the PIPJ revealed that the retinacular ligament complex was injured. We also found a partial tear in PIPJ capsule, through the incision of the injured retinacular ligament complex. We repaired the joint capsule and retinacular ligament complex with prolene 4–0. Postoperatively the small finger was immobilized in a below-elbow plaster splint with full extension of the fingers for 1 week, then dynamic splinting was advised for another 5 weeks and unrestricted full active motion was allowed at the 6th week. At the 6-month follow-up, the patient had regained full range of motion with no discomfort, and there was no sign of recurrence. We stress that when there is snapping over the dorsum of the PIPJ of the finger, the clinician should suspect rupture of the retinacular ligaments, especially in minor trauma patients. Primary repair of retinacular ligaments and dynamic splinting provided satisfactory results without recurrence in our patient. PMID:26091481

  1. Upper limb joint kinetic analysis during tennis serve: Assessment of competitive level on efficiency and injury risks.

    PubMed

    Martin, C; Bideau, B; Ropars, M; Delamarche, P; Kulpa, R

    2014-08-01

    The aim of this work was to compare the joint kinetics and stroke production efficiency for the shoulder, elbow, and wrist during the serve between professionals and advanced tennis players and to discuss their potential relationship with given overuse injuries. Eleven professional and seven advanced tennis players were studied with an optoelectronic motion analysis system while performing serves. Normalized peak kinetic values of the shoulder, elbow, and wrist joints were calculated using inverse dynamics. To measure serve efficiency, all normalized peak kinetic values were divided by ball velocity. t-tests were used to determine significant differences between the resultant joint kinetics and efficiency values in both groups (advanced vs professional). Shoulder inferior force, shoulder anterior force, shoulder horizontal abduction torque, and elbow medial force were significantly higher in advanced players. Professional players were more efficient than advanced players, as they maximize ball velocity with lower joint kinetics. Since advanced players are subjected to higher joint kinetics, the results suggest that they appeared more susceptible to high risk of shoulder and elbow injuries than professionals, especially during the cocking and deceleration phases of the serve. PMID:23293868

  2. Spectral unmixing of agents on surfaces for the Joint Contaminated Surface Detector (JCSD)

    NASA Astrophysics Data System (ADS)

    Slamani, Mohamed-Adel; Chyba, Thomas H.; LaValley, Howard; Emge, Darren

    2007-09-01

    ITT Corporation, Advanced Engineering and Sciences Division, is currently developing the Joint Contaminated Surface Detector (JCSD) technology under an Advanced Concept Technology Demonstration (ACTD) managed jointly by the U.S. Army Research, Development, and Engineering Command (RDECOM) and the Joint Project Manager for Nuclear, Biological, and Chemical Contamination Avoidance for incorporation on the Army's future reconnaissance vehicles. This paper describes the design of the chemical agent identification (ID) algorithm associated with JCSD. The algorithm detects target chemicals mixed with surface and interferent signatures. Simulated data sets were generated from real instrument measurements to support a matrix of parameters based on a Design Of Experiments approach (DOE). Decisions based on receiver operating characteristics (ROC) curves and area-under-the-curve (AUC) measures were used to down-select between several ID algorithms. Results from top performing algorithms were then combined via a fusion approach to converge towards optimum rates of detections and false alarms. This paper describes the process associated with the algorithm design and provides an illustrating example.

  3. Comparison of Extension Orthosis Versus Percutaneous Pinning of the Distal Interphalangeal Joint for Closed Mallet Injuries.

    PubMed

    Renfree, Kevin J; Odgers, Ryan A; Ivy, Cynthia C

    2016-05-01

    We compared a static extension orthosis with percutaneous pinning of the distal interphalangeal joint (DIPJ) for treatment of closed mallet injuries. After receiving counsel about treatment options, 44 patients (25 women and 19 men; mean age, 57 years) freely chose orthosis and 18 patients (5 women and 13 men; mean age, 51 years) chose pinning. Both the extension orthosis and the pin remained in place for 6 weeks; the pin then was removed, and the care in both groups was transitioned to nighttime orthosis use for an additional 6 weeks. The patients in the pin group were allowed to immediately resume unrestricted activity postoperatively. The mean follow-up was 32 months in the orthosis group and 19 months in the pin group. Final residual extensor lag was better in the pin group (5 vs 10 degrees, P = 0.048). Improvement between the groups was in favor of percutaneous pinning (36 vs 17 degrees, P = 0.001). No correlation was seen between time to treatment (≤14 vs >14 days from injury) and final extensor lag in either group (P = 0.85). The final mean DIPJ flexion was 53 degrees for orthosis and 46 degrees for pinning. Among the patients, 93% of the orthosis group and 100% of the pin group said that they would choose the same treatment again. Both groups had a mean of 5 hand therapy visits during treatment. Two complications occurred in the orthosis group (5%) and 3 (17%) occurred in the pin group. Extension orthotics and pinning are both well-tolerated, effective treatments of mallet injury. The techniques produce satisfactory correction of extensor lag and have high patient satisfaction. Pinning allows better correction of DIPJ extensor lag and results in a smaller degree of final extensor lag. Pinning is more expensive and may result in more DIPJ stiffness (ie, loss of active flexion), but it may be justified in certain patients (eg, medical professionals, food service workers) who would have difficulty working with an orthosis. PMID:25144418

  4. Activity vs. rest in the treatment of bone, soft tissue and joint injuries.

    PubMed Central

    Buckwalter, J. A.

    1995-01-01

    One of the most important advances in the treatment of musculoskeletal injuries has come from understanding that controlled early resumption of activity can promote restoration of function, and that treatment of injuries with prolonged rest may delay recovery and adversely affect normal tissues. In the last decade of the nineteenth century two widely respected orthopaedists with extensive clinical experience strongly advocated opposing treatments of musculoskeletal injuries. Hugh Owen Thomas in Liverpool believed that enforced, uninterrupted prolonged rest produced the best results. He noted that movement of injured tissues increased inflammation, and that, "It would indeed be as reasonable to attempt to cure a fever patient by kicking him out of bed, as to benefit joint disease by a wriggling at the articulation." Just Lucas-Championnier in Paris took the opposite position. He argued that early controlled active motion accelerated restoration of function, although he noted that mobility had to be given in limited doses. In general, Thomas' views met with greater acceptance in the early part of this century, but experimental studies of the last several decades generally support Lucas-Championneir. They confirm and help explain the deleterious effects of prolonged rest and the beneficial effects of activity on the musculoskeletal tissues. They have shown that maintenance of normal bone, tendon and ligament, articular cartilage and muscle structure and composition require repetitive use, and that changes in the patterns of tissue loading can strengthen or weaken normal tissues. Although all the musculoskeletal tissues can respond to repetitive loading, they vary in the magnitude and type of response to specific patterns of activity. Furthermore, their responsiveness may decline with increasing age. Skeletal muscle and bone demonstrate the most apparent response to changes in activity in individuals of any age. Cartilage and dense fibrous tissues also can respond to

  5. Arthroscopic-assisted repair of triangular fibrocartilage complex foveal avulsion in distal radioulnar joint injury

    PubMed Central

    Woo, Sung Jong; Jegal, Midum; Park, Min Jong

    2016-01-01

    Background: Disruption of the triangular fibrocartilage complex (TFCC) foveal insertion can lead to distal radioulnar joint (DRUJ) instability accompanied by ulnar-sided pain, weakness, snapping, and limited forearm rotation. We investigated the clinical outcomes of patients with TFCC foveal tears treated with arthroscopic-assisted repair. Materials and Methods: Twelve patients underwent foveal repair of avulsed TFCC with the assistance of arthroscopy between 2011 and 2013. These patients were followed up for an average of 19 months (range 14–25 months). The avulsed TFCC were reattached to the fovea using a transosseous pull-out suture or a knotless suture anchor. At the final followup, the range of motion, grip strength and DRUJ stability were measured as objective outcomes. Subjective outcomes were assessed using the Visual Analog Scale (VAS) for pain, patient rated wrist evaluation (PRWE), Disabilities of the Arm, Shoulder and Hand questionnaire (DASH score) and return to work. Results: Based on the DRUJ stress test, 5 patients had normal stability and 7 patients showed mild laxity as compared with the contralateral side. Postoperatively, the mean range of pronation supination increased from 141° to 166°, and the mean VAS score for pain decreased from 5.3 to 1.7 significantly. The PRWE and DASH questionnaires also showed significant functional improvement. All patients were able to return to their jobs. However, two patients complained of persistent pain. Conclusions: Arthroscopically assisted repair of TFCC foveal injury can provide significant pain relief, functional improvement and restoration of DRUJ stability. PMID:27293286

  6. Enhanced Neuroprotection of Minimally Invasive Surgery Joint Local Cooling Lavage against ICH-induced Inflammation Injury and Apoptosis in Rats.

    PubMed

    Liu, Xi-Chang; Jing, Li-Yan; Yang, Ming-Feng; Wang, Kun; Wang, Yuan; Fu, Xiao-Yan; Fang, Jie; Hou, Ya-Jun; Sun, Jing-Yi; Li, Da-Wei; Zhang, Zong-Yong; Mao, Lei-Lei; Tang, You-Mei; Fu, Xiao-Ting; Fan, Cun-Dong; Yang, Xiao-Yi; Sun, Bao-Liang

    2016-07-01

    Hypothermia treatment is one of the neuroprotective strategies that improve neurological outcomes effectively after brain damage. Minimally invasive surgery (MIS) has been an important treatment of intracerebral hemorrhage (ICH). Herein, we evaluated the neuroprotective effect and mechanism of MIS joint local cooling lavage (LCL) treatment on ICH via detecting the inflammatory responses, oxidative injury, and neuronal apoptosis around the hematoma cavity in rats. ICH model was established by type IV collagenase caudatum infusion. The rats were treated with MIS 6 h after injection, and then were lavaged by normothermic (37 °C) and hypothermic (33 °C) normal saline in brain separately. The results indicated that MIS joint LCL treatment showed enhanced therapeutic effects against ICH-induced inflammation injury and apoptosis in rats, as convinced by the decline of TUNEL-positive cells, followed by the decrease of IL-1β and LDH and increase of IL-10 and SOD. This study demonstrated that the strategy of using MIS joint LCL may achieve enhanced neuroprotection against ICH-induced inflammation injury and apoptosis in rats with potential clinic application. PMID:26224360

  7. [Research on surface modification and bio-tribological properties of artificial joint].

    PubMed

    Pan, Yusong; Wang, Jing; Ding, Guoxin

    2012-06-01

    The bio-tribological properties of an artificial joint can be obviously improved by surface modification technologies. In this paper, the benefits and disadvantages of various surface modification methods-such as surface coating, plasma treatment, surface texture and surface grafting modification-are discussed. The aim of surface coating and/or plasma treatment is to improve the surface hardness of the materials, thus enhancing the wear resistance of artificial joints. However, these technologies do not effectively alleviate stress concentration of material in the short times in which artificial joints bear physiological impact load, resulting in easy fracture. Surface texture serves mainly to improve the lubrication properties through micro-concavities on the material surface for storage lubricant. Surface texturing can realize improvements in bio-tribological properties, but it does not enhance the impact resistance of the joint. Surface grafting modification is implemented mainly by grafting hydrophilic or other specific functional groups to improve the surface hydrophilicity and wetability, thus enhancing lubricating performance and reducing the coefficient of friction. PMID:22772408

  8. The injuries to the fourth and fifth tarsometatarsal joints: A review of the surgical management by internal fixation, arthrodesis and arthroplasty

    PubMed Central

    Yu, Xiao; Pang, Qing-jiang; Yu, Guang-rong

    2013-01-01

    The surgical management to the injuries of the fourth and fifth tarsometatarsal (TMT) joints is controversial. We briefly review the anatomical characteristics to the injuries, the diagnosis, as well as the individualized treatment of the injuries of the fourth and fifth TMT joints by open reduction and internal fixation, TMT arthrodesis and arthroplasty. We conclude that open reduction and internal fixation is the recommended option for acute injuries, while arthrodesis can be used in cases of malunion of the fourth and fifth TMT joints with gross pain or arthritic changes and obvious structural deformity. Arthroplasty is an effective salvage operation mainly used in high-demand patients with severe TMT arthritis. Finally, we propose a recommended treatment algorithm (based on the literature and our experience), taking into account the specific indications for internal fixation, TMT arthrodesis and arthroplasty to optimize the individualized treatment. Data sources/Study selection Data from survey reports, descriptive, cross-sectional and longitudinal studies published from 2002 to 2012 on the topic of the injuries to the fourth and fifth tarsometatarsal joint on human and radiography studies were included. Data Extraction The data was extracted from online resources of American Orthopaedic Foot & Ankle Society, American Academy of Orthopaedic Surgeons, US National Library of Medicine, The MEDLINE. Conclusion It is important to comprehend the specific anatomical characteristics and grasp the strict indications, advantages and disadvantages of the ORIF, TMT arthrodesis and arthroplasty to optimize the individualized treatment of the fourth and fifth TMT joints injuries in a maximum extent. PMID:24353608

  9. Experimental Study on Wave Propagation Across a Rock Joint with Rough Surface

    NASA Astrophysics Data System (ADS)

    Chen, X.; Li, J. C.; Cai, M. F.; Zou, Y.; Zhao, J.

    2015-11-01

    Joints are an important mechanical feature of rock masses. Their effect on wave propagation is significant in characterizing dynamic behaviors of discontinuous rock masses. An experimental study on wave propagation across artificial rock joint was carried out to reveal the relation between the transmission coefficient and the contact situation of the joint surface. The modified split Hopkinson pressure bar apparatus was used in this study while all the bars and specimens were norite cored from the same site. One surface of the specimens with a number of notches was adopted to simulate the artificial rough joint. Two strain gauges were mounted on each pressure bar at a specific spacing. The incident, reflected and transmitted waves across the joints were obtained using a wave separation method. Comparisons of the transmission coefficients were made under two different conditions: with the same joint thickness but different contact area ratios, and with the same contact area ratio but different joint thicknesses. The results show the effects of contact area ratio and thickness of joints on wave transmission.

  10. Surface Modifications for Improved Wear Performance in Artificial Joints: A Review

    NASA Astrophysics Data System (ADS)

    Sullivan, Stacey J. L.; Topoleski, L. D. Timmie

    2015-11-01

    Artificial joint replacement is one of the most successful treatments for arthritis. Excellent wear and corrosion resistance, together with high strength and fracture toughness, are fundamental requirements for implant materials. Wear and/or corrosion of the materials used in artificial joints may lead to implant failure. Therefore, hard and wear-resistant materials, like cobalt-chromium-molybdenum and ceramic, are currently used as bearing surfaces. However, even using such hard materials, wear and/or corrosion related failure of artificial joints remains a central concern. One primary goal in orthopedic biomaterials research is to create more wear-resistant surfaces. Different technologies have been used to create new surfaces, or to modify existing surfaces, to prevent wear. It is the intent of this overview first to provide a summary of materials currently used as bearing surfaces in artificial joints, their functions, and their contributions to device longevity. Then, we will discuss advancements in modifying those bearing surfaces to produce more wear-resistant artificial joints.

  11. Mallet finger injuries-A new method to maintain distal interphalangeal joint extension.

    PubMed

    Mak, Lonita; Aitkens, Lorna D; Novak, Christine B

    2016-01-01

    Ensuring that distal interphalangeal joint extension is maintained is an important but challenging part of the treatment process. These authors describe a simple approach to ensuring distal interphalangeal joint extension for these patients. - VictoriaPriganc, PhD, OTR, CHT, CLT, Practice Forum Editor. PMID:27496991

  12. Laser Surface Pre-treatment of Aluminium for Hybrid Joints with Glass Fibre Reinforced Thermoplastics

    NASA Astrophysics Data System (ADS)

    Heckert, André; Zaeh, Michael F.

    Lightweight construction is a major trend in the automotive industry. Theconnection of fibre reinforced plastics with aluminium is consequently seen as promising prospect. In this regard, thermal joining can be applied for bonding of such hybrid joints. But in order to create a load bearing metal plastic joint, the surface of the metal has to be pre-treated. Recent research has shown that with laser surface pre-treatment high joint strengths are obtained. Yet there are a variety of laser sources and manufacturable surface topographies with structure sizes ranging from macroscopic to nanoscopic profiles. Within this work,macroscopic, microscopic and nanoscopic laser processed structures are created on aluminium and consequently joined to glass fibre reinforced thermoplastics of different fibre length and fibre content. High shear tensile strengths of up to 42 N/mm2 were obtained depending on the allocated material and the surface pre-treatment.

  13. Underestimated Sacroiliac Joint Lesion on Computed Tomography in Pelvic Open-book Injury: A Case Report

    PubMed Central

    Kim, Weon-Yoo; Jeong, Jae-Jung; Kang, Han-Vit

    2016-01-01

    The classification of anteroposterior compression (APC) injury type is based on using static radiographs, stress radiographs are known as a useful adjunct in classifying type of APC pelvic injuries. According to a recent article, the intraoperative stress examination has led to a change in the treatment plan in more than 25% of patients on 22 patients presumed APC type I (symphyseal diastasis <2.5 cm) injuries. Here authors present a case demonstrating a necessity of intraoperative stress test for excluding concealed posterior ring disruption.

  14. Underestimated Sacroiliac Joint Lesion on Computed Tomography in Pelvic Open-book Injury: A Case Report.

    PubMed

    Kim, Weon-Yoo; Jeong, Jae-Jung; Kang, Han-Vit; Lee, Se-Won

    2016-03-01

    The classification of anteroposterior compression (APC) injury type is based on using static radiographs, stress radiographs are known as a useful adjunct in classifying type of APC pelvic injuries. According to a recent article, the intraoperative stress examination has led to a change in the treatment plan in more than 25% of patients on 22 patients presumed APC type I (symphyseal diastasis <2.5 cm) injuries. Here authors present a case demonstrating a necessity of intraoperative stress test for excluding concealed posterior ring disruption. PMID:27536644

  15. Understanding the Acute Skin Injury Mechanism Caused by Player-Surface Contact During Soccer

    PubMed Central

    van den Eijnde, Wilbert A.J.; Peppelman, Malou; Lamers, Edwin A.D.; van de Kerkhof, Peter C.M.; van Erp, Piet E.J.

    2014-01-01

    Background: Superficial skin injuries are considered minor, and their incidence is probably underestimated. Insight into the incidence and mechanism of acute skin injury can be helpful in developing suitable preventive measures and safer playing surfaces for soccer and other field sports. Purpose: To gain insight into the incidence and severity of skin injuries related to soccer and to describe the skin injury mechanism due to player-surface contact. Study Design: Systematic review; Level of evidence, 4. Methods: The prevention model by van Mechelen et al (1992) combined with the injury causation model of Bahr and Krosshaug (2005) were used as a framework for the survey to describe the skin injury incidence and mechanism caused by player-surface contact. Results: The reviewed literature showed that common injury reporting methods are mainly based on time lost from participation or the need for medical attention. Because skin abrasions seldom lead to absence or medical attention, they are often not reported. When reported, the incidence of abrasion/laceration injuries varies from 0.8 to 6.1 injuries per 1000 player-hours. Wound assessment techniques such as the Skin Damage Area and Severity Index can be a valuable tool to obtain a more accurate estimation of the incidence and severity of acute skin injuries. Conclusion: The use of protective equipment, a skin lubricant, or wet surface conditions has a positive effect on preventing abrasion-type injuries from artificial turf surfaces. The literature also shows that essential biomechanical information of the sliding event is lacking, such as how energy is transferred to the area of contact. From a clinical and histological perspective, there are strong indications that a sliding-induced skin lesion is caused by mechanical rather than thermal injury to the skin. PMID:26535330

  16. Joint Disorders

    MedlinePlus

    A joint is where two or more bones come together, like the knee, hip, elbow, or shoulder. Joints can be damaged by many types of injuries or diseases, including Arthritis - inflammation of a joint. It causes pain, stiffness, and swelling. Over time, ...

  17. Gender Dimorphic ACL Strain In Response to Combined Dynamic 3D Knee Joint Loading: Implications for ACL Injury Risk

    PubMed Central

    Mizuno, Kiyonori; Andrish, Jack T.; van den Bogert, Antonie J.; McLean, Scott G.

    2009-01-01

    While gender-based differences in knee joint anatomies/laxities are well documented, the potential for them to precipitate gender-dimorphic ACL loading and resultant injury risk has not been considered. To this end, we generated gender-specific models of ACL strain as a function of any six degrees of freedom (6DOF) knee joint load state via a combined cadaveric and analytical approach. Continuously varying joint forces and torques were applied to five male and five female cadaveric specimens and recorded along with synchronous knee flexion and ACL strain data. All data (~10,000 samples) were submitted to specimen-specific regression analyses, affording ACL strain predictions as a function of the combined 6 DOF knee loads. Following individual model verifications, generalized gender-specific models were generated and subjected to 6 DOF external load scenarios consistent with both a clinical examination and a dynamic sports maneuver. The ensuing model-based strain predictions were subsequently examined for gender-based discrepancies. Male and female specimen specific models predicted ACL strain within 0.51% ± 0.10% and 0.52% ± 0.07% of the measured data respectively, and explained more than 75% of the associated variance in each case. Predicted female ACL strains were also significantly larger than respective male values for both of simulated 6 DOF load scenarios. Outcomes suggest that the female ACL will rupture in response to comparatively smaller external load applications. Future work must address the underlying anatomical/laxity contributions to knee joint mechanical and resultant ACL loading, ultimately affording prevention strategies that may cater to individual joint vulnerabilities. PMID:19464897

  18. Modulation of joint moments and work in the goat hindlimb with locomotor speed and surface grade

    PubMed Central

    Arnold, Allison S.; Lee, David V.; Biewener, Andrew A.

