Science.gov

Sample records for joint time-frequency domain

  1. Analysis in the joint time-frequency domain of the identifying signatures of submerged targets insonified by dolphin clicks

    NASA Astrophysics Data System (ADS)

    Strifors, Hans C.; Gaunaurd, Guillermo C.; Moore, Patrick W.

    1997-06-01

    We study the scattering interaction of dolphin-emitted acoustic pulses ('clicks') with various elastic shells located, underwater, in front of the animal in a large test site in Kaneohe Bay, Hawaii. A carefully instrumented analog- to-digital system continuously captured the emitted clicks and also the returned, backscattered echoes. Using standard conditioning techniques and food reinforcers, the dolphin is taught to push an underwater paddle when the 'correct' target -- the one he has been trained to identify -- is presented to him. He communicates to us his consistently correct identifying choices in this manner. By means of several time- frequency distributions (TFD) of the Wigner-type, or Cohen class, we examine echoes returned by three types of cylindrical shells. The time-frequency distributions we compare in this survey are the pseudo-Wigner distribution (PWD), the Choi-Williams distribution (CWD), the adaptive spectrogram (AS), the cone-shaped distribution (CSD), the Gabor spectrogram (GS), and the spectrogram (SPEC). To be satisfactory for target identification purposes, a time- frequency representation of the echoes should display a sufficient amount of distinguishing features, and still be robust enough to suppress the interference of noise contained in the received signals. Both these properties in a time- frequency distribution depend on the distribution's capability of concentrating the featuers in time and frequency and of handling cross-term interference. With some time-frequency distributions there is a trade-off between the concentration of features and the suppression of cross-term interference. The results of our investigation serve the twofold purposes of (1) advancing the understanding of the amazing target identification capability of dolphins, and (2) to assist in assessing the possibility of identifying submerged targets using active sonar and a classifier based on target signatures in the combined time-frequency domain.

  2. Joint Time-Frequency Analysis of High Power Microwave Signals

    NASA Astrophysics Data System (ADS)

    Peters, C. W.; Jaynes, R. L.; Gilgenbach, R. M.; Lau, Y. Y.; Williams, W. J.; Hochman, J. M.; Cohen, W. E.; Rintamaki, J. I.; Vollers, D. E.; Luginsland, J. W.; Haworth, M. D.; Hendricks, K. J.; Spencer, T. A.

    1998-11-01

    We report a new technique for the study of high power microwave sources utilizing joint-time-frequency (JTF) analysis of heterodyne mixer signals (C. W. Peters et al., Phys. Rev. E, to be published, 1998). Reduced-interference-distributions (RIDs) are used to avoid the spectrogram windowing effect (W. J. Williams, Proc. IEEE 84, 1264 (1996)). JTF analysis of coaxial gyrotron heterodyne signals shows, with unprecedented clarity, the following effects under different conditions: 1)Frequency modulation by e-beam voltage fluctuations, 2) Mode hopping, and 3) Mode competition. Microwave signals from other microwave sources (MILO, RKO) and simulations are being analyzed. This technique is expected to open up a new paradigm to investigate HPM pulse shortening, mode competition, noise and unwanted frequencies in RF generation.

  3. Joint DOD/DOA estimation in MIMO radar exploiting time-frequency signal representations

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin D.; Amin, Moeness G.; Himed, Braham

    2012-12-01

    In this article, we consider the joint estimation of direction-of-departure (DOD) and direction-of-arrival (DOA) information of maneuvering targets in a bistatic multiple-input multiple-output (MIMO) radar system that exploits spatial time-frequency distribution (STFD). STFD has been found useful in solving various array processing problems, such as direction finding and blind source separation, where nonstationary signals with time-varying spectral characteristics are encountered. The STFD approach to array processing has been primarily limited to conventional problems for passive radar platform that deals with signal arrivals, while its use in a MIMO radar configuration has received much less attention. This paper examines the use of STFD in MIMO radar systems with application to direction finding of moving targets with nonstationary signatures. Within this framework, we consider the use of joint transmit and receive apertures for the improved estimation of both target time-varying Doppler signatures and joint DOD/DOA. It is demonstrated that the STFD is an effective tool in MIMO radar processing when moving targets produce Doppler signatures that are highly localized in the time-frequency domain.

  4. A Joint Time-Frequency and Matrix Decomposition Feature Extraction Methodology for Pathological Voice Classification

    NASA Astrophysics Data System (ADS)

    Ghoraani, Behnaz; Krishnan, Sridhar

    2009-12-01

    The number of people affected by speech problems is increasing as the modern world places increasing demands on the human voice via mobile telephones, voice recognition software, and interpersonal verbal communications. In this paper, we propose a novel methodology for automatic pattern classification of pathological voices. The main contribution of this paper is extraction of meaningful and unique features using Adaptive time-frequency distribution (TFD) and nonnegative matrix factorization (NMF). We construct Adaptive TFD as an effective signal analysis domain to dynamically track the nonstationarity in the speech and utilize NMF as a matrix decomposition (MD) technique to quantify the constructed TFD. The proposed method extracts meaningful and unique features from the joint TFD of the speech, and automatically identifies and measures the abnormality of the signal. Depending on the abnormality measure of each signal, we classify the signal into normal or pathological. The proposed method is applied on the Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database which consists of 161 pathological and 51 normal speakers, and an overall classification accuracy of 98.6% was achieved.

  5. Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems.

    PubMed

    Li, Jianfeng; Huang, Zhitong; Liu, Xiaoshuang; Ji, Yuefeng

    2015-01-12

    A novel hybrid time-frequency domain equalization scheme is proposed and experimentally demonstrated to mitigate the white light emitting diode (LED) nonlinearity in visible light communication (VLC) systems based on orthogonal frequency division multiplexing (OFDM). We handle the linear and nonlinear distortion separately in a nonlinear OFDM system. The linear part is equalized in frequency domain and the nonlinear part is compensated by an adaptive nonlinear time domain equalizer (N-TDE). The experimental results show that with only a small number of parameters the nonlinear equalizer can efficiently mitigate the LED nonlinearity. With the N-TDE the modulation index (MI) and BER performance can be significantly enhanced. PMID:25835706

  6. Comparison of pulse and SFCW GPR in time, frequency and wavelet domain

    NASA Astrophysics Data System (ADS)

    De Pue, Jan; Van De Vijver, Ellen; Cornelis, Wim; Van Meirvenne, Marc

    2014-05-01

    Ground penetrating radar (GPR) systems operating in the time- or frequency domain are two fundamentally different concepts, pursuing the same objective: non-invasive characterization of the subsurface. The aim of this study is to compare the performance of these two GPR systems in the time, frequency and wavelet domain. The time domain GPR investigated is the Utilityscan DF. This is a ground coupled GPR with a digital dual-frequency antenna (300 and 800 MHz). The Geoscope GS3F and VX1213 antenna array from 3DRadar is the frequency domain GPR used in this comparison. It is an air coupled stepped frequency continuous wave (SFCW) GPR with a frequency bandwidth from 200 MHz to 3000 MHz. Using data from several test sites of various soil types, the data is evaluated in the time domain, the frequency domain and the wavelet domain. Each of these domains contains specific information regarding the data quality. Presenting the data in the time domain, allows visualizing the subsurface reflections. This makes it visible how strong the data is affected by internal interference, ringing and other noise. To compensate for the attenuation of the signal in time, automatic gain control is applied. The maximum of this gain function indicates the time where the signal is attenuated completely and noise becomes more dominant, corresponding with the maximal penetration depth of the different GPR systems. In the frequency domain, the data allows to investigate which frequencies contain most valuable information and which ones are affected by noise. Finally, by performing a wavelet transformation the data is transformed to the time-frequency domain. Due to frequency dependent attenuation of electromagnetic signals in the soil, low frequencies will be more dominant in deeper layers, and high frequencies will not be present anymore. This is determining for the range resolution of the data throughout the traveltime of the signal. This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  7. Initialization method for speech separation algorithms that work in the time-frequency domain.

    PubMed

    Sarmiento, Auxiliadora; Durán-Díaz, Iván; Cruces, Sergio

    2010-04-01

    This article addresses the problem of the unsupervised separation of speech signals in realistic scenarios. An initialization procedure is proposed for independent component analysis (ICA) algorithms that work in the time-frequency domain and require the prewhitening of the observations. It is shown that the proposed method drastically reduces the permuted solutions in that domain and helps to reduce the execution time of the algorithms. Simulations confirm these advantages for several ICA instantaneous algorithms and the effectiveness of the proposed technique in emulated reverberant environments. PMID:20369978

  8. A statistical comparison of EEG time- and time-frequency domain representations of error processing.

    PubMed

    Munneke, Gert-Jan; Nap, Tanja S; Schippers, Eveline E; Cohen, Michael X

    2015-08-27

    Successful behavior relies on error detection and subsequent remedial adjustment of behavior. Researchers have identified two electrophysiological signatures of error processing: the time-domain error-related negativity (ERN), and the time-frequency domain increased power in the delta/theta frequency bands (~2-8 Hz). The relationship between these two signatures is not entirely clear: on the one hand they occur after the same type of event and with similar latency, but on the other hand, the time-domain ERP component contains only phase-locked activity whereas the time-frequency response additionally contains non-phase-locked dynamics. Here we examined the ERN and error-related delta/theta activity in relation to each other, focusing on within-subject analyses that utilize single-trial data. Using logistic regression, we constructed three statistical models in which the accuracy of each trial was predicted from the ERN, delta/theta power, or both. We found that both the ERN and delta/theta power worked roughly equally well as predictors of single-trial accuracy (~70% accurate prediction). Furthermore, a model including both measures provided a stronger overall prediction compared to either model alone. Based on these findings two conclusions are drawn: first, the phase-locked part of the EEG signal appears to be roughly as predictive of single-trial response accuracy as the non-phase-locked part; second, the single-trial ERP and delta/theta power contain both overlapping and independent information. PMID:26032741

  9. Iterative Receiver in Time-Frequency Domain for Shallow Water Acoustic Channel

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Ge, Jianhua

    2012-03-01

    Inter-symbol interference (ISI) caused by multi-path propagation, especially in shallow water channel, degrades the performance of underwater acoustic (UWA) communication systems. In this paper, we combine soft minimum mean squared error (MMSE) equalization and the serially concatenated trellis coded modulation (SCTCM) decoding to develop an iterative receiver in time-frequency domain (TFD) for underwater acoustic point to point communications. Based on sound speed profile (SSP) measured in the lake and finite-element ray (FER) tracing method (Bellhop), the shallow water channel is constructed to evaluate the performance of the proposed iterative receiver. The results suggest that the proposed iterative receiver can reduce the calculation complexity of the equalizer and obtain better performance using less receiving elements.

  10. Joint Time/Frequency Analysis and Design of Spiral Antennas and Arrays for Ultra-Wideband Applications

    NASA Astrophysics Data System (ADS)

    Elmansouri, Mohamed Ali

    Ultra-wideband (UWB) systems transmit and receive extremely short pulses, permitting the corresponding antennas to distort their shape. Thus the design of an antenna for a UWB system plays an important role for the reliability and quality of communication. A UWB antenna design coalesces both the determination of conventional frequency domain parameters and the analysis of time domain response into a single overarching system requirement. While the former is needed to ensure system's sensitivity, the later is critical to minimize pulse distortion. Well-designed spiral antennas are known for their almost frequency independent characteristics; thus they are viable candidates for UWB systems from the frequency-domain side. However, due to their fundamental principles of operation, they are dispersive and arguments were made they should not be used for pulsed UWB applications (time-domain side). The presented research unequivocally proves that spiral antennas and various derivatives thereof, including arrays, can be excellent candidates for multi-functional time/frequency domain systems. A complete framework for joint frequency and time domain characterization of planar spiral antennas in UWB communication systems is developed first. By utilizing theory, simulations, and experiments, all essential to the analysis frameworks, the various hypotheses are comprehensively treated and relevant conclusions are established. The dispersion and pulse distortion of the conventional spiral antennas are characterized in the radiation and system modes and conclusions regarding the effects of geometrical parameters such as number of arms, mode of operations, etc., on time- and frequency-domain performance are derived for the first time. A method based on controlling the spiral's growth rate and input pulse shape is demonstrated as an effective approach to reduce the pulse distortion. Theoretical pre-distortion compensation method based on a frequency-dependent delay removal technique is employed and performance enhancement of spiral antennas as pulse radiators is successfully demonstrated. A novel spiral antenna topology, named combined power spiral, is derived from first principles to have simultaneously excellent time- and frequency-domain performances without any auxiliary hardware and/or pre-distortion compensation. The role of the reflective cavity backing on the performance of spiral antennas in time and frequency domains is investigated in order to achieve an efficient unidirectional UWB radiation. Resistively-loaded cavity-backed spirals are designed as a compromise for achieving simultaneously good time and frequency domain performances while maintaining high efficiency over the most of operating bandwidth. The lens loading approach is used as a way to further improve the spiral's gain and reduce the amplitude distortion associated with a typical communication channel. UWB spiral arrays based on the derived good time/frequency two- and four-arm spiral antennas are developed and analyzed in time and frequency domains. Multi-mode capabilities of four-arm spirals are used to engineer a dual-circularly polarized array embodiment. To make these arrays practically more desirable, novel feeding scheme which significantly reduces the beamformer complexity is proposed. Time and frequency scanning capabilities and the advantages of the proposed arrays for UWB communications are also discussed. The results of this thesis can pave the way for the use of spiral antennas in many non-traditional, for spiral antennas, applications across commercial and military sectors.

  11. Time-frequency-domain dispersion measurement in rare earth doped large effective mode area multicore fibers

    NASA Astrophysics Data System (ADS)

    Baselt, T.; Taudt, Ch.; Hartmann, P.

    2014-03-01

    Ytterbium doped multicore fibers have been recently employed in the field of high power and Quasi-Gaussian beam lasers to design truly single-mode multicore fiber lasers. The special design of these fibers offers low bending loss even for compact high power lasers and amplifiers. Moreover, the Multi-core fiber amplifier possesses a large effective mode area which results in a significant decrease of the related nonlinear effects. In the paper, modal resolved group-velocity dispersion measurements in active multicore fibers are performed using time-frequency-domain white-light interferometry. A Mach-Zehnder-type interferometer with dual-channel detection in the spectral range from 0.4 ?m up to 1.7 ?m and a home-made supercontinuum source are used. Temporally resolved spectrograms recorded at distinct delay positions enable the detection of interference fringes for the equalizationwavelength. The group-velocity dispersion can be derived by applying a Sellmeier polynomial fit to the wavelength dependent differential group delay function. The dispersion parameters for several LMA fibers are investigated over a broad spectral range of about 1.3 ?m.

  12. EMG burst presence probability: a joint time-frequency representation of muscle activity and its application to onset detection.

    PubMed

    Liu, Jie; Ying, Dongwen; Rymer, William Zev

    2015-04-13

    The purpose of this study was to quantify muscle activity in the time-frequency domain, therefore providing an alternative tool to measure muscle activity. This paper presents a novel method to measure muscle activity by utilizing EMG burst presence probability (EBPP) in the time-frequency domain. The EMG signal is grouped into several Mel-scale subbands, and the logarithmic power sequence is extracted from each subband. Each log-power sequence can be regarded as a dynamic process that transits between the states of EMG burst and non-burst. The hidden Markov model (HMM) was employed to elaborate this dynamic process since HMM is intrinsically advantageous in modeling the temporal correlation of EMG burst/non-burst presence. The EBPP was eventually yielded by HMM based on the criterion of maximum likelihood. Our approach achieved comparable performance with the Bonato method. PMID:25748222

  13. Oscillatory brain activity in the time frequency domain associated to change blindness and change detection awareness.

    PubMed

    Darriba, Alvaro; Pazo-lvarez, Paula; Capilla, Almudena; Amenedo, Elena

    2012-02-01

    Despite the importance of change detection (CD) for visual perception and for performance in our environment, observers often miss changes that should be easily noticed. In the present study, we employed time-frequency analysis to investigate the neural activity associated with CD and change blindness (CB). Observers were presented with two successive visual displays and had to look for a change in orientation in any one of four sinusoid gratings between both displays. Theta power increased widely over the scalp after the second display when a change was consciously detected. Relative to no-change and CD, CB was associated with a pronounced theta power enhancement at parietal-occipital and occipital sites and broadly distributed alpha power suppression during the processing of the prechange display. Finally, power suppressions in the beta band following the second display show that, even when a change is not consciously detected, it might be represented to a certain degree. These results show the potential of time-frequency analysis to deepen our knowledge of the temporal curse of the neural events underlying CD. The results further reveal that the process resulting in CB begins even before the occurrence of the change itself. PMID:21671737

  14. A method for efficient fractional sample delay generation for real-time frequency-domain beamformers

    SciTech Connect

    Breeding, J.E.; Karnowski, T.P.

    1995-07-01

    This paper presents an efficient method for fractional delay filter generation for frequency-domain beamformers. A common misunderstanding regarding frequency-domain beamforming is that any fractional time shift can be achieved using the delay property of the discrete Fourier transform (DFT). Blind application of the DFT delay property introduces circular convolution errors that may adversely affect the beam`s time series. The method presented avoids these errors while enabling real-time processing.

