Science.gov

Sample records for joint surface injury

  1. Registration of knee joint surfaces for the in vivo study of joint injuries based on magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Rita W. T.; Habib, Ayman F.; Frayne, Richard; Ronsky, Janet L.

    2006-03-01

    In-vivo quantitative assessments of joint conditions and health status can help to increase understanding of the pathology of osteoarthritis, a degenerative joint disease that affects a large population each year. Magnetic resonance imaging (MRI) provides a non-invasive and accurate means to assess and monitor joint properties, and has become widely used for diagnosis and biomechanics studies. Quantitative analyses and comparisons of MR datasets require accurate alignment of anatomical structures, thus image registration becomes a necessary procedure for these applications. This research focuses on developing a registration technique for MR knee joint surfaces to allow quantitative study of joint injuries and health status. It introduces a novel idea of translating techniques originally developed for geographic data in the field of photogrammetry and remote sensing to register 3D MR data. The proposed algorithm works with surfaces that are represented by randomly distributed points with no requirement of known correspondences. The algorithm performs matching locally by identifying corresponding surface elements, and solves for the transformation parameters relating the surfaces by minimizing normal distances between them. This technique was used in three applications to: 1) register temporal MR data to verify the feasibility of the algorithm to help monitor diseases, 2) quantify patellar movement with respect to the femur based on the transformation parameters, and 3) quantify changes in contact area locations between the patellar and femoral cartilage at different knee flexion angles. The results indicate accurate registration and the proposed algorithm can be applied for in-vivo study of joint injuries with MRI.

  2. Distal radioulnar joint injuries.

    PubMed

    Thomas, Binu P; Sreekanth, Raveendran

    2012-09-01

    Distal radioulnar joint is a trochoid joint relatively new in evolution. Along with proximal radioulnar joint, forearm bones and interosseous membrane, it allows pronosupination and load transmission across the wrist. Injuries around distal radioulnar joint are not uncommon, and are usually associated with distal radius fractures,fractures of the ulnar styloid and with the eponymous Galeazzi or Essex_Lopresti fractures. The injury can be purely involving the soft tissue especially the triangular fibrocartilage or the radioulnar ligaments. The patients usually present with ulnar sided wrist pain, features of instability, or restriction of rotation. Difficulty in carrying loads in the hand is a major constraint for these patients. Thorough clinical examination to localize point of tenderness and appropriate provocative tests help in diagnosis. Radiology and MRI are extremely useful, while arthroscopy is the gold standard for evaluation. The treatment protocols are continuously evolving and range from conservative, arthroscopic to open surgical methods. Isolated dislocation are uncommon. Basal fractures of the ulnar styloid tend to make the joint unstable and may require operative intervention. Chronic instability requires reconstruction of the stabilizing ligaments to avoid onset of arthritis. Prosthetic replacement in arthritis is gaining acceptance in the management of arthritis. PMID:23162140

  3. Management of acromioclavicular joint injuries.

    PubMed

    Li, Xinning; Ma, Richard; Bedi, Asheesh; Dines, David M; Altchek, David W; Dines, Joshua S

    2014-01-01

    Acromioclavicular joint injuries are among the most common shoulder girdle injuries in athletes and most commonly result from a direct force to the acromion with the arm in an adducted position. Acromioclavicular joint injuries often present with associated injuries to the glenohumeral joint, including an increased incidence of superior labrum anterior posterior (SLAP) tears that may warrant further evaluation and treatment. Anteroposterior stability of the acromioclavicular joint is conferred by the capsule and acromioclavicular ligaments, of which the posterior and superior ligaments are the strongest. Superior-inferior stability is maintained by the coracoclavicular (conoid and trapezoid) ligaments. Type-I or type-II acromioclavicular joint injuries have been treated with sling immobilization, early shoulder motion, and physical therapy, with favorable outcomes. Return to activity can occur when normal shoulder motion and strength are obtained and the shoulder is asymptomatic as compared with the contralateral normal extremity. The management of type-III injuries remains controversial and is individualized. While a return to the previous level of functional activity with nonsurgical treatment has been documented in a number of case series, surgical reduction and coracoclavicular ligament reconstruction has been associated with a favorable outcome and can be considered in patients who place high functional demands on their shoulders or in athletes who participate in overhead sports. Surgical management is indicated for high-grade (≥type IV) acromioclavicular joint injuries to achieve anatomic reduction of the acromioclavicular joint, reconstruction of the coracoclavicular ligaments, and repair of the deltotrapezial fascia. Outcomes after surgical reconstruction of the coracoclavicular ligaments have been satisfactory with regard to achieving pain relief and return to functional activities, but further improvements in the biomechanical strength of these

  4. Computationally efficient magnetic resonance imaging based surface contact modeling as a tool to evaluate joint injuries and outcomes of surgical interventions compared to finite element modeling.

    PubMed

    Johnson, Joshua E; Lee, Phil; McIff, Terence E; Toby, E Bruce; Fischer, Kenneth J

    2014-04-01

    Joint injuries and the resulting posttraumatic osteoarthritis (OA) are a significant problem. There is still a need for tools to evaluate joint injuries, their effect on joint mechanics, and the relationship between altered mechanics and OA. Better understanding of injuries and their relationship to OA may aid in the development or refinement of treatment methods. This may be partially achieved by monitoring changes in joint mechanics that are a direct consequence of injury. Techniques such as image-based finite element modeling can provide in vivo joint mechanics data but can also be laborious and computationally expensive. Alternate modeling techniques that can provide similar results in a computationally efficient manner are an attractive prospect. It is likely possible to estimate risk of OA due to injury from surface contact mechanics data alone. The objective of this study was to compare joint contact mechanics from image-based surface contact modeling (SCM) and finite element modeling (FEM) in normal, injured (scapholunate ligament tear), and surgically repaired radiocarpal joints. Since FEM is accepted as the gold standard to evaluate joint contact stresses, our assumption was that results obtained using this method would accurately represent the true value. Magnetic resonance images (MRI) of the normal, injured, and postoperative wrists of three subjects were acquired when relaxed and during functional grasp. Surface and volumetric models of the radiolunate and radioscaphoid articulations were constructed from the relaxed images for SCM and FEM analyses, respectively. Kinematic boundary conditions were acquired from image registration between the relaxed and grasp images. For the SCM technique, a linear contact relationship was used to estimate contact outcomes based on interactions of the rigid articular surfaces in contact. For FEM, a pressure-overclosure relationship was used to estimate outcomes based on deformable body contact interactions. The SCM

  5. Joint-sparing Corrections in Malunited Lisfranc Joint Injuries.

    PubMed

    Nery, Caio; Raduan, Fernando; Baumfeld, Daniel

    2016-03-01

    Lisfranc fracture-dislocations are very serious and potentially disabling injuries. Unfortunately, they are often misdiagnosed. Multiplanar midfoot deformities that result from these fracture-dislocations are precursors of joint degeneration and significant functional disabilities. Anatomic reduction with different types of internal fixation is an efficient method to reconstruct midfoot alignment and stability. Joint-preserving reconstruction techniques emerge as a viable alternative to corrective fusion as they achieve stable joint realignment with preserved motion. PMID:26915786

  6. Fracture dislocation of carpometacarpal joints: a missed injury.

    PubMed

    Gaheer, Rajinder Singh; Ferdinand, Rupert D

    2011-05-01

    Fracture dislocation of the carpometacarpal joints on the ulnar side of the hand is an uncommon injury. These are high-energy injuries seen in motorcyclists and boxers. The mechanism of injury involves violent, forceful dorsiflexion of the wrist combined with longitudinal impact on the closed hand. This article reports a case of fracture of the base of the middle finger with dislocation of the ring and little finger carpometacarpal joints. On first examination, a diagnosis of isolated, minimally-displaced, middle-metacarpal base fracture was made and deemed suitable for nonoperative management. The hand was splinted in a plaster-of-Paris slab. Later, a true lateral radiograph showed the exact nature of the injury. The fracture was successfully treated with closed reduction under general anesthesia and transfixation using Kirschner wires. Functional results were excellent with return to work at 10 weeks and excellent grip strength at 14 weeks. This injury may be missed in an acute setting in a busy accident and emergency unit. Swelling around the wrist with shortening of the knuckle should alert the clinician towards the possibility of such an injury. On routine anteroposterior view, overlap of joint surfaces, loss of parallelism, and asymmetry at the carpometacarpal joints should raise suspicion of the possibility of a subtle carpometacarpal injury. This article highlights the importance of a high index of suspicion, a true lateral radiograph, and careful evaluation of radiographs in diagnosing these injuries. Intensive postoperative physiotherapy is vital to achieving a satisfactory outcome. PMID:21598884

  7. [Chronic sports injuries of the knee joint].

    PubMed

    Mannil, M; Andreisek, G; Weishaupt, D; Fischer, M A

    2016-05-01

    Chronic sports injuries of the knee joint are common and mainly caused by repetitive (micro) trauma and exertion. Chronic insertion tendinopathies and avulsion fractures and symptoms related to entrapment, friction and impingement can be pathophysiologically distinguished in athletes. In this review, we depict the characteristic magnetic resonance imaging (MRI) findings of the most commonly occurring pathologies. PMID:27118369

  8. Pure Varus Injury to the Knee Joint.

    PubMed

    Yoo, Jae Ho; Lee, Jung Ha; Chang, Chong Bum

    2015-06-01

    A 30-year-old male was involved in a car accident. Radiographs revealed a depressed marginal fracture of the medial tibial plateau and an avulsion fracture of the fibular head. Magnetic resonance imaging showed avulsion fracture of Gerdy's tubercle, injury to the posterior cruciate ligament (PCL), posterior horn of the medial meniscus, and the attachments of the lateral collateral ligament and the biceps femoris tendon. The depressed fracture of the medial tibial plateau was elevated and stabilized using a cannulated screw and washer. The injured lateral and posterolateral corner (PLC) structures were repaired and augmented by PLC reconstruction. However, the avulsion fracture of Gerdy's tubercle was not fixed because it was minimally displaced and the torn PCL was also not repaired or reconstructed. We present a unique case of pure varus injury to the knee joint. This case contributes to our understanding of the mechanism of knee injury and provides insight regarding appropriate treatment plans for this type of injury. PMID:26217477

  9. Irreducible Fifth Metatarsophalangeal Joint after Car Crush Injury

    PubMed Central

    Turkmensoy, Fatih; Erinc, Samet; Ergin, Omer Naci; Ozkan, Korhan; Kemah, Bahattin

    2015-01-01

    Metatarsophalangeal joint dislocations are uncommon injuries. Herein, an irreducible dislocation of fifth metatarsophalangeal joint with fractures on the second, third, and fourth metatarsal head was reported. Joint reduction could not be achieved which necessitated open reduction. Six months after surgery the patient was walking and doing his daily activities without any complaints. He had returned to his pretrauma functional level. PMID:25861501

  10. Bilateral tarsometatarsal joint injuries: An unusual mechanism producing unusual variants.

    PubMed

    Young, P S; Clement, V L; Lomax, A; Badhesha, J; Miller, R J; Mahendra, A

    2015-06-01

    Tarsometatarsal (Lisfranc) joint injuries are rare but potentially devastating conditions requiring anatomical reduction and internal fixation or arthrodesis. We describe an unusual mechanism involving forced eversion and dorsiflexion on both fully supinated feet resulting in bilateral tarsometatarsal joint injury. The injury pattern involved incongruity between the medial and middle columns extending between the cuneiform bones with associated fracture of the cuboid on the right and the cuboid, os calcis and talus on the left. Operative fixation is discussed and the clinical outcome was good at 4 years post-operatively. We believe this introduces an additional and potentially serious mechanism of injury and pattern of ligamentous and osseous disruption into the pantheon of injuries classed as Lisfranc, which surgeons should be aware of. Furthermore, we recommend attention to the mechanism of injury in consideration with classification to aid in operative reduction and fixation. PMID:25510168

  11. Sideline evaluation and treatment of bone and joint injury.

    PubMed

    Schupp, Christian M

    2009-01-01

    Athletes can sustain a large variety of injuries, from simple soft-tissue sprains to complex fractures and dislocations. This article reviews and provides the most recent information for sports medicine professionals on the initial assessment and treatment from the sports sidelines without the benefit of imaging of bone and joint injuries (excluding facial injuries). This information will aid sports medicine professionals by giving them basic suggestions that may allow for the safe and prompt return of athletes to the field of play. PMID:19436166

  12. Generalized Models for Rock Joint Surface Shapes

    PubMed Central

    Du, Shigui; Hu, Yunjin; Hu, Xiaofei

    2014-01-01

    Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough. PMID:25152901

  13. Plantarflexion injury to the metatarsophalangeal joint ("sand toe").

    PubMed

    Frey, C; Andersen, G D; Feder, K S

    1996-09-01

    This is a retrospective study of 12 cases of hyperplantarflexion injuries to the great toe and the lesser toes sustained in professional beach volleyball players. The hyperplantarflexion injury to the metatarsophalangeal joint, referred to as "sand toe," can result in significant functional disability. Push-off, forward drive, running, and jumping are compromised. The average player in this series took 6 months to fully recover from the injury, and the most common problem after injury was the loss of dorsiflexion, seen in six players. Five players had residual discomfort in the injured toe, and two demonstrated an unstable toe. Individuals who experience sand toe injuries should be treated conservatively, with taping, anti-inflammatory medications, shoe wear modification, ice, and rest. A toe strengthening program is also presented. PMID:8886789

  14. Acromioclavicular joint dislocation with associated brachial plexus injury

    PubMed Central

    Gallagher, Charles Alexander; Blakeney, William; Zellweger, René

    2014-01-01

    We present the case of a 32-year-old female who sustained a left acromioclavicular (AC) joint type V injury and brachial plexus injury. The patient's AC joint injury was identified 6 days after she was involved in a motorbike accident where she sustained multiple other injuries. She required operative fixation of the AC joint using a locking compression medial proximal tibial plate. At 3 months post operatively, the patient was found to have a subluxed left shoulder as a result of an axonal injury to the upper trunk of the brachial plexus. In addition, the tibial plate had cut out. The plate was subsequently removed. At 8 months the glenohumeral articulation had been restored and the patient had clinically regained significant shoulder function. After 15 months the patient was pain free and could complete all her activities of daily living without impediment. She returned to playing competitive pool after 24 months. PMID:24855076

  15. An Interesting Case of Gunshot Injury to the Temporomandibular Joint

    PubMed Central

    Pires, Mário Sergio Medeiros; Giongo, Caroline Comis; Antonello, Guilherme de Marco; Couto, Ricardo Torres do; Filho, Ruy de Oliveira Veras; Junior, Otacílio Luiz Chagas

    2014-01-01

    The head and face are relatively common sites of gunshot injury, and the temporomandibular joint is often affected. These wounds usually produce major deformity and functional impairment, particularly when the temporomandibular joint is affected or when structures such as the facial nerve are damaged. Complications may include mandibular displacement at maximum mouth opening and in protrusion, limited mouth opening, limited lateral movement of the jaw, anterior open bite, and, more rarely, temporomandibular ankylosis. Projectiles that strike the mandible usually cause comminuted fractures; maxillary wounds, in turn, are most commonly perforating. The present report describes a case of gunshot injury in which the projectile lodged within the mandibular fossa but did not cause any fractures. Oral and maxillofacial trauma surgeons must be aware of the different types of gunshot injury, as they produce distinct patterns of tissue destruction due to projectile trajectory and release of kinetic energy into surrounding tissue. PMID:25709756

  16. Chopart joint injury: a study of outcome and morbidity.

    PubMed

    van Dorp, Karin B; de Vries, Mark R; van der Elst, Maarten; Schepers, Tim

    2010-01-01

    Injuries involving the Chopart joint complex are relatively rare and frequently missed or misdiagnosed, often leading to a poor functional outcome. This study was performed to determine the outcome and morbidity in patients with Chopart joint injuries, and to increase awareness of this severe injury. Patients with a Chopart dislocation or fracture-dislocation, treated between January 2004 and January 2010, were identified using the appropriate diagnosis code and reviewing all radiographs of patients diagnosed with hindfoot or midfoot injuries treated at our institution. Data on patient characteristics, trauma mechanism, delay, and treatment were collected using patient files, operation reports, and by reviewing radiographs. Outcome was determined using the American Orthopaedic Foot & Ankle Society midfoot score and a visual analog scale satisfaction score, in patients with a minimum follow-up of 6 months. Nine patients (1.5 per year) were identified, including 6 women. The mean patient age was 41.6 ± 25.1 years. The trauma mechanism was sprain or sports injury in 5 (55.6%), motor vehicle accident in 3 (33.33%), and a fall from height in 1 (11.11%) case. Seven patients with an average follow-up of 31.3 ± 19.2 months reported a mean American Orthopaedic Foot & Ankle Society midfoot score of 72 (range, 32-100) points and a mean visual analog scale score of 7.1 (range, 5-10). Four (57.14%) patients still experienced pain or had limitations in daily activities at the time of the final follow-up. This study supports the conclusion of previous studies, which stated that a higher level of awareness is needed to prevent permanent disability. PMID:21035040

  17. The Roles of Mechanical Stresses in the Pathogenesis of Osteoarthritis: Implications for Treatment of Joint Injuries.

    PubMed

    Buckwalter, Joseph A; Anderson, Donald D; Brown, Thomas D; Tochigi, Yuki; Martin, James A

    2013-10-01

    Excessive joint surface loadings, either single (acute impact event) or repetitive (cumulative contact stress), can cause the clinical syndrome of osteoarthritis (OA). Despite advances in treatment of injured joints, the risk of OA following joint injuries has not decreased in the last 50 years. Cumulative excessive articular surface contact stress that leads to OA results from post-traumatic joint incongruity and instability, and joint dysplasia, but also may cause OA in patients without known joint abnormalities. In vitro investigations show that excessive articular cartilage loading triggers release of reactive oxygen species (ROS) from mitochondria, and that these ROS cause chondrocyte death and matrix degradation. Preventing release of ROS or inhibiting their effects preserves chondrocytes and their matrix. Fibronectin fragments released from articular cartilage subjected to excessive loads also stimulate matrix degradation; inhibition of molecular pathways initiated by these fragments prevents this effect. Additionally, injured chondrocytes release alarmins that activate chondroprogentior cells in vitro that propogate and migrate to regions of damaged cartilage. These cells also release chemokines and cytokines that may contribute to inflammation that causes progressive cartilage loss. Distraction and motion of osteoarthritic human ankles can promote joint remodeling, decrease pain and improve joint function in patients with end-stage post-traumatic OA. These advances in understanding of how altering mechanical stresses can lead to remodeling of osteoarthritic joints and how excessive stress causes loss of articular cartilage, including identification of mechanically induced mediators of cartilage loss, provide the basis for new biologic and mechanical approaches to the prevention and treatment of OA. PMID:25067995

  18. Scapholunate ligament injury adversely alters in vivo wrist joint mechanics: an MRI-based modeling study.

    PubMed

    Johnson, Joshua E; Lee, Phil; McIff, Terence E; Toby, E Bruce; Fischer, Kenneth J

    2013-09-01

    We investigated the effects of scapholunate ligament injury on in vivo radiocarpal joint mechanics using image-based surface contact modeling. Magnetic resonance images of 10 injured and contralateral normal wrists were acquired at high resolution (hand relaxed) and during functional grasp. Three-dimensional surface models of the radioscaphoid and radiolunate articulations were constructed from the relaxed images, and image registration between the relaxed and grasp images provided kinematics. The displacement driven models were implemented in contact modeling software. Contact parameters were determined from interpenetration of interacting bodies and a linear contact rule. Peak and mean contact pressures, contact forces and contact areas were compared between the normal and injured wrists. Also measured were effective (direct) contact areas and intercentroid distances from the grasp images. Means of the model contact areas were within 10 mm(2) of the direct contact areas for both articulations. With injury, all contact parameters significantly increased in the radioscaphoid articulation, while only peak contact pressure and contact force significantly increased in the radiolunate articulation. Intercentroid distances also increased significantly with injury. This study provides novel in vivo contact mechanics data from scapholunate ligament injury and confirms detrimental alterations as a result of injury. PMID:23575966

  19. Resultant knee joint moments for lateral movement tasks on sliding and non-sliding sport surfaces.

    PubMed

    Nigg, Benno M; Stefanyshyn, Darren J; Rozitis, Antra I; Mundermann, Annegret

    2009-03-01

    The aim of this study was to compare ankle and knee joint moments observed when playing on sport surfaces that slide slightly relative to the ground with the moments observed when playing on conventional sport surfaces. Three-dimensional resultant internal joint moments and kinematic characteristics of the lower extremity were quantified for 21 university basketball players when performing v-cut and side-shuffle tasks on three types of sliding surface (interlocking tiles) and on two types of conventional surface (maple wood and rolled vinyl). Translational and rotational friction between the five test surfaces and a test shoe were also quantified. The five sport surfaces moved horizontally between 0.2 and 1.6 mm during the landing phase of the two tasks. The medio-lateral ground reaction forces were lowest for the surfaces with the highest horizontal movement. Resultant ankle joint moments were lower and resultant knee moments were higher on the sliding surfaces than the conventional surfaces. Sport surfaces that allow a few millimetres of horizontal movement during ground contact may reduce joint loading at the ankle joint, but increase joint loading at the knee joint, when compared with conventional sport surfaces, and thus may influence the prevalence of knee injuries. PMID:19253080

  20. Arthroscopic treatment of acromioclavicular joint injuries and results.

    PubMed

    Nuber, Gordon W; Bowen, Mark K

    2003-04-01

    Injuries and conditions that affect the AC joint are common. Low-grade separations, degenerative conditions, and osteolysis of the distal clavicle are frequently dealt with by the treating physician. Proper assessment requires a thorough history, examination, and radiologic work-up. An injection of bupivicaine into the AC joint can be a very useful test to evaluate the source of pain about the symptomatic shoulder. Most conditions affecting the AC joint can be treated conservatively, but patients who do not respond to these treatments or athletes who do not wish to modify their activities may require resection of the distal clavicle and the AC joint. Operative intervention can be performed as an open procedure with good results. Recent advances in operative arthroscopic procedures allow us to replicate and exceed the results of the open resection. Arthroscopic resection can be undertaken via a direct approach that does not violate the subacromial space or via an indirect or bursal approach. The indirect approach allows you to assess both the subacromial space and the AC joint because impingement pathology and subacromial compromise are frequently associated with AC change. The advantage of an arthroscopic resection is its ability to be performed as an outpatient procedure with less compromise of musculotendinous structures, shorter rehabilitation, and quicker return to activity. The amount of bone resection necessary is less than with the open procedure because of the ability to preserve the stabilizing properties of the superior AC ligaments. Resection of 4 mm to 8 mm of bone is all that may be required to give uniformly good results. Arthroscopic resection of the distal clavicle is technically demanding and requires skill and familiarity with other arthroscopic shoulder procedures. Complications related to this procedure are relatively infrequent and include infection, residual pain, lack of adequate bone resection, and instability, particularly in patients with

  1. Complete medial column dislocation at the cuneonavicular joint: an unusual Lisfranc-like injury.

    PubMed

    Schepers, T; de Jong, V M; Luitse, J S K

    2014-09-01

    Lisfranc injuries represent a wide spectrum of different injuries at the tarsometatarsal joint. Not all types fit the currently available classifications. This case illustrates a rare subtype of a Lisfranc injury, with a dislocation of the entire first ray. It is presented to create more awareness for midfoot injuries. This article reviews the literature and provides recommendations for the treatment of similar cases in the future. PMID:25063016

  2. 30 CFR 18.33 - Finish of surface joints.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Finish of surface joints. 18.33 Section 18.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... Requirements § 18.33 Finish of surface joints. Flat surfaces between bolt holes that form any part of a...

  3. 30 CFR 18.33 - Finish of surface joints.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Finish of surface joints. 18.33 Section 18.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... Requirements § 18.33 Finish of surface joints. Flat surfaces between bolt holes that form any part of a...

  4. 30 CFR 18.33 - Finish of surface joints.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Finish of surface joints. 18.33 Section 18.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... Requirements § 18.33 Finish of surface joints. Flat surfaces between bolt holes that form any part of a...

  5. 30 CFR 18.33 - Finish of surface joints.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Finish of surface joints. 18.33 Section 18.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... Requirements § 18.33 Finish of surface joints. Flat surfaces between bolt holes that form any part of a...

  6. Decreased Knee Joint Loading Associated With Early Knee Osteoarthritis After Anterior Cruciate Ligament Injury

    PubMed Central

    Wellsandt, Elizabeth; Gardinier, Emily S.; Manal, Kurt; Axe, Michael J.; Buchanan, Thomas S.; Snyder-Mackler, Lynn

    2015-01-01

    Background Anterior cruciate ligament (ACL) injury predisposes individuals to early-onset knee joint osteoarthritis (OA). Abnormal joint loading is apparent after ACL injury and reconstruction. The relationship between altered joint biomechanics and the development of knee OA is unknown. Hypothesis Altered knee joint kinetics and medial compartment contact forces initially after injury and reconstruction are associated with radiographic knee OA 5 years after reconstruction. Study Design Case-control study; Level of evidence, 3. Methods Individuals with acute, unilateral ACL injury completed gait analysis before (baseline) and after (posttraining) preoperative rehabilitation and at 6 months, 1 year, and 2 years after reconstruction. Surface electromyographic and knee biomechanical data served as inputs to an electromyographically driven musculoskeletal model to estimate knee joint contact forces. Patients completed radiographic testing 5 years after reconstruction. Differences in knee joint kinetics and contact forces were compared between patients with and those without radiographic knee OA. Results Patients with OA walked with greater frontal plane interlimb differences than those without OA (nonOA) at baseline (peak knee adduction moment difference: 0.00 ± 0.08 N·m/kg·m [nonOA] vs −0.15 ± 0.09 N·m/kg·m [OA], P = .014; peak knee adduction moment impulse difference: −0.001 ± 0.032 N·m·s/kg·m [nonOA] vs −0.048 ± 0.031 N·m·s/kg·m [OA], P = .042). The involved limb knee adduction moment impulse of the group with osteoarthritis was also lower than that of the group without osteoarthritis at baseline (0.087 ± 0.023 N·m·s/kg·m [nonOA] vs 0.049 ± 0.018 N·m·s/kg·m [OA], P = .023). Significant group differences were absent at posttraining but reemerged 6 months after reconstruction (peak knee adduction moment difference: 0.02 ± 0.04 N·m/kg·m [nonOA] vs −0.06 ± 0.11 N·m/kg·m [OA], P = .043). In addition, the OA group walked with lower peak

  7. [Arthroscopically assisted techniques for treatment of acute and chronic acromioclavicular joint injuries].

    PubMed

    Braun, S; Imhoff, A B; Martetschläger, F

    2015-05-01

    Acute and chronic acromioclavicular (AC) joint dislocation is frequently encountered in the routine clinical practice. This injury can lead to significant impairment of shoulder girdle function. Therapy based on the severity of injury is recommended to re-establish correct shoulder function. The static radiographic Rockwood classification is used to define the degree of dislocation but the clinical aspects and functional x-ray imaging of horizontal AC joint instability should also be considered for selection of the appropriate procedure. Rockwood grades I and II injuries are treated non-operatively with early functional exercise. The approach for Rockwood grade III injuries should be individual and patient-specific, with non-surgical procedures for low functional requirement patients with a high risk for surgical interventions. For patients with high demands on shoulder function surgery is recommended. A detailed diagnostic assessment frequently reveals Rockwood grade III injuries to be type IV injuries. Rockwood types IV and V AC joint dislocations require surgery for sustained stability. Treatment of acute injuries is recommended within 1-3 weeks after trauma but there is no clear evidence of a cut-off for the presence of chronic injuries. Various surgical techniques have been described in the literature. This article presents an arthroscopically assisted technique that addresses both vertical and horizontal instability of the AC joint. PMID:25964020

  8. Thrombospondin-4 and excitatory synaptogenesis promote spinal sensitization after painful mechanical joint injury.

    PubMed

    Crosby, Nathan D; Zaucke, Frank; Kras, Jeffrey V; Dong, Ling; Luo, Z David; Winkelstein, Beth A

    2015-02-01

    Facet joint injury induces persistent pain that may be maintained by structural plasticity in the spinal cord. Astrocyte-derived thrombospondins, especially thrombospondin-4 (TSP4), have been implicated in synaptogenesis and spinal sensitization in neuropathic pain, but the TSP4 response and its relationship to synaptic changes in the spinal cord have not been investigated for painful joint injury. This study investigates the role of TSP4 in the development and maintenance of persistent pain following injurious facet joint distraction in rats and tests the hypothesis that excitatory synaptogenesis contributes to such pain. Painful facet joint loading induces dorsal horn excitatory synaptogenesis along with decreased TSP4 in the DRG and increased astrocytic release of TSP4 in the spinal cord, all of which parallel the time course of sustained tactile allodynia. Blocking injury-induced spinal TSP4 expression with antisense oligonucleotides or reducing TSP4 activity at its neuronal receptor in the spinal cord with gabapentin treatment both attenuate the allodynia and dorsal horn synaptogenesis that develop after painful facet joint loading. Increased spinal TSP4 also facilitates the development of allodynia and spinal hyperexcitability, even after non-painful physiological loading of the facet joint. These results suggest that spinal TSP4 plays an important role in the development and maintenance of persistent joint-mediated pain by inducing excitatory synaptogenesis and facilitating the transduction of mechanical loading of the facet joint that leads to spinal hyperexcitability. PMID:25483397

  9. Prevalence, injury rate and, symptom frequency in generalized joint laxity and joint hypermobility syndrome in a "healthy" college population.

    PubMed

    Russek, Leslie N; Errico, Deanna M

    2016-04-01

    Generalized joint hypermobility (GJH) and joint hypermobility syndrome (JHS) are gaining increased attention as potential sources of pain and injury. The aims of this study were to evaluate prevalence of GJH and JHS and to determine whether musculoskeletal injuries and symptoms commonly attributed to GJH and JHS were more common within a "healthy" college student population. The study involved a convenience sample of 267 college and graduate students, aged 17-26. GJH was assessed using the Beighton score with a cutoff of 5/9, while JHS was assessed using the Brighton criteria. Injury history and symptoms were assessed by recall. Prevalence of GJH was 26.2 % overall (females 36.7 %, males 13.7 %). Prevalence of JHS was 19.5 % overall (females 24.5 %, males 13.7 %). Injury rates were not significantly different for individuals who had GJH vs. those who did not have GJH. Individuals with JHS were significantly more likely to have had sprains, back pain, and stress fractures. Symptoms were no different between those with GJH and those who did not have GJH. However, individuals with JHS were significantly more likely to report clumsiness, easy bruising, and balance problems than those who did not have JHS. GJH and JHS were relatively common in this healthy college student population; GJH was not associated with increased incidence of injury or symptoms commonly attributed to JHS, but JHS was associated with increased incidence of some injuries and symptoms. PMID:25930211

  10. A Systems Biology Approach to Synovial Joint Lubrication in Health, Injury, and Disease

    PubMed Central

    Hui, Alexander Y.; McCarty, William J.; Masuda, Koichi; Firestein, Gary S.; Sah, Robert L.

    2013-01-01

    The synovial joint contains synovial fluid (SF) within a cavity bounded by articular cartilage and synovium. SF is a viscous fluid that has lubrication, metabolic, and regulatory functions within synovial joints. SF contains lubricant molecules, including proteoglycan-4 and hyaluronan. SF is an ultrafiltrate of plasma with secreted contributions from cell populations lining and within the synovial joint space, including chondrocytes and synoviocytes. Maintenance of normal SF lubricant composition and function are important for joint homeostasis. In osteoarthritis, rheumatoid arthritis, and joint injury, changes in lubricant composition and function accompany alterations in the cytokine and growth factor environment and increased fluid and molecular transport through joint tissues. Thus, understanding the synovial joint lubrication system requires a multi-faceted study of the various parts of the synovial joint and their interactions. Systems biology approaches at multiple scales are being used to describe the molecular, cellular, and tissue components and their interactions that comprise the functioning synovial joint. Analyses of the transcriptome and proteome of SF, cartilage, and synovium suggest that particular molecules and pathways play important roles in joint homeostasis and disease. Such information may be integrated with physicochemical tissue descriptions to construct integrative models of the synovial joint that ultimately may explain maintenance of health, recovery from injury, or development and progression of arthritis. PMID:21826801

  11. Anthropometric characteristics of wrists joint surfaces depending on lunate types.

    PubMed

    Dyankova, S

    2007-10-01

    It is well known that the lunate presents with two main types: lunate type I has one facet of its distal surface only for capitates, whereas lunate type II has two facets of the same surface for capitate and for hamate. Our previous anthropometric studies showed that the lunate type II wrists are of greater size than the lunate type I wrists. The aim of the present study was to determine whether the lunate types and the presence or absence of hamato-lunate joint correlate with anthropometric characteristics of the joint surfaces of other wrists. Sixteen sets of macerated wrists with the lunate type I and 21 with the lunate type II were studied. Two-thousand-four-hundred-and-forty-eight anthropometric measurements were done (for 68 anthropometric indicators) and 864 anthropometric indices were calculated (for 24 anthropometric indices) separately for the wrist joint surfaces. The absolute value of the anthropometric indicators of the joint surfaces of the separated wrists were greater in the wrists with the lunate type II, except for the indicators "Greatest length of the dorsal joint surface of pisiform", "Width of the proximal joint surface, measured in the middle" and "Greatest width of the proximal joint surface" for the trapezoid and "Greatest height of the ulnar joint surface" for the capitate. The enlargement of the joint surfaces for the scaphoid was mainly in proximo-distal direction. The enlargement for the triquetrum and pisiform was mainly in radio-ulnar direction. The enlargement for trapezium, trapezoid and capitate was mainly in dorso-volar direction (except for the ulnar joint surface of capitate). The enlargement for hamate was mainly in radio-ulnar and dorso-volar directions (except for the joint surfaces for capitate and triquetrum). The calculated indices illustrate the quantitative proportions of the variations mentioned above. The anthropometric differences are a good reason to make a clear distinction between both types of wrist joint

  12. Surface deformation over flexible joints using spline blending techniques

    NASA Astrophysics Data System (ADS)

    Haavardsholm, Birgitte; Bratlie, Jostein; Dalmo, Rune

    2014-12-01

    Skinning over a skeleton joint is the process of skin deformation based on joint transformation. Popular geometric skinning techniques include implicit linear blending and dual quaternions. Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended by Ck-smooth basis functions. A smooth skinning surface can be constructed over a transformable skeleton joint by combining various types of local surface constructions and applying local Hermite interpolation. Compared to traditional spline methods, increased flexibility and local control with respect to surface deformation can be achieved using the GERBS blending construction. We present a method using a blending-type spline surface for skinning over a flexible joint, where local geometry is individually adapted to achieve natural skin deformation based on skeleton transformations..

  13. [Closed injuries of the extensor hood of the metacarpophalangeal joint].

    PubMed

    Ferlemann, K; Zilch, H

    1997-12-01

    Closed traumatic lesions of the extensor tendon hood of a longfinger at the metacarpophalangeal joint are rare. Surgical treatment was done in 6 cases during the last 10 years in our department; in 5 cases the dorsoradial part, in one case the dorsoulnar part of the hood was injured. The tear extended longitudinal or diagonal through the transverse fibers of the hood. Respecting the accident mechanism there have been reported tangential forces at the extensor tendon hood and forced ulnar deviation in the bended metacarpophalangeal joint. A jerky dislocation of the extensor tendon to the ulnar side of the metacarpophalangeal head during increased bending of the metacarpophalangeal joint, sometimes with ulnar abduction of the longfinger, leads usually to the diagnosis. Misdiagnoses of cases sent to our department were: "trigger finger" and "recurrent dislocation of the metacarpophalangeal joint". Once the presurgical diagnosis was "rupture of the extensor tendon" because of a permanent extension deficit in 30 degree position of the metacarpophalangeal joint. Treatment is always surgical with suture of the hood and immobilization of the metacarpophalangeal joint in extension position for 4 weeks. Conservative treatment can not heal up a tear of the extensor tendon hood. PMID:9483789

  14. Effects of bearing surfaces on lap joint energy dissipation

    SciTech Connect

    Kess, H. R.; Rosnow, N. J.; Sidle, B. C.

    2001-01-01

    Energy is dissipated in mechanical systems in several forms. The major contributor to damping in bolted lap joints is friction, and the level of damping is a function of stress distribution in the bearing surfaces. This study examines the effects of bearing surface configuration on lap joint energy dissipation. The examination is carried out through the analysis of experimental results in a nonlinear framework. Then finite element models are constructed in a nonlinear framework to simulate the results. The experimental data were analyzed using piecewise linear log decrement. Phenomenological and non-phenomenological mathematical models were used to simulate joint behavior. Numerical results of experiments and analyses are presented.

  15. Efficacy of stepwise application of orthosis and kinesiology tape for treating thumb metacarpophalangeal joint hyperextension injury

    PubMed Central

    Lee, Sun-Min; Lee, Jung-Hoon

    2015-01-01

    [Purpose] The purpose of this study was to investigate on the effects of the stepwise application of orthosis and kinesiology tape on a patient with thumb metacarpophalangeal joint hyperextension injury. [Subject] The patient was a 43-year-old man with severe thumb MCP pain and extremely limited thumb movement. [Methods] Stepwise application of orthosis and kinesiology taping were performed for 3 weeks and 4 weeks, respectively. [Results] After stepwise treatment, the patient was able to power grip, precision pinch, turn a key, and hold a pen without pain. [Conclusion] Stepwise application of thumb orthosis and kinesiology tape is a safe and effective treatment for thumb MCP joint hyperextension injury. PMID:26355325

  16. Simultaneous Volar Dislocation of Distal Interphalangeal Joint and Volar Fracture-Subluxation of Proximal Interphalangeal Joint of Little Finger: A New Mechanism of Injury.

    PubMed

    Mozaffarian, Kamran; Bayatpour, Abdollah; Vosoughi, Amir Reza

    2016-10-01

    Simultaneous volar dislocation of distal interphalangeal (DIP) joint and volar fracture-subluxation of proximal interphalangeal (PIP) joint of the same finger has not been reported yet. A 19-year-old man was referred due to pain on the deformed left little finger after a ball injury. Radiographs showed volar dislocation of the DIP joint and dorsal lip fracture of the middle phalanx with volar subluxation of PIP joint of the little finger. This case was unique in terms of the mechanism of injury which was hyperflexion type in two adjacent joints of the same finger. The patient was treated by closed reduction of DIP joint dislocation and open reduction and internal fixation of the PIP joint fracture-subluxation and application of dorsal external fixator due to instability. Finally, full flexion of the PIP joint and full extension of the DIP joint were obtained but with 10 degree extension lag at the PIP joint and DIP joint flexion ranging from 0 degree to 30 degrees. Some loss of motion in small joints of the fingers after hyperflexion injuries should be expected. PMID:27595966

  17. Case Series of First Metatarsophalangeal Joint Injuries in Division 1 College Athletes

    PubMed Central

    Faltus, John; Mullenix, Kerry; Moorman, Claude T.; Beatty, Kyle; Easley, Mark E.

    2014-01-01

    Context: Injuries of the first metatarsophalangeal (hallux MP) joint can be debilitating in the athletic population. Turf toe and plantar plate injuries are typically diagnosed similarly. However, variance in injury mechanism as well as compromised integrity of soft tissue and ligamentous structures make it difficult to accurately diagnose specific hallux MP injuries. Recent literature has supported the use of both radiographic imaging and the Lachman test as reliable indicators of joint instability in the presence of hallux MP injuries. To date, research supporting specific rehabilitation interventions and return-to-play decision making for hallux MP injuries has been limited to case studies and suggested guidelines from literature reviews. There is limited evidence suggesting specific criteria for surgical and nonsurgical decision making in conjunction with rehabilitation progressions to return an athlete to sport when managing hallux MP injuries. Evidence Acquisition: A literature search was performed using Medline, PubMed, and Google Scholar to find and review articles from 1970 to 2013 that addressed the basic anatomy of the plantar plate, injuries to this anatomical structure, and the evaluation, diagnosis, surgical and nonsurgical management, and rehabilitation of these injuries, specifically in the athletic population. Medical information for each case was gathered from electronic medical records from the individual athletes cited in this case series, which included imaging reports, rehabilitation documentation, and both evaluation and surgical reports. No statistical analysis was used. Study Design: Case series. Level of Evidence: Level 4. Results: Treatment plans for each case varied depending on surgical and nonsurgical intervention and rehabilitation outcomes. However, each athlete was able to return to sports-specific activities. Conclusion: Successful outcomes for hallux MP injuries are contingent on thorough evaluation, appropriate clinical decision

  18. The effect of hip joint muscle exercise on muscle strength and balance in the knee joint after meniscal injury.

    PubMed

    Park, Sun Ja; Kim, Young Mi; Kim, Ha Roo

    2016-04-01

    [Purpose] This study aimed to evaluate the effect of hip muscle strengthening on muscle strength and balance in the knee joint after a meniscal injury. [Subjects and Methods] This randomized control study enrolled 24 patients who had undergone arthroscopic treatment after a meniscal injury and began a rehabilitative exercise program 8 weeks after surgery. Subjects were divided into 2 groups of 12 subjects each: gluteus medius resistance exercise group and control group. This study investigated muscle strength and balance in the knee joint flexor, extensor, and abductor during an 8-week period. [Results] Measurements of knee extensor muscle strength revealed no significant difference between the control group and the experimental group. Measurements of abductor muscle strength, however, identified a significant difference between the 2 groups. The groups did not differ significantly with regard to balance measurements. [Conclusion] The results of this study suggest that this subject should be approached in light of the correlation between the hip abductor and injury to the lower extremities. PMID:27190461

  19. The effect of hip joint muscle exercise on muscle strength and balance in the knee joint after meniscal injury

    PubMed Central

    Park, Sun Ja; Kim, Young Mi; Kim, Ha Roo

    2016-01-01

    [Purpose] This study aimed to evaluate the effect of hip muscle strengthening on muscle strength and balance in the knee joint after a meniscal injury. [Subjects and Methods] This randomized control study enrolled 24 patients who had undergone arthroscopic treatment after a meniscal injury and began a rehabilitative exercise program 8 weeks after surgery. Subjects were divided into 2 groups of 12 subjects each: gluteus medius resistance exercise group and control group. This study investigated muscle strength and balance in the knee joint flexor, extensor, and abductor during an 8-week period. [Results] Measurements of knee extensor muscle strength revealed no significant difference between the control group and the experimental group. Measurements of abductor muscle strength, however, identified a significant difference between the 2 groups. The groups did not differ significantly with regard to balance measurements. [Conclusion] The results of this study suggest that this subject should be approached in light of the correlation between the hip abductor and injury to the lower extremities. PMID:27190461

  20. Non-terminal animal model of post-traumatic osteoarthritis induced by acute joint injury

    PubMed Central

    Boyce, Mary K.; Trumble, Troy N.; Carlson, Cathy S.; Groschen, Donna M.; Merritt, Kelly A.; Brown, Murray P.

    2013-01-01

    Objective Develop a non-terminal animal model of acute joint injury that demonstrates clinical and morphological evidence of early post-traumatic osteoarthritis (PTOA). Methods An osteochondral (OC) fragment was created arthroscopically in one metacarpophalangeal (MCP) joint of 11 horses and the contralateral joint was sham operated. Eleven additional horses served as unoperated controls. Every 2 weeks, force plate analysis, flexion response, joint circumference, and synovial effusion scores were recorded. At weeks 0 and 16, radiographs (all horses) and arthroscopic videos (OC injured and sham joints) were graded. At week 16, synovium and cartilage biopsies were taken arthroscopically from OC injured and sham joints for histologic evaluation and the OC fragment was removed. Results Osteochondral fragments were successfully created and horses were free of clinical lameness after fragment removal. Forelimb gait asymmetry was observed at week 2 (P=0.0012), while joint circumference (P<0.0001) and effusion scores (P<0.0001) were increased in injured limbs compared to baseline from weeks 2 to 16. Positive flexion response of injured limbs was noted at multiple time points. Capsular enthesophytes were seen radiographically in injured limbs. Articular cartilage damage was demonstrated arthroscopically as mild wear-lines and histologically as superficial zone chondrocyte death accompanied by mild proliferation. Synovial hyperemia and fibrosis were present at the site of OC injury. Conclusion Acute OC injury to the MCP joint resulted in clinical, imaging, and histologic changes in cartilage and synovium characteristic of early PTOA. This model will be useful for defining biomarkers of early osteoarthritis and for monitoring response to therapy and surgery. PMID:23467035

  1. Ultrasonographic characteristics of volar-lateral ligament constrains after proximal interphalangeal joint injuries.

    PubMed

    Saito, Susumu; Sawabe, Kazuma; Suzuki, Yoshihisa; Suzuki, Shigehiko

    2016-08-01

    Objective To characterise posttraumatic constrains of the volar-lateral ligaments by analysing volar plate (VP) dynamics after proximal interphalangeal (PIP) joint injuries using ultrasonography. Materials and methods From the anatomical and biomechanical perspectives of the VP and its surrounding structures, posttraumatic constrains of the volar-lateral ligament were evaluated by analysing the changes of VP motion. Using ultrasound, VP motion during active flexion of 0-60° was recorded in the central sagittal plane at 12 weeks after injury. VP trajectories visualised by 5-point tracing on the VP were analysed qualitatively to detect differential patterns of the ligament constrains. Quantitatively, correlation between averaged constrain index determined by measuring volar locational values of the 5 points on the VP and limitation in extension at the final follow-up was assessed. Results Eleven patients with PIP joint injuries involving five VP avulsions, three volar intra-articular fractures, or three dorsal fracture-dislocations were included. All patients with VP avulsion revealed a totally-constrained pattern, whereas patients with intra-articular or fracture-dislocation injuries showed distally-constrained pattern or normal. Averaged constrain index was negatively correlated with limitation in extension, indicating positive contribution of volar-lateral ligament constrains to residual flexion contracture. Conclusion Ultrasonographic visualisation of VP motion characterised posttraumatic constrained conditions of the volar-lateral ligaments. Knowledge of the manner of ligament damages might be useful to set treatment strategies for PIP joint injuries. PMID:26981745

  2. Ibuprofen in the treatment of acute ankle joint injuries. A double-blind study.

    PubMed

    Fredberg, U; Hansen, P A; Skinhøj, A

    1989-01-01

    Sixty-eight patients who presented to the casualty ward with acute ankle joint injuries were studied to examine the effect of ibuprofen on pain and ankle swelling. Thirty-two patients were treated with placebo tablets and 36 with 600 mg ibuprofen tablets taken four times a day for 4 to 6 days. All of the patients were immobilized and requested to keep the foot elevated. The results showed that ibuprofen had no effect on the ankle swelling. The need for additional analgesics was not influenced by treatment with ibuprofen, which means that ibuprofen has no effect on pain. The time elapsed from occurrence of the injury to arrival at the casualty ward was negatively correlated to the reduction of ankle joint swelling during the treatment period. Treatment with ice-sprays, icebags, or cold water during the acute stage of injury did not influence the reduction of swelling during the treatment period. PMID:2675651

  3. Cartilage Shear Kinematics During Tibio-Femoral Articulation: Effect of Acute Joint Injury & Tribosupplementation on Synovial Fluid Lubrication

    PubMed Central

    Wong, Benjamin L.; Kim, Seung Hyun Chris; Antonacci, Jennifer M.; McIlwraith, C. Wayne; Sah, Robert L.

    2009-01-01

    Objective To determine the effects of acute injury and tribosupplementation by hyaluronan (HA) on synovial fluid (SF) modulation of cartilage shear during tibio-femoral articulation. Methods Human osteochondral blocks from the lateral femoral condyle (LFC) and tibial plateau (LTP) were apposed, compressed 13%, and subjected to sliding under video microscopy. Tests were conducted with equine SF from normal joints (NL-SF), SF from acutely injured joints (AI-SF), and AI-SF to which HA was added (AI-SF+HA). Local and overall shear strain (Exz) and the lateral displacement (Δx) at which Exz reached 50% of peak values (Δx1/2) were determined. Results During articulation, LFC and LTP cartilage Exz increased with Δx and peaked when surfaces slid, with peak Exz being maintained during sliding. With AI-SF as lubricant, surface and overall Δx1/2 were ~40% and ~20% higher, respectively than values with NL-SF and AI-SF+HA as lubricant. Also, peak Exz was markedly higher with AI-SF as lubricant than with NL-SF as lubricant, both near the surface (~80%) and overall (50–200%). Following HA supplementation to AI-SF, Exz was reduced from values with AI-SF alone by 30–50% near the surface and 20–30% overall. Magnitudes of surface and overall Exz were markedly (~50–80%) higher in LTP cartilage than LFC cartilage for all lubricants. Conclusion Acute injury impairs SF function, elevating cartilage Exz markedly during tibio-femoral articulation; such elevated Exz may contribute to post-injury associated cartilage degeneration. Since HA partially restores the function of AI-SF, as indicated by Exz, tribosupplements may be beneficial in restoring cartilage mechanobiology. PMID:20004636

  4. Dynamic Evaluation of the Contact Characteristics and Three-Dimensional Motion for the Ankle Joint with Lateral Ligament Injuries

    NASA Astrophysics Data System (ADS)

    Kawakami, Kensaku; Omori, Go; Terashima, Shojiro; Sakamoto, Makoto; Hara, Toshiaki

    The purpose of this study was to clarify the dynamic changes in contact pressure distribution and three-dimensional ankle joint motion before and after lateral ligament injuries. Five fresh and frozen intact cadaveric ankles were examined. Each ankle was mounted on a specially designed frame that preserved five degrees of freedom motion. The direct linear transformation technique was used to measure the three-dimensional ankle motion, and a pressure-sensitive conductive rubber sensor was inserted into the talocrural joint space to determine the contact pressure distribution. The contact area on the talus for intact ankle moved anteriorly and laterally with increasing dorsiflexion. An area of high pressure was observed in the medial aspect of the articular surface after the ligament was cut. Supination significantly increased after a combined anterior talofibular ligament (ATF) and calcaneofibular ligament (CF) were cut in comparison with after only an ATF was cut, and no significant differences were observed in motional properties under each experimental condition.

  5. An analysis of pathomorphic forms and diagnostic difficulties in tarso-metatarsal joint injuries

    PubMed Central

    Tarczyńska, Marta; Modrzewski, Krzysztof; Turżańska, Karolina

    2007-01-01

    Tarso-metatarsal injuries are rare but frequently missed. Due to the large variation in pathomorphic forms of these injuries, great precision is required when carrying out clinical and X-ray diagnostic procedures. The aim of the study was to describe the different forms of Lisfranc joint injuries and analyse the causes of delayed treatment. The treatment results of acute and chronic injuries were compared in 41 patients, with an average follow-up period of 16 years. Statistically significant poorer results were obtained in the group of chronic cases, based on two functional scores – the AOFAS evaluation questionnaire and the Lublin functional questionnaire. The main factor delaying the start of the proper treatment was diagnostic error during initial admission. The best results were achieved after closed reduction and percutaneous Kirschner wire fixation in acute cases. PMID:17571261

  6. [Impingement syndrome following direct injuries of the shoulder joint].

    PubMed

    Volpin, G; Stahl, S; Stein, H

    1996-02-15

    Impingement is the most common cause of pain and limitation of movement in the shoulder, with painful arc syndrome its major clinical sign. It usually becomes manifest at between 70 degrees-120 degrees of abduction, but in severe cases, this may be reduced to only 50 degrees-70 degrees. We studied 22 patients who had developed shoulder impingement following direct injuries and who had been treated by anterior acromioplasty and decompression, with an average follow-up of 32 months. 5 had sustained fractures of the greater tuberosity of the humerus at the time of injury, 14 had tears of the rotator cuff of various sizes (1 in both shoulders) and 3 had developed fibrotic scars of the subacromial bursa. Excellent or good results were achieved in 86.6%. Healing time was shorter, and there was return of full range of shoulder movement in those with subacromial scars, undisplaced fractures of the greater tuberosity, or those with a small tear of the rotator cuff. Recovery took longer in those with larger tears of the rotator cuff and in those with displaced fractures of the greater tuberosity. Recovery time was proportional to the size of the rotator cuff tear. It is concluded that direct trauma to the shoulder bears a direct relationship to the development of impingement syndrome, and that at surgery a concomitant tear in the rotator cuff is seen more than 2/3. Because of the high rate of success in surgical treatment of this syndrome, operation is indicated when a few months of physical therapy and analgesics fail to provide relief. In the presence of fractures, decompression surgery should be postponed until the fracture has united. PMID:8675117

  7. Early diagnosis and treatment of trauma in knee joints accompanied with popliteal vascular injury

    PubMed Central

    Xu, Yun-Qin; Li, Qiang; Shen, Tu-Gang; Su, Pei-Hua; Zhu, Ya-Zhong

    2015-01-01

    Objective: The objective of the present study was to investigate the early diagnosis and treatment of trauma in the knee joints accompanied with popliteal vascular injury. Methods: Fifteen cases of patients with trauma in knee joints accompanied with popliteal vascular injury. These patients included 8 males and 6 females between the ages of 27 and 62, the average age being 39.2. Data of clinical symptoms and signs; blood oxygen saturation, color Doppler examination; vascular intervention by DSA angiography; and surgical operations were analyzed to clearly identify their role in early diagnosis and treatment. Results: In the patient group for this study there were: 1 death case; 4 stage I amputation cases; 4 stage II amputation cases due to failure to salvage limbs; and 6 cases with patients who had successful limb salvage. The six cases of limb survival patients were followed up for 12 to 60 months, with an average follow up time of 28.3 months. The excellent rate of joint function of these patients with successful limb salvage was 83.3%. Conclusions: For patients with injured limbs, unclear dorsalis pedis artery palpation, decreased skin temperature, and decreased oxygen saturation of the toes, clinical manifestations combined with proper auxiliary inspection (such as color Doppler and blood vessel angiography of interventional DSA) enabled early diagnose of peripheral trauma in the knee joint accompanied with popliteal vascular injury. PMID:26309604

  8. Lubricin protects the temporomandibular joint surfaces from degeneration.

    PubMed

    Hill, Adele; Duran, Juanita; Purcell, Patricia

    2014-01-01

    The temporomandibular joint (TMJ) is a specialized synovial joint essential for the mobility and function of the mammalian jaw. The TMJ is composed of the mandibular condyle, the glenoid fossa of the temporal bone, and a fibrocartilagenous disc interposed between these bones. A fibrous capsule, lined on the luminal surface by the synovial membrane, links these bones and retains synovial fluid within the cavity. The major component of synovial fluid is lubricin, a glycoprotein encoded by the gene proteoglycan 4 (Prg4), which is synthesized by chondrocytes at the surface of the articular cartilage and by synovial lining cells. We previously showed that in the knee joint, Prg4 is crucial for maintenance of cartilage surfaces and for regulating proliferation of the intimal cells in the synovium. Consequently, the objective of this study was to determine the role of lubricin in the maintenance of the TMJ. We found that mice lacking lubricin have a normal TMJ at birth, but develop degeneration resembling TMJ osteoarthritis by 2 months, increasing in severity over time. Disease progression in Prg4-/- mice results in synovial hyperplasia, deterioration of cartilage in the condyle, disc and fossa with an increase in chondrocyte number and their redistribution in clusters with loss of superficial zone chondrocytes. All articular surfaces of the joint had a prominent layer of protein deposition. Compared to the knee joint, the osteoarthritis-like phenotype was more severe and manifested earlier in the TMJ. Taken together, the lack of lubricin in the TMJ causes osteoarthritis-like degeneration that affects the articular cartilage as well as the integrity of multiple joint tissues. Our results provide the first molecular evidence of the role of lubricin in the TMJ and suggest that Prg4-/- mice might provide a valuable new animal model for the study of the early events of TMJ osteoarthritis. PMID:25188282

  9. The effect of surface and season on playground injury rates

    PubMed Central

    Branson, Lara Joan; Latter, John; Currie, Gillian R; Nettel-Aguirre, Alberto; Embree, Tania; Hagel, Brent Edward

    2012-01-01

    OBJECTIVE: To examine the effect of season on playground surface injury rates. METHODS: Injuries were identified through student incident report forms used in school districts in Calgary (Alberta) and the surrounding area. Playground surface exposure data were estimated based on school enrollment. RESULTS: A total of 539 injuries were reported during the 2007/2008 school year. Abrasions, bruises and inflammation were the most frequently reported injuries. The head, neck or face were most commonly injured. Injury rates per 1000 student days ranged between 0.018 (rubber crumb in spring) and 0.08 (poured-in-place and natural rock in the fall). Rubber crumb surfacing, compared with natural rock, had a significantly lower rate of injury in the spring, but no other season-surface comparisons were statistically significant. CONCLUSIONS: Rates of injury were similar for natural rock, poured-in-place, and crushed rock in the fall and winter. There was some evidence of a lower rate of injury on rubber crumb surfaces in the spring. PMID:24179416

  10. 30 CFR 18.33 - Finish of surface joints.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Finish of surface joints. 18.33 Section 18.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.33 Finish of...

  11. Textured bearing surface in artificial joints to reduce macrophage activation

    NASA Astrophysics Data System (ADS)

    Nakanishi, Yoshitaka; Nishi, Naoki; Chikaura, Hiroto; Nakashima, Yuta; Miura, Hiromasa; Higaki, Hidehiko; Mizuta, Hiroshi; Iwamoto, Yukihide; Fujiwara, Yukio; Komohara, Yoshihiro; Takeya, Motohiro

    2015-12-01

    Micro slurry-jet erosion has been proposed as a precision machining technique for the bearing surfaces of artificial joints in order to reduce the total amount of polyethylene wear and to enlarge the size of the wear debris. The micro slurry-jet erosion method is a wet blasting technique which uses alumina particles as the abrasive medium along with compressed air and water to create an ideal surface. Pin-on-disc wear tests with multidirectional sliding motion on the textured surface of a \\text{Co}-\\text{Cr}-\\text{Mo} alloy counterface for polyethylene resulted in both a reduction of wear as well as enlargement of the polyethylene debris size. In this study, primary human peripheral blood mononuclear phagocytes were incubated with the debris, and it was elucidated that the wear debris generated on the textured surface regulated secretion of the proinflammatory cytokines IL-6 and TNF-α, indicating a reduction in the induced tissue reaction and joint loosening.

  12. Acute plastic bowing of the radius with a distal radioulnar joint injury: a case report.

    PubMed

    Uehara, Masashi; Yamazaki, Hiroshi; Kato, Hiroyuki

    2010-01-01

    Acute plastic bowing is an incomplete fracture with a deformation that shows no obvious macroscopic fracture line or cortical discontinuity. Although cases of acute plastic bowing of the ulna with a dislocation of the radial head have been previously reported, we present here a rare case of acute plastic bowing of the radius with a distal radioulnar joint injury in a 16-year-old boy. Internal fixation of the detached fragment to the ulnar styloid and repair of the triangular fibrocartilagenous complex resulted in the disappearance of wrist pain. In cases of distal radioulnar joint injuries in children or adolescents, radiographs of the entire forearm should be taken to evaluate the existence of radial bowing. PMID:21089197

  13. Horizontal and Vertical Stabilization of Acute Unstable Acromioclavicular Joint Injuries Arthroscopy-Assisted

    PubMed Central

    Cisneros, Luis Natera; Sarasquete Reiriz, Juan; Besalduch, Marina; Petrica, Alexandru; Escolà, Ana; Rodriguez, Joaquim; Fallone, Jan Carlo

    2015-01-01

    We describe the technical aspects of an arthroscopy-assisted procedure indicated for the management of acute unstable acromioclavicular joint injuries, consisting of a synthetic augmentation of both the coracoclavicular and acromioclavicular ligaments, that anatomically reproduces the coracoclavicular biomechanics and offers fixation that keeps the torn ends of the ligaments facing one another, thus allowing healing of the native structures without the need for a second surgical procedure for metal hardware removal. PMID:26870653

  14. Designing prosthetic knee joints with bio-inspired bearing surfaces.

    PubMed

    Qiu, Mingfeng; Chyr, Anthony; Sanders, Anthony P; Raeymaekers, Bart

    2014-09-01

    It has long been known that articular cartilage exhibits a surface microtexture with shallow indentations. By contrast, prosthetic joints consist of ultra-smooth bearing surfaces, the longevity of which does not reach that of natural cartilage. We show that adding a microtexture to the smooth femoral component of a prosthetic knee joint reduces friction by increasing the lubricant film thickness between the bearing surfaces of the knee. We have implemented an elastohydrodynamic lubrication model to optimize the geometry of the microtexture, while taking into account the deformation of the polyethylene tibial insert. We have manufactured several microtexture designs on a surrogate femoral component, and experimentally demonstrate that the microtexture reduces friction between the surrogate femoral component and tibial insert. PMID:25049441

  15. Automated inspection of solder joints for surface mount technology

    NASA Technical Reports Server (NTRS)

    Savage, Robert M.; Park, Hyun Soo; Fan, Mark S.

    1993-01-01

    Researchers at NASA/GSFC evaluated various automated inspection systems (AIS) technologies using test boards with known defects in surface mount solder joints. These boards were complex and included almost every type of surface mount device typical of critical assemblies used for space flight applications: X-ray radiography; X-ray laminography; Ultrasonic Imaging; Optical Imaging; Laser Imaging; and Infrared Inspection. Vendors, representative of the different technologies, inspected the test boards with their particular machine. The results of the evaluation showed limitations of AIS. Furthermore, none of the AIS technologies evaluated proved to meet all of the inspection criteria for use in high-reliability applications. It was found that certain inspection systems could supplement but not replace manual inspection for low-volume, high-reliability, surface mount solder joints.

  16. Automated inspection of solder joints for surface mount technology

    NASA Astrophysics Data System (ADS)

    Savage, Robert M.; Park, Hyun Soo; Fan, Mark S.

    1993-03-01

    Researchers at NASA/GSFC evaluated various automated inspection systems (AIS) technologies using test boards with known defects in surface mount solder joints. These boards were complex and included almost every type of surface mount device typical of critical assemblies used for space flight applications: X-ray radiography; X-ray laminography; Ultrasonic Imaging; Optical Imaging; Laser Imaging; and Infrared Inspection. Vendors, representative of the different technologies, inspected the test boards with their particular machine. The results of the evaluation showed limitations of AIS. Furthermore, none of the AIS technologies evaluated proved to meet all of the inspection criteria for use in high-reliability applications. It was found that certain inspection systems could supplement but not replace manual inspection for low-volume, high-reliability, surface mount solder joints.