    2013-01-01

    SUMMARY Goats and other quadrupeds must modulate the work output of their muscles to accommodate the changing mechanical demands associated with locomotion in their natural environments. This study examined which hindlimb joint moments goats use to generate and absorb mechanical energy on level and sloped surfaces over a range of locomotor speeds. Ground reaction forces and the three-dimensional locations of joint markers were recorded as goats walked, trotted and galloped over 0, +15 and −15 deg sloped surfaces. Net joint moments, powers and work were estimated at the goats' hip, knee, ankle and metatarsophalangeal joints throughout the stance phase via inverse dynamics calculations. Differences in locomotor speed on the level, inclined and declined surfaces were characterized and accounted for by fitting regression equations to the joint moment, power and work data plotted versus non-dimensionalized speed. During level locomotion, the net work generated by moments at each of the hindlimb joints was small (less than 0.1 J kg−1 body mass) and did not vary substantially with gait or locomotor speed. During uphill running, by contrast, mechanical energy was generated at the hip, knee and ankle, and the net work at each of these joints increased dramatically with speed (P<0.05). The greatest increases in positive joint work occurred at the hip and ankle. During downhill running, mechanical energy was decreased in two main ways: goats generated larger knee extension moments in the first half of stance, absorbing energy as the knee flexed, and goats generated smaller ankle extension moments in the second half of stance, delivering less energy. The goats' hip extension moment in mid-stance was also diminished, contributing to the decrease in energy. These analyses offer new insight into quadrupedal locomotion, clarifying how the moments generated by hindlimb muscles modulate mechanical energy at different locomotor speeds and grades, as needed to accommodate the

  19. Histochemical study on the atrophy of the quadriceps femoris muscle caused by knee joint injuries of rats.

    PubMed

    Okada, Y

    1989-03-01

    Atrophy developing in the quadriceps femoris muscle following knee injury is one of the serious problems not only in the field of orthopedics but also of rehabilitation. However the pathogenesis of this atrophy has not yet been elucidated. The author therefore produced a complex ligament injury model using the knee joints of rats in order to study the pathogenesis of this atrophy. After severing the anterior cruciate ligament, the medial collateral ligament and tibial insertion of the medial meniscus of rats, these animals were sacrificed at 4, 8 and 12 weeks. After removing the vastus lateralis muscle, vastus medialis muscle, and rectus femoris muscle, specimens of these muscles were stained for ATPase. The transection area of the muscle fibers was measured and the fiber type composition was determined. At 4 weeks the vastus medialis muscle and at 12 weeks the vastus lateralis muscle showed marked atrophy. The rectus femoris muscle exhibited the least atrophy throughout the entire observation period. In examining the atrophy of the quadriceps femoris muscle by muscle fiber type, the degree of atrophy was found to differ among the venters and even the same venter showed a different reaction depending on the elapsed time after sustaining the injury. Neither changes in the fiber type composition not neurogenic findings could be observed. PMID:2526800

  20. Compartment Syndrome Following Arthroscopic Removal of a Bullet in the Knee Joint after a Low-Velocity Gunshot Injury

    PubMed Central

    Yalçin, Sercan; Oltulu, İsmail; Erdil, Mehmet Emin; Örmeci, Tuğrul

    2016-01-01

    Gunshot injuries are getting more frequently reported while the civilian (nongovernmental) armament increases in the world. A 42-year-old male patient presented to emergency room of Istanbul Medipol University Hospital due to a low-velocity gunshot injury. We detected one entry point on the posterior aspect of the thigh, just superior to the popliteal groove. No exit wound was detected on his physical examination. There was swelling around the knee and range of motion was limited due to pain and swelling. Neurological and vascular examinations were intact. Following the initial assessment, the vascular examination was confirmed by doppler ultrasonography of the related extremity. There were no signs of compartment syndrome in the preoperative physical examination. A bullet was detected in the knee joint on the initial X-rays. Immediately after releasing the tourniquet, swelling of the anterolateral compartment of the leg and pulse deficiency was detected on foot in the dorsalis pedis artery. Although the arthroscopic removal of intra-articular bullets following gunshot injuries seems to have low morbidity rates, it should always be considered that the articular capsule may have been ruptured and the fluids used during the operation may leak into surrounding tissues and result in compartment syndrome. PMID:26929809

  1. Joint variability of global runoff and global sea surface temperatures

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    2008-01-01

    Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.

  2. Diffusion welding in air. [solid state welding of butt joint by fusion welding, surface cleaning, and heating

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Holko, K. H. (Inventor)

    1974-01-01

    Solid state welding a butt joint by fusion welding the peripheral surfaces to form a seal is described along with, autogenetically cleaning the faying or mating surfaces of the joint by heating the abutting surfaces to 1,200 C and heating to the diffusion welding temperature in air.

  3. Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus.

    PubMed

    Jin, Z M; Dowson, D; Fisher, J

    1997-01-01

    Lubrication mechanisms and contact mechanics have been analysed for total hip joint replacements made from hard bearing surfaces such as metal-on-metal and ceramic-on-ceramic. A similar analysis for ultra-high molecular weight polyethylene (UHMWPE) against a hard bearing surface has also been carried out and used as a reference. The most important factor influencing the predicted lubrication film thickness has been found to be the radial clearance between the ball and the socket. Full fluid film lubrication may be achieved in these hard/hard bearings provided that the surface finish of the bearing surface and the radial clearance are chosen correctly and maintained. Furthermore, there is a close relation between the predicted contact half width and the predicted lubrication film thickness. Therefore, it is important to analyse the contact mechanics in artificial hip joint replacements. Practical considerations of manufacturing these bearing surfaces have also been discussed. PMID:9256001

  4. The sensitivity and specificity of control surface injuries in aircraft accident fatalities.

    PubMed

    Campman, Steven C; Luzi, Scott A

    2007-06-01

    Among the important determinations that aircraft crash investigators try to make is which occupant of an aircraft was attempting to control the aircraft at the time of the crash. The presence or absence of certain injuries of the extremities is used to help make this determination. These "control surface injuries" reportedly occur when crash forces are applied to a pilot's hands and feet through the aircraft's controls. We sought to clarify the significance of these injuries and the frequency with which their presence indicates that the decedent was the person that might have been trying to control the aircraft, questions that are frequently asked of the examining pathologist. We studied sequential fatalities of airplane and helicopter crashes in which autopsies were performed by the Office of the Armed Forces Medical Examiner, excluding those that were known to have been incapacitated before the crash and those that were known to have attempted to escape from the aircraft, collecting 100 "qualified" crash decedents. The incidence of control surface injuries was determined for both pilots and passengers. The sensitivity and specificity of control surface injuries were calculated by classifying the decedents into a 4-cell diagnostic matrix. The positive and negative predictive values for control surface injuries were also calculated. Injuries that met the published definitions of control surface injuries had high incidences in passengers, as well as pilots, giving the term control surface injury a diagnostically unacceptable sensitivity and specificity for indicating "a pilot attempting to control an aircraft." We offer caveats and refinements to the definition of these injuries that help to increase the sensitivity and specificity of this term. PMID:17525559

  5. Development of an Experimental Animal Model for Lower Back Pain by Percutaneous Injury-Induced Lumbar Facet Joint Osteoarthritis.

    PubMed

    Kim, Jae-Sung; Ahmadinia, Kasra; Li, Xin; Hamilton, John L; Andrews, Steven; Haralampus, Chris A; Xiao, Guozhi; Sohn, Hong-Moon; You, Jae-Won; Seo, Yo-Seob; Stein, Gary S; Van Wijnen, Andre J; Kim, Su-Gwan; Im, Hee-Jeong

    2015-11-01

    We report generation and characterization of pain-related behavior in a minimally invasive facet joint degeneration (FJD) animal model in rats. FJD was produced by a non-open percutaneous puncture-induced injury on the right lumbar FJs at three consecutive levels. Pressure hyperalgesia in the lower back was assessed by measuring the vocalization response to pressure from a force transducer. After hyperalgesia was established, pathological changes in lumbar FJs and alterations of intervertebral foramen size were assessed by histological and imaging analyses. To investigate treatment options for lumber FJ osteoarthritis-induced pain, animals with established hyperalgesia were administered with analgesic drugs, such as morphine, a selective COX-2 inhibitor, a non-steroidal anti-inflammatory drug (NSAID) (ketorolac), or pregabalin. Effects were assessed by behavioral pain responses. One week after percutaneous puncture-induced injury of the lumbar FJs, ipsilateral primary pressure hyperalgesia developed and was maintained for at least 12 weeks without foraminal stenosis. Animals showed decreased spontaneous activity, but no secondary hyperalgesia in the hind paws. Histopathological and microfocus X-ray computed tomography analyses demonstrated that the percutaneous puncture injury resulted in osteoarthritis-like structural changes in the FJs cartilage and subchondral bone. Pressure hyperalgesia was completely reversed by morphine. The administration of celecoxib produced moderate pain reduction with no statistical significance while the administration of ketorolac and pregabalin produced no analgesic effect on FJ osteoarthritis-induced back pain. Our animal model of non-open percutanous puncture-induced injury of the lumbar FJs in rats shows similar characteristics of low back pain produced by human facet arthropathy. PMID:25858171

  6. Association of the type of trauma, occurrence of bone bruise, fracture and joint effusion with the injury to the menisci and ligaments in MRI of knee trauma

    PubMed Central

    Pezeshki, Sina; Vogl, Thomas J.; Pezeshki, Mohammad Zakaria; Daghighi, Mohammad Hossein; Pourisa, Masoud

    2016-01-01

    Summary Background magnetic resonance imaging (MRI) as a noninvasive diagnostic tool may help clinicians in the evaluation of injuries to menisci and ligaments. Purpose this study assessed the associations between type of trauma to knee joint, bone bruise, fracture and pathological joint effusion with injuries to menisci and ligaments of knee joint. Methods we reviewed knee joint MRI of 175 patients aged less than 45 years old who were referred to MRI center of our University. Results statistical analysis showed that tearing of medial meniscus (MM) is significantly more common in sport related trauma (p= 0.045) but tearing of medial collateral ligament (MCL) is significantly more common in non-sport related trauma (p= 0.005). Existence of bone bruise in knee MRI is negatively associated with tearing of medial meniscus (MM) (p=0.004) and positively associated with tearing of anterior cruciate ligament (ACL) (p=0.00047) and medial collateral ligament (MCL) (p = 0.0001). Existence of fracture is associated with decreased risk of the tearing of ACL and MM (p=0.04, p=0.001 respectively). Pathologic joint effusion is significantly more common in ACL and MCL tearing (p=0.0001, p=0.004 respectively). Conclusions as diagnostic clues, bone bruise, fracture and joint effusion may help radiologists for better assessment of injury to menisci and ligaments in MRI of patients with knee trauma. PMID:27331046

  7. Acute Kidney Injury in ICU Patients Following Non-Cardiac Surgery at Masih Daneshvari Hospital: Joint Modeling Application

    PubMed Central

    Khoundabi, Batoul; Mansourian, Marjan; Kazempoor Dizaji, Mehdi; Hashemian, Seyed Mohammadreza

    2015-01-01

    Background: Admission to the intensive care unit (ICU) is often complicated by early acute kidney injury (AKI). AKI is associated with high rates of mortality and morbidity. Risk factors and incidence of AKI have been notably high following non-cardiac surgery in the past decade. The aim of this study was to determine the hazard rate of AKI, the effect of risk factors of AKI and also to assess the changes in urine output (UO) as a predictor of AKI using joint modeling in patients undergoing non-cardiac surgery. Materials and Methods: In this retrospective cohort study, 400 non-cardiac-operated patients admitted during 3 years to the ICU of Masih Daneshvari Hospital were selected according to the consecutive sample selection method. Random mixed effect model and survival model were used to assess UO changes and the effect of UO and other risk factors on the hazard rate of AKI using joint analysis. Results: AKI occurred in 8.8% of the Iranian non-cardiac-operated patients. Survival model showed that the risk of AKI in lower diastolic blood pressure (DBP), higher Acute Physiology and Chronic Health Evaluation II score (APACHE II score), emergency surgery, longer hospitalization and male patients was higher (P=0.001). Using joint modeling, an association was found between the risk of AKI and UO (−0.19, P=0.002). Conclusion: Several predictors were found to be associated with AKI in the Iranian patients after non-cardiac surgery. A relationship between longitudinal and survival responses was found in this study and joint modeling caused considerable improvement in estimations compared to separate longitudinal and survival models. PMID:26221152

  8. Development of High Temperature Dissimilar Joint Technology for Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Bowman, Cheryl L.; Gabb, Timothy P.

    2009-01-01

    NASA is developing fission surface power (FSP) system technology as a potential option for use on the surface of the moon or Mars. The goal is to design a robust system that takes full advantage of existing materials data bases. One of the key components of the power conversion system is the hot-side Heat Exchanger (HX). One possible design for this heat exchanger requires a joint of the dissimilar metals 316L stainless steel and Inconel 718, which must sustain extended operation at high temperatures. This study compares two joining techniques, brazing and diffusion bonding, in the context of forming the requisite stainless steel to superalloy joint. The microstructures produced by brazing and diffusion bonding, the effect of brazing cycle on the mechanical tensile properties of the alloys, and the strength of several brazed joints will be discussed.

  9. Neural network committees for finger joint angle estimation from surface EMG signals

    PubMed Central

    Shrirao, Nikhil A; Reddy, Narender P; Kosuri, Durga R

    2009-01-01

    Background In virtual reality (VR) systems, the user's finger and hand positions are sensed and used to control the virtual environments. Direct biocontrol of VR environments using surface electromyography (SEMG) signals may be more synergistic and unconstraining to the user. The purpose of the present investigation was to develop a technique to predict the finger joint angle from the surface EMG measurements of the extensor muscle using neural network models. Methodology SEMG together with the actual joint angle measurements were obtained while the subject was performing flexion-extension rotation of the index finger at three speeds. Several neural networks were trained to predict the joint angle from the parameters extracted from the SEMG signals. The best networks were selected to form six committees. The neural network committees were evaluated using data from new subjects. Results There was hysteresis in the measured SMEG signals during the flexion-extension cycle. However, neural network committees were able to predict the joint angle with reasonable accuracy. RMS errors ranged from 0.085 ± 0.036 for fast speed finger-extension to 0.147 ± 0.026 for slow speed finger extension, and from 0.098 ± 0.023 for the fast speed finger flexion to 0.163 ± 0.054 for slow speed finger flexion. Conclusion Although hysteresis was observed in the measured SEMG signals, the committees of neural networks were able to predict the finger joint angle from SEMG signals. PMID:19154615

  10. The surface lamina of the articular cartilage of human zygapophyseal joints.

    PubMed

    Giles, L G

    1992-07-01

    Literature referring to the conflicting results of investigations into the possible existence and composition of the lamina splendens is reviewed. Two hundred micrometer thick histological sections from 80 human cadaveric lower lumbar zygapophyseal joint articular cartilages were examined by ordinary light and darkfield microscopy. The findings illustrate what appears to be an acellular surface lamina on the opposing cartilaginous surfaces. No speculation is made regarding the possible physiological significance of the lamina based on this anatomical study. PMID:1609968

  11. Comparative 3D quantitative analyses of trapeziometacarpal joint surface curvatures among living catarrhines and fossil hominins.

    PubMed

    Marzke, M W; Tocheri, M W; Steinberg, B; Femiani, J D; Reece, S P; Linscheid, R L; Orr, C M; Marzke, R F

    2010-01-01

    Comparisons of joint surface curvature at the base of the thumb have long been made to discern differences among living and fossil primates in functional capabilities of the hand. However, the complex shape of this joint makes it difficult to quantify differences among taxa. The purpose of this study is to determine whether significant differences in curvature exist among selected catarrhine genera and to compare these genera with hominin fossils in trapeziometacarpal curvature. Two 3D approaches are used to quantify curvatures of the trapezial and metacarpal joint surfaces: (1) stereophotogrammetry with nonuniform rational B-spline (NURBS) calculation of joint curvature to compare modern humans with captive chimpanzees and (2) laser scanning with a quadric-based calculation of curvature to compare modern humans and wild-caught Pan, Gorilla, Pongo, and Papio. Both approaches show that Homo has significantly lower curvature of the joint surfaces than does Pan. The second approach shows that Gorilla has significantly more curvature than modern humans, while Pongo overlaps with humans and African apes. The surfaces in Papio are more cylindrical and flatter than in Homo. Australopithecus afarensis resembles African apes more than modern humans in curvatures, whereas the Homo habilis trapezial metacarpal surface is flatter than in all genera except Papio. Neandertals fall at one end of the modern human range of variation, with smaller dorsovolar curvature. Modern human topography appears to be derived relative to great apes and Australopithecus and contributes to the distinctive human morphology that facilitates forceful precision and power gripping, fundamental to human manipulative activities. PMID:19544574

  12. Characterization of Anisotropy of Joint Surface Roughness and Aperture by Variogram Approach Based on Digital Image Processing Technique

    NASA Astrophysics Data System (ADS)

    Chen, S. J.; Zhu, W. C.; Yu, Q. L.; Liu, X. G.

    2016-03-01

    The mechanical and hydraulic anisotropy of rock joints are strongly dependent on the surface roughness and aperture. To date, accurate quantification of the anisotropic characteristics of joint surfaces remains a key issue. For this purpose, the digital image processing (DIP) technique was used to retrieve the joint surface topography, and a variogram function was used to characterize the anisotropy of the joint surface roughness and estimate the joint aperture. A new index, SR V , related to both the sill and the range of the variogram is proposed to describe the anisotropy of the joint surface roughness, and a new aperture index, b, is derived to quantify the joint aperture. These newly proposed indexes, SR V and b, were validated by characterizing three artificial triangular joint surfaces, then the values of both SR V and b were calculated along 42 directions on an artificial joint surface. The range of SR V was between 0.058622 and 0.331283, while that of b was from 0.270433 to 0.397715 mm. The results show that the newly proposed indexes SR V and b are effective for quantifying the anisotropic roughness and aperture of joint surfaces, respectively. In addition, based on the hypothesis that there exists a smooth upper wall for the artificial joint, a relationship between the indexes SR V and b was obtained based on the data analysis. It indicates that the trends of the indexes SR V and b tend to coincide, although some of their individual values differ. In this respect, the hydraulic aperture of rock joints is related to not only surface roughness but also the distribution of asperities on the surface. In addition, this method can also be used to characterize the roughness of real rock joints when the joint surface is treated by dying with ink before taking digital photos. This study provides a new method for properly quantifying the directional variability of joint surface roughness and estimating the mechanical and hydraulic properties of rock joints based

  13. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints

    PubMed Central

    KUMAR, P.; OKA, M.; TOGUCHIDA, J.; KOBAYASHI, M.; UCHIDA, E.; NAKAMURA, T.; TANAKA, K.

    2001-01-01

    The uppermost superficial surface layer of articular cartilage, the ‘lamina splendens’ which provides a very low friction lubrication surface in articular joints, was investigated using atomic force microscopy (AFM). Complementary specimens were also observed under SEM at −10 °C without dehydration or sputter ion coating. Fresh adult pig osteochondral specimens were prepared from the patellas of pig knee joints and digested with the enzymes, hyaluronidase, chondroitinase ABC and alkaline protease. Friction coefficients between a pyrex glass plate and the osteochondral specimens digested by enzymes as well as natural (undigested) specimens were measured, using a thrust collar apparatus. Normal saline, hyaluronic acid (HA) and a mixture of albumin, globulin, HA (AGH) were used as lubrication media. The surface irregularities usually observed in SEM studies were not apparent under AFM. The articular cartilage surface was resistant to hyaluronidase and also to chondroitinase ABC, but a fibrous structure was exhibited in alkaline protease enzymes-digested specimens. AFM analysis revealed that the thickness of the uppermost superficial surface layer of articular cartilage was between 800 nm and 2 μm in adult pig articular cartilage. The coefficient of friction (c.f.) was significantly higher in chondroitinase ABC and alkaline protease enzymes digested specimens. Generally, in normal saline lubrication medium, c.f. was higher in comparison to HA and AGH lubrication media. The role of the uppermost, superficial surface layer of articular cartilage in the lubrication mechanism of joints is discussed. PMID:11554503

  14. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints.

    PubMed

    Kumar, P; Oka, M; Toguchida, J; Kobayashi, M; Uchida, E; Nakamura, T; Tanaka, K

    2001-09-01

    The uppermost superficial surface layer of articular cartilage, the 'lamina splendens' which provides a very low friction lubrication surface in articular joints, was investigated using atomic force microscopy (AFM). Complementary specimens were also observed under SEM at -10 degrees C without dehydration or sputter ion coating. Fresh adult pig osteochondral specimens were prepared from the patellas of pig knee joints and digested with the enzymes, hyaluronidase, chondroitinase ABC and alkaline protease. Friction coefficients between a pyrex glass plate and the osteochondral specimens digested by enzymes as well as natural (undigested) specimens were measured, using a thrust collar apparatus. Normal saline, hyaluronic acid (HA) and a mixture of albumin, globulin, HA (AGH) were used as lubrication media. The surface irregularities usually observed in SEM studies were not apparent under AFM. The articular cartilage surface was resistant to hyaluronidase and also to chondroitinase ABC, but a fibrous structure was exhibited in alkaline protease enzymes-digested specimens. AFM analysis revealed that the thickness of the uppermost superficial surface layer of articular cartilage was between 800 nm and 2 microm in adult pig articular cartilage. The coefficient of friction (c.f.) was significantly higher in chondroitinase ABC and alkaline protease enzymes digested specimens. Generally, in normal saline lubrication medium, c.f. was higher in comparison to HA and AGH lubrication media. The role of the uppermost, superficial surface layer of articular cartilage in the lubrication mechanism of joints is discussed. PMID:11554503

  15. The joint use of the tangential electric field and surface Laplacian in EEG classification.

    PubMed

    Carvalhaes, C G; de Barros, J Acacio; Perreau-Guimaraes, M; Suppes, P

    2014-01-01

    We investigate the joint use of the tangential electric field (EF) and the surface Laplacian (SL) derivation as a method to improve the classification of EEG signals. We considered five classification tasks to test the validity of such approach. In all five tasks, the joint use of the components of the EF and the SL outperformed the scalar potential. The smallest effect occurred in the classification of a mental task, wherein the average classification rate was improved by 0.5 standard deviations. The largest effect was obtained in the classification of visual stimuli and corresponded to an improvement of 2.1 standard deviations. PMID:23864444

  16. Successful treatment of a guitarist with a finger joint injury using instrument-assisted soft tissue mobilization: a case report.

    PubMed

    Terry Loghmani, M; Bayliss, Amy J; Clayton, Greg; Gundeck, Evelina

    2015-12-01

    Finger injuries are common and can greatly affect a musician's quality of life. A 55-year-old man, who had injured the proximal interphalangeal joint of the left index finger 6 months prior to any intervention, was treated with a manual therapy approach incorporating instrument-assisted soft tissue mobilization (IASTM). Initial examination findings included self-reported pain and functional limitations and physical impairments that significantly impeded his ability to play the acoustic guitar. He was treated once a week for 6 weeks with IASTM, joint mobilization, therapeutic exercise, and ice massage. Additionally, a home exercise program and self-care instructions were provided. The patient gained positive outcomes with improvements in pain (Numerical Pain Rating Scale while playing the guitar: initial 5/10, discharge 1/10) and function (Disability Arm Shoulder Hand Sports-Performing Arts Optional Module: initial 75; discharge 6·25), each reaching a minimum clinically important difference. Importantly, he was able to play the guitar with minimal to no pain as desired. Physical measures also improved, including an immediate gain in finger range of motion with IASTM alone. Manual therapy approaches integrating IASTM may provide an effective conservative treatment strategy for patients with finger/hand conditions in the performing arts and other patient populations. PMID:26952165

  17. Effectiveness of surgical reconstruction to restore radiocarpal joint mechanics after scapholunate ligament injury: an in vivo modeling study.