  15. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains.

    PubMed

    Al-Fahoum, Amjed S; Al-Fraihat, Ausilah A

    2014-01-01

    Technically, a feature represents a distinguishing property, a recognizable measurement, and a functional component obtained from a section of a pattern. Extracted features are meant to minimize the loss of important information embedded in the signal. In addition, they also simplify the amount of resources needed to describe a huge set of data accurately. This is necessary to minimize the complexity of implementation, to reduce the cost of information processing, and to cancel the potential need to compress the information. More recently, a variety of methods have been widely used to extract the features from EEG signals, among these methods are time frequency distributions (TFD), fast fourier transform (FFT), eigenvector methods (EM), wavelet transform (WT), and auto regressive method (ARM), and so on. In general, the analysis of EEG signal has been the subject of several studies, because of its ability to yield an objective mode of recording brain stimulation which is widely used in brain-computer interface researches with application in medical diagnosis and rehabilitation engineering. The purposes of this paper, therefore, shall be discussing some conventional methods of EEG feature extraction methods, comparing their performances for specific task, and finally, recommending the most suitable method for feature extraction based on performance. PMID:24967316

  16. EEG biometric identification: a thorough exploration of the time-frequency domain

    NASA Astrophysics Data System (ADS)

    DelPozo-Banos, Marcos; Travieso, Carlos M.; Weidemann, Christoph T.; Alonso, Jesús B.

    2015-10-01

    Objective. Although interest in using electroencephalogram (EEG) activity for subject identification has grown in recent years, the state of the art still lacks a comprehensive exploration of the discriminant information within it. This work aims to fill this gap, and in particular, it focuses on the time-frequency representation of the EEG. Approach. We executed qualitative and quantitative analyses of six publicly available data sets following a sequential experimentation approach. This approach was divided in three blocks analysing the configuration of the power spectrum density, the representation of the data and the properties of the discriminant information. A total of ten experiments were applied. Main results. Results show that EEG information below 40 Hz is unique enough to discriminate across subjects (a maximum of 100 subjects were evaluated here), regardless of the recorded cognitive task or the sensor location. Moreover, the discriminative power of rhythms follows a W-like shape between 1 and 40 Hz, with the central peak located at the posterior rhythm (around 10 Hz). This information is maximized with segments of around 2 s, and it proved to be moderately constant across montages and time. Significance. Therefore, we characterize how EEG activity differs across individuals and detail the optimal conditions to detect subject-specific information. This work helps to clarify the results of previous studies and to solve some unanswered questions. Ultimately, it will serve as guide for the design of future biometric systems.

  17. Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains

    PubMed Central

    Al-Fahoum, Amjed S.; Al-Fraihat, Ausilah A.

    2014-01-01

    Technically, a feature represents a distinguishing property, a recognizable measurement, and a functional component obtained from a section of a pattern. Extracted features are meant to minimize the loss of important information embedded in the signal. In addition, they also simplify the amount of resources needed to describe a huge set of data accurately. This is necessary to minimize the complexity of implementation, to reduce the cost of information processing, and to cancel the potential need to compress the information. More recently, a variety of methods have been widely used to extract the features from EEG signals, among these methods are time frequency distributions (TFD), fast fourier transform (FFT), eigenvector methods (EM), wavelet transform (WT), and auto regressive method (ARM), and so on. In general, the analysis of EEG signal has been the subject of several studies, because of its ability to yield an objective mode of recording brain stimulation which is widely used in brain-computer interface researches with application in medical diagnosis and rehabilitation engineering. The purposes of this paper, therefore, shall be discussing some conventional methods of EEG feature extraction methods, comparing their performances for specific task, and finally, recommending the most suitable method for feature extraction based on performance. PMID:24967316

  18. Real-time frequency domain temperature and oxygen sensor with a single optical fiber.

    PubMed

    Liao, S C; Xu, Z; Izatt, J A; Alcala, J R

    1997-11-01

    The combined excited-state phosphorescence life-times of an alexandrite crystal and platinum tetraphenylporphyrin Pt(TPP) in a single-fiber sensor are used to monitor temperature and oxygen concentration in the physiological range from 15-45 degrees C and 0-50% O2 with precision of 0.24 degree C and 0.15% O2 and accuracy of 0.28 degree C and 0.2% O2. A 500-micron cubic alexandrite crystal bound to the distal end of a 750-micron-diameter optical fiber core and the Pt(TPP) coated circumferentially with a length of 1 cm from the end of the same fiber are excited with pulsed super-bright blue LED light. This apparatus uses a 125-kHz sampler for data acquisition and frequency domain methods for signal processing. The instrument amplifies both the dc and ac components of the photomultiplier output and band limits the signal to 20 kHz. The fundamental frequency of the excitation is set to 488.3 Hz and the highest harmonic used is the 35th. This bandlimited signal is sampled and averaged over a few hundred cycles in the time domain. The frequency domain representation of the data is obtained by employing fast Fourier transform algorithms. The phase delay and the modulation ratio of each sampled harmonic are then computed. At least four log-spaced harmonic phases or modulations are averaged before decoding the two lifetimes of temperature and oxygen phosphorescent sensors. A component of zero lifetime is introduced to account for the excitation backscatter leakage through optical interference filters seen by the photodetector. Linear and second-order empirical polynomials are employed to compute the temperatures and oxygen concentrations from the inverse lifetimes. In the situation of constant oxygen concentration, the lifetime of Pt(TPP) changes with temperature but can be compensated using the measured temperature lifetime. The system drift is 0.24 degree C for the temperature measurement and 0.59% for the oxygen concentration measurement over 30 h of continuous operation. The instrumentation and methods allow for 6-s update times and 90-s full-response times. PMID:9353991

  19. Deriving Lifetime Maps in the Time/Frequency Domain of Coherent Structures in the Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan

    2008-01-01

    The lifetimes of coherent structures are derived from data correlated over a 3 sensor array sampling streamwise sidewall pressure at high Reynolds number (> 10(exp 8)). The data were acquired at subsonic, transonic and supersonic speeds aboard a Tupolev Tu-144. The lifetimes are computed from a variant of the correlation length termed the lifelength. Characteristic lifelengths are estimated by fitting a Gaussian distribution to the sensors cross spectra and are shown to compare favorably with Efimtsov s prediction of correlation space scales. Lifelength distributions are computed in the time/frequency domain using an interval correlation technique on the continuous wavelet transform of the original time data. The median values of the lifelength distributions are found to be very close to the frequency averaged result. The interval correlation technique is shown to allow the retrieval and inspection of the original time data of each event in the lifelength distributions, thus providing a means to locate and study the nature of the coherent structure in the turbulent boundary layer. The lifelength data are converted to lifetimes using the convection velocity. The lifetime of events in the time/frequency domain are displayed in Lifetime Maps. The primary purpose of the paper is to validate these new analysis techniques so that they can be used with confidence to further characterize the behavior of coherent structures in the turbulent boundary layer.

  20. Joint discrepancy evaluation of an existing steel bridge using time-frequency and wavelet-based approach

    NASA Astrophysics Data System (ADS)

    Walia, Suresh Kumar; Patel, Raj Kumar; Vinayak, Hemant Kumar; Parti, Raman

    2013-12-01

    The objective of this study is to bring out the errors introduced during construction which are overlooked during the physical verification of the bridge. Such errors can be pointed out if the symmetry of the structure is challenged. This paper thus presents the study of downstream and upstream truss of newly constructed steel bridge using time-frequency and wavelet-based approach. The variation in the behavior of truss joints of bridge with variation in the vehicle speed has been worked out to determine their flexibility. The testing on the steel bridge was carried out with the same instrument setup on both the upstream and downstream trusses of the bridge at two different speeds with the same moving vehicle. The nodal flexibility investigation is carried out using power spectral density, short-time Fourier transform, and wavelet packet transform with respect to both the trusses and speed. The results obtained have shown that the joints of both upstream and downstream trusses of the bridge behave in a different manner even if designed for the same loading due to constructional variations and vehicle movement, in spite of the fact that the analytical models present a simplistic model for analysis and design. The difficulty of modal parameter extraction of the particular bridge under study increased with the increase in speed due to decreased excitation time.

  1. Comparison of air-launched and ground-coupled configurations of SFCW GPR in time, frequency and wavelet domain

    NASA Astrophysics Data System (ADS)

    Van De Vijver, Ellen; De Pue, Jan; Cornelis, Wim; Van Meirvenne, Marc

    2015-04-01

    A stepped frequency continuous wave (SFCW) ground penetrating radar (GPR) system produces waveforms consisting of a sequence of sine waves with linearly increasing frequency. By adopting a wide frequency bandwidth, SFCW GPR systems offer an optimal resolution at each achievable measurement depth. Furthermore, these systems anticipate an improved penetration depth and signal-to-noise ratio (SNR) as compared to time-domain impulse GPRs, because energy is focused in one single frequency at a time and the phase and amplitude of the reflected signal is recorded for each discrete frequency step. However, the search for the optimal practical implementation of SFCW GPR technology to fulfil these theoretical advantages is still ongoing. In this study we compare the performance of a SFCW GPR system for air-launched and ground-coupled antenna configurations. The first is represented by a 3d-Radar Geoscope GS3F system operated with a V1213 antenna array. This array contains 7 transmitting and 7 receiving antennae resulting in 13 measurement channels at a spacing of 0.075 m and providing a total scan width of 0.975 m. The ground-coupled configuration is represented by 3d-Radar's latest-generation SFCW system, GeoScope Mk IV, operated with a DXG1212 antenna array. With 6 transmitting and 5 receiving antennae this array provides 12 measurement channels and an effective scan width of 0.9 m. Both systems were tested on several sites representative of various application environments, including a test site with different road specimens (Belgian Road Research Centre) and two test areas in different agricultural fields in Flanders, Belgium. For each test, data acquisition was performed using the full available frequency bandwidth of the systems (50 to 3000 MHz). Other acquisition parameters such as the frequency step and dwell time were varied in different tests. Analyzing the data of the different tests in time, frequency and wavelet domain allows to evaluate different performance aspects of the air-launched and ground-coupled configurations such as acquisition speed, measurement resolution, SNR and penetration depth. Based on this analysis, we highlight the advantages and disadvantages of the different SFCW GPR configurations in different application environments. The authors thank Colette Grégoire and Carl Van Geem of the Belgian Road Research Centre for the collaboration on the road test site. This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  2. Measuring Multi-Joint Stiffness during Single Movements: Numerical Validation of a Novel Time-Frequency Approach

    PubMed Central

    Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R.

    2012-01-01

    This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases. PMID:22448233

  3. Unsaturated zone characterization in soil through transient wetting and drying using GPR joint time-frequency analysis and grayscale images

    NASA Astrophysics Data System (ADS)

    Lai, W. L.; Kou, S. C.; Poon, C. S.

    2012-07-01

    SummaryThis paper describes an experimental method to characterize the soil's unsaturated zone by constructing a scenario in which transient downward water infiltration took place from the topsoil to the bottom soil continuously. During the water infiltration, GPR waveforms and side-view grayscale images of the soil column were simultaneously and continuously captured. The GPR wavelets associated with the wetting front were analyzed using short time fourier transform (STFT) algorithm. The downward wetting front and the stretch of unsaturated transition zone decelerated and eased the wetting front's reflection in the time domain; as well as reduced the peak frequency and attenuated the frequency spectra in the frequency domain. The subsequent drying process further attenuated but accelerated the wetting front's reflection in both time and frequency domains. These observations were correlated with the image pixel profiles, from which GPR velocity profiles at different lapsed times were generated after computation via a complex refractive index model (CRIM). The CRIM method is entirely non-invasive and not only offers very detailed measurement of the water saturation profile of the transition zone in laboratory scale, but also is potentially useful for the further study of a variety of vadose zone properties.

  4. High Order Statistics and Time-Frequency Domain to Classify Heart Sounds for Subjects under Cardiac Stress Test

    PubMed Central

    Moukadem, Ali; Schmidt, Samuel; Dieterlen, Alain

    2015-01-01

    This paper considers the problem of classification of the first and the second heart sounds (S1 and S2) under cardiac stress test. The main objective is to classify these sounds without electrocardiogram (ECG) reference and without taking into consideration the systolic and the diastolic time intervals criterion which can become problematic and useless in several real life settings as severe tachycardia and tachyarrhythmia or in the case of subjects being under cardiac stress activity. First, the heart sounds are segmented by using a modified time-frequency based envelope. Then, to distinguish between the first and the second heart sounds, new features, named αopt, β, and γ, based on high order statistics and energy concentration measures of the Stockwell transform (S-transform) are proposed in this study. A study of the variation of the high frequency content of S1 and S2 over the HR (heart rate) is also discussed. The proposed features are validated on a database that contains 2636 S1 and S2 sounds corresponding to 62 heart signals and 8 subjects under cardiac stress test collected from healthy subjects. Results and comparisons with existing methods in the literature show a large superiority for our proposed features. PMID:26089957

  5. Dry contact fingertip ECG-based authentication system using time, frequency domain features and support vector machine.

    PubMed

    Singh, Karan; Singhvi, Akshit; Pathangay, Vinod

    2015-08-01

    Acquiring fingertip ECG (electrocardiogram) signal using dry contact electrodes is challenging due to the presence of noise and interference by EMG (electromyogram) potentials. In this paper, we propose a method for using the fingertip ECG signal for biometric authentication. The noisy segments of the signal are segmented out using a variance-based heuristic and the clean signal is used for subsequent processing. By applying baseline correction and band pass filtering, the filtered signal is used for beat feature extraction. The features are used to train a support vector machine (SVM) classifier. Experimental results are presented to show the optimum filter parameters and feature sets for best classification performance. The performance of the proposed method with the optimum parameters was evaluated on a public domain CYBHi dataset with 126 subjects and the beat level EER of 3.4% was obtained. PMID:26736315

  6. Perceived arousal of facial expressions of emotion modulates the N170, regardless of emotional category: Time domain and time-frequency dynamics.

    PubMed

    Almeida, Pedro R; Ferreira-Santos, Fernando; Chaves, Pedro L; Paiva, Tiago O; Barbosa, Fernando; Marques-Teixeira, Joo

    2016-01-01

    Findings concerning the emotional modulation of the N170 component of the visual event-related potential are mixed. In the present report we tested the hypothesis that the emotional modulation of the N170 may be driven by the perceived emotional arousal of the stimuli, rather than by specific emotional categories. Fifty-four participants viewed facial expressions of anger, disgust, fear and happiness, plus low arousal neutral faces. All emotional categories were matched in arousal, while stimuli within each category varied parametrically in this dimension. The modulation of the electrocortical activity on the N170 time-window was analyzed in the time domain and via time-frequency decomposition. The effects of emotion and arousal were analyzed separately. In the time domain N170 amplitudes co-varied parametrically with perceived arousal, regardless of emotional category. This modulation was linearly associated with the power of the theta, alpha, and beta frequency bands. Moreover, fear was associated with a trend for increased N170 amplitudes, enhanced alpha power, and increased broad band inter-trial phase coherence. These results support the views that a) the activity in N170 time window is fundamentally modulated by perceived arousal, b) the modulation of the N170 may be the product of an increased evoked response, rather than the result of phase resetting processes, and c) facial expressions of fear retain some processing primacy, that may be related to their increased value as environmental cues. PMID:26659012

  7. Precambrian basement control on joint domains in northwestern Ohio

    SciTech Connect

    Dean, S.L.; Armstrong, W.B.; Kulander, B.R.

    1986-08-01

    Joint attitudes in Upper Silurian and Lower Devonian carbonates in northwestern Ohio reveal a marked north-south-trending joint domain boundary in Lucas and Wood Counties. East of the domain boundary, first-formed systematic joints trend N45/sup 0/W; west of this boundary, first-formed systematics trend N40/sup 0/E. The line of change in joint trends follows the Lucas County monocline-Bowling Green fault complex and the projected position of the Grenville front from the Canadian shield. Basement well information and gravity and magnetic data indicate a major change in Precambrian rock types across the domain boundary that is coincident with the projected position of the Grenville front. Observed joint patterns are interpreted to result from extensional tectonics associated with the evolution of the Findlay arch and Michigan basin. Recurrent movements on the Bowling Green fault during the early and middle Paleozoic may have been caused by reactivation of Grenville-age faults, which ultimately localized the joint domain boundary along the Lucas County monocline-Bowling Green fault trend.

  8. Applications of time-frequency signature analysis to target identification

    NASA Astrophysics Data System (ADS)

    Gaunaurd, Guillermo C.; Strifors, Hans C.

    1999-03-01

    The overlapping subjects of target identification, inverse scattering and active classification have many applications that differ depending on specific sensors. Many useful techniques for these relevant subjects have been developed in the frequency and the time domains. A more recent approach views the target signatures in the combined or coupled time-frequency domain. For either ultra-wideband (UWB) projectors, or UWB processing these joint time- frequency techniques are particularly advantageous. Such analysis requires the use of some of the scores of non- linear distributions that have been proposed and studied over the years. Basic ones, such as the Wigner distribution and its many relatives, have been shown to belong to the well-studied `Cohen Class.' We will select half-a-dozen of these distributions to study applications that we have addressed and solved in several areas such as: (1) active sonar, (2) underwater mine classification using pulses from explosive sources, (3) identification of submerged shells having different fillers using dolphin bio-sonar `clicks,' and (4) broadband radar pulses to identify aircraft, other targets covered with dielectric absorbing layers, and also (land) mine-like objects buried underground, using a ground penetrating radar. These examples illustrate how the informative identifying features required for accurate target identification are extracted and displayed in this general time-frequency domain.