  17. A new approach for surface fitting method of articular joint surfaces.

    PubMed

    Hirokawa, Shunji; Ueki, Takashi; Ohtsuki, Ayaka

    2004-10-01

    The application of joint contact mechanics requires a precise configuration of the joint surfaces. B-Spline, and NURBS have been widely used to model joint surfaces, but because these formulations use a structured data set provided by a rectangular net first, then a grid, there is a limit to the accuracy of the models they can produce. However new imaging systems such as 3D laser scanners can provide more realistic unstructured data sets. What is needed is a method to manipulate the unstructured data. We created a parametric polynomial function and applied it to unstructured data sets obtained by scanning joint surfaces. We applied our polynomial model to unstructured data sets from an artificial joint, and confirmed that our polynomial produced a smoother and more accurate model than the conventional B-spline method. Next, we applied it to a diarthrodial joint surface containing many ripples, and found that our function's noise filtering characteristics smoothed out existing ripples. Since no formulation was found to be optimal for all applications, we used two formulations to model surfaces with ripples. First, we used our polynomial to describe the global shape of the objective surface. Minute undulations were then specifically approximated with a Fourier series function. Finally, both approximated surfaces were superimposed to reproduce the original surface in a complete fashion. PMID:15336930

  18. Joint power and kinematics coordination in load carriage running: Implications for performance and injury.

    PubMed

    Liew, Bernard X W; Morris, Susan; Netto, Kevin

    2016-06-01

    Investigating the impact of incremental load magnitude on running joint power and kinematics is important for understanding the energy cost burden and potential injury-causative mechanisms associated with load carriage. It was hypothesized that incremental load magnitude would result in phase-specific, joint power and kinematic changes within the stance phase of running, and that these relationships would vary at different running velocities. Thirty-one participants performed running while carrying three load magnitudes (0%, 10%, 20% body weight), at three velocities (3, 4, 5m/s). Lower limb trajectories and ground reaction forces were captured, and global optimization was used to derive the variables. The relationships between load magnitude and joint power and angle vectors, at each running velocity, were analyzed using Statistical Parametric Mapping Canonical Correlation Analysis. Incremental load magnitude was positively correlated to joint power in the second half of stance. Increasing load magnitude was also positively correlated with alterations in three dimensional ankle angles during mid-stance (4.0 and 5.0m/s), knee angles at mid-stance (at 5.0m/s), and hip angles during toe-off (at all velocities). Post hoc analyses indicated that at faster running velocities (4.0 and 5.0m/s), increasing load magnitude appeared to alter power contribution in a distal-to-proximal (ankle→hip) joint sequence from mid-stance to toe-off. In addition, kinematic changes due to increasing load influenced both sagittal and non-sagittal plane lower limb joint angles. This study provides a list of plausible factors that may influence running energy cost and injury risk during load carriage running. PMID:27264407

  19. Military Exercises, Knee and Ankle Joint Position Sense, and Injury in Male Conscripts: A Pilot Study

    PubMed Central

    Mohammadi, Farshid; Azma, Kamran; Naseh, Iman; Emadifard, Reza; Etemadi, Yasaman

    2013-01-01

    Context: The high incidence of lower limb injuries associated with physical exercises in military conscripts suggests that fatigue may be a risk factor for injuries. Researchers have hypothesized that lower limb injuries may be related to altered ankle and knee joint position sense (JPS) due to fatigue. Objective: To evaluate if military exercises could alter JPS and to examine the possible relation of JPS to future lower extremity injuries in military service. Design: Cohort study. Setting: Laboratory. Patients or Other Participants: A total of 50 male conscripts (age = 21.4 ± 2.3 years, height = 174.5 ± 6.4 cm, mass = 73.1 ± 6.3 kg) from a unique military base were recruited randomly. Main Outcome Measure(s): Participants performed 8 weeks of physical activities at the beginning of a military course. In the first part of the study, we instructed participants to recognize predetermined positions before and after military exercises so we could examine the effects of military exercise on JPS. The averages of the absolute error and the variable error of 3 trials were recorded. We collected data on the frequency of lower extremity injuries over 8 weeks. Next, the participants were divided into 2 groups: injured and uninjured. Separate 2 × 2 × 2 (group-by-time-by-joint) mixed-model analyses of variance were used to determine main effects and interactions of these factors for each JPS measure. In the second part of the study, we examined whether the effects of fatigue on JPS were related to the development of injury during an 8-week training program. We calculated Hedges effect sizes for JPS changes postexercise in each group and compared change scores between groups. Results: We found group-by-time interactions for all JPS variables (F range = 2.86–4.05, P < .01). All participants showed increases in JPS errors postexercise (P < .01), but the injured group had greater changes for all the variables (P < .01). Conclusions: Military conscripts who sustained lower

  20. Estimation of ligament strains and joint moments in the ankle during a supination sprain injury.

    PubMed

    Wei, Feng; Fong, Daniel Tik-Pui; Chan, Kai-Ming; Haut, Roger C

    2015-01-01

    This study presents the ankle ligament strains and ankle joint moments during an accidental injury event diagnosed as a grade I anterior talofibular ligament (ATaFL) sprain. A male athlete accidentally sprained his ankle while performing a cutting motion in a laboratory setting. The kinematic data were input to a three-dimensional rigid-body foot model for simulation analyses. Maximum strains in 20 ligaments were evaluated in simulations that investigated various combinations of the reported ankle joint motions. Temporal strains in the ATaFL and the calcaneofibular ligament (CaFL) were then compared and the three-dimensional ankle joint moments were evaluated from the model. The ATaFL and CaFL were highly strained when the inversion motion was simulated (10% for ATaFL and 12% for CaFL). These ligament strains were increased significantly when either or both plantarflexion and internal rotation motions were added in a temporal fashion (up to 20% for ATaFL and 16% for CaFL). Interestingly, at the time strain peaked in the ATaFL, the plantarflexion angle was not large but apparently important. This computational simulation study suggested that an inversion moment of approximately 23 N m plus an internal rotation moment of approximately 11 N m and a small plantarflexion moment may have generated a strain of 15-20% in the ATaFL to produce a grade I ligament injury in the athlete's ankle. This injury simulation study exhibited the potentially important roles of plantarflexion and internal rotation, when combined with a large inversion motion, to produce a grade I ATaFL injury in the ankle of this athlete. PMID:23654290

  1. Development of an Arthroscopic Joint Capsule Injury Model in the Canine Shoulder

    PubMed Central

    Kovacevic, David; Baker, Andrew R.; Staugaitis, Susan M.; Kim, Myung-Sun; Ricchetti, Eric T.; Derwin, Kathleen A.

    2016-01-01

    Background The natural history of rotator cuff tears can be unfavorable as patients develop fatty infiltration and muscle atrophy that is often associated with a loss of muscle strength and shoulder function. To facilitate study of possible biologic mechanisms involved in early degenerative changes to rotator cuff muscle and tendon tissues, the objective of this study was to develop a joint capsule injury model in the canine shoulder using arthroscopy. Methods Arthroscopic surgical methods for performing a posterior joint capsulectomy in the canine shoulder were first defined in cadavers. Subsequently, one canine subject underwent bilateral shoulder joint capsulectomy using arthroscopy, arthroscopic surveillance at 2, 4 and 8 weeks, and gross and histologic examination of the joint at 10 weeks. Results The canine subject was weight-bearing within eight hours after index and follow-up surgeries and had no significant soft tissue swelling of the shoulder girdle or gross lameness. Chronic synovitis and macroscopic and microscopic evidence of pathologic changes to the rotator cuff bony insertions, tendons, myotendinous junctions and muscles were observed. Conclusions This study demonstrates feasibility and proof-of-concept for a joint capsule injury model in the canine shoulder. Future work is needed to define the observed pathologic changes and their role in the progression of rotator cuff disease. Ultimately, better understanding of the biologic mechanisms of early progression of rotator cuff disease may lead to clinical interventions to halt or slow this process and avoid the more advanced and often irreversible conditions of large tendon tears with muscle fatty atrophy. PMID:26808837

  2. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    PubMed Central

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H. N.; Haudenschild, Dominik R.

    2015-01-01

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed invivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. PMID:25817731

  3. Treatment of Low Energy Lisfranc Joint Injuries in a Young Athletic Population

    PubMed Central

    Cochran, Grant; Renninger, Christopher; Tompane, Trevor; Bellamy, Joseph; Kuhn, Kevin

    2016-01-01

    Objectives: Acute Lisfranc joint injuries have historically been associated with high-energy trauma, and high quality data exists describing injury patterns and recommended treatment protocols. There is a lack of comparable data investigating injuries associated with low energy mechanisms. The objective of this study is to report low energy injury patterns and to retrospectively compare primary arthrodesis with open reduction and internal fixation in a young athletic population. Methods: All surgically managed low-energy (sustained during athletic activity, ground level twisting, or fall from less than three feet) Lisfranc injuries were identified at a single military tertiary referral center from July 2010 to June 2015. The injury pattern, time to diagnosis, and method of treatment (open reduction internal fixation (ORIF) or primary arthrodesis) were reviewed. Complication rates, secondary procedures, VAS pain score, and return to full military activity (defined as the ability to perform their primary job functions and participate in mandatory athletic activity) were reviewed. Results: Of the thirty-three injuries identified, twenty (60.6%) were primarily ligamentous. Only one patient had evidence of lateral column instability. Average patient age was twenty-eight. Eleven injuries (33%) were initially missed, delaying diagnosis an average of thirty-four days. Primary arthrodesis was performed in fifteen patients; most were secondary to subacute or chronic presentation. ORIF was performed on the remaining eighteen patients. All fixation constructs included solid screws, dorsal plates, or a combination of both. Minor complications occurred in twelve patients and included sensory changes, superficial infection treated with antibiotics, and symptomatic hardware. Complications requiring surgery other than hardware removal were seen in two patients including one ORIF patient who underwent secondary arthrodesis. VAS pain at final evaluation averaged 1.6. Thirty-one of

  4. Differences in Injury Pattern and Prevalence of Cartilage Lesions in Knee and Ankle Joints: A Retrospective Cohort Study

    PubMed Central

    Aurich, Matthias; Hofmann, Gunther O.; Rolauffs, Bernd; Gras, Florian

    2014-01-01

    Osteoarthritis (OA) is more common in the knee compared to the ankle joint. This can not be explained exclusively by anatomical and biomechanical differences. The aim of this study is to analyze and compare the injury pattern (clinically) and the cartilage lesions (arthroscopically) of knee and ankle joints in a cohort of patients from the same catchment area. A retrospective study of the clinical data of 3122 patients (2139 outpatients and 983 inpatients) was performed, who were treated due to an injury of the knee and ankle joint. Statistical analysis was performed using SigmaStat 3.0 (SPSS Inc, Chicago, USA). There is a higher prevalence of injuries in the ankle as compared to the knee joint in this population from the same catchment area. In contrast, high-grade cartilage lesions are more prevalent in the knee, whereas low grade cartilage lesions are equally distributed between knee and ankle. From this data it can be concluded that the frequency of injuries and the injury pattern of knee versus ankle joints do not correlate with the severity of cartilage lesions and may therefore have no direct influence on the differential incidence of OA in those two joints. PMID:25568732

  5. Differences in injury pattern and prevalence of cartilage lesions in knee and ankle joints: a retrospective cohort study.

    PubMed

    Aurich, Matthias; Hofmann, Gunther O; Rolauffs, Bernd; Gras, Florian

    2014-10-27

    Osteoarthritis (OA) is more common in the knee compared to the ankle joint. This can not be explained exclusively by anatomical and biomechanical differences. The aim of this study is to analyze and compare the injury pattern (clinically) and the cartilage lesions (arthroscopically) of knee and ankle joints in a cohort of patients from the same catchment area. A retrospective study of the clinical data of 3122 patients (2139 outpatients and 983 inpatients) was performed, who were treated due to an injury of the knee and ankle joint. Statistical analysis was performed using SigmaStat 3.0 (SPSS Inc, Chicago, USA). There is a higher prevalence of injuries in the ankle as compared to the knee joint in this population from the same catchment area. In contrast, high-grade cartilage lesions are more prevalent in the knee, whereas low grade cartilage lesions are equally distributed between knee and ankle. From this data it can be concluded that the frequency of injuries and the injury pattern of knee versus ankle joints do not correlate with the severity of cartilage lesions and may therefore have no direct influence on the differential incidence of OA in those two joints. PMID:25568732

  6. Tarsometatarsal (Lisfranc) Joint Injury in an Athlete With Persistent Foot Pain.

    PubMed

    Greenberg, Eric T; Queller, Hayley Rintel

    2016-06-01

    The patient was a 20-year-old female ultimate frisbee player who felt a "pop" in her left foot with resultant pain and bruising along the plantar aspect of her midfoot. She was seen by an orthopaedic physician, who ordered standard radiographs that were found to be unremarkable. Although initial non-weight-bearing films were normal, these findings do not rule out tarsometatarsal joint injury. Following presentation to physical therapy 4 months after the initial injury, the patient was referred to a sports medicine physician. Weight-bearing radiographs and magnetic resonance imaging were ordered and confirmed a high-grade Lisfranc ligament tear. J Orthop Sports Phys Ther 2016;46(6):494. doi:10.2519/jospt.2016.0408. PMID:27245490

  7. THE EFFECT OF CONSERVATIVELY TREATED ACL INJURY ON KNEE JOINT POSITION Sense

    PubMed Central

    Herrington, Lee

    2016-01-01

    ABSTRACT Background Proprioception is critical for effective movement patterns. However, methods of proprioceptive measurement in previous research have been inconsistent and lacking in reliability statistics making it applications to clinical practice difficult. Researchers have suggested that damage to the anterior cruciate ligament (ACL) can alter proprioceptive ability due to a loss of functioning mechanoreceptors. The majority of patients opt for reconstructive surgery following this injury. However, some patients chose conservative rehabilitation options rather than surgical intervention. Purpose The purpose of this study was to determine the effect of ACL deficiency on knee joint position sense following conservative, non-operative treatment and return to physical activity. A secondary purpose was to report the reliability and measurement error of the technique used to measure joint position sense, (JPS) and comment on the clinical utility of this measurement. Study Design Observational study design using a cross-section of ACL deficient patients and matched uninjured controls. Methods Twenty active conservatively treated ACL deficient patients who had returned to physical activity and twenty active matched controls were included in the study. Knee joint position sense was measured using a seated passive-active reproductive angle technique. The average absolute angle of error score, between 10 °-30 ° of knee flexion was determined. This error score was derived from the difference between the target and repositioning angle. Results The ACL deficient patients had a greater error score (7.9 °±3.6) and hence poorer static proprioception ability that both the contra-lateral leg (2.0 °±1.6; p = 0.0001) and the control group (2.6 °±0.9; p = 0.0001). The standard error of the mean (SEM) of this JPS technique was 0.5 ° and 0.2 ° and the minimum detectable change (MDC) was 1.3 ° and 0.4 ° on asymptomatic and symptomatic subjects

  8. Upper extremity interaction with a helicopter side airbag: injury criteria for dynamic hyperextension of the female elbow joint.

    PubMed

    Duma, Stefan M; Hansen, Gail A; Kennedy, Eric A; Rath, Amber L; McNally, Craig; Kemper, Andrew R; Smith, Eric P; Brolinson, P Gunnar; Stitzel, Joel D; Davis, Martin B; Bass, Cameron R; Brozoski, Frederick T; McEntire, B Joseph; Alem, Nabih M; Crowley, John S

    2004-11-01

    This paper describes a three part analysis to characterize the interaction between the female upper extremity and a helicopter cockpit side airbag system and to develop dynamic hyperextension injury criteria for the female elbow joint. Part I involved a series of 10 experiments with an original Army Black Hawk helicopter side airbag. A 5(th) percentile female Hybrid III instrumented upper extremity was used to demonstrate side airbag upper extremity loading. Two out of the 10 tests resulted in high elbow bending moments of 128 Nm and 144 Nm. Part II included dynamic hyperextension tests on 24 female cadaver elbow joints. The energy source was a drop tower utilizing a three-point bending configuration to apply elbow bending moments matching the previously conducted side airbag tests. Post-test necropsy showed that 16 of the 24 elbow joint tests resulted in injuries. Injury severity ranged from minor cartilage damage to more moderate joint dislocations and severe transverse fractures of the distal humerus. Peak elbow bending moments ranged from 42.4 Nm to 146.3 Nm. Peak bending moment proved to be a significant indicator of any elbow injury (p = 0.02) as well as elbow joint dislocation (p = 0.01). Logistic regression analyses were used to develop single and multiple variate injury risk functions. Using peak moment data for the entire test population, a 50% risk of obtaining any elbow injury was found at 56 Nm while a 50% risk of sustaining an elbow joint dislocation was found at 93 Nm for the female population. These results indicate that the peak elbow bending moments achieved in Part I are associated with a greater than 90% risk for elbow injury. Subsequently, the airbag was re-designed in an effort to mitigate this as well as the other upper extremity injury risks. Part III assessed the redesigned side airbag module to ensure injury risks had been reduced prior to implementing the new system. To facilitate this, 12 redesigned side airbag deployments were conducted

  9. Risk of nerve injury during arthroscopy portal placement in the elbow joint: A cadaveric study

    PubMed Central

    Chaware, Prashant N; Santoshi, John A; Pakhare, Abhijit P; Rathinam, Bertha A D

    2016-01-01

    Background: Elbow arthroscopy has become a routine procedure now. However, placing portals is fraught with dangers of injuring the neurovascular structures around elbow. There are not enough data documenting the same amongst the Indians. We aimed to determine the relative distances of nerves around the elbow to the arthroscopy portals and risk of injury in different positions of the elbow. Materials and Methods: Six standard elbow arthroscopy portals were established in 12 cadaveric upper limbs after joint distension. Then using standard dissection techniques all the nerves around the elbow were exposed, and their distances from relevant portals were measured using digital vernier caliper in 90° elbow flexion and 0° extension. Descriptive statistical analysis was used for describing distance of the nerves from relevant portal. Wilcoxon-signed rank test and Friedman's test were used for comparison. Results: There was no major nerve injury at all the portals studied in both positions of the elbow. The total incidence of cutaneous nerve injury was 8.3% (12/144); medial cutaneous nerve of forearm 10/48 and posterior cutaneous nerve of forearm 2/24. No significant changes were observed in the distance of a nerve to an individual portal at 90° flexion or 0° extension position of the elbow. Conclusion: This study demonstrates the risk of injury to different nerves at the standard portals of elbow arthroscopy. In practice, the actual incidence of nerve injury may still be lower. We conclude that elbow arthroscopy is a safe procedure when all precautions as described are duly followed. PMID:26952128

  10. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    SciTech Connect

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H.N.; Haudenschild, Dominik R.

    2015-05-08

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively.

  11. Comparison of treatment results of acute and late injuries of the lisfranc joint

    PubMed Central

    Tarczyńska, Marta; Gawęda, Krzysztof; Dajewski, Zbigniew; Kowalska, Elżbieta; Gągała, Jacek

    2013-01-01

    Objective A retrospective comparison of treatment difficulties and treatment outcomes in Lisfranc joint injuries with late and early diagnosis. Methods The study group consisted of 10 patients diagnosed and treated properly within six months to 20 years of the accident causing the injury (mean six years). The control group consisted of the same number of randomly selected patients with a similar type of injury treated immediately after the accident. Mean follow-up was 13 years in the study group and eight years in the control group. The analysis evaluated the causes of the delay and the foot function at the time of follow up, measured using the AOFAS Midfoot Scale and the Lublin Foot Functional Score. The scores of the patients were analyzed using the non-parametric Mann-Whitney U test and the non-parametric Wilcoxon test. Results The control group had statistically significantly better scores on both scales. Conclusion The main cause of treatment delay was misdiagnosis by the primary care physician. Level of Evidence III, Retrospective Comparative Study. PMID:24453695

  12. Farm machinery injuries: the 15-year experience at an urban joint trauma center system in a rural state.

    PubMed

    Jawa, Randeep S; Young, David H; Stothert, Joseph C; Yetter, Diane; Dumond, Robbie; Shostrom, Valerie K; Cemaj, Samuel; Rautiainen, Risto H; Mercer, David W

    2013-01-01

    Farm machinery is a major source of injury. The objective of this study is to characterize the incidence, injury characteristics, and outcomes of patients admitted with farm machinery injuries (FMIs) to an urban joint trauma system in a rural state. A retrospective 15-year review of the trauma registries of the two trauma centers that function as a single state-designated Level I joint trauma center system was conducted. There were 65 admissions for FMIs at hospital A and 41 at hospital B; this represents under 0.4% of total trauma admissions. The patients ranged in age from 2 to 87 years. At hospital A, 89% of admitted patients sustained extremity injuries, 16% sustained torso trauma, 92% required surgical intervention, and the mortality rate was 0%. At hospital B, 60% of admitted patients sustained extremity injuries, 36.6% of patients sustained torso trauma, 63% required surgical intervention, and the mortality rate was 14.6%. Tractor-related injuries were responsible for 17% of admissions at hospital A and 69% at hospital B. Of the six fatalities, five were tractor related. The data demonstrate that FMIs affect people in nearly all decades of life. FMIs at the two hospitals had differing injury characteristics and outcomes, in large part secondary to the differing frequency of tractor-related injuries. FMIs frequently required surgical intervention. PMID:23540300

  13. Modelling and updating of large surface-to-surface joints in the AWE-MACE structure

    NASA Astrophysics Data System (ADS)

    Ahmadian, Hamid; Mottershead, John E.; James, Simon; Friswell, Michael I.; Reece, Carole A.

    2006-05-01

    Model updating of joints in the AWE-MACE system is carried out using a sensitivity method. The joints are characterised by large surface-to-surface contact regions and are excited in vibration tests within the linear range. The joints are modelled using a layer of special interface elements having material properties that may be adjusted to improve the prediction of the complete model. A series of three updating exercises are described and it is shown that by using only six parameters based upon the circumferential-wave and bending modes that the prediction of the axial and torsional modes is improved sufficiently to be of practical usefulness for many applications. Fewer numbers of updating parameters are found to be sufficient to correct different subsets of vibration modes. Linear equivalent models identified by this approach are found to be valid within the usual range of vibration tests.

  14. Multi-component joint analysis of surface waves

    NASA Astrophysics Data System (ADS)

    Dal Moro, Giancarlo; Moura, Rui Miguel Marques; Moustafa, Sayed S. R.

    2015-08-01

    Propagation of surface waves can occur with complex energy distribution amongst the various modes. It is shown that even simple VS (shear-wave velocity) profiles can generate velocity spectra that, because of a complex mode excitation, can be quite difficult to interpret in terms of modal dispersion curves. In some cases, Rayleigh waves show relevant differences depending on the considered component (radial or vertical) and the kind of source (vertical impact or explosive). Contrary to several simplistic assumptions often proposed, it is shown, both via synthetic and field datasets, that the fundamental mode of Rayleigh waves can be almost completely absent. This sort of evidence demonstrates the importance of a multi-component analysis capable of providing the necessary elements to properly interpret the data and adequately constrain the subsurface model. It is purposely shown, also through the sole use of horizontal geophones, how it can be possible to efficiently and quickly acquire both Love and Rayleigh (radial-component) waves. The presented field dataset reports a case where Rayleigh waves (both their vertical and radial components) appear largely dominated by higher modes with little or no evidence of the fundamental mode. The joint inversion of the radial and vertical components of Rayleigh waves jointly with Love waves is performed by adopting a multi-objective inversion scheme based on the computation of synthetic seismograms for the three considered components and the minimization of the whole velocity spectra misfits (Full Velocity Spectra - FVS - inversion). Such a FVS multi-component joint inversion can better handle complex velocity spectra thus providing a more robust subsurface model not affected by erroneous velocity spectra interpretations and non-uniqueness of the solution.

  15. Upper limb joint muscle/tendon injury and anthropometric adaptations in French competitive tennis players.

    PubMed

    Rogowski, Isabelle; Creveaux, Thomas; Genevois, Cyril; Klouche, Shahnaz; Rahme, Michel; Hardy, Philippe

    2016-01-01

    The purpose of this study was to examine the relationship between the upper limb anthropometric dimensions and a history of dominant upper limb injury in tennis players. Dominant and non-dominant wrist, forearm, elbow and arm circumferences, along with a history of dominant upper limb injuries, were assessed in 147 male and female players, assigned to four groups based on location of injury: wrist (n = 9), elbow (n = 25), shoulder (n = 14) and healthy players (n = 99). From anthropometric dimensions, bilateral differences in circumferences and in proportions were calculated. The wrist group presented a significant bilateral difference in arm circumference, and asymmetrical bilateral proportions between wrist and forearm, as well as between elbow and arm, compared to the healthy group (6.6 ± 3.1% vs. 4.9 ± 4.0%, P < 0.01; -3.6 ± 3.0% vs. -0.9 ± 2.9%, P < 0.05; and -2.2 ± 2.2% vs. 0.1 ± 3.4%, P < 0.05, respectively). The elbow group displayed asymmetrical bilateral proportions between forearm and arm compared to the healthy group (-0.4 ± 4.3% vs. 1.5 ± 4.0%, P < 0.01). The shoulder group showed significant bilateral difference in elbow circumference, and asymmetrical bilateral proportions between forearm and elbow when compared to the healthy group (5.8 ± 4.7% vs. 3.1 ± 4.8%, P < 0.05 and -1.7 ± 4.5% vs. 1.4 ± 4.3%, P < 0.01, respectively). These findings suggest that players with a history of injury at the upper limb joint present altered dominant upper limb proportions in comparison with the non-dominant side, and such asymmetrical proportions would appear to be specific to the location of injury. Further studies are needed to confirm the link between location of tennis injury and asymmetry in upper limb proportions using high-tech measurements in symptomatic tennis players. PMID:25881663

  16. Chronic unilateral locked facet joint with spinal cord injury in a 26-month-old child: A case report

    PubMed Central

    Wu, Ai-Min; Wang, Xiang-Yang; Luo, Peng; Xu, Hua-Zi; Chi, Yong-Long

    2015-01-01

    Objectives This study presents the successful posterior surgical reduction and fusion on a 26-month-old child with chronic unilateral locked facet joint and spinal cord injury (SCI). Methods A 26-month-old child with chronic unilateral locked facet joint and SCI treated by posterior surgical reduction and fusion. Plaster external fixation was applied and rehabilitation exercise was trained post-operatively. Results Chronic unilateral locked facet joint was reduced successfully and bone fusion of C4/5 was achieved 3 months after surgery. The function of both lower limbs was improved 1 year after surgery, aided with physical rehabilitation. Conclusion Unilateral locked facet joint in pediatric population is rare. Few clinical experiences were found in the literature. Non-surgical treatment has advantages of not being invasive and is preferred for acute patients; however, it may not be suitable for chronic unilateral locked facet joint with SCI, in which surgical intervention is needed. PMID:24673578

  17. THE PROSTAGLANDIN E2 RECEPTOR, EP2, IS UPREGULATED IN THE DRG AFTER PAINFUL CERVICAL FACET JOINT INJURY IN THE RAT

    PubMed Central

    Kras, Jeffrey V.; Dong, Ling; Winkelstein, Beth A.

    2012-01-01

    Study Design This study implemented immunohistochemistry to assay prostaglandin E2 (PGE2) receptor EP2 expression in the dorsal root ganglion (DRG) of rats after painful cervical facet joint injury. Objective The objective of this study was to identify if inflammatory cascades are induced in association with cervical facet joint distraction-induced pain by investigating the time course of EP2 expression in the DRG. Summary of Background Data The cervical facet joint is a common source of neck pain and non-physiological stretch of the facet capsular ligament can initiate pain from the facet joint via mechanical injury. PGE2 levels are elevated in painful inflamed and arthritic joints, and PGE2 sensitizes joint afferents to mechanical stimulation. Although in vitro studies suggest the EP2 receptor subtype contributes to painful joint disease the EP2 response has not been investigated for any association with painful mechanical joint injury. Methods Separate groups of male Holtzman rats underwent either a painful cervical facet joint distraction injury or sham procedure. Bilateral forepaw mechanical allodynia was assessed, and immunohistochemical techniques were used to quantify EP2 expression in the DRG at days 1 and 7. Results Facet joint distraction induced mechanical allodynia that was significant (p<0.024) at all time points. Painful joint injury also significantly elevated total EP2 expression in the DRG at day 1 (p=0.009), which was maintained also at day 7 (p<0.001). Neuronal expression of EP2 in the DRG was only increased over sham levels at day 1 (p=0.013). Conclusions Painful cervical facet joint distraction induces an immediate and sustained increase of EP2 expression in the DRG, implicating peripheral inflammation in the initiation and maintenance of facet joint pain. The transient increase in neuronal EP2 suggests, as in other painful joint conditions, that after joint injury non-neuronal cells may migrate to the DRG, some of which likely express EP2

  18. Assessment of the responsibility between a road traffic accident and medical defects after the traffic accident injury of knee joint.

    PubMed

    Chen, Jiemin; Xia, Wentao

    2012-04-01

    A 48-year-old Chinese woman was hit by a car in a road traffic accident. Local county hospital considered that her right knee was injured, but didn't find any sign of fracture from X-ray imaging. Then the hospital gave diagnosis of soft tissue contusion and the patient started to exercise with burden 21 days after her right lower limb was fixed by plaster slab. Four months later, she had to go back to the county hospital for recheck due to persistent pain on her right knee. Then, the right tibia outer plateau fracture was found. The patient rejected the advice of open reduction and internal fixation of right tibia plateau fracture. Instead, she accepted the unicompartmental knee arthroplasty in a hospital affiliated to a medical college. The patient felt the knee pain alleviated after surgery However, the joint dysfunction was aggravated even more. The patient used the legal procedure for personal compensation. Both driver and the insurance company disputed that the final consequence of the injured knee was due to not only the traffic accident, but also poor medical practice involved. Therefore the court consigned us to make judicial judgment of expertise. After investigation, we found the earliest X-ray graph after the accident had shown the fracture of right tibia outer plateau and right knee valgum, with articular surface involvement, and the traffic accident was considered as the primary cause of sequelae. At the same time, the county hospital missed the diagnosis of fracture, and led to insufficient fixation of right lower limb, which was not good for rehabilitation from fracture and joint injury. This was the secondary cause of sequelae. Additionally, instead of the standard therapy, the affiliated hospital of medical college made the unicompartmental knee arthroplasty four months later, which also had a little defect. It was the minor reason for the result. PMID:22391004

  19. Small Finger Snapping due to Retinacular Ligament Injury at the Level of Proximal Interphalangeal Joint

    PubMed Central

    Lee, Young-Keun; Lee, Jun-Mo; Lee, Malrey

    2015-01-01

    Abstract Pathological snapping secondary to posttraumatic subluxation of the extensor tendon at proximal interphalangeal joint (PIPJ) of the finger is rare. Here, we want to describe a patient with snapping of the left small finger at PIPJ due to retinacular ligament injury. A 24-year-old man was admitted because of a 5-year history of a snapping sound in the left small finger. On examination, the radial side lateral band of the small finger was dislocated volarly at the level PIPJ with flexion of >50°, which was clearly felt over the skin. There was an obvious snapping sound at the time of dislocation. There was no specific radiographic abnormality. With the patient under regional anesthesia, exploration through a zigzag skin incision over the dorsum of the PIPJ revealed that the retinacular ligament complex was injured. We also found a partial tear in PIPJ capsule, through the incision of the injured retinacular ligament complex. We repaired the joint capsule and retinacular ligament complex with prolene 4–0. Postoperatively the small finger was immobilized in a below-elbow plaster splint with full extension of the fingers for 1 week, then dynamic splinting was advised for another 5 weeks and unrestricted full active motion was allowed at the 6th week. At the 6-month follow-up, the patient had regained full range of motion with no discomfort, and there was no sign of recurrence. We stress that when there is snapping over the dorsum of the PIPJ of the finger, the clinician should suspect rupture of the retinacular ligaments, especially in minor trauma patients. Primary repair of retinacular ligaments and dynamic splinting provided satisfactory results without recurrence in our patient. PMID:26091481

  20. Small Finger Snapping due to Retinacular Ligament Injury at the Level of Proximal Interphalangeal Joint

    PubMed Central

    Lee, Young-Keun; Lee, Jun-Mo; Lee, Malrey

    2015-01-01

    Abstract Pathological snapping secondary to posttraumatic subluxation of the extensor tendon at proximal interphalangeal joint (PIPJ) of the finger is rare. Here, we want to describe a patient with snapping of the left small finger at PIPJ due to retinacular ligament injury. A 24-year-old man was admitted because of a 5-year history of a snapping sound in the left small finger. On examination, the radial side lateral band of the small finger was dislocated volarly at the level PIPJ with flexion of >50°, which was clearly felt over the skin. There was an obvious snapping sound at the time of dislocation. There was no specific radiographic abnormality. With the patient under regional anesthesia, exploration through a zigzag skin incision over the dorsum of the PIPJ revealed that the retinacular ligament complex was injured. We also found a partial tear in PIPJ capsule, through the incision of the injured retinacular ligament complex. We repaired the joint capsule and retinacular ligament complex with prolene 4–0. Postoperatively the small finger was immobilized in a below-elbow plaster splint with full extension of the fingers for 1 week, then dynamic splinting was advised for another 5 weeks and unrestricted full active motion was allowed at the 6th week. At the 6-month follow-up, the patient had regained full range of motion with no discomfort, and there was no sign of recurrence. We stress that when there is snapping over the dorsum of the PIPJ of the finger, the clinician should suspect rupture of the retinacular ligaments, especially in minor trauma patients. Primary repair of retinacular ligaments and dynamic splinting provided satisfactory results without recurrence in our patient.

  1. Upper limb joint kinetic analysis during tennis serve: Assessment of competitive level on efficiency and injury risks.

    PubMed

    Martin, C; Bideau, B; Ropars, M; Delamarche, P; Kulpa, R

    2014-08-01

    The aim of this work was to compare the joint kinetics and stroke production efficiency for the shoulder, elbow, and wrist during the serve between professionals and advanced tennis players and to discuss their potential relationship with given overuse injuries. Eleven professional and seven advanced tennis players were studied with an optoelectronic motion analysis system while performing serves. Normalized peak kinetic values of the shoulder, elbow, and wrist joints were calculated using inverse dynamics. To measure serve efficiency, all normalized peak kinetic values were divided by ball velocity. t-tests were used to determine significant differences between the resultant joint kinetics and efficiency values in both groups (advanced vs professional). Shoulder inferior force, shoulder anterior force, shoulder horizontal abduction torque, and elbow medial force were significantly higher in advanced players. Professional players were more efficient than advanced players, as they maximize ball velocity with lower joint kinetics. Since advanced players are subjected to higher joint kinetics, the results suggest that they appeared more susceptible to high risk of shoulder and elbow injuries than professionals, especially during the cocking and deceleration phases of the serve. PMID:23293868

  2. Spectral unmixing of agents on surfaces for the Joint Contaminated Surface Detector (JCSD)

    NASA Astrophysics Data System (ADS)

    Slamani, Mohamed-Adel; Chyba, Thomas H.; LaValley, Howard; Emge, Darren

    2007-09-01

    ITT Corporation, Advanced Engineering and Sciences Division, is currently developing the Joint Contaminated Surface Detector (JCSD) technology under an Advanced Concept Technology Demonstration (ACTD) managed jointly by the U.S. Army Research, Development, and Engineering Command (RDECOM) and the Joint Project Manager for Nuclear, Biological, and Chemical Contamination Avoidance for incorporation on the Army's future reconnaissance vehicles. This paper describes the design of the chemical agent identification (ID) algorithm associated with JCSD. The algorithm detects target chemicals mixed with surface and interferent signatures. Simulated data sets were generated from real instrument measurements to support a matrix of parameters based on a Design Of Experiments approach (DOE). Decisions based on receiver operating characteristics (ROC) curves and area-under-the-curve (AUC) measures were used to down-select between several ID algorithms. Results from top performing algorithms were then combined via a fusion approach to converge towards optimum rates of detections and false alarms. This paper describes the process associated with the algorithm design and provides an illustrating example.

  3. Comparison of Extension Orthosis Versus Percutaneous Pinning of the Distal Interphalangeal Joint for Closed Mallet Injuries.

    PubMed

    Renfree, Kevin J; Odgers, Ryan A; Ivy, Cynthia C

    2016-05-01

    We compared a static extension orthosis with percutaneous pinning of the distal interphalangeal joint (DIPJ) for treatment of closed mallet injuries. After receiving counsel about treatment options, 44 patients (25 women and 19 men; mean age, 57 years) freely chose orthosis and 18 patients (5 women and 13 men; mean age, 51 years) chose pinning. Both the extension orthosis and the pin remained in place for 6 weeks; the pin then was removed, and the care in both groups was transitioned to nighttime orthosis use for an additional 6 weeks. The patients in the pin group were allowed to immediately resume unrestricted activity postoperatively. The mean follow-up was 32 months in the orthosis group and 19 months in the pin group. Final residual extensor lag was better in the pin group (5 vs 10 degrees, P = 0.048). Improvement between the groups was in favor of percutaneous pinning (36 vs 17 degrees, P = 0.001). No correlation was seen between time to treatment (≤14 vs >14 days from injury) and final extensor lag in either group (P = 0.85). The final mean DIPJ flexion was 53 degrees for orthosis and 46 degrees for pinning. Among the patients, 93% of the orthosis group and 100% of the pin group said that they would choose the same treatment again. Both groups had a mean of 5 hand therapy visits during treatment. Two complications occurred in the orthosis group (5%) and 3 (17%) occurred in the pin group. Extension orthotics and pinning are both well-tolerated, effective treatments of mallet injury. The techniques produce satisfactory correction of extensor lag and have high patient satisfaction. Pinning allows better correction of DIPJ extensor lag and results in a smaller degree of final extensor lag. Pinning is more expensive and may result in more DIPJ stiffness (ie, loss of active flexion), but it may be justified in certain patients (eg, medical professionals, food service workers) who would have difficulty working with an orthosis. PMID:25144418

  4. Activity vs. rest in the treatment of bone, soft tissue and joint injuries.

    PubMed Central

    Buckwalter, J. A.

    1995-01-01

    One of the most important advances in the treatment of musculoskeletal injuries has come from understanding that controlled early resumption of activity can promote restoration of function, and that treatment of injuries with prolonged rest may delay recovery and adversely affect normal tissues. In the last decade of the nineteenth century two widely respected orthopaedists with extensive clinical experience strongly advocated opposing treatments of musculoskeletal injuries. Hugh Owen Thomas in Liverpool believed that enforced, uninterrupted prolonged rest produced the best results. He noted that movement of injured tissues increased inflammation, and that, "It would indeed be as reasonable to attempt to cure a fever patient by kicking him out of bed, as to benefit joint disease by a wriggling at the articulation." Just Lucas-Championnier in Paris took the opposite position. He argued that early controlled active motion accelerated restoration of function, although he noted that mobility had to be given in limited doses. In general, Thomas' views met with greater acceptance in the early part of this century, but experimental studies of the last several decades generally support Lucas-Championneir. They confirm and help explain the deleterious effects of prolonged rest and the beneficial effects of activity on the musculoskeletal tissues. They have shown that maintenance of normal bone, tendon and ligament, articular cartilage and muscle structure and composition require repetitive use, and that changes in the patterns of tissue loading can strengthen or weaken normal tissues. Although all the musculoskeletal tissues can respond to repetitive loading, they vary in the magnitude and type of response to specific patterns of activity. Furthermore, their responsiveness may decline with increasing age. Skeletal muscle and bone demonstrate the most apparent response to changes in activity in individuals of any age. Cartilage and dense fibrous tissues also can respond to

  5. Arthroscopic-assisted repair of triangular fibrocartilage complex foveal avulsion in distal radioulnar joint injury

    PubMed Central

    Woo, Sung Jong; Jegal, Midum; Park, Min Jong

    2016-01-01

    Background: Disruption of the triangular fibrocartilage complex (TFCC) foveal insertion can lead to distal radioulnar joint (DRUJ) instability accompanied by ulnar-sided pain, weakness, snapping, and limited forearm rotation. We investigated the clinical outcomes of patients with TFCC foveal tears treated with arthroscopic-assisted repair. Materials and Methods: Twelve patients underwent foveal repair of avulsed TFCC with the assistance of arthroscopy between 2011 and 2013. These patients were followed up for an average of 19 months (range 14–25 months). The avulsed TFCC were reattached to the fovea using a transosseous pull-out suture or a knotless suture anchor. At the final followup, the range of motion, grip strength and DRUJ stability were measured as objective outcomes. Subjective outcomes were assessed using the Visual Analog Scale (VAS) for pain, patient rated wrist evaluation (PRWE), Disabilities of the Arm, Shoulder and Hand questionnaire (DASH score) and return to work. Results: Based on the DRUJ stress test, 5 patients had normal stability and 7 patients showed mild laxity as compared with the contralateral side. Postoperatively, the mean range of pronation supination increased from 141° to 166°, and the mean VAS score for pain decreased from 5.3 to 1.7 significantly. The PRWE and DASH questionnaires also showed significant functional improvement. All patients were able to return to their jobs. However, two patients complained of persistent pain. Conclusions: Arthroscopically assisted repair of TFCC foveal injury can provide significant pain relief, functional improvement and restoration of DRUJ stability. PMID:27293286

  6. Enhanced Neuroprotection of Minimally Invasive Surgery Joint Local Cooling Lavage against ICH-induced Inflammation Injury and Apoptosis in Rats.

    PubMed

    Liu, Xi-Chang; Jing, Li-Yan; Yang, Ming-Feng; Wang, Kun; Wang, Yuan; Fu, Xiao-Yan; Fang, Jie; Hou, Ya-Jun; Sun, Jing-Yi; Li, Da-Wei; Zhang, Zong-Yong; Mao, Lei-Lei; Tang, You-Mei; Fu, Xiao-Ting; Fan, Cun-Dong; Yang, Xiao-Yi; Sun, Bao-Liang

    2016-07-01

    Hypothermia treatment is one of the neuroprotective strategies that improve neurological outcomes effectively after brain damage. Minimally invasive surgery (MIS) has been an important treatment of intracerebral hemorrhage (ICH). Herein, we evaluated the neuroprotective effect and mechanism of MIS joint local cooling lavage (LCL) treatment on ICH via detecting the inflammatory responses, oxidative injury, and neuronal apoptosis around the hematoma cavity in rats. ICH model was established by type IV collagenase caudatum infusion. The rats were treated with MIS 6 h after injection, and then were lavaged by normothermic (37 °C) and hypothermic (33 °C) normal saline in brain separately. The results indicated that MIS joint LCL treatment showed enhanced therapeutic effects against ICH-induced inflammation injury and apoptosis in rats, as convinced by the decline of TUNEL-positive cells, followed by the decrease of IL-1β and LDH and increase of IL-10 and SOD. This study demonstrated that the strategy of using MIS joint LCL may achieve enhanced neuroprotection against ICH-induced inflammation injury and apoptosis in rats with potential clinic application. PMID:26224360

  7. [Research on surface modification and bio-tribological properties of artificial joint].

    PubMed

    Pan, Yusong; Wang, Jing; Ding, Guoxin

    2012-06-01

    The bio-tribological properties of an artificial joint can be obviously improved by surface modification technologies. In this paper, the benefits and disadvantages of various surface modification methods-such as surface coating, plasma treatment, surface texture and surface grafting modification-are discussed. The aim of surface coating and/or plasma treatment is to improve the surface hardness of the materials, thus enhancing the wear resistance of artificial joints. However, these technologies do not effectively alleviate stress concentration of material in the short times in which artificial joints bear physiological impact load, resulting in easy fracture. Surface texture serves mainly to improve the lubrication properties through micro-concavities on the material surface for storage lubricant. Surface texturing can realize improvements in bio-tribological properties, but it does not enhance the impact resistance of the joint. Surface grafting modification is implemented mainly by grafting hydrophilic or other specific functional groups to improve the surface hydrophilicity and wetability, thus enhancing lubricating performance and reducing the coefficient of friction. PMID:22772408

  8. The injuries to the fourth and fifth tarsometatarsal joints: A review of the surgical management by internal fixation, arthrodesis and arthroplasty

    PubMed Central

    Yu, Xiao; Pang, Qing-jiang; Yu, Guang-rong

    2013-01-01

    The surgical management to the injuries of the fourth and fifth tarsometatarsal (TMT) joints is controversial. We briefly review the anatomical characteristics to the injuries, the diagnosis, as well as the individualized treatment of the injuries of the fourth and fifth TMT joints by open reduction and internal fixation, TMT arthrodesis and arthroplasty. We conclude that open reduction and internal fixation is the recommended option for acute injuries, while arthrodesis can be used in cases of malunion of the fourth and fifth TMT joints with gross pain or arthritic changes and obvious structural deformity. Arthroplasty is an effective salvage operation mainly used in high-demand patients with severe TMT arthritis. Finally, we propose a recommended treatment algorithm (based on the literature and our experience), taking into account the specific indications for internal fixation, TMT arthrodesis and arthroplasty to optimize the individualized treatment. Data sources/Study selection Data from survey reports, descriptive, cross-sectional and longitudinal studies published from 2002 to 2012 on the topic of the injuries to the fourth and fifth tarsometatarsal joint on human and radiography studies were included. Data Extraction The data was extracted from online resources of American Orthopaedic Foot & Ankle Society, American Academy of Orthopaedic Surgeons, US National Library of Medicine, The MEDLINE. Conclusion It is important to comprehend the specific anatomical characteristics and grasp the strict indications, advantages and disadvantages of the ORIF, TMT arthrodesis and arthroplasty to optimize the individualized treatment of the fourth and fifth TMT joints injuries in a maximum extent. PMID:24353608

  9. Experimental Study on Wave Propagation Across a Rock Joint with Rough Surface

    NASA Astrophysics Data System (ADS)

    Chen, X.; Li, J. C.; Cai, M. F.; Zou, Y.; Zhao, J.

    2015-11-01

    Joints are an important mechanical feature of rock masses. Their effect on wave propagation is significant in characterizing dynamic behaviors of discontinuous rock masses. An experimental study on wave propagation across artificial rock joint was carried out to reveal the relation between the transmission coefficient and the contact situation of the joint surface. The modified split Hopkinson pressure bar apparatus was used in this study while all the bars and specimens were norite cored from the same site. One surface of the specimens with a number of notches was adopted to simulate the artificial rough joint. Two strain gauges were mounted on each pressure bar at a specific spacing. The incident, reflected and transmitted waves across the joints were obtained using a wave separation method. Comparisons of the transmission coefficients were made under two different conditions: with the same joint thickness but different contact area ratios, and with the same contact area ratio but different joint thicknesses. The results show the effects of contact area ratio and thickness of joints on wave transmission.

  10. Surface Modifications for Improved Wear Performance in Artificial Joints: A Review

    NASA Astrophysics Data System (ADS)

    Sullivan, Stacey J. L.; Topoleski, L. D. Timmie

    2015-11-01

    Artificial joint replacement is one of the most successful treatments for arthritis. Excellent wear and corrosion resistance, together with high strength and fracture toughness, are fundamental requirements for implant materials. Wear and/or corrosion of the materials used in artificial joints may lead to implant failure. Therefore, hard and wear-resistant materials, like cobalt-chromium-molybdenum and ceramic, are currently used as bearing surfaces. However, even using such hard materials, wear and/or corrosion related failure of artificial joints remains a central concern. One primary goal in orthopedic biomaterials research is to create more wear-resistant surfaces. Different technologies have been used to create new surfaces, or to modify existing surfaces, to prevent wear. It is the intent of this overview first to provide a summary of materials currently used as bearing surfaces in artificial joints, their functions, and their contributions to device longevity. Then, we will discuss advancements in modifying those bearing surfaces to produce more wear-resistant artificial joints.

  11. Mallet finger injuries-A new method to maintain distal interphalangeal joint extension.

    PubMed

    Mak, Lonita; Aitkens, Lorna D; Novak, Christine B

    2016-01-01

    Ensuring that distal interphalangeal joint extension is maintained is an important but challenging part of the treatment process. These authors describe a simple approach to ensuring distal interphalangeal joint extension for these patients. - VictoriaPriganc, PhD, OTR, CHT, CLT, Practice Forum Editor. PMID:27496991

  12. Laser Surface Pre-treatment of Aluminium for Hybrid Joints with Glass Fibre Reinforced Thermoplastics

    NASA Astrophysics Data System (ADS)

    Heckert, André; Zaeh, Michael F.

    Lightweight construction is a major trend in the automotive industry. Theconnection of fibre reinforced plastics with aluminium is consequently seen as promising prospect. In this regard, thermal joining can be applied for bonding of such hybrid joints. But in order to create a load bearing metal plastic joint, the surface of the metal has to be pre-treated. Recent research has shown that with laser surface pre-treatment high joint strengths are obtained. Yet there are a variety of laser sources and manufacturable surface topographies with structure sizes ranging from macroscopic to nanoscopic profiles. Within this work,macroscopic, microscopic and nanoscopic laser processed structures are created on aluminium and consequently joined to glass fibre reinforced thermoplastics of different fibre length and fibre content. High shear tensile strengths of up to 42 N/mm2 were obtained depending on the allocated material and the surface pre-treatment.

  13. Underestimated Sacroiliac Joint Lesion on Computed Tomography in Pelvic Open-book Injury: A Case Report.

    PubMed

    Kim, Weon-Yoo; Jeong, Jae-Jung; Kang, Han-Vit; Lee, Se-Won

    2016-03-01

    The classification of anteroposterior compression (APC) injury type is based on using static radiographs, stress radiographs are known as a useful adjunct in classifying type of APC pelvic injuries. According to a recent article, the intraoperative stress examination has led to a change in the treatment plan in more than 25% of patients on 22 patients presumed APC type I (symphyseal diastasis <2.5 cm) injuries. Here authors present a case demonstrating a necessity of intraoperative stress test for excluding concealed posterior ring disruption. PMID:27536644

  14. Underestimated Sacroiliac Joint Lesion on Computed Tomography in Pelvic Open-book Injury: A Case Report

    PubMed Central

    Kim, Weon-Yoo; Jeong, Jae-Jung; Kang, Han-Vit

    2016-01-01

    The classification of anteroposterior compression (APC) injury type is based on using static radiographs, stress radiographs are known as a useful adjunct in classifying type of APC pelvic injuries. According to a recent article, the intraoperative stress examination has led to a change in the treatment plan in more than 25% of patients on 22 patients presumed APC type I (symphyseal diastasis <2.5 cm) injuries. Here authors present a case demonstrating a necessity of intraoperative stress test for excluding concealed posterior ring disruption.

  15. Joint Disorders

    MedlinePlus

    A joint is where two or more bones come together, like the knee, hip, elbow, or shoulder. Joints can be damaged by many types of injuries or diseases, including Arthritis - inflammation of a joint. It causes pain, stiffness, and swelling. Over time, ...

  16. Gender Dimorphic ACL Strain In Response to Combined Dynamic 3D Knee Joint Loading: Implications for ACL Injury Risk

    PubMed Central

    Mizuno, Kiyonori; Andrish, Jack T.; van den Bogert, Antonie J.; McLean, Scott G.

    2009-01-01

    While gender-based differences in knee joint anatomies/laxities are well documented, the potential for them to precipitate gender-dimorphic ACL loading and resultant injury risk has not been considered. To this end, we generated gender-specific models of ACL strain as a function of any six degrees of freedom (6DOF) knee joint load state via a combined cadaveric and analytical approach. Continuously varying joint forces and torques were applied to five male and five female cadaveric specimens and recorded along with synchronous knee flexion and ACL strain data. All data (~10,000 samples) were submitted to specimen-specific regression analyses, affording ACL strain predictions as a function of the combined 6 DOF knee loads. Following individual model verifications, generalized gender-specific models were generated and subjected to 6 DOF external load scenarios consistent with both a clinical examination and a dynamic sports maneuver. The ensuing model-based strain predictions were subsequently examined for gender-based discrepancies. Male and female specimen specific models predicted ACL strain within 0.51% ± 0.10% and 0.52% ± 0.07% of the measured data respectively, and explained more than 75% of the associated variance in each case. Predicted female ACL strains were also significantly larger than respective male values for both of simulated 6 DOF load scenarios. Outcomes suggest that the female ACL will rupture in response to comparatively smaller external load applications. Future work must address the underlying anatomical/laxity contributions to knee joint mechanical and resultant ACL loading, ultimately affording prevention strategies that may cater to individual joint vulnerabilities. PMID:19464897

  17. Understanding the Acute Skin Injury Mechanism Caused by Player-Surface Contact During Soccer

    PubMed Central

    van den Eijnde, Wilbert A.J.; Peppelman, Malou; Lamers, Edwin A.D.; van de Kerkhof, Peter C.M.; van Erp, Piet E.J.

    2014-01-01

    Background: Superficial skin injuries are considered minor, and their incidence is probably underestimated. Insight into the incidence and mechanism of acute skin injury can be helpful in developing suitable preventive measures and safer playing surfaces for soccer and other field sports. Purpose: To gain insight into the incidence and severity of skin injuries related to soccer and to describe the skin injury mechanism due to player-surface contact. Study Design: Systematic review; Level of evidence, 4. Methods: The prevention model by van Mechelen et al (1992) combined with the injury causation model of Bahr and Krosshaug (2005) were used as a framework for the survey to describe the skin injury incidence and mechanism caused by player-surface contact. Results: The reviewed literature showed that common injury reporting methods are mainly based on time lost from participation or the need for medical attention. Because skin abrasions seldom lead to absence or medical attention, they are often not reported. When reported, the incidence of abrasion/laceration injuries varies from 0.8 to 6.1 injuries per 1000 player-hours. Wound assessment techniques such as the Skin Damage Area and Severity Index can be a valuable tool to obtain a more accurate estimation of the incidence and severity of acute skin injuries. Conclusion: The use of protective equipment, a skin lubricant, or wet surface conditions has a positive effect on preventing abrasion-type injuries from artificial turf surfaces. The literature also shows that essential biomechanical information of the sliding event is lacking, such as how energy is transferred to the area of contact. From a clinical and histological perspective, there are strong indications that a sliding-induced skin lesion is caused by mechanical rather than thermal injury to the skin. PMID:26535330

  18. Modulation of joint moments and work in the goat hindlimb with locomotor speed and surface grade

    PubMed Central

    Arnold, Allison S.; Lee, David V.; Biewener, Andrew A.

    2013-01-01

    SUMMARY Goats and other quadrupeds must modulate the work output of their muscles to accommodate the changing mechanical demands associated with locomotion in their natural environments. This study examined which hindlimb joint moments goats use to generate and absorb mechanical energy on level and sloped surfaces over a range of locomotor speeds. Ground reaction forces and the three-dimensional locations of joint markers were recorded as goats walked, trotted and galloped over 0, +15 and −15 deg sloped surfaces. Net joint moments, powers and work were estimated at the goats' hip, knee, ankle and metatarsophalangeal joints throughout the stance phase via inverse dynamics calculations. Differences in locomotor speed on the level, inclined and declined surfaces were characterized and accounted for by fitting regression equations to the joint moment, power and work data plotted versus non-dimensionalized speed. During level locomotion, the net work generated by moments at each of the hindlimb joints was small (less than 0.1 J kg−1 body mass) and did not vary substantially with gait or locomotor speed. During uphill running, by contrast, mechanical energy was generated at the hip, knee and ankle, and the net work at each of these joints increased dramatically with speed (P<0.05). The greatest increases in positive joint work occurred at the hip and ankle. During downhill running, mechanical energy was decreased in two main ways: goats generated larger knee extension moments in the first half of stance, absorbing energy as the knee flexed, and goats generated smaller ankle extension moments in the second half of stance, delivering less energy. The goats' hip extension moment in mid-stance was also diminished, contributing to the decrease in energy. These analyses offer new insight into quadrupedal locomotion, clarifying how the moments generated by hindlimb muscles modulate mechanical energy at different locomotor speeds and grades, as needed to accommodate the

  19. Histochemical study on the atrophy of the quadriceps femoris muscle caused by knee joint injuries of rats.

    PubMed

    Okada, Y

    1989-03-01

    Atrophy developing in the quadriceps femoris muscle following knee injury is one of the serious problems not only in the field of orthopedics but also of rehabilitation. However the pathogenesis of this atrophy has not yet been elucidated. The author therefore produced a complex ligament injury model using the knee joints of rats in order to study the pathogenesis of this atrophy. After severing the anterior cruciate ligament, the medial collateral ligament and tibial insertion of the medial meniscus of rats, these animals were sacrificed at 4, 8 and 12 weeks. After removing the vastus lateralis muscle, vastus medialis muscle, and rectus femoris muscle, specimens of these muscles were stained for ATPase. The transection area of the muscle fibers was measured and the fiber type composition was determined. At 4 weeks the vastus medialis muscle and at 12 weeks the vastus lateralis muscle showed marked atrophy. The rectus femoris muscle exhibited the least atrophy throughout the entire observation period. In examining the atrophy of the quadriceps femoris muscle by muscle fiber type, the degree of atrophy was found to differ among the venters and even the same venter showed a different reaction depending on the elapsed time after sustaining the injury. Neither changes in the fiber type composition not neurogenic findings could be observed. PMID:2526800

  20. Compartment Syndrome Following Arthroscopic Removal of a Bullet in the Knee Joint after a Low-Velocity Gunshot Injury

    PubMed Central

    Yalçin, Sercan; Oltulu, İsmail; Erdil, Mehmet Emin; Örmeci, Tuğrul

    2016-01-01

    Gunshot injuries are getting more frequently reported while the civilian (nongovernmental) armament increases in the world. A 42-year-old male patient presented to emergency room of Istanbul Medipol University Hospital due to a low-velocity gunshot injury. We detected one entry point on the posterior aspect of the thigh, just superior to the popliteal groove. No exit wound was detected on his physical examination. There was swelling around the knee and range of motion was limited due to pain and swelling. Neurological and vascular examinations were intact. Following the initial assessment, the vascular examination was confirmed by doppler ultrasonography of the related extremity. There were no signs of compartment syndrome in the preoperative physical examination. A bullet was detected in the knee joint on the initial X-rays. Immediately after releasing the tourniquet, swelling of the anterolateral compartment of the leg and pulse deficiency was detected on foot in the dorsalis pedis artery. Although the arthroscopic removal of intra-articular bullets following gunshot injuries seems to have low morbidity rates, it should always be considered that the articular capsule may have been ruptured and the fluids used during the operation may leak into surrounding tissues and result in compartment syndrome. PMID:26929809

  1. Joint variability of global runoff and global sea surface temperatures

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    2008-01-01

    Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.

  2. Diffusion welding in air. [solid state welding of butt joint by fusion welding, surface cleaning, and heating

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Holko, K. H. (Inventor)

    1974-01-01

    Solid state welding a butt joint by fusion welding the peripheral surfaces to form a seal is described along with, autogenetically cleaning the faying or mating surfaces of the joint by heating the abutting surfaces to 1,200 C and heating to the diffusion welding temperature in air.

  3. Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus.

    PubMed

    Jin, Z M; Dowson, D; Fisher, J

    1997-01-01

    Lubrication mechanisms and contact mechanics have been analysed for total hip joint replacements made from hard bearing surfaces such as metal-on-metal and ceramic-on-ceramic. A similar analysis for ultra-high molecular weight polyethylene (UHMWPE) against a hard bearing surface has also been carried out and used as a reference. The most important factor influencing the predicted lubrication film thickness has been found to be the radial clearance between the ball and the socket. Full fluid film lubrication may be achieved in these hard/hard bearings provided that the surface finish of the bearing surface and the radial clearance are chosen correctly and maintained. Furthermore, there is a close relation between the predicted contact half width and the predicted lubrication film thickness. Therefore, it is important to analyse the contact mechanics in artificial hip joint replacements. Practical considerations of manufacturing these bearing surfaces have also been discussed. PMID:9256001

  4. Development of an Experimental Animal Model for Lower Back Pain by Percutaneous Injury-Induced Lumbar Facet Joint Osteoarthritis.

    PubMed

    Kim, Jae-Sung; Ahmadinia, Kasra; Li, Xin; Hamilton, John L; Andrews, Steven; Haralampus, Chris A; Xiao, Guozhi; Sohn, Hong-Moon; You, Jae-Won; Seo, Yo-Seob; Stein, Gary S; Van Wijnen, Andre J; Kim, Su-Gwan; Im, Hee-Jeong

    2015-11-01

    We report generation and characterization of pain-related behavior in a minimally invasive facet joint degeneration (FJD) animal model in rats. FJD was produced by a non-open percutaneous puncture-induced injury on the right lumbar FJs at three consecutive levels. Pressure hyperalgesia in the lower back was assessed by measuring the vocalization response to pressure from a force transducer. After hyperalgesia was established, pathological changes in lumbar FJs and alterations of intervertebral foramen size were assessed by histological and imaging analyses. To investigate treatment options for lumber FJ osteoarthritis-induced pain, animals with established hyperalgesia were administered with analgesic drugs, such as morphine, a selective COX-2 inhibitor, a non-steroidal anti-inflammatory drug (NSAID) (ketorolac), or pregabalin. Effects were assessed by behavioral pain responses. One week after percutaneous puncture-induced injury of the lumbar FJs, ipsilateral primary pressure hyperalgesia developed and was maintained for at least 12 weeks without foraminal stenosis. Animals showed decreased spontaneous activity, but no secondary hyperalgesia in the hind paws. Histopathological and microfocus X-ray computed tomography analyses demonstrated that the percutaneous puncture injury resulted in osteoarthritis-like structural changes in the FJs cartilage and subchondral bone. Pressure hyperalgesia was completely reversed by morphine. The administration of celecoxib produced moderate pain reduction with no statistical significance while the administration of ketorolac and pregabalin produced no analgesic effect on FJ osteoarthritis-induced back pain. Our animal model of non-open percutanous puncture-induced injury of the lumbar FJs in rats shows similar characteristics of low back pain produced by human facet arthropathy. PMID:25858171

  5. The sensitivity and specificity of control surface injuries in aircraft accident fatalities.

    PubMed

    Campman, Steven C; Luzi, Scott A

    2007-06-01

    Among the important determinations that aircraft crash investigators try to make is which occupant of an aircraft was attempting to control the aircraft at the time of the crash. The presence or absence of certain injuries of the extremities is used to help make this determination. These "control surface injuries" reportedly occur when crash forces are applied to a pilot's hands and feet through the aircraft's controls. We sought to clarify the significance of these injuries and the frequency with which their presence indicates that the decedent was the person that might have been trying to control the aircraft, questions that are frequently asked of the examining pathologist. We studied sequential fatalities of airplane and helicopter crashes in which autopsies were performed by the Office of the Armed Forces Medical Examiner, excluding those that were known to have been incapacitated before the crash and those that were known to have attempted to escape from the aircraft, collecting 100 "qualified" crash decedents. The incidence of control surface injuries was determined for both pilots and passengers. The sensitivity and specificity of control surface injuries were calculated by classifying the decedents into a 4-cell diagnostic matrix. The positive and negative predictive values for control surface injuries were also calculated. Injuries that met the published definitions of control surface injuries had high incidences in passengers, as well as pilots, giving the term control surface injury a diagnostically unacceptable sensitivity and specificity for indicating "a pilot attempting to control an aircraft." We offer caveats and refinements to the definition of these injuries that help to increase the sensitivity and specificity of this term. PMID:17525559

  6. Association of the type of trauma, occurrence of bone bruise, fracture and joint effusion with the injury to the menisci and ligaments in MRI of knee trauma

    PubMed Central

    Pezeshki, Sina; Vogl, Thomas J.; Pezeshki, Mohammad Zakaria; Daghighi, Mohammad Hossein; Pourisa, Masoud

    2016-01-01

    Summary Background magnetic resonance imaging (MRI) as a noninvasive diagnostic tool may help clinicians in the evaluation of injuries to menisci and ligaments. Purpose this study assessed the associations between type of trauma to knee joint, bone bruise, fracture and pathological joint effusion with injuries to menisci and ligaments of knee joint. Methods we reviewed knee joint MRI of 175 patients aged less than 45 years old who were referred to MRI center of our University. Results statistical analysis showed that tearing of medial meniscus (MM) is significantly more common in sport related trauma (p= 0.045) but tearing of medial collateral ligament (MCL) is significantly more common in non-sport related trauma (p= 0.005). Existence of bone bruise in knee MRI is negatively associated with tearing of medial meniscus (MM) (p=0.004) and positively associated with tearing of anterior cruciate ligament (ACL) (p=0.00047) and medial collateral ligament (MCL) (p = 0.0001). Existence of fracture is associated with decreased risk of the tearing of ACL and MM (p=0.04, p=0.001 respectively). Pathologic joint effusion is significantly more common in ACL and MCL tearing (p=0.0001, p=0.004 respectively). Conclusions as diagnostic clues, bone bruise, fracture and joint effusion may help radiologists for better assessment of injury to menisci and ligaments in MRI of patients with knee trauma. PMID:27331046

  7. Acute Kidney Injury in ICU Patients Following Non-Cardiac Surgery at Masih Daneshvari Hospital: Joint Modeling Application

    PubMed Central

    Khoundabi, Batoul; Mansourian, Marjan; Kazempoor Dizaji, Mehdi; Hashemian, Seyed Mohammadreza

    2015-01-01

    Background: Admission to the intensive care unit (ICU) is often complicated by early acute kidney injury (AKI). AKI is associated with high rates of mortality and morbidity. Risk factors and incidence of AKI have been notably high following non-cardiac surgery in the past decade. The aim of this study was to determine the hazard rate of AKI, the effect of risk factors of AKI and also to assess the changes in urine output (UO) as a predictor of AKI using joint modeling in patients undergoing non-cardiac surgery. Materials and Methods: In this retrospective cohort study, 400 non-cardiac-operated patients admitted during 3 years to the ICU of Masih Daneshvari Hospital were selected according to the consecutive sample selection method. Random mixed effect model and survival model were used to assess UO changes and the effect of UO and other risk factors on the hazard rate of AKI using joint analysis. Results: AKI occurred in 8.8% of the Iranian non-cardiac-operated patients. Survival model showed that the risk of AKI in lower diastolic blood pressure (DBP), higher Acute Physiology and Chronic Health Evaluation II score (APACHE II score), emergency surgery, longer hospitalization and male patients was higher (P=0.001). Using joint modeling, an association was found between the risk of AKI and UO (−0.19, P=0.002). Conclusion: Several predictors were found to be associated with AKI in the Iranian patients after non-cardiac surgery. A relationship between longitudinal and survival responses was found in this study and joint modeling caused considerable improvement in estimations compared to separate longitudinal and survival models. PMID:26221152

  8. Development of High Temperature Dissimilar Joint Technology for Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Bowman, Cheryl L.; Gabb, Timothy P.