    PubMed

    Johnson, Joshua E; Lee, Phil; McIff, Terence E; Toby, E Bruce; Fischer, Kenneth J

    2013-05-31

    Disruption of the scapholunate ligament can cause a loss of normal scapholunate mechanics and eventually lead to osteoarthritis. Surgical reconstruction attempts to restore scapholunate relationship show improvement in functional outcomes, but postoperative effectiveness in restoring normal radiocarpal mechanics still remains a question. The objective of this study was to investigate the benefits of surgical repair by observing changes in contact mechanics on the cartilage surface before and after surgical treatment. Six patients with unilateral scapholunate dissociation were enrolled in the study, and displacement driven magnetic resonance image-based surface contact modeling was used to investigate normal, injured and postoperative radiocarpal mechanics. Model geometry was acquired from images of wrists taken in a relaxed position. Kinematics were acquired from image registration between the relaxed images, and images taken during functional loading. Results showed a trend for increase in radiocarpal contact parameters with injury. Peak and mean contact pressures significantly decreased after surgery in the radiolunate articulation and there were no significant differences between normal and postoperative wrists. Results indicated that surgical repair improves contact mechanics after injury and that contact mechanics can be surgically restored to be similar to normal. This study provides novel contact mechanics data on the effects of surgical repair after scapholunate ligament injury. With further work, it may be possible to more effectively differentiate between treatments and degenerative changes based on in vivo contact mechanics data. PMID:23618131

  18. An investigation into the effect of varying joint aperture and nature of surface on pre-splitting

    SciTech Connect

    Tariq, S.M.; Worsey, P.N.

    1996-12-01

    Presplitting is now a universally accepted perimeter control technique in rock excavation. The success of presplitting and the smoothness and integrity of the resulting perimeter is largely dependent on the nature of joints in any given formation. Many facets of jointing have been previously investigated. The results of the effects of joints frequency and spatial positioning were presented by the authors at the ISEE annual meeting last year. This paper includes the results of further research into the mechanism of presplit blasting being carried out at the Rock Mechanics and Explosives Research Center of the University of Missouri-Rolla. The results of experimental model testing carried out in concrete blocks are presented. The research comprised of modeling both closed and open joints between 3/8 inch blastholes loaded with 15-grain per foot PETN detonating cord. The closed joints were (a) simple (rough) machine-cut and (b) surface ground (smooth-matching). The precision ground joints were modeled to simulate tight fractures as found in real rock mass. Precision spacers of varying thicknesses were used to create opening between the joint surfaces. It was found that precision ground joints have no significant effect on the maximum blasthole spacing up to two joints, and act like a continuous medium. This is because ground surfaces provide a relatively perfect match thereby transmitting most of the energy through the joint. However beyond two ground joints, the effects of attenuation is evident and the maximum blasthole spacing has to be reduced to obtain a presplit plane. A simple machine cut joint, on the other hand, has some undulations that results in loss of energy, making it necessary to bring the blastholes closer to achieve a presplit plane (for up to two joints). It was observed that a ground joint with spacer thickness of 0.012 inch behaves like a free surface.

  19. Joints with the Surface Modification of Alumina by a Thin Layer of Ti + Nb

    NASA Astrophysics Data System (ADS)

    Ksiazek, Marzanna; Tchorz, Adam; Boron, Lukasz

    2014-05-01

    Al2O3/Al/Al2O3 joints were formed by liquid-state bonding of alumina substrates covered with a thin Ti + Nb coating of 900 nm thickness with the use of an Al interlayer of 30 μm at 973 K under a vacuum of 0.2 mPa for 5 min. The bond strength of the joints was examined by a four-point bending test at 295, 373, and 473 K. Optical, scanning, and transmission electron microscopies were applied for detailed characterization of the interface structure and failure characteristics of fractured joint surfaces. The analysis of the results has shown that (i) bonding occurred due to the formation of a reactive interface on the metal side of the joint in the presence of Al3Nb(Ti) precipitates and (ii) modification of Al2O3 by a thin layer of Ti + Nb increases the hardness at the interface and makes it possible to achieve reliable joints working at elevated temperatures.

  20. Comparative study on isokinetic capacity of knee and ankle joints by functional injury

    PubMed Central

    Jeon, Kyoungkyu; Seo, Byoung-Do; Lee, Sang-Ho

    2016-01-01

    [Purpose] To collect basic data for exercise programs designed to enhance functional knee and ankle joint stability based on isokinetic measurement and muscle strength evaluations in normal and impaired functional states. [Subjects and Methods] Twenty-four subjects were randomly assigned to the athlete group and the control group (n = 12 each). Data were collected of isokinetic knee extensor and flexor strength at 60°/sec, 180°/sec, and 240°/sec and ankle plantar and dorsiflexor strength at 30°/sec and 120°/sec. [Results] Significant intergroup differences were observed in peak torque of the right extensors at 60°/sec, 180°/sec, and 240°/sec and the right flexors at 240°/sec. Significant differences were observed in peak torque/body weight in the right extensors at 60°/sec, 180°/sec, and 240°/sec and in the right flexors at 180°/sec and 240°/sec. Significant peak torque differences were noted in the left ankle joint dorsiflexor at 30°/sec and 120°/sec, right plantar flexor at 120°/sec, left plantar flexor at 30°/sec, left dorsiflexor at 30°/sec and 120°/sec, and right dorsiflexor at 120°/sec. [Conclusion] Isokinetic evaluation stimulates muscle contraction at motion-dependent speeds and may contribute to the development of intervention programs to improve knee and ankle joint function and correct lower-extremity instability. PMID:26957768

  1. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    DOE PAGESBeta

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks ofmore » both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.« less

  2. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    SciTech Connect

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks of both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.

  3. Joint inversion of high-frequency surface waves with fundamental and higher modes

    NASA Astrophysics Data System (ADS)

    Luo, Yinhe; Xia, Jianghai; Liu, Jiangping; Liu, Qingsheng; Xu, Shunfang

    2007-08-01

    Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities.

  4. Joint inversion of high-frequency surface waves with fundamental and higher modes

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Liu, Q.; Xu, S.

    2007-01-01

    Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities. ?? 2007.

  5. Looking into the Near Surface with More Data and Multiple Joint Imaging Technologies

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2015-12-01

    While exploration geophysicists are making tremendous efforts to image the deep subsurface for hydrocarbon resources, the complex near surface structures often impose significant challenges. Unlike the subsurface, the near surface structures vary from region to region. Thus, it is difficult to develop any benchmark model that represents common issues worldwide. During past 20 years, near surface imaging technologies have been advanced from refraction traveltime analysis and inversion to waveform inversion. Immediate benefit is to resolve any complex velocity structure associated with low velocity hidden layers if such waveform inversion is properly handled. However, inverting seismic waveform often suffers from cycle-skipping due to poor starting model or missing of low frequency data. Jointly inverting traveltime, waveform envelope and waveform data seems stabilizing the solutions. With more data utilized for the near surface imaging, we are also able to infer anisotropic parameters, attenuation factors, density, and both Vp and Vs. Since the cross-gradient approach was introduced in 2005, the simultaneous inversion of multiple types of geophysical data has also been applied in the near surface imaging. That includes joint seismic, gravity and EM inversion for mapping seismic velocity, density, and resistivity into a near surface structure with consistent geology. I demonstrate the changes of the near surface structural images due to the progress of the imaging technology development and the transition to much more data included with five real data examples.

  6. Diminishing friction of joint surfaces as initiating factor for destabilising permafrost rocks?

    NASA Astrophysics Data System (ADS)

    Funk, Daniel; Krautblatter, Michael

    2010-05-01

    Degrading alpine permafrost due to changing climate conditions causes instabilities in steep rock slopes. Due to a lack in process understanding, the hazard is still difficult to asses in terms of its timing, location, magnitude and frequency. Current research is focused on ice within joints which is considered to be the key-factor. Monitoring of permafrost-induced rock failure comprises monitoring of temperature and moisture in rock-joints. The effect of low temperatures on the strength of intact rock and its mechanical relevance for shear strength has not been considered yet. But this effect is signifcant since compressive and tensile strength is reduced by up to 50% and more when rock thaws (Mellor, 1973). We hypotheisze, that the thawing of permafrost in rocks reduces the shear strength of joints by facilitating the shearing/damaging of asperities due to the drop of the compressive/tensile strength of rock. We think, that decreasing surface friction, a neglected factor in stability analysis, is crucial for the onset of destabilisation of permafrost rocks. A potential rock slide within the permafrost zone in the Wetterstein Mountains (Zugspitze, Germany) is the basis for the data we use for the empirical joint model of Barton (1973) to estimate the peak shear strength of the shear plane. Parameters are the JRC (joint roughness coefficient), the JCS (joint compressive strength) and the residual friction angle (φr). The surface roughness is measured in the field with a profile gauge to create 2D-profiles of joint surfaces. Samples of rock were taken to the laboratory to measure compressive strength using a high-impact Schmidt-Hammer under air-dry, saturated and frozen conditions on weathered and unweathered surfaces. Plugs where cut out of the rock and sand blasted for shear tests under frozen and unfrozen conditions. Peak shear strength of frozen and unfrozen rocks will be calculated using Barton's model. First results show a mean decrease of compressive

  7. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  8. Joint instability and osteoarthritis.

    PubMed

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  9. [Fractures of the elbow joint].

    PubMed

    Nowak, T E; Dietz, S O; Burkhart, K J; Müller, L P; Rommens, P M

    2012-02-01

    Fractures around the elbow joint comprise fractures of the distal humerus, the radial head, the olecranon and the coronoid process. Combined lesions are particularly demanding for the surgeon. Accurate knowledge of the anatomy and of the biomechanics is an essential requirement for a specific diagnosis and therapy. A stable and painless movable elbow joint is essential for most of the activities of daily living. Risk factors for the development of posttraumatic elbow joint arthrosis are non-anatomically reconstructed joint surfaces, axial malalignment of the joint axis and untreated concomitant injuries. Modern angular stable and anatomically preshaped implants facilitate a biomechanically adequate osteosynthesis and avoid or decrease functional impairment. In consideration of an increasing number of osteoporotic elbow joint fractures, endoprosthetic replacement has gained significance. PMID:22271056

  10. Effect of Surface Preparation on CLAM/CLAM Hot Isostatic Pressing diffusion bonding joints

    NASA Astrophysics Data System (ADS)

    Li, C.; Huang, Q.; Zhang, P.

    2009-04-01

    Surface preparation is essential for the Hot Isostatic Pressing (HIP) diffusion bonding of RAFM steels. Hot Isostatic Pressing (HIP) diffusion bonding experiments on China Low Activation Martensitic (CLAM) steel was performed to study the effect of surface preparation. A few approaches such as hand lapping, dry-milling and grinding etc., were used to prepare the faying surfaces of the HIP joints. Different sealing techniques were used as well. The HIP parameters were 150 MPa/3 h/1150 °C. After post HIP heat treatment (PHHT), the tensile and Charpy impact tests were carried out. The results showed that hand lapping was not suitable to prepare the faying surfaces of HIP diffusion bonding specimens although the surface roughness by hand lapping was very low.

  11. Effects of Anterior-Posterior Constraint on Injury Patterns in the Human Knee During Tibial-Femoral Joint Loading from Axial Forces through the Tibia.

    PubMed

    Jayaraman, V M; Sevensma, E T; Kitagawa, M; Haut, R C

    2001-11-01

    According to the National Accident Sampling System (NASS), 10% of all automobile accident injuries involve the knee. These injuries involve bone fracture and/or "soft tissue" injury. Previous investigators have determined the tibial-femoral (TF) joint failure load for an experimentally constrained human knee at 90 degrees flexion. In these experiments bone fractures have been documented. During TF joint compression, however, anterior motion of the tibia has been noted by others. It was therefore the objectives of this study to document effects of flexion angle and anterior-posterior joint constraint on the nature and severity of knee injury during TF compression loading via axial loads in the tibia. The effect of flexion angle was examined using 10 unconstrained human knees from 5 cadavers aged 73.2+/-9.4 years. The tibial-femoral joint was loaded in compression as a result of axial loading along the tibia using a servo-hydraulic testing machine until gross failure with the knee flexed 60 degrees or 120 degrees . Pressure sensitive film measured the distribution of internal TF joint loads. Both 60 degrees and 120 degrees flexed preparations failed by rupture of the anterior cruciate ligament (ACL) at 4.6+/-1.2 kN, and the internal joint loads were significantly higher (2.6+/-1.5 kN) on the medial versus the lateral (0.4+/-0.5 kN) aspect of the tibial plateau. The effect of anterior-posterior (AP) constraint of the femur along the longitudinal axis of the femur was investigated in a second series of tests using the same TF joint loading protocol on 6 pairs of human joints (74.3+/-10.5 years) flexed at 90 degrees . The primary mode of failure for the AP constrained joints was fracture of bone via the femoral condyle at a maximum load of 9.2+/-2.6 kN. The mode of failure for unconstrained joints was primarily due to rupture of the ACL at a maximum load of 5.8+/-2.9 kN. Again, the pressure film indicated an unequal internal TF load distribution for the unconstrained

  12. Joint analysis of refractions with surface waves: An inverse solution to the refraction-traveltime problem

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.

    2006-01-01

    We describe a possible solution to the inverse refraction-traveltime problem (IRTP) that reduces the range of possible solutions (nonuniqueness). This approach uses a reference model, derived from surface-wave shear-wave velocity estimates, as a constraint. The application of the joint analysis of refractions with surface waves (JARS) method provided a more realistic solution than the conventional refraction/tomography methods, which did not benefit from a reference model derived from real data. This confirmed our conclusion that the proposed method is an advancement in the IRTP analysis. The unique basic principles of the JARS method might be applicable to other inverse geophysical problems. ?? 2006 Society of Exploration Geophysicists.

  13. Design, fabrication and test of graphite/polyimide composite joints and attachments. [spacecraft control surfaces

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    The design, analysis, and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561 K (550 F) are summarized. Material properties and small specimen tests were conducted to establish design data and to evaluate specific design details. Static discriminator tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours at 589 K (600 F)) and thermal cycled (116 K to 589 K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589 K (600 F) for 125 hours.

  14. Joint sulcal detection on cortical surfaces with graphical models and boosted priors.

    PubMed

    Shi, Yonggang; Tu, Zhuowen; Reiss, Allan L; Dutton, Rebecca A; Lee, Agatha D; Galaburda, Albert M; Dinov, Ivo; Thompson, Paul M; Toga, Arthur W

    2009-03-01

    In this paper, we propose an automated approach for the joint detection of major sulci on cortical surfaces. By representing sulci as nodes in a graphical model, we incorporate Markovian relations between sulci and formulate their detection as a maximum a posteriori (MAP) estimation problem over the joint space of major sulci. To make the inference tractable, a sample space with a finite number of candidate curves is automatically generated at each node based on the Hamilton-Jacobi skeleton of sulcal regions. Using the AdaBoost algorithm, we learn both individual and pairwise shape priors of sulcal curves from training data, which are then used to define potential functions in the graphical model based on the connection between AdaBoost and logistic regression. Finally belief propagation is used to perform the MAP inference and select the joint detection results from the sample spaces of candidate curves. In our experiments, we quantitatively validate our algorithm with manually traced curves and demonstrate the automatically detected curves can capture the main body of sulci very accurately. A comparison with independently detected results is also conducted to illustrate the advantage of the joint detection approach. PMID:19244008

  15. Evaluation of near-surface stress distributions in dissimilar welded joint by scanning acoustic microscopy.

    PubMed

    Kwak, Dong Ryul; Yoshida, Sanichiro; Sasaki, Tomohiro; Todd, Judith A; Park, Ik Keun

    2016-04-01

    This paper presents the results from a set of experiments designed to ultrasonically measure the near surface stresses distributed within a dissimilar metal welded plate. A scanning acoustic microscope (SAM), with a tone-burst ultrasonic wave frequency of 200 MHz, was used for the measurement of near surface stresses in the dissimilar welded plate between 304 stainless steel and low carbon steel. For quantitative data acquisition such as leaky surface acoustic wave (leaky SAW) velocity measurement, a point focus acoustic lens of frequency 200 MHz was used and the leaky SAW velocities within the specimen were precisely measured. The distributions of the surface acoustic wave velocities change according to the near-surface stresses within the joint. A three dimensional (3D) finite element simulation was carried out to predict numerically the stress distributions and compare with the experimental results. The experiment and FE simulation results for the dissimilar welded plate showed good agreement. This research demonstrates that a combination of FE simulation and ultrasonic stress measurements using SAW velocity distributions appear promising for determining welding residual stresses in dissimilar material joints. PMID:26773788

  16. Structural tests and development of a laminar flow control wing surface composite chordwise joint

    NASA Technical Reports Server (NTRS)

    Lineberger, L. B.

    1984-01-01

    The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. The Lockheed-Georgia Company accomplished under NAS1-16235 Laminar-Flow-Control (LFC) Wing Panel Structural Design and Development (WSSD); design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joint was demonstrated by fabricating and testing complex, concept selection specimens. The Lockheed-Georgia Company accomplishments, Development of LFC Wind Surface Composite Structures (WSCS), are documented. Tests were conducted on two CV2 panels to verify the static tension and fatigue strength of LFC wing surface chordwise joints.

  17. Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury

    PubMed Central

    Zhuang, Haixia; Tian, Weili; Li, Wen; Zhang, Xingli; Wang, Jingjing; Yang, Yue; Liu, Xin; Xia, Zhengyuan; Feng, Du; Zhang, Liangqing

    2016-01-01

    Cisatracurium besylate is an ideal non-depolarizing muscle relaxant which is widely used in clinical application. However, some studies have suggested that cisatracurium besylate can affect cell proliferation. Moreover, its specific mechanism of action remains unclear. Here, we found that the number of GFP-LC3 (green fluoresent protein-light chain 3) positive autophagosomes and the rate of mitochondria fracture both increased significantly in drug-treated GFP-LC3 and MitoDsRed stable HeLa cells. Moreover, cisatracurium promoted the co-localization of LC3 and mitochondria and induced formation of autolysosomes. Levels of mitochondrial proteins decreased, which were reversed by the lysosome inhibitor Bafinomycin A1. Similar results with evidence of dose-dependent effects were found in both HeLa and Human Umbilical Vein Endothelial Cells (HUVECs). Cisatracurium lowered HUVEC viability to 0.16 (OD490) at 100 µM and to 0.05 (OD490) after 48 h in vitro; it increased the cell death rate to 56% at 100 µM and to 60% after 24 h in a concentration- and time-dependent manner (p < 0.01). Cell proliferation decreased significantly by four fold in Atg5 WT (wildtype) MEF (mouse embryonic fibroblast) (p < 0.01) but was unaffected in Atg5 KO (Knockout) MEF, even upon treatment with a high dose of cisatracurium. Cisatracurium induced significant increase in cell death of wild-type MEFs even in the presence of the apoptosis inhibitor zVAD. Thus, we conclude that activation of both the autophagic cell death and cell apoptosis pathways contributes to cisatracurium-mediated cell injury. PMID:27058536

  18. Embrittlement of surface mount solder joints by hot solder-dipped, gold-plated leads

    SciTech Connect

    Vianco, P.T.

    1993-07-01

    The detachment of beam-leaded transistors from several surface mount circuit boards following modest thermal cycling was examined. Microstructural analysis of the package leads and bonding pads from the failed units indicated that gold embrittlement was responsible for a loss of solder joint mechanical integrity that caused detachment of transistors from the circuit boards. An analysis of the hot dipping process used to remove gold from the leads prior to assembly demonstrated that the gold, although dissolved from the lead, remained in the nearby solder and was subsequently retained in the coating formed on the lead upon withdrawal from the bath. This scenario allowed gold to enter the circuit board solder joints. It was hypothesized, and later confirmed by experimental trials, that increasing the number of dips prevented gold from entering the solder coatings.

  19. Macroscopic Surface Structures for Polymer-metal Hybrid Joints Manufactured by Laser Based Thermal Joining

    NASA Astrophysics Data System (ADS)

    Schricker, Klaus; Stambke, Martin; Bergmann, Jean Pierre; Bräutigam, Kevin; Henckell, Philipp

    The increasing application of hybrid structures in component design and fabrication allows to constantly enhance the realization of lightweight potentials. Laser-based joining of metals to polymers can obtaina local bonding with high load bearing capability. During the process, the polymer gets molten by the energy input of the laser beam and penetrates into the structure of the metal surface by means of a defined joining pressure. Macroscopic structures on the metal surface, produced by cutting or laser processing, are possible surface treatmentsfor achieving thepolymer-metal joints. The optimal geometry and other key parameters for the macroscopic surface structures are only partially known at present, e.g. a rising structure density causes a higher load capacity. Based on grooves and drilled holes, as referencegeometries, the depth (0.1-0.9 mm), width (0.3-1.1 mm), alignment angle, diameter (1.0mm- 1.5mm), structure density and penetration depth of the molten polymer were correlated to the separation force. The results allow an essential insight into the main effects ofmacroscopic structures on the mechanical joint properties and the material performance of the polymer during the process.

  20. Joint body and surface wave tomography applied to the Toba caldera complex (Indonesia)

    NASA Astrophysics Data System (ADS)

    Jaxybulatov, Kairly; Koulakov, Ivan; Shapiro, Nikolai

    2016-04-01

    We developed a new algorithm for a joint body and surface wave tomography. The algorithm is a modification of the existing LOTOS code (Koulakov, 2009) developed for local earthquake tomography. The input data for the new method are travel times of P and S waves and dispersion curves of Rayleigh and Love waves. The main idea is that the two data types have complementary sensitivities. The body-wave data have good resolution at depth, where we have enough crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution. The surface wave dispersion curves can be retrieved from the correlations of the ambient seismic noise and in this case the sampled path distribution does not depend on the earthquake sources. The contributions of the two data types to the inversion are controlled by the weighting of the respective equations. One of the clearest cases where such approach may be useful are volcanic systems in subduction zones with their complex magmatic feeding systems that have deep roots in the mantle and intermediate magma chambers in the crust. In these areas, the joint inversion of different types of data helps us to build a comprehensive understanding of the entire system. We apply our algorithm to data collected in the region surrounding the Toba caldera complex (north Sumatra, Indonesia) during two temporary seismic experiments (IRIS, PASSCAL, 1995, GFZ, LAKE TOBA, 2008). We invert 6644 P and 5240 S wave arrivals and ~500 group velocity dispersion curves of Rayleigh and Love waves. We present a series of synthetic tests and real data inversions which show that joint inversion approach gives more reliable results than the separate inversion of two data types. Koulakov, I., LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms, Bull. seism. Soc. Am., 99(1), 194-214, 2009, doi:10.1785/0120080013

  1. Quality of life, unmet needs, and iatrogenic injuries in rehabilitation of patients with Ehlers-Danlos Syndrome hypermobility type/Joint Hypermobility Syndrome.