  9. Filtering in the joint time/chirp-rate domain for separation of quadratic and cubic phase chirp signals

    NASA Astrophysics Data System (ADS)

    zgen, Mehmet Tankut

    2012-12-01

    This article investigates the possibility and convenience of a filtering operation in the joint time/chirp-rate (TCR) domain, and proposes a novel linear TCR filter for decomposing multicomponent signals into their quadratic and/or cubic phase chirp components with monotonic instantaneous chirp-rate (ICR) laws only. The TCR domain mask of the filter is selected on a display of a TCR representation of an input signal to isolate the desired chirp component. Projecting the input signal onto the phase signal associated with the TCR mask and approximating the phase difference in this projection operation in terms of ICR values result in the proposed TCR filter that recovers the selected component. Simulations illustrate the proposed filtering in recovery of undersampled cubic phase signals and in resolving back-to-back objects from in-line holograms for which cases it is easier to design filter masks in the TCR domain than in the time-frequency domain.

  10. Time-Frequency Data Reduction for Event Related Potentials: Combining Principal Component Analysis and Matching Pursuit

    NASA Astrophysics Data System (ADS)

    Aviyente, Selin; Bernat, Edward M.; Malone, Stephen M.; Iacono, William G.

    2010-12-01

    Joint time-frequency representations offer a rich representation of event related potentials (ERPs) that cannot be obtained through individual time or frequency domain analysis. This representation, however, comes at the expense of increased data volume and the difficulty of interpreting the resulting representations. Therefore, methods that can reduce the large amount of time-frequency data to experimentally relevant components are essential. In this paper, we present a method that reduces the large volume of ERP time-frequency data into a few significant time-frequency parameters. The proposed method is based on applying the widely used matching pursuit (MP) approach, with a Gabor dictionary, to principal components extracted from the time-frequency domain. The proposed PCA-Gabor decomposition is compared with other time-frequency data reduction methods such as the time-frequency PCA approach alone and standard matching pursuit methods using a Gabor dictionary for both simulated and biological data. The results show that the proposed PCA-Gabor approach performs better than either the PCA alone or the standard MP data reduction methods, by using the smallest amount of ERP data variance to produce the strongest statistical separation between experimental conditions.

  11. Time-frequency filtering for classifying targets in nonstationary clutter

    NASA Astrophysics Data System (ADS)

    Gomatam, Vikram Thiruneermalai; Loughlin, Patrick

    2014-06-01

    Classifying underwater targets from their sonar backscatter is often complicated by induced or self-noise (i.e. clutter, reverberation) arising from the scattering of the sonar pulse from non-target objects. Because clutter is inherently nonstationary, and because the propagation environment can induce nonstationarities as well, in addition to any nonstationarities / time-varying spectral components of the target echo itself, a joint phase space approach to target classification has been explored. In this paper, we apply a previously developed minimum mean square time-frequency spectral estimation method to design a bank of time-frequency filters from training data to distinguish targets from clutter. The method is implemented in the ambiguity domain in order to reduce computational requirements. In this domain, the optimal filter (more commonly called a "kernel" in the time-frequency literature) multiples the ambiguity function of the received signal, and then the mean squared distance to each target class is computed. Simulations demonstrate that the class-specific optimal kernel better separates each target from the clutter and other targets, compared to a simple mean-squared distance measure with no kernel processing.

  12. Application of sparse time-frequency decomposition to seismic data

    NASA Astrophysics Data System (ADS)

    Wang, Xiong-Wen; Wang, Hua-Zhong

    2014-12-01

    The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function (IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse time-frequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results.

  13. Comparison of optimization-algorithm based feature extraction from time data or time-frequency data for target recognition purposes

    NASA Astrophysics Data System (ADS)

    Strifors, H. C.; Abrahamson, S.; Andersson, T.; Gaunaurd, G. C.

    2006-05-01

    Ultra-wideband ground penetrating radar (GPR) systems have proved useful for extracting and displaying information for target recognition purposes. Target signatures whether in the time, frequency, or joint time-frequency domains, will substantially depend on the target's burial conditions such as the type of soil, burial depth, and the soil's moisture content. That dependence can be utilized for target recognition purposes as we have demonstrated previously. The signature template of each target was computed in the time-frequency domain from the returned echo when the target was buried at a known depth in the soil with a known moisture content. Then, for any returned echo the relative difference between the similarly computed target signature and a selected signature template was computed. A global optimization method together with our (approximate) target translation method (TTM) that signature difference, chosen as object function, was minimized by adjusting the depth and moisture content, now taken to be unknown parameters. The template that gave the smallest value of the minimized object function for the returned echo was taken as target classification and the corresponding values of the depth and moisture parameters as estimates of the target's burial conditions. This optimization technique can also be applied to time-series data, avoiding the need for time-frequency analysis. It is then of interest to evaluate the relative merits of time data and time-frequency data for target recognition. Such a comparison is here preformed using signals returned from dummy mines buried underground. The results of the analysis serve to assess the intrinsic worth of data in the time domain and in the time-frequency domain for identifying subsurface targets using a GPR. The targets are buried in a test field at the Swedish Explosive Ordnance Disposal and Demining Center (SWEDEC) at Eksjo, Sweden.

  14. Spectroscopy by joint spectral and time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Szkulmowski, Maciej; Tamborski, Szymon; Wojtkowski, Maciej

    2015-03-01

    We present the methodology for spectroscopic examination of absorbing media being the combination of Spectral Optical Coherence Tomography and Fourier Transform Spectroscopy. The method bases on the joint Spectral and Time OCT computational scheme and simplifies data analysis procedure as compared to the mostly used windowing-based Spectroscopic OCT methods. The proposed experimental setup is self-calibrating in terms of wavelength-pixel assignment. The performance of the method in measuring absorption spectrum was checked with the use of the reflecting phantom filled with the absorbing agent (indocyanine green). The results show quantitative accordance with the controlled exact results provided by the reference method.

  15. Time-frequency featured co-movement between the stock and prices of crude oil and gold

    NASA Astrophysics Data System (ADS)

    Huang, Shupei; An, Haizhong; Gao, Xiangyun; Huang, Xuan

    2016-02-01

    The nonlinear relationships among variables caused by the hidden frequency information complicate the time series analysis. To shed more light on this nonlinear issue, we examine their relationships in joint time-frequency domain with multivariate framework, and the analyses in the time domain and frequency domain serve as comparisons. The daily Brent oil prices, London gold fixing price and Shanghai Composite index from January 1991 to September 2014 are adopted as example. First, they have long-term cointegration relationship in time domain from holistic perspective. Second, the Granger causality tests in different frequency bands are heterogeneous. Finally, the comparison between results from wavelet coherence and multiple wavelet coherence in the joint time-frequency domain indicates that in the high (1-14 days) and medium frequency (14-128 days) bands, the combination of Brent and gold prices has stronger correlation with the stock. In the low frequency band (256-512 days), year 2003 is the structure broken point before which Brent and oil are ideal choice for hedging the risk of the stock market. Thus, this paper offers more details between the Chinese stock market and the commodities markets of crude oil and gold, which suggests that the decisions for different time and frequencies should consider the corresponding benchmark information.

  16. Impact of time-frequency representation to the generalization ability of synthesized time-frequency spatial patterns algorithm in Brain Computer Interface.

    PubMed

    Yao, Jun; Dewald, Julius P A

    2009-01-01

    This paper focuses on the problem of how time-frequency representation influences the generalization ability of the 'synthesized time-frequency spatial pattern (TFSP)' algorithm in Brain Computer Interface (BCI) for classification. TFSP methods use time-frequency analysis to extract features in both time and frequency domains. Different time-frequency analysis methods have been used before. However, it is still unknown how these different approaches influence the generalization ability. We compared the performance of three different TFSP methods in classifying 3 stroke survivors' intention in hand opening and closing. Each of these TFSP methods uses different time-frequency analysis approaches with different time-frequency resolutions. Our results show that a high resolution in time-frequency resolution doesn't guarantee better generalization ability. It seems that although large redundancy in feature reduces the generalization ability of TFSP method, certain redundancy is necessary for achieving high generalization ability. PMID:19964436

  17. A time frequency analysis of wave packet fractional revivals

    NASA Astrophysics Data System (ADS)

    Ghosh, Suranjana; Banerji, J.

    2007-09-01

    We show that the time-frequency analysis of the autocorrelation function is, in many ways, a more appropriate tool to resolve fractional revivals of a wave packet than the usual time-domain analysis. This advantage is crucial in reconstructing the initial state of the wave packet when its coherent structure is short-lived and decays before it is fully revived. Our calculations are based on the model example of fractional revivals in a Rydberg wave packet of circular states. We end by providing an analytical investigation which fully agrees with our numerical observations on the utility of time-frequency analysis in the study of wave packet fractional revivals.

  18. Wave propagation across non-linear rock joints based on time-domain recursive method

    NASA Astrophysics Data System (ADS)

    Li, J. C.

    2013-05-01

    Studying wave propagation across joints is crucial in geophysics, mining and underground construction. Limited analyses are available for oblique incidence across non-linear joints. In this paper, the time-domain recursive method (TDRM) proposed by Li et al. is extended to analyse wave propagation across a set of non-linear joints. The Barton-Bandis model (B-B model) and the Coulomb-slip model are adopted to describe the non-linear normal and shear properties of the joints, respectively. With the displacement discontinuity model and the time shifting function, the wave propagation equation is established for incident longitudinal-(P-) or transverse-(S-)wave across the joints with arbitrary impinging angles. Comparison between the results from the TDRM and the existing methods is carried out for two specific cases to verify the derived wave propagation equation. The effects of some parameters, such as the incident angle, the joint spacing, the amplitude of incidence and the joint maximum allowable normal closure, on wave propagation are discussed.

  19. Demarcation of homogeneous structural domains within a rock mass based on joint orientation and trace length

    NASA Astrophysics Data System (ADS)

    Song, Shengyuan; Wang, Qing; Chen, Jianping; Cao, Chen; Li, Yanyan; Zhou, Xin

    2015-11-01

    This paper presents a new method for determining the structural domain boundaries within the rock mass. This new method is based on a statistical comparison of data from pairs of sample regions. The stereonet is divided into 100 windows with approximately equal areas. The poles of joints occurring in each corresponding window on the two projection plots of the regions being compared are then merged and arranged in ascending order with respect to their trace lengths. Finally, the Wald-Wolfowitz runs test is used to identify the homogeneity of structural populations by analyzing the joint sequence. Based on a significance level of 0.01, the homogeneity of structural populations collected from four adjacent adits at the Songta dam site is determined using the proposed method. The results show that the boundaries of structural domain change with the sizes of the sampling domains being compared. The initial sampling domains should be selected according to the engineering geological conditions of the studied area. In addition, the clear advantage of the proposed method is that both joint orientation and trace length are considered.

  20. Filter implementation technique for multicriteria characterization of coding domains in the joint transform correlator.

    PubMed

    Bigué, L; Ambs, P

    1999-07-10

    An improved method for implementing correlation filters in the joint transform correlator architecture is proposed. We derived the method from computer-generated holography techniques. It allows us to use any correlation filters, especially ones that provide an optimal trade-off between noise robustness, peak sharpness, and optical efficiency, with any spatial light modulator (SLM). This method also allows for an objective comparison of the performance of the coding domains of various SLM's. PMID:18323915

  1. Brain connectivity study of joint attention using frequency-domain optical imaging technique

    NASA Astrophysics Data System (ADS)

    Chaudhary, Ujwal; Zhu, Banghe; Godavarty, Anuradha

    2010-02-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic populations. In this study, diffuse optical imaging is being used to study brain connectivity for the first time in response to joint attention experience in normal adults. The prefrontal region of the brain was non-invasively imaged using a frequency-domain based optical imager. The imaging studies were performed on 11 normal right-handed adults and optical measurements were acquired in response to joint-attention based video clips. While the intensity-based optical data provides information about the hemodynamic response of the underlying neural process, the time-dependent phase-based optical data has the potential to explicate the directional information on the activation of the brain. Thus brain connectivity studies are performed by computing covariance/correlations between spatial units using this frequency-domain based optical measurements. The preliminary results indicate that the extent of synchrony and directional variation in the pattern of activation varies in the left and right frontal cortex. The results have significant implication for research in neural pathways associated with autism that can be mapped using diffuse optical imaging tools in the future.

  2. Computer-aided classification of rheumatoid arthritis in finger joints using frequency domain optical tomography

    NASA Astrophysics Data System (ADS)

    Klose, C. D.; Kim, H. K.; Netz, U.; Blaschke, S.; Zwaka, P. A.; Mueller, G. A.; Beuthan, J.; Hielscher, A. H.

    2009-02-01

    Novel methods that can help in the diagnosis and monitoring of joint disease are essential for efficient use of novel arthritis therapies that are currently emerging. Building on previous studies that involved continuous wave imaging systems we present here first clinical data obtained with a new frequency-domain imaging system. Three-dimensional tomographic data sets of absorption and scattering coefficients were generated for 107 fingers. The data were analyzed using ANOVA, MANOVA, Discriminant Analysis DA, and a machine-learning algorithm that is based on self-organizing mapping (SOM) for clustering data in 2-dimensional parameter spaces. Overall we found that the SOM algorithm outperforms the more traditional analysis methods in terms of correctly classifying finger joints. Using SOM, healthy and affected joints can now be separated with a sensitivity of 0.97 and specificity of 0.91. Furthermore, preliminary results suggest that if a combination of multiple image properties is used, statistical significant differences can be found between RA-affected finger joints that show different clinical features (e.g. effusion, synovitis or erosion).

  3. Multipixel system for gigahertz frequency-domain optical imaging of finger joints

    NASA Astrophysics Data System (ADS)

    Netz, Uwe J.; Beuthan, Jrgen; Hielscher, Andreas H.

    2008-03-01

    Frequency-domain optical imaging systems have shown great promise for characterizing blood oxygenation, hemodynamics, and other physiological parameters in human and animal tissues. However, most of the frequency domain systems presented so far operate with source modulation frequencies below 150MHz. At these low frequencies, their ability to provide accurate data for small tissue geometries such as encountered in imaging of finger joints or rodents is limited. Here, we present a new system that can provide data up to 1GHz using an intensity modulated charged coupled device camera. After data processing, the images show the two-dimensional distribution of amplitude and phase of the light modulation on the finger surface. The system performance was investigated and test measurements on optical tissue phantoms were taken to investigate whether higher frequencies yield better signal-to-noise ratios (SNRs). It could be shown that local changes in optical tissue properties, as they appear in the initial stages of rheumatoid arthritis in a finger joint, are detectable by simple image evaluation, with the range of modulation frequency around 500MHz proving to yield the highest SNR.

  4. Complexity in congestive heart failure: A time-frequency approach

    NASA Astrophysics Data System (ADS)

    Banerjee, Santo; Palit, Sanjay K.; Mukherjee, Sayan; Ariffin, MRK; Rondoni, Lamberto

    2016-03-01

    Reconstruction of phase space is an effective method to quantify the dynamics of a signal or a time series. Various phase space reconstruction techniques have been investigated. However, there are some issues on the optimal reconstructions and the best possible choice of the reconstruction parameters. This research introduces the idea of gradient cross recurrence (GCR) and mean gradient cross recurrence density which shows that reconstructions in time frequency domain preserve more information about the dynamics than the optimal reconstructions in time domain. This analysis is further extended to ECG signals of normal and congestive heart failure patients. By using another newly introduced measure—gradient cross recurrence period density entropy, two classes of aforesaid ECG signals can be classified with a proper threshold. This analysis can be applied to quantifying and distinguishing biomedical and other nonlinear signals.

  5. Time-frequency characterisation of paediatric heart sounds

    NASA Astrophysics Data System (ADS)

    Leung, Terence Sze-Tat

    1998-08-01

    The operation of the heart can be monitored by the sounds it emits. Structural defects or malfunction of the heart valves will cause additional abnormal sounds such as murmurs and ejection clicks. This thesis aims to characterise the heart sounds of three groups of children who either have an Atrial Septal Defect (ASD), a Ventricular Septal Defect (VSD), or are normal. Two aspects of heart sounds have been specifically investigated; the time-frequency analysis of systolic murmurs and the identification of splitting patterns in the second heart sound. The analysis is based on 42 paediatric heart sound recordings. Murmurs are sounds generated by turbulent flow of blood in the heart. They can be found in patients with both pathological and non-pathological conditions. The acoustic quality of the murmurs generated in each heart condition are different. The first aspect of this work is to characterise the three types of murmurs in the time- frequency domain. Modern time-frequency methods including, the Wigner-Ville Distribution, Smoothed Pseudo Wigner-Ville Distribution, Choi-Williams Distribution and spectrogram have been applied to characterise the murmurs. It was found that the three classes of murmurs exhibited different signatures in their time-frequency representations. By performing Discriminant Analysis, it was shown that spectral features extracted from the time- frequency representations can be used to distinguish between the three classes. The second aspect of the research is to identify splitting patterns in the second heart sound, which consists of two acoustic components due to the closure of the aortic valve and pulmonary valve. The aortic valve usually closes before the pulmonary valve, introducing a time delay known as 'split'. The split normally varies in duration over the respiratory cycle. In certain pathologies such as the ASD, the split becomes fixed over the respiration cycle. A technique based on adaptive signal decomposition is developed to measure the split and hence to identify the splitting pattern as either 'variable' or 'fixed'. This work has successfully characterised the murmurs and splitting patterns in the three groups of patients. Features extracted can be used for diagnostic purposes.