    2009-01-01

    NASA is developing fission surface power (FSP) system technology as a potential option for use on the surface of the moon or Mars. The goal is to design a robust system that takes full advantage of existing materials data bases. One of the key components of the power conversion system is the hot-side Heat Exchanger (HX). One possible design for this heat exchanger requires a joint of the dissimilar metals 316L stainless steel and Inconel 718, which must sustain extended operation at high temperatures. This study compares two joining techniques, brazing and diffusion bonding, in the context of forming the requisite stainless steel to superalloy joint. The microstructures produced by brazing and diffusion bonding, the effect of brazing cycle on the mechanical tensile properties of the alloys, and the strength of several brazed joints will be discussed.

  9. Neural network committees for finger joint angle estimation from surface EMG signals

    PubMed Central

    Shrirao, Nikhil A; Reddy, Narender P; Kosuri, Durga R

    2009-01-01

    Background In virtual reality (VR) systems, the user's finger and hand positions are sensed and used to control the virtual environments. Direct biocontrol of VR environments using surface electromyography (SEMG) signals may be more synergistic and unconstraining to the user. The purpose of the present investigation was to develop a technique to predict the finger joint angle from the surface EMG measurements of the extensor muscle using neural network models. Methodology SEMG together with the actual joint angle measurements were obtained while the subject was performing flexion-extension rotation of the index finger at three speeds. Several neural networks were trained to predict the joint angle from the parameters extracted from the SEMG signals. The best networks were selected to form six committees. The neural network committees were evaluated using data from new subjects. Results There was hysteresis in the measured SMEG signals during the flexion-extension cycle. However, neural network committees were able to predict the joint angle with reasonable accuracy. RMS errors ranged from 0.085 ± 0.036 for fast speed finger-extension to 0.147 ± 0.026 for slow speed finger extension, and from 0.098 ± 0.023 for the fast speed finger flexion to 0.163 ± 0.054 for slow speed finger flexion. Conclusion Although hysteresis was observed in the measured SEMG signals, the committees of neural networks were able to predict the finger joint angle from SEMG signals. PMID:19154615

  10. The surface lamina of the articular cartilage of human zygapophyseal joints.

    PubMed

    Giles, L G

    1992-07-01

    Literature referring to the conflicting results of investigations into the possible existence and composition of the lamina splendens is reviewed. Two hundred micrometer thick histological sections from 80 human cadaveric lower lumbar zygapophyseal joint articular cartilages were examined by ordinary light and darkfield microscopy. The findings illustrate what appears to be an acellular surface lamina on the opposing cartilaginous surfaces. No speculation is made regarding the possible physiological significance of the lamina based on this anatomical study. PMID:1609968

  11. Comparative 3D quantitative analyses of trapeziometacarpal joint surface curvatures among living catarrhines and fossil hominins.

    PubMed

    Marzke, M W; Tocheri, M W; Steinberg, B; Femiani, J D; Reece, S P; Linscheid, R L; Orr, C M; Marzke, R F

    2010-01-01

    Comparisons of joint surface curvature at the base of the thumb have long been made to discern differences among living and fossil primates in functional capabilities of the hand. However, the complex shape of this joint makes it difficult to quantify differences among taxa. The purpose of this study is to determine whether significant differences in curvature exist among selected catarrhine genera and to compare these genera with hominin fossils in trapeziometacarpal curvature. Two 3D approaches are used to quantify curvatures of the trapezial and metacarpal joint surfaces: (1) stereophotogrammetry with nonuniform rational B-spline (NURBS) calculation of joint curvature to compare modern humans with captive chimpanzees and (2) laser scanning with a quadric-based calculation of curvature to compare modern humans and wild-caught Pan, Gorilla, Pongo, and Papio. Both approaches show that Homo has significantly lower curvature of the joint surfaces than does Pan. The second approach shows that Gorilla has significantly more curvature than modern humans, while Pongo overlaps with humans and African apes. The surfaces in Papio are more cylindrical and flatter than in Homo. Australopithecus afarensis resembles African apes more than modern humans in curvatures, whereas the Homo habilis trapezial metacarpal surface is flatter than in all genera except Papio. Neandertals fall at one end of the modern human range of variation, with smaller dorsovolar curvature. Modern human topography appears to be derived relative to great apes and Australopithecus and contributes to the distinctive human morphology that facilitates forceful precision and power gripping, fundamental to human manipulative activities. PMID:19544574

  12. Characterization of Anisotropy of Joint Surface Roughness and Aperture by Variogram Approach Based on Digital Image Processing Technique

    NASA Astrophysics Data System (ADS)

    Chen, S. J.; Zhu, W. C.; Yu, Q. L.; Liu, X. G.

    2016-03-01

    The mechanical and hydraulic anisotropy of rock joints are strongly dependent on the surface roughness and aperture. To date, accurate quantification of the anisotropic characteristics of joint surfaces remains a key issue. For this purpose, the digital image processing (DIP) technique was used to retrieve the joint surface topography, and a variogram function was used to characterize the anisotropy of the joint surface roughness and estimate the joint aperture. A new index, SR V , related to both the sill and the range of the variogram is proposed to describe the anisotropy of the joint surface roughness, and a new aperture index, b, is derived to quantify the joint aperture. These newly proposed indexes, SR V and b, were validated by characterizing three artificial triangular joint surfaces, then the values of both SR V and b were calculated along 42 directions on an artificial joint surface. The range of SR V was between 0.058622 and 0.331283, while that of b was from 0.270433 to 0.397715 mm. The results show that the newly proposed indexes SR V and b are effective for quantifying the anisotropic roughness and aperture of joint surfaces, respectively. In addition, based on the hypothesis that there exists a smooth upper wall for the artificial joint, a relationship between the indexes SR V and b was obtained based on the data analysis. It indicates that the trends of the indexes SR V and b tend to coincide, although some of their individual values differ. In this respect, the hydraulic aperture of rock joints is related to not only surface roughness but also the distribution of asperities on the surface. In addition, this method can also be used to characterize the roughness of real rock joints when the joint surface is treated by dying with ink before taking digital photos. This study provides a new method for properly quantifying the directional variability of joint surface roughness and estimating the mechanical and hydraulic properties of rock joints based

  13. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints

    PubMed Central

    KUMAR, P.; OKA, M.; TOGUCHIDA, J.; KOBAYASHI, M.; UCHIDA, E.; NAKAMURA, T.; TANAKA, K.

    2001-01-01

    The uppermost superficial surface layer of articular cartilage, the ‘lamina splendens’ which provides a very low friction lubrication surface in articular joints, was investigated using atomic force microscopy (AFM). Complementary specimens were also observed under SEM at −10 °C without dehydration or sputter ion coating. Fresh adult pig osteochondral specimens were prepared from the patellas of pig knee joints and digested with the enzymes, hyaluronidase, chondroitinase ABC and alkaline protease. Friction coefficients between a pyrex glass plate and the osteochondral specimens digested by enzymes as well as natural (undigested) specimens were measured, using a thrust collar apparatus. Normal saline, hyaluronic acid (HA) and a mixture of albumin, globulin, HA (AGH) were used as lubrication media. The surface irregularities usually observed in SEM studies were not apparent under AFM. The articular cartilage surface was resistant to hyaluronidase and also to chondroitinase ABC, but a fibrous structure was exhibited in alkaline protease enzymes-digested specimens. AFM analysis revealed that the thickness of the uppermost superficial surface layer of articular cartilage was between 800 nm and 2 μm in adult pig articular cartilage. The coefficient of friction (c.f.) was significantly higher in chondroitinase ABC and alkaline protease enzymes digested specimens. Generally, in normal saline lubrication medium, c.f. was higher in comparison to HA and AGH lubrication media. The role of the uppermost, superficial surface layer of articular cartilage in the lubrication mechanism of joints is discussed. PMID:11554503

  14. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints.

    PubMed

    Kumar, P; Oka, M; Toguchida, J; Kobayashi, M; Uchida, E; Nakamura, T; Tanaka, K

    2001-09-01

    The uppermost superficial surface layer of articular cartilage, the 'lamina splendens' which provides a very low friction lubrication surface in articular joints, was investigated using atomic force microscopy (AFM). Complementary specimens were also observed under SEM at -10 degrees C without dehydration or sputter ion coating. Fresh adult pig osteochondral specimens were prepared from the patellas of pig knee joints and digested with the enzymes, hyaluronidase, chondroitinase ABC and alkaline protease. Friction coefficients between a pyrex glass plate and the osteochondral specimens digested by enzymes as well as natural (undigested) specimens were measured, using a thrust collar apparatus. Normal saline, hyaluronic acid (HA) and a mixture of albumin, globulin, HA (AGH) were used as lubrication media. The surface irregularities usually observed in SEM studies were not apparent under AFM. The articular cartilage surface was resistant to hyaluronidase and also to chondroitinase ABC, but a fibrous structure was exhibited in alkaline protease enzymes-digested specimens. AFM analysis revealed that the thickness of the uppermost superficial surface layer of articular cartilage was between 800 nm and 2 microm in adult pig articular cartilage. The coefficient of friction (c.f.) was significantly higher in chondroitinase ABC and alkaline protease enzymes digested specimens. Generally, in normal saline lubrication medium, c.f. was higher in comparison to HA and AGH lubrication media. The role of the uppermost, superficial surface layer of articular cartilage in the lubrication mechanism of joints is discussed. PMID:11554503

  15. The joint use of the tangential electric field and surface Laplacian in EEG classification.

    PubMed

    Carvalhaes, C G; de Barros, J Acacio; Perreau-Guimaraes, M; Suppes, P

    2014-01-01

    We investigate the joint use of the tangential electric field (EF) and the surface Laplacian (SL) derivation as a method to improve the classification of EEG signals. We considered five classification tasks to test the validity of such approach. In all five tasks, the joint use of the components of the EF and the SL outperformed the scalar potential. The smallest effect occurred in the classification of a mental task, wherein the average classification rate was improved by 0.5 standard deviations. The largest effect was obtained in the classification of visual stimuli and corresponded to an improvement of 2.1 standard deviations. PMID:23864444

  16. Successful treatment of a guitarist with a finger joint injury using instrument-assisted soft tissue mobilization: a case report.

    PubMed

    Terry Loghmani, M; Bayliss, Amy J; Clayton, Greg; Gundeck, Evelina

    2015-12-01

    Finger injuries are common and can greatly affect a musician's quality of life. A 55-year-old man, who had injured the proximal interphalangeal joint of the left index finger 6 months prior to any intervention, was treated with a manual therapy approach incorporating instrument-assisted soft tissue mobilization (IASTM). Initial examination findings included self-reported pain and functional limitations and physical impairments that significantly impeded his ability to play the acoustic guitar. He was treated once a week for 6 weeks with IASTM, joint mobilization, therapeutic exercise, and ice massage. Additionally, a home exercise program and self-care instructions were provided. The patient gained positive outcomes with improvements in pain (Numerical Pain Rating Scale while playing the guitar: initial 5/10, discharge 1/10) and function (Disability Arm Shoulder Hand Sports-Performing Arts Optional Module: initial 75; discharge 6·25), each reaching a minimum clinically important difference. Importantly, he was able to play the guitar with minimal to no pain as desired. Physical measures also improved, including an immediate gain in finger range of motion with IASTM alone. Manual therapy approaches integrating IASTM may provide an effective conservative treatment strategy for patients with finger/hand conditions in the performing arts and other patient populations. PMID:26952165

  17. Effectiveness of surgical reconstruction to restore radiocarpal joint mechanics after scapholunate ligament injury: an in vivo modeling study.

    PubMed

    Johnson, Joshua E; Lee, Phil; McIff, Terence E; Toby, E Bruce; Fischer, Kenneth J

    2013-05-31

    Disruption of the scapholunate ligament can cause a loss of normal scapholunate mechanics and eventually lead to osteoarthritis. Surgical reconstruction attempts to restore scapholunate relationship show improvement in functional outcomes, but postoperative effectiveness in restoring normal radiocarpal mechanics still remains a question. The objective of this study was to investigate the benefits of surgical repair by observing changes in contact mechanics on the cartilage surface before and after surgical treatment. Six patients with unilateral scapholunate dissociation were enrolled in the study, and displacement driven magnetic resonance image-based surface contact modeling was used to investigate normal, injured and postoperative radiocarpal mechanics. Model geometry was acquired from images of wrists taken in a relaxed position. Kinematics were acquired from image registration between the relaxed images, and images taken during functional loading. Results showed a trend for increase in radiocarpal contact parameters with injury. Peak and mean contact pressures significantly decreased after surgery in the radiolunate articulation and there were no significant differences between normal and postoperative wrists. Results indicated that surgical repair improves contact mechanics after injury and that contact mechanics can be surgically restored to be similar to normal. This study provides novel contact mechanics data on the effects of surgical repair after scapholunate ligament injury. With further work, it may be possible to more effectively differentiate between treatments and degenerative changes based on in vivo contact mechanics data. PMID:23618131

  18. An investigation into the effect of varying joint aperture and nature of surface on pre-splitting

    SciTech Connect

    Tariq, S.M.; Worsey, P.N.

    1996-12-01

    Presplitting is now a universally accepted perimeter control technique in rock excavation. The success of presplitting and the smoothness and integrity of the resulting perimeter is largely dependent on the nature of joints in any given formation. Many facets of jointing have been previously investigated. The results of the effects of joints frequency and spatial positioning were presented by the authors at the ISEE annual meeting last year. This paper includes the results of further research into the mechanism of presplit blasting being carried out at the Rock Mechanics and Explosives Research Center of the University of Missouri-Rolla. The results of experimental model testing carried out in concrete blocks are presented. The research comprised of modeling both closed and open joints between 3/8 inch blastholes loaded with 15-grain per foot PETN detonating cord. The closed joints were (a) simple (rough) machine-cut and (b) surface ground (smooth-matching). The precision ground joints were modeled to simulate tight fractures as found in real rock mass. Precision spacers of varying thicknesses were used to create opening between the joint surfaces. It was found that precision ground joints have no significant effect on the maximum blasthole spacing up to two joints, and act like a continuous medium. This is because ground surfaces provide a relatively perfect match thereby transmitting most of the energy through the joint. However beyond two ground joints, the effects of attenuation is evident and the maximum blasthole spacing has to be reduced to obtain a presplit plane. A simple machine cut joint, on the other hand, has some undulations that results in loss of energy, making it necessary to bring the blastholes closer to achieve a presplit plane (for up to two joints). It was observed that a ground joint with spacer thickness of 0.012 inch behaves like a free surface.

  19. Joints with the Surface Modification of Alumina by a Thin Layer of Ti + Nb

    NASA Astrophysics Data System (ADS)

    Ksiazek, Marzanna; Tchorz, Adam; Boron, Lukasz

    2014-05-01

    Al2O3/Al/Al2O3 joints were formed by liquid-state bonding of alumina substrates covered with a thin Ti + Nb coating of 900 nm thickness with the use of an Al interlayer of 30 μm at 973 K under a vacuum of 0.2 mPa for 5 min. The bond strength of the joints was examined by a four-point bending test at 295, 373, and 473 K. Optical, scanning, and transmission electron microscopies were applied for detailed characterization of the interface structure and failure characteristics of fractured joint surfaces. The analysis of the results has shown that (i) bonding occurred due to the formation of a reactive interface on the metal side of the joint in the presence of Al3Nb(Ti) precipitates and (ii) modification of Al2O3 by a thin layer of Ti + Nb increases the hardness at the interface and makes it possible to achieve reliable joints working at elevated temperatures.

  20. Comparative study on isokinetic capacity of knee and ankle joints by functional injury

    PubMed Central

    Jeon, Kyoungkyu; Seo, Byoung-Do; Lee, Sang-Ho

    2016-01-01

    [Purpose] To collect basic data for exercise programs designed to enhance functional knee and ankle joint stability based on isokinetic measurement and muscle strength evaluations in normal and impaired functional states. [Subjects and Methods] Twenty-four subjects were randomly assigned to the athlete group and the control group (n = 12 each). Data were collected of isokinetic knee extensor and flexor strength at 60°/sec, 180°/sec, and 240°/sec and ankle plantar and dorsiflexor strength at 30°/sec and 120°/sec. [Results] Significant intergroup differences were observed in peak torque of the right extensors at 60°/sec, 180°/sec, and 240°/sec and the right flexors at 240°/sec. Significant differences were observed in peak torque/body weight in the right extensors at 60°/sec, 180°/sec, and 240°/sec and in the right flexors at 180°/sec and 240°/sec. Significant peak torque differences were noted in the left ankle joint dorsiflexor at 30°/sec and 120°/sec, right plantar flexor at 120°/sec, left plantar flexor at 30°/sec, left dorsiflexor at 30°/sec and 120°/sec, and right dorsiflexor at 120°/sec. [Conclusion] Isokinetic evaluation stimulates muscle contraction at motion-dependent speeds and may contribute to the development of intervention programs to improve knee and ankle joint function and correct lower-extremity instability. PMID:26957768

  1. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    DOE PAGESBeta

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks ofmore » both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.« less

  2. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    SciTech Connect

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks of both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.

  3. Joint inversion of high-frequency surface waves with fundamental and higher modes

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Liu, Q.; Xu, S.

    2007-01-01

    Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities. ?? 2007.

  4. Joint inversion of high-frequency surface waves with fundamental and higher modes

    NASA Astrophysics Data System (ADS)

    Luo, Yinhe; Xia, Jianghai; Liu, Jiangping; Liu, Qingsheng; Xu, Shunfang

    2007-08-01

    Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities.

  5. Looking into the Near Surface with More Data and Multiple Joint Imaging Technologies

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2015-12-01

    While exploration geophysicists are making tremendous efforts to image the deep subsurface for hydrocarbon resources, the complex near surface structures often impose significant challenges. Unlike the subsurface, the near surface structures vary from region to region. Thus, it is difficult to develop any benchmark model that represents common issues worldwide. During past 20 years, near surface imaging technologies have been advanced from refraction traveltime analysis and inversion to waveform inversion. Immediate benefit is to resolve any complex velocity structure associated with low velocity hidden layers if such waveform inversion is properly handled. However, inverting seismic waveform often suffers from cycle-skipping due to poor starting model or missing of low frequency data. Jointly inverting traveltime, waveform envelope and waveform data seems stabilizing the solutions. With more data utilized for the near surface imaging, we are also able to infer anisotropic parameters, attenuation factors, density, and both Vp and Vs. Since the cross-gradient approach was introduced in 2005, the simultaneous inversion of multiple types of geophysical data has also been applied in the near surface imaging. That includes joint seismic, gravity and EM inversion for mapping seismic velocity, density, and resistivity into a near surface structure with consistent geology. I demonstrate the changes of the near surface structural images due to the progress of the imaging technology development and the transition to much more data included with five real data examples.

  6. Joint instability and osteoarthritis.

    PubMed

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  7. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  8. Diminishing friction of joint surfaces as initiating factor for destabilising permafrost rocks?

    NASA Astrophysics Data System (ADS)

    Funk, Daniel; Krautblatter, Michael

    2010-05-01

    Degrading alpine permafrost due to changing climate conditions causes instabilities in steep rock slopes. Due to a lack in process understanding, the hazard is still difficult to asses in terms of its timing, location, magnitude and frequency. Current research is focused on ice within joints which is considered to be the key-factor. Monitoring of permafrost-induced rock failure comprises monitoring of temperature and moisture in rock-joints. The effect of low temperatures on the strength of intact rock and its mechanical relevance for shear strength has not been considered yet. But this effect is signifcant since compressive and tensile strength is reduced by up to 50% and more when rock thaws (Mellor, 1973). We hypotheisze, that the thawing of permafrost in rocks reduces the shear strength of joints by facilitating the shearing/damaging of asperities due to the drop of the compressive/tensile strength of rock. We think, that decreasing surface friction, a neglected factor in stability analysis, is crucial for the onset of destabilisation of permafrost rocks. A potential rock slide within the permafrost zone in the Wetterstein Mountains (Zugspitze, Germany) is the basis for the data we use for the empirical joint model of Barton (1973) to estimate the peak shear strength of the shear plane. Parameters are the JRC (joint roughness coefficient), the JCS (joint compressive strength) and the residual friction angle (φr). The surface roughness is measured in the field with a profile gauge to create 2D-profiles of joint surfaces. Samples of rock were taken to the laboratory to measure compressive strength using a high-impact Schmidt-Hammer under air-dry, saturated and frozen conditions on weathered and unweathered surfaces. Plugs where cut out of the rock and sand blasted for shear tests under frozen and unfrozen conditions. Peak shear strength of frozen and unfrozen rocks will be calculated using Barton's model. First results show a mean decrease of compressive

  9. [Fractures of the elbow joint].

    PubMed

    Nowak, T E; Dietz, S O; Burkhart, K J; Müller, L P; Rommens, P M

    2012-02-01

    Fractures around the elbow joint comprise fractures of the distal humerus, the radial head, the olecranon and the coronoid process. Combined lesions are particularly demanding for the surgeon. Accurate knowledge of the anatomy and of the biomechanics is an essential requirement for a specific diagnosis and therapy. A stable and painless movable elbow joint is essential for most of the activities of daily living. Risk factors for the development of posttraumatic elbow joint arthrosis are non-anatomically reconstructed joint surfaces, axial malalignment of the joint axis and untreated concomitant injuries. Modern angular stable and anatomically preshaped implants facilitate a biomechanically adequate osteosynthesis and avoid or decrease functional impairment. In consideration of an increasing number of osteoporotic elbow joint fractures, endoprosthetic replacement has gained significance. PMID:22271056

  10. Effect of Surface Preparation on CLAM/CLAM Hot Isostatic Pressing diffusion bonding joints

    NASA Astrophysics Data System (ADS)

    Li, C.; Huang, Q.; Zhang, P.

    2009-04-01

    Surface preparation is essential for the Hot Isostatic Pressing (HIP) diffusion bonding of RAFM steels. Hot Isostatic Pressing (HIP) diffusion bonding experiments on China Low Activation Martensitic (CLAM) steel was performed to study the effect of surface preparation. A few approaches such as hand lapping, dry-milling and grinding etc., were used to prepare the faying surfaces of the HIP joints. Different sealing techniques were used as well. The HIP parameters were 150 MPa/3 h/1150 °C. After post HIP heat treatment (PHHT), the tensile and Charpy impact tests were carried out. The results showed that hand lapping was not suitable to prepare the faying surfaces of HIP diffusion bonding specimens although the surface roughness by hand lapping was very low.

  11. Design, fabrication and test of graphite/polyimide composite joints and attachments. [spacecraft control surfaces

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    The design, analysis, and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561 K (550 F) are summarized. Material properties and small specimen tests were conducted to establish design data and to evaluate specific design details. Static discriminator tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours at 589 K (600 F)) and thermal cycled (116 K to 589 K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589 K (600 F) for 125 hours.

  12. Joint sulcal detection on cortical surfaces with graphical models and boosted priors.

    PubMed

    Shi, Yonggang; Tu, Zhuowen; Reiss, Allan L; Dutton, Rebecca A; Lee, Agatha D; Galaburda, Albert M; Dinov, Ivo; Thompson, Paul M; Toga, Arthur W

    2009-03-01

    In this paper, we propose an automated approach for the joint detection of major sulci on cortical surfaces. By representing sulci as nodes in a graphical model, we incorporate Markovian relations between sulci and formulate their detection as a maximum a posteriori (MAP) estimation problem over the joint space of major sulci. To make the inference tractable, a sample space with a finite number of candidate curves is automatically generated at each node based on the Hamilton-Jacobi skeleton of sulcal regions. Using the AdaBoost algorithm, we learn both individual and pairwise shape priors of sulcal curves from training data, which are then used to define potential functions in the graphical model based on the connection between AdaBoost and logistic regression. Finally belief propagation is used to perform the MAP inference and select the joint detection results from the sample spaces of candidate curves. In our experiments, we quantitatively validate our algorithm with manually traced curves and demonstrate the automatically detected curves can capture the main body of sulci very accurately. A comparison with independently detected results is also conducted to illustrate the advantage of the joint detection approach. PMID:19244008

  13. Joint analysis of refractions with surface waves: An inverse solution to the refraction-traveltime problem

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.

    2006-01-01

    We describe a possible solution to the inverse refraction-traveltime problem (IRTP) that reduces the range of possible solutions (nonuniqueness). This approach uses a reference model, derived from surface-wave shear-wave velocity estimates, as a constraint. The application of the joint analysis of refractions with surface waves (JARS) method provided a more realistic solution than the conventional refraction/tomography methods, which did not benefit from a reference model derived from real data. This confirmed our conclusion that the proposed method is an advancement in the IRTP analysis. The unique basic principles of the JARS method might be applicable to other inverse geophysical problems. ?? 2006 Society of Exploration Geophysicists.

  14. Effects of Anterior-Posterior Constraint on Injury Patterns in the Human Knee During Tibial-Femoral Joint Loading from Axial Forces through the Tibia.

    PubMed

    Jayaraman, V M; Sevensma, E T; Kitagawa, M; Haut, R C

    2001-11-01

    According to the National Accident Sampling System (NASS), 10% of all automobile accident injuries involve the knee. These injuries involve bone fracture and/or "soft tissue" injury. Previous investigators have determined the tibial-femoral (TF) joint failure load for an experimentally constrained human knee at 90 degrees flexion. In these experiments bone fractures have been documented. During TF joint compression, however, anterior motion of the tibia has been noted by others. It was therefore the objectives of this study to document effects of flexion angle and anterior-posterior joint constraint on the nature and severity of knee injury during TF compression loading via axial loads in the tibia. The effect of flexion angle was examined using 10 unconstrained human knees from 5 cadavers aged 73.2+/-9.4 years. The tibial-femoral joint was loaded in compression as a result of axial loading along the tibia using a servo-hydraulic testing machine until gross failure with the knee flexed 60 degrees or 120 degrees . Pressure sensitive film measured the distribution of internal TF joint loads. Both 60 degrees and 120 degrees flexed preparations failed by rupture of the anterior cruciate ligament (ACL) at 4.6+/-1.2 kN, and the internal joint loads were significantly higher (2.6+/-1.5 kN) on the medial versus the lateral (0.4+/-0.5 kN) aspect of the tibial plateau. The effect of anterior-posterior (AP) constraint of the femur along the longitudinal axis of the femur was investigated in a second series of tests using the same TF joint loading protocol on 6 pairs of human joints (74.3+/-10.5 years) flexed at 90 degrees . The primary mode of failure for the AP constrained joints was fracture of bone via the femoral condyle at a maximum load of 9.2+/-2.6 kN. The mode of failure for unconstrained joints was primarily due to rupture of the ACL at a maximum load of 5.8+/-2.9 kN. Again, the pressure film indicated an unequal internal TF load distribution for the unconstrained

  15. Evaluation of near-surface stress distributions in dissimilar welded joint by scanning acoustic microscopy.

    PubMed

    Kwak, Dong Ryul; Yoshida, Sanichiro; Sasaki, Tomohiro; Todd, Judith A; Park, Ik Keun

    2016-04-01

    This paper presents the results from a set of experiments designed to ultrasonically measure the near surface stresses distributed within a dissimilar metal welded plate. A scanning acoustic microscope (SAM), with a tone-burst ultrasonic wave frequency of 200 MHz, was used for the measurement of near surface stresses in the dissimilar welded plate between 304 stainless steel and low carbon steel. For quantitative data acquisition such as leaky surface acoustic wave (leaky SAW) velocity measurement, a point focus acoustic lens of frequency 200 MHz was used and the leaky SAW velocities within the specimen were precisely measured. The distributions of the surface acoustic wave velocities change according to the near-surface stresses within the joint. A three dimensional (3D) finite element simulation was carried out to predict numerically the stress distributions and compare with the experimental results. The experiment and FE simulation results for the dissimilar welded plate showed good agreement. This research demonstrates that a combination of FE simulation and ultrasonic stress measurements using SAW velocity distributions appear promising for determining welding residual stresses in dissimilar material joints. PMID:26773788

  16. Structural tests and development of a laminar flow control wing surface composite chordwise joint

    NASA Technical Reports Server (NTRS)

    Lineberger, L. B.

    1984-01-01

    The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. The Lockheed-Georgia Company accomplished under NAS1-16235 Laminar-Flow-Control (LFC) Wing Panel Structural Design and Development (WSSD); design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joint was demonstrated by fabricating and testing complex, concept selection specimens. The Lockheed-Georgia Company accomplishments, Development of LFC Wind Surface Composite Structures (WSCS), are documented. Tests were conducted on two CV2 panels to verify the static tension and fatigue strength of LFC wing surface chordwise joints.

  17. Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury

    PubMed Central

    Zhuang, Haixia; Tian, Weili; Li, Wen; Zhang, Xingli; Wang, Jingjing; Yang, Yue; Liu, Xin; Xia, Zhengyuan; Feng, Du; Zhang, Liangqing

    2016-01-01

    Cisatracurium besylate is an ideal non-depolarizing muscle relaxant which is widely used in clinical application. However, some studies have suggested that cisatracurium besylate can affect cell proliferation. Moreover, its specific mechanism of action remains unclear. Here, we found that the number of GFP-LC3 (green fluoresent protein-light chain 3) positive autophagosomes and the rate of mitochondria fracture both increased significantly in drug-treated GFP-LC3 and MitoDsRed stable HeLa cells. Moreover, cisatracurium promoted the co-localization of LC3 and mitochondria and induced formation of autolysosomes. Levels of mitochondrial proteins decreased, which were reversed by the lysosome inhibitor Bafinomycin A1. Similar results with evidence of dose-dependent effects were found in both HeLa and Human Umbilical Vein Endothelial Cells (HUVECs). Cisatracurium lowered HUVEC viability to 0.16 (OD490) at 100 µM and to 0.05 (OD490) after 48 h in vitro; it increased the cell death rate to 56% at 100 µM and to 60% after 24 h in a concentration- and time-dependent manner (p < 0.01). Cell proliferation decreased significantly by four fold in Atg5 WT (wildtype) MEF (mouse embryonic fibroblast) (p < 0.01) but was unaffected in Atg5 KO (Knockout) MEF, even upon treatment with a high dose of cisatracurium. Cisatracurium induced significant increase in cell death of wild-type MEFs even in the presence of the apoptosis inhibitor zVAD. Thus, we conclude that activation of both the autophagic cell death and cell apoptosis pathways contributes to cisatracurium-mediated cell injury. PMID:27058536

  18. Embrittlement of surface mount solder joints by hot solder-dipped, gold-plated leads

    SciTech Connect

    Vianco, P.T.

    1993-07-01

    The detachment of beam-leaded transistors from several surface mount circuit boards following modest thermal cycling was examined. Microstructural analysis of the package leads and bonding pads from the failed units indicated that gold embrittlement was responsible for a loss of solder joint mechanical integrity that caused detachment of transistors from the circuit boards. An analysis of the hot dipping process used to remove gold from the leads prior to assembly demonstrated that the gold, although dissolved from the lead, remained in the nearby solder and was subsequently retained in the coating formed on the lead upon withdrawal from the bath. This scenario allowed gold to enter the circuit board solder joints. It was hypothesized, and later confirmed by experimental trials, that increasing the number of dips prevented gold from entering the solder coatings.

  19. Macroscopic Surface Structures for Polymer-metal Hybrid Joints Manufactured by Laser Based Thermal Joining

    NASA Astrophysics Data System (ADS)

    Schricker, Klaus; Stambke, Martin; Bergmann, Jean Pierre; Bräutigam, Kevin; Henckell, Philipp

    The increasing application of hybrid structures in component design and fabrication allows to constantly enhance the realization of lightweight potentials. Laser-based joining of metals to polymers can obtaina local bonding with high load bearing capability. During the process, the polymer gets molten by the energy input of the laser beam and penetrates into the structure of the metal surface by means of a defined joining pressure. Macroscopic structures on the metal surface, produced by cutting or laser processing, are possible surface treatmentsfor achieving thepolymer-metal joints. The optimal geometry and other key parameters for the macroscopic surface structures are only partially known at present, e.g. a rising structure density causes a higher load capacity. Based on grooves and drilled holes, as referencegeometries, the depth (0.1-0.9 mm), width (0.3-1.1 mm), alignment angle, diameter (1.0mm- 1.5mm), structure density and penetration depth of the molten polymer were correlated to the separation force. The results allow an essential insight into the main effects ofmacroscopic structures on the mechanical joint properties and the material performance of the polymer during the process.

  20. Joint body and surface wave tomography applied to the Toba caldera complex (Indonesia)

    NASA Astrophysics Data System (ADS)

    Jaxybulatov, Kairly; Koulakov, Ivan; Shapiro, Nikolai

    2016-04-01

    We developed a new algorithm for a joint body and surface wave tomography. The algorithm is a modification of the existing LOTOS code (Koulakov, 2009) developed for local earthquake tomography. The input data for the new method are travel times of P and S waves and dispersion curves of Rayleigh and Love waves. The main idea is that the two data types have complementary sensitivities. The body-wave data have good resolution at depth, where we have enough crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution. The surface wave dispersion curves can be retrieved from the correlations of the ambient seismic noise and in this case the sampled path distribution does not depend on the earthquake sources. The contributions of the two data types to the inversion are controlled by the weighting of the respective equations. One of the clearest cases where such approach may be useful are volcanic systems in subduction zones with their complex magmatic feeding systems that have deep roots in the mantle and intermediate magma chambers in the crust. In these areas, the joint inversion of different types of data helps us to build a comprehensive understanding of the entire system. We apply our algorithm to data collected in the region surrounding the Toba caldera complex (north Sumatra, Indonesia) during two temporary seismic experiments (IRIS, PASSCAL, 1995, GFZ, LAKE TOBA, 2008). We invert 6644 P and 5240 S wave arrivals and ~500 group velocity dispersion curves of Rayleigh and Love waves. We present a series of synthetic tests and real data inversions which show that joint inversion approach gives more reliable results than the separate inversion of two data types. Koulakov, I., LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms, Bull. seism. Soc. Am., 99(1), 194-214, 2009, doi:10.1785/0120080013

  1. Quality of life, unmet needs, and iatrogenic injuries in rehabilitation of patients with Ehlers-Danlos Syndrome hypermobility type/Joint Hypermobility Syndrome.

    PubMed

    Bovet, Claire; Carlson, Matthew; Taylor, Matthew

    2016-08-01

    Ehlers-Danlos Syndrome, hypermobility type (EDS-HT) and the joint hypermobility syndrome (JHS) are connective tissue disorders that form an overlapping clinical syndrome and are associated with frequent medical visits and substantial morbidity. EDS-HT/JHS-associated pain correlates with poor quality of life. While physical therapy is the recommended treatment for EDS-HT/JHS, little is known about therapy-related patient experiences and iatrogenic injuries. We studied 38 adult EDS-HT/JHS patients, eliciting health-related quality of life (HRQoL) from 28 patients through the RAND SF-36 questionnaire. We also explored physical therapy experiences through focus groups with 13 patients. Our patients displayed poor HRQoL, with 71% reporting worse health over the past year. SF-36 scores were significantly lower than the scores of the average American population (P < 0.001 for 8 of 10 categories assessed), but were comparable to EDS-HT/JHS populations in Belgium, the Netherlands, Sweden, and Italy. Focus groups identified factors associated with: negative past physical therapy experiences, iatrogenic joint injuries, positive treatment experiences, and unmet rehabilitation needs. This group of EDS-HT/JHS patients has significant decrements in HRQoL and many unmet treatment needs, as well as a risk for iatrogenic injuries. We identify several approaches to help meet patients' needs and improve joint rehabilitation in patients with EDS-HT/JHS. © 2016 Wiley Periodicals, Inc. PMID:27273746

  2. Longitudinal Lisfranc injury.

    PubMed

    Oak, Nikhil R; Manoli, Arthur; Holmes, James R

    2014-01-01

    Most Lisfranc or tarsometatarsal (TMT) joint injuries result from a horizontally directed force in which the metatarsals are displaced relative to the midfoot. The injury pattern that is described in this article is one of a longitudinal force through the first ray and cuneiform. A reliable measure to recognize the longitudinal Lisfranc variant injury has been the height difference between the distal articular surfaces of the first and second cuneiform bones in an anteroposterior (AP) weight-bearing radiograph. This measure helps identify subtle injuries in which there is a proximal and medial subluxation of the first cuneiform-metatarsal complex. Delayed diagnosis and treatment have been associated with poorer results and significant functional consequences. This article describes a simple radiographic measurement to recognize the longitudinal injury pattern and to aid in determining whether operative intervention is required. PMID:25785475

  3. Improved monitoring of surface ozone by joint assimilation of geostationary satellite observations of ozone and CO

    NASA Astrophysics Data System (ADS)

    Zoogman, Peter; Jacob, Daniel J.; Chance, Kelly; Worden, Helen M.; Edwards, David P.; Zhang, Lin

    2014-02-01

    Future geostationary satellite observations of tropospheric ozone aim to improve monitoring of surface ozone air quality. However, ozone retrievals from space have limited sensitivity in the lower troposphere (boundary layer). Data assimilation in a chemical transport model can propagate the information from the satellite observations to provide useful constraints on surface ozone. This may be aided by correlated satellite observations of carbon monoxide (CO), for which boundary layer sensitivity is easier to achieve. We examine the potential of concurrent geostationary observations of ozone and CO to improve constraints on surface ozone air quality through exploitation of ozone-CO model error correlations in a joint data assimilation framework. The hypothesis is that model transport errors diagnosed for CO provide information on corresponding errors in ozone. A paired-model analysis of ozone-CO error correlations in the boundary layer over North America in summer indicates positive error correlations in continental outflow but negative regional-scale error correlations over land, the latter reflecting opposite sensitivities of ozone and CO to boundary layer depth. Aircraft observations from the ICARTT campaign are consistent with this pattern but also indicate strong positive error correlations in fine-scale pollution plumes. We develop a joint ozone-CO data assimilation system and apply it to a regional-scale Observing System Simulation Experiment (OSSE) of the planned NASA GEO-CAPE geostationary mission over North America. We find substantial benefit from joint ozone-CO data assimilation in informing US ozone air quality if the instrument sensitivity for CO in the boundary layer is greater than that for ozone. A high-quality geostationary measurement of CO could potentially relax the requirements for boundary layer sensitivity of the ozone measurement. This is contingent on accurate characterization of ozone-CO error correlations. A finer-resolution data

  4. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    SciTech Connect

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-30

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying material requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  5. RAPID COMMUNICATION: Nanostructured diamond film deposition on curved surfaces of metallic temporomandibular joint implant

    NASA Astrophysics Data System (ADS)

    Fries, Marc D.; Vohra, Yogesh K.

    2002-10-01

    Microwave plasma chemical vapour deposition of nanostructured diamond films was carried out on curved surfaces of Ti-6Al-4V alloy machined to simulate the shape of a temporomandibular joint (TMJ) dental implant. Raman spectroscopy shows that the deposited films are uniform in chemical composition along the radius of curvature of the TMJ condyle. Thin film x-ray diffraction reveals an interfacial carbide layer and nanocrystalline diamond grains in this coating. Nanoindentation hardness measurements show an ultra-hard coating with a hardness value of 60+/-5 GPa averaged over three samples.

  6. The surface geometry of inherited joint and fracture trace patterns resulting from active and passive deformation

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Gold, D. P.

    1974-01-01

    Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.

  7. Exploring Caregiver Behavior and Knowledge about Unsafe Sleep Surfaces in Infant Injury Death Cases

    ERIC Educational Resources Information Center

    Chu, Tracy; Hackett, Martine; Kaur, Navpreet

    2015-01-01

    Objectives: In the United States, infant deaths due to sleep-related injuries have quadrupled over the past two decades. One of the major risk factors is the placement of an infant to sleep on a surface other than a crib or bassinet. This study examines contextual circumstances and knowledge and behaviors that may contribute to the placement of…

  8. Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel

    NASA Astrophysics Data System (ADS)

    Zhao, Yanyun; Li, Chunjing; Huang, Bo; Liu, Shaojun; Huang, Qunying

    2014-12-01

    Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.

  9. Mechanical injury of explants from the articulating surface of the inner meniscus.

    PubMed

    Kisiday, John D; Vanderploeg, Eric J; McIlwraith, C Wayne; Grodzinsky, Alan J; Frisbie, David D

    2010-02-15

    Knee osteoarthritis is accelerated by damage to the meniscus, a fibrocartilage tissue that assists in load transmission. However, little is known about the mechanical or cellular response of the meniscus to injurious overloading. Here, in vitro studies explored injury to meniscal explants using a compressive overloading protocol that has been well characterized for articular cartilage. Cartilage samples were processed in parallel as a reference to the extensive literature on cartilage injury. Injured meniscal explants showed extensive cell death at the articulating surface but no gross tissue damage, while similar conditions of peak stress and strain resulted in cartilage surface fissures and cell death consistent with moderate overloading. Post-injury gene expression in meniscal explants indicated a decrease in seven of the nine catabolic and pro-inflammatory molecules surveyed, while cartilage experienced a downregulation in ADAMTS-5 and TNF-alpha only. These data demonstrated a resiliency of the meniscus to injury, and that an acute increase in catabolic activities is not necessarily a consequence of mechanical overloading. PMID:19944061

  10. Histopathological findings, phenotyping of inflammatory cells, and expression of markers of nitritative injury in joint tissue samples from calves after vaccination and intraarticular challenge with Mycoplasma bovis strain 1067

    PubMed Central

    2014-01-01

    Background The pathogenesis of caseonecrotic lesions developing in lungs and joints of calves infected with Mycoplasma bovis is not clear and attempts to prevent M. bovis-induced disease by vaccines have been largely unsuccessful. In this investigation, joint samples from 4 calves, i.e. 2 vaccinated and 2 non-vaccinated, of a vaccination experiment with intraarticular challenge were examined. The aim was to characterize the histopathological findings, the phenotypes of inflammatory cells, the expression of class II major histocompatibility complex (MHC class II) molecules, and the expression of markers for nitritative stress, i.e. inducible nitric oxide synthase (iNOS) and nitrotyrosine (NT), in synovial membrane samples from these calves. Furthermore, the samples were examined for M. bovis antigens including variable surface protein (Vsp) antigens and M. bovis organisms by cultivation techniques. Results The inoculated joints of all 4 calves had caseonecrotic and inflammatory lesions. Necrotic foci were demarcated by phagocytic cells, i.e. macrophages and neutrophilic granulocytes, and by T and B lymphocytes. The presence of M. bovis antigens in necrotic tissue lesions was associated with expression of iNOS and NT by macrophages. Only single macrophages demarcating the necrotic foci were positive for MHC class II. Microbiological results revealed that M. bovis had spread to approximately 27% of the non-inoculated joints. Differences in extent or severity between the lesions in samples from vaccinated and non-vaccinated animals were not seen. Conclusions The results suggest that nitritative injury, as in pneumonic lung tissue of M. bovis-infected calves, is involved in the development of caseonecrotic joint lesions. Only single macrophages were positive for MHC class II indicating down-regulation of antigen-presenting mechanisms possibly caused by local production of iNOS and NO by infiltrating macrophages. PMID:25162202

  11. Ultrasonic detection technology based on joint robot on composite component with complex surface

    SciTech Connect

    Hao, Juan; Xu, Chunguang; Zhang, Lan

    2014-02-18

    Some components have complex surface, such as the airplane wing and the shell of a pressure vessel etc. The quality of these components determines the reliability and safety of related equipment. Ultrasonic nondestructive detection is one of the main methods used for testing material defects at present. In order to improve the testing precision, the acoustic axis of the ultrasonic transducer should be consistent with the normal direction of the measured points. When we use joint robots, automatic ultrasonic scan along the component surface normal direction can be realized by motion trajectory planning and coordinate transformation etc. In order to express the defects accurately and truly, the robot position and the signal of the ultrasonic transducer should be synchronized.

  12. Joint effects of illumination geometry and object shape in the perception of surface reflectance

    PubMed Central

    Olkkonen, Maria; Brainard, David H

    2011-01-01

    Surface properties provide useful information for identifying objects and interacting with them. Effective utilization of this information, however, requires that the perception of object surface properties be relatively constant across changes in illumination and changes in object shape. Such constancy has been studied separately for changes in these factors. Here we ask whether the separate study of the illumination and shape effects is sufficient, by testing whether joint effects of illumination and shape changes can be predicted from the individual effects in a straightforward manner. We found large interactions between illumination and object shape in their effects on perceived glossiness. In addition, analysis of luminance histogram statistics could not account for the interactions. PMID:23145259

  13. The effect of two preparation procedures on an equine arena surface in relation to motion of the hoof and metacarpophalangeal joint.

    PubMed

    Northrop, Alison J; Dagg, Laura-Anne; Martin, Jaime H; Brigden, Charlotte V; Owen, Andrew G; Blundell, Emma L; Peterson, Michael L; Hobbs, Sarah J

    2013-12-01

    A link between surface characteristics and injury has been identified in equine disciplines. Maintenance procedures are reported to affect surface characteristics and could influence horse movement. The study investigated limb and hoof movement on a synthetic surface following two different preparations (harrowing and rolling). Nine horses were recorded using infrared cameras and retro-reflective markers at walk, trot and canter on two surface preparations in a cross-over design. Hoof rotation and displacement, metacarpophalangeal joint (MCPJ) extension and third metacarpal (McIII) inclination (roll, pitch and yaw) were analysed using a general linear model. Surface hardness and traction were also measured. No differences in hoof rotations or hoof displacements were found between preparations. However, following harrowing, greater (P<0.05) MCPJ extension at mid-stance and greater (P<0.05) McIII adduction at impact was found when gait was grouped. Hardness and traction were statistically similar for both preparations. Alteration to the surface cushion appears to be sufficient to produce subtle changes in stride characteristics. PMID:24360758

  14. Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2011-09-01

    Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.

  15. Lithological and Surface Geometry Joint Inversions Using Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin

    2016-04-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based minimum-structure geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy may be to consider two fundamentally different types of inversions: lithological and surface geometry inversions. A major advantage of these two inversion approaches is that joint inversion of multiple types of geophysical data is greatly simplified. In a lithological inversion, the subsurface is discretized into a mesh and each cell contains a particular rock type. A lithological model must be translated to a physical property model before geophysical data simulation. Each lithology may map to discrete property values or there may be some a priori probability density function associated with the mapping. Through this mapping, lithological inverse problems limit the parameter domain and consequently reduce the non-uniqueness from that presented by standard mesh-based inversions that allow physical property values on continuous ranges. Furthermore, joint inversion is greatly simplified because no additional mathematical coupling measure is required in the objective function to link multiple physical property models. In a surface geometry inversion, the model comprises wireframe surfaces representing contacts between rock units. This parameterization is then fully consistent with Earth models built by geologists, which in 3D typically comprise wireframe contact surfaces of tessellated triangles. As for the lithological case, the physical properties of the units lying between the contact

  16. Patterned CoCrMo and Al2 O3 surfaces for reduced free wear debris in artificial joint arthroplasty.

    PubMed

    Tarabolsi, Mohamad; Klassen, Thomas; Mantwill, Frank; Gärtner, Frank; Siegel, Frank; Schulz, Arndt-Peter

    2013-12-01

    Surface wear of corresponding tribological pairings is still a major problem in the application of artificial joint surgery. This study aims at developing wear reduced surfaces to utilize them in total joint arthroplasty. Using a pico-second laser, samples of medical CoCrMo metal alloy and Al2 O3 ceramic were patterned by laser material removal. The subsequent tribological investigations employed a ring-on-disc method. The results showed that those samples with modified surfaces show less mass or volume loss than those with a regular, smooth surface. Using calf serum as lubricating medium, the volume loss of the structured CoCrMo samples was eight times lower than that of regular samples. By structuring Al2 O3 surfaces, the wear volume could be reduced by 4.5 times. The results demonstrate that defined surface channels or pits enable the local sedimentation of wear debris. Thus, the amount of free debris could be reduced. Fewer abrasives in the lubricated so-called three-body-wear between the contact surfaces should result in less surface damage. Apart from direct influences on the wear behavior, less amounts of free debris of artificial joints should also be beneficial for avoiding undesired reactions with the surrounding soft tissues. The results from this study are very promising. Future investigations should involve the use of simulators meeting the natural conditions in the joint and in vivo studies with living organisms. PMID:23595908

  17. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-01

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying materia1 requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  18. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    NASA Technical Reports Server (NTRS)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  19. LIDAR-based outcrop characterisation - joint classification, surface and block size distribution

    NASA Astrophysics Data System (ADS)

    Tanner, David C.; Dietrich, Patrick; Krawczyk, Charlotte M.

    2013-04-01

    Outcrops, in the first instance, only offer at best a 2-2.5D view of the available geological information, such as joints and fractures. In order to study geodynamic processes, it is necessary to calculate true values of, for example, fracture densities and block dimensions. We show how LIDAR-generated point-cloud data of outcrops can be used to delineate such geological surfaces. Our methods do not require the point-set to be meshed; instead we work with the original point cloud, thus avoiding meshing errors. In a first step we decompose the point-cloud into tiny volumes; in each volume we calculate the best fitting plane. An expert can then decide which of the planes are important (in an interactive density pole diagram) and classify them. Actual block surfaces are identified by applying a clustering algorithm to the mini-planes. Subsequently, we calculate the size of these surfaces. Finally we estimate the block size distribution within the outcrop by projecting the block surfaces into the rock volume. To assess the reproducibility of our results we show to which extent they depend on various parameters, such as the resolution of the LIDAR scan and algorithm parameters. In theory the results can be calculated at the site of measurement to ensure the LIDAR scan resolution is sufficient and if necessary rerun the scan with different parameters. We demonstrate our methods with LIDAR data that we produced in a sandstone quarry in Germany. The part of the outcrop which we measured with the LIDAR was out-of-reach for measurements with a geological compass, but our results correlate well with compass measurements from a different outcrop in the same quarry. Three main surfaces could be delineated from the point cloud: the bedding, and two major joint types. The three fabrics are almost orthogonal. Our statistical results suggest that blocks with a volume of several hundred liters can be expected regularly within the quarry. The results can be directly used to

  20. Severe injury of bilateral elbow joints with unilateral terrible triad of the elbow and unilateral suspected terrible triad of the elbow complicated with olecranon fracture: one case report

    PubMed Central

    Zha, Guoqing; Niu, Xiaofeng; Yu, Weiguang; Xiao, Liangbao

    2015-01-01

    Terrible triad of the elbow is characterized as posterior dislocation of the elbow joint accompanied by the fractures of the radial head and coronoid process of the ulna, which is rarely seen in clinical practice, especially because the mild fracture is barely detected by imaging method In this study, we reported one case of serious complex bilateral elbow injury, presenting with unilateral typical terrible triad of the elbow and suspected terrible triad of the elbow complicated with olecranon fracture on the other side. Clinical experience was obtained during the diagnosis and treatment procedures. PMID:26550399

  1. A rare combined injury of dorsal fracture-dislocation of four carpometacarpal joints and trapezium, trapezoid and distal radius bone fractures.

    PubMed

    Touloupakis, Georgios; Stuflesser, Wilfried; Antonini, Guido; Ferrara, Fabrizio; Crippa, Cornelio; Lettera, Maria Gabriella

    2016-01-01

    Incorrect or delayed diagnosis and treatment of the carpometacarpal fracture-dislocations is often associated with poor prognosis. We present a rare case of unusual pattern of injury, involving dorsal dislocation of four ulnar carpometacarpal joints, associated with fracture of the trapezium, a burst fracture of the trapezoid  bone and an extra-articular fracture of the third distal  of the radius. The first surgical intervention was followed by unsatisfactory results, confirmed by the CT scans. A second surgery followed and an open reduction and pinning with K wires performed. Post-operative follow up lasting for nine months revealed a very good surgical outcome. PMID:27163903

  2. Lisfranc injuries.

    PubMed

    Welck, M J; Zinchenko, R; Rudge, B

    2015-04-01

    Lisfranc injuries are commonly asked about in FRCS Orthopaedic trauma vivas. The term "Lisfranc injury" strictly refers to an injury where one or more of the metatarsals are displaced from the tarsus. The term is more commonly used to describe an injury to the midfoot centred on the 2nd tarsometatarsal joint. The injury is named after Jacques Lisfranc de St. Martin (1790-1847), a French surgeon and gynaecologist who first described the injury in 1815. 'Lisfranc injury' encompasses a broad spectrum of injuries, which can be purely ligamentous or involve the osseous and articular structures. They are often difficult to diagnose and treat, but if not detected and appropriately managed they can cause long-term disability. This review outlines the anatomy, epidemiology, classification, investigation and current evidence on management of this injury. PMID:25543185

  3. Synovial Joints: from Development to Homeostasis

    PubMed Central

    Li, Tieshi; Tagliafierro, Lidia; Temple, Joseph D.; Willcockson, Helen H.; Ye, Ping; Esposito, Alessandra; Xu, Fuhua; Spagnoli, Anna

    2015-01-01

    Synovial joint morphogenesis occurs through the condensation of mesenchymal cells into a non-cartilaginous region known as interzone, and the specification of progenitor cells that commit to the articular fate. Although several signaling molecules are expressed by the interzone, the mechanism is poorly understood. For treatments of cartilage injuries, it is critical to discover the presence of joint progenitor cells in adult tissues and their expression gene pattern. Potential stem cells niches have been found in different joint regions, such as the surface zone of articular cartilage, synovium and groove of Ranvier. Inherited joint malformation as well as joint degenerating conditions are often associated with other skeletal defects, and may be seen as the failure of morphogenic factors to establish the correct microenvironment in cartilage and bone. Therefore, exploring how joints form can help us understand how cartilage and bone are damaged and to develop drugs to reactivate this developing mechanism. PMID:25431159

  4. The influence of an artificial playing surface on injury risk and perceptions of muscle soreness in elite Rugby Union.

    PubMed

    Williams, S; Trewartha, G; Kemp, S P T; Michell, R; Stokes, K A

    2016-01-01

    This prospective cohort study investigated the influence of an artificial playing surface on injury risk and perceptions of muscle soreness in elite English Premiership Rugby Union players. Time loss (from 39.5 matches) and abrasion (from 27 matches) injury risk was compared between matches played on artificial turf and natural grass. Muscle soreness was reported over the 4 days following one match played on each surface by 95 visiting players (i.e., normally play on natural grass surfaces). There was a likely trivial difference in the overall injury burden relating to time-loss injuries between playing surfaces [rate ratio = 1.01, 90% confidence interval (CI): 0.73-1.38]. Abrasions were substantially more common on artificial turf (rate ratio = 7.92, 90% CI: 4.39-14.28), although the majority of these were minor and only two resulted in any reported time loss. Muscle soreness was consistently higher over the 4 days following a match on artificial turf in comparison with natural grass, although the magnitude of this effect was small (effect sizes ranging from 0.26 to 0.40). These results suggest that overall injury risk is similar for the two playing surfaces, but further surveillance is required before inferences regarding specific injury diagnoses and smaller differences in overall injury risk can be made. PMID:25644277

  5. Quantitative assessments of residual stress fields at the surface of alumina hip joints.

    PubMed

    Pezzotti, Giuseppe; Munisso, Maria Chiara; Lessnau, Kristina; Zhu, Wenliang

    2010-11-01

    In-depth and in-plane response functions of photo- and electro-stimulated probes have been modeled and quantitatively evaluated in order to assess their suitability to detect the highly graded residual stress fields generated at the surface of alumina hip joints. Optical calibrations revealed large differences in probe size, which strongly affected the detected magnitude of residual stress. A comparison between the responses of Raman and fluorescence probes in polycrystalline alumina showed that the depth of those probes spread to an extent in the order of the tens of microns even with using a confocal probe configuration. On the other hand, the electro-stimulated luminescence emitted by oxygen vacancy sites (F(+) center) in the alumina lattice represented the most suitable choice for confining to a shallow volume the stress probe. This latter probe enabled us to reduce the measurement depth to the order of the tens of nanometers. We show maps of surface residual stress as collected on both main-wear and nonwear zones of an alumina femoral head. A comparison among stress maps taken at exactly the same location, but employing different probes, revealed averaging effects on the stress magnitude detected with photo-stimulated probes, while proving the superior spatial resolution of the electron probe. PMID:20848660

  6. [Joint prostheses components of warm-forged and surface treated Ti-6Al-7Nb alloy].

    PubMed

    Semlitsch, M; Weber, H; Streicher, R M; Schön, R

    1991-05-01

    In 1978 development of a TiAl alloy with the inert alloying element niobium was initiated. In 1984, the optimal composition was found to be Ti-6Al-7Nb (Protasul-100). This custom-made alloy for implants has the same alpha/beta micro-structure and equally good mechanical properties as Ti-6Al-4V. The corrosion resistance of Ti-6Al-7Nb is better than that of pure titanium and Ti-6Al-4V, due to the very dense and stable passive layer. Since 1985, highly stressed anchoring stems of various hip prosthesis designs have been manufactured from hot-forged Ti-6Al-7Nb/Protasul-100. Polished surfaces of hip, knee or wrist joints made of Ti-6Al-7Nb intended to articulate with polyethylene are surface-treated by the application of a very hard, 3-5 microns thick titanium nitride coating (Tribosul-TiN), or by oxygen diffusion hardening (Tribosul-ODH) to a depth of 30 microns. PMID:1859861

  7. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    PubMed Central

    2011-01-01

    Background Several regression models have been proposed for estimation of isometric joint torque using surface electromyography (SEMG) signals. Common issues related to torque estimation models are degradation of model accuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares the performance of the most commonly used regression models under these circumstances, in order to assist researchers with identifying the most appropriate model for a specific biomedical application. Methods Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor, was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data were gathered one hour and twenty-four hours following the completion of the first data gathering session, for the purpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. Acquired SEMG signals were filtered, rectified, normalized and then fed to models for training. Results It was shown that mean adjusted coefficient of determination (Ra2) values decrease between 20%-35% for different models after one hour while altering arm posture decreased mean Ra2 values between 64% to 74% for different models. Conclusions Model estimation accuracy drops significantly with passage of time, electrode displacement, and alteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resampling can significantly reduce model training time without losing estimation accuracy. Among the models compared, ordinary least squares linear regression model (OLS) was shown to have high isometric torque estimation accuracy combined with very short training times. PMID:21943179

  8. Bayesian joint inversion of surface deformation and hydraulic data for aquifer characterization

    NASA Astrophysics Data System (ADS)

    Hesse, M. A.; Stadler, G.

    2013-12-01

    Remote sensing and geodetic measurements are providing a wealth of new, spatially-distributed, time-series data that promise to improve the characterization of regional aquifers. The integration of these geodetic measurements with other hydrological observations has the potential to aid the sustainable management of groundwater resources through improved characterization of the spatial variation of aquifer properties. The joint inversion of geomechanical and hydrological data is challenging, because it requires fully-coupled hydrogeophysical inversion for the aquifer parameters, based on a coupled geomechanical and hydrological process model. We formulate a Bayesian inverse problem to infer the lateral permeability variation in an aquifer from geodetic and hydraulic data, and from prior information. We compute the maximum a posteriori (MAP) estimate of the posterior permeability distribution, and use a local Gaussian approximation around the MAP point to characterize the uncertainty. For two-dimensional test cases we also explore the full posterior permeability distribution through Markov-Chain Monte Carlo (MCMC) sampling. To cope with the large parameter space dimension, we use local Gaussian approximations as proposal densities in the MCMC algorithm. Using increasingly complex model problems, based on the work of Mandel (1953) and Segall (1985), we find the following general properties of poroelastic inversions: (1) Augmenting standard hydraulic well data by surface deformation data improves the aquifer characterization. (2) Surface deformation contributes the most in shallow aquifers, but provides useful information even for the characterization of aquifers down to 1 km. (3) In general, it is more difficult to infer high permeability regions, and their characterization requires frequent measurement to resolve the associated short response time scales. (4) In horizontal aquifers, the vertical component of the surface deformation provides a smoothed image of the

  9. Subspace based adaptive denoising of surface EMG from neurological injury patients

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Ying, Dongwen; Zev Rymer, William; Zhou, Ping

    2014-10-01

    Objective: After neurological injuries such as spinal cord injury, voluntary surface electromyogram (EMG) signals recorded from affected muscles are often corrupted by interferences, such as spurious involuntary spikes and background noises produced by physiological and extrinsic/accidental origins, imposing difficulties for signal processing. Conventional methods did not well address the problem caused by interferences. It is difficult to mitigate such interferences using conventional methods. The aim of this study was to develop a subspace-based denoising method to suppress involuntary background spikes contaminating voluntary surface EMG recordings. Approach: The Karhunen-Loeve transform was utilized to decompose a noisy signal into a signal subspace and a noise subspace. An optimal estimate of EMG signal is derived from the signal subspace and the noise power. Specifically, this estimator is capable of making a tradeoff between interference reduction and signal distortion. Since the estimator partially relies on the estimate of noise power, an adaptive method was presented to sequentially track the variation of interference power. The proposed method was evaluated using both semi-synthetic and real surface EMG signals. Main results: The experiments confirmed that the proposed method can effectively suppress interferences while keep the distortion of voluntary EMG signal in a low level. The proposed method can greatly facilitate further signal processing, such as onset detection of voluntary muscle activity. Significance: The proposed method can provide a powerful tool for suppressing background spikes and noise contaminating voluntary surface EMG signals of paretic muscles after neurological injuries, which is of great importance for their multi-purpose applications.

  10. Joint Body- and Surface-wave Inversion Applied to Geothermal Seismic Data

    NASA Astrophysics Data System (ADS)

    Ferris, A. N.; Reiter, D. T.; Leidig, M.

    2011-12-01

    To successfully monitor geothermal reservoirs, scientists must accurately track time-varying subsurface heterogeneity and low-energy microseismicity. These quantities are important for monitoring fracture development and production changes in all types of shallow reservoirs. We are adapting advanced subsurface imaging techniques, originally developed for regional-scale nuclear monitoring purposes, to the geothermal reservoir scale. Our specific approach is to jointly invert body-wave travel times and surface-wave dispersion data for seismic P and S velocity structure and improved microseismic event locations. Our inversion technique has several features that are important to the reservoir-scale imaging problem, such as travel-time prediction methods that are not limited to layered structures or surface receivers, and 3-D nonlinear velocity tomography with geostatistical constraints. As an initial demonstration of the feasibility of our inversion methodology, we have inverted a data set of P-wave travel times from events observed in the Geysers geothermal area in northern California. The Geysers is the largest exploited geothermal reservoir in the world and represents an ideal test bed for more advanced passive imaging techniques. We are utilizing archived waveform data from the 22-station Geysers seismic network, which was initially deployed and operated by the Unocal Geothermal Division and is now provided through collaboration between the Calpine Corporation and the Northern California Earthquake Data Center (NCEDC). The results from our initial inversion for a P-wave model reveal a ±10 percent velocity variation with respect to the starting 1D model and good resolution to 2.5 km depth across most of the model space. Most of the velocity heterogeneity occurs above 1.5 km depth. Following event relocation in the final velocity model, the hypocenters have a mean depth of 2.3 km ±1, with all events above 4.3 km depth. In this paper we will present on our initial

  11. Application of the surface azimuthal electrical resistivity survey method to determine patterns of regional joint orientation in glacial tills

    USGS Publications Warehouse

    Carlson, D.