    PubMed

    Bovet, Claire; Carlson, Matthew; Taylor, Matthew

    2016-08-01

    Ehlers-Danlos Syndrome, hypermobility type (EDS-HT) and the joint hypermobility syndrome (JHS) are connective tissue disorders that form an overlapping clinical syndrome and are associated with frequent medical visits and substantial morbidity. EDS-HT/JHS-associated pain correlates with poor quality of life. While physical therapy is the recommended treatment for EDS-HT/JHS, little is known about therapy-related patient experiences and iatrogenic injuries. We studied 38 adult EDS-HT/JHS patients, eliciting health-related quality of life (HRQoL) from 28 patients through the RAND SF-36 questionnaire. We also explored physical therapy experiences through focus groups with 13 patients. Our patients displayed poor HRQoL, with 71% reporting worse health over the past year. SF-36 scores were significantly lower than the scores of the average American population (P < 0.001 for 8 of 10 categories assessed), but were comparable to EDS-HT/JHS populations in Belgium, the Netherlands, Sweden, and Italy. Focus groups identified factors associated with: negative past physical therapy experiences, iatrogenic joint injuries, positive treatment experiences, and unmet rehabilitation needs. This group of EDS-HT/JHS patients has significant decrements in HRQoL and many unmet treatment needs, as well as a risk for iatrogenic injuries. We identify several approaches to help meet patients' needs and improve joint rehabilitation in patients with EDS-HT/JHS. © 2016 Wiley Periodicals, Inc. PMID:27273746

  2. Longitudinal Lisfranc injury.

    PubMed

    Oak, Nikhil R; Manoli, Arthur; Holmes, James R

    2014-01-01

    Most Lisfranc or tarsometatarsal (TMT) joint injuries result from a horizontally directed force in which the metatarsals are displaced relative to the midfoot. The injury pattern that is described in this article is one of a longitudinal force through the first ray and cuneiform. A reliable measure to recognize the longitudinal Lisfranc variant injury has been the height difference between the distal articular surfaces of the first and second cuneiform bones in an anteroposterior (AP) weight-bearing radiograph. This measure helps identify subtle injuries in which there is a proximal and medial subluxation of the first cuneiform-metatarsal complex. Delayed diagnosis and treatment have been associated with poorer results and significant functional consequences. This article describes a simple radiographic measurement to recognize the longitudinal injury pattern and to aid in determining whether operative intervention is required. PMID:25785475

  3. Improved monitoring of surface ozone by joint assimilation of geostationary satellite observations of ozone and CO

    NASA Astrophysics Data System (ADS)

    Zoogman, Peter; Jacob, Daniel J.; Chance, Kelly; Worden, Helen M.; Edwards, David P.; Zhang, Lin

    2014-02-01

    Future geostationary satellite observations of tropospheric ozone aim to improve monitoring of surface ozone air quality. However, ozone retrievals from space have limited sensitivity in the lower troposphere (boundary layer). Data assimilation in a chemical transport model can propagate the information from the satellite observations to provide useful constraints on surface ozone. This may be aided by correlated satellite observations of carbon monoxide (CO), for which boundary layer sensitivity is easier to achieve. We examine the potential of concurrent geostationary observations of ozone and CO to improve constraints on surface ozone air quality through exploitation of ozone-CO model error correlations in a joint data assimilation framework. The hypothesis is that model transport errors diagnosed for CO provide information on corresponding errors in ozone. A paired-model analysis of ozone-CO error correlations in the boundary layer over North America in summer indicates positive error correlations in continental outflow but negative regional-scale error correlations over land, the latter reflecting opposite sensitivities of ozone and CO to boundary layer depth. Aircraft observations from the ICARTT campaign are consistent with this pattern but also indicate strong positive error correlations in fine-scale pollution plumes. We develop a joint ozone-CO data assimilation system and apply it to a regional-scale Observing System Simulation Experiment (OSSE) of the planned NASA GEO-CAPE geostationary mission over North America. We find substantial benefit from joint ozone-CO data assimilation in informing US ozone air quality if the instrument sensitivity for CO in the boundary layer is greater than that for ozone. A high-quality geostationary measurement of CO could potentially relax the requirements for boundary layer sensitivity of the ozone measurement. This is contingent on accurate characterization of ozone-CO error correlations. A finer-resolution data

  4. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    SciTech Connect

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-30

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying material requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  5. RAPID COMMUNICATION: Nanostructured diamond film deposition on curved surfaces of metallic temporomandibular joint implant

    NASA Astrophysics Data System (ADS)

    Fries, Marc D.; Vohra, Yogesh K.

    2002-10-01

    Microwave plasma chemical vapour deposition of nanostructured diamond films was carried out on curved surfaces of Ti-6Al-4V alloy machined to simulate the shape of a temporomandibular joint (TMJ) dental implant. Raman spectroscopy shows that the deposited films are uniform in chemical composition along the radius of curvature of the TMJ condyle. Thin film x-ray diffraction reveals an interfacial carbide layer and nanocrystalline diamond grains in this coating. Nanoindentation hardness measurements show an ultra-hard coating with a hardness value of 60+/-5 GPa averaged over three samples.

  6. The surface geometry of inherited joint and fracture trace patterns resulting from active and passive deformation

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Gold, D. P.

    1974-01-01

    Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.

  7. Exploring Caregiver Behavior and Knowledge about Unsafe Sleep Surfaces in Infant Injury Death Cases

    ERIC Educational Resources Information Center

    Chu, Tracy; Hackett, Martine; Kaur, Navpreet

    2015-01-01

    Objectives: In the United States, infant deaths due to sleep-related injuries have quadrupled over the past two decades. One of the major risk factors is the placement of an infant to sleep on a surface other than a crib or bassinet. This study examines contextual circumstances and knowledge and behaviors that may contribute to the placement of…

  8. Mechanical injury of explants from the articulating surface of the inner meniscus.

    PubMed

    Kisiday, John D; Vanderploeg, Eric J; McIlwraith, C Wayne; Grodzinsky, Alan J; Frisbie, David D

    2010-02-15

    Knee osteoarthritis is accelerated by damage to the meniscus, a fibrocartilage tissue that assists in load transmission. However, little is known about the mechanical or cellular response of the meniscus to injurious overloading. Here, in vitro studies explored injury to meniscal explants using a compressive overloading protocol that has been well characterized for articular cartilage. Cartilage samples were processed in parallel as a reference to the extensive literature on cartilage injury. Injured meniscal explants showed extensive cell death at the articulating surface but no gross tissue damage, while similar conditions of peak stress and strain resulted in cartilage surface fissures and cell death consistent with moderate overloading. Post-injury gene expression in meniscal explants indicated a decrease in seven of the nine catabolic and pro-inflammatory molecules surveyed, while cartilage experienced a downregulation in ADAMTS-5 and TNF-alpha only. These data demonstrated a resiliency of the meniscus to injury, and that an acute increase in catabolic activities is not necessarily a consequence of mechanical overloading. PMID:19944061

  9. Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel

    NASA Astrophysics Data System (ADS)

    Zhao, Yanyun; Li, Chunjing; Huang, Bo; Liu, Shaojun; Huang, Qunying

    2014-12-01

    Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.

  10. Histopathological findings, phenotyping of inflammatory cells, and expression of markers of nitritative injury in joint tissue samples from calves after vaccination and intraarticular challenge with Mycoplasma bovis strain 1067

    PubMed Central

    2014-01-01

    Background The pathogenesis of caseonecrotic lesions developing in lungs and joints of calves infected with Mycoplasma bovis is not clear and attempts to prevent M. bovis-induced disease by vaccines have been largely unsuccessful. In this investigation, joint samples from 4 calves, i.e. 2 vaccinated and 2 non-vaccinated, of a vaccination experiment with intraarticular challenge were examined. The aim was to characterize the histopathological findings, the phenotypes of inflammatory cells, the expression of class II major histocompatibility complex (MHC class II) molecules, and the expression of markers for nitritative stress, i.e. inducible nitric oxide synthase (iNOS) and nitrotyrosine (NT), in synovial membrane samples from these calves. Furthermore, the samples were examined for M. bovis antigens including variable surface protein (Vsp) antigens and M. bovis organisms by cultivation techniques. Results The inoculated joints of all 4 calves had caseonecrotic and inflammatory lesions. Necrotic foci were demarcated by phagocytic cells, i.e. macrophages and neutrophilic granulocytes, and by T and B lymphocytes. The presence of M. bovis antigens in necrotic tissue lesions was associated with expression of iNOS and NT by macrophages. Only single macrophages demarcating the necrotic foci were positive for MHC class II. Microbiological results revealed that M. bovis had spread to approximately 27% of the non-inoculated joints. Differences in extent or severity between the lesions in samples from vaccinated and non-vaccinated animals were not seen. Conclusions The results suggest that nitritative injury, as in pneumonic lung tissue of M. bovis-infected calves, is involved in the development of caseonecrotic joint lesions. Only single macrophages were positive for MHC class II indicating down-regulation of antigen-presenting mechanisms possibly caused by local production of iNOS and NO by infiltrating macrophages. PMID:25162202

  11. Joint effects of illumination geometry and object shape in the perception of surface reflectance

    PubMed Central

    Olkkonen, Maria; Brainard, David H

    2011-01-01

    Surface properties provide useful information for identifying objects and interacting with them. Effective utilization of this information, however, requires that the perception of object surface properties be relatively constant across changes in illumination and changes in object shape. Such constancy has been studied separately for changes in these factors. Here we ask whether the separate study of the illumination and shape effects is sufficient, by testing whether joint effects of illumination and shape changes can be predicted from the individual effects in a straightforward manner. We found large interactions between illumination and object shape in their effects on perceived glossiness. In addition, analysis of luminance histogram statistics could not account for the interactions. PMID:23145259

  12. Ultrasonic detection technology based on joint robot on composite component with complex surface

    SciTech Connect

    Hao, Juan; Xu, Chunguang; Zhang, Lan

    2014-02-18

    Some components have complex surface, such as the airplane wing and the shell of a pressure vessel etc. The quality of these components determines the reliability and safety of related equipment. Ultrasonic nondestructive detection is one of the main methods used for testing material defects at present. In order to improve the testing precision, the acoustic axis of the ultrasonic transducer should be consistent with the normal direction of the measured points. When we use joint robots, automatic ultrasonic scan along the component surface normal direction can be realized by motion trajectory planning and coordinate transformation etc. In order to express the defects accurately and truly, the robot position and the signal of the ultrasonic transducer should be synchronized.

  13. The effect of two preparation procedures on an equine arena surface in relation to motion of the hoof and metacarpophalangeal joint.

    PubMed

    Northrop, Alison J; Dagg, Laura-Anne; Martin, Jaime H; Brigden, Charlotte V; Owen, Andrew G; Blundell, Emma L; Peterson, Michael L; Hobbs, Sarah J

    2013-12-01

    A link between surface characteristics and injury has been identified in equine disciplines. Maintenance procedures are reported to affect surface characteristics and could influence horse movement. The study investigated limb and hoof movement on a synthetic surface following two different preparations (harrowing and rolling). Nine horses were recorded using infrared cameras and retro-reflective markers at walk, trot and canter on two surface preparations in a cross-over design. Hoof rotation and displacement, metacarpophalangeal joint (MCPJ) extension and third metacarpal (McIII) inclination (roll, pitch and yaw) were analysed using a general linear model. Surface hardness and traction were also measured. No differences in hoof rotations or hoof displacements were found between preparations. However, following harrowing, greater (P<0.05) MCPJ extension at mid-stance and greater (P<0.05) McIII adduction at impact was found when gait was grouped. Hardness and traction were statistically similar for both preparations. Alteration to the surface cushion appears to be sufficient to produce subtle changes in stride characteristics. PMID:24360758

  14. Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2011-09-01

    Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.

  15. Lithological and Surface Geometry Joint Inversions Using Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin

    2016-04-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based minimum-structure geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy may be to consider two fundamentally different types of inversions: lithological and surface geometry inversions. A major advantage of these two inversion approaches is that joint inversion of multiple types of geophysical data is greatly simplified. In a lithological inversion, the subsurface is discretized into a mesh and each cell contains a particular rock type. A lithological model must be translated to a physical property model before geophysical data simulation. Each lithology may map to discrete property values or there may be some a priori probability density function associated with the mapping. Through this mapping, lithological inverse problems limit the parameter domain and consequently reduce the non-uniqueness from that presented by standard mesh-based inversions that allow physical property values on continuous ranges. Furthermore, joint inversion is greatly simplified because no additional mathematical coupling measure is required in the objective function to link multiple physical property models. In a surface geometry inversion, the model comprises wireframe surfaces representing contacts between rock units. This parameterization is then fully consistent with Earth models built by geologists, which in 3D typically comprise wireframe contact surfaces of tessellated triangles. As for the lithological case, the physical properties of the units lying between the contact

  16. Patterned CoCrMo and Al2 O3 surfaces for reduced free wear debris in artificial joint arthroplasty.

    PubMed

    Tarabolsi, Mohamad; Klassen, Thomas; Mantwill, Frank; Gärtner, Frank; Siegel, Frank; Schulz, Arndt-Peter

    2013-12-01

    Surface wear of corresponding tribological pairings is still a major problem in the application of artificial joint surgery. This study aims at developing wear reduced surfaces to utilize them in total joint arthroplasty. Using a pico-second laser, samples of medical CoCrMo metal alloy and Al2 O3 ceramic were patterned by laser material removal. The subsequent tribological investigations employed a ring-on-disc method. The results showed that those samples with modified surfaces show less mass or volume loss than those with a regular, smooth surface. Using calf serum as lubricating medium, the volume loss of the structured CoCrMo samples was eight times lower than that of regular samples. By structuring Al2 O3 surfaces, the wear volume could be reduced by 4.5 times. The results demonstrate that defined surface channels or pits enable the local sedimentation of wear debris. Thus, the amount of free debris could be reduced. Fewer abrasives in the lubricated so-called three-body-wear between the contact surfaces should result in less surface damage. Apart from direct influences on the wear behavior, less amounts of free debris of artificial joints should also be beneficial for avoiding undesired reactions with the surrounding soft tissues. The results from this study are very promising. Future investigations should involve the use of simulators meeting the natural conditions in the joint and in vivo studies with living organisms. PMID:23595908

  17. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-01

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying materia1 requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  18. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    NASA Technical Reports Server (NTRS)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  19. LIDAR-based outcrop characterisation - joint classification, surface and block size distribution

    NASA Astrophysics Data System (ADS)

    Tanner, David C.; Dietrich, Patrick; Krawczyk, Charlotte M.

    2013-04-01

    Outcrops, in the first instance, only offer at best a 2-2.5D view of the available geological information, such as joints and fractures. In order to study geodynamic processes, it is necessary to calculate true values of, for example, fracture densities and block dimensions. We show how LIDAR-generated point-cloud data of outcrops can be used to delineate such geological surfaces. Our methods do not require the point-set to be meshed; instead we work with the original point cloud, thus avoiding meshing errors. In a first step we decompose the point-cloud into tiny volumes; in each volume we calculate the best fitting plane. An expert can then decide which of the planes are important (in an interactive density pole diagram) and classify them. Actual block surfaces are identified by applying a clustering algorithm to the mini-planes. Subsequently, we calculate the size of these surfaces. Finally we estimate the block size distribution within the outcrop by projecting the block surfaces into the rock volume. To assess the reproducibility of our results we show to which extent they depend on various parameters, such as the resolution of the LIDAR scan and algorithm parameters. In theory the results can be calculated at the site of measurement to ensure the LIDAR scan resolution is sufficient and if necessary rerun the scan with different parameters. We demonstrate our methods with LIDAR data that we produced in a sandstone quarry in Germany. The part of the outcrop which we measured with the LIDAR was out-of-reach for measurements with a geological compass, but our results correlate well with compass measurements from a different outcrop in the same quarry. Three main surfaces could be delineated from the point cloud: the bedding, and two major joint types. The three fabrics are almost orthogonal. Our statistical results suggest that blocks with a volume of several hundred liters can be expected regularly within the quarry. The results can be directly used to

  20. Severe injury of bilateral elbow joints with unilateral terrible triad of the elbow and unilateral suspected terrible triad of the elbow complicated with olecranon fracture: one case report

    PubMed Central

    Zha, Guoqing; Niu, Xiaofeng; Yu, Weiguang; Xiao, Liangbao

    2015-01-01

    Terrible triad of the elbow is characterized as posterior dislocation of the elbow joint accompanied by the fractures of the radial head and coronoid process of the ulna, which is rarely seen in clinical practice, especially because the mild fracture is barely detected by imaging method In this study, we reported one case of serious complex bilateral elbow injury, presenting with unilateral typical terrible triad of the elbow and suspected terrible triad of the elbow complicated with olecranon fracture on the other side. Clinical experience was obtained during the diagnosis and treatment procedures. PMID:26550399

  1. A rare combined injury of dorsal fracture-dislocation of four carpometacarpal joints and trapezium, trapezoid and distal radius bone fractures.

    PubMed

    Touloupakis, Georgios; Stuflesser, Wilfried; Antonini, Guido; Ferrara, Fabrizio; Crippa, Cornelio; Lettera, Maria Gabriella

    2016-01-01

    Incorrect or delayed diagnosis and treatment of the carpometacarpal fracture-dislocations is often associated with poor prognosis. We present a rare case of unusual pattern of injury, involving dorsal dislocation of four ulnar carpometacarpal joints, associated with fracture of the trapezium, a burst fracture of the trapezoid  bone and an extra-articular fracture of the third distal  of the radius. The first surgical intervention was followed by unsatisfactory results, confirmed by the CT scans. A second surgery followed and an open reduction and pinning with K wires performed. Post-operative follow up lasting for nine months revealed a very good surgical outcome. PMID:27163903

  2. Lisfranc injuries.

    PubMed

    Welck, M J; Zinchenko, R; Rudge, B

    2015-04-01

    Lisfranc injuries are commonly asked about in FRCS Orthopaedic trauma vivas. The term "Lisfranc injury" strictly refers to an injury where one or more of the metatarsals are displaced from the tarsus. The term is more commonly used to describe an injury to the midfoot centred on the 2nd tarsometatarsal joint. The injury is named after Jacques Lisfranc de St. Martin (1790-1847), a French surgeon and gynaecologist who first described the injury in 1815. 'Lisfranc injury' encompasses a broad spectrum of injuries, which can be purely ligamentous or involve the osseous and articular structures. They are often difficult to diagnose and treat, but if not detected and appropriately managed they can cause long-term disability. This review outlines the anatomy, epidemiology, classification, investigation and current evidence on management of this injury. PMID:25543185

  3. Synovial Joints: from Development to Homeostasis

    PubMed Central

    Li, Tieshi; Tagliafierro, Lidia; Temple, Joseph D.; Willcockson, Helen H.; Ye, Ping; Esposito, Alessandra; Xu, Fuhua; Spagnoli, Anna

    2015-01-01

    Synovial joint morphogenesis occurs through the condensation of mesenchymal cells into a non-cartilaginous region known as interzone, and the specification of progenitor cells that commit to the articular fate. Although several signaling molecules are expressed by the interzone, the mechanism is poorly understood. For treatments of cartilage injuries, it is critical to discover the presence of joint progenitor cells in adult tissues and their expression gene pattern. Potential stem cells niches have been found in different joint regions, such as the surface zone of articular cartilage, synovium and groove of Ranvier. Inherited joint malformation as well as joint degenerating conditions are often associated with other skeletal defects, and may be seen as the failure of morphogenic factors to establish the correct microenvironment in cartilage and bone. Therefore, exploring how joints form can help us understand how cartilage and bone are damaged and to develop drugs to reactivate this developing mechanism. PMID:25431159

  4. The influence of an artificial playing surface on injury risk and perceptions of muscle soreness in elite Rugby Union.

    PubMed

    Williams, S; Trewartha, G; Kemp, S P T; Michell, R; Stokes, K A

    2016-01-01

    This prospective cohort study investigated the influence of an artificial playing surface on injury risk and perceptions of muscle soreness in elite English Premiership Rugby Union players. Time loss (from 39.5 matches) and abrasion (from 27 matches) injury risk was compared between matches played on artificial turf and natural grass. Muscle soreness was reported over the 4 days following one match played on each surface by 95 visiting players (i.e., normally play on natural grass surfaces). There was a likely trivial difference in the overall injury burden relating to time-loss injuries between playing surfaces [rate ratio = 1.01, 90% confidence interval (CI): 0.73-1.38]. Abrasions were substantially more common on artificial turf (rate ratio = 7.92, 90% CI: 4.39-14.28), although the majority of these were minor and only two resulted in any reported time loss. Muscle soreness was consistently higher over the 4 days following a match on artificial turf in comparison with natural grass, although the magnitude of this effect was small (effect sizes ranging from 0.26 to 0.40). These results suggest that overall injury risk is similar for the two playing surfaces, but further surveillance is required before inferences regarding specific injury diagnoses and smaller differences in overall injury risk can be made. PMID:25644277

  5. Quantitative assessments of residual stress fields at the surface of alumina hip joints.

    PubMed

    Pezzotti, Giuseppe; Munisso, Maria Chiara; Lessnau, Kristina; Zhu, Wenliang

    2010-11-01

    In-depth and in-plane response functions of photo- and electro-stimulated probes have been modeled and quantitatively evaluated in order to assess their suitability to detect the highly graded residual stress fields generated at the surface of alumina hip joints. Optical calibrations revealed large differences in probe size, which strongly affected the detected magnitude of residual stress. A comparison between the responses of Raman and fluorescence probes in polycrystalline alumina showed that the depth of those probes spread to an extent in the order of the tens of microns even with using a confocal probe configuration. On the other hand, the electro-stimulated luminescence emitted by oxygen vacancy sites (F(+) center) in the alumina lattice represented the most suitable choice for confining to a shallow volume the stress probe. This latter probe enabled us to reduce the measurement depth to the order of the tens of nanometers. We show maps of surface residual stress as collected on both main-wear and nonwear zones of an alumina femoral head. A comparison among stress maps taken at exactly the same location, but employing different probes, revealed averaging effects on the stress magnitude detected with photo-stimulated probes, while proving the superior spatial resolution of the electron probe. PMID:20848660

  6. [Joint prostheses components of warm-forged and surface treated Ti-6Al-7Nb alloy].