  6. High-resolution time-frequency distributions for fall detection

    NASA Astrophysics Data System (ADS)

    Amin, Moeness G.; Zhang, Yimin D.; Boashash, Boualem

    2015-05-01

    In this paper, we examine the role of high-resolution time-frequency distributions (TFDs) of radar micro-Doppler signatures for fall detection. The work supports the recent and rising interest in using emerging radar technology for elderly care and assisted living. Spectrograms have been the de facto joint-variable signal representation, depicting the signal power in both time and frequency. Although there have been major advances in designing quadratic TFDs which are superior to spectrograms in terms of detailing the local signal behavior, the contributions of these distributions in the area of human motion classifications and their offerings in enhanced feature extractions have not yet been properly evaluated. The main purpose of this paper is to show the effect of using high-resolution TFD kernels, in lieu of spectrogram, on fall detection. We focus on the extended modified B-distribution (EMBD) and exploit the level of details it provides as compared with the coarse and smoothed time-frequency signatures offered by spectrograms.

  7. Nonlinear optical security system based on a joint transform correlator in the Fresnel domain.

    PubMed

    Vilardy, Juan M; Milln, Mara S; Prez-Cabr, Elisabet

    2014-03-10

    A new optical security system for image encryption based on a nonlinear joint transform correlator (JTC) in the Fresnel domain (FrD) is proposed. The proposal of the encryption process is a lensless optical system that produces a real encrypted image and is a simplified version of some previous JTC-based encryption systems. We use a random complex mask as the key in the nonlinear system for the purpose of increasing the security of the encrypted image. In order to retrieve the primary image in the decryption process, a nonlinear operation has to be introduced in the encrypted function. The optical decryption process is implemented through the Fresnel transform and the fractional Fourier transform. The security system proposed in this paper preserves the shift-invariance property of the JTC-based encryption system in the Fourier domain, with respect to the lateral displacement of the key random mask in the decryption process. This system shows an improved resistance to chosen-plaintext and known-plaintext attacks, as they have been proposed in the cryptanalysis of the JTC encrypting system. Numerical simulations show the validity of this new optical security system. PMID:24663426

  8. Reducing noise in the time-frequency representation using sparsity promoting kernel design

    NASA Astrophysics Data System (ADS)

    Jokanović, Branka; Amin, Moeness G.; Zhang, Yimin D.

    2014-05-01

    Missing samples in the time domain introduce noise-like artifacts in the ambiguity domain due to their de facto zero values assumed by the bilinear transform. These artifacts clutter the dual domain of the time-frequency signal representation and obscures the time-frequency signature of single and multicomponent signals. In order to suppress the artifacts influence, we formulate a problem based on the sparsity aware kernel. The proposed kernel design is more robust to the artifacts caused by the missing samples.

  9. Cluster Prototypes and Fuzzy Memberships Jointly Leveraged Cross-Domain Maximum Entropy Clustering.

    PubMed

    Qian, Pengjiang; Jiang, Yizhang; Deng, Zhaohong; Hu, Lingzhi; Sun, Shouwei; Wang, Shitong; Muzic, Raymond F

    2016-01-01

    The classical maximum entropy clustering (MEC) algorithm usually cannot achieve satisfactory results in the situations where the data is insufficient, incomplete, or distorted. To address this problem, inspired by transfer learning, the specific cluster prototypes and fuzzy memberships jointly leveraged (CPM-JL) framework for cross-domain MEC (CDMEC) is firstly devised in this paper, and then the corresponding algorithm referred to as CPM-JL-CDMEC and the dedicated validity index named fuzzy memberships-based cross-domain difference measurement (FM-CDDM) are concurrently proposed. In general, the contributions of this paper are fourfold: 1) benefiting from the delicate CPM-JL framework, CPM-JL-CDMEC features high-clustering effectiveness and robustness even in some complex data situations; 2) the reliability of FM-CDDM has been demonstrated to be close to well-established external criteria, e.g., normalized mutual information and rand index, and it does not require additional label information. Hence, using FM-CDDM as a dedicated validity index significantly enhances the applicability of CPM-JL-CDMEC under realistic scenarios; 3) the performance of CPM-JL-CDMEC is generally better than, at least equal to, that of MEC because CPM-JL-CDMEC can degenerate into the standard MEC algorithm after adopting the proper parameters, and which avoids the issue of negative transfer; and 4) in order to maximize privacy protection, CPM-JL-CDMEC employs the known cluster prototypes and their associated fuzzy memberships rather than the raw data in the source domain as prior knowledge. The experimental studies thoroughly evaluated and demonstrated these advantages on both synthetic and real-life transfer datasets. PMID:26684257

  10. A method for ventricular late potentials detection using time-frequency representation and wavelet denoising.

    PubMed

    Gadaleta, Matteo; Giorgio, Agostino

    2012-01-01

    This study proposes a method for ventricular late potentials (VLPs) detection using time-frequency representation and wavelet denoising in high-resolution electrocardiography (HRECG). The analysis is performed both with the signal averaged electrocardiography (SAECG) and in real time. A comparison between the temporal and the time-frequency analysis is also reported. In the first analysis the standard parameters QRSd, LAS40, and RMS40 were used; in the second normalized energy in time-frequency domain was calculated. The algorithm was tested adding artificial VLPs to real ECGs. PMID:22957271

  11. Time-Frequency Analysis of the Dispersion of Lamb Modes

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Seale, Michael D.; Smith, Barry T.

    1999-01-01

    Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the A(sub 0), A(sub 1), S(sub 0), and S(sub 2)Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along, and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.

  12. Time-frequency analysis of the dispersion of Lamb modes.

    PubMed

    Prosser, W H; Seale, M D; Smith, B T

    1999-05-01

    Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo-Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the A0, A1, S0, and S2 Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results. PMID:10335617

  13. Time-Frequency Analysis of the Dispersion of Lamb Modes

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Seale, Michael D.; Smith, Barry T.

    1999-01-01

    Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo-Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the AO, A I , So, and S2 Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.

  14. Determination of structural domain boundaries in jointed rock masses: An example from the Songta dam site, China

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Wang, Qing; Chen, Jianping; Han, Lili; Zhang, Wen; Ruan, Yunkai

    2014-12-01

    This paper presents an application of the Kolmogorov-Smirnov and Wilcoxon rank sum nonparametric statistical tests for identifying structural domain boundaries in jointed rock masses. In the method, the upper hemispherical surface is divided into 100 nearly equal-area windows. The similarity between two samples of joint orientations is measured by comparing the frequencies or the number of joint poles occurring in the windows. Over 2400 joints collected from 8 adjacent exploration tunnels at the Songta dam site in southwest China are used to demonstrate the method. By applying the technique to the study area, structural domain boundaries in the rock mass are determined. Our results suggest that the study area, with an area of approximately 17,850 m2, can be classified into four structural domains. However, the traditional method with the correlation coefficient fails to reveal the structural changes. Since the correlation coefficient is only a measure of strength of the linear relation between two samples, it has limitations in measuring the similarity between joint orientation distributions. A comparison between the proposed method and previous methods indicates that the new technique could provide more reliable results. Besides, the new method can be applied to structural populations with small sample sizes.

  15. The Power of Time-Frequency Representations

    NASA Astrophysics Data System (ADS)

    Oncica, Adrian

    2007-09-01

    Unlike most scientific disciplines, astronomical model-building must typically rely on observations alone. No direct manipulation of the system or classical physical experiment is possible. Because of this, there has long been a close connection between astronomy and the study of time series. In fact the modern form of latter discipline arguably starts with Yule's analysis in 1927 of sunspot data series and the introduction of what we now call an ARMA model. In astrophysics we deal generally with inverse problems. Observations of some phenomena have to be understood even we have little knowledge on its driving mechanism or where exactly it operates. The problem is then to discover the nature of the underlying physics or geometry and how it produces the observed effects. For many signals in nature the frequency content changes in time as the physical processes producing the signal are time dependent. The tool for describing time-varying spectrum is called time-frequency analysis and saw significant progress in recent years. We intend to give a short review of the idea and its development and to point out qualities and drawbacks. Some examples from both long term and short term solar related data will be given. Finally we will focus on some long term Ulysses data.

  16. Physics based modeling for time-frequency damage classification

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debejyo; Soni, Sunilkumar; Wei, Jun; Kovvali, Narayan; Papandreou-Suppappola, Antonia; Cochran, Douglas; Chattopadhyay, Aditi

    2008-03-01

    We have recently proposed a method for classifying waveforms from healthy and damaged structures in a structural health monitoring framework. This method is based on the use of hidden Markov models with preselected feature vectors obtained from the time-frequency based matching pursuit decomposition. In order to investigate the performance of the classifier for different signal-to-noise ratios (SNR), we simulate the response of a lug joint sample with different crack lengths using finite element modeling (FEM). Unlike experimental noisy data, the modeled data is noise free. As a result, different levels of noise can be added to the modeled data in order to obtain the true performance of the classifier under additive white Gaussian noise. We use the finite element package ABAQUS to simulate a lug joint sample with different crack lengths and piezoelectric sensor signals. A mesoscale internal state variable damage model defines the progressive damage and is incorporated in the macroscale model. We furthermore use a hybrid method (boundary element-finite element method) to model wave reflection as well as mode conversion of the Lamb waves from the free edges and scattering of the waves from the internal defects. The hybrid method simplifies the modeling problem and provides better performance in the analysis of high stress gradient problems.

  17. Adaptive multimode signal reconstruction from time-frequency representations.

    PubMed

    Meignen, Sylvain; Oberlin, Thomas; Depalle, Philippe; Flandrin, Patrick; McLaughlin, Stephen

    2016-04-13

    This paper discusses methods for the adaptive reconstruction of the modes of multicomponent AM-FM signals by their time-frequency (TF) representation derived from their short-time Fourier transform (STFT). The STFT of an AM-FM component or mode spreads the information relative to that mode in the TF plane around curves commonly called ridges. An alternative view is to consider a mode as a particular TF domain termed a basin of attraction. Here we discuss two new approaches to mode reconstruction. The first determines the ridge associated with a mode by considering the location where the direction of the reassignment vector sharply changes, the technique used to determine the basin of attraction being directly derived from that used for ridge extraction. A second uses the fact that the STFT of a signal is fully characterized by its zeros (and then the particular distribution of these zeros for Gaussian noise) to deduce an algorithm to compute the mode domains. For both techniques, mode reconstruction is then carried out by simply integrating the information inside these basins of attraction or domains. PMID:26953184

  18. Postural tachycardia syndrome: time frequency mapping

    NASA Technical Reports Server (NTRS)

    Novak, V.; Novak, P.; Opfer-Gehrking, T. L.; Low, P. A.

    1996-01-01

    Orthostatic tachycardia is common but its specificity remains uncertain. Our preliminary work suggested that using autonomic function testing in conjunction with time-frequency mapping (TFM), it might be possible to characterize a subset of the postural tachycardia syndrome (POTS), that is due to a restricted autonomic neuropathy. We describe 20 patients (17 women and 3 men, aged 14-43 years) with florid POTS and 20 controls (14 women and 6 men, aged 20-41 years). Autonomic failure was quantified by its distribution (cardiovagal, adrenergic and sudomotor) and severity, a symptom profile was generated, and spectral indices, based on modified Wigner distribution during rest and head-up tilt (80 degrees) were evaluated. During tilt-up POTS patients differed from controls by an excessive heart rate (> 130 bpm) (P < 0.001), and higher diastolic pressure (P < 0.01). During rest, cardiovagal oscillations (at respiratory frequencies [RF]) and slow rhythms at nonrespiratory frequencies (NONRF) (from 0.01 to 0.07 Hz) in R-R intervals (RRI) (P < 0.01) were reduced. Both RF and NONRF rhythms in RRI were further blunted with tilt-up (P < 0.001). Slow adrenergic vasomotor rhythms in blood pressure (BP) (approximately 0.07 Hz) surged with tilt-up and returned to normal levels afterwards. The index of sympatho-vagal balance (NONRF-Systolic BP (SBP)/RF-RRI) was dramatically increased in POTS (P < 0.001). Distal postganglionic sudomotor failure was observed, and impairment of the BP responses to the Valsalva maneuver (phase II) suggested peripheral adrenergic dysfunction. Persistent orthostatic dizziness, tiredness, gastrointestinal symptoms and palpitations were common in POTS patients. It is possible to identify a subset of POTS patients who have a length-dependent autonomic neuropathy, affecting the peripheral adrenergic and cardiovagal fibers, with relative preservation of cardiac adrenergic fibers.

  19. Maximum-likelihood methods for array processing based on time-frequency distributions

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin; Mu, Weifeng; Amin, Moeness G.

    1999-11-01

    This paper proposes a novel time-frequency maximum likelihood (t-f ML) method for direction-of-arrival (DOA) estimation for non- stationary signals, and compares this method with conventional maximum likelihood DOA estimation techniques. Time-frequency distributions localize the signal power in the time-frequency domain, and as such enhance the effective SNR, leading to improved DOA estimation. The localization of signals with different t-f signatures permits the division of the time-frequency domain into smaller regions, each contains fewer signals than those incident on the array. The reduction of the number of signals within different time-frequency regions not only reduces the required number of sensors, but also decreases the computational load in multi- dimensional optimizations. Compared to the recently proposed time- frequency MUSIC (t-f MUSIC), the proposed t-f ML method can be applied in coherent environments, without the need to perform any type of preprocessing that is subject to both array geometry and array aperture.

  20. Measurement Epistemology and Time-Frequency Conjugate Spaces

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar

    2010-05-01

    We present the critical steps involved in any measurement process, which tell us that force-free and intervention-free measurements are not possible. We add to this the NIW-principle, Non-Interference of Waves, which has been neglected by us for centuries even though it is obvious from careful observations of crossing of all material based waves and light beams. Then we underscore that the foundational assumption behind the time-frequency Fourier theorem does not represent any physical reality even though mathematical computation does give the desired results. It assumes that simple superposition of monochromatic Fourier waves, by themselves, can generate time finite pulses due to interference. Unfortunately, the NIW-principle forbids it. Founders of quantum physics, oblivious of the existence of the NIW-principle, assumed that superposition of light beams produce the observed fringes. In reality, the superposition effects become observable because the quantized detectors carry out the summation of the joint stimulations. Thus, quantum physicists mistakenly assigned the quantum behavior of detectors on to light (photons). Based on these observations, we underscore that the ultimate purpose of physical theories is to facilitate the visualization of the invisible interaction processes, rather than simply model the measured data, as is customary now.

  1. A mortise-tenon joint in the transmembrane domain modulates autotransporter assembly into bacterial outer membranes.

    PubMed

    Leyton, Denisse L; Johnson, Matthew D; Thapa, Rajiv; Huysmans, Gerard H M; Dunstan, Rhys A; Celik, Nermin; Shen, Hsin-Hui; Loo, Dorothy; Belousoff, Matthew J; Purcell, Anthony W; Henderson, Ian R; Beddoe, Travis; Rossjohn, Jamie; Martin, Lisandra L; Strugnell, Richard A; Lithgow, Trevor

    2014-01-01

    Bacterial autotransporters comprise a 12-stranded membrane-embedded ?-barrel domain, which must be folded in a process that entraps segments of an N-terminal passenger domain. This first stage of autotransporter folding determines whether subsequent translocation can deliver the N-terminal domain to its functional form on the bacterial cell surface. Here, paired glycine-aromatic 'mortise and tenon' motifs are shown to join neighbouring ?-strands in the C-terminal barrel domain, and mutations within these motifs slow the rate and extent of passenger domain translocation to the surface of bacterial cells. In line with this, biophysical studies of the autotransporter Pet show that the conserved residues significantly quicken completion of the folding reaction and promote stability of the autotransporter barrel domain. Comparative genomics demonstrate conservation of glycine-aromatic residue pairings through evolution as a previously unrecognized feature of all autotransporter proteins. PMID:24967730

  2. Wavelet analysis and time-frequency distributions of the body surface ECG before and after angioplasty.

    PubMed

    Gramatikov, B; Brinker, J; Yi-chun, S; Thakor, N V

    2000-06-01

    In a pilot study, electrocardiographic (ECG) recordings of patients with left and right coronary stenosis taken before and after angioplasty were analyzed using the continuous wavelet transform. Time-frequency distributions were obtained for different leads in order to examine the dynamics of the QRS-spectrum and establish features specific of ischemia in the time-frequency domain. We found relevant changes in the mid-frequency range, reflecting the ECG's response to percutaneous transluminal coronary angioplasty (PTCA). The changes appeared in ECG leads close to ischemic zones of the myocardium. Time-frequency distributions of the ECG during the QRS may thus become another electrocardiographic indicator of ischemia, alternative to ST-level in standard ECG or body surface mapping. The paper demonstrates the ability of the continuous wavelet transform to detect short lasting events of low amplitude superimposed on large signal deflections. PMID:10764935

  3. Time-frequency beamforming for nondestructive evaluations of plate using ultrasonic Lamb wave

    NASA Astrophysics Data System (ADS)

    Han, Je-Heon; Kim, Yong-Joe

    2015-03-01

    The objective of this study is to detect structural defect locations in a plate by exciting the plate with a specific ultrasonic Lamb wave and recording reflective wave signals using a piezoelectric transducer array. For the purpose of eliminating the effects of the direct excitation signals as well as the boundary-reflected wave signals, it is proposed to improve a conventional MUSIC beamforming procedure by processing the measured signals in the time-frequency domain. In addition, a normalized, damped, cylindrical 2-D steering vector is proposed to increase the spatial resolution of time-frequency MUSIC power results. A cross-shaped array is selected to further improve the spatial resolution and to avoid mirrored virtual image effects. Here, it is experimentally demonstrated that the proposed time-frequency MUSIC beamforming procedure can be used to identify structural defect locations on an aluminum plate by distinguishing the defect-induced waves from the excitation-generated and boundary-reflected waves.