    2010-01-01

    Joints within unconsolidated material such as glacial till can be primary avenues for the flow of electrical charge, water, and contaminants. To facilitate the siting and design of remediation programs, a need exists to map anisotropic distribution of such pathways within glacial tills by determining the azimuth of the dominant joint set. The azimuthal survey method uses standard resistivity equipment with a Wenner array rotated about a fixed center point at selected degree intervals that yields an apparent resistivity ellipse. From this ellipse, joint set orientation can be determined. Azimuthal surveys were conducted at 21 sites in a 500-km2 (193 mi2) area around Milwaukee, Wisconsin, and more specifically, at sites having more than 30 m (98 ft) of glacial till (to minimize the influence of underlying bedrock joints). The 26 azimuthal surveys revealed a systematic pattern to the trend of the dominant joint set within the tills, which is approximately parallel to ice flow direction during till deposition. The average orientation of the joint set parallel with the ice flow direction is N77??E and N37??E for the Oak Creek and Ozaukee tills, respectively. The mean difference between average direct observation of joint set orientations and average azimuthal resistivity results is 8??, which is one fifth of the difference of ice flow direction between the Ozaukee and Oak Creek tills. The results of this study suggest that the surface azimuthal electrical resistivity survey method used for local in situ studies can be a useful noninvasive method for delineating joint sets within shallow geologic material for regional studies. Copyright ?? 2010 The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  12. Joint spatiotemporal variability of global sea surface temperatures and global Palmer drought severity index values

    USGS Publications Warehouse

    Apipattanavis, S.; McCabe, G.J.; Rajagopalan, B.; Gangopadhyay, S.

    2009-01-01

    Dominant modes of individual and joint variability in global sea surface temperatures (SST) and global Palmer drought severity index (PDSI) values for the twentieth century are identified through a multivariate frequency domain singular value decomposition. This analysis indicates that a secular trend and variability related to the El Niño–Southern Oscillation (ENSO) are the dominant modes of variance shared among the global datasets. For the SST data the secular trend corresponds to a positive trend in Indian Ocean and South Atlantic SSTs, and a negative trend in North Pacific and North Atlantic SSTs. The ENSO reconstruction shows a strong signal in the tropical Pacific, North Pacific, and Indian Ocean regions. For the PDSI data, the secular trend reconstruction shows high amplitudes over central Africa including the Sahel, whereas the regions with strong ENSO amplitudes in PDSI are the southwestern and northwestern United States, South Africa, northeastern Brazil, central Africa, the Indian subcontinent, and Australia. An additional significant frequency, multidecadal variability, is identified for the Northern Hemisphere. This multidecadal frequency appears to be related to the Atlantic multidecadal oscillation (AMO). The multidecadal frequency is statistically significant in the Northern Hemisphere SST data, but is statistically nonsignificant in the PDSI data.

  13. Surface coil spectroscopic imaging: Time and spatial evolution of lactate production following fluid percussion brain injury

    SciTech Connect

    Cohen, Y.; Sanada, T.; Pitts, L.H.; Chang, L.H.; Nishimura, M.C.; Weinstein, P.R.; Litt, L.; James, T.L. )

    1991-01-01

    Detailed temporal and spatial distributions of lactate production are presented for graded fluid-percussion brain injury in the rat. A one-dimensional proton spin-echo spectroscopic imaging (1D SESI) technique, performed with a surface coil, is presented and evaluated. This technique, which represents a practical compromise, provides spatially localized proton nuclear magnetic resonance (NMR) brain spectra from a series of small voxels (less than 0.15 cm3) in less than 10 min, thus enabling both spatial and temporal monitoring of lactate production. These high-resolution lactate maps are correlated with hyperintense regions observed in T2-weighted images taken 10 h after impact, which, in turn, correlate with histology. The data demonstrate that, following severe trauma there is delayed production and propagation of lactate to regions of the brain that are remote from the trauma site. The extent of lactate production depends on the severity of impact. More significantly, the data show that following severe trauma, local lactate concentrations exceed 15 mumol/g, the concentration that has been claimed as the threshold for brain injury. Therefore high lactate levels cannot be ruled out a priori as a possible factor in brain injury following severe head trauma.

  14. Ceramic joints

    DOEpatents

    Miller, Bradley J.; Patten, Jr., Donald O.

    1991-01-01

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  15. Sulforhodamine B interacts with albumin to lower surface tension and protect against ventilation injury of flooded alveoli.

    PubMed

    Kharge, Angana Banerjee; Wu, You; Perlman, Carrie E

    2015-02-01

    In the acute respiratory distress syndrome, alveolar flooding by proteinaceous edema liquid impairs gas exchange. Mechanical ventilation is used as a supportive therapy. In regions of the edematous lung, alveolar flooding is heterogeneous, and stress is concentrated in aerated alveoli. Ventilation exacerbates stress concentrations and injuriously overexpands aerated alveoli. Injury degree is proportional to surface tension, T. Lowering T directly lessens injury. Furthermore, as heterogeneous flooding causes the stress concentrations, promoting equitable liquid distribution between alveoli should, indirectly, lessen injury. We present a new theoretical analysis suggesting that liquid is trapped in discrete alveoli by a pressure barrier that is proportional to T. Experimentally, we identify two rhodamine dyes, sulforhodamine B and rhodamine WT, as surface active in albumin solution and investigate whether the dyes lessen ventilation injury. In the isolated rat lung, we micropuncture a surface alveolus, instill albumin solution, and obtain an area with heterogeneous alveolar flooding. We demonstrate that rhodamine dye addition lowers T, reduces ventilation-induced injury, and facilitates liquid escape from flooded alveoli. In vitro we show that rhodamine dye is directly surface active in albumin solution. We identify sulforhodamine B as a potential new therapeutic agent for the treatment of the acute respiratory distress syndrome. PMID:25414246

  16. Sulforhodamine B interacts with albumin to lower surface tension and protect against ventilation injury of flooded alveoli

    PubMed Central

    Kharge, Angana Banerjee; Wu, You

    2014-01-01

    In the acute respiratory distress syndrome, alveolar flooding by proteinaceous edema liquid impairs gas exchange. Mechanical ventilation is used as a supportive therapy. In regions of the edematous lung, alveolar flooding is heterogeneous, and stress is concentrated in aerated alveoli. Ventilation exacerbates stress concentrations and injuriously overexpands aerated alveoli. Injury degree is proportional to surface tension, T. Lowering T directly lessens injury. Furthermore, as heterogeneous flooding causes the stress concentrations, promoting equitable liquid distribution between alveoli should, indirectly, lessen injury. We present a new theoretical analysis suggesting that liquid is trapped in discrete alveoli by a pressure barrier that is proportional to T. Experimentally, we identify two rhodamine dyes, sulforhodamine B and rhodamine WT, as surface active in albumin solution and investigate whether the dyes lessen ventilation injury. In the isolated rat lung, we micropuncture a surface alveolus, instill albumin solution, and obtain an area with heterogeneous alveolar flooding. We demonstrate that rhodamine dye addition lowers T, reduces ventilation-induced injury, and facilitates liquid escape from flooded alveoli. In vitro we show that rhodamine dye is directly surface active in albumin solution. We identify sulforhodamine B as a potential new therapeutic agent for the treatment of the acute respiratory distress syndrome. PMID:25414246

  17. Leg Injuries and Disorders

    MedlinePlus

    ... can damage your legs. Common leg injuries include sprains and strains, joint dislocations, and fractures. These injuries can affect the entire leg, or just the foot, ankle, knee, or hip. Certain diseases also lead to leg ...

  18. Arm Injuries and Disorders

    MedlinePlus

    ... of muscles, joints, tendons and other connective tissue. Injuries to any of these parts of the arm ... a fall or an accident. Types of arm injuries include Tendinitis and bursitis Sprains Dislocations Broken bones ...

  19. Leg Injuries and Disorders

    MedlinePlus

    ... Common leg injuries include sprains and strains, joint dislocations, and fractures. These injuries can affect the entire leg, or just the foot, ankle, knee, or hip. Certain diseases also lead to leg problems. For ...

  20. Observation of the Degradation Characteristics and Scale of Unevenness on Three-dimensional Artificial Rock Joint Surfaces Subjected to Shear

    NASA Astrophysics Data System (ADS)

    Hong, Eun-Soo; Kwon, Tae-Hyuk; Song, Ki-Il; Cho, Gye-Chun

    2016-01-01

    The present study explores the degradation characteristics and scale of unevenness (small-scale roughness) on sheared rock joint surfaces at a low-stress regime. While the degradation characteristics of unevenness and the normal stress are mutually interrelated, an understanding of the degradation patterns of the three-dimensional roughness of rock joints is one of the important components needed to identify asperity failure characteristics and to quantify the role of damaged unevenness in establishing a shear strength model. A series of direct shear tests was performed on three-dimensional artificial rock joint surfaces at different normal stress levels. After shearing, the spatial distributions and statistical parameters of degraded roughness were analysed for the different normal stress levels. The length and area of the degraded zones showed bell-shaped distributions in a logarithmic scale, and the dominant scale (or the most frequently occurring scale) of the damaged asperities (i.e., unevenness) ranged from approximately, 0.5 to 5.0 mm in length and 0.1-10 mm2 in area. This scale of the damaged unevenness was consistent regardless of the level of normal stress. It was also found that the relative area of damaged unevenness on a given joint area, and thus the contribution of the mechanical asperity failure component to shear strength increased as normal stress increased.

  1. Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    Headquarters National Aeronautics and Space Administration (NASA) chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials (HazMats) or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) A void duplication of effort in actions required to reduce or eliminate HazMats through joint center cooperation and technology sharing. This project will identify, evaluate and approve alternative surface preparation technologies for use at NASA and Air Force Space Command (AFSPC) installations. Materials and processes will be evaluated with the goal of selecting those processes that will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination and reduce the amount of hazardous waste generated. This Joint Test Protocol (JTP) contains the critical requirements and tests necessary to qualify alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel Applications. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of NASA and Air Force Space Command (AFSPC) participants. The Field Test Plan (FTP), entitled Joint Test Protocol for Validation of Alternative Low Emission Surface Preparation/Depainting Technologies for Structural Steel, prepared by ITB, defines the field evaluation and testing requirements for validating alternative surface preparation/depainting technologies and supplements the JTP.

  2. Joint Test Report for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    Headquarters National Aeronautics and Space Administration (NASA) chartered the NASA Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) Avoid duplication of effort in actions required to reduce or eliminate hazardous materials through joint center cooperation and technology sharing. The objective of this project was to qualify candidate alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel applications at NASA facilities. This project compares the surface preparation/depainting performance of the proposed alternatives to existing surface preparation/depainting systems or standards. This Joint Test Report (JTR) contains the results of testing as per the outlines of the Joint Test Protocol (JTP), Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, and the Field Test Plan (FTP), Field Evaluations Test Plan for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, for critical requirements and tests necessary to qualify alternatives for coating removal systems. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of government and industry participants. This JTR documents the results of the testing as well as any test modifications made during the execution of the project. This JTR is made available as a reference for future pollution prevention endeavors by other NASA Centers, the Department of Defense and commercial users to minimize duplication of effort. The current coating removal processes

  3. An evaluation of the blind lap joint for the surface mount attachment of chip components

    NASA Astrophysics Data System (ADS)

    Vianco, P. T.; Dalporto, J. F.

    Blind lap solder joints were used to attach leadless ceramic chip resistors to polyimidequartz circuit boards. Hand soldering and vapor phase reflow techniques were evaluated. The solder was 62Sn-36Pb-2Ag (wt. percent). The integrity of the solder joints was assessed by microstructural examination and room temperature shear tests. These analyses were performed on as-fabricated circuit boards as well as an those samples exposed to thermal cycling (308 cycles; -55 to 125 C; 6 C/min ramps; 120 min hold periods;) or thermal shock (100 cycles, -55 C to 125 C; liquid-to-liquid transfer; 10 min hold periods). In all cases, microscopy revealed no cracks within the solder joints. The shear strengths of the joints were 13.4 lb (59 N), as-fabricated; 10.5 lb (47 N), 308 thermal cycles; and 14.0 lb (62 N), 100 thermal shock cycles. All values were well within acceptability limits for the particular application. Measurements of the intermetallic compound thicknesses at the copper land/solder interface indicated that the additional heating cycle of the hand soldering step decreased the layer thickness as compared to non-hand soldered joints. The successful implementation of the blind lap joint can provide increased device densities on circuit boards by reducing bonding pad extension beyond the ceramic chip foot print.

  4. Are Movement Disorders and Sensorimotor Injuries Pathologic Synergies? When Normal Multi-Joint Movement Synergies Become Pathologic

    PubMed Central

    Santello, Marco; Lang, Catherine E.

    2015-01-01

    The intact nervous system has an exquisite ability to modulate the activity of multiple muscles acting at one or more joints to produce an enormous range of actions. Seemingly simple tasks, such as reaching for an object or walking, in fact rely on very complex spatial and temporal patterns of muscle activations. Neurological disorders such as stroke and focal dystonia affect the ability to coordinate multi-joint movements. This article reviews the state of the art of research of muscle synergies in the intact and damaged nervous system, their implications for recovery and rehabilitation, and proposes avenues for research aimed at restoring the nervous system’s ability to control movement. PMID:25610391

  5. Jointly deriving NMR surface relaxivity and pore size distributions by NMR relaxation experiments on partially desaturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Hughes, B.

    2014-06-01

    Nuclear magnetic resonance (NMR) relaxometry is a geophysical method widely used in borehole and laboratory applications to nondestructively infer transport and storage properties of rocks and soils as it is directly sensitive to the water/oil content and pore sizes. However, for inferring pore sizes, NMR relaxometry data need to be calibrated with respect to a surface interaction parameter, surface relaxivity, which depends on the type and mineral constituents of the investigated rock. This study introduces an inexpensive and quick alternative to the classical calibration methods, e.g., mercury injection, pulsed field gradient (PFG) NMR, or grain size analysis, which allows for jointly estimating NMR surface relaxivity and pore size distributions using NMR relaxometry data from partially desaturated rocks. Hereby, NMR relaxation experiments are performed on the fully saturated sample and on a sample partially drained at a known differential pressure. Based on these data, the (capillary) pore radius distribution and surface relaxivity are derived by joint optimization of the Brownstein-Tarr and the Young-Laplace equation assuming parallel capillaries. Moreover, the resulting pore size distributions can be used to predict water retention curves. This inverse modeling approach—tested and validated using NMR relaxometry data measured on synthetic porous borosilicate samples with known petrophysical properties (i.e., permeability, porosity, inner surfaces, pore size distributions)—yields consistent and reproducible estimates of surface relaxivity and pore radii distributions. Also, subsequently calculated water retention curves generally correlate well with measured water retention curves.

  6. Formation mechanisms and near-surface stress orientations derived from fractographic markings on exfoliation joints in the Alps

    NASA Astrophysics Data System (ADS)

    Ziegler, M.; Loew, S.; Bahat, D.

    2013-12-01

    Granitic bedrock of the upper Aar valley (Grimsel area, Swiss Alps) contains four distinct exfoliation joint generations, which formed during different stages of the Pleistocene and occur in an Alpine landscape between inner trough valley bottoms and high mountain crests. Exfoliation joints of this investigation likely formed during the Middle Pleistocene (0.7-0.4 Ma; batch 1) and Upper Pleistocene to Holocene (<0.1 Ma; batch 2), subparallel to distinct glacial valley (palaeo-)topography. Mapping revealed that exfoliation joints of these batches exhibit prominent fracture surface morphologies. The bulk of exfoliation joints of batches 1 and 2 show common, characteristic fractographic features: (1) noncircular, radial plumose structures, (2) arrest marks on parent fracture planes and fringe cracks, and (3) gradually-developing fringe zones of en échelon type (Figure 1). We interpret smooth transitions from plumose structures on the parent plane to en échelon fringe cracks, combined with non-systematic stepping senses of fringe cracks, as local stress field variations (vs. temporal variations) in the vicinity of pre-existing joints and faults. Multiple arrest marks reveal that exfoliation joints in the Grimsel area formed incrementally and, together with absence of hackle fringes, suggest stable fracture conditions. Furthermore, we put special emphasis on surveying the orientations of plumose structure axes. We assume that plumose structure axes formed parallel to the maximum principal (far-field) compressive stress (σ1). This enables us to infer near-surface stress orientations within Alpine slopes. We found a correlation between the orientations of plumose structure axes and slope aspects for batches 1 and 2. Primarily low pitch angles (<~30°) of plumose structure axes suggest persistently subhorizontal to slightly inclined σ1 orientations, i.e. the orientation of σ1 changes together with change in slope aspect. We attribute this surface-near variability of

  7. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury.

    PubMed

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  8. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury

    PubMed Central

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J.; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  9. Joint inversion of Multi-frequency Electromagnetic Induction and Seismic Refraction Data For Improved Near Surface Characterization

    NASA Astrophysics Data System (ADS)

    Elwaseif, M.

    2015-12-01

    We present a joint inversion routine between multi-frequency Electromagnetic (EM) induction and seismic refraction data that is based on using both cross-gradients and disconnect constraints. The joint inverse problem was solved using an iterative nonlinear least-squares formulation. Following each iteration, the cross gradient constraint enforces structural similarities between the EM and seismic models, whereas the disconnect constraint enforces sharp boundaries between different strata within the EM model. The locations of boundaries within the EM model are assumed to be consistent with the locations of user-defined velocity contours in the seismic model. We tested our method on a challenging synthetic EM and seismic model scenario that contains water-bearing zones as well as positively and negatively correlated model parameter values. In addition, we applied our method to GEM-2 and seismic refraction field data sets acquired along a 28-m-long profile in Laramie (WY), and we precisely recorded the locations where ground surface resistivity and velocity likely changes along that line. Unlike the results of separate EM and seismic inversions and the results of joint inversion based only on a cross-gradient constraint, our method was able to detect the water-bearing zones. In addition, it better captured ground surface changes in the field data set.

  10. Consequences and Costs of Lower Extremity Injuries

    PubMed Central

    Dischinger, PC; Read, KM; Kufera, JA; Kerns, TJ; Burch, CA; Jawed, N; Ho, SM; Burgess, AR

    2004-01-01

    Lower extremity injuries resulting from motor vehicle crashes are common and have become relatively more important as more drivers with newer occupant restraints survive high-energy crashes. CIREN data provide a greater level of clinical detail based on coding guidelines from the Orthopedic Trauma Association. These detailed data, in conjunction with long-term follow-up data obtained from patient interviews, reveal that the most costly and disabling injuries are those involving articular (joint) surfaces, especially those of the ankle/foot. Patients with such injuries exhibit residual physical and psychosocial problems, even at one year post-trauma. PMID:15319134

  11. Disorders of the distal radioulnar joint.

    PubMed

    Houdek, Matthew T; Wagner, Eric R; Moran, Steven L; Berger, Richard A

    2015-01-01

    The distal radioulnar joint is responsible for stable forearm rotation. Injury to this joint can occur following a variety of mechanisms, including wrist fractures, ligamentous damage, or degenerative wear. Accurate diagnosis requires a clear understanding of the anatomy and mechanics of the ulnar aspect of the wrist. Injuries can be divided into three major categories for diagnostic purposes, and these include pain without joint instability, pain with joint instability, and joint arthritis. New advancements in imaging and surgical technique can allow for earlier detection of injuries, potentially preserving joint function. In this article, the authors review the pertinent anatomy, biomechanics, and major abnormality involving the distal radioulnar joint. PMID:25285686

  12. Deep coseismic slip of the 2008 Wenchuan earthquake inferred from joint inversion of fault stress changes and GPS surface displacements

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Yang, Yinghui; Luo, Rong; Liu, Guoxiang; Zhang, Kui

    2015-07-01

    Geodetic data are increasingly being used to infer coseismic slip distribution due to its advantages of wide coverage and high accuracy. However, it is difficult to obtain a comprehensive rupture pattern at depth when a source model is only constrained by geodetic surface deformation. In this study, a joint inversion approach incorporating stress changes and GPS surface displacements is explored and applied to characterize the fault slip of the 2008 Mw 7.9 Wenchuan earthquake, China. The earthquake data for the 20-year period before the main quake, which are collected from the background seismicity catalogues, and one month of aftershock data are statistically analysed to determine the fault stress changes based on the Dieterich model. The coseismic surface deformation measurements from 158 GPS surveying sites are jointly used to constrain the solution. Our preferred rupture model reveals four high-slip concentrations on the Yingxiu-Beichuan fault and one on the subparallel PengGuan fault. The spatial distribution suggests that the coseismic slip occurs not only above the hypocentre but also with a significant thrusting motion, with a mean slip of 8.5 m and a maximum of 9.7 m at a depth of 10-16 km. A significant high-slip concentration is found for the first time in this study. The coseismic faulting extends toward ∼16 km southwest of the Yingxiu-Beichuan fault and has a dextral strike-slip with a mean displacement of 4.8 m at a depth of 7-19 km. The joint inversion model misfits (GPS: 1.7 cm, stress change: 0.02 MPa) exhibit a good compatibility between the two types of datasets. The derived slip model, which has an improved resolution at depth, explains 98% of the coseismic surface displacements and 93% of the fault stress changes.

  13. Mallet finger: a simulation and analysis of hyperflexion versus hyperextension injuries.

    PubMed

    Kreuder, Andrea; Pennig, Dietmar; Boese, Christoph Kolja; Eysel, Peer; Oppermann, Johannes; Dargel, Jens

    2016-05-01

    The goal of this study was to simulate the mechanisms of hyperflexion and hyperextension injuries of the distal interphalangeal (DIP) joint of the hand and to analyze the resulting extensor tendon injury patterns. The hypotheses were raised that hyperflexion trauma leads to a plastic deformation of the extensor tendon aponeurosis, with or without a small bony avulsion fragment but without joint surface involvement, and that hyperextension injuries can create a shear fracture of the dorsal lip of the distal phalanx, without injury to the extensor tendon aponeurosis. Loading was applied with a swinging pendulum impacting the distal phalanx in 103 human specimens in either an extended or flexion position. After loading, injury patterns were analyzed radiologically and histologically. There was evidence that hyperflexion trauma leads to a plastic deformation or rupture of the extensor tendon. Bony tendon avulsion was evident in 12.2 % of cases. With hyperextension, the extensor tendon remained intact in all cases, but there were large fracture fragments involving the articular surface in 4.1 % of cases. The results of the study show that force on the flexed joint leads to overstretching of the extensor tendon, and to an associated dorsal bony avulsion with intact joint line. Force applied to the joint in extension can lead to a bony dorsal edge fracture with articular involvement and with it, a palmar DIP joint capsule rupture. The results illuminate a direct correlation between the mechanism of injury and the pattern of injury in the clinical picture of mallet finger. PMID:26498933

  14. Rowing injuries.

    PubMed

    Rumball, Jane S; Lebrun, Constance M; Di Ciacca, Stephen R; Orlando, Karen

    2005-01-01

    Participation in the sport of rowing has been steadily increasing in recent decades, yet few studies address the specific injuries incurred. This article reviews the most common injuries described in the literature, including musculoskeletal problems in the lower back, ribs, shoulder, wrist and knee. A review of basic rowing physiology and equipment is included, along with a description of the mechanics of the rowing stroke. This information is necessary in order to make an accurate diagnosis and treatment protocol for these injuries, which are mainly chronic in nature. The most frequently injured region is the low back, mainly due to excessive hyperflexion and twisting, and can include specific injuries such as spondylolysis, sacroiliac joint dysfunction and disc herniation. Rib stress fractures account for the most time lost from on-water training and competition. Although theories abound for the mechanism of injury, the exact aetiology of rib stress fractures remains unknown. Other injuries discussed within, which are specific to ribs, include costochondritis, costovertebral joint subluxation and intercostal muscle strains. Shoulder pain is quite common in rowers and can be the result of overuse, poor technique, or tension in the upper body. Injuries concerning the forearm and wrist are also common, and can include exertional compartment syndrome, lateral epicondylitis, deQuervain's and intersection syndrome, and tenosynovitis of the wrist extensors. In the lower body, the major injuries reported include generalised patellofemoral pain due to abnormal patellar tracking, and iliotibial band friction syndrome. Lastly, dermatological issues, such as blisters and abrasions, and miscellaneous issues, such as environmental concerns and the female athlete triad, are also included in this article.Pathophysiology, mechanism of injury, assessment and management strategies are outlined in the text for each injury, with special attention given to ways to correct

  15. Effect of Toll-Like Receptor 4 on Synovial Injury of Temporomandibular Joint in Rats Caused by Occlusal Interference

    PubMed Central

    Kong, Jingjing; Yang, Yingying; Sun, Shuzhen; Xie, Jianli; Lin, Xuefen; Ji, Ping

    2016-01-01

    Synovitis is an important disease that causes intractable pain in TMJ. Some investigations suggested that the increasing expression of IL-1β secreted by synovial lining cells plays an important role in synovial inflammation and cartilage destruction in TMJ. In our previous research, the results demonstrated that TLR4 is involved in the expression of IL-1β in SFs from TMJ with lipopolysaccharide stimulation. However, the inflammatory response that occurred in synovial membrane is not caused by bacterial infection. In the current study, we investigated whether or not TLR4 participates in the inflammatory responses and the expression of IL-1β in synovial membrane of rats induced by occlusal interference. The results showed that obvious inflammation changes were observed in the synovial membranes and the expression of TLR4 and IL-1β was increased at both mRNA and protein levels in the occlusal interference rats. In addition, the inflammation reactions and the increased expression of IL-1β could be restrained by treatment with TAK-242, a blocker of TLR4 signaling. The results prompted us that the activation of TLR4 may be involved in the inflammatory reactions and increased expression of IL-1β in patients with synovitis and participate in the mechanisms of the initiation and development of synovial injury by regulating the expression of inflammatory mediators like IL-1β in synovial membranes. PMID:27413256

  16. Wiener filtering of surface EMG with a priori SNR estimation toward myoelectric control for neurological injury patients.

    PubMed

    Liu, Jie; Ying, Dongwen; Zhou, Ping

    2014-12-01

    Voluntary surface electromyogram (EMG) signals from neurological injury patients are often corrupted by involuntary background interference or spikes, imposing difficulties for myoelectric control. We present a novel framework to suppress involuntary background spikes during voluntary surface EMG recordings. The framework applies a Wiener filter to restore voluntary surface EMG signals based on tracking a priori signal to noise ratio (SNR) by using the decision-directed method. Semi-synthetic surface EMG signals contaminated by different levels of involuntary background spikes were constructed from a database of surface EMG recordings in a group of spinal cord injury subjects. After the processing, the onset detection of voluntary muscle activity was significantly improved against involuntary background spikes. The magnitude of voluntary surface EMG signals can also be reliably estimated for myoelectric control purpose. Compared with the previous sample entropy analysis for suppressing involuntary background spikes, the proposed framework is characterized by quick and simple implementation, making it more suitable for application in a myoelectric control system toward neurological injury rehabilitation. PMID:25443536

  17. Volleyball injuries.

    PubMed

    Eerkes, Kevin

    2012-01-01

    There has been a significant increase in the numbers of people playing indoor and beach volleyball since the early 1980s and, consequently, an increase in injuries. Most injuries are related to repetitive jumping and hitting the ball overhead. The ankle is the most commonly injured joint, but the knee, shoulder, low back, and fingers also are vulnerable. The shoulder in particular is subject to extreme torque when hitting and jump serving the ball. Some injuries have a predilection for those playing on sand versus those playing in an indoor court. The clinician caring for volleyball players should be aware of the types of injuries these players sustain and how to help them return to play promptly and appropriately. This article reviews the specific injuries that are most common as a result of participating in the sport of volleyball. PMID:22965348

  18. An Overview of Surface Finishes and Their Role in Printed Circuit Board Solderability and Solder Joint Performance

    SciTech Connect

    Vianco, P.T.

    1998-10-15

    A overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability were described for the following coatings: baseline hot-dipped, plated, and plated-and-fused 100Sn and Sn-Pb coatings; Ni/Au; Pd, Ni/Pd, and Ni/Pd/Au finishes; and the recently marketed immersion Ag coatings. The Ni/Au coatings appear to provide the all-around best option in terms of solderability protection and wire bondability. Nickel/Pal ftishes offer a slightly reduced level of performance in these areas that is most likely due to variable Pd surface conditions. It is necessmy to minimize dissolved Au or Pd contents in the solder material to prevent solder joint embrittlement. Ancillary aspects that included thickness measurement techniques; the importance of finish compatibility with conformal coatings and conductive adhesives; and the need for alternative finishes for the processing of non-Pb bearing solders were discussed.

  19. Surface modifications of nylon/carbon fiber composite for improving joint adhesion

    SciTech Connect

    Wu, R.; Liao, S.L.; Tong, T.S.; Young, J.T.

    1996-12-31

    Various methods were used to modify the nylon/carbon fiber composite surfaces, including grit blasting, flame and plasma pretreatments. The surfaces of nylon composites after pretreatments were characterized by contact angle measurements, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). XPS results show that several functional groups were formed after plasma and flame pretreatments. The scanning electron microscope (SEM) photographs suggest that the blasting pretreatment increased the surface roughness of nylon composites. All these surface pretreatments dramatically increased the lap shear strength if proper operation conditions were used. The reasons for the increase of lap shear strength were explained.

  20. Improvement of the T-peel Strength of Polypropylene Adhesion Joints by Surface Photografting Pre-Treatment with Methyl Methacrylate

    NASA Astrophysics Data System (ADS)

    Balart, R.; Sánchez-Nácher, L.; Balart, J.; Fombuena, V.; España, J. M.

    2010-06-01

    Although polypropylene is one of the most used polymers at industrial level due to good balanced properties, it presents some restrictions in applications that require good adhesion properties as well as coating and painting. These restrictions are related to its non polar nature which leads to low wetting properties. So that, in most cases, it is necessary a previous surface pre-treatment in order to improve adhesion properties. These surface treatments could be physical or chemical. Among the wide variety of physical processes, plasma technologies are useful from both technical and environmental points of view. If we take into account economic considerations, chemical processes are interesting due to low cost equipment and procedures. In particular, we have used photografting of methyl methacrylate (MMA) monomer on polypropylene substrates with UV radiation and initiators. This process is useful to promote chemical modification of polypropylene surface by grafting MMA monomers into polypropylene polymer chains. Due to polarity of some groups in MMA monomers, it is possible to increase surface wettability thus promoting a remarkable increase in adhesion properties of polypropylene. In this work, changes in wettability of polypropylene surfaces in terms of the exposure time to UV radiation in presence of MMA monomers and initiators has been investigated. Furthermore, chemical changes have been characterized by FTIR analysis and mechanical performance of adhesion joints has been evaluated by T-peel tests.

  1. Synovial tissue morphology of the cricoarytenoid joint in the elderly: a histological comparison with the cricothyroid joint

    PubMed Central

    Katsumura, Sakura; Kitamura, Kei; Kasahara, Masaaki; Katori, Yukio; Abe, Shin-ichi

    2016-01-01

    We compared the age-related morphology of the cricothyroid (CT) joint with that of the cricoarytenoid (CA) joint using 18 specimens from elderly cadavers in terms of their elastic fiber contents as well as the cells composing the joint capsule and synovial tissues. In contrast to an almost flat-flat interface in the CT joint, the CA joint was similar to a saddle joint. The CA joint capsule was thin and contained few elastic fibers, and in contrast to the CT joint, external fibrous tissues were not exposed to the joint cavity, there being no injury to the CA joint capsule. The lateral and posterior aspects of the CA joint were covered by the lateral and posterior CA muscles, respectively, and the fascia of the latter muscle was sometimes thick with abundant elastic fibers. However, due to possible muscle degeneration, loose connective tissue was often interposed between the fascia and the capsule. The medial and anterior aspects of the CA joint faced loose tissue that was continuous with the laryngeal submucosal tissue. Therefore, in contrast to the CT joint, a definite supporting ligament was usually absent in the CA joint. Synovial folds were always seen in the CA joint, comprising a short triangular mass on the posterior side and long laminar folds on the anterior side. The synovial folds usually contained multiple capillaries and a few CD68-positive macrophages. High congruity of the CA joint surfaces as well as strong muscle support to the arytenoid cartilage appeared to provide the specific synovial morphology. PMID:27051568

  2. Tarsometatarsal/Lisfranc joint.

    PubMed

    DiDomenico, Lawrence A; Cross, Davi

    2012-04-01

    Accurate early diagnosis with adequate reduction and maintenance of anatomic alignment of the dislocation or fracture within the Lisfranc joint complex have been found to be the key to successful outcomes regarding this injury. Because of the anatomic variations, the thin soft tissue envelop, and the abundance of ligamentous and capsular structures in the region, repair of these injuries can be a challenge. The classification systems used to describe these injuries aid in describing the mechanism of injury or displacement type present, which may aid in determining what treatment modality can provide the best outcome. PMID:22424486

  3. Crustal layering in northeastern Tibet: a case study based on joint inversion of receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Deng, Yangfan; Shen, Weisen; Xu, Tao; Ritzwoller, Michael H.

    2015-10-01

    Recently constructed models of crustal structure across Tibet based on surface wave data display a prominent mid-crustal low velocity zone (LVZ) but are vertically smooth in the crust. Using six months of broad-band seismic data recorded at 22 stations arrayed approximately linearly over a 440 km observation profile across northeastern Tibet (from the Songpan-Ganzi block, through the Qaidam block, into the Qilian block), we perform a Bayesian Monte Carlo joint inversion of receiver function data with surface wave dispersion to address whether crustal layering is needed to fit both data sets simultaneously. On some intervals a vertically smooth crust is consistent with both data sets, but across most of the observation profile two types of layering are required: a discrete LVZ or high velocity zone (HVZ) formed by two discontinuities in the middle crust and a doublet Moho formed by two discontinuities from 45-50 km to 60-65 km depth connected by a linear velocity gradient in the lowermost crust. The final model possesses (1) a mid-crustal LVZ that extends from the Songpan-Ganzi block through the Kunlun suture into the Qaidam block consistent with partial melt and ductile flow and (2) a mid-crustal HVZ bracketing the south Qilian suture coincident with ultrahigh pressure metamorphic rocks at the surface. (3) Additionally, the model possesses a doublet Moho extending from the Qaidam to the Qilian blocks which probably reflects increased mafic content with depth in the lowermost crust perhaps caused by a vertical gradient of ecologitization. (4) Crustal thickness is consistent with a step-Moho that jumps discontinuously by 6 km from 63.8 km (±1.8 km) south of 35° to 57.8 km (±1.4 km) north of this point coincident with the northern terminus of the mid-crustal LVZ. These results are presented as a guide to future joint inversions across a much larger region of Tibet.

  4. Joint inversion of surface wave velocity and gravity observations and its application to central Asian basins shear velocity structure

    NASA Astrophysics Data System (ADS)

    Maceira, Monica; Ammon, Charles J.

    2009-02-01

    We implement and apply a method to the jointly inverted of surface wave group velocities and gravity anomalies observations. Surface wave dispersion measurements are sensitive to seismic shear wave velocities, and the gravity measurements supply constraints on rock density variations. Our goal is to obtain a self-consistent three-dimensional shear velocity-density model with increased resolution of shallow geologic structures. We apply the method to investigate the structure of the crust and upper mantle beneath two large central Asian sedimentary basins: the Tarim and Junggar. The basins have thick sediment sections that produce substantial regional gravity variations (up to several hundred milligals). We used gravity observations extracted from the global gravity model derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. We combine the gravity anomalies with high-resolution surface wave slowness tomographic maps that provide group velocity dispersion values in the period range between 8 and 100 s for a grid of locations across central Asia. To integrate these data, we use a relationship between seismic velocity and density constructed through the combination of two empirical relations. One determined by Nafe and Drake, most appropriate for sedimentary rocks, and a linear Birch's law, more applicable to denser rocks (the basement). An iterative, damped least squares inversion including smoothing is used to jointly model both data sets, using shear velocity variations as the primary model parameters. Results show high upper mantle shear velocities beneath the Tarim basin and suggest differences in lower crust and upper mantle shear velocities between the eastern and western Tarim.

  5. Ultraviolet excitation for thermography inspection of surface cracks in welded joints

    NASA Astrophysics Data System (ADS)

    Runnemalm, Anna; Broberg, Patrik; Henrikson, Per

    2014-10-01

    Infrared thermography is a non-contact and full field inspection method which has proven to be suitable for automatic surface crack detection. For automatic analysis of the inspection results, a high signal-to-noise ratio (SNR) is required. In this paper an alternative excitation method, using ultraviolet (UV) illumination, is presented and evaluated. Artificial surface defects, so-called notches, in a titanium plate are detected both in the weld seam and in the heat affected zone. Notches with a size from 80 μm in width and 250 μm in length are detected. The SNR using UV illumination is compared with that using flash lamp excitation. The results show that UV illumination using a mercury lamp is a good alternative as excitation source for thermography when detecting surface cracks. To validate the excitation method, results from real surface cracks are included.

  6. Sacroiliac joint imaging.

    PubMed

    Tuite, Michael J

    2008-03-01

    The sacroiliac (SI) joint has several unique anatomical features that make it one of the more challenging joints to image. The joint is difficult to profile well on radiographic views, and therefore the radiographic findings of sacroiliitis are often equivocal. Computed tomography images can usually show the findings of sacroiliitis and osteoarthritis earlier than radiographs. Magnetic resonance imaging performed with proper sequences is excellent for diagnosing even very early sacroiliitis and for following treatment response. The SI joint is often involved in patients with osteoarthritis or one of the inflammatory spondyloarthritides, most notably ankylosing spondylitis. Ankylosing spondylitis often presents with sacroiliitis, which appears as erosions, sclerosis, and joint space narrowing, eventually leading to ankylosis. Several disorders can cause sacroiliitis-like changes of the joint, including hyperparathyroidism and repetitive shear-stress injuries in athletes. The joint can become painful during pregnancy as it widens and develops increased motion, and some postpartum women develop iliac sclerosis adjacent to the joint termed osteitis condensans ilii. Another cause of SI joint pain is a disorder called sacroiliac joint dysfunction, which typically has few abnormal imaging findings. Patients with SI joint dysfunction, as well as sacroiliitis, often get relief from image-guided SI joint therapeutic injections. PMID:18382946

  7. Cell-based approaches to joint surface repair: a research perspective

    PubMed Central

    Roelofs, A.J.; Rocke, J.P.J.; De Bari, C.

    2013-01-01

    Summary Repair of lesions of the articular cartilage lining the joints remains a major clinical challenge. Surgical interventions include osteochondral autograft transfer and microfracture. They can provide some relief of symptoms to patients, but generally fail to durably repair the cartilage. Autologous chondrocyte implantation has thus far shown the most promise for the durable repair of cartilage, with long-term follow-up studies indicating improved structural and functional outcomes. However, disadvantages of this technique include the need for additional surgery, availability of sufficient chondrocytes for implantation, and maintenance of their phenotype during culture-expansion. Mesenchymal stem cells offer an attractive alternative cell-source for cartilage repair, due to their ease of isolation and amenability to ex vivo expansion while retaining stem cell properties. Preclinical and clinical studies have demonstrated the potential of mesenchymal stem cells to promote articular cartilage repair, but have also highlighted several key challenges. Most notably, the quality and durability of the repair tissue, its resistance to endochondral ossification, and its effective integration with the surrounding host tissue. In addition, challenges exist related to the heterogeneity of mesenchymal stem cell preparations and their quality-control, as well as optimising the delivery method. Finally, as our knowledge of the cellular and molecular mechanisms underlying articular cartilage repair increases, promising studies are emerging employing bioactive scaffolds or therapeutics that elicit an effective tissue repair response through activation and mobilisation of endogenous stem and progenitor cells. PMID:23598176

  8. Joint swelling

    MedlinePlus

    Swelling of a joint ... Joint swelling may occur along with joint pain . The swelling may cause the joint to appear larger or abnormally shaped. Joint swelling can cause pain or stiffness. After an ...

  9. Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model

    SciTech Connect

    Blanquart, G.; Pitsch, H.

    2009-08-15

    The intent of the current work is to present and further validate a new tri-variate model for the formation of soot particles, to apply this model in analyzing the effects of temperature on the formation and growth of soot, and to compare the findings with the present understanding derived from numerous experimental studies. In this novel model, a particle is represented as a fractal shaped aggregate and is described by three independent quantities: the volume, the surface area, and the number of hydrogenated sites (or active sites) on the surface. The introduction of this third variable allows for a better description of the surface reactivity at high temperatures. This approach is extended by a model for the total carbon-to-hydrogen (C/H) ratio of the particle. The model is validated first in high temperature premixed ethylene flames, premixed benzene flames, an acetylene counterflow diffusion flame, and toluene pyrolysis in shock-tubes. Then, the soot volume fraction is computed for a series of atmospheric laminar ethylene premixed flames with varying flame temperatures. The soot model is shown to reproduce the well known bell-shaped temperature dependence of soot volume fraction, which was found in many experiments. It is observed that nucleation is the largest contributor to soot volume fraction at low temperatures while growth by surface reactions is more important at higher temperatures. The surface reactivity and the volumetric carbon-to-hydrogen ratio (C/H) are also computed as a function of temperature. The surface reactivity is found to depend not only on the temperature but also on the particle size and the residence time in the flame. Finally, as observed experimentally, the C/H ratio is found to be essentially constant and close to unity for low temperature flames and increases with residence time in high temperature flames. (author)

  10. The Interplay of Surface Mount Solder Joint Quality and Reliability of Low Volume SMAs

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    1997-01-01

    Spacecraft electronics including those used at the Jet Propulsion Laboratory (JPL), demand production of highly reliable assemblies. JPL has recently completed an extensive study, funded by NASA's code Q, of the interplay between manufacturing defects and reliability of ball grid array (BGA) and surface mount electronic components.

  11. Protective Performance of Plate-Cell Rubber Tiles against Childhood Head Injury on Playground Surfaces — A Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Chang, Li-Tung; Huang, Tsai-Jeon

    Rubber tiles are commonly used in playgrounds as protective surfacing to reduce the incidence of head injuries in children caused by falling from equipment. This study developed a rubber tile model consisting of a surface layer of solid and a base layer of plate-cell and used it to investigate head injury protective performance. An explicit finite element method based on the experimental data was used to simulate head impact on the rubber tile. The peak acceleration and head injury criterion (HIC) were employed to assess the shock-absorbing capability of the tile. The results showed that compared to the peak acceleration, use of the HIC index provided a more conservative assessment of the shock absorption ability, and ultimately the protection against head injuries. This study supports the feasibility of using rubber tile with plate-cell construction to improve shock-absorbing capability. The plate-cell structure provided an excellent cushioning effect via a lower axial shear stiffness of the surface layer and lower transverse shearing stiffness of the core. The core's dimensions were an important parameter in determining the shearing stiffness. The analysis suggested that the cushioning effect would significantly reduce the peak force on the head from a fall and delay the occurrence of the peak value during impact, resulting in a marked reduction in the peak acceleration and HIC values of the head. Two plate-cell constructions with honeycomb and box-like cores were proposed and validated in this study. The better protective ability of the honeycomb core was attributed to its lower transverse shearing stiffness.

  12. Surface modification of ultra high molecular weight polyethylene with hyaluronan for total joint replacement application

    NASA Astrophysics Data System (ADS)

    Zhang, Min

    Hyaluronan (HA), a natural lubricant molecule present in mammalian synovial fluid, was introduced into the ultra high molecular weight polyethylene (UHMWPE) surface to improve its hydrophilicity, lubricity and wear resistance for orthopedic applications. Two novel hyaluronan derivatives were created so that micro-composites of hydrophilic HA and hydrophobic UHMWPE could be made by either a solvent infiltration or melt blending process. The silylated HA was hydrophobic and soluble in organic solvents, and thus was used in the solvent infiltration process. Preforms with interconnected micro-pores were used as the UHMWPE starting material to form a micro-composite with HA. With appropriate process parameters, a uniform HA film layer was produced on the micro-composite surface, which quickly hydrated in water, forming a lubricious surface film. The HA surface on the micro-composite was stable and resistant to enzymatic degradation. The effect of HA on the mechanical properties of UHMWPE was significant, but within ASTM guidelines for implant-grade UHMWPE. Compared with the control, the micro-composite had a decreased strength and increased elongation to failure. The HA-UHMWPE micro-composites significantly reduced wear and wear rates of UHMWPE, and the decreases were more significant for some sample treatments than others. A series of HA esters that could be used to create the microcomposites via melt blending was also developed by acylating silylated HA-CTA. HA esters with an acyl chain length greater than 10 carbon atoms melted before degrading. Thus, HA caprinate and higher esters are melt-processable. Future work will investigate the melt blending approach to manufacture microcomposites with hot-processed HA esters and UHMWPE powder.

  13. A sequential data assimilation approach for the joint reconstruction of mantle convection and surface tectonics

    NASA Astrophysics Data System (ADS)

    Bocher, M.; Coltice, N.; Fournier, A.; Tackley, P. J.

    2016-01-01

    With the progress of mantle convection modelling over the last decade, it now becomes possible to solve for the dynamics of the interior flow and the surface tectonics to first order. We show here that tectonic data (like surface kinematics and seafloor age distribution) and mantle convection models with plate-like behaviour can in principle be combined to reconstruct mantle convection. We present a sequential data assimilation method, based on suboptimal schemes derived from the Kalman filter, where surface velocities and seafloor age maps are not used as boundary conditions for the flow, but as data to assimilate. Two stages (a forecast followed by an analysis) are repeated sequentially to take into account data observed at different times. Whenever observations are available, an analysis infers the most probable state of the mantle at this time, considering a prior guess (supplied by the forecast) and the new observations at hand, using the classical best linear unbiased estimate. Between two observation times, the evolution of the mantle is governed by the forward model of mantle convection. This method is applied to synthetic 2-D spherical annulus mantle cases to evaluate its efficiency. We compare the reference evolutions to the estimations obtained by data assimilation. Two parameters control the behaviour of the scheme: the time between two analyses, and the amplitude of noise in the synthetic observations. Our technique proves to be efficient in retrieving temperature field evolutions provided the time between two analyses is ≲10 Myr. If the amplitude of the a priori error on the observations is large (30 per cent), our method provides a better estimate of surface tectonics than the observations, taking advantage of the information within the physics of convection.

  14. Lisfranc injuries: an update.

    PubMed

    Eleftheriou, Kyriacos I; Rosenfeld, Peter F; Calder, James D F

    2013-06-01

    Lisfranc injuries are a spectrum of injuries to the tarsometatarsal joint complex of the midfoot. These range from subtle ligamentous sprains, often seen in athletes, to fracture dislocations seen in high-energy injuries. Accurate and early diagnosis is important to optimise treatment and minimise long-term disability, but unfortunately, this is a frequently missed injury. Undisplaced injuries have excellent outcomes with non-operative treatment. Displaced injuries have worse outcomes and require anatomical reduction and internal fixation for the best outcome. Although evidence to date supports the use of screw fixation, plate fixation may avoid further articular joint damage and may have benefits. Recent evidence supports the use of limited arthrodesis in more complex injuries. PMID:23563815

  15. Effects of Microstructure and Loading on Fracture of Sn-3.8Ag-0.7Cu Joints on Cu Substrates with ENIG Surface Finish

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2014-12-01

    When dropped, electronic packages often undergo failure by propagation of an interfacial crack in solder joints under a combination of tensile and shear loading. Hence, it is crucial to understand and predict the fracture behavior of solder joints under mixed-mode high-rate loading conditions. In this work, the effects of the loading conditions (strain rate and loading angle) and microstructure [interfacial intermetallic compound (IMC) morphology and solder yield strength] on the mixed-mode fracture toughness of Sn-3.8 wt.%Ag-0.7 wt.%Cu solder joints sandwiched between two Cu substrates with electroless nickel immersion gold (ENIG) metallization have been studied, and compared with the fracture behavior of joints attached to bare Cu. Irrespective of the surface finish, the fracture toughness of the solder joints decreased monotonically with strain rate and mode-mixity, both resulting in increased fracture proportion through the interfacial IMC layer. Furthermore, the proportion of crack propagation through the interfacial IMC layer increased with increase in the thickness and the roughness of the interfacial IMC layer and the yield strength of the solder, resulting in a decrease in the fracture toughness of the joint. However, under most conditions, solder joints with ENIG finish showed higher resistance to fracture than joints attached directly to Cu substrates without ENIG metallization. Based on the experimental observations, a fracture mechanism map is constructed correlating the yield strength of the solder, the morphology and thickness of the interfacial IMC, and the fracture mechanisms as well as the fracture toughness values for different solder joints under mode I loading.

  16. Atomic force microscopy visualization of injuries in Enterococcus faecalis surface caused by Er,Cr:YSGG and diode lasers

    PubMed Central

    López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa

    2015-01-01

    Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770

  17. Drop Reliability of Epoxy-contained Sn-58 wt.%Bi Solder Joint with ENIG and ENEPIG Surface Finish Under Temperature and Humidity Test

    NASA Astrophysics Data System (ADS)

    Myung, Woo-Ram; Kim, Yongil; Kim, Kyung-Yeol; Jung, Seung-Boo

    2016-04-01

    The influence of two kinds of surface finish, namely electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG), on the interfacial reactions and drop reliability of epoxy-enhanced Sn-58 wt.%Bi solder has been investigated after temperature-humidity storage tests. The chemical composition and morphology of intermetallic compounds (IMCs) were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electron probe microanalysis. Also, the mechanical reliability of solder joints was evaluated using board-level drop tests. The Sn-Bi epoxy solder/ENEPIG joint exhibited higher IMC growth rate than the Sn-Bi epoxy solder/ENIG joint. After 500 h at 85°C/85% RH storage condition, new IMCs were formed on the Ni3Sn4 layer in samples with both surface finishes. The results of board-level drop tests showed that the number of drops was higher for the ENIG than the ENEPIG surface finish. Solder joint fracture occurred along the interface between the solder and IMC layer for the ENIG surface finish. However, with the ENEPIG surface finish, the crack propagated between the IMCs.

  18. Drop Reliability of Epoxy-contained Sn-58 wt.%Bi Solder Joint with ENIG and ENEPIG Surface Finish Under Temperature and Humidity Test

    NASA Astrophysics Data System (ADS)

    Myung, Woo-Ram; Kim, Yongil; Kim, Kyung-Yeol; Jung, Seung-Boo

    2016-07-01

    The influence of two kinds of surface finish, namely electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG), on the interfacial reactions and drop reliability of epoxy-enhanced Sn-58 wt.%Bi solder has been investigated after temperature-humidity storage tests. The chemical composition and morphology of intermetallic compounds (IMCs) were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electron probe microanalysis. Also, the mechanical reliability of solder joints was evaluated using board-level drop tests. The Sn-Bi epoxy solder/ENEPIG joint exhibited higher IMC growth rate than the Sn-Bi epoxy solder/ENIG joint. After 500 h at 85°C/85% RH storage condition, new IMCs were formed on the Ni3Sn4 layer in samples with both surface finishes. The results of board-level drop tests showed that the number of drops was higher for the ENIG than the ENEPIG surface finish. Solder joint fracture occurred along the interface between the solder and IMC layer for the ENIG surface finish. However, with the ENEPIG surface finish, the crack propagated between the IMCs.

  19. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    NASA Astrophysics Data System (ADS)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-04-01

    Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag+ ion to Ag0. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  20. The Crust and Upper Mantle Structure of the Iranian Plateau from Joint Waveform Tomography Imaging of Body and Surface Waves

    NASA Astrophysics Data System (ADS)

    Roecker, S. W.; Priestley, K. F.; Tatar, M.

    2014-12-01

    The Iranian Plateau forms a broad zone of deformation between the colliding Arabian and Eurasian plates. The convergence is accommodated in the Zagros Mountains of SW Iran, the Alborz Mountains of northern Iran, and the Kopeh Dagh Mountains of NE Iran. These deforming belts are separated by relatively aseismic depressions such as the Lut Block. It has been suggested that the Arabia-Eurasia collision is similar to the Indo-Eurasia collision but at a early point of development and therefore, it may provide clues to our understanding of the earlier stages of the continent-continent collision process. We present results of the analysis of seismic data collected along two NE-SW trending transects across the Iranian Plateau. The first profile extends from near Bushere on the Persian Gulf coast to near to the Iran-Turkmenistan border north of Mashad, and consists of seismic recordings along the SW portion of the line in 2000-2001 and recording along the NE portion of the line in 2003 and 2006-2008. The second profile extends from near the Iran-Iraq border near the Dezfel embayment to the south Caspian Sea coast north of Tehran. We apply the combined 2.5D finite element waveform tomography algorithm of Baker and Roecker [2014] to jointly invert teleseismic body and surface waves to determine the elastic wavespeed structures of these areas. The joint inversion of these different types of waves affords similar types of advantages that are common to combined surface wave dispersion/receiver function inversions in compensating for intrinsic weaknesses in horizontal and vertical resolution capabilities. We compare results recovered from a finite difference approach to document the effects of various assumptions related to their application, such as the inclusion of topography, on the models recovered. We also apply several different inverse methods, starting with simple gradient techniques to the more sophisticated pseudo-Hessian or L-BFGS approach, and find that the latter are

  1. Theoretical investigation of an artificial joint with micro-pocket-covered component and biphasic cartilage on the opposite articulating surface.

    PubMed

    Suciu, A N; Iwatsubo, T; Matsuda, M

    2003-08-01

    This paper presents a theoretical investigation of a geometrically idealized artificial joint with micro-pocket-covered component and biphasic cartilage on the opposite articulating surface. The fluid that exudes from the biphasic cartilage fills and pressurizes the micro-pockets. In this way, a poro-elasto-hydrodynamic regime of lubrication is developed. Assuming that lower friction would result in lower adhesive wear, and neglecting the fatigue as well as the abrasive wear, the proposed bearing system hypothetically could reduce the amount of wear debris. Equations of the linear biphasic theory are applied for the confined and unconfined compression of the cartilage. The fluid pressure and the elastic deformation of the biphasic cartilage are explicitly presented. The effective and equilibrium friction coefficients are obtained for the particular configuration of this bearing system. The micro-pockets geometrical parameters (depth, radius, surface distribution and edge radius) must be established to reduce the local contact stresses, to assure low friction forces and to minimize the biphasic cartilage damage. The influence of the applied pressure, porosity of the micro-pocket-covered component, filling time, cartilage elasticity, permeability and porosity upon the micro-pockets depth is illustrated. Our results are based upon the previously published data for a biphasic cartilage. PMID:12968566

  2. Joint State and Parameter Estimation for Two Land Surface Models Using the Ensemble Kalman Filter and Particle Filter

    NASA Astrophysics Data System (ADS)

    Zhang, Hongjuan; Hendricks-Franssen, Harrie-Jan; Han, Xujun; Vrugt, Jasper A.; Vereecken, Harry

    2016-04-01

    Land surface models (LSMs) resolve the water and energy balance with different parameters and state variables. Many of the parameters of these models cannot be measured directly in the field, and require calibration against flux and soil moisture data. Two LSMs are used in our work: Variable Infiltration Capacity Hydrologic Model (VIC) and the Community Land Model (CLM). Temporal variations in soil moisture content at 5, 20 and 50 cm depth in the Rollesbroich experimental watershed in Germany are simulated in both LSMs. Data assimilation (DA) provides a good way to jointly estimate soil moisture content and soil properties of the resolved soil domain. Four DA methods combined with the two LSMs are used in our work: the Ensemble Kalman Filter (EnKF) using state augmentation or dual estimation, the Residual Resampling Particle Filter (RRPF) and Markov chain Monte Carlo Particle Filter (MCMCPF). These four DA methods are tuned and calibrated for a five month period, and subsequently evaluated for another five month period. Performances of the two LSMs and the four DA methods are compared. Our results show that all DA methods improve the estimation of soil moisture content of the VIC and CLM models, especially if the soil hydraulic properties (VIC), the maximum baseflow velocity (VIC) and/or soil texture (CLM) are jointly estimated with soil moisture content. The augmentation and dual estimation methods performed slightly better than RRPF and MCMCPF in the evaluation period. The differences in simulated soil moisture content between CLM and VIC were larger than variations among the DA methods. The CLM performed better than the VIC model. The strong underestimation of soil moisture content in the third layer of the VIC model is likely related to an inadequate parameterization of groundwater drainage.

  3. Cartilage Injuries in the Adult Knee

    PubMed Central

    Moyad, Thomas F.

    2011-01-01

    Cartilage injuries are frequently recognized as a source of significant morbidity and pain in patients with previous knee injuries. The majority of patients who undergo routine knee arthroscopy have evidence of a chondral defect. These injuries represent a continuum of pathology from small, asymptomatic lesions to large, disabling defects affecting a major portion of one or more compartments within the knee joint. In comparison to patients with osteoarthritis, individuals with isolated chondral surface damage are often younger, significantly more active, and usually less willing to accept limitations in activities that require higher impact. At the present time, a variety of surgical procedures exist, each with their unique indications. This heterogeneity of treatment options frequently leads to uncertainty regarding which techniques, if any, are most appropriate for patients. The purpose of this review is to describe the workup and discuss the management techniques for cartilage injuries within the adult knee. PMID:26069581

  4. A symptomatic coracoclavicular joint.

    PubMed

    Cheung, T F S; Boerboom, A L; Wolf, R F E; Diercks, R L

    2006-11-01

    Bilateral coracoclavicular joints were found in a 44-year-old male patient following a fall. He had an Indonesian mother and a Dutch father. Prior to the injury he was asymptomatic and had full range of movement in both shoulders but the trauma resulted in pain and limitation of movement in the left shoulder which required resection of the anomalous joint, after which full pain-free movement was restored. PMID:17075101

  5. Toe Injuries and Disorders

    MedlinePlus

    ... include Corns and bunions Ingrown toenails Toe joint sprains and dislocations Fractured toe bones Treatments for toe injuries and disorders vary. They might include shoe inserts or special shoes, padding, taping, medicines, rest, and in severe cases, surgery.

  6. Seismic Tomography of the Continental United States from a Joint Inversion of Surface Waves and Body Waves

    NASA Astrophysics Data System (ADS)

    Golos, E. M.; Yao, H.; Zhang, H.; Fang, H.; Burdick, S.; Schaeffer, A. J.; Vernon, F.; Lebedev, S.; van der Hilst, R. D.

    2015-12-01

    We present a model of seismic velocity anomalies for the entire continental United States—coast to coast, surface to lower mantle—using a joint body wave-surface wave inversion. This technique (Zhang et al., 2014), performed on a global adaptively-spaced grid, exploits the good vertical resolution at shallow depths of surface wave data, and the sampling of the deep mantle by teleseismic body (P and S) waves. The resultant model has better resolution at all depths than either method alone, enabling evaluation of interactions between lithospheric and mantle processes. We utilize the depth-dependence of surface wave sensitivity kernels to express surface wave phase velocity data directly in terms of spatial velocity structure (Fang et al., 2015). The data used are Rayleigh wave phase velocities from earthquakes and ambient noise (Schaeffer and Lebedev, 2013; Ekström, 2014) and S phase travel times from USArray, measured at the Array National Facility (ANF). We include a suite of synthetic tests to verify the performance of the inversion and compare it to results from traditional tomographic methods. We also use P arrivals and the influence of Vp on Rayleigh wave propagation speed to generate a preliminary model of Vp variations, independent from but consistent with the Vs model. Our model corroborates the well-established pattern of slow anomalies in the western US, especially in the Basin and Range and Rio Grande Rift regions. New details emerge in the eastern US, thanks to increasing data from the region. A distinction is observed between widespread fast lithospheric anomalies, associated with stable cratonic material, and deeper fast features, associated with the remnants of the Farallon Plate. It has been proposed that these fragments, near the mantle transition zones, still affect mantle dynamics (Forte et al., 2007), so better resolution of these anomalies is an important advancement. In addition, slower velocities are observed beneath the Appalachians and

  7. Hemiarthroplasty of the shoulder joint using a custom-designed high-density nano-hydroxyapatite/polyamide prosthesis with a polyvinyl alcohol hydrogel humeral head surface in rabbits.

    PubMed

    Guo, Yongwen; Guo, Jun; Bai, Ding; Wang, Hang; Zheng, Xiaohui; Guo, Weihua; Tian, Weidong

    2014-07-01

    In this study, a novel custom-designed high-density nano-hydroxyapatite/polyamide (n-HA/PA) prosthesis with a polyvinyl alcohol (PVA) hydrogel humeral head surface was employed to repair the shoulder joint head for hemiarthroplasty in rabbits. The prosthesis was fabricated using three-dimensional computed tomography and computer-aided design and computer-aided manufacturing systems for perfect fitting. Sixteen New Zealand white rabbits underwent humeral head excision, and received the composite prostheses for hemiarthroplasty. The implant sites were free from suppuration and necrosis at all periods. The X-ray results showed that there was a clear space between the prosthesis head and the glenoid surface, and the joint capsules and surfaces of the glenoid and PVA were well preserved without any damage during the whole inspection period. A high density of bone was observed around the firmware part of the prosthesis. Histological results revealed that significant osteogenesis was surrounding the firmware part, and the joint space was clear and the cartilage of the upper joint surface was basically intact. There was no visible absorption of the joint surfaces even after 3 months of continuous functional motions. The maximum tensile strength between the prosthesis and host bone reached 2.63 MPa at the 12th week postimplantation. In conclusion, the customized prosthesis by combination of PVA and high-density n-HA/PA has excellent biocompatibility and biological fixation, and offers a promising substitute for both the cartilage and the bone of the humeral head in a rabbit model as level V evidence. PMID:24404998

  8. Traumatic proximal tibiofibular dislocation with neurovascular injury

    PubMed Central

    Veerappa, Lokesh A; Gopalakrishna, Chetan

    2012-01-01

    23 years old male presented with inferolateral dislocation of proximal tibiofibular joint associated with popliteal artery and common peroneal nerve injury. The extension of the injury to involve the interosseus membrane up to the distal tibiofibular joint. The association of popliteal artery injury is not reported before to the best of our knowledge. PMID:23162155

  9. Joint inversion of surface wave and body wave data for the characterisation of a fault system in New Zealand

    NASA Astrophysics Data System (ADS)

    Socco, L. V.; Garofalo, F.; Bergamo, P.; Konstantaki, L. A.; Carpentier, S.

    2012-04-01

    A seismic reflection dataset was acquired by the Applied and Environmental Geophysics group at ETH Zurich to characterise a site across the Alpine Fault near the village of Inchbonnie on the South Island of New Zealand. The Alpine Fault is a transpressional strike slip fault and is the largest of several New Zealand faults that occur at the boundary of the Australian and the Pacific tectonic plates. The site is just north of the intersection between the Alpine Fault and the Hope Fault and features a fault step-over zone. It is further characterised by glacial, glaciolacustrine, lacustrine and fluvial sediments (mostly gravels), transported and distributed by the Taramakau River. The dataset consists of five high resolution seismic reflection lines that cross the fault zone. The lengths of the seismic lines range from 383 m to 1198 m. The data were initially processed to image seismic reflection sections and the P-wave first arrivals were picked. A significant amount of surface wave energy however was present in the records as well, such that dispersion curves could be extracted along the seismic lines using a moving Gaussian window and picked energy maxima in the f-k domain. Surface-wave dispersion curves and P-wave first arrivals were then jointly inverted to provide a comprehensive P- and S-wave velocity model of the site. The joint inversion algorithm is a damped weighted least-squares algorithm based on a local 1D forward model for the surface wave dispersion curves and a 2D forward model for the P-wave first arrivals. The local 1D models for surface waves are linked to each other through spatial regularisation. Further constraints can be added to comply with a priori information and physical links between model parameters (VP and VS). The final outcome is a 2D internally consistent VP and VS model. The inversion scheme works very well for weakly laterally varying media, but in the case of abrupt lateral variations the spatial regularisation should be manually

  10. Improved mathematical model of the wear of the cup articular surface in hip joint prostheses and comparison with retrieved components.