    PubMed

    Semlitsch, M; Weber, H; Streicher, R M; Schön, R

    1991-05-01

    In 1978 development of a TiAl alloy with the inert alloying element niobium was initiated. In 1984, the optimal composition was found to be Ti-6Al-7Nb (Protasul-100). This custom-made alloy for implants has the same alpha/beta micro-structure and equally good mechanical properties as Ti-6Al-4V. The corrosion resistance of Ti-6Al-7Nb is better than that of pure titanium and Ti-6Al-4V, due to the very dense and stable passive layer. Since 1985, highly stressed anchoring stems of various hip prosthesis designs have been manufactured from hot-forged Ti-6Al-7Nb/Protasul-100. Polished surfaces of hip, knee or wrist joints made of Ti-6Al-7Nb intended to articulate with polyethylene are surface-treated by the application of a very hard, 3-5 microns thick titanium nitride coating (Tribosul-TiN), or by oxygen diffusion hardening (Tribosul-ODH) to a depth of 30 microns. PMID:1859861

  7. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    PubMed Central

    2011-01-01

    Background Several regression models have been proposed for estimation of isometric joint torque using surface electromyography (SEMG) signals. Common issues related to torque estimation models are degradation of model accuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares the performance of the most commonly used regression models under these circumstances, in order to assist researchers with identifying the most appropriate model for a specific biomedical application. Methods Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor, was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data were gathered one hour and twenty-four hours following the completion of the first data gathering session, for the purpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. Acquired SEMG signals were filtered, rectified, normalized and then fed to models for training. Results It was shown that mean adjusted coefficient of determination (Ra2) values decrease between 20%-35% for different models after one hour while altering arm posture decreased mean Ra2 values between 64% to 74% for different models. Conclusions Model estimation accuracy drops significantly with passage of time, electrode displacement, and alteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resampling can significantly reduce model training time without losing estimation accuracy. Among the models compared, ordinary least squares linear regression model (OLS) was shown to have high isometric torque estimation accuracy combined with very short training times. PMID:21943179

  8. Subspace based adaptive denoising of surface EMG from neurological injury patients

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Ying, Dongwen; Zev Rymer, William; Zhou, Ping

    2014-10-01

    Objective: After neurological injuries such as spinal cord injury, voluntary surface electromyogram (EMG) signals recorded from affected muscles are often corrupted by interferences, such as spurious involuntary spikes and background noises produced by physiological and extrinsic/accidental origins, imposing difficulties for signal processing. Conventional methods did not well address the problem caused by interferences. It is difficult to mitigate such interferences using conventional methods. The aim of this study was to develop a subspace-based denoising method to suppress involuntary background spikes contaminating voluntary surface EMG recordings. Approach: The Karhunen-Loeve transform was utilized to decompose a noisy signal into a signal subspace and a noise subspace. An optimal estimate of EMG signal is derived from the signal subspace and the noise power. Specifically, this estimator is capable of making a tradeoff between interference reduction and signal distortion. Since the estimator partially relies on the estimate of noise power, an adaptive method was presented to sequentially track the variation of interference power. The proposed method was evaluated using both semi-synthetic and real surface EMG signals. Main results: The experiments confirmed that the proposed method can effectively suppress interferences while keep the distortion of voluntary EMG signal in a low level. The proposed method can greatly facilitate further signal processing, such as onset detection of voluntary muscle activity. Significance: The proposed method can provide a powerful tool for suppressing background spikes and noise contaminating voluntary surface EMG signals of paretic muscles after neurological injuries, which is of great importance for their multi-purpose applications.

  9. Bayesian joint inversion of surface deformation and hydraulic data for aquifer characterization

    NASA Astrophysics Data System (ADS)

    Hesse, M. A.; Stadler, G.

    2013-12-01

    Remote sensing and geodetic measurements are providing a wealth of new, spatially-distributed, time-series data that promise to improve the characterization of regional aquifers. The integration of these geodetic measurements with other hydrological observations has the potential to aid the sustainable management of groundwater resources through improved characterization of the spatial variation of aquifer properties. The joint inversion of geomechanical and hydrological data is challenging, because it requires fully-coupled hydrogeophysical inversion for the aquifer parameters, based on a coupled geomechanical and hydrological process model. We formulate a Bayesian inverse problem to infer the lateral permeability variation in an aquifer from geodetic and hydraulic data, and from prior information. We compute the maximum a posteriori (MAP) estimate of the posterior permeability distribution, and use a local Gaussian approximation around the MAP point to characterize the uncertainty. For two-dimensional test cases we also explore the full posterior permeability distribution through Markov-Chain Monte Carlo (MCMC) sampling. To cope with the large parameter space dimension, we use local Gaussian approximations as proposal densities in the MCMC algorithm. Using increasingly complex model problems, based on the work of Mandel (1953) and Segall (1985), we find the following general properties of poroelastic inversions: (1) Augmenting standard hydraulic well data by surface deformation data improves the aquifer characterization. (2) Surface deformation contributes the most in shallow aquifers, but provides useful information even for the characterization of aquifers down to 1 km. (3) In general, it is more difficult to infer high permeability regions, and their characterization requires frequent measurement to resolve the associated short response time scales. (4) In horizontal aquifers, the vertical component of the surface deformation provides a smoothed image of the

  10. Joint Body- and Surface-wave Inversion Applied to Geothermal Seismic Data

    NASA Astrophysics Data System (ADS)

    Ferris, A. N.; Reiter, D. T.; Leidig, M.

    2011-12-01

    To successfully monitor geothermal reservoirs, scientists must accurately track time-varying subsurface heterogeneity and low-energy microseismicity. These quantities are important for monitoring fracture development and production changes in all types of shallow reservoirs. We are adapting advanced subsurface imaging techniques, originally developed for regional-scale nuclear monitoring purposes, to the geothermal reservoir scale. Our specific approach is to jointly invert body-wave travel times and surface-wave dispersion data for seismic P and S velocity structure and improved microseismic event locations. Our inversion technique has several features that are important to the reservoir-scale imaging problem, such as travel-time prediction methods that are not limited to layered structures or surface receivers, and 3-D nonlinear velocity tomography with geostatistical constraints. As an initial demonstration of the feasibility of our inversion methodology, we have inverted a data set of P-wave travel times from events observed in the Geysers geothermal area in northern California. The Geysers is the largest exploited geothermal reservoir in the world and represents an ideal test bed for more advanced passive imaging techniques. We are utilizing archived waveform data from the 22-station Geysers seismic network, which was initially deployed and operated by the Unocal Geothermal Division and is now provided through collaboration between the Calpine Corporation and the Northern California Earthquake Data Center (NCEDC). The results from our initial inversion for a P-wave model reveal a ±10 percent velocity variation with respect to the starting 1D model and good resolution to 2.5 km depth across most of the model space. Most of the velocity heterogeneity occurs above 1.5 km depth. Following event relocation in the final velocity model, the hypocenters have a mean depth of 2.3 km ±1, with all events above 4.3 km depth. In this paper we will present on our initial

  11. Application of the surface azimuthal electrical resistivity survey method to determine patterns of regional joint orientation in glacial tills

    USGS Publications Warehouse

    Carlson, D.

    2010-01-01

    Joints within unconsolidated material such as glacial till can be primary avenues for the flow of electrical charge, water, and contaminants. To facilitate the siting and design of remediation programs, a need exists to map anisotropic distribution of such pathways within glacial tills by determining the azimuth of the dominant joint set. The azimuthal survey method uses standard resistivity equipment with a Wenner array rotated about a fixed center point at selected degree intervals that yields an apparent resistivity ellipse. From this ellipse, joint set orientation can be determined. Azimuthal surveys were conducted at 21 sites in a 500-km2 (193 mi2) area around Milwaukee, Wisconsin, and more specifically, at sites having more than 30 m (98 ft) of glacial till (to minimize the influence of underlying bedrock joints). The 26 azimuthal surveys revealed a systematic pattern to the trend of the dominant joint set within the tills, which is approximately parallel to ice flow direction during till deposition. The average orientation of the joint set parallel with the ice flow direction is N77??E and N37??E for the Oak Creek and Ozaukee tills, respectively. The mean difference between average direct observation of joint set orientations and average azimuthal resistivity results is 8??, which is one fifth of the difference of ice flow direction between the Ozaukee and Oak Creek tills. The results of this study suggest that the surface azimuthal electrical resistivity survey method used for local in situ studies can be a useful noninvasive method for delineating joint sets within shallow geologic material for regional studies. Copyright ?? 2010 The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  12. Joint spatiotemporal variability of global sea surface temperatures and global Palmer drought severity index values

    USGS Publications Warehouse

    Apipattanavis, S.; McCabe, G.J.; Rajagopalan, B.; Gangopadhyay, S.

    2009-01-01

    Dominant modes of individual and joint variability in global sea surface temperatures (SST) and global Palmer drought severity index (PDSI) values for the twentieth century are identified through a multivariate frequency domain singular value decomposition. This analysis indicates that a secular trend and variability related to the El Niño–Southern Oscillation (ENSO) are the dominant modes of variance shared among the global datasets. For the SST data the secular trend corresponds to a positive trend in Indian Ocean and South Atlantic SSTs, and a negative trend in North Pacific and North Atlantic SSTs. The ENSO reconstruction shows a strong signal in the tropical Pacific, North Pacific, and Indian Ocean regions. For the PDSI data, the secular trend reconstruction shows high amplitudes over central Africa including the Sahel, whereas the regions with strong ENSO amplitudes in PDSI are the southwestern and northwestern United States, South Africa, northeastern Brazil, central Africa, the Indian subcontinent, and Australia. An additional significant frequency, multidecadal variability, is identified for the Northern Hemisphere. This multidecadal frequency appears to be related to the Atlantic multidecadal oscillation (AMO). The multidecadal frequency is statistically significant in the Northern Hemisphere SST data, but is statistically nonsignificant in the PDSI data.

  13. Surface coil spectroscopic imaging: Time and spatial evolution of lactate production following fluid percussion brain injury

    SciTech Connect

    Cohen, Y.; Sanada, T.; Pitts, L.H.; Chang, L.H.; Nishimura, M.C.; Weinstein, P.R.; Litt, L.; James, T.L. )

    1991-01-01

    Detailed temporal and spatial distributions of lactate production are presented for graded fluid-percussion brain injury in the rat. A one-dimensional proton spin-echo spectroscopic imaging (1D SESI) technique, performed with a surface coil, is presented and evaluated. This technique, which represents a practical compromise, provides spatially localized proton nuclear magnetic resonance (NMR) brain spectra from a series of small voxels (less than 0.15 cm3) in less than 10 min, thus enabling both spatial and temporal monitoring of lactate production. These high-resolution lactate maps are correlated with hyperintense regions observed in T2-weighted images taken 10 h after impact, which, in turn, correlate with histology. The data demonstrate that, following severe trauma there is delayed production and propagation of lactate to regions of the brain that are remote from the trauma site. The extent of lactate production depends on the severity of impact. More significantly, the data show that following severe trauma, local lactate concentrations exceed 15 mumol/g, the concentration that has been claimed as the threshold for brain injury. Therefore high lactate levels cannot be ruled out a priori as a possible factor in brain injury following severe head trauma.

  14. Ceramic joints

    DOEpatents

    Miller, Bradley J.; Patten, Jr., Donald O.

    1991-01-01

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  15. Sulforhodamine B interacts with albumin to lower surface tension and protect against ventilation injury of flooded alveoli

    PubMed Central

    Kharge, Angana Banerjee; Wu, You

    2014-01-01

    In the acute respiratory distress syndrome, alveolar flooding by proteinaceous edema liquid impairs gas exchange. Mechanical ventilation is used as a supportive therapy. In regions of the edematous lung, alveolar flooding is heterogeneous, and stress is concentrated in aerated alveoli. Ventilation exacerbates stress concentrations and injuriously overexpands aerated alveoli. Injury degree is proportional to surface tension, T. Lowering T directly lessens injury. Furthermore, as heterogeneous flooding causes the stress concentrations, promoting equitable liquid distribution between alveoli should, indirectly, lessen injury. We present a new theoretical analysis suggesting that liquid is trapped in discrete alveoli by a pressure barrier that is proportional to T. Experimentally, we identify two rhodamine dyes, sulforhodamine B and rhodamine WT, as surface active in albumin solution and investigate whether the dyes lessen ventilation injury. In the isolated rat lung, we micropuncture a surface alveolus, instill albumin solution, and obtain an area with heterogeneous alveolar flooding. We demonstrate that rhodamine dye addition lowers T, reduces ventilation-induced injury, and facilitates liquid escape from flooded alveoli. In vitro we show that rhodamine dye is directly surface active in albumin solution. We identify sulforhodamine B as a potential new therapeutic agent for the treatment of the acute respiratory distress syndrome. PMID:25414246

  16. Sulforhodamine B interacts with albumin to lower surface tension and protect against ventilation injury of flooded alveoli.

    PubMed

    Kharge, Angana Banerjee; Wu, You; Perlman, Carrie E

    2015-02-01

    In the acute respiratory distress syndrome, alveolar flooding by proteinaceous edema liquid impairs gas exchange. Mechanical ventilation is used as a supportive therapy. In regions of the edematous lung, alveolar flooding is heterogeneous, and stress is concentrated in aerated alveoli. Ventilation exacerbates stress concentrations and injuriously overexpands aerated alveoli. Injury degree is proportional to surface tension, T. Lowering T directly lessens injury. Furthermore, as heterogeneous flooding causes the stress concentrations, promoting equitable liquid distribution between alveoli should, indirectly, lessen injury. We present a new theoretical analysis suggesting that liquid is trapped in discrete alveoli by a pressure barrier that is proportional to T. Experimentally, we identify two rhodamine dyes, sulforhodamine B and rhodamine WT, as surface active in albumin solution and investigate whether the dyes lessen ventilation injury. In the isolated rat lung, we micropuncture a surface alveolus, instill albumin solution, and obtain an area with heterogeneous alveolar flooding. We demonstrate that rhodamine dye addition lowers T, reduces ventilation-induced injury, and facilitates liquid escape from flooded alveoli. In vitro we show that rhodamine dye is directly surface active in albumin solution. We identify sulforhodamine B as a potential new therapeutic agent for the treatment of the acute respiratory distress syndrome. PMID:25414246

  17. Arm Injuries and Disorders

    MedlinePlus

    ... of muscles, joints, tendons and other connective tissue. Injuries to any of these parts of the arm ... a fall or an accident. Types of arm injuries include Tendinitis and bursitis Sprains Dislocations Broken bones ...

  18. Leg Injuries and Disorders

    MedlinePlus

    ... Common leg injuries include sprains and strains, joint dislocations, and fractures. These injuries can affect the entire leg, or just the foot, ankle, knee, or hip. Certain diseases also lead to leg problems. For ...

  19. Leg Injuries and Disorders

    MedlinePlus

    ... can damage your legs. Common leg injuries include sprains and strains, joint dislocations, and fractures. These injuries can affect the entire leg, or just the foot, ankle, knee, or hip. Certain diseases also lead to leg ...

  20. Observation of the Degradation Characteristics and Scale of Unevenness on Three-dimensional Artificial Rock Joint Surfaces Subjected to Shear

    NASA Astrophysics Data System (ADS)

    Hong, Eun-Soo; Kwon, Tae-Hyuk; Song, Ki-Il; Cho, Gye-Chun

    2016-01-01

    The present study explores the degradation characteristics and scale of unevenness (small-scale roughness) on sheared rock joint surfaces at a low-stress regime. While the degradation characteristics of unevenness and the normal stress are mutually interrelated, an understanding of the degradation patterns of the three-dimensional roughness of rock joints is one of the important components needed to identify asperity failure characteristics and to quantify the role of damaged unevenness in establishing a shear strength model. A series of direct shear tests was performed on three-dimensional artificial rock joint surfaces at different normal stress levels. After shearing, the spatial distributions and statistical parameters of degraded roughness were analysed for the different normal stress levels. The length and area of the degraded zones showed bell-shaped distributions in a logarithmic scale, and the dominant scale (or the most frequently occurring scale) of the damaged asperities (i.e., unevenness) ranged from approximately, 0.5 to 5.0 mm in length and 0.1-10 mm2 in area. This scale of the damaged unevenness was consistent regardless of the level of normal stress. It was also found that the relative area of damaged unevenness on a given joint area, and thus the contribution of the mechanical asperity failure component to shear strength increased as normal stress increased.

  1. Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    Headquarters National Aeronautics and Space Administration (NASA) chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials (HazMats) or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) A void duplication of effort in actions required to reduce or eliminate HazMats through joint center cooperation and technology sharing. This project will identify, evaluate and approve alternative surface preparation technologies for use at NASA and Air Force Space Command (AFSPC) installations. Materials and processes will be evaluated with the goal of selecting those processes that will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination and reduce the amount of hazardous waste generated. This Joint Test Protocol (JTP) contains the critical requirements and tests necessary to qualify alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel Applications. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of NASA and Air Force Space Command (AFSPC) participants. The Field Test Plan (FTP), entitled Joint Test Protocol for Validation of Alternative Low Emission Surface Preparation/Depainting Technologies for Structural Steel, prepared by ITB, defines the field evaluation and testing requirements for validating alternative surface preparation/depainting technologies and supplements the JTP.

  2. Joint Test Report for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    Headquarters National Aeronautics and Space Administration (NASA) chartered the NASA Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) Avoid duplication of effort in actions required to reduce or eliminate hazardous materials through joint center cooperation and technology sharing. The objective of this project was to qualify candidate alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel applications at NASA facilities. This project compares the surface preparation/depainting performance of the proposed alternatives to existing surface preparation/depainting systems or standards. This Joint Test Report (JTR) contains the results of testing as per the outlines of the Joint Test Protocol (JTP), Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, and the Field Test Plan (FTP), Field Evaluations Test Plan for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, for critical requirements and tests necessary to qualify alternatives for coating removal systems. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of government and industry participants. This JTR documents the results of the testing as well as any test modifications made during the execution of the project. This JTR is made available as a reference for future pollution prevention endeavors by other NASA Centers, the Department of Defense and commercial users to minimize duplication of effort. The current coating removal processes

  3. An evaluation of the blind lap joint for the surface mount attachment of chip components

    NASA Astrophysics Data System (ADS)

    Vianco, P. T.; Dalporto, J. F.

    Blind lap solder joints were used to attach leadless ceramic chip resistors to polyimidequartz circuit boards. Hand soldering and vapor phase reflow techniques were evaluated. The solder was 62Sn-36Pb-2Ag (wt. percent). The integrity of the solder joints was assessed by microstructural examination and room temperature shear tests. These analyses were performed on as-fabricated circuit boards as well as an those samples exposed to thermal cycling (308 cycles; -55 to 125 C; 6 C/min ramps; 120 min hold periods;) or thermal shock (100 cycles, -55 C to 125 C; liquid-to-liquid transfer; 10 min hold periods). In all cases, microscopy revealed no cracks within the solder joints. The shear strengths of the joints were 13.4 lb (59 N), as-fabricated; 10.5 lb (47 N), 308 thermal cycles; and 14.0 lb (62 N), 100 thermal shock cycles. All values were well within acceptability limits for the particular application. Measurements of the intermetallic compound thicknesses at the copper land/solder interface indicated that the additional heating cycle of the hand soldering step decreased the layer thickness as compared to non-hand soldered joints. The successful implementation of the blind lap joint can provide increased device densities on circuit boards by reducing bonding pad extension beyond the ceramic chip foot print.

  4. Are Movement Disorders and Sensorimotor Injuries Pathologic Synergies? When Normal Multi-Joint Movement Synergies Become Pathologic

    PubMed Central

    Santello, Marco; Lang, Catherine E.

    2015-01-01

    The intact nervous system has an exquisite ability to modulate the activity of multiple muscles acting at one or more joints to produce an enormous range of actions. Seemingly simple tasks, such as reaching for an object or walking, in fact rely on very complex spatial and temporal patterns of muscle activations. Neurological disorders such as stroke and focal dystonia affect the ability to coordinate multi-joint movements. This article reviews the state of the art of research of muscle synergies in the intact and damaged nervous system, their implications for recovery and rehabilitation, and proposes avenues for research aimed at restoring the nervous system’s ability to control movement. PMID:25610391

  5. Jointly deriving NMR surface relaxivity and pore size distributions by NMR relaxation experiments on partially desaturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Hughes, B.

    2014-06-01

    Nuclear magnetic resonance (NMR) relaxometry is a geophysical method widely used in borehole and laboratory applications to nondestructively infer transport and storage properties of rocks and soils as it is directly sensitive to the water/oil content and pore sizes. However, for inferring pore sizes, NMR relaxometry data need to be calibrated with respect to a surface interaction parameter, surface relaxivity, which depends on the type and mineral constituents of the investigated rock. This study introduces an inexpensive and quick alternative to the classical calibration methods, e.g., mercury injection, pulsed field gradient (PFG) NMR, or grain size analysis, which allows for jointly estimating NMR surface relaxivity and pore size distributions using NMR relaxometry data from partially desaturated rocks. Hereby, NMR relaxation experiments are performed on the fully saturated sample and on a sample partially drained at a known differential pressure. Based on these data, the (capillary) pore radius distribution and surface relaxivity are derived by joint optimization of the Brownstein-Tarr and the Young-Laplace equation assuming parallel capillaries. Moreover, the resulting pore size distributions can be used to predict water retention curves. This inverse modeling approach—tested and validated using NMR relaxometry data measured on synthetic porous borosilicate samples with known petrophysical properties (i.e., permeability, porosity, inner surfaces, pore size distributions)—yields consistent and reproducible estimates of surface relaxivity and pore radii distributions. Also, subsequently calculated water retention curves generally correlate well with measured water retention curves.

  6. Formation mechanisms and near-surface stress orientations derived from fractographic markings on exfoliation joints in the Alps

    NASA Astrophysics Data System (ADS)

    Ziegler, M.; Loew, S.; Bahat, D.

    2013-12-01

    Granitic bedrock of the upper Aar valley (Grimsel area, Swiss Alps) contains four distinct exfoliation joint generations, which formed during different stages of the Pleistocene and occur in an Alpine landscape between inner trough valley bottoms and high mountain crests. Exfoliation joints of this investigation likely formed during the Middle Pleistocene (0.7-0.4 Ma; batch 1) and Upper Pleistocene to Holocene (<0.1 Ma; batch 2), subparallel to distinct glacial valley (palaeo-)topography. Mapping revealed that exfoliation joints of these batches exhibit prominent fracture surface morphologies. The bulk of exfoliation joints of batches 1 and 2 show common, characteristic fractographic features: (1) noncircular, radial plumose structures, (2) arrest marks on parent fracture planes and fringe cracks, and (3) gradually-developing fringe zones of en échelon type (Figure 1). We interpret smooth transitions from plumose structures on the parent plane to en échelon fringe cracks, combined with non-systematic stepping senses of fringe cracks, as local stress field variations (vs. temporal variations) in the vicinity of pre-existing joints and faults. Multiple arrest marks reveal that exfoliation joints in the Grimsel area formed incrementally and, together with absence of hackle fringes, suggest stable fracture conditions. Furthermore, we put special emphasis on surveying the orientations of plumose structure axes. We assume that plumose structure axes formed parallel to the maximum principal (far-field) compressive stress (σ1). This enables us to infer near-surface stress orientations within Alpine slopes. We found a correlation between the orientations of plumose structure axes and slope aspects for batches 1 and 2. Primarily low pitch angles (<~30°) of plumose structure axes suggest persistently subhorizontal to slightly inclined σ1 orientations, i.e. the orientation of σ1 changes together with change in slope aspect. We attribute this surface-near variability of

  7. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury

    PubMed Central

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J.; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  8. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury.