  4. Joint entropy for space and spatial frequency domains estimated from psychometric functions of achromatic discrimination.

    PubMed

    Silveira, Vladmir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gbor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gbor functions, 1/4? or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised. PMID:24466158

  5. Time-frequency distribution of evoked otoacoustic emissions.

    PubMed

    Ozdamar, O; Zhang, J; Kalayci, T; Ulgen, Y

    1997-12-01

    Otoacoustic emissions (OAE) are non-stationary signals that vary in time depending on the characteristics of the stimulus. Traditional spectral analysis using Fourier methods ignores the effects of time and can miss important temporal information. Therefore, a better form of spectral analysis requires the use of time-frequency distribution methods. Traditionally, short time Fourier transforms (STFT), commonly known as spectrograms, are used to provide such time-frequency representations. STFT however, suffer from poor resolution and do not provide enough detail about the characteristics of the emissions. In this study, recently developed time-frequency distributions, the Wigner Distribution (WD) and the Choi-Williams Distribution (CWD) are investigated to provide high resolution representations of transient evoked OAEs. Although WD has excellent properties for time-frequency analysis, it suffers from cross-term artefacts generated when multiple sinusoids are present. CWD provides a solution to this problem at the expense of poor time and frequency support. In this study, we use both distributions to estimate the cross-products and provide a relatively artefact-free time-frequency distribution of OAEs. This method is applied to both click and tone burst evoked OAE and shows a more detailed time-frequency representation with as many crests and valleys as different latencies. PMID:9478289

  6. The Separate, Relative, and Joint Effects of Employee Job Performance Domains on Supervisors' Willingness to Mentor

    ERIC Educational Resources Information Center

    Lapierre, Laurent M.; Bonaccio, Silvia; Allen, Tammy D.

    2009-01-01

    The purpose of our study was to further elucidate how employees should behave at work to increase their chances of being mentored by their immediate supervisor. To that end, we experimentally tested how three domains of employee performance [task performance (TP), organizational citizenship behavior (OCB) targeting the supervisor, and

  7. The Separate, Relative, and Joint Effects of Employee Job Performance Domains on Supervisors' Willingness to Mentor

    ERIC Educational Resources Information Center

    Lapierre, Laurent M.; Bonaccio, Silvia; Allen, Tammy D.

    2009-01-01

    The purpose of our study was to further elucidate how employees should behave at work to increase their chances of being mentored by their immediate supervisor. To that end, we experimentally tested how three domains of employee performance [task performance (TP), organizational citizenship behavior (OCB) targeting the supervisor, and…

  8. Preamble-based frequency-domain joint CFO and STO estimation for OQAM-based filter bank multicarrier

    NASA Astrophysics Data System (ADS)

    Caekenberghe, Stijn Van; Bourdoux, Andr; der Perre, Liesbet Van; Louveaux, Jrme

    2014-12-01

    Filter bank multicarrier systems, similarly to orthogonal frequency division multiplexing (OFDM), are very sensitive to carrier frequency offset (CFO) and symbol timing offset (STO). In this paper, a low-complexity preamble-based joint CFO and STO technique is presented. It is based on a relatively long preamble in order to improve the CFO estimation performance as well as avoid interference coming from the data following this preamble. After CFO and STO correction, the preamble can be reused to estimate the channel. Unlike most current techniques, the CFO and STO estimation occurs in the frequency domain. This allows for a low-complexity estimation with respect to time-domain techniques and, as will be shown by simulations, provide even better performance in a reasonable range. The drawback however is that the estimation range is shorter. Specifically, for large STOs (and to a smaller extent large CFOs), the performance decreases below time-domain estimations. Two versions of the STO estimation technique will be presented, the second one being an approximation of the first one, making it less complex yet also less precise. The performance is assessed by means of computer simulations, testing for both large and small STOs, and compared with existing techniques.

  9. Time-frequency signature sparse reconstruction using chirp dictionary

    NASA Astrophysics Data System (ADS)

    Nguyen, Yen T. H.; Amin, Moeness G.; Ghogho, Mounir; McLernon, Des

    2015-05-01

    This paper considers local sparse reconstruction of time-frequency signatures of windowed non-stationary radar returns. These signals can be considered instantaneously narrow-band, thus the local time-frequency behavior can be recovered accurately with incomplete observations. The typically employed sinusoidal dictionary induces competing requirements on window length. It confronts converse requests on the number of measurements for exact recovery, and sparsity. In this paper, we use chirp dictionary for each window position to determine the signal instantaneous frequency laws. This approach can considerably mitigate the problems of sinusoidal dictionary, and enable the utilization of longer windows for accurate time-frequency representations. It also reduces the picket fence by introducing a new factor, the chirp rate ?. Simulation examples are provided, demonstrating the superior performance of local chirp dictionary over its sinusoidal counterpart.

  10. Electrocardiogram Signal and Linear Time-Frequency Transforms

    NASA Astrophysics Data System (ADS)

    Krishna, B. T.

    2014-12-01

    The diagnostic analysis of non-stationary multi component signals such as electrocardiogram (ECG) involves the use of time-frequency transforms. So, the application of time-frequency transforms to an ECG signal is an important problem of research. In this paper, initially, linear transforms like short time Fourier transform, continuous wavelet transforms, s-transform etc. are revisited. Then the application of these transforms to normal and abnormal ECG signals is illustrated. It has been observed that s-transform provides better time and frequency resolution compared to other linear transforms. The fractional Fourier transform provides rotation to the spectrogram representation.

  11. Detailed Vibration Analysis of Pinion Gear with Time-Frequency Methods

    NASA Technical Reports Server (NTRS)

    Mosher, Marianne; Pryor, Anna H.; Lewicki, David G.

    2003-01-01

    In this paper, the authors show a detailed analysis of the vibration signal from the destructive testing of a spiral bevel gear and pinion pair containing seeded faults. The vibration signal is analyzed in the time domain, frequency domain and with four time-frequency transforms: the Short Time Frequency Transform (STFT), the Wigner-Ville Distribution with the Choi-Williams kernel (WV-CW), the Continuous Wavelet' Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels and damage conditions, are analyzed using these methods. A new metric for automatic anomaly detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the time-frequency transforms, as well as time and frequency representations, on this data set. Analysis with the CWT detects changes in the signal at low torque levels not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic anomaly detection and to develop fault detection methods for the metric.

  12. Whistler analysis in the time-frequency plane using chirplets

    SciTech Connect

    Mihovilovic, D.; Bracewell, R.N.

    1992-11-01

    The authors apply a method of time-frequency analysis called chirplet analysis to study whistlers in the magnetosphere. They show that this procedure give better analysis results than the original method proposed by Gabor for the analysis of nonstationary wave phenomena. They discuss features of their analysis algorithm which allow user input in applying it to particular problems.

  13. [The research on time-frequency detection method of respiratory component in ballistocardiogram signal].

    PubMed

    Jiang, Fangfang; Wang, Xu; Yang, Dan

    2012-06-01

    Based on the fact that the respiratory component modulates the cardiac cycle component in the ballistocardiogram (BCG) signal, we propose a method that detects respiratory with time-frequency analysis for the sitting ballistocardiography system. Firstly, we demodulated the BCG signal by using the variable frequency complex demodulation (VFCDM) to obtain the output for different center frequency of interest. Then we calculated the instantaneous frequencies and the instantaneous amplitudes by the time-frequency representation. We reconstructed the time-domain waveform of respiratory at last. In order to verify the feasibility and accuracy of this method, we applied wavelet transform and nasal thermistor signal to compare qualitatively and quantitatively. The simulation results showed that the proposed method could detect the respiratory rate from BCG signal more accurately, which provided meaningful attempt for monitoring the multiple physiological parameters synchronously and unconsciously. PMID:22826926

  14. Comparison of Signals from Gravitational Wave Detectors with Instantaneous Time-Frequency Maps

    NASA Technical Reports Server (NTRS)

    Stroeer, A.; Blackburn, L.; Camp, J.

    2011-01-01

    Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time-amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with a X(sup 2) goodness-offit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation.

  15. Character Recognition Method by Time-Frequency Analyses Using Writing Pressure

    NASA Astrophysics Data System (ADS)

    Watanabe, Tatsuhito; Katsura, Seiichiro

    With the development of information and communication technology, personal verification becomes more and more important. In the future ubiquitous society, the development of terminals handling personal information requires the personal verification technology. The signature is one of the personal verification methods; however, the number of characters is limited in the case of the signature and therefore false signature is used easily. Thus, personal identification is difficult from handwriting. This paper proposes a haptic pen that extracts the writing pressure, and shows a character recognition method by time-frequency analyses. Although the figures of characters written by different amanuenses are similar, the differences appear in the time-frequency domain. As a result, it is possible to use the proposed character recognition for personal identification more exactly. The experimental results showed the viability of the proposed method.

  16. Time-frequency analysis of laser weld signature

    NASA Astrophysics Data System (ADS)

    Sun, Allen S.; Kannatey-Asibu, Elijah, Jr.; Williams, William J.; Gartner, Mark

    2001-11-01

    Reliable monitoring methods are essential for maintaining a high level of quality control in laser welding. In industrial processes, monitoring systems allow for quick decisions on the quality of the weld, allowing for high productions rates and reducing overall cost due to scrap. A monitoring system using infrared, ultraviolet, audible sound, and acoustic emission was implemented for monitoring CO2 laser welds in real-time. The signals were analyzed using time-frequency analysis techniques. The time-frequency distribution using the Choi-Williams kernel was calculated, and the resulting distributions were analyzed using the Renyi information distribution. Results for porosity monitoring showed that an acoustic emission sensor held the most promise with 100% classification in two weld studies. These encouraging results led to a second study for monitoring of weld penetration and in the second case, infrared, ultraviolet, and audible sound showed the most promise with 100% classification for both laboratory and industrial data.

  17. Improving electroencephalographic source localization of epileptogenic zones with time-frequency analysis.

    PubMed

    Cuspineda-Bravo, Elena R; Martnez-Montes, Eduardo; Farach-Fumero, Miguel; Machado-Curbelo, Calixto

    2015-04-01

    The combination of recently developed methods for electroencephalographic (EEG) space-time-frequency analysis can provide noninvasive functional neuroimages necessary for obtaining an accurate localization of the epileptogenic zone. The aim of this study was to determine if time-frequency (TF) analysis, followed by EEG source localization, would improve the detection and identification of epileptogenic and related activity. Seventeen patients with refractory frontal lobe epilepsy (FLE) were studied using video EEG recording. TF analysis identified the first epileptogenic EEG changes. Using the Bayesian model averaging (BMA) approach, we compared brain electromagnetic tomographic (BET) images, constructed from the TF domain, with BET images constructed from the time domain only. We determined if the localization identified by BET images was concordant with the localization from medical history and video EEG recording. TF analysis provided a clear display of subtle EEG features, including EEG lateralization, and more concordant and delimited epileptogenic zones, compared with time-domain source analysis. In conclusion, EEG TF analysis improves source localization. After a thorough validation, this methodology could become a useful noninvasive tool for localizing the epileptogenic zone in clinical practice. PMID:24879437

  18. Time-Frequency Approach for Stochastic Signal Detection

    SciTech Connect

    Ghosh, Ripul; Akula, Aparna; Kumar, Satish; Sardana, H. K.

    2011-10-20

    The detection of events in a stochastic signal has been a subject of great interest. One of the oldest signal processing technique, Fourier Transform of a signal contains information regarding frequency content, but it cannot resolve the exact onset of changes in the frequency, all temporal information is contained in the phase of the transform. On the other hand, Spectrogram is better able to resolve temporal evolution of frequency content, but has a trade-off in time resolution versus frequency resolution in accordance with the uncertainty principle. Therefore, time-frequency representations are considered for energetic characterisation of the non-stationary signals. Wigner Ville Distribution (WVD) is the most prominent quadratic time-frequency signal representation and used for analysing frequency variations in signals.WVD allows for instantaneous frequency estimation at each data point, for a typical temporal resolution of fractions of a second. This paper through simulations describes the way time frequency models are applied for the detection of event in a stochastic signal.

  19. Time-frequency manifold correlation matching for periodic fault identification in rotating machines

    NASA Astrophysics Data System (ADS)

    He, Qingbo; Wang, Xiangxiang

    2013-05-01

    For rotating machines, the localized faults of key components generally represent as periodic transient impulses in vibration signals. The existence of background noise will corrupt transient impulses in practice, and will thus increase the difficulty to identify specific faults. This paper combines the concepts of time-frequency manifold (TFM) and image template matching, and proposes a novel TFM correlation matching method to enhance identification of the periodic faults. This method is to conduct correlation matching of a vibration signal in the time-frequency domain by using the TFM with a short duration as a template. By this method, the time-frequency distribution (TFD) of a vibration signal is firstly achieved by the Smoothed Pseudo-Wigner-Ville distribution (SPWVD) method. Then the TFM template is learned to do correlation matching with the TFD of the analyzed signal. Finally, the ridge is extracted from the correlation matching image and the ridge coefficients are analyzed for periodic fault identification. The proposed method takes advantages of the TFM in noise suppression and template matching in object enhancement, and can enhance the fault impulses of interest in a unified scale. The novel method is verified to be superior to traditional enveloping method with providing smoother and clearer fault impulse component via applications to gearbox fault detection and bearing defect identification.

  20. Adaptive time-frequency parametrization of epileptic spikes

    NASA Astrophysics Data System (ADS)

    Durka, Piotr J.

    2004-05-01

    Adaptive time-frequency approximations of signals have proven to be a valuable tool in electroencephalogram (EEG) analysis and research, where it is believed that oscillatory phenomena play a crucial role in the brains information processing. This paper extends this paradigm to the nonoscillating structures such as the epileptic EEG spikes, and presents the advantages of their parametrization in general terms such as amplitude and half-width. A simple detector of epileptic spikes in the space of these parameters, tested on a limited data set, gives very promising results. It also provides a direct distinction between randomly occurring spikes or spike/wave complexes and rhythmic discharges.

  1. Human Time-Frequency Acuity Beats the Fourier Uncertainty Principle

    NASA Astrophysics Data System (ADS)

    Oppenheim, Jacob N.; Magnasco, Marcelo O.

    2013-01-01

    The time-frequency uncertainty principle states that the product of the temporal and frequency extents of a signal cannot be smaller than 1/(4π). We study human ability to simultaneously judge the frequency and the timing of a sound. Our subjects often exceeded the uncertainty limit, sometimes by more than tenfold, mostly through remarkable timing acuity. Our results establish a lower bound for the nonlinearity and complexity of the algorithms employed by our brains in parsing transient sounds, rule out simple “linear filter” models of early auditory processing, and highlight timing acuity as a central feature in auditory object processing.

  2. Time-Frequency Visualization of Vibration Phenomena generated on Turbine Model using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Kawada, Masatake; Yamada, Koji; Kaneko, Yasutomo; Isaka, Katsuo

    In this paper we presented results of fundamental study to introduce the wavelet transform to vibration diagnosis for a turbine. It is required to detect typical vibration of the turbine accurately. The wavelet transform is used in many fields because it is able to visualize a phenomenon in a time-frequency domain. Modern power plants usually use one-high pressure and one or two lower pressure turbines. We made a turbine model with 3 rotors supported with journal bearings to simulate contact vibration, oil whip, and clearance vibration. The vibration phenomena were measured with vertical and horizontal displacement meters at the rotors, and with vertical and horizontal accelerometers at the bearings. The vibration phenomena were visualized in the time-frequency domain by the wavelet transform. This paper especially shows the results of the acceleration signals. It is found that the dynamic spectra obtained by the wavelet transform of the acceleration signals are different for each vibration. Therefore, this method is able to distinguish the vibration phenomena. And furthermore, the contact point is localized by the proposed method.