    PubMed

    Raimondi, M T; Santambrogio, C; Pietrabissa, R; Raffelini, F; Molfetta, L

    2001-01-01

    This paper presents an analytical model of the cobalt-based alloy-ultra-high molecular weight polyethylene (UHMWPE) wear coupling. Based on a previous model in which the cup wear volume over a gait cycle (WG) was calculated under the simplifying assumption of an ideal rigid coupling, the current version proposes a more realistic wear simulation. All three components of the hip loading force were considered for the contact pressure calculation and all three components of the hip motion were taken into account for the sliding distance calculation. The contact pressure distribution was calculated on the basis of the Hertzian theory for the elastic contact of two bodies with non-conforming geometrical shapes. The wear factor was taken from hip simulator wear tests. The calculated WG is 67 x 10(-6) mm3 for a standard reference patient. The parametric model simulations show that WG increases linearly with the patient weight, femoral head diameter and surface roughness. It increases non-linearly to a maximum and decreases to an asymptotic value with increasing cup/head clearance and with cup isotropic elastic modulus. The cup orientation in the pelvis affects only slightly the total amount of WG whereas it is the dominant factor affecting the shape of the wear distribution. The iso-wear maps show paracentral patterns at low cup inclination angles and marginal patterns at higher inclination angles. The maximum wear depth is supero-posterior when the cup is in neutral alignment and supero-anterior at increasing anteversion angles. Complex patterns with a combination of paracentral and marginal wear were obtained at specific clearance values and cup orientations. The results of the simulations are discussed in relation to the wear distribution measured on the articular surface of 12 UHMWPE components retrieved from failed hip joint prostheses, after a period of in situ functioning. PMID:11521761

  11. Diamond-like carbon coatings enhance the hardness and resilience of bearing surfaces for use in joint arthroplasty.

    PubMed

    Roy, M E; Whiteside, L A; Xu, J; Katerberg, B J

    2010-04-01

    The purpose of this study was to evaluate the potential of a hard diamond-like carbon (DLC) coating to enhance the hardness and resilience of a bearing surface in joint replacement. The greater hardness of a magnesium-stabilized zirconium (Mg-PSZ) substrate was expected to provide a harder coating-substrate composite microhardness than the cobalt-chromium alloy (CoCr) also used in arthroplasty. Three femoral heads of each type (CoCr, Mg-PSZ, DLC-CoCr and DLC-Mg-PSZ) were examined. Baseline (non-coated) and composite coating/substrate hardness was measured by Vickers microhardness tests, while nanoindentation tests measured the hardness and elastic modulus of the DLC coating independent of the Mg-PSZ and CoCr substrates. Non-coated Mg-PSZ heads were considerably harder than non-coated CoCr heads, while DLC coating greatly increased the microhardness of the CoCr and Mg-PSZ substrates. On the nanoscale the non-coated heads were much harder than on the microscale, with CoCr exhibiting twice as much plastic deformation as Mg-PSZ. The mechanical properties of the DLC coatings were not significantly different for both the CoCr and Mg-PSZ substrates, producing similar moduli of resilience and plastic resistance ratios. DLC coatings greatly increased hardness on both the micro and nano levels and significantly improved resilience and resistance to plastic deformation compared with non-coated heads. Because Mg-PSZ allows less plastic deformation than CoCr and provides a greater composite microhardness, DLC-Mg-PSZ will likely be more durable for use as a bearing surface in vivo. PMID:19861184

  12. Repair and regeneration of tracheal surface epithelium and submucosal glands in a mouse model of hypoxic-ischemic injury

    PubMed Central

    HEGAB, AHMED E.; NICKERSON, DEREK W.; HA, VI LUAN; DARMAWAN, DAPHNE O.; GOMPERTS, BRIGITTE N.

    2012-01-01

    Background and objective The heterotopic syngeneic tracheal transplant mouse model is an acute hypoxic-ischemic injury model that undergoes complete repair and regeneration. We hypothesized that the repair and regeneration process of the surface epithelium and submucosal glands would occur in a reproducible pattern that could be followed by the expression of specific markers of epithelial cell types. Methods We used the syngeneic heterotopic tracheal transplant model to develop a temporal and spatial map of cellular repair and regeneration by examining the tracheal grafts at post-transplant days 1, 3, 5, 7, 10 and 14. We used pulsed BrdU and immunofluorescent staining to identify and follow proliferating and repairing cell populations. Results We confirmed the reproducibility of the injury and repair in the model and we found a distinct sequence of reappearance of the various stem/ progenitor and differentiated cell populations of the tracheal surface epithelium and submucosal glands. In the initial phase, the basal and duct cells that survived the injury proliferated to re-epithelialize the basement membrane with K5 and K14 expressing cells. Then these cells proliferated further and differentiated to restore the function of the epithelium. During this repair process, TROP-2 marked all repairing submucosal gland tubules and ducts. Non-CCSP-expressing serous cells were found to differentiate 4–5 days before Clara, mucus and ciliated cells. Conclusions Improving our understanding of the reparative process of the airway epithelium will allow us to identify cell-specific mechanisms of repair that could be used as novel therapeutic approaches for abnormal repair leading to airway diseases. PMID:22617027

  13. Exercise and the Knee Joint.

    ERIC Educational Resources Information Center

    Clarke, H. Harrison, Ed.

    1976-01-01

    This report by the President's Council on Physical Fitness and Sports examines the effects of various forms of physical exercise on the knee joint which, because of its vulnerability, is especially subject to injury. Discussion centers around the physical characteristics of the joint, commonly used measurements for determining knee stability,…

  14. Acute forefoot and midfoot injuries.

    PubMed

    Laird, R Clinton

    2015-04-01

    Forefoot and midfoot injuries in the athlete are common. Injuries of the digits include subungual hematomas and fractures. Metatarsal fractures occur frequently in sports, and their treatments range greatly. Hyperflexion and extension injuries about the first metatarsophalangeal joint can be very debilitating. Midfoot sprains and fractures require a high index of suspicion for diagnosis. PMID:25804712

  15. Changes in respiratory elastance after deep inspirations reflect surface film functionality in mice with acute lung injury.

    PubMed

    Takahashi, Ayuko; Bartolák-Suki, Erzsébet; Majumdar, Arnab; Suki, Béla

    2015-08-01

    Pulmonary surfactant reduces surface tension in the lung and prevents alveolar collapse. Following a deep inspiration (DI), respiratory elastance first drops then gradually increases due to surface film and tissue viscoelasticity. In acute lung injury (ALI), this increase is faster and governed by alveolar collapse due to increased surface tension. We hypothesized that the rate of increase in elastance reflects the deficiency of surfactant in the lung. To test this, mice were ventilated before (baseline) and after saline lavage obtained by injecting 0.8 ml and withdrawing 0.7 ml fluid (severe ALI) or injecting 0.1 ml (mild ALI). After two DIs, elastance was tracked for 10 min followed by a full lavage to assess surfactant proteins B (SP-B) and C (SP-C) content. Following 2 DIs, the increases in elastance during 10 min ventilation (ΔH) were 3.60 ± 0.61, 5.35 ± 1.04, and 8.33 ± 0.84 cmH2O/ml in baseline mice and mice with mild and severe ALI, respectively (P < 0.0001). SP-B and SP-C in the lavage fluid dropped by 32.4% and 24.9% in the mild and 50.4% and 39.6% in the severe ALI, respectively. Furthermore, ΔH showed a strong negative correlation with both SP-B (r(2) = 0.801) and SP-C (r(2) = 0.810) content. The ΔH was, however, much smaller when the lavage fluid also contained exogeneous SP-B and SP-C. Thus ΔH can be interpreted as an organ level measure of surface film functionality in lavage-induced ALI in mice. This method could prove useful in clinical situations such as diagnosing surfactant problems, monitoring recovery from lung injury or the effectiveness of surfactant therapy. PMID:26066828

  16. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data in the Wavelet Domain Constrained by Sparsity Regularization

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fang, H.; Yao, H.; Maceira, M.; van der Hilst, R. D.

    2014-12-01

    Recently, Zhang et al. (2014, Pure and Appiled Geophysics) have developed a joint inversion code incorporating body-wave arrival times and surface-wave dispersion data. The joint inversion code was based on the regional-scale version of the double-difference tomography algorithm tomoDD. The surface-wave inversion part uses the propagator matrix solver in the algorithm DISPER80 (Saito, 1988) for forward calculation of dispersion curves from layered velocity models and the related sensitivities. The application of the joint inversion code to the SAFOD site in central California shows that the fault structure is better imaged in the new model, which is able to fit both the body-wave and surface-wave observations adequately. Here we present a new joint inversion method that solves the model in the wavelet domain constrained by sparsity regularization. Compared to the previous method, it has the following advantages: (1) The method is both data- and model-adaptive. For the velocity model, it can be represented by different wavelet coefficients at different scales, which are generally sparse. By constraining the model wavelet coefficients to be sparse, the inversion in the wavelet domain can inherently adapt to the data distribution so that the model has higher spatial resolution in the good data coverage zone. Fang and Zhang (2014, Geophysical Journal International) have showed the superior performance of the wavelet-based double-difference seismic tomography method compared to the conventional method. (2) For the surface wave inversion, the joint inversion code takes advantage of the recent development of direct inversion of surface wave dispersion data for 3-D variations of shear wave velocity without the intermediate step of phase or group velocity maps (Fang et al., 2014, Geophysical Journal International). A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. We will test the new joint

  17. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region

    NASA Astrophysics Data System (ADS)

    Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; van der Hilst, Robert D.

    2016-05-01

    We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.

  18. Lithospheric structure below seismic stations in Cuba from the joint inversion of Rayleigh surface waves dispersion and receiver functions

    NASA Astrophysics Data System (ADS)

    González, O'Leary; Moreno, Bladimir; Romanelli, Fabio; Panza, Giuliano F.

    2012-05-01

    The joint inversion of Rayleigh wave group velocity dispersion and receiver functions has been used to study the crust and upper mantle structure at eight seismic stations in Cuba. Receiver functions have been computed from teleseismic recordings of earthquakes at epicentral (angular) distances in the range from 30° to 90° and Rayleigh wave group velocity dispersion relations have been taken from earlier surface wave tomographic studies in the Caribbean area. The thickest crust (˜30 km) below Cuban stations is found at Cascorro (CCC) and Maisí (MAS) whereas the thinnest crust (˜18 km) is found at stations Río Carpintero (RCC) and Guantánamo Bay (GTBY), in the southeastern part of Cuba; this result is in agreement with the southward gradual thinning of the crust revealed by previous studies. In the crystalline crust, the S-wave velocity varies between ˜2.8 and ˜3.9 km s-1 and, at the crust-mantle transition zone, the shear wave velocity varies from ˜4.0 and ˜4.3 km s-1. The lithospheric thickness varies from ˜65 km, in the youngest lithosphere, to ˜150 km in the northeastern part of the Cuban island, below Maisí (MAS) and Moa (MOA) stations. Evidence of a subducted slab possibly belonging to the Caribbean plate is present below the stations Las Mercedes (LMG), RCC and GTBY whereas earlier subducted slabs could explain the results obtained below the Soroa (SOR), Manicaragua (MGV) and Cascorro (CCC) station.

  19. Diamond-like carbon coatings enhance scratch resistance of bearing surfaces for use in joint arthroplasty: hard substrates outperform soft.

    PubMed

    Roy, Marcel E; Whiteside, Leo A; Katerberg, Brian J

    2009-05-01

    The purpose of this study was to test the hypotheses that diamond-like carbon (DLC) coatings will enhance the scratch resistance of a bearing surface in joint arthroplasty, and that a hard ceramic substrate will further enhance scratch resistance by reducing plastic deformation. We tested these hypotheses by applying a hard DLC coating to medical-grade cobalt chromium alloy (CoCr) and magnesia-stabilized zirconia (Mg-PSZ) femoral heads and performing scratch tests to determine the loads required to cause cohesive and adhesive fracture of the coating. Scratch tracks of DLC-coated and noncoated heads were then scanned by optical profilometry to determine scratch depth, width, and pile-up (raised edges), as measures of susceptibility to scratching. DLC-coated CoCr specimens exhibited cohesive coating fracture as wedge spallation at an average load of 9.74 N, whereas DLC-coated Mg-PSZ exhibited cohesive fracture as arc-tensile cracks and chipping at a significantly higher average load of 41.3 N (p < 0.0001). At adhesive coating fracture, DLC-CoCr delaminated at an average load of 35.2 N, whereas DLC-Mg-PSZ fractured by recovery spallation at a significantly higher average load of 46.8 N (p < 0.05). Both DLC-CoCr and DLC-Mg-PSZ specimens exhibited significantly shallower scratches and less pile-up than did uncoated specimens (p < 0.005 and p < 0.01, respectively). However, the harder ceramic substrate of DLC-Mg-PSZ better resisted plastic deformation, requiring significantly higher loads for cohesive and adhesive coating fracture. These findings supported both of our hypotheses. PMID:18985791

  20. Erythrocyte Aggregation due to Surface Nanobubble Interactions During the Onset of Thermal Burn Injury

    NASA Astrophysics Data System (ADS)

    Seidner, Harrison S.

    Red Blood Cell (RBC) aggregation is an important hemorheological phenomenon especially in microcirculation. In healthy individuals, RBCs are known to aggregate and gravitate toward the faster flow in the center of vessels to increase their throughput for more efficient oxygen delivery. Their aggregation is known to occur during a variety of environmental, pathological, and physiological conditions and is reversible when aggregates are subject to the relatively high shear forces in the circulation. The likelihood that aggregates will monodisperse in flow is dependent on the conditions during which they form. In situations where such aggregates are not sheared to monodispersion their presence can impact the perfusion of microvascular networks. More specifically, aggregates subject to the low shear rates in the zone of stasis near regions of thermal burn injury are capable of occluding vessels in the microcirculation and inhibiting the delivery of oxygen and nutrients to tissue downstream. The basic mechanism leading to erythrocyte aggregation at the onset of thermal injury is unknown. This dissertation investigates parameters involved in erythrocyte aggregation, methods of measuring and testing erythrocyte aggregation, and incorporates modeling based on first principles ultimately to propose a mechanism of this phenomenon.

  1. Histologic evaluation of preventive measures for scald injury on the peritoneo-serosal surface due to intraoperative hyperthermic chemoperfusion for patients with gastric cancer and peritoneal metastasis.

    PubMed

    Fujimoto, S; Takahashi, M; Kobayashi, K; Mutou, T; Toyosawa, T; Izawa, E; Numai, T; Kondoh, F; Ohkubo, H

    1998-01-01

    To histologically assess the preventive efficacy of cimetidine against scald injury on the peritoneo-serosal surface during intraperitoneal hyperthermic chemoperfusion (IHCP) for advanced gastric cancer, a randomized histologic study using cimetidine, a histamine H2-receptor antagonist, was performed for 20 patients with advanced or recurrent gastric cancer and peritoneal metastasis. Cimetidine 50 mg/kg was administered intravenously to 10 patients just prior to the IHCP (cimetidine group), and the remaining 10 patients underwent the IHCP without cimetidine (control group). The background factors and IHCP treatments of these two groups were nearly the same. Although the antitumour efficacy of the IHCP was not histologically different between the two groups, the histological analysis revealed that the peritoneo-serosal surface in the cimetidine group was protected against scald injury, compared with the control group. This finding suggests that pre-IHCP cimetidine is of great benefit for protecting the peritoneo-serosal surface from scald injury due to IHCP. PMID:9483448

  2. 49 CFR 225.23 - Joint operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Joint operations. 225.23 Section 225.23....23 Joint operations. (a) Any reportable death, injury, or illness of an employee arising from an accident/incident involving joint operations must be reported on Form FRA F 6180.55a by the...

  3. 49 CFR 225.23 - Joint operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Joint operations. 225.23 Section 225.23....23 Joint operations. (a) Any reportable death, injury, or illness of an employee arising from an accident/incident involving joint operations must be reported on Form FRA F 6180.55a by the...

  4. 49 CFR 225.23 - Joint operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Joint operations. 225.23 Section 225.23....23 Joint operations. (a) Any reportable death, injury, or illness of an employee arising from an accident/incident involving joint operations must be reported on Form FRA F 6180.55a by the...

  5. 49 CFR 225.23 - Joint operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Joint operations. 225.23 Section 225.23....23 Joint operations. (a) Any reportable death, injury, or illness of an employee arising from an accident/incident involving joint operations must be reported on Form FRA F 6180.55a by the...

  6. 49 CFR 225.23 - Joint operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Joint operations. 225.23 Section 225.23....23 Joint operations. (a) Any reportable death, injury, or illness of an employee arising from an accident/incident involving joint operations must be reported on Form FRA F 6180.55a by the...

  7. Posterior cruciate ligament (PCL) injury - aftercare

    MedlinePlus

    ... posterior cruciate ligament (PCL) is located inside your knee joint and connects the bones of your upper and ... such as a knee dislocation , you will need knee surgery to repair the joint. For milder injuries, you may not need surgery. ...

  8. Assessment of the influence of surface finishing and weld joints on the corrosion/oxidation behaviour of stainless steels in lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Martín-Muñoz, F. J.; Soler-Crespo, L.; Gómez-Briceño, D.

    2011-09-01

    The objective of this paper is to gain some insight into the influence of the surface finishing in the oxidation/corrosion behaviour of 316L and T91 steels in lead bismuth eutectic (LBE). Specimens of both materials with different surface states were prepared (as-received, grinded, grinded and polished, and electrolitically polished) and oxidation tests were carried out at 775 and 825 K from 100 to 2000 h for two different oxygen concentrations and for H 2/H 2O molar ratios of 3 and 0.03. The general conclusion for these tests is that the effect of surface finishing on the corrosion/protection processes is not significant under the tested conditions. In addition the behaviour of weld joints, T91-T91 Tungsten Inert Gas (TIG) and T91-316L have been also studied under similar conditions. The conclusions are that, whereas T91-T91 welded joint shows the same corrosion properties as the parent materials for the conditions tested, AISI 316L-T91 welded joint, present an important dissolution over seam area that it associated to the electrode 309S used for the fabrication process.

  9. Growth of exfoliation joints and near-surface stress orientations inferred from fractographic markings observed in the upper Aar valley (Swiss Alps)

    NASA Astrophysics Data System (ADS)

    Ziegler, Martin; Loew, Simon; Bahat, Dov

    2014-06-01

    Granitic rock mass of the upper Aar valley (Grimsel area, Switzerland) contains distinct generations of exfoliation joints, which formed during different stages of the Pleistocene, subparallel to distinct glacial valley palaeotopography. The bulk of exfoliation joints shows prominent, common fractographic features: (1) radial plumose structures with distinct plume axes; (2) arrest marks superimposed by plumose striations; and (3) gradually-developing en échelon fringe cracks. Multiple arrest marks reveal that exfoliation joints formed incrementally and, together with the absence of hackle fringes, suggest stable, i.e., subcritical fracturing conditions. Smooth transitions from plumose structures on the parent plane to en échelon fringe cracks, combined with non-systematic stepping senses of fringe cracks, suggest local (vs. temporal) stress field variations. Assuming that plume axes formed parallel to the maximum principal compressive stress (σ1) enables us to infer near-surface palaeostress orientations and compare them with classical borehole-based in-situ stress data. The majority of plume axes suggest (1) persistently subhorizontal to slightly inclined σ1 orientations at trough valley slopes and (2) near-surface variability of σ1 orientations originating from topographic perturbation caused by glacial valley erosion superimposed on the regional stress field. Our investigations of fracture surface morphologies yield unique insights into exfoliation fracture formation, such as directional trends of fracture propagation and associated palaeostress orientations within Alpine valley slopes.

  10. Midfoot and Forefoot Injuries.

    PubMed

    Gorbachova, Tetyana

    2015-08-01

    Sports injuries of the midfoot and forefoot encompass a spectrum of osseous and soft tissue trauma. Magnetic resonance imaging serves as a primary or important supplementary diagnostic modality in evaluation of various injuries, most important of which include Lisfranc complex injury, stress fractures, and injury to the first metatarsophalangeal joint, aka "turf toe." Current technical advances in magnetic resonance and improved knowledge of regional anatomy enable thorough evaluation of the complex anatomic structures of the foot and facilitate accurate diagnosis in the setting of trauma. PMID:26244619

  11. A Novel Conditional Probability Density Distribution Surface for the Analysis of the Drop Life of Solder Joints Under Board Level Drop Impact

    NASA Astrophysics Data System (ADS)

    Gu, Jian; Lei, YongPing; Lin, Jian; Fu, HanGuang; Wu, Zhongwei

    2016-01-01

    The scattering of fatigue life data is a common problem and usually described using the normal distribution or Weibull distribution. For solder joints under drop impact, due to the complicated stress distribution, the relationship between the stress and the drop life is so far unknown. Furthermore, it is important to establish a function describing the change in standard deviation for solder joints under different drop impact levels. Therefore, in this study, a novel conditional probability density distribution surface (CPDDS) was established for the analysis of the drop life of solder joints. The relationship between the drop impact acceleration and the drop life is proposed, which comprehensively considers the stress distribution. A novel exponential model was adopted for describing the change of the standard deviation with the impact acceleration (0 → +∞). To validate the model, the drop life of Sn-3.0Ag-0.5Cu solder joints was analyzed. The probability density curve of the logarithm of the fatigue life distribution can be easily obtained for a certain acceleration level fixed on the acceleration level axis of the CPDDS. The P- A- N curve was also obtained using the functions μ( A) and σ( A), which can reflect the regularity of the life data for an overall reliability P.

  12. Multiligamentous injuries and knee dislocations.

    PubMed

    Gimber, Lana H; Scalcione, Luke R; Rowan, Andrew; Hardy, Jolene C; Melville, David M; Taljanovic, Mihra S

    2015-11-01

    Complex capsular ligamentous structures contribute to stability of the knee joint. Simultaneous injury of two or more knee ligaments, aside from concurrent tears involving the anterior cruciate and medial collateral ligaments, is considered to be associated with femorotibial knee dislocations. Proximal tibiofibular joint dislocations are not always easily recognized and may be overlooked or missed. Patellofemoral dislocations can be transient with MR imaging sometimes required to reach the diagnosis. In this article, the authors describe the mechanism of injury, ligamentous disruptions, imaging, and treatment options of various types of knee dislocations including injuries of the femorotibial, proximal tibiofibular, and patellofemoral joints. PMID:26002747

  13. The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: An in vitro study

    PubMed Central

    Anasane, Nayana; Ahirrao, Yogesh; Chitnis, Deepa; Meshram, Suresh

    2013-01-01

    Background: Denture fracture is an unresolved problem in complete denture prosthodontics. However, the repaired denture often experiences a refracture at the repaired site due to poor transverse strength. Hence, this study was conducted to evaluate the effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resins. Materials and Methods: A total of 135 specimens of heat polymerized polymethyl methacrylate resin of dimensions 64 × 10 × 2.5 mm were fabricated. Fifteen intact specimens served as the control and 120 test specimens were divided into four groups (30 specimens each), depending upon the joint surface contour (butt, bevel, rabbet and round), with two subgroups based on type of the repair. Half of the specimens were repaired with plain repair resin and the other half with glass fibers reinforced repair resin. Transverse strength of the specimens was determined using three-point bending test. The results were analyzed using one-way ANOVA and Tukey post-hoc test (α= 0.05). Results: Transverse strength values for all repaired groups were significantly lower than those for the control group (P < 0.001) (88.77 MPa), with exception of round surface design repaired with glass fiber reinforced repair resin (89.92 MPa) which was significantly superior to the other joint surface contours (P < 0.001). Glass fiber reinforced resin significantly improved the repaired denture base resins as compared to the plain repair resin (P < 0.001). Conclusion: Specimens repaired with glass fiber reinforced resin and round surface design exhibited highest transverse strength; hence, it can be advocated for repair of denture base resins. PMID:23946739

  14. Pipeline joint protector

    SciTech Connect

    Baker, R.

    1989-02-28

    This patent describes a weight coated pipeline joint protective apparatus for protecting pipeline joints against impact or high stress concentrations. It consists of a high density plastic sheet wrapped around a pipeline joint with the opposite edges of such sheet overlaying the weight of coat material on the abutting pipes forming the joint. The first end of the sheet overlaps the wrapped sheet with means for securing such first end to the sheet surface near or adjacent to the opposite end of such sheet.

  15. Tennis injuries: epidemiology, pathophysiology, and treatment.

    PubMed

    Dines, Joshua S; Bedi, Asheesh; Williams, Phillip N; Dodson, Christopher C; Ellenbecker, Todd S; Altchek, David W; Windler, Gary; Dines, David M

    2015-03-01

    Tennis places high loads on the joints of players, with supraphysiologic forces being generated at the shoulder and elbow hundreds of times per match. Acute injuries tend to affect the lower extremity; chronic injuries usually involve the upper extremity. Commonly encountered upper extremity conditions include rotator cuff injury, internal impingement, superior labral tears, and epicondylitis of the elbow. Serving is the most strenuous stroke in tennis, with the highest peak muscle activity in the shoulder and forearm occurring during this stroke. The kinetic chain links upper extremity, lower extremity, and core muscle segments by transmitting coordinated activation and motion; in this regard, any pathologic process that disturbs the groin, hip, and abdominal musculature can further result in an increased risk of injury to the shoulder and upper extremity. Evolution in equipment and in play surfaces has also affected the type and frequency of injuries. Prevention programs that address the muscular imbalances throughout the kinetic chain may help reduce the incidence of both acute and chronic injuries experienced by tennis athletes. PMID:25667400

  16. Joint assimilation of Aquarius-derived sea surface salinity and AVHRR-derived sea surface temperature in an ocean general circulation model using SEEK filter: Implication for mixed layer depth and barrier layer thickness

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhisek; Sharma, Rashmi; Kumar, Raj; Basu, Sujit

    2015-10-01

    Sea surface salinity (SSS) from Aquarius mission and sea surface temperature (SST) from Advanced Very High Resolution Radiometer (AVHRR) for the years 2012-2014 are assimilated into the global Massachusetts Institute of Technology General Circulation Model (MITGCM). Investigation of the impact of assimilation of these two data sets on simulated mixed layer depth (MLD) and barrier layer thickness (BLT) forms the core of our study. The method of assimilation is the Singular Evolutive Extended Kalman (SEEK) filter. Several assimilation runs are performed. Single-parameter assimilation, as well as joint assimilation, is conducted. To begin with, the model simulated SST and SSS are compared with independent Argo observations of these two parameters. Use of latitudinally varying error variances, which is a novel feature of our study, gives rise to the significant improvement in the simulation of SSS and SST. The best result occurs when joint assimilation is performed. Afterward, simulated MLD and BLT are compared with the same parameters derived from Argo observations forming an independent validation data set. Comparisons are performed both in temporal and spatial domains. Significant positive impact of assimilation is found in all the cases studied, and joint assimilation is found to outperform single-parameter assimilation in each of the cases considered. It is found that simulations of MLD and BLT improve up to 24% and 29%, respectively, when a joint assimilation of SSS and SST is carried out.

  17. The spatial organisation of joint surface chondrocytes: review of its potential roles in tissue functioning, disease and early, preclinical diagnosis of osteoarthritis.

    PubMed

    Aicher, Wilhelm K; Rolauffs, Bernd

    2014-04-01

    Chondrocytes display within the articular cartilage depth-dependent variations of their many properties that are comparable to the depth-dependent changes of the properties of the surrounding extracellular matrix. However, not much is known about the spatial organisation of the chondrocytes throughout the tissue. Recent studies revealed that human chondrocytes display distinct spatial patterns of organisation within the articular surface, and each joint surface is dominated in a typical way by one of four basic spatial patterns. The resulting complex spatial organisations correlate with the specific diarthrodial joint type, suggesting an association of the chondrocyte organisation within the joint surface with the occurring biomechanical forces. In response to focal osteoarthritis (OA), the superficial chondrocytes experience a destruction of their spatial organisation within the OA lesion, but they also undergo a defined remodelling process distant from the OA lesion in the remaining, intact cartilage surface. One of the biological insights that can be derived from this spatial remodelling process is that the chondrocytes are able to respond in a generalised and coordinated fashion to distant focal OA. The spatial characteristics of this process are tremendously different from the cellular aggregations typical for OA lesions, suggesting differences in the underlying mechanisms. Here we summarise the available information on the spatial organisation of chondrocytes and its potential roles in cartilage functioning. The spatial organisation could be used to diagnose early OA onset before manifest OA results in tissue destruction and clinical symptoms. With further development, this concept may become clinically suitable for the diagnosis of preclinical OA. PMID:24363359

  18. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data for Three-Dimensional Seismic Velocity Structure Around SAFOD

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.; Maceira, M.; Roux, P.

    2013-12-01

    The crust around the San Andreas Fault Observatory at depth (SAFOD) has been the subject of many geophysical studies aimed at characterizing in detail the fault zone structure and elucidating the lithologies and physical properties of the surrounding rocks. Seismic methods in particular have revealed the complex two-dimensional (2D) and three-dimensional (3D) structure of the crustal volume around SAFOD and the strong velocity reduction in the fault damage zone. In this study we conduct a joint inversion using body-wave arrival times and surface-wave dispersion data to image the P-and S-wave velocity structure of the upper crust surrounding SAFOD. The two data types have complementary strengths - the body-wave data have good resolution at depth, albeit only where there are crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution and are not dependent on the earthquake source distribution because they are derived from ambient noise. The body-wave data are from local earthquakes and explosions, comprising the dataset analyzed by Zhang et al. (2009). The surface-wave data are for Love waves from ambient noise correlations, and are from Roux et al. (2011). The joint inversion code is based on the regional-scale version of the double-difference (DD) tomography algorithm tomoDD. The surface-wave inversion code that is integrated into the joint inversion algorithm is from Maceira and Ammon (2009). The propagator matrix solver in the algorithm DISPER80 (Saito, 1988) is used for the forward calculation of dispersion curves from layered velocity models. We examined how the structural models vary as we vary the relative weighting of the fit to the two data sets and in comparison to the previous separate inversion results. The joint inversion with the 'optimal' weighting shows more clearly the U-shaped local structure from the Buzzard Canyon Fault on the west side of SAF to the Gold Hill Fault on the east side.

  19. Urethral Injuries

    MedlinePlus

    ... Injuries Ureteral Injuries Urethral Injuries Injuries to the Penis and Scrotum Most urethral injuries occur in men. ... leakage of urine into the tissues of the penis, scrotum, abdominal wall, or perineum (the area between ...

  20. Method for reinforcing tubing joints

    NASA Technical Reports Server (NTRS)

    Kinzler, J.; Lee, W. S.

    1968-01-01

    Joint repair technique uses a longitudinally split aluminum shield over the joint ferrule and immediately adjacent tubing to reseal or reinforce leaking or weak joints in small tubing. Epoxy resin coating on inside surfaces of the two shield halves provides a tightly sealed bond between shield and tubing.

  1. Response of knee fibrocartilage to joint destabilization

    PubMed Central

    Dyment, N.A; Hagiwara, Y.; Jiang, X.; Huang, J.; Adams, D.J.; Rowe, D.W.

    2015-01-01

    Objective A major challenge to understanding osteoarthritis pathology is identifying the cellular events that precede the onset of cartilage damage. The objective of this study is to determine the effect of joint destabilization on early changes to fibrocartilage in the joint. Design/Methods The anterior cruciate ligament was transected in collagen reporter mice (Col1GFP and ColXRFP). Mineralization labels were given every two weeks to measure new mineralized cartilage apposition. Novel fluorescent histology of mineralized tissue was used to characterize the changes in fibrocartilage at 2 and 4 weeks post-injury. Results Changes in fibrocartilaginous structures of the joint occur as early as two weeks after injury and are well developed by four weeks. The alterations are seen in multiple entheses and in the medial surface of the femoral and tibial condyles. In the responding entheses, mineral apposition towards the ligament midsubstance results in thickening of the mineralize fibrocartilage. These changes are associated with increases in ColX-RFP, Col1-CFP reporter activity and alkaline phosphatase enzyme activity. Mineral apposition also occurs in the fibrocartilage of the non-articular regions of the medial condyles by 2 weeks and develops into osteophytes by 4 weeks post-injury. An unexpected observation is punctate expression of tartrate resistant acid phosphatase activity in unmineralized fibrochondrocytes adjacent to active appositional mineralization. Discussion These observations suggest that fibrocartilage activates prior to degradation of the articular cartilage. Thus clinical and histological imaging of fibrocartilage may be an earlier indicator of disease initiation and may indicate a more appropriate time to start preventative treatment. PMID:25680653

  2. Injury to the Endothelial Surface Layer Induces Glomerular Hyperfiltration Rats with Early-Stage Diabetes

    PubMed Central

    Zhang, Chunyang; Meng, Yao; Liu, Qi; Xuan, Miao; Zhang, Lanyu; Deng, Bo; Zhang, Keqin; Liu, Zhimin; Lei, Tao

    2014-01-01

    Glomerular endothelial surface layer (ESL) may play a role in the mechanisms of albuminuria in diabetic nephropathy, which lack evidence in vivo. The effects of high glucose on the passage of albumin across the glomerular ESL were analysed in streptozotocin-induced diabetic Sprague-Dawley rats for 4 weeks. Albuminuria and glomerular mesangial matrix were significantly increased in diabetic rats. The passage of albumin across the ESL, as measured by albumin-colloid gold particle density in the glomerular basement membrane (GBM), was increased significantly in diabetic rats. The thickness of the glomerular ESL, examined indirectly by infusing Intralipid into vessels using an electron microscope, was significantly decreased and the GBM exhibited little change in diabetic rats. In summary, the glomerular ESL may play a role in the pathogenesis of albuminuria in rats with early-stage diabetes. PMID:24812636

  3. Estimating reef fish discard mortality using surface and bottom tagging: effects of hook injury and barotrauma

    USGS Publications Warehouse

    Rudershausen, Paul J.; Buckel, Jeffrey A.; Hightower, Joseph E.

    2013-01-01

    We estimated survival rates of discarded black sea bass (Centropristis striata) in various release conditions using tag–recapture data. Fish were captured with traps and hook and line from waters 29–34 m deep off coastal North Carolina, USA, marked with internal anchor tags, and observed for release condition. Fish tagged on the bottom using SCUBA served as a control group. Relative return rates for trap-caught fish released at the surface versus bottom provided an estimated survival rate of 0.87 (95% credible interval 0.67–1.18) for surface-released fish. Adjusted for results from the underwater tagging experiment, fish with evidence of external barotrauma had a median survival rate of 0.91 (0.69–1.26) compared with 0.36 (0.17–0.67) for fish with hook trauma and 0.16 (0.08–0.30) for floating or presumably dead fish. Applying these condition-specific estimates of survival to non-tagging fishery data, we estimated a discard survival rate of 0.81 (0.62–1.11) for 11 hook and line data sets from waters 20–35 m deep and 0.86 (0.67–1.17) for 10 trap data sets from waters 11–29 m deep. The tag-return approach using a control group with no fishery-associated trauma represents a method to accurately estimate absolute discard survival of physoclistous reef species.

  4. Joint inversion of P-waveforms from teleseismic events and surface waves group velocities from ambient seismic noise in Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Ruzek, Bohuslav

    2010-05-01

    Joint inversion of P-waveforms from distant earthquakes recorded by 41 broadband seismic stations located on the territory of Bohemian Massif and Rayleigh/Love group velocities gained by using cross-correlation technique applied to seismic noise recorded by the same set of broadband stations has been performed. Together with joint inversion also individual inversions using single data sets have been carried out. All computations were arranged inside isotropic, locally 1D layered models. Remarkable result is indication of horizons just above MOHO in the lower crust below some stations where low-velocity S-wave channel is needed in order to ensure correct modeling of measured events. This indication follows both from individual and joint inversions. P-waveform inversion is based on using a set of 271 well-recorded teleseismic events from epicentral distances 3000-10000 km. The inversion was originally based on the popular 'receiver function' methodology, but due to the instability of needed deconvolution it was modified. We search for optimum layered velocity model, which correctly projects radial to vertical components (and vice versa, deconvolution is no more needed). Regarding second source of data, both Rayleigh and Love surface waves were extracted from seismic noise by using cross-correlation. Long time series covering the period 2001-2009 were processed. Such measurements provide group velocities between arbitrary pairs of stations. Local group velocity dispersion curves were computed by using 2D tomography-like approach for periods 4-20 s. The subject of inversion (both individual and joint) were just group velocity dispersion curves. Inversion required exhaustive computations. We used HPC cluster nemo.ig.cas.cz and ANNI inversion software, capable to run in parallel regime.

  5. Joint Imaging of the Crust Beneath the Southeastern Margin of the Tibetan Plateau Using Body Wave Travel Times and Surface Wave Dispersion Curves

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Maceira, M.; Yao, H.; van der Hilst, R.

    2011-12-01

    The southeast margin of the Tibetan Plateau lies between the heartland of the plateau to the west and the stable south China block to the east, spanning from western Sichuan to central Yunnan in southwest China. A channel flow model in which a weak zone exists in the mid-to-lower crust has been proposed to explain the low-gradient topographic slope and lack of large-scale young crustal shortening at the southeast plateau margin. Both seismic body wave tomography and surface wave array tomography have revealed widespread zones of low shear wave velocity at mid- or low-crustal depth. However, the spatial distribution and interconnectivity between low velocity zones are not very clear mainly due to intrinsic resolution limitation of individual methods. In this study, we aim at improving the velocity model by joint seismic imaging using seismic travel times and surface wave dispersion curves. The body wave travel times are collected from the Sichuan Provincial Seismological stations for the period of 2001-2004. The surface-wave dispersion curves for periods between 10-150 s are obtained from ambient noise and teleseismic surface-wave two-station analysis using array data from 75 broadband stations in SE Tibet. The joint inversion code is based on the double-difference seismic tomography package tomoFDD. The travel times between events and stations are calculated using the finite-difference travel time calculation method based on Eikonal equation. The imaging results using seismic travel times show that low velocity zones are bounded by or distributed along major faults. The feature appears more clearly on the Vp model. Since short and intermediate period surface-wave dispersion data provide good constraints on the crustal Vs structure and are also quite sensitive to the crustal Vp structure, we expect that the crustal Vs and Vp models will be better constrained by jointly inverting body-wave travel time and surface wave dispersion data. We hope to better characterize

  6. Joint retrieval of surface reflectance and aerosol properties from MSG/SEVIRI observations in the framework of aerosol_CCI2

    NASA Astrophysics Data System (ADS)

    Damman, Alix; Zunz, Violette; Govaerts, Yves; Kaminski, Thomas; Voßbeck, Michael

    2016-04-01

    The Meteosat satellites play an important role for the generation of consistent long time series of aerosol properties. This importance relies on (i) the long duration of past (Meteosat First Generation, MFG), present (Meteosat Second Generation, MSG) and future (Meteosat Third Generation, MTG) missions and (ii) their frequent cycle of acquisition that can be used to document the anisotropy of the surface and therefore the lower boundary condition for aerosol retrieval over land surfaces. The Package for the joint Inversion of Surface and Aerosol (PISA) is a new algorithm developed by Rayference and The Inversion Lab for the joint retrieval of surface reflectance and aerosol properties. It relies on the inversion of a physically-based radiative transfer model accounting for the surface reflectance anisotropy and its coupling with aerosol scattering. The inversion scheme accounts for prior knowledge on the surface properties and smoothness constraints on the temporal variation of aerosols. PISA also provides the posterior uncertainty covariance matrix for the retrieved variables in every processed pixel. The package has been applied on Top Of Atmosphere (TOA) Bidirectional Reflectance Factor (BRF) acquired by SEVIRI onboard Meteosat Second Generation (MSG) in the VIS0.6, VIS0.8 and NIR1.6 spectral bands. Observations are accumulated during a certain period of time to sufficiently document the surface anisotropy and minimize the impact of clouds. The surface radiative properties are retrieved for this entire accumulation period during which they are supposed to be constant. Aerosol properties however are derived on an hourly basis. Based on PISA, a processing chain has been developed and applied on 2008 MSG/SEVIRI observations for some specific sub-domains of the Earth disk. For these processed sub-domains, the information content of each MSG/SEVIRI band will be analysed based on the prior and posterior uncertainty covariance matrices. This constitutes a first step

  7. A joint NOAA/USGS study to evaluate satellite assessment of land surface features and climatic variables

    USGS Publications Warehouse

    Gallo, K.P.; Tarpley, J.D.; Howard, S.M.; Moore, D.G.

    1987-01-01

    Data collection and preliminary analyses have begun for a study that will evaluate the usefulness of satellite data for assessment of land surface features and climatic variables. The objective of the study is to determine what relationships exist between routinely available ground-based climatic and land surface information and satellite-obtained land surface information. The overall goal is to contribute to the increasingly important understanding of land surface climatology.

  8. Effect of adhesive thickness and surface treatment on shear strength on single lap joint Al/CFRP using adhesive of epoxy/Al fine powder

    NASA Astrophysics Data System (ADS)

    Diharjo, Kuncoro; Anwar, Miftahul; Tarigan, Roy Aries P.; Rivai, Ahmad

    2016-02-01

    The objective of this study is to investigate the effect of adhesive thickness and surface treatment on the shear strength and failure type characteristic of single lap joint (SLJ) CFRP/Al using adhesive epoxy/Al-fine-powder. The CFRP was produced by using hand layup method for 30% of woven roving carbon fiber (w/w) and the resin used was bisphenolic. The adhesive was prepared using 12.5% of aluminum fine powder (w/w) in the epoxy adhesive. The powder was mixed by using a mixing machine at 60 rpm for 6 minutes, and then it was used to join the Al plate-2024 and CFRP. The start time to pressure for the joint process was 20 minutes after the application of adhesive on the both of adherends. The variables in this research are adhesive thickness (i.e. 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm and 1 mm) and surface treatment of adherends (i.e. acetone, chromate sulphuric acid, caustic etch and tucker's reagent). Before shear testing, all specimens were post-cured at 100 °C for 15 minutes. The result shows that the SLJ has the highest shear strength for 0.4 mm of adhesive thickness. When the adhesive thickness is more than 0.4 mm (0.6-1 mm), the shear strength decreases significantly. It might be caused by the property change of adhesive from ductile to brittle. The acetone surface treatment produces the best bonding between the adhesive and adherends (CFRP and Al-plate 2024), and the highest shear strength is 9.31 MPa. The surface treatment give the humidification effect of adherend surfaces by adhesive. The failure characteristic shows that the mixed failure of light-fiber-tear-failure and cohesive-failure are occurred on the high shear strength of SLJ, and the low shear strength commonly has the adhesive-failure type.

  9. Hypermobile joints

    MedlinePlus

    ... too far. In children with hypermobility syndrome, those ligaments are loose or weak. This may lead to: Arthritis, which may develop over time Dislocated joints, which is a separation of two bones where they meet at a joint Sprains and strains Children with hypermobile joints also often have flat ...

  10. Evaluation of a subject-specific finite-element model of the equine metacarpophalangeal joint under physiological load.

    PubMed

    Harrison, Simon M; Whitton, R Chris; Kawcak, Chris E; Stover, Susan M; Pandy, Marcus G

    2014-01-01

    The equine metacarpophalangeal (MCP) joint is frequently injured, especially by racehorses in training. Most injuries result from repetitive loading of the subchondral bone and articular cartilage rather than from acute events. The likelihood of injury is multi-factorial but the magnitude of mechanical loading and the number of loading cycles are believed to play an important role. Therefore, an important step in understanding injury is to determine the distribution of load across the articular surface during normal locomotion. A subject-specific finite-element model of the MCP joint was developed (including deformable cartilage, elastic ligaments, muscle forces and rigid representations of bone), evaluated against measurements obtained from cadaver experiments, and then loaded using data from gait experiments. The sensitivity of the model to force inputs, cartilage stiffness, and cartilage geometry was studied. The FE model predicted MCP joint torque and sesamoid bone flexion angles within 5% of experimental measurements. Muscle-tendon forces, joint loads and cartilage stresses all increased as locomotion speed increased from walking to trotting and finally cantering. Perturbations to muscle-tendon forces resulted in small changes in articular cartilage stresses, whereas variations in joint torque, cartilage geometry and stiffness produced much larger effects. Non-subject-specific cartilage geometry changed the magnitude and distribution of pressure and the von Mises stress markedly. The mean and peak cartilage stresses generally increased with an increase in cartilage stiffness. Areas of peak stress correlated qualitatively with sites of common injury, suggesting that further modelling work may elucidate the types of loading that precede joint injury and may assist in the development of techniques for injury mitigation. PMID:24210848

  11. Sideline Management of Joint Dislocations.

    PubMed

    Schupp, Christian M; Rand, Scott E; Hanson, Travis W; Lee, Bryan M; Jafarnia, Korsh; Jia, Yuhang; Moseley, J Bruce; Seaberg, John P; Seelhoefer, Gregory M

    2016-01-01

    Athletes can sustain a large variety of injuries from simple soft tissue sprains to complex fractures and joint dislocations. This article reviews and provides the most recent information for sports medicine professionals on the management of simple and complex joint dislocations, i.e., irreducible and/or associated with a fracture, from the sidelines without the benefit of imaging. For each joint, the relevant anatomy, common mechanisms, sideline assessment, reduction techniques, initial treatment, and potential complications will be discussed, which allow for the safe and prompt return of athletes to the field of play. PMID:27172077

  12. Turco's injury: diagnosis and treatment.

    PubMed

    da Silva, Ana Paula Simões; Shimba, Leandro Girardi; Ribas, Luiz Henrique Boraschi Vieira; de Almeida, Alexandre Simmonds; Naves, Vinicius; Duarte Júnior, Aires

    2014-01-01

    The aim of this study was to alert doctors to the existence of Turco's injury and discus the existing treatments that have been described in the worldwide literature. A bibliographic survey of Lisfranc's injury and Turco's injury covering from 1985 to 2013 was conducted in the SciELO and PubMed databases. Among the 193 articles, those relating to bone-ligament injuries of the Lisfranc joint and high-energy trauma were excluded, as were the case reports. The patients selected were professional or amateur athletes who solely presented a ligament injury to the Lisfranc joint (Turco's injury), which was diagnosed from the history, physical examination, radiographs and magnetic resonance images. Non-athletic patients and those with associated bone injuries were excluded (10). According to the injury classification, the patients were treated by means of either an open or a closed procedure and then a standard rehabilitation protocol. Out of the 10 patients, five underwent conservative treatment and five underwent surgical treatment using different techniques and synthesis materials. We obtained two poor results, one satisfactory, five good and two excellent. We conclude that the correct diagnosis has a direct influence on the treatment and on the final result obtained, and that lack of knowledge of this injury is the main factor responsible for underdiagnosing Turco's injury. There is a need for randomized prospective studies comparing the types of synthesis and evolution of treated cases, in order to define the best treatment for this injury. PMID:26229821

  13. MUSCLE INJURIES IN ATHLETES

    PubMed Central

    Barroso, Guilherme Campos; Thiele, Edilson Schwansee

    2015-01-01

    This article had the aim of demonstrating the physiology, diagnosis and treatment of muscle injuries, focusing on athletes and their demands and expectations. Muscle injuries are among the most common complaints in orthopedic practice, occurring both among athletes and among non-athletes. These injuries present a challenge for specialists, due to the slow recovery, during which time athletes are unable to take part in training and competitions, and due to frequent sequelae and recurrences of the injuries. Most muscle injuries (between 10% and 55% of all injuries) occur during sports activities. The muscles most commonly affected are the ischiotibial, quadriceps and gastrocnemius. These muscles go across two joints and are more subject to acceleration and deceleration forces. The treatment for muscle injuries varies from conservative treatment to surgery. New procedures are being used, like the hyperbaric chamber and the use of growth factors. However, there is still a high rate of injury recurrence. Muscle injury continues to be a topic of much controversy. New treatments are being researched and developed, but prevention through muscle strengthening, stretching exercises and muscle balance continues to be the best “treatment”. PMID:27027021

  14. Evaluation of a bisphosphonate enriched ultra-high molecular weight polyethylene for enhanced total joint replacement bearing surface functionality

    NASA Astrophysics Data System (ADS)

    Wright-Walker, Cassandra Jane

    Each year in the United States there is an increasing trend of patients receiving total joint replacement (TJR) procedures. Approximately a half million total knee replacements (TKRs) are performed annually in the United States with increasing prevalence attributed to baby-boomers, obesity, older, and younger patients. This trend is also seen for total hip replacements (THRs) as well. The use of ultra high molecular weight polyethylene (UHMWPE) inserts in TJRs results in wear particle-induced osteolysis, which is the predominant cause for prosthesis failure and revision surgery. Sub-micron size particle generation is inevitable despite the numerous efforts in improving this bearing material. Work by others has shown that the use of oral and intravenous systemic bisphosphonates (BP) can significantly minimize periprosthetic osteolysis. However, the systemic delivery and the high solubility of BPs results in a predominant portion of the drug being excreted via the kidney without reaching its target, bone. This doctoral research project is focused on the development and evaluation of a novel method to administer BPs locally using the inherent wear of UHMWPE for possible use as an anti-osteolysis treatment. For new materials to be considered, they must be mechanically and tribologically comparable to the current gold standard, UHMWPE. In order to evaluate this material, mechanical, drug elution and tribological experiments were performed to allow assessment of material properties. Tensile tests showed comparable yield stress and pin-on-disk testing showed comparable wear to standard virgin UHMWPE. Further, drug elution tests have shown that BP was released from the enriched material both in static and dynamic conditions. Additionally, an aggressive 2 million cycle total knee simulator experiment has shown statistically similar wear results for the two materials. Overall, this research has provided the groundwork for further characterization and development of a new

  15. Hypermobility and Knee Injuries.

    ERIC Educational Resources Information Center

    Steiner, Mark E.

    1987-01-01

    A review of research on the effect of hypermobility on knee injury indicates that greater than normal joint flexibility may be necessary for some athletic endeavors and that it may be possible to change one's underlying flexibility through training. However, for most athletes, inherited flexibility probably plays only a small role, if any, in…

  16. Head Injuries

    MedlinePlus

    ... before. Often, the injury is minor because your skull is hard and it protects your brain. But ... injuries can be more severe, such as a skull fracture, concussion, or traumatic brain injury. Head injuries ...

  17. Head Injuries

    MedlinePlus

    ... before. Usually, the injury is minor because your skull is hard and it protects your brain. But ... injuries can be more severe, such as a skull fracture, concussion, or traumatic brain injury. Head injuries ...

  18. Back Injuries

    MedlinePlus

    ... extending from your neck to your pelvis. Back injuries can result from sports injuries, work around the house or in the garden, ... back is the most common site of back injuries and back pain. Common back injuries include Sprains ...

  19. Head Injuries

    MedlinePlus

    ... of head injuries include bicycle or motorcycle wrecks, sports injuries, falls from windows (especially among children who live ... to watch for? When can I start playing sports again after a head injury? How can brain damage from a head injury ...

  20. Antibacterial Surface Design of Titanium-Based Biomaterials for Enhanced Bacteria-Killing and Cell-Assisting Functions Against Periprosthetic Joint Infection.

    PubMed

    Wang, Jiaxing; Li, Jinhua; Qian, Shi; Guo, Geyong; Wang, Qiaojie; Tang, Jin; Shen, Hao; Liu, Xuanyong; Zhang, Xianlong; Chu, Paul K

    2016-05-01

    Periprosthetic joint infection (PJI) is one of the formidable and recalcitrant complications after orthopedic surgery, and inhibiting biofilm formation on the implant surface is considered crucial to prophylaxis of PJI. However, it has recently been demonstrated that free-floating biofilm-like aggregates in the local body fluid and bacterial colonization on the implant and peri-implant tissues can coexist and are involved in the pathogenesis of PJI. An effective surface with both contact-killing and release-killing antimicrobial capabilities can potentially abate these concerns and minimize PJI caused by adherent/planktonic bacteria. Herein, Ag nanoparticles (NPs) are embedded in titania (TiO2) nanotubes by anodic oxidation and plasma immersion ion implantation (PIII) to form a contact-killing surface. Vancomycin is then incorporated into the nanotubes by vacuum extraction and lyophilization to produce the release-killing effect. A novel clinical PJI model system involving both in vitro and in vivo use of methicillin-resistant Staphylococcus aureus (MRSA) ST239 is established to systematically evaluate the antibacterial properties of the hybrid surface against planktonic and sessile bacteria. The vancomycin-loaded and Ag-implanted TiO2 nanotubular surface exhibits excellent antimicrobial and antibiofilm effects against planktonic/adherent bacteria without appreciable silver ion release. The fibroblasts/bacteria cocultures reveal that the surface can help fibroblasts to combat bacteria. We first utilize the nanoarchitecture of implant surface as a bridge between the inorganic bactericide (Ag NPs) and organic antibacterial agent (vancomycin) to achieve total victory in the battle of PJI. The combination of contact-killing and release-killing together with cell-assisting function also provides a novel and effective strategy to mitigate bacterial infection and biofilm formation on biomaterials and has large potential in orthopedic applications. PMID:27054673

  1. The Rationale for Joint Mobilization.

    ERIC Educational Resources Information Center

    Burkhardt, Sandy

    This paper presents an overview of the functions of connective tissue and the mechanisms of joint injury and contracture formation in relation to therapeutic exercise. The components of connective tissue operation are explained, including fibroblasts, macrophages, plasma cells, and collagen. An examination of the histology of connective tissue as…

  2. Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 2. Implementation and evaluation

    NASA Astrophysics Data System (ADS)

    Wagner, S. C.; Govaerts, Y. M.; Lattanzio, A.

    2010-01-01

    An original method, based on optimal estimation, was presented in a part one of this paper for the joint retrieval of the mean daily total column aerosol optical depth and the surface Bidirectional Reflectance Factor (BRF) from the daily accumulated Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager (MSG/SEVIRI) observations in the solar channels. The objective of this paper is to evaluate the benefits of the proposed approach and to document the limits of the algorithm assumptions in the context of its implementation in an operational ground segment. A twofold approach is followed. In a first step, by looking at the posterior correlation error matrix the capability of the so-called Land Daily Aerosol (LDA) algorithm to decouple the surface-atmosphere signal is analyzed. In particular, the impact of the prior information is investigated in detail. In a second step, the results of the algorithm are compared with independent data sets of aerosol optical depth and surface reflectance. In this phase, the accuracy of the algorithm is evaluated against ground observations from the AERONET network. LDA is shown to be in good agreement with these data, especially when the prior update mechanism is activated. Comparisons with the MODIS surface product showed that the bihemispherical reflectance derived from the LDA products is consistent with the equivalent MODIS white-sky albedo. Aerosol spatial distributions are comparable in terms of geographical location and intensity, in particular for aerosol episodes with a limited daily variation.

  3. Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory

    NASA Astrophysics Data System (ADS)

    Govaerts, Y. M.; Wagner, S.; Lattanzio, A.; Watts, P.

    2010-01-01

    An original method is presented in this paper for the joint retrieval of the mean daily total column aerosol optical depth and surface BRF from the daily accumulated Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager (MSG/SEVIRI) observations in the solar channels. The proposed algorithm is based on the optimal estimation (OE) theory, a one-dimensional variational retrieval scheme that seeks an optimal balance between information that can be derived from the observations, and the one that is derived from prior knowledge of the system. The forward radiative transfer model explicitly accounts for the surface anisotropy and its coupling with the atmosphere. The low rate of change in the surface reflectance is used to derive the prior information on the surface state variables. The reliable estimation of the measurement system error is one of the most critical aspects of the OE method as it strongly determines the likelihood of the solution. An important effort in the proposed method has thus been dedicated to this issue, where the actual radiometric performances of SEVIRI are dynamically taken into account.

  4. Surface NO2 fields derived from joint use of OMI and GOME-2A observations with EMEP model output

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Svendby, Tove; Stebel, Kerstin

    2016-04-01

    Nitrogen dioxide (NO2) is one of the most prominent air pollutants. Emitted primarily by transport and industry, NO2 has a major impact on health and economy. In contrast to the very sparse network of air quality monitoring stations, satellite data of NO2 is ubiquitous and allows for quantifying the NO2 levels worldwide. However, one drawback of satellite-derived NO2 products is that they provide solely an estimate of the entire tropospheric column, whereas what is generally needed for air quality applications are the concentrations of NO2 near the surface. Here we derive surface NO2 concentration fields from OMI and GOME-2A tropospheric column products using the EMEP chemical transport model as auxiliary information. The model is used for providing information of the boundary layer contribution to the total tropospheric column. For preparation of deriving the surface product, a comprehensive model-based analysis of the spatial and temporal patterns of the NO2 surface-to-column ratio in Europe was carried out for the year 2011. The results from this analysis indicate that the spatial patterns of the surface-to-column ratio vary only slightly. While the highest ratio values can be found in some shipping lanes, the spatial variability of the ratio in some of the most polluted areas of Europe is not very high. Some but not all urban agglomeration shows high ratio values. Focusing on the temporal behavior, the analysis showed that the European-wide average ratio varies throughout the year. The surface-to-column ratio increases from January all the way through April when it reaches its maximum, then decreases relatively rapidly to average levels and then stays mostly constant throughout the summer. The minimum ratio is observed in December. The knowledge gained from analyzing the spatial and temporal patterns of the surface-to-column ratio was then used to produce surface NO2 products from the daily NO2 data for OMI and GOME-2A. This was carried out using two methods

  5. Imaging of the Lisfranc injury.

    PubMed

    Libby, Brent; Ersoy, Hale; Pomeranz, Stephen J

    2015-01-01

    Lisfranc ligament and joint injuries are relatively uncommon but can result from a variety of low- and high-impact trauma. Up to 20% of Lisfranc fracture-dislocations are misdiagnosed or missed during the initial evaluation. Timely and accurate diagnosis of the injury and early anatomical reduction and stabilization of the Lisfranc joint are crucial to avoid long-term sequelae and functional impairment. Magnetic resonance imaging (MRI) is a sensitive and specific imaging modality and should be considered in injuries with equivocal physical and radiographic findings. In this article, the mechanism and the classification of the Lisfranc joint and ligament injuries are outlined, and imaging findings of different modalities are discussed with the emphasis on MRI. PMID:25830269

  6. Joint inversion of multi-configuration electromagnetic induction measurements to estimate soil wetting patterns during surface drip irrigation

    NASA Astrophysics Data System (ADS)

    Jadoon, Khan Z.; Moghadas, Davood; Jadoon, Aurangzeb; Missimer, Thomas M.; McCabe, Matthew

    2014-05-01

    In arid and semi-arid regions, development of precise information on the soil wetting pattern is important to optimize drip irrigation system design for sustainable agricultural water management. Usually mathematical models are commonly used to describe infiltration from a point source to design and manage drip irrigation systems. The extent to which water migrates laterally and vertically away from the drip emitter depends on many factors, including dripper discharge rate, the frequency of water application, duration of drip emission, the soil hydraulic characteristics, initial conditions, evaporation, root water uptake and root distribution patterns. However, several simplified assumptions in the mathematical models affect their utility to provide useful design information. In this respect, non-invasive geophysical methods, i.e., low frequency electromagnetic induction (EMI) systems are becoming powerful tools to map spatial and temporal soil moisture patterns due to fast measurement capability and sensitivity to soil water content and salinity. In this research, a new electromagnetic system, the CMD mini-Explorer, is used for soil characterization to measure the wetting patterns of drip irrigation systems using joint inversion of multi-configuration EMI measurements. Six transects of EMI measurements were carried out in a farm where Acacia trees are irrigated with brackish water using a drip irrigation system. EMI reference data (ground-truths) were calculated using vertical soil electrical conductivity recorded in different trenches along one of the measurement transects. Reference data is used for calibration to minimize the instrumental shifts which often occur in EMI data. Global and local optimization algorithms are used sequentially, to minimize the misfit between the measured and modeled apparent electrical conductivity (δa) to reconstruct the vertical electrical conductivity profile. The electromagnetic forward model based on full solution of Maxwell

  7. Earth Surface Deformation in the North China Plain Detected by Joint Analysis of GRACE and GPS Data

    PubMed Central

    Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C.K.; Li, Zhao

    2014-01-01

    Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1–4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1–2 mm/year and a correlation of 85.0%–98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements. PMID:25340454

  8. Earth surface deformation in the North China Plain detected by joint analysis of GRACE and GPS data.

    PubMed

    Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C K; Li, Zhao

    2014-01-01

    Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1-4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1-2 mm/year and a correlation of 85.0%-98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements. PMID:25340454

  9. Controversies in Knee Rehabilitation: Anterior Cruciate Ligament Injury

    PubMed Central

    Failla, Mathew J.; Arundale, Amelia J.H.; Logerstedt, David S.; Snyder-Mackler, Lynn

    2014-01-01

    Controversy in management of athletes exists after anterior cruciate ligament injury and reconstruction. Consensus criteria for evaluating successful outcomes following ACL injury include no re-injury or recurrent giving way, no joint effusion, quadriceps strength symmetry, restored activity level and function, and returning to pre-injury sports. Using these criterions, we will review the success rates of current management strategies after ACL injury and provide recommendations for the counseling of athletes after ACL injury. PMID:25818715

  10. Three-Dimensional Vp and Vs Models of Continental China From Joint Inversion of Body Wave, Surface Wave, and Gravity Data

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.; Zhang, H.; Maceira, M.; Chen, F.; Shen, W.; Fang, H.; Yao, H.

    2014-12-01

    To improve our understanding of the complex geological structure of continental China we need accurate depictions of the 3D structure of the crust and lithospheric mantle. Taking advantage of the increasingly dense seismograph coverage in continental China, several Vp and Vs models at various scales and resolutions have been obtained over the past decades. Tomographic models based either on body wave travel times or surface waves differ, however, in important aspects, especially for the structure beneath the Tibetan Plateau. Internally consistent Vp and Vs models are needed to resolve these differences. Body wave travel time tomography and surface wave tomography each have strengths and weaknesses. Travel time tomography can yield higher resolution in regions of dense path coverage, and it generally has excellent lateral resolution beneath regions of high seismic activity or dense station distribution. In many other regions, however, the shallow subsurface cannot be resolved adequately by direct P or S travel times. In contrast, surface wave data (from earthquakes or ambient noise) generally yields better radial resolution and has better potential for resolving shallow mantle structure beneath regions that are aseismic or which are void of seismograph stations. Gravity measurements can provide constraints on spatial variations in (mass) density, but like other potential field methods interpretation of gravity anomalies is plagued by substantial ambiguity. Indeed, weak and broad structures in the shallow subsurface can produce the same gravity signal (at the surface) as a small, strong density anomaly at a larger depth. To benefit from the complementary sampling of the different data, we have developed a joint inversion scheme that uses body wave travel times, surface wave dispersion, and satellite gravity data to invert for spatial variations in Vp, Vs, and mass density (with the seismic and gravity data linked through an

  11. Three-Dimensional Vp and Vs Models of Continental China From Joint Inversion of Body Wave, Surface Wave, and Gravity Data

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.; Zhang, H.; Maceira, M.; Chen, F.; Shen, W.; Fang, H.; Yao, H.