    PubMed

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  9. Joint inversion of Multi-frequency Electromagnetic Induction and Seismic Refraction Data For Improved Near Surface Characterization

    NASA Astrophysics Data System (ADS)

    Elwaseif, M.

    2015-12-01

    We present a joint inversion routine between multi-frequency Electromagnetic (EM) induction and seismic refraction data that is based on using both cross-gradients and disconnect constraints. The joint inverse problem was solved using an iterative nonlinear least-squares formulation. Following each iteration, the cross gradient constraint enforces structural similarities between the EM and seismic models, whereas the disconnect constraint enforces sharp boundaries between different strata within the EM model. The locations of boundaries within the EM model are assumed to be consistent with the locations of user-defined velocity contours in the seismic model. We tested our method on a challenging synthetic EM and seismic model scenario that contains water-bearing zones as well as positively and negatively correlated model parameter values. In addition, we applied our method to GEM-2 and seismic refraction field data sets acquired along a 28-m-long profile in Laramie (WY), and we precisely recorded the locations where ground surface resistivity and velocity likely changes along that line. Unlike the results of separate EM and seismic inversions and the results of joint inversion based only on a cross-gradient constraint, our method was able to detect the water-bearing zones. In addition, it better captured ground surface changes in the field data set.

  10. Consequences and Costs of Lower Extremity Injuries

    PubMed Central

    Dischinger, PC; Read, KM; Kufera, JA; Kerns, TJ; Burch, CA; Jawed, N; Ho, SM; Burgess, AR

    2004-01-01

    Lower extremity injuries resulting from motor vehicle crashes are common and have become relatively more important as more drivers with newer occupant restraints survive high-energy crashes. CIREN data provide a greater level of clinical detail based on coding guidelines from the Orthopedic Trauma Association. These detailed data, in conjunction with long-term follow-up data obtained from patient interviews, reveal that the most costly and disabling injuries are those involving articular (joint) surfaces, especially those of the ankle/foot. Patients with such injuries exhibit residual physical and psychosocial problems, even at one year post-trauma. PMID:15319134

  11. Disorders of the distal radioulnar joint.

    PubMed

    Houdek, Matthew T; Wagner, Eric R; Moran, Steven L; Berger, Richard A

    2015-01-01

    The distal radioulnar joint is responsible for stable forearm rotation. Injury to this joint can occur following a variety of mechanisms, including wrist fractures, ligamentous damage, or degenerative wear. Accurate diagnosis requires a clear understanding of the anatomy and mechanics of the ulnar aspect of the wrist. Injuries can be divided into three major categories for diagnostic purposes, and these include pain without joint instability, pain with joint instability, and joint arthritis. New advancements in imaging and surgical technique can allow for earlier detection of injuries, potentially preserving joint function. In this article, the authors review the pertinent anatomy, biomechanics, and major abnormality involving the distal radioulnar joint. PMID:25285686

  12. Mallet finger: a simulation and analysis of hyperflexion versus hyperextension injuries.

    PubMed

    Kreuder, Andrea; Pennig, Dietmar; Boese, Christoph Kolja; Eysel, Peer; Oppermann, Johannes; Dargel, Jens

    2016-05-01

    The goal of this study was to simulate the mechanisms of hyperflexion and hyperextension injuries of the distal interphalangeal (DIP) joint of the hand and to analyze the resulting extensor tendon injury patterns. The hypotheses were raised that hyperflexion trauma leads to a plastic deformation of the extensor tendon aponeurosis, with or without a small bony avulsion fragment but without joint surface involvement, and that hyperextension injuries can create a shear fracture of the dorsal lip of the distal phalanx, without injury to the extensor tendon aponeurosis. Loading was applied with a swinging pendulum impacting the distal phalanx in 103 human specimens in either an extended or flexion position. After loading, injury patterns were analyzed radiologically and histologically. There was evidence that hyperflexion trauma leads to a plastic deformation or rupture of the extensor tendon. Bony tendon avulsion was evident in 12.2 % of cases. With hyperextension, the extensor tendon remained intact in all cases, but there were large fracture fragments involving the articular surface in 4.1 % of cases. The results of the study show that force on the flexed joint leads to overstretching of the extensor tendon, and to an associated dorsal bony avulsion with intact joint line. Force applied to the joint in extension can lead to a bony dorsal edge fracture with articular involvement and with it, a palmar DIP joint capsule rupture. The results illuminate a direct correlation between the mechanism of injury and the pattern of injury in the clinical picture of mallet finger. PMID:26498933

  13. Deep coseismic slip of the 2008 Wenchuan earthquake inferred from joint inversion of fault stress changes and GPS surface displacements

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Yang, Yinghui; Luo, Rong; Liu, Guoxiang; Zhang, Kui

    2015-07-01

    Geodetic data are increasingly being used to infer coseismic slip distribution due to its advantages of wide coverage and high accuracy. However, it is difficult to obtain a comprehensive rupture pattern at depth when a source model is only constrained by geodetic surface deformation. In this study, a joint inversion approach incorporating stress changes and GPS surface displacements is explored and applied to characterize the fault slip of the 2008 Mw 7.9 Wenchuan earthquake, China. The earthquake data for the 20-year period before the main quake, which are collected from the background seismicity catalogues, and one month of aftershock data are statistically analysed to determine the fault stress changes based on the Dieterich model. The coseismic surface deformation measurements from 158 GPS surveying sites are jointly used to constrain the solution. Our preferred rupture model reveals four high-slip concentrations on the Yingxiu-Beichuan fault and one on the subparallel PengGuan fault. The spatial distribution suggests that the coseismic slip occurs not only above the hypocentre but also with a significant thrusting motion, with a mean slip of 8.5 m and a maximum of 9.7 m at a depth of 10-16 km. A significant high-slip concentration is found for the first time in this study. The coseismic faulting extends toward ∼16 km southwest of the Yingxiu-Beichuan fault and has a dextral strike-slip with a mean displacement of 4.8 m at a depth of 7-19 km. The joint inversion model misfits (GPS: 1.7 cm, stress change: 0.02 MPa) exhibit a good compatibility between the two types of datasets. The derived slip model, which has an improved resolution at depth, explains 98% of the coseismic surface displacements and 93% of the fault stress changes.

  14. Rowing injuries.

    PubMed

    Rumball, Jane S; Lebrun, Constance M; Di Ciacca, Stephen R; Orlando, Karen

    2005-01-01

    Participation in the sport of rowing has been steadily increasing in recent decades, yet few studies address the specific injuries incurred. This article reviews the most common injuries described in the literature, including musculoskeletal problems in the lower back, ribs, shoulder, wrist and knee. A review of basic rowing physiology and equipment is included, along with a description of the mechanics of the rowing stroke. This information is necessary in order to make an accurate diagnosis and treatment protocol for these injuries, which are mainly chronic in nature. The most frequently injured region is the low back, mainly due to excessive hyperflexion and twisting, and can include specific injuries such as spondylolysis, sacroiliac joint dysfunction and disc herniation. Rib stress fractures account for the most time lost from on-water training and competition. Although theories abound for the mechanism of injury, the exact aetiology of rib stress fractures remains unknown. Other injuries discussed within, which are specific to ribs, include costochondritis, costovertebral joint subluxation and intercostal muscle strains. Shoulder pain is quite common in rowers and can be the result of overuse, poor technique, or tension in the upper body. Injuries concerning the forearm and wrist are also common, and can include exertional compartment syndrome, lateral epicondylitis, deQuervain's and intersection syndrome, and tenosynovitis of the wrist extensors. In the lower body, the major injuries reported include generalised patellofemoral pain due to abnormal patellar tracking, and iliotibial band friction syndrome. Lastly, dermatological issues, such as blisters and abrasions, and miscellaneous issues, such as environmental concerns and the female athlete triad, are also included in this article.Pathophysiology, mechanism of injury, assessment and management strategies are outlined in the text for each injury, with special attention given to ways to correct

  15. Wiener filtering of surface EMG with a priori SNR estimation toward myoelectric control for neurological injury patients.

    PubMed

    Liu, Jie; Ying, Dongwen; Zhou, Ping

    2014-12-01

    Voluntary surface electromyogram (EMG) signals from neurological injury patients are often corrupted by involuntary background interference or spikes, imposing difficulties for myoelectric control. We present a novel framework to suppress involuntary background spikes during voluntary surface EMG recordings. The framework applies a Wiener filter to restore voluntary surface EMG signals based on tracking a priori signal to noise ratio (SNR) by using the decision-directed method. Semi-synthetic surface EMG signals contaminated by different levels of involuntary background spikes were constructed from a database of surface EMG recordings in a group of spinal cord injury subjects. After the processing, the onset detection of voluntary muscle activity was significantly improved against involuntary background spikes. The magnitude of voluntary surface EMG signals can also be reliably estimated for myoelectric control purpose. Compared with the previous sample entropy analysis for suppressing involuntary background spikes, the proposed framework is characterized by quick and simple implementation, making it more suitable for application in a myoelectric control system toward neurological injury rehabilitation. PMID:25443536

  16. Effect of Toll-Like Receptor 4 on Synovial Injury of Temporomandibular Joint in Rats Caused by Occlusal Interference

    PubMed Central

    Kong, Jingjing; Yang, Yingying; Sun, Shuzhen; Xie, Jianli; Lin, Xuefen; Ji, Ping

    2016-01-01

    Synovitis is an important disease that causes intractable pain in TMJ. Some investigations suggested that the increasing expression of IL-1β secreted by synovial lining cells plays an important role in synovial inflammation and cartilage destruction in TMJ. In our previous research, the results demonstrated that TLR4 is involved in the expression of IL-1β in SFs from TMJ with lipopolysaccharide stimulation. However, the inflammatory response that occurred in synovial membrane is not caused by bacterial infection. In the current study, we investigated whether or not TLR4 participates in the inflammatory responses and the expression of IL-1β in synovial membrane of rats induced by occlusal interference. The results showed that obvious inflammation changes were observed in the synovial membranes and the expression of TLR4 and IL-1β was increased at both mRNA and protein levels in the occlusal interference rats. In addition, the inflammation reactions and the increased expression of IL-1β could be restrained by treatment with TAK-242, a blocker of TLR4 signaling. The results prompted us that the activation of TLR4 may be involved in the inflammatory reactions and increased expression of IL-1β in patients with synovitis and participate in the mechanisms of the initiation and development of synovial injury by regulating the expression of inflammatory mediators like IL-1β in synovial membranes. PMID:27413256

  17. Volleyball injuries.

    PubMed

    Eerkes, Kevin

    2012-01-01

    There has been a significant increase in the numbers of people playing indoor and beach volleyball since the early 1980s and, consequently, an increase in injuries. Most injuries are related to repetitive jumping and hitting the ball overhead. The ankle is the most commonly injured joint, but the knee, shoulder, low back, and fingers also are vulnerable. The shoulder in particular is subject to extreme torque when hitting and jump serving the ball. Some injuries have a predilection for those playing on sand versus those playing in an indoor court. The clinician caring for volleyball players should be aware of the types of injuries these players sustain and how to help them return to play promptly and appropriately. This article reviews the specific injuries that are most common as a result of participating in the sport of volleyball. PMID:22965348

  18. An Overview of Surface Finishes and Their Role in Printed Circuit Board Solderability and Solder Joint Performance

    SciTech Connect

    Vianco, P.T.

    1998-10-15

    A overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability were described for the following coatings: baseline hot-dipped, plated, and plated-and-fused 100Sn and Sn-Pb coatings; Ni/Au; Pd, Ni/Pd, and Ni/Pd/Au finishes; and the recently marketed immersion Ag coatings. The Ni/Au coatings appear to provide the all-around best option in terms of solderability protection and wire bondability. Nickel/Pal ftishes offer a slightly reduced level of performance in these areas that is most likely due to variable Pd surface conditions. It is necessmy to minimize dissolved Au or Pd contents in the solder material to prevent solder joint embrittlement. Ancillary aspects that included thickness measurement techniques; the importance of finish compatibility with conformal coatings and conductive adhesives; and the need for alternative finishes for the processing of non-Pb bearing solders were discussed.

  19. Surface modifications of nylon/carbon fiber composite for improving joint adhesion

    SciTech Connect

    Wu, R.; Liao, S.L.; Tong, T.S.; Young, J.T.

    1996-12-31

    Various methods were used to modify the nylon/carbon fiber composite surfaces, including grit blasting, flame and plasma pretreatments. The surfaces of nylon composites after pretreatments were characterized by contact angle measurements, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). XPS results show that several functional groups were formed after plasma and flame pretreatments. The scanning electron microscope (SEM) photographs suggest that the blasting pretreatment increased the surface roughness of nylon composites. All these surface pretreatments dramatically increased the lap shear strength if proper operation conditions were used. The reasons for the increase of lap shear strength were explained.

  20. Improvement of the T-peel Strength of Polypropylene Adhesion Joints by Surface Photografting Pre-Treatment with Methyl Methacrylate

    NASA Astrophysics Data System (ADS)

    Balart, R.; Sánchez-Nácher, L.; Balart, J.; Fombuena, V.; España, J. M.

    2010-06-01

    Although polypropylene is one of the most used polymers at industrial level due to good balanced properties, it presents some restrictions in applications that require good adhesion properties as well as coating and painting. These restrictions are related to its non polar nature which leads to low wetting properties. So that, in most cases, it is necessary a previous surface pre-treatment in order to improve adhesion properties. These surface treatments could be physical or chemical. Among the wide variety of physical processes, plasma technologies are useful from both technical and environmental points of view. If we take into account economic considerations, chemical processes are interesting due to low cost equipment and procedures. In particular, we have used photografting of methyl methacrylate (MMA) monomer on polypropylene substrates with UV radiation and initiators. This process is useful to promote chemical modification of polypropylene surface by grafting MMA monomers into polypropylene polymer chains. Due to polarity of some groups in MMA monomers, it is possible to increase surface wettability thus promoting a remarkable increase in adhesion properties of polypropylene. In this work, changes in wettability of polypropylene surfaces in terms of the exposure time to UV radiation in presence of MMA monomers and initiators has been investigated. Furthermore, chemical changes have been characterized by FTIR analysis and mechanical performance of adhesion joints has been evaluated by T-peel tests.

  1. Synovial tissue morphology of the cricoarytenoid joint in the elderly: a histological comparison with the cricothyroid joint

    PubMed Central

    Katsumura, Sakura; Kitamura, Kei; Kasahara, Masaaki; Katori, Yukio; Abe, Shin-ichi

    2016-01-01

    We compared the age-related morphology of the cricothyroid (CT) joint with that of the cricoarytenoid (CA) joint using 18 specimens from elderly cadavers in terms of their elastic fiber contents as well as the cells composing the joint capsule and synovial tissues. In contrast to an almost flat-flat interface in the CT joint, the CA joint was similar to a saddle joint. The CA joint capsule was thin and contained few elastic fibers, and in contrast to the CT joint, external fibrous tissues were not exposed to the joint cavity, there being no injury to the CA joint capsule. The lateral and posterior aspects of the CA joint were covered by the lateral and posterior CA muscles, respectively, and the fascia of the latter muscle was sometimes thick with abundant elastic fibers. However, due to possible muscle degeneration, loose connective tissue was often interposed between the fascia and the capsule. The medial and anterior aspects of the CA joint faced loose tissue that was continuous with the laryngeal submucosal tissue. Therefore, in contrast to the CT joint, a definite supporting ligament was usually absent in the CA joint. Synovial folds were always seen in the CA joint, comprising a short triangular mass on the posterior side and long laminar folds on the anterior side. The synovial folds usually contained multiple capillaries and a few CD68-positive macrophages. High congruity of the CA joint surfaces as well as strong muscle support to the arytenoid cartilage appeared to provide the specific synovial morphology. PMID:27051568

  2. Joint inversion of surface wave velocity and gravity observations and its application to central Asian basins shear velocity structure

    NASA Astrophysics Data System (ADS)

    Maceira, Monica; Ammon, Charles J.

    2009-02-01

    We implement and apply a method to the jointly inverted of surface wave group velocities and gravity anomalies observations. Surface wave dispersion measurements are sensitive to seismic shear wave velocities, and the gravity measurements supply constraints on rock density variations. Our goal is to obtain a self-consistent three-dimensional shear velocity-density model with increased resolution of shallow geologic structures. We apply the method to investigate the structure of the crust and upper mantle beneath two large central Asian sedimentary basins: the Tarim and Junggar. The basins have thick sediment sections that produce substantial regional gravity variations (up to several hundred milligals). We used gravity observations extracted from the global gravity model derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. We combine the gravity anomalies with high-resolution surface wave slowness tomographic maps that provide group velocity dispersion values in the period range between 8 and 100 s for a grid of locations across central Asia. To integrate these data, we use a relationship between seismic velocity and density constructed through the combination of two empirical relations. One determined by Nafe and Drake, most appropriate for sedimentary rocks, and a linear Birch's law, more applicable to denser rocks (the basement). An iterative, damped least squares inversion including smoothing is used to jointly model both data sets, using shear velocity variations as the primary model parameters. Results show high upper mantle shear velocities beneath the Tarim basin and suggest differences in lower crust and upper mantle shear velocities between the eastern and western Tarim.

  3. Crustal layering in northeastern Tibet: a case study based on joint inversion of receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Deng, Yangfan; Shen, Weisen; Xu, Tao; Ritzwoller, Michael H.

    2015-10-01

    Recently constructed models of crustal structure across Tibet based on surface wave data display a prominent mid-crustal low velocity zone (LVZ) but are vertically smooth in the crust. Using six months of broad-band seismic data recorded at 22 stations arrayed approximately linearly over a 440 km observation profile across northeastern Tibet (from the Songpan-Ganzi block, through the Qaidam block, into the Qilian block), we perform a Bayesian Monte Carlo joint inversion of receiver function data with surface wave dispersion to address whether crustal layering is needed to fit both data sets simultaneously. On some intervals a vertically smooth crust is consistent with both data sets, but across most of the observation profile two types of layering are required: a discrete LVZ or high velocity zone (HVZ) formed by two discontinuities in the middle crust and a doublet Moho formed by two discontinuities from 45-50 km to 60-65 km depth connected by a linear velocity gradient in the lowermost crust. The final model possesses (1) a mid-crustal LVZ that extends from the Songpan-Ganzi block through the Kunlun suture into the Qaidam block consistent with partial melt and ductile flow and (2) a mid-crustal HVZ bracketing the south Qilian suture coincident with ultrahigh pressure metamorphic rocks at the surface. (3) Additionally, the model possesses a doublet Moho extending from the Qaidam to the Qilian blocks which probably reflects increased mafic content with depth in the lowermost crust perhaps caused by a vertical gradient of ecologitization. (4) Crustal thickness is consistent with a step-Moho that jumps discontinuously by 6 km from 63.8 km (±1.8 km) south of 35° to 57.8 km (±1.4 km) north of this point coincident with the northern terminus of the mid-crustal LVZ. These results are presented as a guide to future joint inversions across a much larger region of Tibet.

  4. Tarsometatarsal/Lisfranc joint.

    PubMed

    DiDomenico, Lawrence A; Cross, Davi

    2012-04-01

    Accurate early diagnosis with adequate reduction and maintenance of anatomic alignment of the dislocation or fracture within the Lisfranc joint complex have been found to be the key to successful outcomes regarding this injury. Because of the anatomic variations, the thin soft tissue envelop, and the abundance of ligamentous and capsular structures in the region, repair of these injuries can be a challenge. The classification systems used to describe these injuries aid in describing the mechanism of injury or displacement type present, which may aid in determining what treatment modality can provide the best outcome. PMID:22424486

  5. Ultraviolet excitation for thermography inspection of surface cracks in welded joints

    NASA Astrophysics Data System (ADS)

    Runnemalm, Anna; Broberg, Patrik; Henrikson, Per

    2014-10-01

    Infrared thermography is a non-contact and full field inspection method which has proven to be suitable for automatic surface crack detection. For automatic analysis of the inspection results, a high signal-to-noise ratio (SNR) is required. In this paper an alternative excitation method, using ultraviolet (UV) illumination, is presented and evaluated. Artificial surface defects, so-called notches, in a titanium plate are detected both in the weld seam and in the heat affected zone. Notches with a size from 80 μm in width and 250 μm in length are detected. The SNR using UV illumination is compared with that using flash lamp excitation. The results show that UV illumination using a mercury lamp is a good alternative as excitation source for thermography when detecting surface cracks. To validate the excitation method, results from real surface cracks are included.

  6. Cell-based approaches to joint surface repair: a research perspective

    PubMed Central

    Roelofs, A.J.; Rocke, J.P.J.; De Bari, C.

    2013-01-01

    Summary Repair of lesions of the articular cartilage lining the joints remains a major clinical challenge. Surgical interventions include osteochondral autograft transfer and microfracture. They can provide some relief of symptoms to patients, but generally fail to durably repair the cartilage. Autologous chondrocyte implantation has thus far shown the most promise for the durable repair of cartilage, with long-term follow-up studies indicating improved structural and functional outcomes. However, disadvantages of this technique include the need for additional surgery, availability of sufficient chondrocytes for implantation, and maintenance of their phenotype during culture-expansion. Mesenchymal stem cells offer an attractive alternative cell-source for cartilage repair, due to their ease of isolation and amenability to ex vivo expansion while retaining stem cell properties. Preclinical and clinical studies have demonstrated the potential of mesenchymal stem cells to promote articular cartilage repair, but have also highlighted several key challenges. Most notably, the quality and durability of the repair tissue, its resistance to endochondral ossification, and its effective integration with the surrounding host tissue. In addition, challenges exist related to the heterogeneity of mesenchymal stem cell preparations and their quality-control, as well as optimising the delivery method. Finally, as our knowledge of the cellular and molecular mechanisms underlying articular cartilage repair increases, promising studies are emerging employing bioactive scaffolds or therapeutics that elicit an effective tissue repair response through activation and mobilisation of endogenous stem and progenitor cells. PMID:23598176

  7. Sacroiliac joint imaging.

    PubMed

    Tuite, Michael J

    2008-03-01

    The sacroiliac (SI) joint has several unique anatomical features that make it one of the more challenging joints to image. The joint is difficult to profile well on radiographic views, and therefore the radiographic findings of sacroiliitis are often equivocal. Computed tomography images can usually show the findings of sacroiliitis and osteoarthritis earlier than radiographs. Magnetic resonance imaging performed with proper sequences is excellent for diagnosing even very early sacroiliitis and for following treatment response. The SI joint is often involved in patients with osteoarthritis or one of the inflammatory spondyloarthritides, most notably ankylosing spondylitis. Ankylosing spondylitis often presents with sacroiliitis, which appears as erosions, sclerosis, and joint space narrowing, eventually leading to ankylosis. Several disorders can cause sacroiliitis-like changes of the joint, including hyperparathyroidism and repetitive shear-stress injuries in athletes. The joint can become painful during pregnancy as it widens and develops increased motion, and some postpartum women develop iliac sclerosis adjacent to the joint termed osteitis condensans ilii. Another cause of SI joint pain is a disorder called sacroiliac joint dysfunction, which typically has few abnormal imaging findings. Patients with SI joint dysfunction, as well as sacroiliitis, often get relief from image-guided SI joint therapeutic injections. PMID:18382946

  8. Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model

    SciTech Connect

    Blanquart, G.; Pitsch, H.