  3. Optimal Space-Time-Frequency Design of Microphone Networks

    NASA Astrophysics Data System (ADS)

    Lai, Yenming Mark

    Consider a sensing system using a large number of N microphones placed in multiple dimensions to monitor a acoustic field. Using all the microphones at once is impractical because of the amount data generated. Instead, we choose a subset of D microphones to be active. Specifically, we wish to find the D set of microphones that minimizes the largest interference gain at multiple frequencies while monitoring a target of interest. A direct, combinatorial approach - testing all N choose D subsets of microphones - is impractical because of problem size. Instead, we use a convex optimization technique that induces sparsity through a l1-penalty to determine which subset of microphones to use. Our work investigates not only the optimal placement (space) of microphones but also how to process the output of each microphone (time/frequency). We explore this problem for both single and multi-frequency sources, optimizing both microphone weights and positions simultaneously. In addition, we explore this problem for random sources where the output of each of the N microphones is processed by an individual multirate filterbank. The N processed filterbank outputs are then combined to form one final signal. In this case, we fix all the analysis filters and optimize over all the synthesis filters. We show how to convert the continuous frequency problem to a discrete frequency approximation that is computationally tractable. In this random source/multirate filterbank case, we once again optimize over space-time-frequency simultaneously.

  4. The Application of Time-Frequency Methods to HUMS

    NASA Technical Reports Server (NTRS)

    Pryor, Anna H.; Mosher, Marianne; Lewicki, David G.; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper reports the study of four time-frequency transforms applied to vibration signals and presents a new metric for comparing them for fault detection. The four methods to be described and compared are the Short Time Frequency Transform (STFT), the Choi-Williams Distribution (WV-CW), the Continuous Wavelet Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels, are analyzed using these methods. The new metric for automatic fault detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the methods on this data set. Analysis with the CWT detects mechanical problems with the test rig not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic fault detection and to develop methods of setting the threshold for the metric.

  5. Time-frequency methods for signal analysis in wind turbines

    NASA Astrophysics Data System (ADS)

    Kalista, Karel; Liska, Jindrich

    2015-11-01

    Since wind turbines became one of the most often source of renewable energy, appropriate health and condition monitoring systems are required. Especially proper monitoring of offshore plants is very significant because the accessibility is difficult and inspections are very costly. In comparison with conventional rotating machine vibration monitoring, where steady conditions and stationary signal are usually assumed, the wind turbines are characterized by unsteady conditions due to variable rotational speed. Hence the vibration signal is non-stationary and interpretation of signal signatures may be more complex. The common approach to analyze such non-stationary signals is the use of a time-frequency method, usually Short-Time Fourier Transform, which is the most popular one due to its simplicity. Nevertheless, there are other methods which can give a different view at the analyzed data and provide new information. This article investigates the potential use of some other time-frequency methods, namely Wavelet Transform, Wigner-Ville distribution and Hilbert-Huang transform in wind plants monitoring systems and apply these methods to real measured data with additional simulated bearing fault signal. Finally, the mentioned methods are compared based on computational complexity, readability and interpretability. Though the last two criteria are very subjective, Short-Time Fourier Transform was finally chosen as the most effective method followed by Wavelet Transform.

  6. Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal

    PubMed Central

    2013-01-01

    Background The fovea, which is the most sensitive part of the retina, is known to have birefringent properties, i.e. it changes the polarization state of light upon reflection. Existing devices use this property to obtain information on the orientation of the fovea and the direction of gaze. Such devices employ specific frequency components that appear during moments of fixation on a target. To detect them, previous methods have used solely the power spectrum of the Fast Fourier Transform (FFT), which, unfortunately, is an integral method, and does not give information as to where exactly the events of interest occur. With very young patients who are not cooperative enough, this presents a problem, because central fixation may be present only during very short-lasting episodes, and can easily be missed by the FFT. Method This paper presents a method for detecting short-lasting moments of central fixation in existing devices for retinal birefringence scanning, with the goal of a reliable detection of eye alignment. Signal analysis is based on the Continuous Wavelet Transform (CWT), which reliably localizes such events in the time-frequency plane. Even though the characteristic frequencies are not always strongly expressed due to possible artifacts, simple topological analysis of the time-frequency distribution can detect fixation reliably. Results In all six subjects tested, the CWT allowed precise identification of both frequency components. Moreover, in four of these subjects, episodes of intermittent but definitely present central fixation were detectable, similar to those in Figure 4. A simple FFT is likely to treat them as borderline cases, or entirely miss them, depending on the thresholds used. Conclusion Joint time-frequency analysis is a powerful tool in the detection of eye alignment, even in a noisy environment. The method is applicable to similar situations, where short-lasting diagnostic events need to be detected in time series acquired by means of scanning some substrate along a specific path. PMID:23668264

  7. Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell.

    PubMed

    Anderson, Shaun D; Sabra, Karim G; Zakharia, Manell E; Sessarego, Jean-Pierre

    2012-01-01

    The development of low-frequency sonar systems, using, for instance, a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e., when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular, Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target, such as an elastic spherical shell, from a natural object of the similar shape. A key energetic feature of fluid-loaded and thin spherical shell is the coincidence pattern, also referred to as the mid-frequency enhancement (MFE), that results from antisymmetric Lamb-waves propagating around the circumference of the shell. This article investigates numerically the bistatic variations of the MFE with respect to the monostatic configuration using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory by Zhang et al. [J. Acoust. Soc. Am. 91, 1862-1874 (1993)] for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array when compared to a conventional time-delay beamformer. PMID:22280581

  8. A visual parallel-BCI speller based on the time-frequency coding strategy

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Objective. Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. Approach. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Main results. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min-1, with an average of 54.0 bit min-1 and 43.0 bit min-1 in the three rounds and five rounds, respectively. Significance. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  9. Time-Frequency Analysis Reveals Pairwise Interactions in Insect Swarms

    NASA Astrophysics Data System (ADS)

    Puckett, James G.; Ni, Rui; Ouellette, Nicholas T.

    2015-06-01

    The macroscopic emergent behavior of social animal groups is a classic example of dynamical self-organization, and is thought to arise from the local interactions between individuals. Determining these interactions from empirical data sets of real animal groups, however, is challenging. Using multicamera imaging and tracking, we studied the motion of individual flying midges in laboratory mating swarms. By performing a time-frequency analysis of the midge trajectories, we show that the midge behavior can be segmented into two distinct modes: one that is independent and composed of low-frequency maneuvers, and one that consists of higher-frequency nearly harmonic oscillations conducted in synchrony with another midge. We characterize these pairwise interactions, and make a hypothesis as to their biological function.

  10. Time-frequency methods for structural health monitoring.

    PubMed

    Pyayt, Alexander L; Kozionov, Alexey P; Mokhov, Ilya I; Lang, Bernhard; Meijer, Robert J; Krzhizhanovskaya, Valeria V; Sloot, Peter M A

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and concrete dams) using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany) and "strange" behaviour of sensors installed in a Boston levee (UK) and a Rhine levee (Germany). PMID:24625740

  11. High-resolution signal synthesis for time-frequency distributions

    SciTech Connect

    Cunningham, G.S. ); Williams, W.J. . Dept. of Electrical Engineering and Computer Science)

    1993-01-01

    Bilinear time-frequency distributions (TFDs) offer improved resolution over linear nine-frequency representations (TFRs), but many TFDs are costly to evaluate and are not associated with signal synthesis algorithms. Recently, the spectrogram (SP) decomposition and weighted reversal correlator decomposition have been used to define low-cost, high-resolution TFDs. In this paper, we show that the vector-valued square-root'' of a TFD (VVTFR) provides a representational underpinning for the TFD. By synthesizing signals from modified VVTFRs, we define high-resolution signal synthesis algorithms associated with TFDs. The signal analysis and synthesis packages can be implemented as weighted sums of SP/short-time Fourier Transform signal analysis and synthesis packages, which are widely available, allowing the interested non-specialist easy access to high-resolution methods.

  12. Time-Frequency Methods for Structural Health Monitoring †

    PubMed Central

    Pyayt, Alexander L.; Kozionov, Alexey P.; Mokhov, Ilya I.; Lang, Bernhard; Meijer, Robert J.; Krzhizhanovskaya, Valeria V.; Sloot, Peter M. A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and concrete dams) using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany) and “strange” behaviour of sensors installed in a Boston levee (UK) and a Rhine levee (Germany). PMID:24625740

  13. Time-frequency analysis of synthetic aperture radar signals

    SciTech Connect

    Johnston, B.

    1996-08-01

    Synthetic aperture radar (SAR) has become an important tool for remote sensing of the environment. SAR is a set of digital signal processing algorithms that are used to focus the signal returned to the radar because radar systems in themselves cannot produce the high resolution images required in remote sensing applications. To reconstruct an image, several parameters must be estimated and the quality of output image depends on the degree of accuracy of these parameters. In this thesis, we derive the fundamental SAR algorithms and concentrate on the estimation of one of its critical parameters. We show that the common technique for estimating this particular parameter can sometimes lead to erroneous results and reduced quality images. We also employ time-frequency analysis techniques to examine variations in the radar signals caused by platform motion and show how these results can be used to improve output image quality.

  14. Time-frequency analysis of functional optical mammographic images

    NASA Astrophysics Data System (ADS)

    Barbour, Randall L.; Graber, Harry L.; Schmitz, Christoph H.; Tarantini, Frank; Khoury, Georges; Naar, David J.; Panetta, Thomas F.; Lewis, Theophilus; Pei, Yaling

    2003-07-01

    We have introduced working technology that provides for time-series imaging of the hemoglobin signal in large tissue structures. In this study we have explored our ability to detect aberrant time-frequency responses of breast vasculature for subjects with Stage II breast cancer at rest and in response to simple provocations. The hypothesis being explored is that time-series imaging will be sensitive to the known structural and functional malformations of the tumor vasculature. Mammographic studies were conducted using an adjustable hemisheric measuring head containing 21 source and 21 detector locations (441 source-detector pairs). Simultaneous dual-wavelength studies were performed at 760 and 830 nm at a framing rate of ~2.7 Hz. Optical measures were performed on women lying prone with the breast hanging in a pendant position. Two class of measures were performed: (1) 20- minute baseline measure wherein the subject was at rest; (2) provocation studies wherein the subject was asked to perform some simple breathing maneuvers. Collected data were analyzed to identify the time-frequency structure and central tendencies of the detector responses and those of the image time series. Imaging data were generated using the Normalized Difference Method (Pei et al., Appl. Opt. 40, 5755-5769, 2001). Results obtained clearly document three classes of anomalies when compared to the normal contralateral breast. 1) Breast tumors exhibit altered oxygen supply/demand imbalance in response to an oxidative challenge (breath hold). 2) The vasomotor response of the tumor vasculature is mainly depressed and exhibits an altered modulation. 3) The affected area of the breast wherein the altered vasomotor signature is seen extends well beyond the limits of the tumor itself.

  15. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression

    PubMed Central

    Libbrecht, Maxwell W.; Ay, Ferhat; Hoffman, Michael M.; Gilbert, David M.; Bilmes, Jeffrey A.; Noble, William Stafford

    2015-01-01

    The genomic neighborhood of a gene influences its activity, a behavior that is attributable in part to domain-scale regulation. Previous genomic studies have identified many types of regulatory domains. However, due to the difficulty of integrating genomics data sets, the relationships among these domain types are poorly understood. Semi-automated genome annotation (SAGA) algorithms facilitate human interpretation of heterogeneous collections of genomics data by simultaneously partitioning the human genome and assigning labels to the resulting genomic segments. However, existing SAGA methods cannot integrate inherently pairwise chromatin conformation data. We developed a new computational method, called graph-based regularization (GBR), for expressing a pairwise prior that encourages certain pairs of genomic loci to receive the same label in a genome annotation. We used GBR to exploit chromatin conformation information during genome annotation by encouraging positions that are close in 3D to occupy the same type of domain. Using this approach, we produced a model of chromatin domains in eight human cell types, thereby revealing the relationships among known domain types. Through this model, we identified clusters of tightly regulated genes expressed in only a small number of cell types, which we term specific expression domains. We found that domain boundaries marked by promoters and CTCF motifs are consistent between cell types even when domain activity changes. Finally, we showed that GBR can be used to transfer information from well-studied cell types to less well-characterized cell types during genome annotation, making it possible to produce high-quality annotations of the hundreds of cell types with limited available data. PMID:25677182

  16. Time-frequency characterization of interdependencies in nonstationary signals: application to epileptic EEG.

    PubMed

    Ansari-Asl, Karim; Bellanger, Jean-Jacques; Bartolomei, Fabrice; Wendling, Fabrice; Senhadji, Lotfi

    2005-07-01

    For the past decades, numerous works have been dedicated to the development of signal processing methods aimed at measuring the degree of association between electroencephalographic (EEG) signals. This interdependency parameter, which may be defined in various ways, is often used to characterize a functional coupling between different brain structures or regions during either normal or pathological processes. In this paper, we focus on the time-frequency characterization of the interdependency between signals. Particularly, we propose a novel estimator of the linear relationship between nonstationary signals based on the cross correlation of narrow band filtered signals. This estimator is compared to a more classical estimator based on the coherence function. In a simulation framework, results show that it may exhibit better statistical performances (bias and variance or mean square error) when a priori knowledge about time delay between signals is available. On real data (intracerebral EEG signals), results show that this estimator may also enhance the readability of the time-frequency representation of relationship and, thus, can improve the interpretation of nonstationary interdependencies in EEG signals. Finally, we illustrate the importance of characterizing the relationship in both time and frequency domains by comparing with frequency-independent methods (linear and nonlinear). PMID:16041985

  17. Enhancing the resolution of non-stationary seismic data using improved time-frequency spectral modelling

    NASA Astrophysics Data System (ADS)

    Zhou, Huai-lai; Wang, Chang-cheng; Marfurt, Kurt J.; Jiang, Yi-wei; Bi, Jian-xia

    2016-04-01

    Maximizing vertical resolution is a key objective in seismic data processing. Early deconvolution and spectral balancing algorithms assumed that the seismic source wavelet was temporally invariant, or stationary. In practice, seismic scattering and attenuation give rise to non-stationary seismic source wavelets. To address this issue, most conventional time-varying deconvolution wavelet shaping and spectral modelling techniques using the stationary polynomial fitting assume the wavelet to be locally stationary within a small number of overlapping analysis windows while the fitting coefficients are invariant with all the frequencies. In this paper, we show an improvement obtained by modelling smoothly varying spectra of the seismic wavelet using non-stationary polynomial fitting in the time-frequency domain. We first decompose each seismic trace using a generalized S-transform that provides a good time-frequency distribution for the estimation of the time-varying wavelet spectra. We then model the slowly varying source wavelet spectrum at each time sample by a smooth low-order polynomial. Finally, we spectrally balance the modelled wavelet to flatten the seismic response, thereby increasing vertical resolution. We calibrate the algorithm on a simple synthetic and then apply it to a 3-D land survey acquired in western China, showing the value on both vertical slices through seismic amplitude and attribute time slices. Our new algorithm significantly improves the vertical resolution of the seismic signal, while not increasing the noise.

  18. Vibration signal analysis using parameterized time-frequency method for features extraction of varying-speed rotary machinery

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Dong, X. J.; Peng, Z. K.; Zhang, W. M.; Meng, G.

    2015-01-01

    In real application, when rotary machinery frequently involves variable-speed, unsteady load and defect, it will produce non-stationary vibration signal. Such signal can be characterized by mono- or multi-component frequency modulation (FM) and its internal instantaneous patterns are closely related to operation condition of the rotary machinery. For example, instantaneous frequency (IF) and instantaneous amplitude (IA) of a non-stationary signal are two important time-frequency features to be inspected. For vibration signal analysis of the rotary machinery, time-frequency analysis (TFA), known for analyzing the signal in the time and frequency domain simultaneously, has been accepted as a key signal processing tool. Particularly, parameterized TFA, among various TFAs, has shown great potential to investigate time-frequency features of non-stationary signals. It attracts more attention for improving time-frequency representation (TFR) with signal-dependent transform parameters. However, the parameter estimation and component separation are two problems to tackle with while using the parameterized TFA to extract time-frequency features from non-stationary vibration signal of varying-speed rotary machinery. In this paper, we propose a procedure for the parameterized TFA to analyze the non-stationary vibration signal of varying-speed rotary machinery. It basically includes four steps: initialization, estimation of transform parameter, component separation and parameterized TFA, as well as feature extraction. To demonstrate the effectiveness of the proposed method in analyzing mono- and multi-component signals, it is first used to analyze the vibration response of a laboratory rotor during a speed-up and run-down process, and then extract the instantaneous time-frequency signatures of a hydro-turbine rotor in a hydroelectric power station during a shut-down stage. In addition, the results are compared with several traditional TFAs and the proposed method outperforms others in accurate feature extraction, which is promising in applications of fault detection, system condition monitoring, parameter identification, etc.

  19. Time frequency analysis of sound from a maneuvering rotorcraft

    NASA Astrophysics Data System (ADS)

    Stephenson, James H.; Tinney, Charles E.; Greenwood, Eric; Watts, Michael E.