    2015-12-01

    To improve our understanding of the complex geological structure of continental China we need accurate depictions of the 3D structure of the crust and lithospheric mantle. Taking advantage of the increasingly dense seismograph coverage in continental China, several Vp and Vs models at various scales and resolutions have been obtained over the past decades. Tomographic models based either on body wave travel times or surface waves differ, however, in important aspects, especially for the structure beneath the Tibetan Plateau. Internally consistent Vp and Vs models are needed to resolve these differences. Body wave travel time tomography and surface wave tomography each have strengths and weaknesses. Travel time tomography can yield higher resolution in regions of dense path coverage, and it generally has excellent lateral resolution beneath regions of high seismic activity or dense station distribution. In many other regions, however, the shallow subsurface cannot be resolved adequately by direct P or S travel times. In contrast, surface wave data (from earthquakes or ambient noise) generally yields better radial resolution and has better potential for resolving shallow mantle structure beneath regions that are aseismic or which are void of seismograph stations. Gravity measurements can provide constraints on spatial variations in (mass) density, but like other potential field methods interpretation of gravity anomalies is plagued by substantial ambiguity. Indeed, weak and broad structures in the shallow subsurface can produce the same gravity signal (at the surface) as a small, strong density anomaly at a larger depth. To benefit from the complementary sampling of the different data, we have developed a joint inversion scheme that uses body wave travel times, surface wave dispersion, and satellite gravity data to invert for spatial variations in Vp, Vs, and mass density (with the seismic and gravity data linked through an

  12. Joint retrieval of hourly-resolved aerosol optical depths and surface reflectance using MSG/SEVIRI observations

    NASA Astrophysics Data System (ADS)

    Wagner, Sebastien; Govaerts, Yves

    2010-05-01

    A new aerosol algorithm is developed at EUMETSAT to derive simultaneously the surface bidirectional reflectance factor (BRF) and the hourly variations of the tropospheric aerosol load from observations acquired by the SEVIRI radiometer on-board the Meteosat Second Generation satellites. In order to retrieve the aerosol optical thickness for each cloud-free observation, the algorithm makes the assumption that both the aerosol class and the surface radiative properties do not change during the course of the day. Hence, this algorithm infers the surface BRF from a forward radiative transfer model against daily accumulated observations in the 0.6, 0.8 and 1.6 MSG/SEVIRI bands. These daily time series provide the angular sampling used to discriminate the radiative effects that result from the surface anisotropy, from those caused by the aerosol scattering. The inversion method relies on the Optimal Estimation method which balances the information derived from the observations and the prior knowledge on the system. This approach allows the tracking of sharp daily variations of the aerosol atmospheric load, in particular in the case of quickly developing dust storm fronts. Results of comparisons with the AERONET aerosol product are presented on specific cases on pixel basis in order to assess the performance of this new algorithm.

  13. Biomechanical research of joint III. An experimental biomechanical research on the Femur's articular surface of knee of pongidae

    NASA Astrophysics Data System (ADS)

    Renxiang, Zhang; Zuyun, Lan; Wenji, Qu

    1986-06-01

    In this paper, moiré contour fringes is applied to study the femur's articular surface of the knee of Pongidae. The preliminary division of the femur's articular surface of knee into three types is proposed. The moiré contour fringes ofthe medial condyle is taken as a mark according to the references. Owing to the fact that the moiré contour fringes obtained from experiments after the 2nd order of fringe basically follow a certain rule, an investigation is made on the distribution of the angle α which is defined as the angle of the major axis of the 2nd order's near-oval shaped moiré contour fringe on the medial condyle with the horizontal axis. Preliminary distribution graphs are given in the paper.

  14. Posttraumatic temporomandibular joint disorders.

    PubMed

    Giannakopoulos, Helen E; Quinn, Peter D; Granquist, Eric; Chou, Joli C

    2009-05-01

    The temporomandibular joint (TMJ) has many essential functions. None of its components are exempt from injury. Facial asymmetry, malocclusion, disturbances in growth, osteoarthritis, and ankylosis can manifest as complications from trauma to the TMJ. The goals of initial treatment include achievement of pretraumatic function, restoration of facial symmetry, and resolution of pain. These same objectives hold true for late repairs and reconstruction of the TMJ apparatus. Treatment is demanding, and with opposing approaches. The following article explores various treatment options for problems presenting as a result of a history of trauma to the TMJ. PMID:22110802

  15. Monitoring Hurricanes with a Dense Seismic Array: Joint Inversion of Seismic and Barometric Data for Surface-Pressure Source

    NASA Astrophysics Data System (ADS)

    Valentine, A. P.; Al-Attar, D.; Trampert, J.; Woodhouse, J. H.

    2014-12-01

    Tropical cyclones (hurricanes and typhoons) are mostly atmospheric phenomena but they also generate significant ground motions in the solid earth when they become strong. If a dense seismological array exists along the path of a hurricane, we can learn about some processes near the hurricane eye through seismic data. In this study, we report our analysis of Hurricane Arthur which passed near Earthscope's Transportable Array (TA), a network of seismometers located at the time along the east coast of the US. Hurricane Arthur mostly traveled along the eastern coast of the US from July 1 to July 5, 2014; however, it made landfall for a short time on the coast of North Carolina at 0315 UTC on July 4. The next few hours provided us with a short span of seismic and barometric data associated with the center of Hurricane Arthur. Our basic approach to analyze this data is the same as in a previous study we conducted of Hurricane Isaac (2012), where we analyzed the seismic amplitude-distance data and the pressure amplitude-distance data for each 6-hour location of the hurricane. Here, we performed a joint inversion of the seismic and barometric data while Hurricane Arthur was nearest the coast. Barometer data provides the information on pressure source, which is the source of seismic-wave excitation and seismic data provides the resultant wavefields. We confine our analysis to frequencies below 0.02 Hz because in higher frequency bands ocean waves created the dominant seismic waves. In a similar manner to our previous study on Hurricane Isaac, we invert for the pressure correlation length. The results were consistent with what was seen for Hurricane Isaac in that we observed a signal generated by Hurricane Arthur's eyewall. After landfall, there is a peak at about 70-80km from the center of the hurricane in both the seismic and the barometric data. We also found that the correlation length changes with distance from the hurricane center and also has a peak around 70-80km.

  16. Lisfranc Injuries: When to Observe, Fix, or Fuse.

    PubMed

    Seybold, Jeffrey D; Coetzee, J Chris

    2015-10-01

    Injuries to the foot are common in the athletic population, accounting for approximately 16% of sporting injuries. The bony and ligamentous structures around the first and second tarsometatarsal (TMT) joints, or Lisfranc joint complex, are the most commonly involved in injuries to the midfoot because of the limited static and dynamic stability of this region. The appropriate management of Lisfranc or TMT joint injuries in athletes is controversial, with multiple classification schemes and treatment methods and little evidence-based guidelines to deliver appropriate care. This article reviews the current diagnosis and management principles for TMT injuries in the athletic population. PMID:26409591

  17. Injuries in racket sports among Slovenian players.

    PubMed

    Kondric, Miran; Matković, Branka R; Furjan-Mandić, Gordana; Hadzić, Vedran; Dervisević, Edvin

    2011-06-01

    On the sample of 83 top Slovenian athletes we have studied the frequency of injuries among table tennis, tennis and badminton players, types of injuries and severity of injuries--the latter based on data of players absences from training and/or competition processes. The most liable parts to injuries are shoulder girdle (17.27%), spine (16.55%) and ankle (15.83%), while foot (10.07%) and wrist (12.23%) are slightly less liable to injuries. The most frequent injuries in racket sports pertain to muscle tissues. According to this data, the majority of injuries occur halfway through a training session or a competition event, mostly during a competition season. The injuries primarily pertain to muscle tissues; these are followed by joint and tendon injuries. There are no differences between male and female players. Compared to other racket sports players, table tennis players suffer from fewer injuries. PMID:21755712

  18. The predicted risk of head injury from fall-related impacts on to third-generation artificial turf and grass soccer surfaces: a comparative biomechanical analysis.

    PubMed

    Theobald, Peter; Whitelegg, Liam; Nokes, Leonard D M; Jones, Michael D

    2010-03-01

    The risk of soccer players sustaining mild traumatic brain injury (MTBI) following head impact with a playing surface is unclear. This study investigates MTBI by performing headform impact tests from varying heights onto a range of third-generation artificial turf surfaces. Each turf was prepared as per manufacturers specifications within a laboratory, before being tested immediately following installation and then again after a bedding-in period. Each turf was tested dry and when wetted to saturation. Data from the laboratory tests were compared to an in situ third-generation surface and a professional grass surface. The surface performance threshold was set at a head impact criterion (HIC) = 400, which equates to a 10% risk of the head impact causing MTBI. All six third-generation surfaces had a > 10% risk of MTBI from a fall > 0.77 m; the inferior surfaces required a fall from just 0.46 m to have a 10% MTBI risk. Wetting the artificial turf did not produce a statistically significant improvement (P > 0.01). The in situ third-generation playing surface produced HIC values within the range of bedded-in experimental values. However, the natural turf pitch was the superior performer--necessitating fall heights exceeding those achievable during games to achieve HIC = 400. PMID:20446637

  19. Temporomandibular Joint, Closed

    MedlinePlus

    ... Oral Health > The Temporomandibular Joint, Closed The Temporomandibular Joint, Closed Main Content Title: The Temporomandibular Joint, Closed Description: The temporomandibular joint connects the lower ...

  20. Repair of acute injuries of the lateral ligament complex of the ankle by suture anchors

    PubMed Central

    Liu, Xiang-Fei; Fang, Yang; Cao, Zhong-Hua; Li, Guang-Feng; Yang, Guo-Qing

    2015-01-01

    Objective: The objective of this study was to investigate the clinical curative effect of stage I repair of acute injuries of the lateral ligament complex of the ankle by the application of suture anchors. Methods: We retrospectively analyzed 18 cases of III degree acute injuries of the lateral ligament complex of the ankle. Results: There were statistically significant differences in preoperative and last follow-up VAS pain scores and AOFAS ankle hind-foot function scores. The X-ray talus displacement values in the anterior drawer test and pressure anteroposterior X-ray talar tilt in the ankle talar tilt test also showed statistically significant differences. Complications occurred in 2 patients, incision surface infection in one, and postoperative lateral dorsal skin numbness in one. All these cases were cured after symptomatic treatment. At the last follow-up all patients’ ankle joint activity recovered to their preinjury function levels. Conclusion: The application of suture anchors for small incision stage I repair of the lateral collateral ligament of ankle joint degree III injury, can effectively restored the stability of ankle joint, and prevent the occurrence of chronic ankle instability complications. It is effective and feasible for the treatment of ankle joint lateral collateral ligament injuries. PMID:26885144

  1. Foot and Ankle Injuries in Runners.

    PubMed

    Tenforde, Adam S; Yin, Amy; Hunt, Kenneth J

    2016-02-01

    Foot and ankle injuries account for nearly one-third of running injuries. Achilles tendinopathy, plantar fasciopathy, and ankle sprains are 3 of the most common types of injuries sustained during training. Other common injuries include other tendinopathies of the foot and ankle, bone stress injuries, nerve conditions including neuromas, and joint disease including osteoarthritis. This review provides an evidence-based framework for the evaluation and optimal management of these conditions to ensure safe return to running participation and reduce risk for future injury. PMID:26616180

  2. Examination of Surface Residuals Obtained During Re-Lubrication of the International Space Station (ISS) Solar Alpha Rotary Joint (SARJ)

    NASA Technical Reports Server (NTRS)

    Martinez, J. E.; Golden, J. L.

    2012-01-01

    The starboard SARJ mechanism on the ISS suffered a premature lubrication failure, resulting in widespread loss of the nitride case layer on its 10.3 meter circumference, 15-5PH steel race ring [1, 2]. To restore functionality, vacuum-stable grease was applied on-orbit, first to the port SARJ mechanism to save it from the damage suffered by the starboard mechanism. After 3 years of greased operation, telemetry indicated that the port mechanism required relubrication, so part of that process included sampling each of the three race ring surfaces to evaluate any wear debris recovered and the state of the originally applied grease. Extensive microscopic examination was conducted, which directed subsequent microanalysis of particulate. Since the SARJ mechanism operates in the vacuum of space, a sampling method and tool had to be developed for use by astronauts while working in the extravehicular mobility unit (EMU). The sampling tool developed was a cotton terry-cloth mitt for the EMU glove, with samples taken by swiping each of the three port SARJ race-ring surfaces. The sample mitts for each surface were folded inward after sampling to preserve sample integrity, for return and ground analysis. The sample mitt for what is termed the outer canted surface of the SARJ race-ring is shown in Figure 1. Figure 1 also demonstrates how increasing levels of magnification were used to survey the contamination removed in sampling, specifically looking for signs of wear debris or other features which could be further evaluated using Scanning Electron Microscopy (SEM) methods. The most surprising overall result at this point in the analysis was the relatively small amounts of grease recovered during sampling. It is clear that the mechanism was not operating with surplus lubricant. Obviously, evidence of molybdenum disulfide (MoS2), a major component in the grease applied, was prevalent in the analysis conducted. But a small amount of mechanism wear debris was observed. Figure 2

  3. Modelling of the mechanical behavior of a polyurethane finger interphalangeal joint endoprosthesis after surface modification by ion implantation

    NASA Astrophysics Data System (ADS)

    Beliaev, A.; Svistkov, A.; Iziumov, R.; Osorgina, I.; Kondyurin, A.; Bilek, M.; McKenzie, D.

    2016-04-01

    Production of biocompatible implants made of polyurethane treated with plasma is very perspective. During plasma treatment the surface of polyurethane acquires unique physic-chemical properties. However such treatment may change the mechanical properties of polyurethane which may adversely affect the deformation behaviour of the real implant. Therefore careful study of the mechanical properties of the plasma-modified polyurethane is needed. In this paper, experimental observations of the elastic characteristics of plasma treated polyurethane and modelling of the deformation behaviour of polyurethane bio-implants are reported.

  4. Fabrication of dense α-alumina layer on Ti-6Al-4V alloy hybrid for bearing surfaces of artificial hip joint.

    PubMed

    Khanna, Rohit; Kokubo, Tadashi; Matsushita, Tomiharu; Takadama, Hiroaki

    2016-12-01

    Recent advances in hip replacements are focused towards producing reliable bearing surfaces to enhance their longevity. In this perspective, progressive attempts have been made to improve the wear resistance of polyethylene to eliminate osteolysis and mechanical reliability of brittle alumina ceramics, but in vain. It is proposed that both high wear resistance and mechanical reliability can be retained if a thin layer of dense alumina is formed onto high toughness Ti-6Al-4V alloy. For this purpose, we devised a unique methodology in which a layer of Al metal was deposited onto the Ti alloy substrate by cold spraying (CS), followed by a heat treatment to form Al3Ti reaction layer at their interface to improve adhesion and subsequent micro-arc oxidation (MAO) treatment to transform Al to alumina layer. An optimal MAO treatment of cold sprayed Al formed an adherent and dense α-alumina layer with high Vickers hardness matching with that of sintered alumina used as a femoral head. Structure-phase-property relationships in dense α-alumina layer have been revealed and discussed in the light of our research findings. The designed alumina/Ti alloy hybrid might be a potential candidate for reliable bearing surfaces of artificial hip joint. PMID:27612821

  5. Crustal and upper-mantle structure of the southeastern Tibetan Plateau from joint analysis of surface wave dispersion and receiver functions

    NASA Astrophysics Data System (ADS)

    Li, Mengkui; Zhang, Shuangxi; Wang, Fang; Wu, Tengfei; Qin, Weibing

    2016-03-01

    Researches on the southeastern Tibetan Plateau provide important insights into the tectonic evolution of the Tibetan Plateau. In this study, we have constructed a high-resolution 3D shear-wave velocity model through joint inversion of receiver functions and surface wave dispersion data. The crustal thickness and Poisson's ratio models are first determined by H-k stacking of receiver functions. The crustal thickness changes from 30 km in the south to 62 km in the north, presenting strong lateral variations. The fundamental mode of Rayleigh wave dispersion data spanning periods from 8 to 65 s were then jointly used to constraint the absolute shear-wave velocity. The shear-wave velocity structure shows lateral variations. There are low velocity zones distributed in the crust and upper mantle. Two continuously distributed low velocity zones are clearly presented in the middle-to-lower crust, which extend from north toward southeast and southwest, respectively, joining together in southern Yunnan. In this study, we deduced the migration model of soft materials in middle-to-lower crust in southeastern Tibetan Plateau, which explains that the resistance from Sichuan Basin separates the flowing materials from Tibetan Plateau into southeast and northwest branches. They flow along the west margin of Sichuan Basin and then extrude out from northeastern and southeastern Tibetan Plateau respectively. The southeast branch is blocked and cannot flow in the entire crust. It is limited in a certain range of depths and channels. The two low velocity zones in this study possibly present two flow channels of the middle-to-lower crustal materials extruded from the Tibetan Plateau.

  6. Formation of tough composite joints

    SciTech Connect

    Brun, M.K.

    1997-05-01

    Joints which exhibit tough fracture behavior were formed in a composite with a Si/SiC matrix reinforced with Textron SCS-6 fibers with either boron nitride or silicon nitride fiber coatings. In composites with BN coatings fibers were aligned uniaxially, while composites with Si{sub 3}N{sub 4}-coated fibers had a 0/90{degree} architecture. Lapped joints (joints with overlapping fingers) were necessary to obtain tough behavior. Geometrical requirements necessary to avoid brittle joint failure have been proposed. Joints with a simple overlap geometry (only a few fingers) would have to be very long in order to prevent brittle failure. Typical failure in these joints is caused by a crack propagating along the interfaces between the joint fingers. Joints of the same overall length, but with geometry changed to be symmetric about the joint centerline and with an extra shear surface exhibited tough fractures accompanied with extensive fiber pullout. The initial matrix cracking of these joints was relatively low because cracks propagated easily through the ends of the fingers. Joints with an optimized stepped sawtooth geometry produced composite-like failures with the stress/strain curves containing an elastic region followed by a region of rising stress with an increase of strain. Increasing the fiber/matrix interfacial strength from 9 to 25 MPa, by changing the fiber coating, increased matrix cracking and ultimate strength of the composite significantly. The best joints had matrix cracking stress and ultimate strength of 138 and 240 MPa, respectively. Joint failure was preceded by multiple matrix cracking in the entire composite. The high strength of the joints will permit building of structures containing joints with only a minor reduction of design stresses.

  7. Joint detection of anatomical points on surface meshes and color images for visual registration of 3D dental models

    NASA Astrophysics Data System (ADS)

    Destrez, Raphaël.; Albouy-Kissi, Benjamin; Treuillet, Sylvie; Lucas, Yves

    2015-04-01

    Computer aided planning for orthodontic treatment requires knowing occlusion of separately scanned dental casts. A visual guided registration is conducted starting by extracting corresponding features in both photographs and 3D scans. To achieve this, dental neck and occlusion surface are firstly extracted by image segmentation and 3D curvature analysis. Then, an iterative registration process is conducted during which feature positions are refined, guided by previously found anatomic edges. The occlusal edge image detection is improved by an original algorithm which follows Canny's poorly detected edges using a priori knowledge of tooth shapes. Finally, the influence of feature extraction and position optimization is evaluated in terms of the quality of the induced registration. Best combination of feature detection and optimization leads to a positioning average error of 1.10 mm and 2.03°.

  8. Joint Problems

    MedlinePlus

    ... ankles and toes. Other types of arthritis include gout or pseudogout. Sometimes, there is a mechanical problem ... for more information on osteoarthritis, rheumatoid arthritis and gout. How Common are Joint Problems? Osteoarthritis, which affects ...

  9. Joint pain

    MedlinePlus

    ... or conditions. It may be linked to arthritis , bursitis , and muscle pain . No matter what causes it, ... Autoimmune diseases such as rheumatoid arthritis and lupus Bursitis Chondromalacia patellae Crystals in the joint: gout (especially ...

  10. Compliant joint

    NASA Technical Reports Server (NTRS)

    Eklund, Wayne D. (Inventor); Kerley, James J. (Inventor)

    1990-01-01

    A compliant joint is provided for prosthetic and robotic devices which permits rotation in three different planes. The joint provides for the controlled use of cable under motion. Perpendicular outer mounting frames are joined by swaged cables that interlock at a center block. Ball bearings allow for the free rotation of the second mounting frame relative to the first mounting frame within a predetermined angular rotation that is controlled by two stop devices. The cables allow for compliance at the stops and the cables allow for compliance in six degrees of freedom enabling the duplication or simulation of the rotational movement and flexibility of a natural hip or knee joint, as well as the simulation of a joint designed for a specific robotic component for predetermined design parameters.

  11. Eye Injuries

    MedlinePlus

    The structure of your face helps protect your eyes from injury. Still, injuries can damage your eye, sometimes severely enough that you could lose your vision. Most eye injuries are preventable. If you play sports or ...

  12. Head Injuries

    MedlinePlus

    ... injuries internal head injuries, which may involve the skull, the blood vessels within the skull, or the brain Fortunately, most childhood falls or ... knock the brain into the side of the skull or tear blood vessels. Some internal head injuries ...

  13. Back Injuries

    MedlinePlus

    ... the most common site of back injuries and back pain. Common back injuries include Sprains and strains Herniated disks Fractured vertebrae These injuries can cause pain and limit your movement. Treatments vary but might ...

  14. Eye Injuries

    MedlinePlus

    ... of your face helps protect your eyes from injury. Still, injuries can damage your eye, sometimes severely enough that you could lose your vision. Most eye injuries are preventable. If you play sports or work ...

  15. Blast Injuries

    MedlinePlus

    ... Service Members & Veterans Family & Caregivers Medical Providers Blast Injuries U.S. Army photo by Sgt. Gustavo Olgiati How ... tertiary injury Does a blast cause different brain injuries than blunt trauma? There currently is no evidence ...

  16. Ocular Injury

    MedlinePlus

    ... usually occur from blunt trauma, such as a sports injury or a fall with injury to the nose ... of protective goggles at all times. Even in sports like baseball, eye injuries can be prevented by using batting helmets that ...

  17. Sports Injuries

    MedlinePlus

    ... sometimes you can injure yourself when you play sports or exercise. Accidents, poor training practices, or improper ... can also lead to injuries. The most common sports injuries are Sprains and strains Knee injuries Swollen ...

  18. The wear of ultra-high molecular weight polyethylene sliding on metallic and ceramic counterfaces representative of current femoral surfaces in joint replacement.

    PubMed

    Lancaster, J G; Dowson, D; Isaac, G H; Fisher, J

    1997-01-01

    A number of studies have investigated the influence of surface roughness on the wear of ultra-high molecular weight polyethylene (UHMWPE) in total joint replacement. The results of these studies have shown that the wear factor is proportional to the counterface roughness raised to a power greater than one. In this laboratory study, the effect of surface finish of several biomaterials on the wear of UHMWPE was studied. The study was conducted using reciprocating pin-on-plate wear tests with bovine serum as a lubricant. The biomaterials investigated as the counterface material included stainless steel, cast cobalt chrome (CoCr), CoCr (ASTM F799), alumina ceramic and zirconia ceramic. The counterface topographies of the wear plates were produced using techniques representative of current manufacturing methods. The surface roughness of the wear plates was varied in the range Ra = 0.005-0.04 micron; this was representative of femoral heads and femoral knee components currently used clinically. Metals and ceramics with a similar surface roughness produced a similar wear rate of UHMWPE. For the limited range of smooth counterfaces used in this study only a moderate correlation was found between the surface roughness and the wear factors. For a change in counterface roughness Ra of 0.005 to 0.04 micron, the wear factor increased from 7.4 +/- 1.6 to 16.5 +/- 2.4 x 10(-9) mm3/N m (mean +/- standard error). This variation in counterface roughness had much less effect in wear than previously reported for rougher counterfaces. For an extended range of counterface roughness, a stronger correlation was found using an exponential function for the regression fit. The exponential function shows the benefits of decreased wear with decreased surface roughness. Although the wear rate decreased less rapidly with decreased counterface roughness for Ra values below 0.05 micron, there were significant advantages to be gained from improved femoral head roughness to below 0.01 micron Ra

  19. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations

    NASA Astrophysics Data System (ADS)

    Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.

    2014-12-01

    We have developed a novel framework ("Tan-Tracker") for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOS-Chem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation

  20. JOINT ANALYSIS OF NEAR-INFRARED PROPERTIES AND SURFACE BRIGHTNESS FLUCTUATIONS OF LARGE MAGELLANIC CLOUD STAR CLUSTERS

    SciTech Connect

    Raimondo, G.

    2009-08-01

    Surface brightness fluctuations (SBFs) have been proved to be a very powerful technique to determine the distance and characterize the stellar content in extragalactic systems. Nevertheless, before facing the problem of stellar content in distant galaxies, we need to calibrate the method onto nearby well known systems. In this paper we analyze the properties at the J and K{sub s} bands of a sample of 19 star clusters in the Large Magellanic Cloud, for which accurate near-infrared (NIR) resolved star photometry and integrated photometry are available. For the same sample, we derive the SBF measurements in the J and K{sub s} bands. We use the multipurpose stellar population code SPoT (Stellar POpulations Tools) to simulate the color-magnitude diagram, stellar counts, integrated magnitudes, colors, and SBFs of each cluster. The present procedure allows us to estimate the age and metallicity of the clusters in a consistent way, and provides a new calibration of the empirical s-parameter. We take advantage of the high sensitivity of NIR SBFs to thermally pulsing asymptotic (TP-AGB) stars to test different mass-loss rates affecting the evolution of such stars. We argue that NIR-SBFs can contribute to the disentangling of the observable properties of TP-AGB stars, especially in galaxies, where a large number of these stars are present.

  1. Upper extremity injuries in golf.

    PubMed

    Bayes, Matthew C; Wadsworth, L Tyler

    2009-04-01

    Golf is an asymmetric sport with unique patterns of injury depending upon the skill level. Higher handicap players typically experience injuries that result from swing mechanics, whereas lower handicap and professional players have overuse as the major cause of their injuries. The majority of shoulder injuries affecting golfers occur in the nondominant shoulder. Common shoulder injuries include subacromial impingement, rotator cuff pathology, glenohumeral instability, and arthritis involving the acromioclavicular and/or glenohumeral joints. Lead arm elbow pain resulting from lateral epicondylosis (tennis elbow) is the leading upper extremity injury in amateur golfers. Tendon injury is the most common problem seen in the wrist and forearm of the golfer. Rehabilitation emphasizing improvement in core muscle streng is important in the treatment of golf injury. Emerging treatments for tendinopathy include topical nitrates, ultrasound-guided injection of therapeutic substances, and eccentric rehabilitation. There is evidence supporting physiotherapy, and swing modification directed by a teaching professional, for treatment of upper extremity golf injuries. This article focuses on upper extremity injuries in golf, including a discussion of the epidemiology, causes, diagnosis, treatment, and prevention of injuries occurring in the shoulder, elbow, wrist, and hand. PMID:20048492

  2. Neurovascular Injury in Hip Arthroplasty

    PubMed Central

    2014-01-01

    Neurological and vascular complications following hip arthroplasty are uncommon, and their impact ranges from transient and trivial to permanent and devastating. The proximity of neural and vascular structures makes any operation on the hip potentially hazardous. Direct or indirect injuries of these structures may occur during operative exposure and subsequent procedures. Thus, complete awareness of the anatomy of the pelvis and proximal femur is required. Peripheral nerve injuries can involve either distant sites or nerves in the immediate vicinity of the hip joint. Sciatic nerve injury is the most common nerve injury following total hip arthroplasty. Femoral nerve injury is much less common and is associated with an anterior approach. Its diagnosis is often delayed, but the prognosis is generally better than with sciatic nerve injury. The superior gluteal nerve is at risk during the direct lateral approach. Obturator nerve injury is the least common type of injury and has the least functional consequences. Vascular injuries are less common but more immediately life threatening. The mechanisms of vascular injury include occlusion associated with preexisting peripheral vascular disease and vascular injury during removal of cement during screw fixation of acetabular components, cages, or structural grafts. It is critical to avoid the anterior quadrants for acetabular screw fixation. All acetabular and femoral defects should be bone-grafted to avoid inadvertent cement migration. Following these guidelines, surgeons should be able to offer the most appropriate treatment and counseling to the patients.

  3. Moho Depth and Shear Velocity Structure in Northwest India and West Tibet from the Joint Inversion of Receiver Function and Surface Waves

    NASA Astrophysics Data System (ADS)

    Gilligan, A.; Priestley, K. F.; Roecker, S. W.; Levin, V. L.; Rai, S. S.

    2014-12-01

    The Tibetan Plateau is a key locality in understanding large-scale continental dynamics. A large number of investigations have examined the structure and processes in eastern Tibet, however western Tibet remains relatively understudied. The limited number of previous studies in this region indicate that the western part of the Tibetan Plateau is not a simple extension of the eastern part, despite the lack of surface features indicating differences between these two regions. In particular, wavespeeds higher than those in eastern Tibet have been observed in the upper mantle by a number of investigators. We present new, high resolution, shear velocity models for Northwest India and West Tibet from the joint inversion of P receiver functions and fundamental mode Rayleigh wave group velocities recorded at seismic stations in four arrays in this region. The areas covered by these arrays include the Karakoram and Altan-Taygh faults, major terrane boundaries in West Tibet and the Himalayas. The arrays used include broadband data collected by the West Tibet Array, a US-China deployment on the western side of the Tibetan Plateau between 2007-2011, and a French experiment in 2001. We construct group velocity tomographic maps throughout Central and Southern Asia from surface wave data between periods of 5-70s. The inclusion of Rayleigh wave dispersion measurements from ambient noise cross-correlations between stations in the West Tibet Array allow a local node spacing as fine as 0.25 degrees, meaning it is possible to resolve features as small as 1 degree at short periods in that region. These group velocity maps appears to confirm observations that group velocities at 60 and 70s group velocities are higher in West Tibet than they are in East Tibet. We use the shear wave velocity models obtained from the joint inversion to obtain estimates of Moho depth in Northwest India and West Tibet. The Moho is deep throughout Tibet in this region, increasing northwards and flattening out

  4. Concomitant dislocation of the tarsometatarsal and metatarsophalangeal joints of the second toe (floating second metatarsal): a case report

    PubMed Central

    2009-01-01

    When examining patients with injuries of the tarsometatarsal joint, the physician must pay attention to the foot as a whole. An extremely rare foot injury has been described in which axial and compressive forces cause simultaneous dislocation of the tarsometatarsal joint and the metatarsophalangeal joint of the same or adjacent ray. The following is a report of one of these rare injuries. We will also discuss probable mechanism and diagnosis of this rare traumatic injury. PMID:19134219

  5. Magmatic arc structure around Mount Rainier, WA, from the joint inversion of receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Obrebski, Mathias; Abers, Geoffrey A.; Foster, Anna

    2015-01-01

    deep magmatic processes in volcanic arcs are often poorly understood. We analyze the shear wave velocity (VS) distribution in the crust and uppermost mantle below Mount Rainier, in the Cascades arc, resolving the main velocity contrasts based on converted phases within P coda via source normalization or receiver function (RF) analysis. To alleviate the trade-off between depth and velocity, we use long period phase velocities (25-100 s) obtained from earthquake surface waves, and at shorter period (7-21 s) we use seismic noise cross correlograms. We use a transdimensional Bayesian scheme to explore the model space (VS in each layer, number of interfaces and their respective depths, level of noise on data). We apply this tool to 15 broadband stations from permanent and Earthscope temporary stations. Most results fall into two groups with distinctive properties. Stations east of the arc (Group I) have comparatively slower middle-to-lower crust (VS = 3.4-3.8 km/s at 25 km depth), a sharp Moho and faster uppermost mantle (VS = 4.2-4.4 km/s). Stations in the arc (Group II) have a faster lower crust (VS = 3.7-4 km/s) overlying a slower uppermost mantle (VS = 4.0-4.3 km/s), yielding a weak Moho. Lower crustal velocities east of the arc (Group I) most likely represent ancient subduction mélanges mapped nearby. The lower crust for Group II ranges from intermediate to felsic. We propose that intermediate-felsic to felsic rocks represent the prearc basement, while intermediate composition indicates the mushy andesitic crustal magmatic system plus solidified intrusion along the volcanic conduits. We interpret the slow upper mantle as partial melt.

  6. Analysis of minor fractures associated with joints and faulted joints

    NASA Astrophysics Data System (ADS)

    Cruikshank, Kenneth M.; Zhao, Guozhu; Johnson, Arvid M.

    the simplest is a veer, where the end of one joint segment turns gradually toward a nearby joint segment. The veer is a result of a nearby, shear-stress-free face such as a joint surface. Our greatest difficulty has been explaining long overlap of parallel joint segments, that is, the lack of veer. The only plausible explanation we know is suggested by the research of Cottrell and Rice, that high compression parallel to the joint segments will tend to prevent the joints from turning toward one another. The most interesting and puzzling fractures are stepped joints and associated echelon cracks, in which the slight misalignment of the stepped joints suggests mild left-lateral shear, while the strong misalignment of echelon cracks that continue the traces of the stepped joints suggests strong right-lateral shear. The stepped joints are thought to reflect local left-lateral shearing that acted over an area of several thousand square metres, whereas the stepped echelon cracks reflect local interaction between the tips of nearby joints propagating in different directions.

  7. Injury count model for quantification of risk of occupational injury.

    PubMed

    Khanzode, Vivek V; Maiti, J; Ray, P K

    2011-06-01

    Reduction of risk of occupational injuries is one of the most challenging problems faced by industry. Assessing and comparing risks involved in different jobs is one of the important steps towards reducing injury risk. In this study, a comprehensive scheme is given for assessing and comparing injury risks with the development of injury count model, injury risk model and derived statistics. The hazards present in a work system and the nature of the job carried out by workers are perceived as important drivers of injury potential of a work system. A loglinear model is used to quantify injury counts and the event-tree approach with joint, marginal and conditional probabilities is used to quantify injury risk. A case study was carried out in an underground coal mine. Finally a number of indices are proposed for the case study mine to capture risk of injury in different jobs. The findings of this study will help in designing injury intervention strategies for the mine studied. The job-wise risk profiles will be used to prioritise the jobs for redesign. The absolute indices can be applied for benchmarking job-wise risks and the relative indices can be used for comparing job-wise risks across work systems. PMID:21432706

  8. Management of Extensor Tendon Injuries

    PubMed Central

    Griffin, M; Hindocha, S; Jordan, D; Saleh, M; Khan, W

    2012-01-01

    Extensor tendon injuries are very common injuries, which inappropriately treated can cause severe lasting impairment for the patient. Assessment and management of flexor tendon injuries has been widely reviewed, unlike extensor injuries. It is clear from the literature that extensor tendon repair should be undertaken immediately but the exact approach depends on the extensor zone. Zone I injuries otherwise known as mallet injuries are often closed and treated with immobilisaton and conservative management where possible. Zone II injuries are again conservatively managed with splinting. Closed Zone III or ‘boutonniere’ injuries are managed conservatively unless there is evidence of displaced avulsion fractures at the base of the middle phalanx, axial and lateral instability of the PIPJ associated with loss of active or passive extension of the joint or failed non-operative treatment. Open zone III injuries are often treated surgically unless splinting enable the tendons to come together. Zone V injuries, are human bites until proven otherwise requires primary tendon repair after irrigation. Zone VI injuries are close to the thin paratendon and thin subcutaneous tissue which strong core type sutures and then splinting should be placed in extension for 4-6 weeks. Complete lacerations to zone IV and VII involve surgical primary repair followed by 6 weeks of splinting in extension. Zone VIII require multiple figure of eight sutures to repair the muscle bellies and static immobilisation of the wrist in 45 degrees of extension. To date there is little literature documenting the quality of repairing extensor tendon injuries however loss of flexion due to extensor tendon shortening, loss of flexion and extension resulting from adhesions and weakened grip can occur after surgery. This review aims to provide a systematic examination method for assessing extensor injuries, presentation and management of all type of extensor tendon injuries as well as guidance on

  9. Joint lubrication.

    PubMed

    McCutchen, C W

    1983-01-01

    The fine-pored, easily compressed articular cartilage provides animal joints with self-pressurized hydrostatic (weeping) lubrication. The solid skeletons of the cartilages press against each other, but so lightly that their rubbing is lubricated successfully by synovial fluid--a boundary lubricant too weak to lubricate ordinary bearings. PMID:6317095

  10. Elastic Wavespeed Images of Northern Chile Subduction Zone from the Joint Inversion of Body and Surface Waves: Structure of the Andean Forearc and the Double Seismic Zone

    NASA Astrophysics Data System (ADS)

    Comte, D.; Carrizo, D.; Roecker, S. W.; Peyrat, S.; Arriaza, R.; Chi, R. K.; Baeza, S.

    2015-12-01

    Partly in anticipation of an imminent megathrust earthquake, a significant amount of seismic data has been collected over the past several years in northern Chile by local deployments of seismometers. In this study we generate elastic wavespeed images of the crust and upper mantle using a combination of body wave arrival times and surface wave dispersion curves. The body wave data set consists of 130000 P and 108000 S wave arrival times generated by 12000 earthquakes recorded locally over a period of 25 years by networks comprising about 360 stations. The surface wave data set consists of Rayleigh wave dispersion curves determined from ambient noise recorded by 60 broad band stations from three different networks over a period of three years. Transit time biases due to an uneven distribution of noise were estimated using a technique based on that of Yao and van der Hilst (2009) and found to be as high as 5% for some station pairs. We jointly invert the body and surface wave observations to both improve the overall resolution of the crustal images and reduce the trade-off between shallow and deep structures in the images of the subducted slab. Of particular interest in these images are three regions of anomalous Vp/Vs: (1) An extensive zone of low Vp/Vs (1.68) correlates with trench-parallel magmatic belts emplaced in the upper continental crust. In the region of the coast and continental slope, low Vp/Vs corresponds to batholithic structures in the Jurassic-Cretaceous magmatic arc. Between the central depression and Domeyko Cordillera, low Vp/Vs correlates with the distribution of magmatic arcs of Paleocene-Oligocene and Eocene-Oligocene age. Low Vp/Vs also correlates with the location of the Mejillones Peninsula. (2) A region of high Vp/Vs occurs in what is most likely the serpentinized wedge of the subduction zone. (3) An additional zone of low Vp/Vs is located in the middle of the double seismic zone at depths of 90-110 km. This region may exist all along the

  11. Impact of joint laxity and hypermobility on the musculoskeletal system.

    PubMed

    Wolf, Jennifer Moriatis; Cameron, Kenneth L; Owens, Brett D

    2011-08-01

    Excessive joint laxity, or hypermobility, is a common finding of clinical importance in the management of musculoskeletal conditions. Hypermobility is common in young patients and in general is associated with an increased incidence of musculoskeletal injury. Hypermobility has been implicated in ankle sprains, anterior cruciate ligament injury, shoulder instability, and osteoarthritis of the hand. Patients with hypermobility and musculoskeletal injuries often seek care for diffuse musculoskeletal pain and injuries with no specific inciting event. Orthopaedic surgeons and other healthcare providers should be aware of the underlying relationship between hypermobility and musculoskeletal injury to avoid unnecessary diagnostic tests and inappropriate management. Prolonged therapy and general conditioning are typically required, with special emphasis on improving strength and proprioception to address symptoms and prevent future injury. Orthopaedic surgeons must recognize the implications of joint mobility syndromes in the management and rehabilitation of several musculoskeletal injuries and orthopaedic disorders. PMID:21807914

  12. Mountain biking injuries: an update.

    PubMed

    Kronisch, Robert L; Pfeiffer, Ronald P

    2002-01-01

    This article reviews the available literature regarding injuries in off-road bicyclists. Recent progress in injury research has allowed the description of several patterns of injury in this sport. Mountain biking remains popular, particularly among young males, although sales and participation figures have decreased in the last several years. Competition in downhill racing has increased, while cross-country racing has decreased somewhat in popularity. Recreational riders comprise the largest segment of participants, but little is known about the demographics and injury epidemiology of noncompetitive mountain cyclists. Most mountain bikers participating in surveys reported a history of previous injuries, but prospective studies conducted at mountain bike races have found injury rates of <1%. The most common mechanism of injury involves a forward fall over the handlebars, usually while riding downhill, which can result in direct trauma to the head, torso and upper extremities. A variety of factors can be associated with this type of fall, including trail surface irregularities, mechanical failures and loss of control. In mountain bike racing the risk of injury may be higher for women than men. Minor injuries such as abrasions and contusions occur frequently, but are usually of little consequence. Fractures usually involve the torso or upper extremities, and shoulder injuries are common. Head and face injuries are not always prevented by current helmet designs. Fatal injuries are rare but have been reported. Improvements in safety equipment, rider training and racecourse design are suggested injury prevention measures. The authors encourage continued research in this sport. PMID:12076178

  13. Injuries in women's ice hockey: special considerations.

    PubMed

    Abbott, Kristin

    2014-01-01

    Ice hockey is a popular collision sport with a growing number of female athletes participating each year. As participation among girls and women continues to increase, it will be important to recognize common injuries occurring during women's games. Despite difference in the rules that prohibit body checking in women's and girls' games, injury profiles are similar to those of their male counterparts. Concussions, contusions, acromioclavicular joint injuries, ligamentous knee injuries, and muscle strains occur during women's ice hockey games, with groin strains accounting for the most common practice injury. This article will review both injury rates and common injuries occurring in women's ice hockey, with a focus on the observed concussion rate and groin injuries. PMID:25391093

  14. Pancreatic injury.

    PubMed

    Ahmed, Nasim; Vernick, Jerome J

    2009-12-01

    Injury to the pancreas, because of its retroperitoneal location, is a rare occurrence, most commonly seen with penetrating injuries (gun shot or stab wounds). Blunt trauma to the pancreas accounts for only 25% of the cases. Pancreatic injuries are associated with high morbidity and mortality due to accompanying vascular and duodenal injuries. Pancreatic injuries are not always easy to diagnose resulting in life threatening complications. Physical examination as well as serum amylase is not diagnostic following blunt trauma. Computed tomography (CT) scan can delineate the injury or transaction of the pancreas. Endoscopic retrograde pancreaticography (ERCP) is the main diagnostic modality for evaluation of the main pancreatic duct. Unrecognized ductal injury leads to pancreatic pseudocyst, fistula, abscess, and other complications. Management depends upon the severity of the pancreatic injury as well as associated injuries. Damage control surgery in hemodynamic unstable patients reduces morbidity and mortality. PMID:20016434

  15. How do metacarpophalangeal joint extension, collateromotion and axial rotation influence dorsal surface strains of the equine proximal phalanx at different loads in vitro?

    PubMed

    Singer, Ellen; Garcia, Tanya; Stover, Susan

    2013-02-22

    The biomechanical circumstances that promote sagittal fracture of the equine proximal phalanx (P1) are poorly understood. In order to improve our understanding of equine metacarpophalangeal joint (MCPJ) biomechanics and potential aetiologies of sagittal P1 fractures, the study objectives were to quantify P1 bone strains, collateromotion and axial rotation during MCPJ extension under controlled loading circumstances. Unilateral limbs from six cadavers were instrumented with bone reference markers for measurement of P1 movement relative to third metacarpal bone positions during axial limb loading to 10,500N. Bone reference markers recorded by video were digitized and the movement analyzed during MCPJ extension. Concurrently, dorsoproximal P1 surface strains were measured with one uniaxial and one rosette strain gauge. Strain gauge data was reduced to determine principal and shear strain magnitude and direction. External axial rotation and collateromotion increased with increasing MCPJ extension. Maximum principal strain increased linearly as load increased from 2000 to 10,500N. Minimum principal and maximum shear strains had curvilinear relationships with limb loading, with negligible strain magnitude until approximately 6000N load, after which strain increased rapidly. The direction of P1 minimum principal strain shifted approximately 30-40° as load increased from 5400N to 10,000N, moving from proximolateral-distomedial to a nearly proximodistal direction. At near maximal MCPJ extension, with concurrent axial rotation and collateromotion, a rapid increase in dorsoproximal P1 bone strain and a change in principal strain direction occurred. The alterations in principal strain magnitude and direction associated with maximal MCPJ extension may support a biomechanical theory for sagittal P1 fracture occurrence in horses. PMID:23246042

  16. Soccer injuries in Saudi Arabia.

    PubMed

    Sadat-Ali, M; Sankaran-Kutty, M

    1987-01-01

    Soccer injuries which were seen at the King Fahd University Hospital over a period of 12 months were analyzed. The majority of the patients were under 20 years of age. Two-thirds of the injuries involved soft tissue, while those to the bone and joint comprised one-third. The lower extremity was involved in 59%. Sixteen percent of the injuries were considered severe enough to require inpatient treatment. We feel the high incidence of injuries can be reduced by better guidance and coaching at school and other training levels. At present, these patients are seen in the emergency room of our hospital and subsequently in the orthopaedic and fracture clinics. A specialized sports injury clinic staffed with medical and paramedical personnel with special interest in sports medicine would enable early and effective treatment returning athletes to play without undue delay. PMID:3674274

  17. Ankle injuries in basketball players.

    PubMed

    Leanderson, J; Nemeth, G; Eriksson, E

    1993-01-01

    We carried out a retrospective study of the frequency of ankle sprains in basketball players. A questionnaire about previous ankle injuries, time off after such injuries, current ankle problems, personal data, number of practice hours and the use of prophylactic measures was sent out to 102 basketball players in a second division league in Sweden. Ninety-six players answered. 92% of them had suffered an ankle sprain while playing basketball, and of these 83% reported repeated sprains of one ankle. In the last two seasons, 78% of the players had injured at least one ankle. The injury frequency in the investigation was 5.5 ankle injuries per 1000 activity hours. 22% of the players used some kind of prophylactic support of their ankle joints. Because of the great number of ankle sprains and the disability in terms of time away from sports that they cause, prevention of these injuries is essential. PMID:8536029

  18. Improved vision in forensic documentation: forensic 3D/CAD-supported photogrammetry of bodily injury external surfaces combined with volumetric radiologic scanning of bodily injury internal structures provides more investigative leads and stronger forensic evidence

    NASA Astrophysics Data System (ADS)

    Thali, Michael J.; Braun, Marcel; Kneubuehl, Beat P.; Brueschweiler, Walter; Vock, Peter; Dirnhofer, Richard

    2000-05-01

    In the field of the documentation of forensics-relevant injuries, from the reconstructive point of view, the Forensic, 3D/CAD-supported Photometry plays an important role; particularly so when a detailed 3D reconstruction is vital. This was demonstrated with an experimentally-produced 'injury' to a head model, the 'skin-skull-brain model'. The injury-causing instrument, drawn from a real forensic case, was a specifically formed weapon.

  19. Basketball injuries.

    PubMed

    Newman, Joel S; Newberg, Arthur H

    2010-11-01

    Basketball injuries are most prevalent in the lower extremity, especially at the ankle and knee. Most basketball injuries are orthopedic in nature and commonly include ligament sprains, musculotendinous strains, and overuse injuries including stress fractures. By virtue of its excellent contrast resolution and depiction of the soft tissues and trabecular bone, magnetic resonance imaging has become the principal modality for evaluating many basketball injuries. In this article, commonly encountered basketball injuries and their imaging appearances are described. The epidemiology of basketball injuries across various age groups and levels of competition and between genders are reviewed. PMID:21094400

  20. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  1. Lightning and thermal injuries.

    PubMed

    Sanford, Arthur; Gamelli, Richard L

    2014-01-01

    treated. The exact mechanism of nerve injury has not been explained, but both direct injury by electrical current overload or a vascular cause receive the most attention. Because electrical injuries carry both externally visible cutaneous injuries and possible hidden musculoskeletal damage, conventional burn resuscitation formulas based on body surface area injured may not provide enough fluid to maintain urine output. Damaged muscle resulting in swelling within the investing fascia of an extremity may result in compartment syndromes, requiring further attention. If myoglobin has been detected in the urine, treatment is aggressive volume resuscitation and possibly alkalinization of the urine or mannitol is given IV push to minimize pigment precipitation in the renal tubules. Approximately 15% of electrical burn victims also sustain traumatic injuries. This is because of falls from height or being thrown against an object. The tetanic contractions that result from exposure to electrical injury cause imbalance in flexor versus extensor muscles, with the flexor groups being stronger. Not only is the victim unable to release from the electrical contact, but they are at risk for fracture of bones from this prolonged muscular contracture. Neurologic and psychological symptoms were the most common sequelae of electrical and lightning injuries. Many of these symptoms are nonspecific, and they often do not appear until several months after the injury. A full neurologic examination must be performed on admission, documenting initial presentation and at any change in symptoms. Electrical injuries can have devastating consequences. Prevention of electrical injuries is clearly the preferable strategy for treatment. PMID:24365365

  2. 3D kinematics of the tarsal joints from magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Hirsch, Bruce E.; Udupa, Jayaram K.; Okereke, Enyi; Hillstrom, Howard J.; Siegler, Sorin; Ringleb, Stacie I.; Imhauser, Carl W.

    2001-09-01

    We have developed a method for analyzing motion at skeletal joints based on the 3D reconstruction of magnetic resonance (MR) image data. Since the information about each voxel in MR images includes its location in the scanner, it follows that information is available for each organ whose 3D surface is computed from a series of MR slices. In addition, there is information on the shape and orientation of each organ, and the contact areas of adjacent bones. By collecting image data in different positions we can calculate the motion of the individual bones. We have used this method to study human foot bones, in order to understand normal and abnormal foot function. It has been used to evaluate patients with tarsal coalitions, various forms of pes planus, ankle sprains, and several other conditions. A newly described feature of this system is the ability to visualize the contact area at a joint, as determined by the region of minimum distance. The display of contact area helps understand abnormal joint function. Also, the use of 3D imaging reveals motions in joints which cannot otherwise be visualized, such as the subtalar joint, for more accurate diagnosis of joint injury.

  3. Gasoline immersion injury

    SciTech Connect

    Simpson, L.A.; Cruse, C.W.

    1981-01-01

    Chemical burns and pulmonary complications are the most common problems encountered in the patient immersed in gasoline. Our patient demonstrated a 46-percent total-body-surface area, partial-thickness chemical burn. Although he did not develop bronchitis or pneumonitis, he did display persistent atelectasis, laryngeal edema, and subsequent upper airway obstruction. This had not previously been reported in gasoline inhalation injuries. Hydrocarbon hepatitis secondary to the vascular endothelial damage is apparently a reversible lesion with no reported long-term sequelae. Gasoline immersion injuries may be a series multisystem injury and require the burn surgeon to take a multisystem approach to its diagnosis and treatment.

  4. Atypical stress-avulsion fracture of the Lisfranc joint complex.

    PubMed

    O'Neill, Barry J; Sweeney, Laura A; Moroney, Paul J; Mulhall, Kevin J

    2014-04-01

    Antiphospholipid syndrome and systemic erythematosus have been associated with metatarsal stress fractures. Stress fractures of the Lisfranc joint complex are uncommon injuries but have been reported to occur most frequently in ballet dancers. We present a case of an avulsion fracture of the Lisfranc joint complex that occurred spontaneously. We have reviewed the association between systemic conditions and metatarsal fractures and proposed a series of hypothetical pathological events that may have contributed to this unusual injury. PMID:24521754

  5. ANATOMICAL RELATIONSHIP OF THE SUPRASCAPULAR NERVE TO THE CORACOID PROCESS, ACROMIOCLAVICULAR JOINT AND ACROMION

    PubMed Central

    Terra, Bernardo Barcellos; Gaspar, Eric Figueiredo; Siqueira, Karina Levy; Filho, Nivaldo Souza Cardozo; Monteiro, Gustavo Cará; Andreoli, Carlos Vicente; Ejnisman, Benno

    2015-01-01

    Objective: To establish the anatomical relationship of the suprascapular nerve (SSN) located in the suprascapular notch, to the medial border of the base of the coracoid process, the acromial joint surface of the acromioclavicular joint and the anterolateral border of the acromion. Methods: We dissected 16 shoulders of 16 cadavers (9 males and 7 females). The distances from the suprascapular nerve (at its passage beneath the transverse ligament) to certain fixed points on the medial border of the base of the coracoid process, the acromial joint surface of the acromioclavicular joint, and the anterolateral border of the acromion were measured with the aid of calipers and correlated with age and sex. Cadavers with previous surgical interventions were excluded. Results: The mean measurements from the notch of the suprascapular nerve were: 3.9 cm to the medial border of the base of the coracoid process (ranging from 3.1 cm to 5.2 cm); 4.7 cm to the acromioclavicular joint (ranging from 3.9 cm to 5.2 cm); and 6.1 cm to the anterolateral border of the acromion (ranging from 5.7 cm to 6.8 cm). Conclusion: Accurate anatomical knowledge of the nerves of the anterior region of the shoulder is essential in order to avoid iatrogenic injuries and to achieve satisfactory results in surgical treatment for shoulder diseases, whether performed as open or arthroscopic procedures. PMID:27022551

  6. Spinal injury

    MedlinePlus

    ... head. Alternative Names Spinal cord injury; SCI Images Skeletal spine Vertebra, cervical (neck) Vertebra, lumbar (low back) Vertebra, thoracic (mid back) Vertebral column Central nervous system Spinal cord injury Spinal anatomy Two person roll - ...

  7. Corneal injury

    MedlinePlus

    ... as sand or dust Ultraviolet injuries: Caused by sunlight, sun lamps, snow or water reflections, or arc- ... a corneal injury if you: Are exposed to sunlight or artificial ultraviolet light for long periods of ...

  8. Inhalation Injuries

    MedlinePlus

    ... you can inhale that can cause acute internal injuries. Particles in the air from fires and toxic ... and lung diseases worse. Symptoms of acute inhalation injuries may include Coughing and phlegm A scratchy throat ...

  9. Recent advances in the neuroimmunology of cell-surface CNS autoantibody syndromes, Alzheimer's disease, traumatic brain injury and schizophrenia.

    PubMed

    Needham, Ed; Zandi, Michael S

    2014-10-01

    In this update, we review recent advances in antibody-associated disorders of the central nervous system, and the immune mechanisms which may contribute to Alzheimer's disease, traumatic brain injury and schizophrenia. The field of neuroimmunology is rapidly developing and has concerned itself with an expanding portfolio of diseases. The core neuroimmunological diseases remain, multiple sclerosis, neuromyelitis optica, primary inflammatory and antibody-associated disorders of the central and peripheral nervous system (including Myasthenia Gravis and other disorders of neuromuscular junction and muscle, paraneoplastic syndromes, paraproteinaemic neuropathies), and the neurological involvement seen in systemic inflammatory diseases including lupus, sarcoidosis and vasculitis. But it is increasingly realised that immune mechanisms may contribute to the pathogenesis of degenerative diseases including Alzheimer's disease, traumatic brain disease and psychiatric diseases including schizophrenia and depression. These common and devastating disorders, often without effective disease-modifying therapies, are yet to be seen in a conventional neuroimmunology clinic, but the immune mechanisms identified have encouraged research into novel therapeutic approaches for them. PMID:25182699

  10. Cycling injuries.

    PubMed Central

    Cohen, G. C.

    1993-01-01

    Bicycle-related injuries have increased as cycling has become more popular. Most injuries to recreational riders are associated with overuse or improper fit of the bicycle. Injuries to racers often result from high speeds, which predispose riders to muscle strains, collisions, and falls. Cyclists contact bicycles at the pedals, seat, and handlebars. Each is associated with particular cycling injuries. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8471908

  11. Hallucal tarsometatarsal joint in Australopithecus afarensis.

    PubMed

    Latimer, B; Lovejoy, C O

    1990-06-01

    Hallucal tarsometatarsal joints from African pongids, modern humans, and Australopithecus afarensis are compared to investigate the anatomical and mechanical changes that accompanied the transition to terrestrial bipedality. Features analyzed include the articular orientation of the medial cuneiform, curvature of the distal articular surface of the medial cuneiform, and the articular configuration of the hallucal metatarsal proximal joint surface. Morphological characteristics of the hallucal tarsometatarsal joint unequivocally segregate quadrupedal pongids and bipedal hominids. PMID:2360609

  12. Orienteering injuries

    PubMed Central

    Folan, Jean M.

    1982-01-01

    At the Irish National Orienteering Championships in 1981 a survey of the injuries occurring over the two days of competition was carried out. Of 285 individual competitors there was a percentage injury rate of 5.26%. The article discusses the injuries and aspects of safety in orienteering. Imagesp236-ap237-ap237-bp238-ap239-ap240-a PMID:7159815

  13. Effect of Pd Thickness on the Interfacial Reaction and Shear Strength in Solder Joints Between Sn-3.0Ag-0.5Cu Solder and Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) Surface Finish

    NASA Astrophysics Data System (ADS)

    Kim, Young Min; Park, Jin-Young; Kim, Young-Ho

    2012-04-01

    Intermetallic compound formation at the interface between Sn-3.0Ag-0.5Cu (SAC) solders and electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish and the mechanical strength of the solder joints were investigated at various Pd thicknesses (0 μm to 0.5 μm). The solder joints were fabricated on the ENEPIG surface finish with SAC solder via reflow soldering under various conditions. The (Cu,Ni)6Sn5 phase formed at the SAC/ENEPIG interface after reflow in all samples. When samples were reflowed at 260°C for 5 s, only (Cu,Ni)6Sn5 was observed at the solder interfaces in samples with Pd thicknesses of 0.05 μm or less. However, the (Pd,Ni)Sn4 phase formed on (Cu,Ni)6Sn5 when the Pd thickness increased to 0.1 μm or greater. A thick and continuous (Pd,Ni)Sn4 layer formed over the (Cu,Ni)6Sn5 layer, especially when the Pd thickness was 0.3 μm or greater. High-speed ball shear test results showed that the interfacial strengths of the SAC/ENEPIG solder joints decreased under high strain rate due to weak interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 interfaces when the Pd thickness was greater than 0.3 μm. In the samples reflowed at 260°C for 20 s, only (Cu,Ni)6Sn5 formed at the solder interfaces and the (Pd,Ni)Sn4 phase was not observed in the solder interfaces, regardless of Pd thickness. The shear strength of the SAC/ENIG solder joints was the lowest of the joints, and the mechanical strength of the SAC/ENEPIG solder joints was enhanced as the Pd thickness increased to 0.1 μm and maintained a nearly constant value when the Pd thickness was greater than 0.1 μm. No adverse effect on the shear strength values was observed due to the interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 since the (Pd,Ni)Sn4 phase was already separated from the (Cu,Ni)6Sn5 interface. These results indicate that the interfacial microstructures and mechanical strength of solder joints strongly depend on the Pd thickness and reflow conditions.

  14. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.

    PubMed

    Liacouras, Peter C; Wayne, Jennifer S

    2007-12-01

    Computational models of musculoskeletal joints and limbs can provide useful information about joint mechanics. Validated models can be used as predictive devices for understanding joint function and serve as clinical tools for predicting the outcome of surgical procedures. A new computational modeling approach was developed for simulating joint kinematics that are dictated by bone/joint anatomy, ligamentous constraints, and applied loading. Three-dimensional computational models of the lower leg were created to illustrate the application of this new approach. Model development began with generating three-dimensional surfaces of each bone from CT images and then importing into the three-dimensional solid modeling software SOLIDWORKS and motion simulation package COSMOSMOTION. Through SOLIDWORKS and COSMOSMOTION, each bone surface file was filled to create a solid object and positioned necessary components added, and simulations executed. Three-dimensional contacts were added to inhibit intersection of the bones during motion. Ligaments were represented as linear springs. Model predictions were then validated by comparison to two different cadaver studies, syndesmotic injury and repair and ankle inversion following ligament transection. The syndesmotic injury model was able to predict tibial rotation, fibular rotation, and anterior/posterior displacement. In the inversion simulation, calcaneofibular ligament extension and angles of inversion compared well. Some experimental data proved harder to simulate accurately, due to certain software limitations and lack of complete experimental data. Other parameters that could not be easily obtained experimentally can be predicted and analyzed by the computational simulations. In the syndesmotic injury study, the force generated in the tibionavicular and calcaneofibular ligaments reduced with the insertion of the staple, indicating how this repair technique changes joint function. After transection of the calcaneofibular

  15. Pyrothermal treatment of welded joints

    SciTech Connect

    Serikov, S.V.; Idiyatullin, R.S.; Myakushkin, S.N.; Yaufman, V.V.

    1992-03-01

    The results of investigation of the structure and distribution of residual stresses in welded joints in pipes after heat treatment, which includes heating of the surface being treated due to combustion of plates formed from a thermite-type material of pyrotechnic composition, placed around the perimeter of the welded joint, and also an assessment of the level of residual stresses prior to and after pyrotechnic treatment demonstrated the promising nature of the proposed method. 5 refs., 5 figs.

  16. A study of cervical spine kinematics and joint capsule strain in rear impacts using a human FE model.

    PubMed

    Kitagawa, Yuichi; Yasuki, Tsuyoshi; Hasegawa, Junji

    2006-11-01

    Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues. A rear-end collision was then simulated using THUMS and a prototype seat model, assuming a delta-V of 25 km/h. The trajectory of the vertebrae was analyzed in a local coordinate system defined along the joint surface. Strain growth in the joint capsules was explained, as related to contact events between the occupant and the seat. A new seat concept was proposed to help lessen the loading level to the neck soft tissues. The foam material of the seat back was softened, the initial gap behind the head was reduced and the head restraint was stiffened for firm support. The lower seat back frame was also reinforced to withstand the impact severity at the given delta-V. Another rear impact simulation was conducted using the new seat concept model to examine the effectiveness of the new concept. The joint capsule strain was found to be relatively lower with the new seat concept. The study also discusses the influence of seat parameters to the vertebral motion and the resultant strain in the joint

  17. Towards an Improved Joint Inversion of Receiver Functions, SKS Splitting, and Surface Wave Dispersion Data for Layering in the North American Craton

    NASA Astrophysics Data System (ADS)

    Leiva, J.; Bodin, T.; Romanowicz, B. A.

    2014-12-01

    Details of the formation and evolution of continents, especially in cratonic regions, remains poorly understood. Structural layering in the cratonic lithosphere is of particular importance due to competing hypotheses of craton formation, which include underplating by hot plumes or accretion by shallow subduction in continental or arc settings. One source of evidence that provides constraints on these hypotheses is seismic anisotropy, which is generally attributed to past and present rock deformation in the upper mantle. Anisotropic structure can be constrained from surface wave dispersion (SWD), which is sensitive to the uppermost portion of the mantle, and core refracted shear wave (SKS) splitting measurements, which add constraints on the integrated effect across the entire upper mantle. Another source of evidence involves receiver function (RF) analysis which can detect sharp changes in seismic velocities. Fine scale layering in the lithosphere has recently become a topic of interest due to the detection of a sharp velocity reduction at 80-120 km depth across cratonic provinces in North America (NA). This has sparked debate on whether RF studies are in fact detecting the lithosphere-asthenosphere boundary or a mid-lithospheric discontinuity within the older cratonic provinces. The NA craton is of interest due to its rich tectonic history as well as data accumulation at broadband seismic networks including USArray, which provides a dense network coverage that allows for high resolution seismic velocity and structure models in the upper mantle. We present a transdimensional Monte Carlo Markov chain inversion, in which the number of isotropic and anisotropic layers are considered to be unknowns, allowing the algorithm to have a flexible parameterization. The method performs a joint inversion that combines observations from SKS splitting, RF and anisotropic SWD in a consistent manner. The solution is a probabilistic shear velocity (Vs) model that accounts for

  18. Head injury.

    PubMed

    Hureibi, K A; McLatchie, G R

    2010-05-01

    Head injury is one of the commonest injuries in sport. Most are mild but some can have serious outcomes. Sports medicine doctors should be able to recognise the clinical features and evaluate athletes with head injury. It is necessary during field assessment to recognise signs and symptoms that help in assessing the severity of injury and making a decision to return-to-play. Prevention of primary head injury should be the aim. This includes protective equipment like helmets and possible rule changes. PMID:20533694

  19. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury.

    PubMed

    Gao, Zhan; Sierra, Ana; Zhu, Zhiyong; Koganti, Siva Rama Krishna; Subbotina, Ekaterina; Maheshwari, Ankit; Anderson, Mark E; Zingman, Leonid V; Hodgson-Zingman, Denice M

    2016-01-01

    The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP) channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD) in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB) model of heart failure is coupled with a 35-40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of Ca

  20. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury

    PubMed Central

    Gao, Zhan; Sierra, Ana; Zhu, Zhiyong; Koganti, Siva Rama Krishna; Subbotina, Ekaterina; Maheshwari, Ankit; Anderson, Mark E.; Zingman, Leonid V.; Hodgson-Zingman, Denice M.