    2009-08-15

    The intent of the current work is to present and further validate a new tri-variate model for the formation of soot particles, to apply this model in analyzing the effects of temperature on the formation and growth of soot, and to compare the findings with the present understanding derived from numerous experimental studies. In this novel model, a particle is represented as a fractal shaped aggregate and is described by three independent quantities: the volume, the surface area, and the number of hydrogenated sites (or active sites) on the surface. The introduction of this third variable allows for a better description of the surface reactivity at high temperatures. This approach is extended by a model for the total carbon-to-hydrogen (C/H) ratio of the particle. The model is validated first in high temperature premixed ethylene flames, premixed benzene flames, an acetylene counterflow diffusion flame, and toluene pyrolysis in shock-tubes. Then, the soot volume fraction is computed for a series of atmospheric laminar ethylene premixed flames with varying flame temperatures. The soot model is shown to reproduce the well known bell-shaped temperature dependence of soot volume fraction, which was found in many experiments. It is observed that nucleation is the largest contributor to soot volume fraction at low temperatures while growth by surface reactions is more important at higher temperatures. The surface reactivity and the volumetric carbon-to-hydrogen ratio (C/H) are also computed as a function of temperature. The surface reactivity is found to depend not only on the temperature but also on the particle size and the residence time in the flame. Finally, as observed experimentally, the C/H ratio is found to be essentially constant and close to unity for low temperature flames and increases with residence time in high temperature flames. (author)

  9. Joint swelling

    MedlinePlus

    Swelling of a joint ... Joint swelling may occur along with joint pain . The swelling may cause the joint to appear larger or abnormally shaped. Joint swelling can cause pain or stiffness. After an ...

  10. Protective Performance of Plate-Cell Rubber Tiles against Childhood Head Injury on Playground Surfaces — A Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Chang, Li-Tung; Huang, Tsai-Jeon

    Rubber tiles are commonly used in playgrounds as protective surfacing to reduce the incidence of head injuries in children caused by falling from equipment. This study developed a rubber tile model consisting of a surface layer of solid and a base layer of plate-cell and used it to investigate head injury protective performance. An explicit finite element method based on the experimental data was used to simulate head impact on the rubber tile. The peak acceleration and head injury criterion (HIC) were employed to assess the shock-absorbing capability of the tile. The results showed that compared to the peak acceleration, use of the HIC index provided a more conservative assessment of the shock absorption ability, and ultimately the protection against head injuries. This study supports the feasibility of using rubber tile with plate-cell construction to improve shock-absorbing capability. The plate-cell structure provided an excellent cushioning effect via a lower axial shear stiffness of the surface layer and lower transverse shearing stiffness of the core. The core's dimensions were an important parameter in determining the shearing stiffness. The analysis suggested that the cushioning effect would significantly reduce the peak force on the head from a fall and delay the occurrence of the peak value during impact, resulting in a marked reduction in the peak acceleration and HIC values of the head. Two plate-cell constructions with honeycomb and box-like cores were proposed and validated in this study. The better protective ability of the honeycomb core was attributed to its lower transverse shearing stiffness.

  11. The Interplay of Surface Mount Solder Joint Quality and Reliability of Low Volume SMAs

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    1997-01-01

    Spacecraft electronics including those used at the Jet Propulsion Laboratory (JPL), demand production of highly reliable assemblies. JPL has recently completed an extensive study, funded by NASA's code Q, of the interplay between manufacturing defects and reliability of ball grid array (BGA) and surface mount electronic components.

  12. A sequential data assimilation approach for the joint reconstruction of mantle convection and surface tectonics

    NASA Astrophysics Data System (ADS)

    Bocher, M.; Coltice, N.; Fournier, A.; Tackley, P. J.

    2016-01-01

    With the progress of mantle convection modelling over the last decade, it now becomes possible to solve for the dynamics of the interior flow and the surface tectonics to first order. We show here that tectonic data (like surface kinematics and seafloor age distribution) and mantle convection models with plate-like behaviour can in principle be combined to reconstruct mantle convection. We present a sequential data assimilation method, based on suboptimal schemes derived from the Kalman filter, where surface velocities and seafloor age maps are not used as boundary conditions for the flow, but as data to assimilate. Two stages (a forecast followed by an analysis) are repeated sequentially to take into account data observed at different times. Whenever observations are available, an analysis infers the most probable state of the mantle at this time, considering a prior guess (supplied by the forecast) and the new observations at hand, using the classical best linear unbiased estimate. Between two observation times, the evolution of the mantle is governed by the forward model of mantle convection. This method is applied to synthetic 2-D spherical annulus mantle cases to evaluate its efficiency. We compare the reference evolutions to the estimations obtained by data assimilation. Two parameters control the behaviour of the scheme: the time between two analyses, and the amplitude of noise in the synthetic observations. Our technique proves to be efficient in retrieving temperature field evolutions provided the time between two analyses is ≲10 Myr. If the amplitude of the a priori error on the observations is large (30 per cent), our method provides a better estimate of surface tectonics than the observations, taking advantage of the information within the physics of convection.

  13. Surface modification of ultra high molecular weight polyethylene with hyaluronan for total joint replacement application

    NASA Astrophysics Data System (ADS)

    Zhang, Min

    Hyaluronan (HA), a natural lubricant molecule present in mammalian synovial fluid, was introduced into the ultra high molecular weight polyethylene (UHMWPE) surface to improve its hydrophilicity, lubricity and wear resistance for orthopedic applications. Two novel hyaluronan derivatives were created so that micro-composites of hydrophilic HA and hydrophobic UHMWPE could be made by either a solvent infiltration or melt blending process. The silylated HA was hydrophobic and soluble in organic solvents, and thus was used in the solvent infiltration process. Preforms with interconnected micro-pores were used as the UHMWPE starting material to form a micro-composite with HA. With appropriate process parameters, a uniform HA film layer was produced on the micro-composite surface, which quickly hydrated in water, forming a lubricious surface film. The HA surface on the micro-composite was stable and resistant to enzymatic degradation. The effect of HA on the mechanical properties of UHMWPE was significant, but within ASTM guidelines for implant-grade UHMWPE. Compared with the control, the micro-composite had a decreased strength and increased elongation to failure. The HA-UHMWPE micro-composites significantly reduced wear and wear rates of UHMWPE, and the decreases were more significant for some sample treatments than others. A series of HA esters that could be used to create the microcomposites via melt blending was also developed by acylating silylated HA-CTA. HA esters with an acyl chain length greater than 10 carbon atoms melted before degrading. Thus, HA caprinate and higher esters are melt-processable. Future work will investigate the melt blending approach to manufacture microcomposites with hot-processed HA esters and UHMWPE powder.

  14. Lisfranc injuries: an update.

    PubMed

    Eleftheriou, Kyriacos I; Rosenfeld, Peter F; Calder, James D F

    2013-06-01

    Lisfranc injuries are a spectrum of injuries to the tarsometatarsal joint complex of the midfoot. These range from subtle ligamentous sprains, often seen in athletes, to fracture dislocations seen in high-energy injuries. Accurate and early diagnosis is important to optimise treatment and minimise long-term disability, but unfortunately, this is a frequently missed injury. Undisplaced injuries have excellent outcomes with non-operative treatment. Displaced injuries have worse outcomes and require anatomical reduction and internal fixation for the best outcome. Although evidence to date supports the use of screw fixation, plate fixation may avoid further articular joint damage and may have benefits. Recent evidence supports the use of limited arthrodesis in more complex injuries. PMID:23563815

  15. Effects of Microstructure and Loading on Fracture of Sn-3.8Ag-0.7Cu Joints on Cu Substrates with ENIG Surface Finish

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2014-12-01

    When dropped, electronic packages often undergo failure by propagation of an interfacial crack in solder joints under a combination of tensile and shear loading. Hence, it is crucial to understand and predict the fracture behavior of solder joints under mixed-mode high-rate loading conditions. In this work, the effects of the loading conditions (strain rate and loading angle) and microstructure [interfacial intermetallic compound (IMC) morphology and solder yield strength] on the mixed-mode fracture toughness of Sn-3.8 wt.%Ag-0.7 wt.%Cu solder joints sandwiched between two Cu substrates with electroless nickel immersion gold (ENIG) metallization have been studied, and compared with the fracture behavior of joints attached to bare Cu. Irrespective of the surface finish, the fracture toughness of the solder joints decreased monotonically with strain rate and mode-mixity, both resulting in increased fracture proportion through the interfacial IMC layer. Furthermore, the proportion of crack propagation through the interfacial IMC layer increased with increase in the thickness and the roughness of the interfacial IMC layer and the yield strength of the solder, resulting in a decrease in the fracture toughness of the joint. However, under most conditions, solder joints with ENIG finish showed higher resistance to fracture than joints attached directly to Cu substrates without ENIG metallization. Based on the experimental observations, a fracture mechanism map is constructed correlating the yield strength of the solder, the morphology and thickness of the interfacial IMC, and the fracture mechanisms as well as the fracture toughness values for different solder joints under mode I loading.

  16. Atomic force microscopy visualization of injuries in Enterococcus faecalis surface caused by Er,Cr:YSGG and diode lasers

    PubMed Central

    López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa

    2015-01-01

    Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770

  17. Drop Reliability of Epoxy-contained Sn-58 wt.%Bi Solder Joint with ENIG and ENEPIG Surface Finish Under Temperature and Humidity Test

    NASA Astrophysics Data System (ADS)

    Myung, Woo-Ram; Kim, Yongil; Kim, Kyung-Yeol; Jung, Seung-Boo

    2016-04-01

    The influence of two kinds of surface finish, namely electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG), on the interfacial reactions and drop reliability of epoxy-enhanced Sn-58 wt.%Bi solder has been investigated after temperature-humidity storage tests. The chemical composition and morphology of intermetallic compounds (IMCs) were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electron probe microanalysis. Also, the mechanical reliability of solder joints was evaluated using board-level drop tests. The Sn-Bi epoxy solder/ENEPIG joint exhibited higher IMC growth rate than the Sn-Bi epoxy solder/ENIG joint. After 500 h at 85°C/85% RH storage condition, new IMCs were formed on the Ni3Sn4 layer in samples with both surface finishes. The results of board-level drop tests showed that the number of drops was higher for the ENIG than the ENEPIG surface finish. Solder joint fracture occurred along the interface between the solder and IMC layer for the ENIG surface finish. However, with the ENEPIG surface finish, the crack propagated between the IMCs.

  18. Drop Reliability of Epoxy-contained Sn-58 wt.%Bi Solder Joint with ENIG and ENEPIG Surface Finish Under Temperature and Humidity Test

    NASA Astrophysics Data System (ADS)

    Myung, Woo-Ram; Kim, Yongil; Kim, Kyung-Yeol; Jung, Seung-Boo

    2016-07-01

    The influence of two kinds of surface finish, namely electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG), on the interfacial reactions and drop reliability of epoxy-enhanced Sn-58 wt.%Bi solder has been investigated after temperature-humidity storage tests. The chemical composition and morphology of intermetallic compounds (IMCs) were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electron probe microanalysis. Also, the mechanical reliability of solder joints was evaluated using board-level drop tests. The Sn-Bi epoxy solder/ENEPIG joint exhibited higher IMC growth rate than the Sn-Bi epoxy solder/ENIG joint. After 500 h at 85°C/85% RH storage condition, new IMCs were formed on the Ni3Sn4 layer in samples with both surface finishes. The results of board-level drop tests showed that the number of drops was higher for the ENIG than the ENEPIG surface finish. Solder joint fracture occurred along the interface between the solder and IMC layer for the ENIG surface finish. However, with the ENEPIG surface finish, the crack propagated between the IMCs.

  19. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    NASA Astrophysics Data System (ADS)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-04-01

    Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag+ ion to Ag0. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  20. The Crust and Upper Mantle Structure of the Iranian Plateau from Joint Waveform Tomography Imaging of Body and Surface Waves

    NASA Astrophysics Data System (ADS)

    Roecker, S. W.; Priestley, K. F.; Tatar, M.

    2014-12-01

    The Iranian Plateau forms a broad zone of deformation between the colliding Arabian and Eurasian plates. The convergence is accommodated in the Zagros Mountains of SW Iran, the Alborz Mountains of northern Iran, and the Kopeh Dagh Mountains of NE Iran. These deforming belts are separated by relatively aseismic depressions such as the Lut Block. It has been suggested that the Arabia-Eurasia collision is similar to the Indo-Eurasia collision but at a early point of development and therefore, it may provide clues to our understanding of the earlier stages of the continent-continent collision process. We present results of the analysis of seismic data collected along two NE-SW trending transects across the Iranian Plateau. The first profile extends from near Bushere on the Persian Gulf coast to near to the Iran-Turkmenistan border north of Mashad, and consists of seismic recordings along the SW portion of the line in 2000-2001 and recording along the NE portion of the line in 2003 and 2006-2008. The second profile extends from near the Iran-Iraq border near the Dezfel embayment to the south Caspian Sea coast north of Tehran. We apply the combined 2.5D finite element waveform tomography algorithm of Baker and Roecker [2014] to jointly invert teleseismic body and surface waves to determine the elastic wavespeed structures of these areas. The joint inversion of these different types of waves affords similar types of advantages that are common to combined surface wave dispersion/receiver function inversions in compensating for intrinsic weaknesses in horizontal and vertical resolution capabilities. We compare results recovered from a finite difference approach to document the effects of various assumptions related to their application, such as the inclusion of topography, on the models recovered. We also apply several different inverse methods, starting with simple gradient techniques to the more sophisticated pseudo-Hessian or L-BFGS approach, and find that the latter are

  1. Cartilage Injuries in the Adult Knee

    PubMed Central

    Moyad, Thomas F.

    2011-01-01

    Cartilage injuries are frequently recognized as a source of significant morbidity and pain in patients with previous knee injuries. The majority of patients who undergo routine knee arthroscopy have evidence of a chondral defect. These injuries represent a continuum of pathology from small, asymptomatic lesions to large, disabling defects affecting a major portion of one or more compartments within the knee joint. In comparison to patients with osteoarthritis, individuals with isolated chondral surface damage are often younger, significantly more active, and usually less willing to accept limitations in activities that require higher impact. At the present time, a variety of surgical procedures exist, each with their unique indications. This heterogeneity of treatment options frequently leads to uncertainty regarding which techniques, if any, are most appropriate for patients. The purpose of this review is to describe the workup and discuss the management techniques for cartilage injuries within the adult knee. PMID:26069581

  2. Theoretical investigation of an artificial joint with micro-pocket-covered component and biphasic cartilage on the opposite articulating surface.

    PubMed

    Suciu, A N; Iwatsubo, T; Matsuda, M

    2003-08-01

    This paper presents a theoretical investigation of a geometrically idealized artificial joint with micro-pocket-covered component and biphasic cartilage on the opposite articulating surface. The fluid that exudes from the biphasic cartilage fills and pressurizes the micro-pockets. In this way, a poro-elasto-hydrodynamic regime of lubrication is developed. Assuming that lower friction would result in lower adhesive wear, and neglecting the fatigue as well as the abrasive wear, the proposed bearing system hypothetically could reduce the amount of wear debris. Equations of the linear biphasic theory are applied for the confined and unconfined compression of the cartilage. The fluid pressure and the elastic deformation of the biphasic cartilage are explicitly presented. The effective and equilibrium friction coefficients are obtained for the particular configuration of this bearing system. The micro-pockets geometrical parameters (depth, radius, surface distribution and edge radius) must be established to reduce the local contact stresses, to assure low friction forces and to minimize the biphasic cartilage damage. The influence of the applied pressure, porosity of the micro-pocket-covered component, filling time, cartilage elasticity, permeability and porosity upon the micro-pockets depth is illustrated. Our results are based upon the previously published data for a biphasic cartilage. PMID:12968566

  3. Joint State and Parameter Estimation for Two Land Surface Models Using the Ensemble Kalman Filter and Particle Filter

    NASA Astrophysics Data System (ADS)

    Zhang, Hongjuan; Hendricks-Franssen, Harrie-Jan; Han, Xujun; Vrugt, Jasper A.; Vereecken, Harry

    2016-04-01

    Land surface models (LSMs) resolve the water and energy balance with different parameters and state variables. Many of the parameters of these models cannot be measured directly in the field, and require calibration against flux and soil moisture data. Two LSMs are used in our work: Variable Infiltration Capacity Hydrologic Model (VIC) and the Community Land Model (CLM). Temporal variations in soil moisture content at 5, 20 and 50 cm depth in the Rollesbroich experimental watershed in Germany are simulated in both LSMs. Data assimilation (DA) provides a good way to jointly estimate soil moisture content and soil properties of the resolved soil domain. Four DA methods combined with the two LSMs are used in our work: the Ensemble Kalman Filter (EnKF) using state augmentation or dual estimation, the Residual Resampling Particle Filter (RRPF) and Markov chain Monte Carlo Particle Filter (MCMCPF). These four DA methods are tuned and calibrated for a five month period, and subsequently evaluated for another five month period. Performances of the two LSMs and the four DA methods are compared. Our results show that all DA methods improve the estimation of soil moisture content of the VIC and CLM models, especially if the soil hydraulic properties (VIC), the maximum baseflow velocity (VIC) and/or soil texture (CLM) are jointly estimated with soil moisture content. The augmentation and dual estimation methods performed slightly better than RRPF and MCMCPF in the evaluation period. The differences in simulated soil moisture content between CLM and VIC were larger than variations among the DA methods. The CLM performed better than the VIC model. The strong underestimation of soil moisture content in the third layer of the VIC model is likely related to an inadequate parameterization of groundwater drainage.

  4. Toe Injuries and Disorders

    MedlinePlus

    ... include Corns and bunions Ingrown toenails Toe joint sprains and dislocations Fractured toe bones Treatments for toe injuries and disorders vary. They might include shoe inserts or special shoes, padding, taping, medicines, rest, and in severe cases, surgery.

  5. A symptomatic coracoclavicular joint.

    PubMed

    Cheung, T F S; Boerboom, A L; Wolf, R F E; Diercks, R L

    2006-11-01

    Bilateral coracoclavicular joints were found in a 44-year-old male patient following a fall. He had an Indonesian mother and a Dutch father. Prior to the injury he was asymptomatic and had full range of movement in both shoulders but the trauma resulted in pain and limitation of movement in the left shoulder which required resection of the anomalous joint, after which full pain-free movement was restored. PMID:17075101

  6. Seismic Tomography of the Continental United States from a Joint Inversion of Surface Waves and Body Waves

    NASA Astrophysics Data System (ADS)

    Golos, E. M.; Yao, H.; Zhang, H.; Fang, H.; Burdick, S.; Schaeffer, A. J.; Vernon, F.; Lebedev, S.; van der Hilst, R. D.

    2015-12-01

    We present a model of seismic velocity anomalies for the entire continental United States—coast to coast, surface to lower mantle—using a joint body wave-surface wave inversion. This technique (Zhang et al., 2014), performed on a global adaptively-spaced grid, exploits the good vertical resolution at shallow depths of surface wave data, and the sampling of the deep mantle by teleseismic body (P and S) waves. The resultant model has better resolution at all depths than either method alone, enabling evaluation of interactions between lithospheric and mantle processes. We utilize the depth-dependence of surface wave sensitivity kernels to express surface wave phase velocity data directly in terms of spatial velocity structure (Fang et al., 2015). The data used are Rayleigh wave phase velocities from earthquakes and ambient noise (Schaeffer and Lebedev, 2013; Ekström, 2014) and S phase travel times from USArray, measured at the Array National Facility (ANF). We include a suite of synthetic tests to verify the performance of the inversion and compare it to results from traditional tomographic methods. We also use P arrivals and the influence of Vp on Rayleigh wave propagation speed to generate a preliminary model of Vp variations, independent from but consistent with the Vs model. Our model corroborates the well-established pattern of slow anomalies in the western US, especially in the Basin and Range and Rio Grande Rift regions. New details emerge in the eastern US, thanks to increasing data from the region. A distinction is observed between widespread fast lithospheric anomalies, associated with stable cratonic material, and deeper fast features, associated with the remnants of the Farallon Plate. It has been proposed that these fragments, near the mantle transition zones, still affect mantle dynamics (Forte et al., 2007), so better resolution of these anomalies is an important advancement. In addition, slower velocities are observed beneath the Appalachians and

  7. Hemiarthroplasty of the shoulder joint using a custom-designed high-density nano-hydroxyapatite/polyamide prosthesis with a polyvinyl alcohol hydrogel humeral head surface in rabbits.

    PubMed

    Guo, Yongwen; Guo, Jun; Bai, Ding; Wang, Hang; Zheng, Xiaohui; Guo, Weihua; Tian, Weidong

    2014-07-01

    In this study, a novel custom-designed high-density nano-hydroxyapatite/polyamide (n-HA/PA) prosthesis with a polyvinyl alcohol (PVA) hydrogel humeral head surface was employed to repair the shoulder joint head for hemiarthroplasty in rabbits. The prosthesis was fabricated using three-dimensional computed tomography and computer-aided design and computer-aided manufacturing systems for perfect fitting. Sixteen New Zealand white rabbits underwent humeral head excision, and received the composite prostheses for hemiarthroplasty. The implant sites were free from suppuration and necrosis at all periods. The X-ray results showed that there was a clear space between the prosthesis head and the glenoid surface, and the joint capsules and surfaces of the glenoid and PVA were well preserved without any damage during the whole inspection period. A high density of bone was observed around the firmware part of the prosthesis. Histological results revealed that significant osteogenesis was surrounding the firmware part, and the joint space was clear and the cartilage of the upper joint surface was basically intact. There was no visible absorption of the joint surfaces even after 3 months of continuous functional motions. The maximum tensile strength between the prosthesis and host bone reached 2.63 MPa at the 12th week postimplantation. In conclusion, the customized prosthesis by combination of PVA and high-density n-HA/PA has excellent biocompatibility and biological fixation, and offers a promising substitute for both the cartilage and the bone of the humeral head in a rabbit model as level V evidence. PMID:24404998

  8. Traumatic proximal tibiofibular dislocation with neurovascular injury

    PubMed Central

    Veerappa, Lokesh A; Gopalakrishna, Chetan

    2012-01-01

    23 years old male presented with inferolateral dislocation of proximal tibiofibular joint associated with popliteal artery and common peroneal nerve injury. The extension of the injury to involve the interosseus membrane up to the distal tibiofibular joint. The association of popliteal artery injury is not reported before to the best of our knowledge. PMID:23162155

  9. Joint inversion of surface wave and body wave data for the characterisation of a fault system in New Zealand

    NASA Astrophysics Data System (ADS)

    Socco, L. V.; Garofalo, F.; Bergamo, P.; Konstantaki, L. A.; Carpentier, S.