    2014-10-01

    The acoustic signatures produced by a full-scale, Bell 430 helicopter during steady-level-flight and transient roll-right maneuvers are analyzed by way of time-frequency analysis. The roll-right maneuvers comprise both a medium and a fast roll rate. Data are acquired using a single ground based microphone that are analyzed by way of the Morlet wavelet transform to extract the spectral properties and sound pressure levels as functions of time. The findings show that during maneuvering operations of the helicopter, both the overall sound pressure level and the blade-vortex interaction sound pressure level are greatest when the roll rate of the vehicle is at its maximum. The reduced inflow in the region of the rotor disk where blade-vortex interaction noise originates is determined to be the cause of the increase in noise. A local decrease in inflow reduces the miss distance of the tip vortex and thereby increases the BVI noise signature. Blade loading and advance ratios are also investigated as possible mechanisms for increased sound production, but are shown to be fairly constant throughout the maneuvers.

  20. Optimizing time-frequency distributions for automatic classification

    NASA Astrophysics Data System (ADS)

    Atlas, Les E.; Droppo, J.; McLaughlin, Jack

    1997-10-01

    An entirely new set of criteria for the design of kernels (generating functions) for time-frequency representations (TFRs) is presented. These criteria aim only to produce kernels (and thus, TFRs) which will enable more accurate classification. We refer to these kernels, which are optimized to discriminate among several classes of signals, as signal class dependent kernels, or simply class dependent kernels. The genesis of the class dependent kernel is to be found in the area of operator theory, which we use to establish a direct link between a discrete-time, discrete-frequency TFR and its corresponding discrete signal. We see that many similarities, but also some important differences, exist between the results of the continuous-time operator approach and our discrete one. The differences between the continuous representations and discrete ones may not be the simple sampling relationship which has often been assumed. From this work, we obtain a very concise, matrix-based expression for a discrete- time/discrete-frequency TFR which is simply the product of the kernel with another matrix. This simple expression opens up the possibility to optimize the kernel in a number of ways. We focus, of course, on optimizations most suitable for classification, and ultimately wind up with the class dependent kernel. When applied to simulated sonar transient signals, we find that our approach does a good job of discriminating within very similar classes of transients and is especially sensitive to differences in time variation across classes.

  1. Time-frequency effects in wireless communication systems

    NASA Astrophysics Data System (ADS)

    Mazzaro, Gregory James

    Time-frequency effects in wireless communication systems caused by narrowband resonances and coupled with device nonlinearities are revealed as new sources of co-site interference, exploited for the metrology of bandpass circuits, and employed to linearize amplitude-modulated transmissions. The transient properties of bandpass filters are found to last much longer than traditional time/bandwidth rules-of-thumb. The cause of this long-tail behavior is attributed to the coupled-resonator structure of the filter circuit. A solution method which uses lowpass prototyping is developed to reduce, by a factor of two, the complexity of the differential equation set describing a narrowband filter's transient response. Pulse overlap caused by the frequency dependence of long tails produced by filters is shown to cause intersymbol interference and intermodulation distortion in RF front-ends during frequency-hopped communications. The same properties which cause the ISI and IMD are used to develop three new transient methods for measuring resonant circuit parameters and a one-port method for extracting the operating band of a filter. A new signal-processing technique which combines time- and frequency-selectivity, Linear Amplification by Time-Multiplexed Spectrum, is developed to reduce IMD associated with amplitude modulation. Distortion reduction is demonstrated experimentally for multisines up to 20 tones.

  2. Sparse time-frequency decomposition based on dictionary adaptation.

    PubMed

    Hou, Thomas Y; Shi, Zuoqiang

    2016-04-13

    In this paper, we propose a time-frequency analysis method to obtain instantaneous frequencies and the corresponding decomposition by solving an optimization problem. In this optimization problem, the basis that is used to decompose the signal is not known a priori. Instead, it is adapted to the signal and is determined as part of the optimization problem. In this sense, this optimization problem can be seen as a dictionary adaptation problem, in which the dictionary is adaptive to one signal rather than a training set in dictionary learning. This dictionary adaptation problem is solved by using the augmented Lagrangian multiplier (ALM) method iteratively. We further accelerate the ALM method in each iteration by using the fast wavelet transform. We apply our method to decompose several signals, including signals with poor scale separation, signals with outliers and polluted by noise and a real signal. The results show that this method can give accurate recovery of both the instantaneous frequencies and the intrinsic mode functions. PMID:26953172

  3. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials

    PubMed Central

    Hu, L.; Zhang, Z.G.; Mouraux, A.; Iannetti, G.D.

    2015-01-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical oscillations, obtaining single-trial estimate of response latency, frequency, and magnitude. This permits within-subject statistical comparisons, correlation with pre-stimulus features, and integration of simultaneously-recorded EEG and fMRI. PMID:25665966

  4. Wind turbine gearbox health monitoring using time-frequency features from multiple sensors

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Tang, J.

    2011-04-01

    As wind energy plays an increasingly important role in the US and world electricity supply, maintenance of wind turbines emerges as a critical issue. Because of the remote nature of wind turbines, autonomous and robust health monitoring techniques are necessary. Detecting faults in complex systems such as wind turbine gearboxes remains challenging, even with the recently significant advancement of sensing and signal processing technologies. In this paper, we collect time domain signals from a gearbox test bed on which either a healthy or a faulty gear is installed. Then a harmonic wavelet based method is used to extract time-frequency features. We also develop a speed profile masking technique to account for tachometer readings and gear meshing relationship. Features from multiple sources are then fused together through a statistical weighting approach based on principal component analysis. Using the fused timefrequency features, we demonstrate that different gear faults can be effectively identified through a simple decision making algorithm.

  5. Human Intracranial High Frequency Oscillations (HFOs) Detected by Automatic Time-Frequency Analysis

    PubMed Central

    Burnos, Sergey; Hilfiker, Peter; Sürücü, Oguzkan; Scholkmann, Felix; Krayenbühl, Niklaus; Grunwald, Thomas; Sarnthein, Johannes

    2014-01-01

    Objectives High frequency oscillations (HFOs) have been proposed as a new biomarker for epileptogenic tissue. The exact characteristics of clinically relevant HFOs and their detection are still to be defined. Methods We propose a new method for HFO detection, which we have applied to six patient iEEGs. In a first stage, events of interest (EoIs) in the iEEG were defined by thresholds of energy and duration. To recognize HFOs among the EoIs, in a second stage the iEEG was Stockwell-transformed into the time-frequency domain, and the instantaneous power spectrum was parameterized. The parameters were optimized for HFO detection in patient 1 and tested in patients 2–5. Channels were ranked by HFO rate and those with rate above half maximum constituted the HFO area. The seizure onset zone (SOZ) served as gold standard. Results The detector distinguished HFOs from artifacts and other EEG activity such as interictal epileptiform spikes. Computation took few minutes. We found HFOs with relevant power at frequencies also below the 80–500 Hz band, which is conventionally associated with HFOs. The HFO area overlapped with the SOZ with good specificity > 90% for five patients and one patient was re-operated. The performance of the detector was compared to two well-known detectors. Conclusions Compared to methods detecting energy changes in filtered signals, our second stage - analysis in the time-frequency domain - discards spurious detections caused by artifacts or sharp epileptic activity and improves the detection of HFOs. The fast computation and reasonable accuracy hold promise for the diagnostic value of the detector. PMID:24722663

  6. Synchronization between EMG at Different Uterine Locations Investigated Using Time-Frequency Ridge Reconstruction: Comparison of Pregnancy and Labor Contractions

    NASA Astrophysics Data System (ADS)

    Terrien, Jrmy; Steingrimsdottir, Thora; Marque, Catherine; Karlsson, Brynjar

    2010-12-01

    The extraction of the frequency components of a signal can be useful for the characterization of the underlying system. One method for isolating a frequency component of a signal is by the extraction and reconstruction of the local maxima or ridge of its time-frequency representation. We compare here the performances of two well-known ridge reconstruction methods, namely the Carmona and Marseille methods, on synthetic signals as well as real electrohysterogram (EHG). We show that Carmona's method presents lower reconstruction errors. We then used the separately reconstructed frequency components of the EHG independently for labor prediction using a synchronization measure. We show that the proposed synchronization parameters present similar prediction rate to classical parameters obtained directly from the time-frequency representation but also seem to provide information complementary to the classical parameters and may thus improve the accuracy in labor prediction when they are used jointly.

  7. Cross Time-Frequency Analysis for Combining Information of Several Sources: Application to Estimation of Spontaneous Respiratory Rate from Photoplethysmography

    PubMed Central

    Pelez-Coca, M. D.; Orini, M.; Lzaro, J.; Bailn, R.; Gil, E.

    2013-01-01

    A methodology that combines information from several nonstationary biological signals is presented. This methodology is based on time-frequency coherence, that quantifies the similarity of two signals in the time-frequency domain. A cross time-frequency analysis method, based on quadratic time-frequency distribution, has been used for combining information of several nonstationary biomedical signals. In order to evaluate this methodology, the respiratory rate from the photoplethysmographic (PPG) signal is estimated. The respiration provokes simultaneous changes in the pulse interval, amplitude, and width of the PPG signal. This suggests that the combination of information from these sources will improve the accuracy of the estimation of the respiratory rate. Another target of this paper is to implement an algorithm which provides a robust estimation. Therefore, respiratory rate was estimated only in those intervals where the features extracted from the PPG signals are linearly coupled. In 38 spontaneous breathing subjects, among which 7 were characterized by a respiratory rate lower than 0.15 Hz, this methodology provided accurate estimates, with the median error {0.00; 0.98}?mHz ({0.00; 0.31}%) and the interquartile range error {4.88; 6.59}?mHz ({1.60; 1.92}%). The estimation error of the presented methodology was largely lower than the estimation error obtained without combining different PPG features related to respiration. PMID:24363777

  8. Time-frequency analyses of tide-gauge sensor data.

    PubMed

    Erol, Serdar

    2011-01-01

    The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors' data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by tide-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek tide-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The tide-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of tide-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented. PMID:22163829

  9. Time-Frequency Analyses of Tide-Gauge Sensor Data

    PubMed Central

    Erol, Serdar

    2011-01-01

    The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by tide-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek tide-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The tide-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of tide-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented. PMID:22163829

  10. Radar classification of landmines by time-frequency analysis

    NASA Astrophysics Data System (ADS)

    Wong, D.; Nguyen, L.; Gaunaurd, G.

    2007-04-01

    A flying platform illuminates a land mine field with mixtures of various landmines (i.e., buried, on the surface, plastic or metallic) and some "confusers", with an ultra-wideband (UWB) radar. The polarimetric echoes returned by the mine field are mapped into an overall synthetic aperture radar (SAR) image, which is then analyzed pixel-by-pixel by modern time-frequency (t-f) techniques. The t-f analysis of any echo from any of the individual scatterers in the mine field can be performed using a number of t-f distributions, which in turn generate two-dimensional plots of each such scatterer in t-f space. These plots are richer in information than those in the original SAR image, and they offer a larger variety of clues useful for the discrimination of each type of mine from the others or from the confusers. Several t-f distributions are employed in the study, and it is found that some are better than others for the present purpose of target detection and classification. From the images obtained we can conclude that the Pseudo-Wigner-Ville and the Choi-Williams distributions provide the best discrimination results. It is also found that the larger mines such as those denoted here as of "type-1" are the easiest to identify. Using the above-mentioned distributions it follows that the distinction between actual mines and clutter objects (or "confusers") becomes clearer, particularly when the latter objects are metallic. Numerous images generated in this study confirm the above conclusions.

  11. Naval Space Surveillance Center uses of time, frequency, and phase

    NASA Technical Reports Server (NTRS)

    Hayden, Carroll C.; Knowles, Stephen H.

    1992-01-01

    The Naval Space Surveillance Center (NAVSPASUR) is an operational naval command that has the mission of determining the location of all manmade objects in space and transmitting information on objects of interest to the fleet. NAVSPASUR operates a 217 MHz radar fence that has 9 transmitting and receiving stations deployed in a line across southern Continental United States (CONUS). This surveillance fence provides unalerted detection of satellites overflying CONUS. NAVSPASUR also maintains a space catalog of all orbiting space objects. NAVSPASUR plays an important role as operational alternate to the primary national Space Surveillance Center (SSC) and Space Defence Operations Center (SPADOC). In executing these responsibilities, NAVSPASUR needs precise and/or standardized time and frequency in a number of applications. These include maintenance of the radar fence references to specification, and coordination with other commands and agencies for data receipt and dissemination. Precise time and frequency must be maintained within each site to enable proper operation of the interferometry phasing technique used. Precise time-of-day clocking must exist between sites for proper intersite coordination. Phase may be considered a derivative of time and frequency. Its control within each transmitter or receiver site is of great importance to NAVSPASUR because of the operation of the sensor as an interferometer system, with source direction angles as the primary observable. Determination of the angular position of a satellite is directly dependent on the accuracy with which the differential phase between spaced subarrays can be measured at each receiver site. Various aspects of the NAVSPASUR are discussed with respect to time, frequency, and phase.

  12. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data in the Wavelet Domain Constrained by Sparsity Regularization

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fang, H.; Yao, H.; Maceira, M.; van der Hilst, R. D.

    2014-12-01

    Recently, Zhang et al. (2014, Pure and Appiled Geophysics) have developed a joint inversion code incorporating body-wave arrival times and surface-wave dispersion data. The joint inversion code was based on the regional-scale version of the double-difference tomography algorithm tomoDD. The surface-wave inversion part uses the propagator matrix solver in the algorithm DISPER80 (Saito, 1988) for forward calculation of dispersion curves from layered velocity models and the related sensitivities. The application of the joint inversion code to the SAFOD site in central California shows that the fault structure is better imaged in the new model, which is able to fit both the body-wave and surface-wave observations adequately. Here we present a new joint inversion method that solves the model in the wavelet domain constrained by sparsity regularization. Compared to the previous method, it has the following advantages: (1) The method is both data- and model-adaptive. For the velocity model, it can be represented by different wavelet coefficients at different scales, which are generally sparse. By constraining the model wavelet coefficients to be sparse, the inversion in the wavelet domain can inherently adapt to the data distribution so that the model has higher spatial resolution in the good data coverage zone. Fang and Zhang (2014, Geophysical Journal International) have showed the superior performance of the wavelet-based double-difference seismic tomography method compared to the conventional method. (2) For the surface wave inversion, the joint inversion code takes advantage of the recent development of direct inversion of surface wave dispersion data for 3-D variations of shear wave velocity without the intermediate step of phase or group velocity maps (Fang et al., 2014, Geophysical Journal International). A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. We will test the new joint inversion code at the SAFOD site to compare its performance over the previous code. We will also select another fault zone such as the San Jacinto Fault Zone to better image its structure.

  13. United Time-Frequency Spectroscopy for Dynamics and Global Structure

    NASA Astrophysics Data System (ADS)

    Marian, Adela; Stowe, Matthew C.; Lawall, John R.; Felinto, Daniel; Ye, Jun

    2004-12-01

    Ultrashort laser pulses have thus far been used in two distinct modes. In the time domain, the pulses have allowed probing and manipulation of dynamics on a subpicosecond time scale. More recently, phase stabilization has produced optical frequency combs with absolute frequency reference across a broad bandwidth. Here we combine these two applications in a spectroscopic study of rubidium atoms. A wide-bandwidth, phase-stabilized femtosecond laser is used to monitor the real-time dynamic evolution of population transfer. Coherent pulse accumulation and quantum interference effects are observed and well modeled by theory. At the same time, the narrow linewidth of individual comb lines permits a precise and efficient determination of the global energy-level structure, providing a direct connection among the optical, terahertz, and radio-frequency domains. The mechanical action of the optical frequency comb on the atomic sample is explored and controlled, leading to precision spectroscopy with an appreciable reduction in systematic errors.

  14. Ultrashort Pulse Characterization and Coherent Time-Frequency Light Processing

    NASA Astrophysics Data System (ADS)

    Radunsky, Aleksandr S.

    Over the past several decades ultrafast laser science and technology has evolved into an extensive and diverse yet still one of the most rapidly growing and developing areas of optics. This evolution has been one of mutual interdependence. Each current generation of technological innovations not only solves the specific problems it was designed for, but uncovers new application opportunities and enables the exploration of new basic research areas. In turn, these new challenges will give rise to the next generation of technological improvements born of the currently existing technologies and the advances in fundamental scientific knowledge and understanding. Ultrashort pulse characterization has always been an essential part of this ultrafast optics evolution. The thesis makes yet another contribution to it by describing the principle, design, construction, development and operation of a novel interferometric ultrashort pulse characterization device. It consists of a new implementation of spectral-shearing interferometry for reconstructing the electric field of ultrashort pulses, requiring only a single optical element to encode the temporal field of the pulse under test. The technique relies on an asymmetric group velocity matching type II sum frequency generation process in a single long nonlinear crystal. We analyze the performance of the device for a wide range of experimentally available input pulse parameters. The device --- potential building block for the future generations of ultrashort diagnostics --- proves a practical, elegant, compact, robust, and sensitive option for complete amplitude and phase ultrashort pulse characterization. As the femtosecond systems of increasingly larger bandwidth become a widespread reality, the detrimental effects of dispersion require careful consideration. Dispersive pulse distortion degrades longitudinal resolution of broadband interferometric imaging methods such as optical coherence tomography and low-coherence interferometry. We address the issue with a novel signal processing dispersion compensation method. This numerical technique improves the axial resolution without a priori knowledge of the material dispersive properties of the sample under consideration. The dispersion compensation is based on the generalized temporal fourth order field autoconvolution function computed from the readily available experimental interferometric scans and has an intuitive depiction in the time-frequency phase-space via the Wigner distribution function formalism.