    2016-01-01

    The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP) channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD) in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB) model of heart failure is coupled with a 35–40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of Ca

  1. Thermal Applications as a Determiner of Joint Flexibility.

    ERIC Educational Resources Information Center

    Grobaker, Mark Randolph; Stull, G. Alan

    This study investigates the relative effects of thermal applications of varying temperatures on the flexibility of specified joints. Subjects were 14 male college students ranging in age from 17 to 22 years with no previous joint injury or orthopedic disability. Each subject became familiar with the experimental design and was asked not to engage…

  2. Pathological Knee Joint Motion Analysis By High Speed Cinephotography

    NASA Astrophysics Data System (ADS)

    Baumann, Jurg U.

    1985-02-01

    The use of cinephotography for evaluation of disturbed knee joint function was compared in three groups of patients. While a sampling rate of 50 images per second was adequate for patients with neuromuscular disorders, a higher frequency of around 300 i.p.s. is necessary in osteoarthritis and ligamentous knee joint injuries, but the task of digitizing is prohibitive unless automated.

  3. Metatarsal Shaft Fracture with Associated Metatarsophalangeal Joint Dislocation.

    PubMed

    Tung, Taranjit Singh

    2016-01-01

    Metatarsophalangeal joint dislocations of lesser toes are often seen in the setting of severe claw toes. Traumatic irreducible dislocations have been reported in rare cases following both low-energy and high-energy injuries to the forefoot. In this case report, I present a previously unreported association of a metatarsal shaft fracture with metatarsophalangeal joint dislocation of a lesser toe. PMID:27597914

  4. Metatarsal Shaft Fracture with Associated Metatarsophalangeal Joint Dislocation

    PubMed Central

    2016-01-01

    Metatarsophalangeal joint dislocations of lesser toes are often seen in the setting of severe claw toes. Traumatic irreducible dislocations have been reported in rare cases following both low-energy and high-energy injuries to the forefoot. In this case report, I present a previously unreported association of a metatarsal shaft fracture with metatarsophalangeal joint dislocation of a lesser toe. PMID:27597914

  5. Rehabilitation of spinal cord injuries

    PubMed Central

    Nas, Kemal; Yazmalar, Levent; Şah, Volkan; Aydın, Abdulkadir; Öneş, Kadriye

    2015-01-01

    Spinal cord injury (SCI) is the injury of the spinal cord from the foramen magnum to the cauda equina which occurs as a result of compulsion, incision or contusion. The most common causes of SCI in the world are traffic accidents, gunshot injuries, knife injuries, falls and sports injuries. There is a strong relationship between functional status and whether the injury is complete or not complete, as well as the level of the injury. The results of SCI bring not only damage to independence and physical function, but also include many complications from the injury. Neurogenic bladder and bowel, urinary tract infections, pressure ulcers, orthostatic hypotension, fractures, deep vein thrombosis, spasticity, autonomic dysreflexia, pulmonary and cardiovascular problems, and depressive disorders are frequent complications after SCI. SCI leads to serious disability in the patient resulting in the loss of work, which brings psychosocial and economic problems. The treatment and rehabilitation period is long, expensive and exhausting in SCI. Whether complete or incomplete, SCI rehabilitation is a long process that requires patience and motivation of the patient and relatives. Early rehabilitation is important to prevent joint contractures and the loss of muscle strength, conservation of bone density, and to ensure normal functioning of the respiratory and digestive system. An interdisciplinary approach is essential in rehabilitation in SCI, as in the other types of rehabilitation. The team is led by a physiatrist and consists of the patients’ family, physiotherapist, occupational therapist, dietician, psychologist, speech therapist, social worker and other consultant specialists as necessary. PMID:25621206

  6. Ultrasonic Probing Of Complexly Shaped Joints

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    1993-01-01

    Technique developed involves use of ultrasonics to inspect first bond surfaces of solid-rocket-motor joints. By fitting pieces of insulating materials to mate exactly with complicated shapes of affected parts of insulation, complicated shapes redefined into simpler ones probed more easily. When technique used to insonify from insulation side, one readily detects difference between disbond and good bond. Same technique applied to field tang joints, field clevis joints, and aft-dome-to-fixed-nozzle-housing attachment points. Although developed for inspecting joints in solid rocket motors, also applicable to nondestructive evaluation of other complicated joints.

  7. Ulnar collateral ligament injuries in the throwing athlete.

    PubMed

    Bruce, Jeremy R; Andrews, James R

    2014-05-01

    Repetitive valgus forces on the throwing elbow place significant stress on that joint. This stress can cause structural damage and injury to the ulnar collateral ligament. Many acute injuries of the throwing elbow are caused by repetitive chronic wear. Although much work has been done on injury prevention in youth who are pitchers, overuse injury in throwing sports constitutes an epidemic. Failing nonsurgical management, ulnar collateral ligament reconstruction is a viable option to return the throwing athlete to competition. PMID:24788447

  8. Joint bleeding in factor VIII deficient mice causes an acute loss of trabecular bone and calcification of joint soft tissues which is prevented with aggressive factor replacement

    PubMed Central

    Lau, Anthony G.; Sun, Junjiang; Hannah, William B.; Livingston, Eric W.; Heymann, Dominique; Bateman, Ted A.; Monahan, Paul E.

    2015-01-01

    Introduction While chronic degenerative arthropathy is the main morbidity of hemophilia, a very high prevalance of low bone density is also seen in men and boys with hemophilia. The current study investigates bone degradation in the knee joint of hemophilic mice resulting from hemarthrosis and the efficacy of aggressive treatment with factor VIII in the period surrounding injury to prevent bone pathology. Methods Skeletally mature factor VIII knock-out mice were subjected to knee joint hemorrhage induced by puncture of the left knee joint capsule. Mice received either intravenous Factor VIII treatment or placebo immediately prior to injury and at hours 4, 24, 48, 72 and 96 after hemorrhage. Mice were euthanized two-weeks after injury and the joint morphology and loss of bone in the proximal tibia was assessed using microCT imaging. Results Quantitative microCT imaging of the knee joint found acute bone loss at the proximal tibia following injury including loss of trabecular bone volumetric density and bone mineral density, as well as trabecular connectivity density, number, and thickness. Unexpectedly, joint injury also resulted in calcification of the joint soft tissues including the tendons, ligaments, menisci, and cartilage. Treatment with factor VIII prevented this bone and soft tissue degeneration. Conclusion Knee joint hemorrhage resulted in acute changes of adjacent bone including loss of bone density and mineralization of joint soft tissues. The rapid calcification and loss of bone has implications for the initiation and progression of osteoarthritic degradation following joint bleeding. PMID:24712867

  9. Joint bleeding in factor VIII deficient mice causes an acute loss of trabecular bone and calcification of joint soft tissues which is prevented with aggressive factor replacement.

    PubMed

    Lau, A G; Sun, J; Hannah, W B; Livingston, E W; Heymann, D; Bateman, T A; Monahan, P E

    2014-09-01

    While chronic degenerative arthropathy is the main morbidity of haemophilia, a very high prevalence of low bone density is also seen in men and boys with haemophilia. This study investigates bone degradation in the knee joint of haemophilic mice resulting from haemarthrosis and the efficacy of aggressive treatment with factor VIII in the period surrounding injury to prevent bone pathology. Skeletally mature factor VIII knock-out mice were subjected to knee joint haemorrhage induced by puncture of the left knee joint capsule. Mice received either intravenous factor VIII treatment or placebo immediately prior to injury and at hours 4, 24, 48, 72 and 96 after haemorrhage. Mice were killed 2-weeks after injury and the joint morphology and loss of bone in the proximal tibia was assessed using microCT imaging. Quantitative microCT imaging of the knee joint found acute bone loss at the proximal tibia following injury including loss of trabecular bone volumetric density and bone mineral density, as well as trabecular connectivity density, number and thickness. Unexpectedly, joint injury also resulted in calcification of the joint soft tissues including the tendons, ligaments, menisci and cartilage. Treatment with factor VIII prevented this bone and soft tissue degeneration. Knee joint haemorrhage resulted in acute changes in adjacent bone including loss of bone density and mineralization of joint soft tissues. The rapid calcification and loss of bone has implications for the initiation and progression of osteoarthritic degradation following joint bleeding. PMID:24712867

  10. Prosthetic elbow joint

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce C. (Inventor)

    1994-01-01

    An artificial, manually positionable elbow joint for use in an upper extremity, above-elbow, prosthetic is described. The prosthesis provides a locking feature that is easily controlled by the wearer. The instant elbow joint is very strong and durable enough to withstand the repeated heavy loadings encountered by a wearer who works in an industrial, construction, farming, or similar environment. The elbow joint of the present invention comprises a turntable, a frame, a forearm, and a locking assembly. The frame generally includes a housing for the locking assembly and two protruding ears. The forearm includes an elongated beam having a cup-shaped cylindrical member at one end and a locking wheel having a plurality of holes along a circular arc on its other end with a central bore for pivotal attachment to the protruding ears of the frame. The locking assembly includes a collar having a central opening with a plurality of internal grooves, a plurality of internal cam members each having a chamfered surface at one end and a V-shaped slot at its other end; an elongated locking pin having a crown wheel with cam surfaces and locking lugs secured thereto; two coiled compression springs; and a flexible filament attached to one end of the elongated locking pin and extending from the locking assembly for extending and retracting the locking pin into the holes in the locking wheel to permit selective adjustment of the forearm relative to the frame. In use, the turntable is affixed to the upper arm part of the prosthetic in the conventional manner, and the cup-shaped cylindrical member on one end of the forearm is affixed to the forearm piece of the prosthetic in the conventional manner. The elbow joint is easily adjusted and locked between maximum flex and extended positions.

  11. Injuries in male versus female soccer players: epidemiology of a nationwide study.

    PubMed

    Mufty, S; Bollars, P; Vanlommel, L; Van Crombrugge, K; Corten, K; Bellemans, J

    2015-06-01

    The aim of this study is to analyse soccer injuries on a national scale over one decade and to compare injury rates by gender. Detailed injury data obtained from the Royal Belgian Football Association from seasons 1999-2000 and 2009-2010 were recorded and gender differences in incidences of injuries, type of injury, affected body part and timing of injury were compared. A significant decrease in injuries from 7.56 to 5.96 injuries per 100 players was seen (p<0.0001). Overall male players sustained more cont usions, fractures, joint dislocations and musculotendinous injuries than female players. Proportionally, females sustained more severe injuries than men (p<0.0001). Significantly more injuries where sustained during competition in both males and females. The number of injuries in male and female soccer players has decreased over the past decade. A higher injury rate was seen in men but proportionally, females sustained more severe injuries. PMID:26280969

  12. Optimal management of ulnar collateral ligament injury in baseball pitchers

    PubMed Central

    Hibberd, Elizabeth E; Brown, J Rodney; Hoffer, Joseph T

    2015-01-01

    The ulnar collateral ligament stabilizes the elbow joint from valgus stress associated with the throwing motion. During baseball pitching, this ligament is subjected to tremendous stress and injury if the force on the ulnar collateral ligament during pitching exceeds the physiological limits of the ligament. Injuries to the throwing elbow in baseball pitchers result in significant time loss and typically surgical intervention. The purpose of this paper is to provide a review of current information to sports medicine clinicians on injury epidemiology, injury mechanics, injury risk factors, injury prevention, surgical interventions, nonsurgical interventions, rehabilitation, and return to play outcomes in baseball pitchers of all levels. PMID:26635490

  13. Optimal management of ulnar collateral ligament injury in baseball pitchers.

    PubMed

    Hibberd, Elizabeth E; Brown, J Rodney; Hoffer, Joseph T

    2015-01-01

    The ulnar collateral ligament stabilizes the elbow joint from valgus stress associated with the throwing motion. During baseball pitching, this ligament is subjected to tremendous stress and injury if the force on the ulnar collateral ligament during pitching exceeds the physiological limits of the ligament. Injuries to the throwing elbow in baseball pitchers result in significant time loss and typically surgical intervention. The purpose of this paper is to provide a review of current information to sports medicine clinicians on injury epidemiology, injury mechanics, injury risk factors, injury prevention, surgical interventions, nonsurgical interventions, rehabilitation, and return to play outcomes in baseball pitchers of all levels. PMID:26635490

  14. Constraints influencing sports wheelchair propulsion performance and injury risk

    PubMed Central

    2013-01-01

    The Paralympic Games are the pinnacle of sport for many athletes with a disability. A potential issue for many wheelchair athletes is how to train hard to maximise performance while also reducing the risk of injuries, particularly to the shoulder due to the accumulation of stress placed on this joint during activities of daily living, training and competition. The overall purpose of this narrative review was to use the constraints-led approach of dynamical systems theory to examine how various constraints acting upon the wheelchair-user interface may alter hand rim wheelchair performance during sporting activities, and to a lesser extent, their injury risk. As we found no studies involving Paralympic athletes that have directly utilised the dynamical systems approach to interpret their data, we have used this approach to select some potential constraints and discussed how they may alter wheelchair performance and/or injury risk. Organism constraints examined included player classifications, wheelchair setup, training and intrinsic injury risk factors. Task constraints examined the influence of velocity and types of locomotion (court sports vs racing) in wheelchair propulsion, while environmental constraints focused on forces that tend to oppose motion such as friction and surface inclination. Finally, the ecological validity of the research studies assessing wheelchair propulsion was critiqued prior to recommendations for practice and future research being given. PMID:23557065

  15. Postero-lateral subluxation of the superior tibio-fibular joint.

    PubMed Central

    Gillham, N R; Villar, R N

    1989-01-01

    Foot drop resulting from subluxation of the superior tibio-fibular joint is described in a female dancer. Spontaneous resolution of the nerve injury occurred over two months with no residual joint instability. Expectant management is recommended for this injury. The potential for this unusual injury, in a wide variety of sports, is pointed out. Images Figure 1a and b Figure 2a and b PMID:2620239

  16. Skiing Injuries

    PubMed Central

    Bartlett, L. H.

    1975-01-01

    In the broad spectrum of orthopedic skiing injuries, ‘second aid’ on the mountain and at the base by the physician is very important. All skiing physicians should carry minimal medical supplies, including narcotic medication. Diagnosis and treatment of injuries at the hospital are outlined. Most ski fractures of the tibia can be treated by conservative methods. A more aggressive approach to diagnosis and treatment of ligamentous injuries of the knee is recommended. PMID:20469236

  17. Gunshot injuries.

    PubMed

    Hinkle, J; Betz, S

    1995-05-01

    If current trends for this nation continue, by the year 2003 the number of people killed by firearms will exceed the number of people killed in motor vehicle accidents. Critical care practitioners must understand the mechanism of injury associated with firearm injuries to provide optimal care. This article reviews internal, exterior, and terminal ballistics, bullet design, wound classification, and initial assessment and treatment of firearm injuries. PMID:7743422

  18. A study of lubrication, processing conditions, and material combinations that affect the wear of micro-textured-carbide coated cobalt-chromium-molybdenum alloy surfaces used for artificial joints implants

    NASA Astrophysics Data System (ADS)

    Ettienne-Modeste, Geriel A.

    Total joint replacement remains one of the most successful treatments for arthritis. The most common materials used for artificial joints are metals (e.g., cobalt-chrome alloys or titanium alloys), which articulate against ultra-high molecular weight polyethylene. Wear related failures of artificial joints may be reduced with the use of novel micro-textured carbide surfaces. The micro-textured carbide surfaces were deposited on a CoCrMo alloy using microwave plasma-assisted chemical vapor deposition. Wear tests were conducted to determine wear mechanisms and properties of the micro-textured surfaces. The research presented in this thesis addresses: (1) rheolgoical behavior of bovine calf serum with and without antibacterial agents to determine whether they can be used as appropriate models for synovial fluid, (2) the wear behavior of the micro-textured CoCrMo surface system, and (3) the mechanical and material properties of the micro-textured CoCrMo alloy surface relevant to wear performance. The rheological studies showed that the apparent viscosity of bovine calf serum increased with an increase in concentration before and after the serum was used for wear testing. The wear analysis showed that the processing conditions (2hr deposition vs. 4hr deposition times) affected the wear properties. The 2hr carbide-on-carbide lubricated in 50% BCS produced the lowest wear factor and rate for the five wear couple systems containing the carbide disk or plate material. Greater wear was produced in serum without penicillin/streptomycin (P/S) compared to the serum containing P/S. A greater carbide coating thickness 10 (micrometers) was produced during the 4hr deposition time than for the 2hr deposition (˜3mum). The nano-hardness value was higher than the micro-hardness for both the 4hr and 2hr carbide surfaces. The micro-hardness results of the worn carbide surfaces showed that an increase in BCS concentration from 0% to 100% increased the micro-hardness (HV) for carbide

  19. TH-A-18C-02: An Electrostatic Model for Assessment of Joint Space Morphology in Cone-Beam CT

    SciTech Connect

    Cao, Q; Thawait, G; Gang, G; Zbijewski, W; Riegel, T; Demehri, S; Siewerdsen, J

    2014-06-15

    Purpose: High-resolution cone-beam CT (CBCT) of the extremities presents a potentially valuable basis for image-based biomarkers of arthritis, trauma, and risk of injury. We present a new method for 3D joint space analysis that exploits the high isotropic spatial resolution of CBCT and is sensitive to small changes in disease-related morphology. Methods: The approach uses an “electrostatic” model in which joint surfaces (e.g., distal femur and proximal tibia) are labeled as charge densities between which the electric field is solved by approximation to the Laplace equation. The method yields a unique solution determined by the field lines across the “capacitor” and is hypothesized to be more sensitive than conventional (Sharp) scores and immune to degeneracies that limit simple distance-along-axis or closest-point analysis. The algorithm was validated in CBCT phantom images and applied in two clinical scenarios: osteoarthritis (OA, change in loadbearing tibiofemoral joint space); and assessment of injury risk (correlation of 3D joint space to tibial slope). Results: Joint space maps computed from the electrostatic model were accurate to within the voxel size (0.26 mm). The method highlighted subtle regions of morphological change that would likely be missed by conventional scalar metrics. Regions of subtle cartilage erosion were well quantified, and the method confidently discriminated OA and non-OA cohorts. 3D joint space maps correlated well with tibial slope and provide a new basis for principal component analysis of loadbearing injury risk. Runtime was less than 5 min (235×235×121 voxel subvolume in Matlab). Conclusion: A new method for joint space assessment was reported as a possible image-based biomarker of subtle articular change. The algorithm yields accurate quantitation of the joint in a manner that is robust against operator and patient setup variation. The method shows promising initial results in ongoing trials of CBCT in osteoarthritis

  20. The in vivo kinematics of the tibiotalar joint after lateral ankle instability

    PubMed Central

    Caputo, Adam M.; Lee, Jun Y.; Spritzer, Chuck E.; Easley, Mark E.; DeOrio, James K.; Nunley, James A.; DeFrate, Louis E.

    2010-01-01

    BACKGROUND Previous studies have suggested injury to the anterior talofibular ligament may be linked to altered kinematics and the development of osteoarthritis of the ankle joint. However, the effects of ATFL injury on the in vivo kinematics of the ankle joint are unclear. HYPOTHESIS Based on the orientation of the ATFL fibers, we hypothesized that ATFL deficiency would lead to increased anterior translation and increased internal rotation of the talus relative to the tibia. STUDY DESIGN Controlled laboratory study. METHODS The ankles of 9 patients with unilateral ATFL injuries were compared as they stepped onto a level surface. Kinematic measurements were made as a function of increasing load. Using magnetic resonance imaging and orthogonal fluoroscopy, the in vivo kinematics of the tibiotalar joint were measured in the ATFL deficient and intact ankles from the same individuals. RESULTS A statistically significant increase in internal rotation, anterior translation, and superior translation of the talus was measured in ATFL deficient ankles as compared to intact, contralateral controls. For example, at 100% body weight, ATFL deficient ankles demonstrated a statistically significant increase in anterior translation of 0.9 ± 0.5mm (p = 0.008). At 100% body weight, the ATFL deficient ankle was internally rotated relative to the intact ankle by 5.7 ± 3.6° (p = 0.008). There was a slight increase of 0.2 ± 0.2mm in the superior translation of the ATFL deficient ankle compared to the intact ankle at 100% body weight (p = 0.02). CONCLUSIONS ATFL deficiency increases anterior translation, internal rotation, and superior translation of the talus. CLINICAL RELEVANCE Altered kinematics may contribute to the degenerative changes observed with chronic lateral ankle instability. These findings might help to explain the degenerative changes frequently observed on the medial talus in patients with chronic ATFL insufficiency and provide a baseline for improving ankle ligament

  1. Metabolic changes in cimetidine treatment for scald injury on the peritoneo-serosal surface in far-advanced gastric cancer patients treated by intraperitoneal hyperthermic perfusion.

    PubMed

    Fujimoto, S; Takahashi, M; Kobayashi, K; Kokubun, M; Shrestha, R D; Kiuchi, S; Konno, C

    1993-01-01

    Since pretreatment with cimetidine results in the prevention of scald injury on the peritoneo-serosal surface caused by intraperitoneal hyperthermic perfusion (IPHP) for advanced gastric cancer, the diverse influence of IPHP on patients who were either given or not given cimetidine was studied both during and after IPHP treatment. Cimetidine 50 mg/kg was injected intravenously into 12 patients immediately prior to IPHP. There were no statistical background differences between the cimetidine and control groups (those not given cimetidine). The inflow and outflow temperatures of the hyperthermic perfusate in the control and cimetidine groups were 46.1 +/- 0.1 degree C and 44.1 +/- 0.1 degree C and 46.3 +/- 0.1 degree C and 44.2 +/- 0.04 degree C, respectively. Either the pre-IPHP hypothermia or IPHP in the control group resulted in a considerable increase in serum noradrenaline and adrenaline. The intravenous administration of cimetidine led to a stransient but moderate drop in the mean blood pressure as well as a delayed appearance of high concentrations of noradrenaline and adrenaline, induced by high concentrations of circulating histamine released with cimetidine. These results suggest that the sympathetic nervous responses were activated either by hypothermia or hyperthermia. The transient hypotension and delayed increases of both serum catecholamines were attributed to a marked increase in circulating histamine, released with the intravenous cimetidine. PMID:8324332

  2. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  3. Thermal Protection System with Staggered Joints

    NASA Technical Reports Server (NTRS)

    Simon, Xavier D. (Inventor); Robinson, Michael J. (Inventor); Andrews, Thomas L. (Inventor)

    2014-01-01

    The thermal protection system disclosed herein is suitable for use with a spacecraft such as a reentry module or vehicle, where the spacecraft has a convex surface to be protected. An embodiment of the thermal protection system includes a plurality of heat resistant panels, each having an outer surface configured for exposure to atmosphere, an inner surface opposite the outer surface and configured for attachment to the convex surface of the spacecraft, and a joint edge defined between the outer surface and the inner surface. The joint edges of adjacent ones of the heat resistant panels are configured to mate with each other to form staggered joints that run between the peak of the convex surface and the base section of the convex surface.

  4. Sports Injuries in Children.

    ERIC Educational Resources Information Center

    Taft, Timothy N.

    1991-01-01

    A literature review revealed an absence of well-controlled studies concerning the prevention of sports injuries in children. A checklist outlines some causes of the overuse syndrome, including (1) training errors; (2) the nature of playing surfaces; (3) muscle imbalance; (4) anatomic malalignments; (5) construction of shoes; and (6) various…

  5. Advances in reconstruction of digital joints.

    PubMed

    Schenck, R R

    1997-01-01

    The recent development of dynamic traction provides several advantages for the treatment of intra-articular fractures of the hand: Ligamentotaxis reduces fracture fragments and realigns joint surfaces, Contracture of joint ligament and periarticular structures is prevented, Collapse of fracture fragments is prevented, Cartilage healing and regeneration are enhanced, Joint mobility is retained, Extensive surgery may be avoided, As Leonardo da Vinci stated, "To understand motion is to understand nature." PMID:9211036

  6. Sports Injuries

    MedlinePlus

    ... sometimes you can injure yourself when you play sports or exercise. Accidents, poor training practices, or improper gear can cause them. Some people get hurt because they are not in shape. Not warming up or stretching enough can also ... injuries are Sprains and strains Knee injuries Swollen ...

  7. Spacesuit mobility knee joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1979-01-01

    Pressure suit mobility joints are for use in interconnecting adjacent segments of an hermetically sealed spacesuit in which low torques, low leakage and a high degree of reliability are required. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics and includes linkages which restrain the joint from longitudinal distension and includes a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  8. Spacesuit mobility joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1978-01-01

    Joints for use in interconnecting adjacent segments of an hermetically sealed spacesuit which have low torques, low leakage and a high degree of reliability are described. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics. Linkages which restrain the joint from longitudinal distension and a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli are featured. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  9. Proprioception and ankle injuries in soccer.

    PubMed

    Ergen, Emin; Ulkar, Bülent

    2008-01-01

    Because soccer attracts many participants and leads to a substantial number of injuries, especially of the lower extremities, it is important to study possibilities for injury prevention and proper rehabilitation to return safely to activities. Ankle sprains can be prevented by external ankle supports and proprioceptive-coordination training, especially in athletes with previous ankle sprains. Proprioception is a broad concept that includes balance and postural control with visual and vestibular contributions, joint kinesthesia, position sense, and muscle reaction time. Proprioceptive feedback is crucial in the conscious and unconscious awareness of a joint or limb in motion. Enhancement of functional joint stability by proprioceptive (or neuromuscular) training is important both in prevention and rehabilitation of athletic injuries. PMID:18206575

  10. An unusual presentation of whiplash injury: long thoracic and spinal accessory nerve injury

    PubMed Central

    Omar, N.; Srinivasan, M. S.

    2007-01-01

    Whiplash injuries from motor vehicle accidents are very common. The usual presentation and course of this condition normally results in resolution of symptoms within a few weeks. Brachial plexus traction injuries without any bone or joint lesion of the cervical spine have been reported before. We report a case where a gentleman was involved in a rear end vehicle collision, sustained a whiplash injury and was later found to have a long thoracic nerve palsy and spinal accessory nerve palsy. Although isolated injuries of both nerves following a whiplash injury have been reported, combined injury of the two nerves following a whiplash injury is very uncommon and is being reported for the first time. PMID:17587067

  11. Rowing Injuries

    PubMed Central

    Hosea, Timothy M.; Hannafin, Jo A.

    2012-01-01

    Context: Rowing is one of the original modern Olympic sports and was one of the most popular spectator sports in the United States. Its popularity has been increasing since the enactment of Title IX. The injury patterns in this sport are unique because of the stress applied during the rowing stroke. Evidence Acquisition: This review summarizes the existing literature describing the biomechanics of the rowing stroke and rowing-related injury patterns. Data were obtained from previously published peer-reviewed literature through a search of the entire PubMed database (up to December, 2011) as well as from textbook chapters and rowing coaching manuals. Results: Rowing injuries are primarily overuse related. The knee, lumbar spine, and ribs are most commonly affected. The injury incidence is directly related to the volume of training and technique. Conclusion: Familiarity of the injury patterns and the biomechanical forces affecting the rowing athlete will aid in prompt diagnosis and appropriate management. PMID:23016093

  12. Blast injuries to the hand: Pathomechanics, patterns and treatment

    PubMed Central

    Adhikari, Souvik; Bandyopadhyay, Tibar; Sarkar, Tapan; Saha, Jayanta Kumar

    2013-01-01

    Purpose: To characterize the common patterns of injury in detail in cases of blast injuries to the hand and to outline the possible pathomechanics of these patterns of injury while describing the treatment modalities for the same as practiced in our center. Materials and Methods: A review of admitted patients in our department from september 2009 through december 2010 of blast injuries to the hand was made. Each patient had a careful characterization of their injuries as mild, moderate or severe with the help of X-rays, clinical photographs and operative notes. The treatment of these patients during hospital stay was also documented. Results: Of the 55 patients studied, 5 patients suffered mild injuries with no bony injuries or dislocations, 26 patients had moderate injuries characterized by fractures and dislocations in addition to soft tissue injuries and 24 patients had severe injuries characterized by variable degrees of amputations. The most common injury type was to the radial aspect of the hand characterized by a first web split and a dislocation of the CMC joint of the thumb associated with fracture of the central metacarpals and amputations of the index and long fingers in some cases. Injury to the ulnar aspect was rare. Injuries were treated by repair as well as replacement done mostly in a serial fashion. Conclusion: Depending on the mode of injury, blast injuries to the hand can have varying patterns of injury, which can have important implications in the treatment and rehabilitation of a patient. PMID:23492853

  13. P and S wave tomography of Japan subduction zone from joint inversions of local and teleseismic travel times and surface-wave data

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zhao, Dapeng

    2016-03-01

    We determined P and S wave velocity tomography of the Japan subduction zone down to a depth of 700 km by conducting joint inversions of a large number of high-quality arrival-time data of local earthquakes and teleseismic events which are newly collected for this study. We also determined 2-D phase-velocity images of fundamental mode Rayleigh waves at periods of 20-150 s beneath Japan and the surrounding oceanic regions using amplitude and phase data of teleseismic Rayleigh waves. A detailed 3-D S-wave tomography of the study region is obtained by jointly inverting S-wave arrival times of local and teleseismic events and the Rayleigh-wave phase-velocity data. Our inversion results reveal the subducting Pacific and Philippine Sea slabs clearly as dipping high-velocity zones from a 1-D starting velocity model. Prominent low-velocity (low-V) anomalies are revealed in the mantle wedge above the slabs and in the mantle below the Pacific slab. The distinct velocity contrasts between the subducting slabs and the surrounding mantle reflect significant lateral variations in temperature as well as water content and/or the degree of partial melting. The low-V anomalies in the mantle wedge are attributed to slab dehydration and corner flows in the mantle wedge. A sheet-like low-V zone is revealed under the Pacific slab beneath NE Japan, which may reflect hot upwelling from the deeper mantle and subduction of a plume-fed asthenosphere as well. Our present results indicate that joint inversions of different seismic data are very effective and important for obtaining robust tomographic images of the crust and mantle.

  14. Acute Shoulder Injuries in Adults.

    PubMed

    Monica, James; Vredenburgh, Zachary; Korsh, Jeremy; Gatt, Charles

    2016-07-15

    Acute shoulder injuries in adults are often initially managed by family physicians. Common acute shoulder injuries include acromioclavicular joint injuries, clavicle fractures, glenohumeral dislocations, proximal humerus fractures, and rotator cuff tears. Acromioclavicular joint injuries and clavicle fractures mostly occur in young adults as the result of a sports injury or direct trauma. Most nondisplaced or minimally displaced injuries can be treated conservatively. Treatment includes pain management, short-term use of a sling for comfort, and physical therapy as needed. Glenohumeral dislocations can result from contact sports, falls, bicycle accidents, and similar high-impact trauma. Patients will usually hold the affected arm in their contralateral hand and have pain with motion and decreased motion at the shoulder. Physical findings may include a palpable humeral head in the axilla or a dimple inferior to the acromion laterally. Reduction maneuvers usually require intra-articular lidocaine or intravenous analgesia. Proximal humerus fractures often occur in older patients after a low-energy fall. Radiography of the shoulder should include a true anteroposterior view of the glenoid, scapular Y view, and axillary view. Most of these fractures can be managed nonoperatively, using a sling, early range-of-motion exercises, and strength training. Rotator cuff tears can cause difficulty with overhead activities or pain that awakens the patient from sleep. On physical examination, patients may be unable to hold the affected arm in an elevated position. It is important to recognize the sometimes subtle signs and symptoms of acute shoulder injuries to ensure proper management and timely referral if necessary. PMID:27419328

  15. The use of cryotherapy in sports injuries.

    PubMed

    Meeusen, R; Lievens, P

    1986-01-01

    The use of cold therapy in acute sports injuries as well as in the rehabilitation of the injured athlete has become a generally accepted treatment method. Various cooling modalities are used to apply cold to the injured area, e.g. ice packs, ice towels, ice massage, frozen gel packs, ethyl chloride and other vapocoolants, chemical reaction devices and inflatable splints using refrigerant gas. Most clinical studies report that the use of cryotherapy has a positive effect on pain reduction and on the recovery of various injuries. When the physiological processes produced by cryotherapy are examined in experimental situations, some of these reactions differ from expectations. Skin, subcutaneous, intramuscular and joint temperature changes depend on application method, initial temperature and application time. Intramuscular temperature continues to drop after the cooling modality has been removed. Results of various studies are consistent on the effects on neuromuscular and pain processes. Results of studies on cold and blood flow vary considerably, however it appears that blood flow increases with superficial cold application and decreases when cold is applied to large skin surface areas. Motor performance is affected by temperature with a critical temperature being around 18 degrees C, above and beneath which muscle performance decreases. There is also a critical temperature for the application of cold with inflammation and oedema increasing at temperatures below 15 degrees C. Precautions should be taken because prolonged application at very low temperatures could have deleterious effects. PMID:3538270

  16. Head injury - first aid

    MedlinePlus

    ... is shaken, is the most common type of traumatic brain injury. Scalp wounds. Skull fractures. Head injuries may cause ... of people who suffer head injuries are children. Traumatic brain injury (TBI) accounts for over 1 in 6 injury- ...

  17. Meniscal injury: I. Basic science and evaluation.

    PubMed

    Greis, Patrick E; Bardana, Davide D; Holmstrom, Michael C; Burks, Robert T

    2002-01-01

    The patient with meniscal injury may present with pain, swelling, or mechanical symptoms and often requires surgical intervention for symptom resolution. Treatment of such injuries relies on understanding the gross and microanatomic features of the meniscus that are important in maintaining meniscal function. The ability of the meniscus to participate in load bearing, shock absorption, joint lubrication, and joint stability depends on the maintenance of its structural integrity. The diagnosis of meniscal injury often can be made by clinical evaluation utilizing the history, physical examination, and plain radiographs. Magnetic resonance imaging can be useful in confirming the diagnosis when clinical findings are inconclusive. Treatment depends on tear pattern, vascularity, and an assessment of tissue quality. Surgical decision making for the treatment of meniscal injury is based on patient factors and understanding of the meniscal structure, function, and pathology. PMID:12041938

  18. Chondral Injury in Patellofemoral Instability

    PubMed Central

    Lustig, Sébastien; Servien, Elvire; Neyret, Philippe

    2014-01-01

    Objective: Patellofemoral instability is common and affects a predominantly young age group. Chondral injury occurs in up to 95%, and includes osteochondral fractures and loose bodies acutely and secondary degenerative changes in recurrent cases. Biomechanical abnormalities, such as trochlear dysplasia, patella alta, and increased tibial tuberosity-trochlear groove distance, predispose to both recurrent dislocations and patellofemoral arthrosis. Design: In this article, we review the mechanisms of chondral injury in patellofemoral instability, diagnostic modalities, the distribution of lesions seen in acute and episodic dislocation, and treatments for articular cartilage lesions of the patellofemoral joint. Results: Little specific evidence exists for cartilage treatments in patellofemoral instability. In general, the results of reparative and restorative procedures in the patellofemoral joint are inferior to those observed in other compartments of the knee. Conclusion: Given the increased severity of chondral lesions and progression to osteoarthritis seen with recurrent dislocations, careful consideration should be given to early stabilisation in patients with predisposing factors. PMID:26069693

  19. Strength evaluation of socket joints

    NASA Technical Reports Server (NTRS)

    Rash, Larry C.

    1994-01-01

    This report documents the development of a set of equations that can be used to provide a relatively simple solution for identifying the strength of socket joints and for most cases avoid the need of more lengthy analyses. The analytical approach was verified by comparison of the contact load distributions to results obtained from a finite element analysis. The contacting surfaces for the specific joint in this analysis are in the shape of frustrums of a cone and are representative of the tapered surfaces in the socket-type joints used to join segments of model support systems for wind tunnels. The results are in the form of equations that can be used to determine the contact loads and stresses in the joint from the given geometry and externally applied loads. Equations were determined to define the bending moments and stresses along the length of the joints based on strength and materials principles. The results have also been programmed for a personal computer and a copy of the program is included.

  20. Uneven damage on head and liner contact surfaces of a retrieved Co-Cr-based metal-on-metal hip joint bearing: An important reason for the high failure rate.

    PubMed

    Koizumi, Yuichiro; Chen, Yan; Li, Yunping; Yamanaka, Kenta; Chiba, Akihiko; Tanaka, Shun-Ichiro; Hagiwara, Yoshihiro

    2016-05-01

    Detailed metallurgical investigations have been performed on a used Co-Cr-based metal-on-metal (MoM) hip joint bearing containing a type of liner that is commonly used in such joints. The damage on the metal-liner sliding surface was considerably more severe than that on the metal head counterpart, in terms of wear-scar density and width and microcrack frequency. Cross-sectional transmission electron microscopy revealed that a thick (>3 μm) nanocrystalline layer formed on the sliding surface of the head, whereas the liner had coarse carbides embedded in it and nanocrystals were formed in a very limited region no deeper than 1 μm. Comparative investigation of an unused head and a liner of identical type showed that although the chemical compositions of the liner and head were nearly identical, their microstructures were significantly different. Specifically, the grain size in the liner was larger than that in the head on average, and the grain boundaries of the liner were decorated with coarse carbides. Moreover, X-ray diffraction analysis revealed a large tensile residual stress only in the liner. These differences are possibly responsible for the wear damage on the liner being more serious than that on the head. PMID:26952456

  1. Advancing critical care: joint combat casualty research team and joint theater trauma system.

    PubMed

    Bridges, Elizabeth; Biever, Kimberlie

    2010-01-01

    Despite the severity and complexity of injuries, survival rates among combat casualties are equal to or better than those from civilian trauma. This article summarizes the evidence regarding innovations from the battlefield that contribute to these extraordinary survival rates, including preventing hemorrhage with the use of tourniquets and hemostatic dressings, damage control resuscitation, and the rapid evacuation of casualties via MEDEVAC and the US Air Force Critical Care Air Transport Teams. Care in the air for critically injured casualties with pulmonary injuries and traumatic brain injury is discussed to demonstrate the unique considerations required to ensure safe en route care. Innovations being studied to decrease sequelae associated with complex orthopedic and extremity trauma are also presented. The role and contributions of the Joint Combat Casualty Research Team and the Joint Theater Trauma System are also discussed. PMID:20683227

  2. Joint fluid Gram stain

    MedlinePlus

    Gram stain of joint fluid ... A sample of joint fluid is needed. The fluid sample is sent to a lab where a small drop is placed in a ... on how to prepare for the removal of joint fluid, see joint fluid aspiration .

  3. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  4. Shoulder injuries from attacking motion

    NASA Astrophysics Data System (ADS)

    Yanagi, Shigeru; Nishimura, Tetsu; Itoh, Masaru; Wada, Yuhei; Watanabe, Naoki

    1997-03-01

    Sports injuries have bothered professional players. Although many medical doctors try to treat injured players, to prevent sports injuries is more important. Hence, it is required to clear a kinematic mechanism of the sport injuries. A shoulder of volleyball attacker or baseball pitcher is often inured by playing motion. The injuries are mainly caused at the end of long head tendon, which is located in the upper side of scapula. Generally, a muscle and tendon have enough strength against tensile force, however, it seems that they are sometimes defeated by the lateral force. It is imagined that the effect of the lateral force has a possibility of injuring the tendon. If we find the influence of the lateral force on the injured portion, the mechanism of injuries must be cleared. In our research, volleyball attacking motion is taken by high speed video cameras. We analyze the motion as links system and obtain an acceleration of an arm and a shoulder from video image data. The generated force at a shoulder joint is calculated and resolved into the lateral and longitudinal forces. Our final goal is to discuss a possibility that the lateral force causes the injuries.

  5. A Study of Knee Joint Kinematics and Mechanics using a Human FE Model.

    PubMed

    Kitagawa, Yuichi; Hasegawa, Junji; Yasuki, Tsuyoshi; Iwamoto, Masami; Miki, Kazuo

    2005-11-01

    Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices. The purposes of this study are first to understand the kinematics of the knee joint during flexion, and second to characterize the mechanics of the knee joint under anterior-posterior loading. A finite element model of the knee joint, extracted from the Total Human Model for Safety (THUMS), was used to analyze the mechanism. The model was validated against kinematics and mechanical responses of the human knee joint. By tracking the relative positions and angles between the patella and the tibia in a knee flexing simulation, the magnitude of the tibial anterior protuberance was described as a function of the knee joint angle. The model revealed that the mechanics of the knee joint was characterized as a combination of stiffness of the patella-femur structure and the PCL It was also found that the magnitude of the tibial anterior protuberance determined the amount of initial stretch of the PCL in anterior-posterior loading. Based on the knee joint kinematics and mechanics, an interference boundary was proposed for different knee flexion angles, so

  6. Lisfranc Injury in a West Point Cadet

    PubMed Central

    Diebal, Angela R.; Westrick, Richard B.; Alitz, Curtis; Gerber, J. Parry

    2013-01-01

    Background: Lisfranc joint injuries are fairly uncommon; however, few injuries hold such an elevated potential for devastating chronic secondary pain and disability. It is imperative when evaluating an injury to the ankle or foot to have a high clinical index of suspicion for Lisfranc injury, as physical examination findings are often subtle. Case Description: An 18-year-old military cadet reported to a direct-access sports physical therapy clinic with foot pain. Despite negative radiographic findings, there was a high suspicion for Lisfranc injury based on the injury mechanism and physical examination. A computed tomography scan demonstrated an oblique fracture through the base of the third metatarsal, a small marginal fracture at the plantar base of the second metatarsal, and a subtle diastasis. Two days following his injury, he underwent an open reduction and internal fixation, completed subsequent rehabilitation, and returned to full activity approximately 1 year following injury. Conclusion: Early diagnosis of Lisfranc injuries is imperative for proper management and prevention of a poor functional outcome. If a strong clinical suspicion exists, negative radiographic findings are insufficient to rule out a Lisfranc injury, and therefore, advanced imaging is required. PMID:24427404

  7. Electrical injury

    MedlinePlus

    ... damage, especially to the heart, muscles, or brain. Electric current can cause injury in three ways: Cardiac arrest ... How long you were in contact with the electricity How the electricity moved through your body Your ...

  8. Sports Injuries

    MedlinePlus

    ... heart, to help decrease swelling. The Body’s Healing Process From the moment a bone breaks or a ... what happens at each stage of the healing process: At the moment of injury: Chemicals are released ...

  9. Corneal injury

    MedlinePlus

    ... at all times when using hand or power tools or chemicals, during high impact sports, or during other activities where you may get an eye injury. Wear sunglasses that screen ultraviolet light when you are ...

  10. Rotational stiffness of American football shoes affects ankle biomechanics and injury severity.

    PubMed

    Button, Keith D; Braman, Jerrod E; Davison, Mark A; Wei, Feng; Schaeffer, Maureen C; Haut, Roger C

    2015-06-01

    While previous studies have investigated the effect of shoe-surface interaction on injury risk, few studies have examined the effect of rotational stiffness of the shoe. The hypothesis of the current study was that ankles externally rotated to failure in shoes with low rotational stiffness would allow more talus eversion than those in shoes with a higher rotational stiffness, resulting in less severe injury. Twelve (six pairs) cadaver lower extremities were externally rotated to gross failure while positioned in 20 deg of pre-eversion and 20 deg of predorsiflexion by fixing the distal end of the foot, axially loading the proximal tibia, and internally rotating the tibia. One ankle in each pair was constrained by an American football shoe with a stiff upper, while the other was constrained by an American football shoe with a flexible upper. Experimental bone motions were input into specimen-specific computational models to examine levels of ligament elongation to help understand mechanisms of ankle joint failure. Ankles in flexible shoes allowed 6.7±2.4 deg of talus eversion during rotation, significantly greater than the 1.7±1.0 deg for ankles in stiff shoes (p = 0.01). The significantly greater eversion in flexible shoes was potentially due to a more natural response of the ankle during rotation, possibly affecting the injuries that were produced. All ankles failed by either medial ankle injury or syndesmotic injury, or a combination of both. Complex (more than one ligament or bone) injuries were noted in 4 of 6 ankles in stiff shoes and 1 of 6 ankles in flexible shoes. Ligament elongations from the computational model validated the experimental injury data. The current study suggested flexibility (or rotational stiffness) of the shoe may play an important role in both the severity of ankle injuries for athletes. PMID:25751589

  11. Vulnerability of the superficial zone of immature articular cartilage to compressive injury

    PubMed Central

    Rolauffs, Bernd; Muehleman, Carol; Li, Jun; Kurz, Bodo; Kuettner, Klaus E.; Frank, Eliot; Grodzinsky, Alan J.

    2010-01-01

    Objective The zonal composition and functioning of adult articular cartilage causes depth-dependent responses to compressive injury. In immature cartilage, shear and compressive modulus, collagen and glycosaminoglycan (GAG) content also vary with depth. However, there is little understanding of depth-dependent damage caused by injury. Since injury to immature knee joints most often causes articular cartilage lesions, our objectives were to characterize the zonal dependence of biomechanical, biochemical and matrix-associated changes cause by injury. Methods Superficial and deeper zones disks from bovine calves were biomechanically characterized, injured (50% compression, 100%/sec) and re-characterized. Tissue compaction upon injury, GAG-density, GAG loss and biosynthesis were measured. Collagen-fiber-orientation and matrix damage was assessed using histology, Diffraction-Enhanced-X-Ray-Imaging, and texture analysis. Results Injured superficial disks showed surface disruption, compaction by 20.3±4.3%, and immediate biomechanical impairment: dynamic stiffness decreased to 7.1±3.3% of its initial value and equilibrium modulus was below detection. Tissue areas apparently intact by histology showed clear textural alterations. Injured deeper zones disks showed collagen crimping but remained undamaged and biomechanically intact. Superficial zone disks did not lose GAG immediately after injury but lost 17.8±1.4% by 48h; deeper zones disks lost only 2.8±0.3% GAG. Biomechanical impairment was primarily associated with structural damage. Conclusion The soft superficial zone of immature cartilage is vulnerable to compressive injury causing superficial matrix disruption, extensive compaction, and textural alteration, and resulting in immediate loss of biomechanical function. In conjunction with delayed superficial GAG loss, these changes may predispose the articular surface to further softening, damage, and increased risk of developing secondary OA. PMID:20556809

  12. WATER MIST IMPINGEMENT ONTO A HEATED SURFACE. PROCEEDING OF THE ASME/JSME JOINT THERMAL ENGINEERING CONFERENCE (5TH) 1999, HELD IN SAN DIEGO, CALIFORNIA.

    EPA Science Inventory

    An experimental study on the interaction of a water mist with a heated surface is described. The long term objective is to produce experimental data that can be used to validate submodels for four key physical phenomena involved in the interaction of sprays with burning surfaces:...

  13. Biomechanical risk factors and mechanisms of knee injury in golfers.

    PubMed

    Marshall, Robert N; McNair, Peter J

    2013-09-01

    Knee injuries in golf comprise approximately 8% of all injuries, and are considered to result from overuse, technical faults or a combination of those factors. This review examines factors involved in injury, including the structure of the knee joint, kinematics and kinetics of the golf swing, forces sustained by knee joint structures and the potential for joint injury as well as injury prevention strategies. The golf swing generates forces and torques which tend to cause internal or external rotation of the tibia on the femur, and these are resisted by the knee ligaments and menisci. Research has shown that both maximum muscle forces and the forces sustained during a golf swing are less than that required to cause damage to the ligaments. However, the complex motion of the golf swing, involving both substantial forces and ranges of rotational movement, demands good technique if the player is to avoid injuring their knee joint. Most knee injury in golf is likely related to joint laxity, previous injuries or arthritis, and such damage may be exacerbated by problems in technique or overuse. In addition to appropriate coaching, strategies to remedy discomfort include specific exercise programmes, external bracing, orthotics and equipment choices. PMID:24245048

  14. Electric injury, Part II: Specific injuries.

    PubMed

    Fish, R M

    2000-01-01

    Electric injury can cause disruption of cardiac rhythm and breathing, burns, fractures, dislocations, rhabdomyolysis, eye and ear injury, oral and gastrointestinal injury, vascular damage, disseminated intravascular coagulation, peripheral and spinal cord injury, and Reflex Sympathetic Dystrophy. Secondary trauma from falls, fires, flying debris, and inhalation injury can complicate the clinical picture. Diagnostic and treatment considerations for electric injuries are described in this article, which is the second part of a three-part series on electric injuries. PMID:10645833

  15. Shoulder and elbow injuries in the adolescent athlete.

    PubMed

    Krabak, Brian J; Alexander, Eric; Henning, Troy

    2008-05-01

    The shoulder and elbow represent two of the most commonly injured joints in the adolescent population. Specific injuries vary by sport and can involve various structures, depending on the mechanism of injury. Unlike the adult shoulder, the immature skeletal structure of the adolescent athlete can lead to several unique injuries. By understanding the special demands placed on the immature shoulder, the sports physician can more effectively treat the resultant injury. This article reviews the diagnosis and management of unique injuries to the shoulder and elbow in the adolescent athlete. PMID:18395648

  16. MR-arthrography and CT-arthrography in sports-related glenolabral injuries: a matched descriptive illustration.

    PubMed

    Jarraya, Mohamed; Roemer, Frank W; Gale, Heather I; Landreau, Philippe; D'Hooghe, Pieter; Guermazi, Ali

    2016-04-01

    The combination of a large range of motion and insufficient bony stabilization makes the glenohumeral joint susceptible to injuries including dislocation in young athletes. Magnetic resonance arthrography (MR-arthrography) and computed tomography arthrography (CT-arthrography) play an important role in the preoperative workup of labroligametous injuries. This paper illustrates MR-arthrography and CT-arthrography findings acquired at the same time on the same subjects to illustrate common causes and sequelae of shoulder instability. Teaching Points • MR-arthrography and CT-arthrography are equivalent for SLAP and full-thickness rotator cuff tears.• CT-arthrography is superior in evaluating osseous defects and cartilage surface lesions.• MR-arthrography is superior in evaluating intrasubstance and extra-articular tendinous injuries. PMID:26746976

  17. Subtalar joint instability: current clinical concepts.

    PubMed

    Budny, Adam

    2004-07-01

    There has been extensive research and investigation into the subtalar joint (STJ), yet the biomechanics that relate to its anatomic function, especially instability after injury, are surrounded by controversy. With a mechanism of injury closely related to the classic inversion ankle sprain, chronic instability can result following trauma to the lateral ligamentous support network of either joint. Over the past decades there have been countless examples in the literature challenging the current standard of evaluation and treatment of the "subtalar sprain." New technologies have offered varied approaches to diagnostic capability, each with its own strengths and weaknesses, ranging from standard radiographs to CT and MRI. A review of the literature should aid in deciphering the controversy surrounding this aspect of podiatric medicine. PMID:15246150

  18. A Historical Perspective on the Essex-Lopresti Injury

    PubMed Central

    McGlinn, Evan P.; Sebastin, Sandeep J.; Chung, Kevin C.

    2014-01-01

    An Essex-Lopresti injury is a fracture of the radial head with concomitant dislocation of the distal radioulnar joint and rupture of the interosseous membrane. Poor outcomes have been associated with this rare injury if the dislocation of the distal radioulnar joint is missed in the acute setting. This injury is named after the British orthopedic surgeon Peter Essex-Lopresti, who made a number of important observations about this injury in 1951. Peter Essex-Lopresti was a promising young surgeon, and his untimely death at the age of 35 brought an early end to a remarkable career. This article investigates the evolution of treatment for this injury and sheds light on the life of the surgeon for whom the injury is named. PMID:23890499

  19. Denervation of the wrist joint.

    PubMed

    Buck-Gramcko, D

    1977-01-01

    A collective review was made of the results of denervation of the wrist joint for painful restrictiorn of motion done in 313 patients and follow-up studies on 195 (average 4.1 years, ranging from 9 months to 14 years). Complete denervation was done in only 30, partial denervation in the others being done after testing with local anesthetic blocks. Sixty-nine of the patients retained a moble wrist without pain or with slight pain with heavy work. No evidence of Charcot-like joints was seen. Poorest results followed when the operation was done for sequelae of intra-articular fracture of the radius, fracture dislocations, unstable ligamentous support, joint surface destruction, or for those required to do heavy manual labor. Arthrodesis was done secondarily in nine patients. PMID:839055

  20. Butt Joint Tool Commissioning

    SciTech Connect

    Martovetsky, N N

    2007-12-06

    ITER Central Solenoid uses butt joints for connecting the pancakes in the CS module. The principles of the butt joining of the CICC were developed by the JAPT during CSMC project. The difference between the CSMC butt joint and the CS butt joint is that the CS butt joint is an in-line joint, while the CSMC is a double joint through a hairpin jumper. The CS butt joint has to carry the hoop load. The straight length of the joint is only 320 mm, and the vacuum chamber around the joint has to have a split in the clamp shell. These requirements are challenging. Fig.1 presents a CSMC joint, and Fig.2 shows a CS butt joint. The butt joint procedure was verified and demonstrated. The tool is capable of achieving all specified parameters. The vacuum in the end was a little higher than the target, which is not critical and readily correctable. We consider, tentatively that the procedure is established. Unexpectedly, we discover significant temperature nonuniformity in the joint cross section, which is not formally a violation of the specs, but is a point of concern. All testing parameters are recorded for QA purposes. We plan to modify the butt joining tool to improve its convenience of operation and provide all features necessary for production of butt joints by qualified personnel.

  1. Refractory Arthrographis kalrae native knee joint infection

    PubMed Central

    Boan, Peter; Arthur, Ian; Golledge, Clay; Ellis, David

    2012-01-01

    Rare reports of infection with Arthrographis kalrae have often demonstrated a protracted clinical course. We describe refractory infection of the native knee with Arthrographis kalrae after a penetrating injury and Yttrium synovectomy, finally controlled with two stage joint revision and combination antifungal therapy. The paucity of worldwide data about such uncommon invasive fungal infections contributes to the diagnostic and therapeutic challenges of these cases. PMID:24371754

  2. Locked volar distal radioulnar joint dislocation

    PubMed Central

    Bouri, Fadi; Fuad, Mazhar; Elsayed Abdolenour, Ayman

    2016-01-01

    Introduction Volar dislocation of the distal radioulnar joint is a rare injury which is commonly missed in the emergency departments. A thorough review of literature showed very few reported cases and the cause for irreducibility varied in different cases, Lack of suspicion and improper X-ray can delay the diagnosis. Case presentation Our article discusses a case 40 year old construction worker, who presented to the Emergency with work-related injury, complaining of left wrist pain, deformity and inability to rotate his forearm. X-rays revealed a volar dislocation of distal ulna which was reducible after manipulation under General Anesthesia (GA). The joint was stable after the reduction. Discussion Isolated dislocation of the distal radioulnar joint can be either volar or dorsal, although dorsal dislocation is more common. The distal radioulnar articulation plays an important role in the rotational movement of the forearm. It allows pronation and supination which are essential for the function of the upper limb. Pronator Quadratus muscle spasm is an important blockade to reduction and was preventing reduction in this case. Methods The work has been reported in line with the CARE criteria [9]. Conclusion Volar locked dislocation of Distal Radio ulnar joint is a rare injury. High degree of clinical suspicion and proper X-ray is required for prompt detection. The importance of this case is to raise the awareness among physicians in treating these kind of injuries by careful assessment of the patient and radiographs, and to consider pronator quadratus as an important cause for the blockade to reduction. PMID:27016647

  3. Nano-scale topography of bearing surface in advanced alumina/zirconia hip joint before and after severe exposure in water vapor environment.

    PubMed

    Pezzotti, Giuseppe; Saito, Takuma; Padeletti, Giuseppina; Cossari, Pierluigi; Yamamoto, Kengo

    2010-06-01

    The aim of this study was to perform a surface morphology assessment with nanometer scale resolution on femoral heads made of an advanced zirconia toughened alumina (ZTA) composite. Femoral heads were characterized to a degree of statistical accuracy in the as-received state and after exposures up to 100 h in severe vapor-moist environment. Surface screening was made using an atomic force microscope (AFM). Scanning was systematically repeated on portions of surface as large as several tens of micrometers, randomly selected on the head surface, to achieve sufficient statistical reliability without lowering the nanometer-scale spatial resolution of the roughness measurement. No significant difference was found in the recorded values of surface roughness after environmental exposure (at 134 degrees C, under 2 bar), which was always comparable to that of the as-received head. Surface roughness safely lay <10 nm after environmental exposures up to 100 h, which corresponded to an exposure time in vivo of several human lifetimes (i.e., according to an experimentally derived thermal activation energy). In addition, the roughness results were significantly (about one order of magnitude) lower as compared to those recorded on femoral heads made of monolithic zirconia tested under the same conditions. PMID:20058275

  4. Effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction.

    PubMed

    Shim, Jae-Kwang; Choi, Ho-Suk; Shin, Jun-Ho

    2015-12-01

    [Purpose] This study examined the effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction. [Subjects and Methods] The subjects were 16 adults who underwent arthroscopic anterior cruciate reconstruction and neuromuscular training. The Lysholm scale was used to assess functional disorders on the affected knee joint. A KT-2000 arthrometer was used to measure anterior displacement of the tibia against the femur. Surface electromyography was used to detect the muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus before and after neuromuscular training. [Results] There was significant relaxation in tibial anterior displacement of the affected and sound sides in the supine position before neuromuscular training. Furthermore, the difference in the tibial anterior displacement of the affected knee joints in the standing position was reduced after neuromuscular training. Moreover, the variation of the muscle activation evoked higher muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus. [Conclusion] Neuromuscular training may improve functional joint stability in patients with orthopedic musculoskeletal injuries in the postoperative period. PMID:26834316

  5. Ankle Joint Angle and Lower Leg Musculotendinous Unit Responses to Cryotherapy.

    PubMed

    Akehi, Kazuma; Long, Blaine C; Warren, Aric J; Goad, Carla L

    2016-09-01

    Akehi, K, Long, BC, Warren, AJ, and Goad, CL. Ankle joint angle and lower leg musculotendinous unit responses to cryotherapy. J Strength Cond Res 30(9): 2482-2492, 2016-The use of cold application has been debated for its influence on joint range of motion (ROM) and stiffness. The purpose of this study was to determine whether a 30-minute ice bag application to the plantarflexor muscles or ankle influences passive ankle dorsiflexion ROM and lower leg musculotendinous stiffness (MTS). Thirty-five recreationally active college-aged individuals with no history of lower leg injury 6 months before data collection volunteered. On each testing day, we measured maximum passive ankle dorsiflexion ROM (°) and plantarflexor torque (N·m) on an isokinetic dynamometer to calculate the passive plantarflexor MTS (N·m per degree) at 4 joint angles before, during, and after a treatment. Surface electromyography amplitudes (μV), and skin surface and ambient air temperature (°C) were also measured. Subjects received an ice bag to the posterior lower leg, ankle joint, or nothing for 30 minutes in different days. Ice bag application to the lower leg and ankle did not influence passive ROM (F(12,396) = 0.67, p = 0.78). Passive torque increased after ice bag application to the lower leg (F(12,396) = 2.21, p = 0.011). Passive MTS at the initial joint angle increased after ice bag application to the lower leg (F(12,396) = 2.14, p = 0.014) but not at the other joint angles (p > 0.05). Surface electromyography amplitudes for gastrocnemius and soleus muscles increased after ice application to the lower leg (F(2,66) = 5.61, p = 0.006; F(12,396) = 3.60, p < 0.001). Ice bag application to the lower leg and ankle joint does not alter passive dorsiflexion ROM but increases passive ankle plantarflexor torque in addition to passive ankle plantarflexor MTS at the initial joint angle. PMID:26863585

  6. Chevron arthrodesis of the interphalangeal joint for hammertoe correction.

    PubMed

    Miller, J Michael; Blacklidge, Douglas K; Ferdowsian, Vafa; Collman, David R

    2010-01-01

    Interphalangeal joint arthrodesis is a common procedure to correct fixed or semifixed lesser toe contracture. The authors present a simple modification to end-to-end interphalangeal joint arthrodesis that increases surface area and enhances construct stability. The technique is most commonly used for the proximal interphalangeal joint and may be combined with any number of fixation techniques. PMID:20188283

  7. Joint surface reconstruction and 4D deformation estimation from sparse data and prior knowledge for marker-less Respiratory motion tracking

    SciTech Connect

    Berkels, Benjamin; Rumpf, Martin; Bauer, Sebastian; Ettl, Svenja; Arold, Oliver; Hornegger, Joachim

    2013-09-15

    Purpose: The intraprocedural tracking of respiratory motion has the potential to substantially improve image-guided diagnosis and interventions. The authors have developed a sparse-to-dense registration approach that is capable of recovering the patient's external 3D body surface and estimating a 4D (3D + time) surface motion field from sparse sampling data and patient-specific prior shape knowledge.Methods: The system utilizes an emerging marker-less and laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement field is recovered, which describes the spatio-temporal 4D deformation of the complete patient body surface, depending on the type and state of respiration. It yields both a reconstruction of the instantaneous patient shape and a high-dimensional respiratory surrogate for respiratory motion tracking. The method is validated on a 4D CT respiration phantom and evaluated on both real data from an AT prototype and synthetic data sampled from dense surface scans acquired with a structured-light scanner.Results: In the experiments, the authors estimated surface motion fields with the proposed algorithm on 256 datasets from 16 subjects and in different respiration states, achieving a mean surface reconstruction accuracy of ±0.23 mm with respect to ground truth data—down from a mean initial surface mismatch of 5.66 mm. The 95th percentile of the local residual mesh-to-mesh distance after registration did not exceed 1.17 mm for any subject. On average, the total runtime of our proof of concept CPU implementation is 2.3 s per frame, outperforming related work substantially.Conclusions: In external beam radiation therapy, the approach holds potential for patient monitoring during treatment using the reconstructed surface, and for motion-compensated dose delivery using

  8. Patterns in Blast Injuries to the Hand

    PubMed Central

    Buntic, Rudolf F.; Brooks, Darrell

    2008-01-01

    Blast injuries to the hand are not just a wartime phenomenon but also quite common in rural communities throughout northern California. The purpose of this study is to review our experience with blast injuries in the community and review the most common patterns in an attempt to identify the pathomechanics of the hand injury and the reconstructive procedures that are required. This is a retrospective study of blast injuries to the hand treated between 1978 and 2006. Medical records, X-rays, and photos were reviewed to compile standard patient demographics and characterize the injury pattern. Explosives were classified based on their rate of decomposition. Reconstructive solutions were reviewed and characterized based on whether damaged tissues were repaired or replaced. Sixty-two patients were identified with blast injuries to their hand. Patients were predominantly male (92%) with an average age of 27 years. Firecrackers were the most commonly encountered explosives. Thirty-seven patients were identified as holding a low explosive in their dominant hand and were used for characterization of the injury pattern. The apparent pattern of injury was hyperextension and hyperabduction of the hand and digits. Common injuries were metacarpophalangeal and interphalangeal joint hyperextension with associated soft tissue avulsion, hyperabduction at the web spaces with associated palmar soft tissue tears, and finger disarticulation amputations worse at radial digits. Given the mechanisms of injury with tissue loss, surgical intervention generally involved tissue replacement rather than tissue repair. Blast injuries to the hand represent a broad spectrum of injuries that are associated with the magnitude of explosion and probably, the proximity to the hand. We were able to identify a repetitive pattern of injury and demonstrate the predominant use for delayed tissue replacement rather than microsurgical repair at the acute setting. PMID:18780004

  9. Ocular chemical injuries and their management

    PubMed Central

    Singh, Parul; Tyagi, Manoj; Kumar, Yogesh; Gupta, K. K.; Sharma, P. D.