    2012-04-01

    A seismic reflection dataset was acquired by the Applied and Environmental Geophysics group at ETH Zurich to characterise a site across the Alpine Fault near the village of Inchbonnie on the South Island of New Zealand. The Alpine Fault is a transpressional strike slip fault and is the largest of several New Zealand faults that occur at the boundary of the Australian and the Pacific tectonic plates. The site is just north of the intersection between the Alpine Fault and the Hope Fault and features a fault step-over zone. It is further characterised by glacial, glaciolacustrine, lacustrine and fluvial sediments (mostly gravels), transported and distributed by the Taramakau River. The dataset consists of five high resolution seismic reflection lines that cross the fault zone. The lengths of the seismic lines range from 383 m to 1198 m. The data were initially processed to image seismic reflection sections and the P-wave first arrivals were picked. A significant amount of surface wave energy however was present in the records as well, such that dispersion curves could be extracted along the seismic lines using a moving Gaussian window and picked energy maxima in the f-k domain. Surface-wave dispersion curves and P-wave first arrivals were then jointly inverted to provide a comprehensive P- and S-wave velocity model of the site. The joint inversion algorithm is a damped weighted least-squares algorithm based on a local 1D forward model for the surface wave dispersion curves and a 2D forward model for the P-wave first arrivals. The local 1D models for surface waves are linked to each other through spatial regularisation. Further constraints can be added to comply with a priori information and physical links between model parameters (VP and VS). The final outcome is a 2D internally consistent VP and VS model. The inversion scheme works very well for weakly laterally varying media, but in the case of abrupt lateral variations the spatial regularisation should be manually

  10. Improved mathematical model of the wear of the cup articular surface in hip joint prostheses and comparison with retrieved components.

    PubMed

    Raimondi, M T; Santambrogio, C; Pietrabissa, R; Raffelini, F; Molfetta, L

    2001-01-01

    This paper presents an analytical model of the cobalt-based alloy-ultra-high molecular weight polyethylene (UHMWPE) wear coupling. Based on a previous model in which the cup wear volume over a gait cycle (WG) was calculated under the simplifying assumption of an ideal rigid coupling, the current version proposes a more realistic wear simulation. All three components of the hip loading force were considered for the contact pressure calculation and all three components of the hip motion were taken into account for the sliding distance calculation. The contact pressure distribution was calculated on the basis of the Hertzian theory for the elastic contact of two bodies with non-conforming geometrical shapes. The wear factor was taken from hip simulator wear tests. The calculated WG is 67 x 10(-6) mm3 for a standard reference patient. The parametric model simulations show that WG increases linearly with the patient weight, femoral head diameter and surface roughness. It increases non-linearly to a maximum and decreases to an asymptotic value with increasing cup/head clearance and with cup isotropic elastic modulus. The cup orientation in the pelvis affects only slightly the total amount of WG whereas it is the dominant factor affecting the shape of the wear distribution. The iso-wear maps show paracentral patterns at low cup inclination angles and marginal patterns at higher inclination angles. The maximum wear depth is supero-posterior when the cup is in neutral alignment and supero-anterior at increasing anteversion angles. Complex patterns with a combination of paracentral and marginal wear were obtained at specific clearance values and cup orientations. The results of the simulations are discussed in relation to the wear distribution measured on the articular surface of 12 UHMWPE components retrieved from failed hip joint prostheses, after a period of in situ functioning. PMID:11521761

  11. Diamond-like carbon coatings enhance the hardness and resilience of bearing surfaces for use in joint arthroplasty.

    PubMed

    Roy, M E; Whiteside, L A; Xu, J; Katerberg, B J

    2010-04-01

    The purpose of this study was to evaluate the potential of a hard diamond-like carbon (DLC) coating to enhance the hardness and resilience of a bearing surface in joint replacement. The greater hardness of a magnesium-stabilized zirconium (Mg-PSZ) substrate was expected to provide a harder coating-substrate composite microhardness than the cobalt-chromium alloy (CoCr) also used in arthroplasty. Three femoral heads of each type (CoCr, Mg-PSZ, DLC-CoCr and DLC-Mg-PSZ) were examined. Baseline (non-coated) and composite coating/substrate hardness was measured by Vickers microhardness tests, while nanoindentation tests measured the hardness and elastic modulus of the DLC coating independent of the Mg-PSZ and CoCr substrates. Non-coated Mg-PSZ heads were considerably harder than non-coated CoCr heads, while DLC coating greatly increased the microhardness of the CoCr and Mg-PSZ substrates. On the nanoscale the non-coated heads were much harder than on the microscale, with CoCr exhibiting twice as much plastic deformation as Mg-PSZ. The mechanical properties of the DLC coatings were not significantly different for both the CoCr and Mg-PSZ substrates, producing similar moduli of resilience and plastic resistance ratios. DLC coatings greatly increased hardness on both the micro and nano levels and significantly improved resilience and resistance to plastic deformation compared with non-coated heads. Because Mg-PSZ allows less plastic deformation than CoCr and provides a greater composite microhardness, DLC-Mg-PSZ will likely be more durable for use as a bearing surface in vivo. PMID:19861184

  12. Repair and regeneration of tracheal surface epithelium and submucosal glands in a mouse model of hypoxic-ischemic injury

    PubMed Central

    HEGAB, AHMED E.; NICKERSON, DEREK W.; HA, VI LUAN; DARMAWAN, DAPHNE O.; GOMPERTS, BRIGITTE N.

    2012-01-01

    Background and objective The heterotopic syngeneic tracheal transplant mouse model is an acute hypoxic-ischemic injury model that undergoes complete repair and regeneration. We hypothesized that the repair and regeneration process of the surface epithelium and submucosal glands would occur in a reproducible pattern that could be followed by the expression of specific markers of epithelial cell types. Methods We used the syngeneic heterotopic tracheal transplant model to develop a temporal and spatial map of cellular repair and regeneration by examining the tracheal grafts at post-transplant days 1, 3, 5, 7, 10 and 14. We used pulsed BrdU and immunofluorescent staining to identify and follow proliferating and repairing cell populations. Results We confirmed the reproducibility of the injury and repair in the model and we found a distinct sequence of reappearance of the various stem/ progenitor and differentiated cell populations of the tracheal surface epithelium and submucosal glands. In the initial phase, the basal and duct cells that survived the injury proliferated to re-epithelialize the basement membrane with K5 and K14 expressing cells. Then these cells proliferated further and differentiated to restore the function of the epithelium. During this repair process, TROP-2 marked all repairing submucosal gland tubules and ducts. Non-CCSP-expressing serous cells were found to differentiate 4–5 days before Clara, mucus and ciliated cells. Conclusions Improving our understanding of the reparative process of the airway epithelium will allow us to identify cell-specific mechanisms of repair that could be used as novel therapeutic approaches for abnormal repair leading to airway diseases. PMID:22617027

  13. Exercise and the Knee Joint.

    ERIC Educational Resources Information Center

    Clarke, H. Harrison, Ed.

    1976-01-01

    This report by the President's Council on Physical Fitness and Sports examines the effects of various forms of physical exercise on the knee joint which, because of its vulnerability, is especially subject to injury. Discussion centers around the physical characteristics of the joint, commonly used measurements for determining knee stability,…

  14. Acute forefoot and midfoot injuries.

    PubMed

    Laird, R Clinton

    2015-04-01

    Forefoot and midfoot injuries in the athlete are common. Injuries of the digits include subungual hematomas and fractures. Metatarsal fractures occur frequently in sports, and their treatments range greatly. Hyperflexion and extension injuries about the first metatarsophalangeal joint can be very debilitating. Midfoot sprains and fractures require a high index of suspicion for diagnosis. PMID:25804712

  15. Changes in respiratory elastance after deep inspirations reflect surface film functionality in mice with acute lung injury.

    PubMed

    Takahashi, Ayuko; Bartolák-Suki, Erzsébet; Majumdar, Arnab; Suki, Béla

    2015-08-01

    Pulmonary surfactant reduces surface tension in the lung and prevents alveolar collapse. Following a deep inspiration (DI), respiratory elastance first drops then gradually increases due to surface film and tissue viscoelasticity. In acute lung injury (ALI), this increase is faster and governed by alveolar collapse due to increased surface tension. We hypothesized that the rate of increase in elastance reflects the deficiency of surfactant in the lung. To test this, mice were ventilated before (baseline) and after saline lavage obtained by injecting 0.8 ml and withdrawing 0.7 ml fluid (severe ALI) or injecting 0.1 ml (mild ALI). After two DIs, elastance was tracked for 10 min followed by a full lavage to assess surfactant proteins B (SP-B) and C (SP-C) content. Following 2 DIs, the increases in elastance during 10 min ventilation (ΔH) were 3.60 ± 0.61, 5.35 ± 1.04, and 8.33 ± 0.84 cmH2O/ml in baseline mice and mice with mild and severe ALI, respectively (P < 0.0001). SP-B and SP-C in the lavage fluid dropped by 32.4% and 24.9% in the mild and 50.4% and 39.6% in the severe ALI, respectively. Furthermore, ΔH showed a strong negative correlation with both SP-B (r(2) = 0.801) and SP-C (r(2) = 0.810) content. The ΔH was, however, much smaller when the lavage fluid also contained exogeneous SP-B and SP-C. Thus ΔH can be interpreted as an organ level measure of surface film functionality in lavage-induced ALI in mice. This method could prove useful in clinical situations such as diagnosing surfactant problems, monitoring recovery from lung injury or the effectiveness of surfactant therapy. PMID:26066828

  16. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data in the Wavelet Domain Constrained by Sparsity Regularization

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fang, H.; Yao, H.; Maceira, M.; van der Hilst, R. D.

    2014-12-01

    Recently, Zhang et al. (2014, Pure and Appiled Geophysics) have developed a joint inversion code incorporating body-wave arrival times and surface-wave dispersion data. The joint inversion code was based on the regional-scale version of the double-difference tomography algorithm tomoDD. The surface-wave inversion part uses the propagator matrix solver in the algorithm DISPER80 (Saito, 1988) for forward calculation of dispersion curves from layered velocity models and the related sensitivities. The application of the joint inversion code to the SAFOD site in central California shows that the fault structure is better imaged in the new model, which is able to fit both the body-wave and surface-wave observations adequately. Here we present a new joint inversion method that solves the model in the wavelet domain constrained by sparsity regularization. Compared to the previous method, it has the following advantages: (1) The method is both data- and model-adaptive. For the velocity model, it can be represented by different wavelet coefficients at different scales, which are generally sparse. By constraining the model wavelet coefficients to be sparse, the inversion in the wavelet domain can inherently adapt to the data distribution so that the model has higher spatial resolution in the good data coverage zone. Fang and Zhang (2014, Geophysical Journal International) have showed the superior performance of the wavelet-based double-difference seismic tomography method compared to the conventional method. (2) For the surface wave inversion, the joint inversion code takes advantage of the recent development of direct inversion of surface wave dispersion data for 3-D variations of shear wave velocity without the intermediate step of phase or group velocity maps (Fang et al., 2014, Geophysical Journal International). A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. We will test the new joint

  17. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region

    NASA Astrophysics Data System (ADS)

    Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; van der Hilst, Robert D.

    2016-05-01

    We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.

  18. Erythrocyte Aggregation due to Surface Nanobubble Interactions During the Onset of Thermal Burn Injury

    NASA Astrophysics Data System (ADS)

    Seidner, Harrison S.

    Red Blood Cell (RBC) aggregation is an important hemorheological phenomenon especially in microcirculation. In healthy individuals, RBCs are known to aggregate and gravitate toward the faster flow in the center of vessels to increase their throughput for more efficient oxygen delivery. Their aggregation is known to occur during a variety of environmental, pathological, and physiological conditions and is reversible when aggregates are subject to the relatively high shear forces in the circulation. The likelihood that aggregates will monodisperse in flow is dependent on the conditions during which they form. In situations where such aggregates are not sheared to monodispersion their presence can impact the perfusion of microvascular networks. More specifically, aggregates subject to the low shear rates in the zone of stasis near regions of thermal burn injury are capable of occluding vessels in the microcirculation and inhibiting the delivery of oxygen and nutrients to tissue downstream. The basic mechanism leading to erythrocyte aggregation at the onset of thermal injury is unknown. This dissertation investigates parameters involved in erythrocyte aggregation, methods of measuring and testing erythrocyte aggregation, and incorporates modeling based on first principles ultimately to propose a mechanism of this phenomenon.

  19. Diamond-like carbon coatings enhance scratch resistance of bearing surfaces for use in joint arthroplasty: hard substrates outperform soft.

    PubMed

    Roy, Marcel E; Whiteside, Leo A; Katerberg, Brian J

    2009-05-01

    The purpose of this study was to test the hypotheses that diamond-like carbon (DLC) coatings will enhance the scratch resistance of a bearing surface in joint arthroplasty, and that a hard ceramic substrate will further enhance scratch resistance by reducing plastic deformation. We tested these hypotheses by applying a hard DLC coating to medical-grade cobalt chromium alloy (CoCr) and magnesia-stabilized zirconia (Mg-PSZ) femoral heads and performing scratch tests to determine the loads required to cause cohesive and adhesive fracture of the coating. Scratch tracks of DLC-coated and noncoated heads were then scanned by optical profilometry to determine scratch depth, width, and pile-up (raised edges), as measures of susceptibility to scratching. DLC-coated CoCr specimens exhibited cohesive coating fracture as wedge spallation at an average load of 9.74 N, whereas DLC-coated Mg-PSZ exhibited cohesive fracture as arc-tensile cracks and chipping at a significantly higher average load of 41.3 N (p < 0.0001). At adhesive coating fracture, DLC-CoCr delaminated at an average load of 35.2 N, whereas DLC-Mg-PSZ fractured by recovery spallation at a significantly higher average load of 46.8 N (p < 0.05). Both DLC-CoCr and DLC-Mg-PSZ specimens exhibited significantly shallower scratches and less pile-up than did uncoated specimens (p < 0.005 and p < 0.01, respectively). However, the harder ceramic substrate of DLC-Mg-PSZ better resisted plastic deformation, requiring significantly higher loads for cohesive and adhesive coating fracture. These findings supported both of our hypotheses. PMID:18985791

  20. Lithospheric structure below seismic stations in Cuba from the joint inversion of Rayleigh surface waves dispersion and receiver functions

    NASA Astrophysics Data System (ADS)

    González, O'Leary; Moreno, Bladimir; Romanelli, Fabio; Panza, Giuliano F.

    2012-05-01

    The joint inversion of Rayleigh wave group velocity dispersion and receiver functions has been used to study the crust and upper mantle structure at eight seismic stations in Cuba. Receiver functions have been computed from teleseismic recordings of earthquakes at epicentral (angular) distances in the range from 30° to 90° and Rayleigh wave group velocity dispersion relations have been taken from earlier surface wave tomographic studies in the Caribbean area. The thickest crust (˜30 km) below Cuban stations is found at Cascorro (CCC) and Maisí (MAS) whereas the thinnest crust (˜18 km) is found at stations Río Carpintero (RCC) and Guantánamo Bay (GTBY), in the southeastern part of Cuba; this result is in agreement with the southward gradual thinning of the crust revealed by previous studies. In the crystalline crust, the S-wave velocity varies between ˜2.8 and ˜3.9 km s-1 and, at the crust-mantle transition zone, the shear wave velocity varies from ˜4.0 and ˜4.3 km s-1. The lithospheric thickness varies from ˜65 km, in the youngest lithosphere, to ˜150 km in the northeastern part of the Cuban island, below Maisí (MAS) and Moa (MOA) stations. Evidence of a subducted slab possibly belonging to the Caribbean plate is present below the stations Las Mercedes (LMG), RCC and GTBY whereas earlier subducted slabs could explain the results obtained below the Soroa (SOR), Manicaragua (MGV) and Cascorro (CCC) station.

  1. Histologic evaluation of preventive measures for scald injury on the peritoneo-serosal surface due to intraoperative hyperthermic chemoperfusion for patients with gastric cancer and peritoneal metastasis.

    PubMed

    Fujimoto, S; Takahashi, M; Kobayashi, K; Mutou, T; Toyosawa, T; Izawa, E; Numai, T; Kondoh, F; Ohkubo, H

    1998-01-01

    To histologically assess the preventive efficacy of cimetidine against scald injury on the peritoneo-serosal surface during intraperitoneal hyperthermic chemoperfusion (IHCP) for advanced gastric cancer, a randomized histologic study using cimetidine, a histamine H2-receptor antagonist, was performed for 20 patients with advanced or recurrent gastric cancer and peritoneal metastasis. Cimetidine 50 mg/kg was administered intravenously to 10 patients just prior to the IHCP (cimetidine group), and the remaining 10 patients underwent the IHCP without cimetidine (control group). The background factors and IHCP treatments of these two groups were nearly the same. Although the antitumour efficacy of the IHCP was not histologically different between the two groups, the histological analysis revealed that the peritoneo-serosal surface in the cimetidine group was protected against scald injury, compared with the control group. This finding suggests that pre-IHCP cimetidine is of great benefit for protecting the peritoneo-serosal surface from scald injury due to IHCP. PMID:9483448

  2. 49 CFR 225.23 - Joint operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Joint operations. 225.23 Section 225.23....23 Joint operations. (a) Any reportable death, injury, or illness of an employee arising from an accident/incident involving joint operations must be reported on Form FRA F 6180.55a by the...

  3. 49 CFR 225.23 - Joint operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Joint operations. 225.23 Section 225.23....23 Joint operations. (a) Any reportable death, injury, or illness of an employee arising from an accident/incident involving joint operations must be reported on Form FRA F 6180.55a by the...

  4. 49 CFR 225.23 - Joint operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Joint operations. 225.23 Section 225.23....23 Joint operations. (a) Any reportable death, injury, or illness of an employee arising from an accident/incident involving joint operations must be reported on Form FRA F 6180.55a by the...

  5. 49 CFR 225.23 - Joint operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Joint operations. 225.23 Section 225.23....23 Joint operations. (a) Any reportable death, injury, or illness of an employee arising from an accident/incident involving joint operations must be reported on Form FRA F 6180.55a by the...

  6. 49 CFR 225.23 - Joint operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Joint operations. 225.23 Section 225.23....23 Joint operations. (a) Any reportable death, injury, or illness of an employee arising from an accident/incident involving joint operations must be reported on Form FRA F 6180.55a by the...

  7. Posterior cruciate ligament (PCL) injury - aftercare

    MedlinePlus

    ... posterior cruciate ligament (PCL) is located inside your knee joint and connects the bones of your upper and ... such as a knee dislocation , you will need knee surgery to repair the joint. For milder injuries, you may not need surgery. ...

  8. Assessment of the influence of surface finishing and weld joints on the corrosion/oxidation behaviour of stainless steels in lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Martín-Muñoz, F. J.; Soler-Crespo, L.; Gómez-Briceño, D.

    2011-09-01

    The objective of this paper is to gain some insight into the influence of the surface finishing in the oxidation/corrosion behaviour of 316L and T91 steels in lead bismuth eutectic (LBE). Specimens of both materials with different surface states were prepared (as-received, grinded, grinded and polished, and electrolitically polished) and oxidation tests were carried out at 775 and 825 K from 100 to 2000 h for two different oxygen concentrations and for H 2/H 2O molar ratios of 3 and 0.03. The general conclusion for these tests is that the effect of surface finishing on the corrosion/protection processes is not significant under the tested conditions. In addition the behaviour of weld joints, T91-T91 Tungsten Inert Gas (TIG) and T91-316L have been also studied under similar conditions. The conclusions are that, whereas T91-T91 welded joint shows the same corrosion properties as the parent materials for the conditions tested, AISI 316L-T91 welded joint, present an important dissolution over seam area that it associated to the electrode 309S used for the fabrication process.

  9. Growth of exfoliation joints and near-surface stress orientations inferred from fractographic markings observed in the upper Aar valley (Swiss Alps)

    NASA Astrophysics Data System (ADS)

    Ziegler, Martin; Loew, Simon; Bahat, Dov

    2014-06-01

    Granitic rock mass of the upper Aar valley (Grimsel area, Switzerland) contains distinct generations of exfoliation joints, which formed during different stages of the Pleistocene, subparallel to distinct glacial valley palaeotopography. The bulk of exfoliation joints shows prominent, common fractographic features: (1) radial plumose structures with distinct plume axes; (2) arrest marks superimposed by plumose striations; and (3) gradually-developing en échelon fringe cracks. Multiple arrest marks reveal that exfoliation joints formed incrementally and, together with the absence of hackle fringes, suggest stable, i.e., subcritical fracturing conditions. Smooth transitions from plumose structures on the parent plane to en échelon fringe cracks, combined with non-systematic stepping senses of fringe cracks, suggest local (vs. temporal) stress field variations. Assuming that plume axes formed parallel to the maximum principal compressive stress (σ1) enables us to infer near-surface palaeostress orientations and compare them with classical borehole-based in-situ stress data. The majority of plume axes suggest (1) persistently subhorizontal to slightly inclined σ1 orientations at trough valley slopes and (2) near-surface variability of σ1 orientations originating from topographic perturbation caused by glacial valley erosion superimposed on the regional stress field. Our investigations of fracture surface morphologies yield unique insights into exfoliation fracture formation, such as directional trends of fracture propagation and associated palaeostress orientations within Alpine valley slopes.

  10. Midfoot and Forefoot Injuries.

    PubMed

    Gorbachova, Tetyana

    2015-08-01

    Sports injuries of the midfoot and forefoot encompass a spectrum of osseous and soft tissue trauma. Magnetic resonance imaging serves as a primary or important supplementary diagnostic modality in evaluation of various injuries, most important of which include Lisfranc complex injury, stress fractures, and injury to the first metatarsophalangeal joint, aka "turf toe." Current technical advances in magnetic resonance and improved knowledge of regional anatomy enable thorough evaluation of the complex anatomic structures of the foot and facilitate accurate diagnosis in the setting of trauma. PMID:26244619