    2013-01-01

    Chemical burns represent potentially blinding ocular injuries and constitute a true ocular emergency requiring immediate assessment and initiation of treatment. The majority of victims are young and exposure occurs at home, work place and in association with criminal assaults. Alkali injuries occur more frequently than acid injuries. Chemical injuries of the eye produce extensive damage to the ocular surface epithelium, cornea, anterior segment and limbal stem cells resulting in permanent unilateral or bilateral visual impairment. Emergency management if appropriate may be single most important factor in determining visual outcome. This article reviews the emergency management and newer techniques to improve the prognosis of patients with chemical injuries. PMID:24082664

  10. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood

  11. Joint inversion of receiver functions and surface waves with enhanced preconditioning on densely distributed CNDSN stations: Crustal and upper mantle structure beneath China

    NASA Astrophysics Data System (ADS)

    Chen, Youlin; Niu, Fenglin

    2016-02-01

    We present shear wave velocity structure beneath China by joint modeling of teleseismic receiver function and Rayleigh wave group velocity dispersion data observed at +1000 permanent broadband seismic stations in the Chinese National Digital Seismic Network (CNDSN). A ray-parameter-based stacking method is employed to minimize artifacts in stacking receiver functions from different sources. The Rayleigh wave dispersion curve is extracted from group velocity tomographic models at all applicable periods. Enhanced preconditions are applied on the linearized iterative inversion to regularize and balance multiple types of data. The velocity profile inversion at each station starts from an initial model derived from sediments, crustal thickness, Vp/Vs ratio and Pn/Sn models. This multistep approach not only reduces uncertainty and nonuniqueness of the velocity inversion but also efficiently fills information gap in each data set. We then generate a 3-D S velocity model by combining and smoothing all the 1-D models. The obtained 3-D model reveals crustal and upper mantle velocity structures that are well correlated with tectonic features of China, for example, our model shows a clear east-west bimodal distribution at 35 km deep, low velocity in the crust beneath central and eastern Tibetan plateau, and sedimentary structure in major cratons and basins. Our model is consistent with existing tomographic models in large scale but provides more structural details in regional and local scales.

  12. Successful Strategies for Managing Monteggia Injuries.

    PubMed

    Bae, Donald S

    2016-06-01

    Monteggia fracture-dislocations refer to traumatic ulnar fractures associated with proximal radioulnar and radiocapitellar joint instability. Careful clinical and radiographic evaluation of the entire limb in the acutely injured child is critical for timely diagnosis and appropriate treatment. Treatment principles include restoring and maintaining both ulnar length and alignment as well as radiocapitellar joint reduction. Recent information suggests that surgical treatment of acute injuries associated with complete ulnar fractures is safe and effective in maintaining bone and joint alignment. In cases of late presentation or missed diagnoses, chronic reconstruction may be considered in symptomatic patients with preserved radiocapitellar morphology. Although challenging, ulnar osteotomy and open joint reduction with or without ligament reconstruction may restore joint congruity in the majority of patients. PMID:27100040

  13. Turco's injury: diagnosis and treatment☆☆☆

    PubMed Central

    da Silva, Ana Paula Simões; Shimba, Leandro Girardi; Ribas, Luiz Henrique Boraschi Vieira; de Almeida, Alexandre Simmonds; Naves, Vinicius; Duarte Júnior, Aires

    2014-01-01

    The aim of this study was to alert doctors to the existence of Turco's injury and discus the existing treatments that have been described in the worldwide literature. A bibliographic survey of Lisfranc's injury and Turco's injury covering from 1985 to 2013 was conducted in the SciELO and PubMed databases. Among the 193 articles, those relating to bone-ligament injuries of the Lisfranc joint and high-energy trauma were excluded, as were the case reports. The patients selected were professional or amateur athletes who solely presented a ligament injury to the Lisfranc joint (Turco's injury), which was diagnosed from the history, physical examination, radiographs and magnetic resonance images. Non-athletic patients and those with associated bone injuries were excluded (10). According to the injury classification, the patients were treated by means of either an open or a closed procedure and then a standard rehabilitation protocol. Out of the 10 patients, five underwent conservative treatment and five underwent surgical treatment using different techniques and synthesis materials. We obtained two poor results, one satisfactory, five good and two excellent. We conclude that the correct diagnosis has a direct influence on the treatment and on the final result obtained, and that lack of knowledge of this injury is the main factor responsible for underdiagnosing Turco's injury. There is a need for randomized prospective studies comparing the types of synthesis and evolution of treated cases, in order to define the best treatment for this injury. PMID:26229821

  14. Blast injury.

    PubMed

    de Candole, C A

    1967-01-28

    The shock wave generated by an explosion ("blast wave") may cause injury in any or all of the following: (1) direct impact on the tissues of variations in environmental pressure; (2) flying glass and other debris set in motion by it; (3) propulsion of the body. Injuries in the first category affect gas-containing organs (ears, lungs and intestines), and acute death is attributed to air forced into the coronary vessels via damaged pulmonary alveoli. It is estimated that overpressure sufficient to cause lung injury may occur up to five miles from a 20-megaton nuclear explosion. The greatest single hazard from blast is, however, flying glass, and serious wounding from this cause is possible up to 12 miles from an explosion of this magnitude. PMID:6015742

  15. Blast Injury

    PubMed Central

    de Candole, C. A.

    1967-01-01

    The shock wave generated by an explosion (“blast wave”) may cause injury in any or all of the following: (1) direct impact on the tissues of variations in environmental pressure; (2) flying glass and other debris set in motion by it; (3) propulsion of the body. Injuries in the first category affect gas-containing organs (ears, lungs and intestines), and acute death is attributed to air forced into the coronary vessels via damaged pulmonary alveoli. It is estimated that overpressure sufficient to cause lung injury may occur up to five miles from a 20-megaton nuclear explosion. The greatest single hazard from blast is, however, flying glass, and serious wounding from this cause is possible up to 12 miles from an explosion of this magnitude. PMID:6015742

  16. Avoiding Shoulder Injury from Resistance Training.

    ERIC Educational Resources Information Center

    Durall, Chris J.; Manske, Robert C.; Davies, George J.

    2001-01-01

    Identifies shoulder exercises commonly performed in fitness centers that may contribute to or exacerbate glenohumeral joint (shoulder) injury, describing alternative exercises that may be substituted and a offering rationale for the variations. The article focuses on anterior and posterior glenohumeral instability, subacromial impingement (primary…

  17. Basketball injuries of the foot and ankle.

    PubMed

    McDermott, E P

    1993-04-01

    Foot and ankle injuries in basketball are discussed in three unrelated categories in this article. This includes a practical differential diagnosis of ankle sprains, acute conditions of the mid and hindfoot, overuse syndromes of nerve entrapment, fascial strain, synovitis, joint subluxation, and inflammation resulting from repetitive stress. The diagnosis and treatment of tendon inflammation of the extrinsic foot musculature is also reviewed. PMID:8097679

  18. Simultaneous dislocation of both interphalangeal joints in the middle finger.

    PubMed

    Hester, Thomas; Mahmood, Shoib; Morar, Yateen; Singh, Ravi

    2015-01-01

    Simultaneous dorsal dislocation of both interphalangeal joints (IPJs) in one finger is an uncommon injury. This injury usually occurs on the ulnar side of the hand involving ring and little fingers. We report a case of simultaneous dislocation of both IPJs in the middle finger. Closed reduction and splinting with the IPJs in extension provided a good result with full range of motion at the patient's final follow-up. PMID:25979959

  19. Dislocation of the Temporomandibular Joint and Relocation Procedures.

    PubMed

    White, Thomas; Hedderick, Viki; Ramponi, Denise R

    2016-01-01

    Temporomandibular joint (TMJ) dislocation requires prompt medical attention due to the crucial impact of airway, nutrition acquisition, and communication. Recognition of this injury by the practitioner, based on clinical presentation and history, is paramount for identification of accurate diagnosis and prompt treatment of TMJ dislocation. Relocation or reduction methods vary on the basis of the severity of the injury and whether it is an acute or chronic dislocation. PMID:27482989

  20. Seismic velocity structure of the crust and upper mantle beneath the Texas-Gulf of Mexico margin from joint inversion of Ps and Sp receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Agrawal, M.; Pulliam, J.; Sen, M. K.

    2013-12-01

    The seismic structure beneath Texas Gulf Coast Plain (GCP) is determined via velocity analysis of stacked common conversion point (CCP) Ps and Sp receiver functions and surface wave dispersion. The GCP is a portion of a ocean-continental transition zone, or 'passive margin', where seismic imaging of lithospheric Earth structure via passive seismic techniques has been rare. Seismic data from a temporary array of 22 broadband stations, spaced 16-20 km apart, on a ~380-km-long profile from Matagorda Island, a barrier island in the Gulf of Mexico, to Johnson City, Texas were employed to construct a coherent image of the crust and uppermost mantle. CCP stacking was applied to data from teleseismic earthquakes to enhance the signal-to-noise ratios of converted phases, such as Ps phases. An inaccurate velocity model, used for time-to-depth conversion in CCP stacking, may produce higher errors, especially in a region of substantial lateral velocity variations. An accurate velocity model is therefore essential to constructing high quality depth-domain images. To find accurate velocity P- and S-wave models, we applied a joint modeling approach that searches for best-fitting models via simulated annealing. This joint inversion approach, which we call 'multi objective optimization in seismology' (MOOS), simultaneously models Ps receiver functions, Sp receiver functions and group velocity surface wave dispersion curves after assigning relative weights for each objective function. Weights are computed from the standard deviations of the data. Statistical tools such as the posterior parameter correlation matrix and posterior probability density (PPD) function are used to evaluate the constraints that each data type places on model parameters. They allow us to identify portions of the model that are well or poorly constrained.

  1. Metatarsal phalangeal joint arthroscopy.

    PubMed

    Shonka, T E

    1991-01-01

    An overview of metatarsophalangeal joint (MPJ) arthroscopy is presented. Indications, technique, and perioperative management are discussed. The author believes it is the operative treatment of choice for various pathology encountered in this joint. PMID:2002183

  2. Culture - joint fluid

    MedlinePlus

    Joint fluid culture ... fungi, or viruses grow. This is called a culture. If these germs are detected, other tests may ... is no special preparation needed for the lab culture. How to prepare for the removal of joint ...

  3. Hip joint replacement - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100006.htm Hip joint replacement - series—Normal anatomy To use the sharing ... to slide 5 out of 5 Overview The hip joint is made up of two major parts: the ...

  4. Hip joint injection

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007633.htm Hip joint injection To use the sharing features on this ... injection is a shot of medicine into the hip joint. The medicine helps relieve pain and inflammation. It ...

  5. Hip joint replacement

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002975.htm Hip joint replacement To use the sharing features on this page, please enable JavaScript. Hip joint replacement is surgery to replace all or part ...

  6. Knee joint replacement - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100088.htm Knee joint replacement - series—Normal anatomy To use the sharing ... of 4 Overview The knee is a complex joint. It contains the distal end of the femur ( ...

  7. Knee joint replacement

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002974.htm Knee joint replacement To use the sharing features on this page, please enable JavaScript. Knee joint replacement is a surgery to replace a knee ...

  8. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  9. Temporomandibular Joint Dysfunction

    MedlinePlus

    The temporomandibular joint (TMJ) connects your jaw to the side of your head. When it works well, it enables you to ... For people with TMJ dysfunction, problems with the joint and muscles around it may cause Pain that ...

  10. Sacroiliac joint pain - aftercare

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000610.htm Sacroiliac joint pain - aftercare To use the sharing features on this page, please enable JavaScript. The sacroiliac joint (SIJ) is a term used to describe the ...

  11. Biomechanical and neuromuscular characteristics of male athletes: implications for the development of anterior cruciate ligament injury prevention programs.

    PubMed

    Sugimoto, Dai; Alentorn-Geli, Eduard; Mendiguchía, Jurdan; Samuelsson, Kristian; Karlsson, Jon; Myer, Gregory D

    2015-06-01

    Prevention of anterior cruciate ligament (ACL) injury is likely the most effective strategy to reduce undesired health consequences including reconstruction surgery, long-term rehabilitation, and pre-mature osteoarthritis occurrence. A thorough understanding of mechanisms and risk factors of ACL injury is crucial to develop effective prevention programs, especially for biomechanical and neuromuscular modifiable risk factors. Historically, the available evidence regarding ACL risk factors has mainly involved female athletes or has compared male and female athletes without an intra-group comparison for male athletes. Therefore, the principal purpose of this article was to review existing evidence regarding the investigation of biomechanical and neuromuscular characteristics that may imply aberrant knee kinematics and kinetics that would place the male athlete at risk of ACL injury. Biomechanical evidence related to knee kinematics and kinetics was reviewed by different planes (sagittal and frontal/coronal), tasks (single-leg landing and cutting), situation (anticipated and unanticipated), foot positioning, playing surface, and fatigued status. Neuromuscular evidence potentially related to ACL injury was reviewed. Recommendations for prevention programs for ACL injuries in male athletes were developed based on the synthesis of the biomechanical and neuromuscular characteristics. The recommendations suggest performing exercises with multi-plane biomechanical components including single-leg maneuvers in dynamic movements, reaction to and decision making in unexpected situations, appropriate foot positioning, and consideration of playing surface condition, as well as enhancing neuromuscular aspects such as fatigue, proprioception, muscle activation, and inter-joint coordination. PMID:25663251

  12. Spinal Cord Injury Map

    MedlinePlus

    ... on the severity of the injury. Tap this spinal column to see how the level of injury affects loss of function and control. Learn more about spinal cord injuries. A spinal cord injury affects the ...

  13. Eye Injuries at Home

    MedlinePlus

    ... Patient Stories Español Eye Health / Tips & Prevention Eye Injuries Sections Preventing Eye Injuries Recognizing and Treating Eye ... Sports Eye Injuries by the Numbers — Infographic Eye Injuries at Home Reviewed by: Brenda Pagan-Duran MD ...

  14. Exercise-induced metacarpophalangeal joint adaptation in the Thoroughbred racehorse.

    PubMed

    Muir, P; Peterson, A L; Sample, S J; Scollay, M C; Markel, M D; Kalscheur, V L

    2008-12-01

    Repetitive bone injury and development of stress fracture is a common problem in humans and animals. The Thoroughbred racehorse is a model in which adaptive failure and associated development of stress fracture is common. We performed a histologic study of the distal end of the third metacarpal bone in two groups of horses: young Thoroughbreds that were actively racing (n = 10) and a group of non-athletic horses (n = 8). The purpose of this study was to determine whether development of articular microcracks was associated with specific alterations to subchondral plate osteocytes. Morphometric measurements were made in five regions of the joint surface: lateral condyle, lateral condylar groove, sagittal ridge, medial condylar groove, and medial condyle. The following variables were quantified: hyaline cartilage width; calcified cartilage width; the number of tidemarks; microcrack density at the articular surface; blood vessel density entering articular cartilage; the presence of atypical bone matrix in the subchondral plate; bone volume fraction; and osteocyte density. Adaptation of articular cartilage was similar in both groups of horses. Vascularization of articular cartilage was increased in the group of non-athletic horses. Microcracks, which typically had an oblique orientation to the joint surface, were co-localized with blood vessels, and resorption spaces. Microcracking was increased in the condylar grooves of athletic horses compared with the other joint regions and was also increased compared with the condylar groove regions of non-athletic horses. Coalescence of microcracks also led to development of an intracortical articular condylar stress fracture in some joints and targeted remodeling of affected subchondral plate. The subchondral plate of the condyles in athletic horses was sclerotic, and contained atypically stained bone matrix with increased numbers of osteocytes with atypical morphology. However, osteocyte numbers were not significantly different

  15. Arthroscopically Assisted Treatment of Acute Dislocations of the Acromioclavicular Joint

    PubMed Central

    Braun, Sepp; Beitzel, Knut; Buchmann, Stefan; Imhoff, Andreas B.

    2015-01-01

    Arthroscopically assisted treatments for dislocations of the acromioclavicular joint combine the advantages of exact and visually controlled coracoid tunnel placement with the possibility of simultaneous treatment of concomitant injuries. The clinical results of previous arthroscopically assisted techniques have been favorable at midterm and long-term follow-up. The presented surgical technique combines the advantages of arthroscopically positioned coracoclavicular stabilization with an additional suture cord cerclage of the acromioclavicular joint capsule for improved horizontal stability. PMID:26870646

  16. Decomposing Large Inverse Problems with an Augmented Lagrangian Approach: Application to Joint Inversion of Body-Wave Travel Times and Surface-Wave Dispersion Measurements

    NASA Astrophysics Data System (ADS)

    Reiter, D. T.; Rodi, W. L.

    2015-12-01

    Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.

  17. The Waist Width of Skis Influences the Kinematics of the Knee Joint in Alpine Skiing.

    PubMed

    Zorko, Martin; Nemec, Bojan; Babič, Jan; Lešnik, Blaz; Supej, Matej

    2015-09-01

    Recently alpine skis with a wider waist width, which medially shifts the contact between the ski edge and the snow while turning, have appeared on the market. The aim of this study was to determine the knee joint kinematics during turning while using skis of different waist widths (65mm, 88mm, 110mm). Six highly skilled skiers performed ten turns on a predefined course (similar to a giant slalom course). The relation of femur and tibia in the sagital, frontal and coronal planes was captured by using an inertial motion capture suit, and Global Navigation Satellite System was used to determine the skiers' trajectories. With respect of the outer ski the knee joint flexion, internal rotation and abduction significantly decreased with the increase of the ski waist width for the greatest part of the ski turn. The greatest abduction with the narrow ski and the greatest external rotation (lowest internal rotation) with the wide ski are probably the reflection of two different strategies of coping the biomechanical requirements in the ski turn. These changes in knee kinematics were most probably due to an active adaptation of the skier to the changed biomechanical conditions using wider skis. The results indicated that using skis with large waist widths on hard, frozen surfaces could bring the knee joint unfavorably closer to the end of the range of motion in transversal and frontal planes as well as potentially increasing the risk of degenerative knee injuries. Key pointsThe change in the skis' waist width caused a change in the knee joint movement strategies, which had a tendency to adapt the skier to different biomechanical conditions.The use of wider skis or, in particular, skis with a large waist width, on a hard or frozen surface, could unfavourably bring the knee joint closer to the end of range of motion in transversal and frontal planes as well as may potentially increase the risk of degenerative knee injuries.The overall results of the abduction and internal

  18. The Waist Width of Skis Influences the Kinematics of the Knee Joint in Alpine Skiing

    PubMed Central

    Zorko, Martin; Nemec, Bojan; Babič, Jan; Lešnik, Blaz; Supej, Matej

    2015-01-01

    Recently alpine skis with a wider waist width, which medially shifts the contact between the ski edge and the snow while turning, have appeared on the market. The aim of this study was to determine the knee joint kinematics during turning while using skis of different waist widths (65mm, 88mm, 110mm). Six highly skilled skiers performed ten turns on a predefined course (similar to a giant slalom course). The relation of femur and tibia in the sagital, frontal and coronal planes was captured by using an inertial motion capture suit, and Global Navigation Satellite System was used to determine the skiers’ trajectories. With respect of the outer ski the knee joint flexion, internal rotation and abduction significantly decreased with the increase of the ski waist width for the greatest part of the ski turn. The greatest abduction with the narrow ski and the greatest external rotation (lowest internal rotation) with the wide ski are probably the reflection of two different strategies of coping the biomechanical requirements in the ski turn. These changes in knee kinematics were most probably due to an active adaptation of the skier to the changed biomechanical conditions using wider skis. The results indicated that using skis with large waist widths on hard, frozen surfaces could bring the knee joint unfavorably closer to the end of the range of motion in transversal and frontal planes as well as potentially increasing the risk of degenerative knee injuries. Key points The change in the skis’ waist width caused a change in the knee joint movement strategies, which had a tendency to adapt the skier to different biomechanical conditions. The use of wider skis or, in particular, skis with a large waist width, on a hard or frozen surface, could unfavourably bring the knee joint closer to the end of range of motion in transversal and frontal planes as well as may potentially increase the risk of degenerative knee injuries. The overall results of the abduction and

  19. Injuries in Female Dancers Aged 8 to 16 Years

    PubMed Central

    Steinberg, Nili; Siev-Ner, Itzhak; Peleg, Smadar; Dar, Gali; Masharawi, Youssef; Zeev, Aviva; Hershkovitz, Israel

    2013-01-01

    Context Most studies of injured dancers have been carried out on professional adult dancers; data on young, nonprofessional injured dancers are sparse. Objective To identify the types of injuries sustained by recreational dancers and to examine their association with age, joint range of motion, body structure, age at menarche, presence of anatomic anomalies, and physical burden (ie, practice hours en pointe). Design Descriptive epidemiology study. Setting The Israel Performing Arts Medicine Center, Tel Aviv. Patients or Other Participants A total of 569 injured female dancers, aged 8 to 16 years. Main Outcome Measure(s) Dependent variables were 61 types of current injuries that were later classified into 4 major categories: knee injuries, foot and ankle tendinopathy, back injuries, and other injuries. Independent variables were age, joint range of motion, body size and shape, age at menarche, anatomic anomalies, and dance discipline (eg, hours of practice per week en pointe). Results At least 1 previous injury had been sustained by 42.4% of the dancers. The most common injuries involved the knee (40.4%), followed by other injuries (23.4%). The relative frequency of back injuries and tendinopathy decreased with age, whereas knee injuries increased. Types of injuries were significantly associated with ankle plantar flexion, hip external rotation, hip abduction, and knee flexion. Multinomial regression analysis revealed only 3 predictive variables (with other as baseline), all for back injury: scoliosis, age, and hip external rotation. Conclusions Joint range of motion and scoliosis may signal the potential for future injury. Young dancers (less than 10 years of age) should not be exposed to overload (especially of the back) or extensive stretching exercises. PMID:23672333

  20. Joint Enrollment Report, 2014

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2014

    2014-01-01

    The Iowa Department of Education collects information on joint enrollment in Iowa's 15 community colleges. Jointly enrolled students are high school students enrolled in community college credit coursework. Most jointly enrolled students enroll through Senior Year Plus (SYP) programs such as Postsecondary Enrollment Options (PSEO) and concurrent…

  1. Sex Differences in Proximal Control of the Knee Joint

    PubMed Central

    Mendiguchia, Jurdan; Ford, Kevin R.; Quatman, Carmen E.; Alentorn-Geli, Eduard; Hewett, Timothy E.

    2014-01-01

    Following the onset of maturation, female athletes have a significantly higher risk for anterior cruciate ligament (ACL) injury compared with male athletes. While multiple sex differences in lower-extremity neuromuscular control and biomechanics have been identified as potential risk factors for ACL injury in females, the majority of these studies have focused specifically on the knee joint. However, increasing evidence in the literature indicates that lumbopelvic (core) control may have a large effect on knee-joint control and injury risk. This review examines the published evidence on the contributions of the trunk and hip to knee-joint control. Specifically, the sex differences in potential proximal controllers of the knee as risk factors for ACL injury are identified and discussed. Sex differences in trunk and hip biomechanics have been identified in all planes of motion (sagittal, coronal and transverse). Essentially, female athletes show greater lateral trunk displacement, altered trunk and hip flexion angles, greater ranges of trunk motion, and increased hip adduction and internal rotation during sport manoeuvres, compared with their male counterparts. These differences may increase the risk of ACL injury among female athletes. Prevention programmes targeted towards trunk and hip neuromuscular control may decrease the risk for ACL injuries. PMID:21688868

  2. Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, Panel Post, Tie & Diagonal Brace Joint Detail; Chord, Panel Post, Tie & Crossbracing Joint Detail - Dunlapsville Covered Bridge, Spanning East Fork Whitewater River, Dunlapsville, Union County, IN

  3. Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load.

    PubMed

    Hartmann, Hagen; Wirth, Klaus; Klusemann, Markus

    2013-10-01

    It has been suggested that deep squats could cause an increased injury risk of the lumbar spine and the knee joints. Avoiding deep flexion has been recommended to minimize the magnitude of knee-joint forces. Unfortunately this suggestion has not taken the influence of the wrapping effect, functional adaptations and soft tissue contact between the back of thigh and calf into account. The aim of this literature review is to assess whether squats with less knee flexion (half/quarter squats) are safer on the musculoskeletal system than deep squats. A search of relevant scientific publications was conducted between March 2011 and January 2013 using PubMed. Over 164 articles were included in the review. There are no realistic estimations of knee-joint forces for knee-flexion angles beyond 50° in the deep squat. Based on biomechanical calculations and measurements of cadaver knee joints, the highest retropatellar compressive forces and stresses can be seen at 90°. With increasing flexion, the wrapping effect contributes to an enhanced load distribution and enhanced force transfer with lower retropatellar compressive forces. Additionally, with further flexion of the knee joint a cranial displacement of facet contact areas with continuous enlargement of the retropatellar articulating surface occurs. Both lead to lower retropatellar compressive stresses. Menisci and cartilage, ligaments and bones are susceptible to anabolic metabolic processes and functional structural adaptations in response to increased activity and mechanical influences. Concerns about degenerative changes of the tendofemoral complex and the apparent higher risk for chondromalacia, osteoarthritis, and osteochondritis in deep squats are unfounded. With the same load configuration as in the deep squat, half and quarter squat training with comparatively supra-maximal loads will favour degenerative changes in the knee joints and spinal joints in the long term. Provided that technique is learned accurately

  4. Electrical Injuries

    MedlinePlus

    ... your injuries are depends on how strong the electric current was, what type of current it was, how it moved through your body, and how long you were exposed. Other factors include how ... you should see a doctor. You may have internal damage and not realize it.

  5. Inhalation Injuries

    MedlinePlus

    ... increase mortality 30% to 40% when patients with cutaneous burns and inhalation injury are compared with patients ... nasal hairs • Facial burns • Burns around the mouth • Mineral spirits – 104º F – paint thinner, brush cleaner. • Redness, ...

  6. RSRM Nozzle-to-Case Joint J-leg Development

    NASA Technical Reports Server (NTRS)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  7. Basketball injuries in children.

    PubMed

    Gaca, Ana Maria

    2009-12-01

    Basketball is a popular, worldwide sport played outdoors and indoors year-round. Patterns of injury are related to abrupt changes in the athlete's direction, jumping, contact between athletes, the hard playing surface and paucity of protective equipment. Intensity of play and training in the quest of scholarships and professional careers is believed to contribute to an increasing occurrence of injury. Radiologists' appreciation of the breadth of injury and its relation to imaging and clinical findings should enhance the care of these children. Some of the patterns of injury are well known to radiologists but vary due to age- and size-related changes; the growing skeleton is affected by differing susceptibilities from biomechanical stresses at different sizes. Beyond screening radiographs, the accuracy of MRI and CT has improved diagnosis and treatment plans in this realm. Investigations to detect symptoms and signs in an attempt to prevent the tragedy of sudden cardiac death in basketball players may lead to MRI and CTA studies that compel radiologists to evaluate cardiac function along with myocardial and coronary artery anatomy. Worthy of mention also is the female athlete triad of disordered eating, amenorrhea, and osteoporosis that is observed in some young women participating in this and other sports. PMID:19774373

  8. Crustal structure of the eastern Borborema Province, NE Brazil, from the joint inversion of receiver functions and surface wave dispersion: Implications for plateau uplift

    NASA Astrophysics Data System (ADS)

    Luz, Rosana M. N.; Julià, Jordi; Nascimento, Aderson F.

    2015-05-01

    We investigate the crustal structure of the Borborema Province of NE Brazil by developing 44 S wave velocity-depth profiles from the joint inversion of receiver functions and fundamental mode, Rayleigh wave group velocities. The Borborema Province is located in the northeasternmost corner of the South American continent and represents a portion of a larger Neoproterozoic mobile belt that formed during the Brasiliano-Pan African orogeny. Extensional processes in the Mesozoic—eventually leading to the separation of Africa and South America—left a number of aborted rift basins in the continental interiors, and episodes of diffuse intraplate volcanism and uplift marked the evolution of the Province after continental breakup. Our velocity-depth profiles reveal the existence of two crustal types in the Province: (i) the thin crustal type, which consists of 30-32.5 km thick crust, with an upper layer of 3.4-3.6 km/s overlying a lower layer of 3.7-3.8 km/s and (ii) the thick crustal type, which consists of a 35-37.5 km thick crust, with velocities between 3.5 and 3.9 km/s down to ˜30 km depth and a gradational increase in velocity (VS≥4.0 km/s) down to upper mantle depths. The crustal types correlate well with topography, with the thick crustal type being mainly found in the high-standing southern Borborema Plateau and the thin crustal type being mostly found in the low-lying Sertaneja depression and coastal cuestas. Interestingly, the thin crustal type is also observed under the elevated topography of the northern Plateau. We argue that the thick crustal type is rheologically strong and not necessarily related to postbreakup mantle processes, as it is commonly believed. We propose that extensional processes in the Mesozoic stretched portions of the Brasiliano crust and formed the thin crustal type that is now observed in the regions of low-lying topography, leaving the rheologically strong thick crust of the southern Plateau at higher elevations. The crust making

  9. The 2014 Academic College of Emergency Experts in India's INDO-US Joint Working Group (JWG) White Paper on “Developing Trauma Sciences and Injury Care in India”

    PubMed Central

    Pal, Ranabir; Agarwal, Amit; Galwankar, Sagar; Swaroop, Mamta; Stawicki, Stanislaw P; Rajaram, Laxminarayan; Paladino, Lorenzo; Aggarwal, Praveen; Bhoi, Sanjeev; Dwivedi, Sankalp; Menon, Geetha; Misra, MC; Kalra, OP; Singh, Ajai; Radjou, Angeline Neetha; Joshi, Anuja

    2014-01-01

    It is encouraging to see the much needed shift in the understanding and recognition of the concept of “burden of disease” in the context of traumatic injury. Equally important is understanding that the impact of trauma burden rivals that of nontraumatic morbidities. Subsequently, this paradigm shift reinstates the appeal for timely interventions as the standard for management of traumatic emergencies. Emergency trauma care in India has been disorganized due to inadequate sensitivity toward patients affected by trauma as well as the haphazard, nonuniform acceptance of standardization as the norm. Some of the major hospitals across various regions in the country do have trauma care units, but even those lack protocols to ensure that all trauma cases are handled by those units, largely owing to lack of structured referral system. As a first step to reform the state of trauma care in the country, a detailed overview is needed to gain insight into the prevailing reality. The objectives of this paper are to thus weave a foundation based on the statistical and qualitative burden of trauma in the country; the available infrastructure of trauma care centers equipped to deal with trauma; the need and scope of standardized protocols for intervention; and most importantly, the application of these in shaping educational initiatives in advancing emergency trauma care in the country. PMID:25024939

  10. Two-axis joint assembly and method

    NASA Technical Reports Server (NTRS)

    Le, Thang D. (Inventor); Lewis, James L. (Inventor); Carroll, Monty B. (Inventor)

    2010-01-01

    In an embodiment, a two-axis joint that utilizes planar reactions to handle moments applied to the side of the joint thereby allowing the device to remain low profile and compact with minimal intrusion to the mounting surface of the two-axis joint. To handle larger moments, the diameter of the planar member can be increased without increasing the overall height of the joint assembly thereby retaining the low profile thereof. Upper and lower antifriction bearings may be positioned within a housing engage the planar member to reduce rotational friction. The upper and lower bearings and a hub which supports the planar member transfer forces produced by moments applied to the side of the joint so as to spread the forces over the area of the housing.

  11. Injury patterns to other body regions and load vectors in nearside impact occupants with and without shoulder injuries

    PubMed Central

    Yoganandan, Narayan; Stadter, Gregory W.; Halloway, Dale E.; Pintar, Frank A.

    2013-01-01

    CIREN and NASS-CDS databases were used to analyze nearside impact injuries. Front seat occupants with and without shoulder injuries were examined on an individual basis in both databases. All vehicles were from model year 2000 or newer. Variables such as the type of collision, change in velocity, principal direction force, demographics, injuries scored by the MAIS and ISS metrics, and injuries to the head, thorax, abdomen and pelvis were included. Shoulder injuries included fractures to the humerus, scapula and clavicle, and associated joint traumas. The median changes in velocities for occupants with and without shoulder injuries were 36 and 32 km/h in CIREN and 29 and 32 km/h in NASS databases. Approximately two-thirds of all cases occurred below 40 km/h. In both databases, the clavicle, scapula and humerus fractures, and AC joint dislocations were found, and the scapula fracture was associated with the clavicle, AC joint, acromion and humerus injuries in few occupants. The clavicle fracture was associated with AC joint and humerus injuries only in the NASS database. Thorax, abdomen and pelvic injuries and skull fractures increased with the presence of shoulder injuries in both databases, albeit not at the same rate. Anterior oblique loading was more frequent than pure lateral loading in both databases suggesting the importance of the oblique vector in side impact trauma. These findings underscore a need for detailed examinations of shoulder load-sharing using biomechanical studies to better understand its role in side impact traumas, shoulder biofidelity and injury assessments in dummies. PMID:24406953

  12. Injury patterns to other body regions and load vectors in nearside impact occupants with and without shoulder injuries.

    PubMed

    Yoganandan, Narayan; Stadter, Gregory W; Halloway, Dale E; Pintar, Frank A

    2013-01-01

    CIREN and NASS-CDS databases were used to analyze nearside impact injuries. Front seat occupants with and without shoulder injuries were examined on an individual basis in both databases. All vehicles were from model year 2000 or newer. Variables such as the type of collision, change in velocity, principal direction force, demographics, injuries scored by the MAIS and ISS metrics, and injuries to the head, thorax, abdomen and pelvis were included. Shoulder injuries included fractures to the humerus, scapula and clavicle, and associated joint traumas. The median changes in velocities for occupants with and without shoulder injuries were 36 and 32 km/h in CIREN and 29 and 32 km/h in NASS databases. Approximately two-thirds of all cases occurred below 40 km/h. In both databases, the clavicle, scapula and humerus fractures, and AC joint dislocations were found, and the scapula fracture was associated with the clavicle, AC joint, acromion and humerus injuries in few occupants. The clavicle fracture was associated with AC joint and humerus injuries only in the NASS database. Thorax, abdomen and pelvic injuries and skull fractures increased with the presence of shoulder injuries in both databases, albeit not at the same rate. Anterior oblique loading was more frequent than pure lateral loading in both databases suggesting the importance of the oblique vector in side impact trauma. These findings underscore a need for detailed examinations of shoulder load-sharing using biomechanical studies to better understand its role in side impact traumas, shoulder biofidelity and injury assessments in dummies. PMID:24406953

  13. The mast cell stabilizer ketotifen reduces joint capsule fibrosis in a rabbit model of post-traumatic joint contractures

    PubMed Central

    Hart, David A.; Befus, A. Dean; Salo, Paul T.; Zhang, Mei; Hildebrand, Kevin A.

    2013-01-01

    Objectives Using a rabbit model of post-traumatic joint contractures, we investigated whether treatment with a mast cell stabilizer after joint injury would lessen the molecular manifestations of joint capsule fibrosis. Methods Surgical joint injury was used to create stable post-traumatic contractures of the knee in skeletally mature New Zealand white rabbits. Four groups of animals were studied: a non-operated control group (n = 8), an operated contracture group (n = 13) and two operated groups treated with the mast cell stabilizer, ketotifen, at doses of 0.5 mg/kg (n = 9) and 1.0 mg/kg (n = 9) twice daily. Joint capsule fibrosis was assessed by quantifying the mRNA and protein levels of α-SMA, tryptase, TGF-β1, collagen I and collagen III. Significance was tested using an ANOVA analysis of variance. Results The protein and mRNA levels of α-SMA, TGF-β1, tryptase and collagen I and III were significantly elevated in the operated contracture group compared to control (p < 0.01). In both ketotifen-treated groups, protein and mRNA levels of α-SMA, TGF-β1 and collagen I were significantly reduced compared to the operated contracture group (p < 0.01). Conclusions These data suggest an inflammatory pathway mediated by mast cell activation is involved in joint capsule fibrosis after traumatic injury. PMID:22173279

  14. Assessment of Injuries During Brazilian Jiu-Jitsu Competition

    PubMed Central

    Scoggin, James F.; Brusovanik, Georgiy; Izuka, Byron H.; Zandee van Rilland, Eddy; Geling, Olga; Tokumura, Seren

    2014-01-01

    Background: Brazilian jiu-jitsu (BJJ) is a unique style of martial arts with rapid growth in the United States and internationally. Although studies have examined injuries in other martial arts and combat sports, to date, no published medical study has examined injuries in BJJ competitions. Purpose: (1) To estimate the incidence of injuries in BJJ competitions and (2) to identify and describe the types and mechanisms of injuries associated with competitive BJJ. Study Design: Descriptive epidemiology study. Methods: Injury data were obtained from records of on-site medical coverage at 8 statewide BJJ tournaments in Hawaii, USA, between 2005 and 2011. Results: The identified injury incidence on the day of matches was 9.2 per 1000 exposures (46 injuries out of 5022 exposures, ie, match participations). Orthopaedic injuries were the most common and accounted for 78% of all injuries (n = 36), followed by costochondral or rib injuries (n = 7) and lacerations requiring medical care (n = 3). The elbow was found to be the joint most commonly injured during BJJ competitions, with the arm bar being the most common mechanism. We propose that this BJJ-specific injury mechanism, the “arm bar,” be recognized as another mechanism of hyperextension injury to the elbow in sports. Conclusion: Comparison of the BJJ injury data with injury data reported for judo, taekwondo, wrestling, and mixed martial arts showed that BJJ competitors were at substantially lower risk of injury compared with these other sports. With orthopaedic injuries being most common and the elbow being the area most vulnerable to injury in BJJ, it is important that participants, referees, and physicians be properly educated about the unique mechanisms of injury that can occur, particularly to the elbow. PMID:26535299

  15. Nine year longitudinal retrospective study of Taekwondo injuries.

    PubMed

    Kazemi, Mohsen; Chudolinski, Artur; Turgeon, Matt; Simon, Aaron; Ho, Eric; Coombe, Lianne

    2009-12-01

    This retrospective longitudinal study aims to describe reported Taekwondo injuries and to examine associations between competitor experience level, age and gender, and the type, location, and mechanism of injury sustained. Additionally, we examined whether recent rule changes concerning increased point value of head shots in adult Taekwondo competition had affected injury incidence.This study was a summation of 9 years of data of competition injury reports, which included 904 injury reports spanning 58 individual competitions. The data was collected on standardized injury reports at time of injury during competition. Care was provided to the athletes, but the type of care provided was not included in the study. Participants included athletes injured during competition who sought care by the health care team, and for whom an injury report was filled out. The data analysis was performed at the Canadian Memorial Chiropractic College.The three most common locations of presenting injury were the head (19%), foot (16%), and thigh (9%). The most common mechanism of presenting injury was found to be a defensive kick (44%), followed by an offensive kick (35%). The most commonly diagnosed injuries were contusions (36%), sprains (19%), and strains (15%). Coloured belts had a higher incidence of contusions, while black belts sustained more joint irritation injuries. Black belts were more likely to suffer multiple injuries. Colored belts suffered more injuries while receiving a kick, while black belts had a larger influence of past history of injury. We found no significant difference in location or type of injury when comparing pre versus post rule change. The most common locations of injury are head, foot, and thigh respectively, and are areas for concern when considering preventative measures. Colour belt competitors are more likely to sustain contusions, which the authors believe is due to more aggressive tactics and lack of control. Those more likely to be injured tend to

  16. Simultaneous Volar Dislocations of Carpometacarpal and Metacarpophalangeal Joints of the Thumb

    PubMed Central

    Khan, Hayat; Darcy, Peter; Magnussen, Peter

    2012-01-01

    Introduction: Multiple dislocations of joints in the hand are rare. Double dislocations of the thumb joints have only been reported on four previous occasions, in all cases reported to date, the joints have dislocated dorsally. Case Report: We present the case of a 26-year-old male patient with simultaneous volar dislocations of the carpometacarpal and metacarpophalangeal joints of the thumb. There was delayed operative treatment of this injury with ligament reconstruction and stabilization of the metacarpophalangeal joint. Conclusions: This rare case provides a mechanism to this type of injury, highlights the importance of initial, and repeated clinical and radiographic review, highlights the soft tissue component to this injury, and demonstrates how even delayed treatment can result in a good functional outcome.

  17. Pressure-actuated joint system

    NASA Technical Reports Server (NTRS)

    McGuire, John R. (Inventor)

    2004-01-01

    A pressure vessel is provided that includes first and second case segments mated with one another. First and second annular rubber layers are disposed inboard of the first and second case segments, respectively. The second annular rubber layer has a slot extending from the radial inner surface across a portion of its thickness to define a main body portion and a flexible portion. The flexible portion has an interfacing surface portion abutting against an interfacing surface portion of the first annular rubber layer to follow movement of the first annular rubber layer during operation of the pressure vessel. The slot receives pressurized gas and establishes a pressure-actuated joint between the interfacing surface portions. At least one of the interfacing surface portions has a plurality of enclosed and sealed recesses formed therein.

  18. Electronic hidden solder joint geometry characterization

    NASA Astrophysics Data System (ADS)

    Hsieh, Sheng-Jen

    2009-05-01

    To reduce the size of electronic equipment, multi-layer printed circuit board structures have become popular in recent years. As a result, the inspection of hidden solder joints between layers of boards has become increasingly difficult. Xray machines have been used for ball grid array (BGA) and hidden solder joint inspection; however, the equipment is costly and the inspection process is time consuming. In this paper, we investigate an active thermography approach to probing solder joint geometry. A set of boards having the same number of solder joints and amount of solder paste (0.061 g) was fabricated. Each solder joint had a different geometry. A semi-automated system was built to heat and then transfer each board to a chamber where an infrared camera was used to scan the board as it was cooling down. Two-thirds of the data set was used for model development and one-third was used for model evaluation. Both artificial neural network (ANN) and binary logistic regression models were constructed. Results suggest that solder joints with more surface area cool much faster than those with less surface area. In addition, both modeling approaches are consistent in predicting solder geometry; ANN had 85% accuracy and the regression model had 80%. This approach can potentially be used to test for cold solder joints prior to BGA assembly, since cold solder joints may have air gaps between the joint and the board and air is a poor heat conductor. Therefore, a cold solder joint may have a slower cooling rate than a normal one.

  19. Imaging of Sports-Related Hip and Groin Injuries

    PubMed Central

    Lischuk, Andrew W.; Dorantes, Thomas M.; Wong, William; Haims, Andrew H.

    2010-01-01

    A normally functioning hip joint is imperative for athletes who use their lower extremities with running, jumping, or kicking activities. Sports-related injuries of the hip and groin are far less frequent than injuries to the more distal aspect of the extremity, accounting for less than 10% of lower extremity injuries. Despite the lower incidence, hip and groin injuries can lead to significant clinical and diagnostic challenges related to the complex anatomy and biomechanical considerations of this region. Loads up to 8 times normal body weight have been documented in the joint in common daily activities, such as jogging, with significantly greater force expected during competitive athletics. Additionally, treatment for hip and groin injuries can obviate the participation of medical and surgical specialties, with a multidisciplinary approach frequently required. Delay in diagnosis and triage of these injuries may cause loss of time from competition and, potentially, early onset of degenerative changes. Magnetic resonance imaging (MRI) of the hip has proven to be the gold standard for the diagnosis of sports-related hip and groin injuries in the setting of negative radiographs. With its exquisite soft tissue contrast, multiplanar capabilities, and lack of ionizing radiation, MRI is unmatched in the noninvasive diagnosis of intra-articular and extra-articular pathology, as well as intraosseous processes. This review focuses on MRI of common athletic injuries of the hip and groin, including acetabular labral tears, femoral acetabular impingement syndrome, muscle injuries around the hip and groin (including athletic pubalgia), and athletic osseous injuries. PMID:23015946

  20. Imaging of sports-related hip and groin injuries.

    PubMed

    Lischuk, Andrew W; Dorantes, Thomas M; Wong, William; Haims, Andrew H

    2010-05-01

    A normally functioning hip joint is imperative for athletes who use their lower extremities with running, jumping, or kicking activities. Sports-related injuries of the hip and groin are far less frequent than injuries to the more distal aspect of the extremity, accounting for less than 10% of lower extremity injuries. Despite the lower incidence, hip and groin injuries can lead to significant clinical and diagnostic challenges related to the complex anatomy and biomechanical considerations of this region. Loads up to 8 times normal body weight have been documented in the joint in common daily activities, such as jogging, with significantly greater force expected during competitive athletics. Additionally, treatment for hip and groin injuries can obviate the participation of medical and surgical specialties, with a multidisciplinary approach frequently required. Delay in diagnosis and triage of these injuries may cause loss of time from competition and, potentially, early onset of degenerative changes. Magnetic resonance imaging (MRI) of the hip has proven to be the gold standard for the diagnosis of sports-related hip and groin injuries in the setting of negative radiographs. With its exquisite soft tissue contrast, multiplanar capabilities, and lack of ionizing radiation, MRI is unmatched in the noninvasive diagnosis of intra-articular and extra-articular pathology, as well as intraosseous processes. This review focuses on MRI of common athletic injuries of the hip and groin, including acetabular labral tears, femoral acetabular impingement syndrome, muscle injuries around the hip and groin (including athletic pubalgia), and athletic osseous injuries. PMID:23015946

  1. Spatial and temporal Antarctic Ice Sheet mass trends, glacio-isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data

    NASA Astrophysics Data System (ADS)

    Martín-Español, Alba; Zammit-Mangion, Andrew; Clarke, Peter J.; Flament, Thomas; Helm, Veit; King, Matt A.; Luthcke, Scott B.; Petrie, Elizabeth; Rémy, Frederique; Schön, Nana; Wouters, Bert; Bamber, Jonathan L.

    2016-02-01

    We present spatiotemporal mass balance trends for the Antarctic Ice Sheet from a statistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003-2013. Our method simultaneously determines annual trends in ice dynamics, surface mass balance anomalies, and a time-invariant solution for glacio-isostatic adjustment while remaining largely independent of forward models. We establish that over the period 2003-2013, Antarctica has been losing mass at a rate of -84 ± 22 Gt yr-1, with a sustained negative mean trend of dynamic imbalance of -111 ± 13 Gt yr-1. West Antarctica is the largest contributor with -112 ± 10 Gt yr-1, mainly triggered by high thinning rates of glaciers draining into the Amundsen Sea Embayment. The Antarctic Peninsula has experienced a dramatic increase in mass loss in the last decade, with a mean rate of -28 ± 7 Gt yr-1 and significantly higher values for the most recent years following the destabilization of the Southern Antarctic Peninsula around 2010. The total mass loss is partly compensated by a significant mass gain of 56 ± 18 Gt yr-1 in East Antarctica due to a positive trend of surface mass balance anomalies.

  2. Pediatric hand treadmill injuries.

    PubMed

    Banever, Gregory T; Moriarty, Kevin P; Sachs, Barry F; Courtney, Richard A; Konefal, Stanley H; Barbeau, Lori

    2003-07-01

    The great popularity of physical fitness in modern society has brought many pieces of exercise equipment into our homes for convenience and privacy. This trend has come with an increasing rate of injuries to children who curiously touch moving parts, including treadmill belts. Experience with a recent series of treadmill contact burns to children's hands is described in this article. A retrospective chart review at a tertiary referral center from June 1998 until June 2001 found six children sustaining hand burns from treadmills. The patients' ages at presentation ranged from 15 to 45 months (average of 31 months, three boys and three girls). All injuries occurred in the home while a parent was using the treadmill. Burns involved the palmar aspect of the hand, mostly confined to the fingers, and the severity ranged from partialto full-thickness burns. All patients were initially managed with collagenase and bacitracin zinc/polymyxin B powder dressings to second- and third-degree burns, along with splinting and range-of-motion exercises. Two patients required skin grafting at 2 weeks and 2 months for full-thickness tissue loss and tight joint contracture, respectively. At an average follow-up of 12 months, all patients had full range of motion and no physical limitation. The rate of children injured by exercise equipment is expected to increase. Friction burns to the hands remain a concern, although early recognition and appropriate management are associated with excellent functional outcomes. Protective modification of exercise machines seems to be the best approach to eliminating these injuries. PMID:12867861

  3. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  4. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2004-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  5. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2004-10-29

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  6. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  7. Assessment of Knee Proprioception in the Anterior Cruciate Ligament Injury Risk Position in Healthy Subjects: A Cross-sectional Study

    PubMed Central

    Mir, Seyed Mohsen; Talebian, Saeed; Naseri, Nasrin; Hadian, Mohammad-Reza

    2014-01-01

    [Purpose] Knee joint proprioception combines sensory input from a variety of afferent receptors that encompasses the sensations of joint position and motion. Poor proprioception is one of the risk factors of anterior cruciate ligament injury. Most studies have favored testing knee joint position sense in the sagittal plane and non-weight-bearing position. One of the most common mechanisms of noncontact anterior cruciate ligament injury is dynamic knee valgus. No study has measured joint position sense in a manner relevant to the mechanism of injury. Therefore, the aim of this study was to measure knee joint position sense in the noncontact anterior cruciate ligament injury risk position and normal condition. [Subjects and Methods] Thirty healthy male athletes participated in the study. Joint position sense was evaluated by active reproduction of the anterior cruciate ligament injury risk position and normal condition. The dominant knees of subjects were tested. [Results] The results showed less accurate knee joint position sense in the noncontact anterior cruciate ligament injury risk position rather than the normal condition. [Conclusion] The poorer joint position sense in non-contact anterior cruciate ligament injury risk position compared with the normal condition may contribute to the increased incidence of anterior cruciate ligament injury. PMID:25364100

  8. The cricothyroid joint in elderly Japanese individuals.

    PubMed

    Serikawa, Masamitu; Yamamoto, Masahito; Kawamoto, Ai; Katori, Yukio; Kinoshita, Hideaki; Matsunaga, Satoru; Abe, Shin-Ichi

    2016-06-01

    Using 15 cricothyroid joint (CT joint) specimens obtained from donated cadavers of elderly individuals, we examined the morphologies of the ceratocricoid ligaments as well as the synovial tissue. The ligaments consistently contained abundant elastic fibers: the fibers tended to be straight on the anterior side in contrast to a mesh-like arrangement on the posterior side. Thick and/or long synovial folds were often evident in the CT joint. The synovial tissue usually contained CD68-positive macrophages, but the positive cells were often restricted to certain parts of the tissue. Factor VIII-positive capillaries were present but few in number, and CD3- or IgM-positive lymphocytes were absent in the synovial tissue. Degenerative changes in the joint cartilage, such as roughness or thinning, were often present, but no cartilage defects were evident. Therefore, in contrast to the small, non-weight-bearing joints of the musculoskeletal system, we considered the degeneration of the CT joint to be a specific, silent form of osteoarthritis. For high-pitched phonation and ossification of the laryngeal cartilage, the CT joint in elderly individuals seemed to maintain its anterior gliding and rotation with the aid of elastic fiber-rich tissues compensating for the loss of congruity between the joint cartilage surfaces. PMID:26286109

  9. Injuries sustained by falls.

    PubMed Central

    Rozycki, G S; Maull, K I

    1991-01-01

    During a recent 4-year period, 381 patients were admitted with injuries sustained from falls. Equal numbers of patients were less than and greater than 50 years of age and included 53 children (less than or equal to 16 years) and 214 elderly (greater than or equal to 55 years). Falls from heights occurred predominantly in young males (mean age 34.2 years), were most commonly job or recreation related and resulted in higher injury severity scores (ISS). Falls in the elderly occurred more commonly in women, typically on a flat surface, and were less severe. Despite lower mean ISS, fall victims over 55 years of age had longer hospitalizations (11.4 vs. 4.5 days) and incurred higher hospital charges compared to younger patients. There were 35 deaths (9.2%). In patients under 55 years, deaths resulted from fall-related central nervous system (CNS) injury and/or multisystem trauma. In patients over 55 years, fatalities were most commonly related to pre-existent medical conditions. Based on a review of this experience, we conclude that: (1) unlike other causes of blunt and penetrating trauma, both sexes are equally at risk from fall-related injuries but sex incidence is age related; (2) falls from heights are more common in men; (3) advanced age and pre-existing medical conditions account for the increased morbidity and mortality following falls and; (4) cost containment measures for fall-related trauma must consider not only injury severity, but the age and pre-existent medical conditions of the patient. PMID:1772536

  10. CHARACTERIZATION OF DAMPING IN BOLTED LAP JOINTS

    SciTech Connect

    C. MALONEY; D. PEAIRS; ET AL

    2000-08-01

    The dynamic response of a jointed beam was measured in laboratory experiments. The data were analyzed and the system was mathematically modeled to establish plausible representations of joint damping behavior. Damping is examined in an approximate, local linear framework using log decrement and half power bandwidth approaches. in addition, damping is modeled in a nonlinear framework using a hybrid surface irregularities model that employs a bristles-construct. Experimental and analytical results are presented.

  11. Low-Friction Joint for Robot Fingers

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F.

    1985-01-01

    Mechanical linkage allows adjacent parts to move relative to each other with low friction and with no chatter, slipping, or backlash. Low-friction joint of two surfaces in rolling contact, held in alinement by taut flexible bands. No sliding friction or "stick-slip" motion: Only rolling-contact and bending friction within bands. Proposed linkage intended for finger joints in mechanical hands for robots and manipulators.

  12. Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis

    PubMed Central

    Lockwood, Kevin A.; Chu, Bryce T.; Anderson, Matthew J.; Haudenschild, Dominik R.; Christiansen, Blaine A.

    2014-01-01

    Post-traumatic osteoarthritis (PTOA) is a common long-term consequence of joint injuries such as anterior cruciate ligament (ACL) rupture. In this study we used a tibial compression overload mouse model to compare knee injury induced at low speed (1 mm/s), which creates an avulsion fracture, to injury induced at high speed (500 mm/s), which induces midsubstance tear of the ACL. Mice were sacrificed at 0 days, 10 days, 12 weeks, or 16 weeks post-injury, and joints were analyzed with micro-computed tomography, whole joint histology, and biomechanical laxity testing. Knee injury with both injury modes caused considerable trabecular bone loss by 10 days post-injury, with the Low Speed Injury group (avulsion) exhibiting a greater amount of bone loss than the High Speed Injury group (midsubstance tear). Immediately after injury, both injury modes resulted in greater than 2-fold increases in total AP joint laxity relative to control knees. By 12 and 16 weeks post-injury, total AP laxity was restored to uninjured control values, possibly due to knee stabilization via osteophyte formation. This model presents an opportunity to explore fundamental questions regarding the role of bone turnover in PTOA, and the findings of this study support a biomechanical mechanism of osteophyte formation following injury. PMID:24019199

  13. Shoulder Injuries in English Community Rugby Union.

    PubMed

    Singh, V R; Trewartha, G; Roberts, S P; England, M; Stokes, K A

    2016-07-01

    The aim of this study was to describe the incidence, severity and type of shoulder injuries resulting from match play in adult community rugby union between 2009-2013. A total of 254 time-loss shoulder injuries were reported, an overall incidence of 2.2 per 1 000 h (95% CI: 1.9 to 2.4), and a mean injury severity of 9.5 weeks missed (95% CI: 8.2 to 10.8). The semi-professional group had an incidence of 2.8 injuries per 1 000 h (95% CI: 2.2 to 3.5), which was higher than the recreational group at 1.8 injuries per 1 000 h (95% CI: 1.4 to 2.2, p=0.004). The incidence of acromioclavicular joint injury for semi-professional players was 1.2 per 1 000 h (95% CI: 0.8 to 1.6); which was significantly higher than the incidence of this injury type in recreational players (0.5 per 1 000 h 95% CI: 0.3 to 0.7, p=0.002). Overall, back row players sustained the highest incidence of all shoulder injuries for a given playing position, 2.9 injuries per 1 000 h (95% CI: 2.2 to 3.6). The tackle was the main event associated with injury. Injury prevention programs and coaching strategies that consider tackle technique and physical conditioning of the shoulder region are therefore considered important. PMID:27176887

  14. [Bilateral elbow dislocation related to Essex-Lopresti injury].

    PubMed

    Romero Pérez, B; Marcos García, A; Medina Henríquez, J A; Muratore Moreno, G

    2012-01-01

    Elbow dislocation is second in frequency, after the shoulder, whereas bilateral dislocation is uncommon, even less than dislocations with concurrent associated fractures. One of the least frequent associations is the Essex-Lopresti injury which consists of a fracture of the radial head affecting the distal radioulnar joint with injury to the interosseous membrane. This is a case of bilateral elbow dislocation, one of the elbows associated with the Essex-Lopresti injury. During treatment, the premature closed reduction prevails, previously making sure the elbow is stable, the premise which will determine the orthopedic or surgical treatment of the injury. PMID:23177945

  15. Study of Compatibility of Stainless Steel Weld Joints with Liquid Sodium-Potassium Coolants for Fission Surface Power Reactors for Lunar and Space Applications

    SciTech Connect

    Grossbeck, Martin; Qualls, Louis

    2015-07-31

    To make a manned mission to the surface of the moon or to Mars with any significant residence time, the power requirements will make a nuclear reactor the most feasible source of energy. To prepare for such a mission, NASA has teamed with the DOE to develop Fission Surface Power technology with the goal of developing viable options. The Fission Surface Power System (FSPS) recommended as the initial baseline design includes a liquid metal reactor and primary coolant system that transfers heat to two intermediate liquid metal heat transfer loops. Each intermediate loop transfers heat to two Stirling heat exchangers that each power two Stirling converters. Both the primary and the intermediate loops will use sodium-potassium (NaK) as the liquid metal coolant, and the primary loop will operate at temperatures exceeding 600°C. The alloy selected for the heat exchangers and piping is AISI Type 316L stainless steel. The extensive experience with NaK in breeder reactor programs and with earlier space reactors for unmanned missions lends considerable confidence in using NaK as a coolant in contact with stainless steel alloys. However, the microstructure, chemical segregation, and stress state of a weld leads to the potential for corrosion and cracking. Such failures have been experienced in NaK systems that have operated for times less than the eight year goal for the FSPS. For this reason, it was necessary to evaluate candidate weld techniques and expose welds to high-temperature, flowing NaK in a closed, closely controlled system. The goal of this project was to determine the optimum weld configuration for a NaK system that will withstand service for eight years under FSPS conditions. Since the most difficult weld to make and to evaluate is the tube to tube sheet weld in the intermediate heat exchangers, it was the focus of this research. A pumped loop of flowing NaK was fabricated for exposure of candidate weld specimens at temperatures of 600°C, the expected

  16. Vulnerability of the Superficial Zone of Immature Articular Cartilage to Compressive Injury

    SciTech Connect

    Rolauffs, R.; Muehleman, C; Li, J; Kurz, B; Kuettner, K; Frank, E; Grodzinsky, A

    2010-01-01

    The zonal composition and functioning of adult articular cartilage causes depth-dependent responses to compressive injury. In immature cartilage, shear and compressive moduli as well as collagen and sulfated glycosaminoglycan (sGAG) content also vary with depth. However, there is little understanding of the depth-dependent damage caused by injury. Since injury to immature knee joints most often causes articular cartilage lesions, this study was undertaken to characterize the zonal dependence of biomechanical, biochemical, and matrix-associated changes caused by compressive injury. Disks from the superficial and deeper zones of bovine calves were biomechanically characterized. Injury to the disks was achieved by applying a final strain of 50% compression at 100%/second, followed by biomechanical recharacterization. Tissue compaction upon injury as well as sGAG density, sGAG loss, and biosynthesis were measured. Collagen fiber orientation and matrix damage were assessed using histology, diffraction-enhanced x-ray imaging, and texture analysis. Injured superficial zone disks showed surface disruption, tissue compaction by 20.3 {+-} 4.3% (mean {+-} SEM), and immediate biomechanical impairment that was revealed by a mean {+-} SEM decrease in dynamic stiffness to 7.1 {+-} 3.3% of the value before injury and equilibrium moduli that were below the level of detection. Tissue areas that appeared intact on histology showed clear textural alterations. Injured deeper zone disks showed collagen crimping but remained undamaged and biomechanically intact. Superficial zone disks did not lose sGAG immediately after injury, but lost 17.8 {+-} 1.4% of sGAG after 48 hours; deeper zone disks lost only 2.8 {+-} 0.3% of sGAG content. Biomechanical impairment was associated primarily with structural damage. The soft superficial zone of immature cartilage is vulnerable to compressive injury, causing superficial matrix disruption, extensive compaction, and textural alteration, which results

  17. Dorsal dislocation of the trapezoid at the scaphotrapeziotrapezoidal joint.

    PubMed

    Ricciardi, Benjamin F; Malliaris, Stephanie; Weiland, Andrew J

    2015-05-01

    Background Axial dislocations of the trapezoid are rare, high-energy injuries. We present an unusual case of isolated dorsal dislocation of the trapezoid and index metacarpal at the scaphotrapeziotrapezoidal (STT) joint due to steering wheel injury. Case Description A 56-year-old man presented to our office with right hand pain for 10 days after a head-on motor vehicle accident (MVA) in which he suffered an axial load injury to his hand on the steering wheel. X-ray images were reported as unremarkable. Further workup with computed tomography (CT) scan revealed an isolated dorsal dislocation of the trapezoid with its associated index metacarpal at the STT joint. The patient was treated with open reduction, pinning, and dorsal capsulodesis. Literature Review Dorsal dislocation of the trapezoid has been associated with high-energy trauma such as industrial accidents or motorcycle accidents; however, recent case reports have also revealed an axial loading mechanism from a steering wheel injury as an increasingly common mechanism. These cases typically occur concomitantly with other fractures or dislocations of the carpal bones or carpometacarpal (CMC) joints. Multiple reports of delayed diagnoses due to distracting injuries and difficulty of recognition on plain radiographs have been reported. Clinical Relevance Dorsal dislocation of the trapezoid with its associated second metacarpal is a rare, high-energy injury that can often be missed on plain radiography. We report a rare variant with no concomitant injury to the metacarpals or carpal bones. A low index of suspicion for further imaging should exist in the setting of an axial loading injury to the hand. PMID:25945300

  18. Meniscal injuries in basketball players.

    PubMed

    Zedde, Pietro; Mela, Federico; Del Prete, Fabio; Masia, Francesco; Manunta, Andrea F

    2014-01-01

    Basketball is a highly competitive sport in which the knee joint is constantly subject to physical stresses. Basketball-related traumatic injuries are the result of specific technical movements. Even though basketball is not considered a contact sport, injuries in basketball players are due both to athletes' handling of the ball and to their intense physical interaction during games. Nowadays, traumatic meniscal injuries are constantly on the increase, especially in young athletes, and they are generally the result of compressive forces together with knee flexion rotation. Recognition of the great importance of meniscal biomechanics and of the functional role of the meniscus has resulted in the adoption of an increasingly preserving approach, also in the light of the effects, in terms of articular degeneration, of removing meniscal tissue. Even though recent decades have seen considerable developments in arthroscopic meniscectomy techniques, geared at preserving as much meniscal tissue as possible, basketball players undergoing this treatment often present, in the long run, clinical symptomatology severe enough to compromise their participation in competitive sport. Hence the treatment of meniscal injuries in athletes has become more and more preserving in recent years, through recourse to surgical techniques such as meniscal repair, biological replacement implantation and donor meniscus implantation, which allow pain relief, return to competitive activities and stable long-term results, slowing down arthritic progression. Therefore, considering the increasing number of meniscal injuries in basketball players, which can jeopardize their sporting careers, great importance is now attached to early diagnosis and to the correct choice of meniscal injury treatment in these athletes. PMID:25750909

  19. A rare case of floating clavicle and a novel technique for stabilizing the sternoclavicular joint

    PubMed Central

    Webb, Mark; Wallace, Angus

    2014-01-01

    We present the first ever case report of a floating clavicle with a unique combination of a posterior sternoclavicular joint dislocation and an associated grade III acromioclavicular joint dislocation. We treated this injury surgically by stabilizing both ends of clavicle using a polyester surgical mesh device (LockDown™; Mandaco 569 Limited, Redditch, UK; previously called the Nottingham Surgilig).

  20. Calcinosis of joints and periarticular tissues associated with vitamin D intoxication.

    PubMed Central

    Butler, R C; Dieppe, P A; Keat, A C

    1985-01-01

    We describe a patient with rheumatoid arthritis and widespread joint and periarticular calcinosis related to self-medication with vitamin D, which was aggravated by oral phosphate therapy prescribed for her hypercalcaemia. Hydroxyapatite was shown in the synovial fluid from affected joints. The role played by tissue injury in the pathogenesis of soft tissue calcification is discussed. Images PMID:4026410