  15. Sparse Component Analysis Using Time-Frequency Representations for Operational Modal Analysis

    PubMed Central

    Qin, Shaoqian; Guo, Jie; Zhu, Changan

    2015-01-01

    Sparse component analysis (SCA) has been widely used for blind source separation(BSS) for many years. Recently, SCA has been applied to operational modal analysis (OMA), which is also known as output-only modal identification. This paper considers the sparsity of sources' time-frequency (TF) representation and proposes a new TF-domain SCA under the OMA framework. First, the measurements from the sensors are transformed to the TF domain to get a sparse representation. Then, single-source-points (SSPs) are detected to better reveal the hyperlines which correspond to the columns of the mixing matrix. The K-hyperline clustering algorithm is used to identify the direction vectors of the hyperlines and then the mixing matrix is calculated. Finally, basis pursuit de-noising technique is used to recover the modal responses, from which the modal parameters are computed. The proposed method is valid even if the number of active modes exceed the number of sensors. Numerical simulation and experimental verification demonstrate the good performance of the proposed method. PMID:25789492

  16. A wavelet based time-frequency analysis of wave packet fractional revivals

    NASA Astrophysics Data System (ADS)

    Ghosh, Suranjana; Banerji, Jagannath

    2007-06-01

    We show that the time-frequency analysis of the autocorrelation function based on its wavelet transform [1], is a better tool to resolve fractional revivals [2] of a wave packet than the usual time domain analysis. We study the above for two different systems like a Rydberg atom [3] and a diatomic molecular system [4] and show that the present method can resolve fractional revivals of higher order than what can be achieved by the time domain analysis. This advantage is crucial in reconstructing the initial state of the wave packet when its coherent structure is short-lived and decays before it is fully revived. References: [1] R. M. Rao and A. S. Bopardikar, Wavelet Transforms: Introduction to Theory and Applications (ADDISON-WESLEY, 2000). [2] I. Sh. Averbukh and N. F. Perelman, Phys. Lett. A 139, 449 (1989); R. W. Robinett, Phys. Rep. 392, 1 (2004) and references therein; J. Banerji and S. Ghosh, J. Phys. B 39, 1113 (2006). [3] Z. D. Gaeta and C. R. Stroud, Jr., Phys. Rev. A 42, 6308 (1990). [4] S. Ghosh, A. Chiruvelli, J. Banerji and P. K. Panigrahi, Phys. Rev. A 70, 053813 (2006).

  17. An Improved Time-Frequency Analysis Method in Interference Detection for GNSS Receivers

    PubMed Central

    Sun, Kewen; Jin, Tian; Yang, Dongkai

    2015-01-01

    In this paper, an improved joint time-frequency (TF) analysis method based on a reassigned smoothed pseudo Wigner–Ville distribution (RSPWVD) has been proposed in interference detection for Global Navigation Satellite System (GNSS) receivers. In the RSPWVD, the two-dimensional low-pass filtering smoothing function is introduced to eliminate the cross-terms present in the quadratic TF distribution, and at the same time, the reassignment method is adopted to improve the TF concentration properties of the auto-terms of the signal components. This proposed interference detection method is evaluated by experiments on GPS L1 signals in the disturbing scenarios compared to the state-of-the-art interference detection approaches. The analysis results show that the proposed interference detection technique effectively overcomes the cross-terms problem and also preserves good TF localization properties, which has been proven to be effective and valid to enhance the interference detection performance of the GNSS receivers, particularly in the jamming environments. PMID:25905704

  18. An Improved Time-Frequency Analysis Method in Interference Detection for GNSS Receivers.

    PubMed

    Sun, Kewen; Jin, Tian; Yang, Dongkai

    2015-01-01

    In this paper, an improved joint time-frequency (TF) analysis method based on a reassigned smoothed pseudo Wigner-Ville distribution (RSPWVD) has been proposed in interference detection for Global Navigation Satellite System (GNSS) receivers. In the RSPWVD, the two-dimensional low-pass filtering smoothing function is introduced to eliminate the cross-terms present in the quadratic TF distribution, and at the same time, the reassignment method is adopted to improve the TF concentration properties of the auto-terms of the signal components. This proposed interference detection method is evaluated by experiments on GPS L1 signals in the disturbing scenarios compared to the state-of-the-art interference detection approaches. The analysis results show that the proposed interference detection technique effectively overcomes the cross-terms problem and also preserves good TF localization properties, which has been proven to be effective and valid to enhance the interference detection performance of the GNSS receivers, particularly in the jamming environments. PMID:25905704

  19. Rotational coherence imaging and control for CN molecules through time-frequency resolved coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Lindgren, Johan; Hulkko, Eero; Pettersson, Mika; Kiljunen, Toni

    2011-12-01

    Numerical wave packet simulations are performed for studying coherent anti-Stokes Raman scattering (CARS) for CN radicals. Electronic coherence is created by femtosecond laser pulses between the X 2? and B 2? states. Due to the large energy separation of vibrational states, the wave packets are superpositions of rotational states only. This allows for a specially detailed inspection of the second- and third-order coherences by a two-dimensional imaging approach. We present the time-frequency domain images to illustrate the intra- and intermolecular interferences, and discuss the procedure to rationally control and experimentally detect the interferograms in solid Xe environment.

  20. Multi-bearing defect detection with trackside acoustic signal based on a pseudo time-frequency analysis and Dopplerlet filter

    NASA Astrophysics Data System (ADS)

    Zhang, Haibin; Lu, Siliang; He, Qingbo; Kong, Fanrang

    2016-03-01

    The diagnosis of train bearing defects based on the acoustic signal acquired by a trackside microphone plays a significant role in the transport system. However, the wayside acoustic signal suffers from the Doppler distortion due to the high moving speed and also contains the multi-source signals from different train bearings. This paper proposes a novel solution to overcome the two difficulties in trackside acoustic diagnosis. In the method a pseudo time-frequency analysis (PTFA) based on an improved Dopplerlet transform (IDT) is presented to acquire the time centers for different bearings. With the time centers, we design a series of Dopplerlet filters (DF) in time-frequency domain to work on the signal's time-frequency distribution (TFD) gained by the short time Fourier transform (STFT). Then an inverse STFT (ISTFT) is utilized to get the separated signals for each sound source which means bearing here. Later the resampling method based on certain motion parameters eliminates the Doppler Effect and finally the diagnosis can be made effectively according to the envelope spectrum of each separated signal. With the effectiveness of the technique validated by both simulated and experimental cases, the proposed wayside acoustic diagnostic scheme is expected to be available in wayside defective bearing detection.

  1. Time-Frequency Mixed-Norm Estimates: Sparse M/EEG imaging with non-stationary source activations

    PubMed Central

    Gramfort, A.; Strohmeier, D.; Haueisen, J.; Hmlinen, M.; Kowalski, M.

    2013-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While solving the inverse problem independently at every time point can give an image of the active brain at every millisecond, such a procedure does not capitalize on the temporal dynamics of the signal. Linear inverse methods (Minimum-norm, dSPM, sLORETA, beamformers) typically assume that the signal is stationary: regularization parameter and data covariance are independent of time and the time varying signal-to-noise ratio (SNR). Other recently proposed non-linear inverse solvers promoting focal activations estimate the sources in both space and time while also assuming stationary sources during a time interval. However such an hypothesis only holds for short time intervals. To overcome this limitation, we propose time-frequency mixed-norm estimates (TF-MxNE), which use time-frequency analysis to regularize the ill-posed inverse problem. This method makes use of structured sparse priors defined in the time-frequency domain, offering more accurate estimates by capturing the non-stationary and transient nature of brain signals. State-of-the-art convex optimization procedures based on proximal operators are employed, allowing the derivation of a fast estimation algorithm. The accuracy of the TF-MxNE is compared to recently proposed inverse solvers with help of simulations and by analyzing publicly available MEG datasets. PMID:23291276

  2. Data-domain correlation approach for joint hydrogeologic inversion of time-lapse hydrogeologic and geophysical data

    SciTech Connect

    Timothy C. Johnson; Roelof J. Versteeg; Hai Huang; Partha S. Routh

    2009-11-01

    Inverse estimations of hydrogeologic properties are often highly uncertain due to the expense of collecting hydrogeologic data and the subsequent lack of information. Geophysical data can potentially help fill this information gap because geophysical methods can survey large areas remotely and relatively inexpensively. However, geophysical data are difficult to incorporate into hydrogeological parameter estimations due primarily to a lack of knowledge concerning the petrophysical relationships between hydrogeological and geophysical parameters. We present a method which allows time lapse geophysical data to be directly incorporated into a hydrogeological parameter estimation when there is a strong correlation between changes in geophysical and hydrogeological properties. This approach bypasses the need for an explicit petrophysical transform by formulating the geophysical part of the hydrogeological inversion in terms of a data domain correlation operator. We demonstrate the approach with a synthetic electrical resistivity monitoring application used to estimate the hydraulic conductivity distribution. Including time lapse resistivity data to supplement sparse hydrological data appears to greatly improve resolution of hydraulic conductivity in this case. More generally, the formulation and results suggest that geophysical monitoring data can be effectively incorporated into a hydrogeological parameter estimation using a data domain correlation operator, assuming there is a strong correlation between changes in hydrogeological and geophysical properties.

  3. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    PubMed Central

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-01-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the “non-progressing” and “progressing” glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection. PMID:25606299

  4. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    NASA Astrophysics Data System (ADS)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  5. Application of time-frequency methods to sound-quality analysis in automobiles

    NASA Astrophysics Data System (ADS)

    French, Mark; Cohen, Leon; Loughlin, Patrick J.

    1999-11-01

    We apply time-frequency methods to automotive vibration signals for sound quality analysis. Our analysis indicates that time-frequency methods provide additional information beyond that provided by the spectral density and vibration time series that is relevant to the assessment of noise and sound quality.

  6. Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications.

    PubMed

    Lin, Chin-Feng; Zhu, Jin-De

    2012-03-01

    Hilbert-Huang transformation, wavelet transformation, and Fourier transformation are the principal time-frequency analysis methods. These transformations can be used to discuss the frequency characteristics of linear and stationary signals, the time-frequency features of linear and non-stationary signals, the time-frequency features of non-linear and non-stationary signals, respectively. The Hilbert-Huang transformation is a combination of empirical mode decomposition and Hilbert spectral analysis. The empirical mode decomposition uses the characteristics of signals to adaptively decompose them to several intrinsic mode functions. Hilbert transforms are then used to transform the intrinsic mode functions into instantaneous frequencies, to obtain the signal's time-frequency-energy distributions and features. Hilbert-Huang transformation-based time-frequency analysis can be applied to natural physical signals such as earthquake waves, winds, ocean acoustic signals, mechanical diagnosis signals, and biomedical signals. In previous studies, we examined Hilbert-Huang transformation-based time-frequency analysis of the electroencephalogram FPI signals of clinical alcoholics, and 'sharp I' wave-based Hilbert-Huang transformation time-frequency features. In this paper, we discuss the application of Hilbert-Huang transformation-based time-frequency analysis to biomedical signals, such as electroencephalogram, electrocardiogram signals, electrogastrogram recordings, and speech signals. PMID:22558835

  7. Radar signal analysis of ballistic missile with micro-motion based on time-frequency distribution

    NASA Astrophysics Data System (ADS)

    Wang, Jianming; Liu, Lihua; Yu, Hua

    2015-12-01

    The micro-motion of ballistic missile targets induces micro-Doppler modulation on the radar return signal, which is a unique feature for the warhead discrimination during flight. In order to extract the micro-Doppler feature of ballistic missile targets, time-frequency analysis is employed to process the micro-Doppler modulated time-varying radar signal. The images of time-frequency distribution (TFD) reveal the micro-Doppler modulation characteristic very well. However, there are many existing time-frequency analysis methods to generate the time-frequency distribution images, including the short-time Fourier transform (STFT), Wigner distribution (WD) and Cohen class distribution, etc. Under the background of ballistic missile defence, the paper aims at working out an effective time-frequency analysis method for ballistic missile warhead discrimination from the decoys.

  8. Analysis and design of modified window shapes for S-transform to improve time-frequency localization

    NASA Astrophysics Data System (ADS)

    Ma, Jianping; Jiang, Jin

    2015-06-01

    This paper deals with window design issues for modified S-transform (MST) to improve the performance of time-frequency analysis (TFA). After analyzing the drawbacks of existing window functions, a window design technique is proposed. The technique uses a sigmoid function to control the window width in frequency domain. By proper selection of certain tuning parameters of a sigmoid function, windows with different width profiles can be obtained for multi-component signals. It is also interesting to note that the MST algorithm can be considered as a special case of a generalized method that adds a tunable shaping function to the standard window in frequency domain to meet specific frequency localization needs. The proposed design technique has been validated on a physical vibration test system using signals with different characteristics. The results have demonstrated that the proposed MST algorithm has superior time-frequency localization capabilities over standard ST, as well as other classical TFA methods. Subsequently, the proposed MST algorithm is applied to vibration monitoring of pipes in a water supply process controlled by a diaphragm pump for fault detection purposes.

  9. Local polynomial modeling of time-varying autoregressive models with application to time-frequency analysis of event-related EEG.

    PubMed

    Zhang, Z G; Hung, Y S; Chan, S C

    2011-03-01

    This paper proposes a new local polynomial modeling (LPM) method for identification of time-varying autoregressive (TVAR) models and applies it to time-frequency analysis (TFA) of event-related electroencephalogram (ER-EEG). The LPM method models the TVAR coefficients locally by polynomials and estimates the polynomial coefficients using weighted least-squares with a window having a certain bandwidth. A data-driven variable bandwidth selection method is developed to determine the optimal bandwidth that minimizes the mean squared error. The resultant time-varying power spectral density estimation of the signal is capable of achieving both high time resolution and high frequency resolution in the time-frequency domain, making it a powerful TFA technique for nonstationary biomedical signals like ER-EEG. Experimental results on synthesized signals and real EEG data show that the LPM method can achieve a more accurate and complete time-frequency representation of the signal. PMID:20977980

  10. Time-Frequency Feature Extraction of Newborn EEG Seizure Using SVD-Based Techniques

    NASA Astrophysics Data System (ADS)

    Hassanpour, Hamid; Mesbah, Mostefa; Boashash, Boualem

    2004-12-01

    The nonstationary and multicomponent nature of newborn EEG seizures tends to increase the complexity of the seizure detection problem. In dealing with this type of problems, time-frequency-based techniques were shown to outperform classical techniques. This paper presents a new time-frequency-based EEG seizure detection technique. The technique uses an estimate of the distribution function of the singular vectors associated with the time-frequency distribution of an EEG epoch to characterise the patterns embedded in the signal. The estimated distribution functions related to seizure and nonseizure epochs were used to train a neural network to discriminate between seizure and nonseizure patterns.

  11. Performance comparison of ISAR imaging method based on time frequency transforms

    NASA Astrophysics Data System (ADS)

    Xie, Chunjian; Guo, Chenjiang; Xu, Jiadong

    2013-03-01

    Inverse synthetic aperture radar (ISAR) can image the moving target, especially the target in the air, so it is important in the air defence and missile defence system. Time-frequency Transform was applied to ISAR imaging process widely. Several time frequency transforms were introduced. Noise jamming methods were analysed, and when these noise jamming were added to the echo of the ISAR receiver, the image can become blur even can't to be identify. But the effect is different to the different time frequency analysis. The results of simulation experiment show the Performance Comparison of the method.

  12. Time-Frequency Distribution Analyses of Ku-Band Radar Doppler Echo Signals

    NASA Astrophysics Data System (ADS)

    Bujaković, Dimitrije; Andrić, Milenko; Bondžulić, Boban; Mitrović, Srđan; Simić, Slobodan

    2015-03-01

    Real radar echo signals of a pedestrian, vehicle and group of helicopters are analyzed in order to maximize signal energy around central Doppler frequency in time-frequency plane. An optimization, preserving this concentration, is suggested based on three well-known concentration measures. Various window functions and time-frequency distributions were optimization inputs. Conducted experiments on an analytic and three real signals have shown that energy concentration significantly depends on used time-frequency distribution and window function, for all three used criteria.

  13. Time-Frequency Analysis of Beach Bacteria Variations and its Implication for Recreational Water Quality Modeling

    EPA Science Inventory

    This paper explores the potential of time-frequency wavelet analysis in resolving beach bacteria concentration and possible explanatory variables across multiple time scales with temporal information still preserved. The wavelet scalograms of E. coli concentrations and the explan...

  14. Time-frequency analysis of the Surge Onset in the Centrifugal Blower

    NASA Astrophysics Data System (ADS)

    Liskiewicz, Grzegorz; Horodko, Longin

    2015-09-01

    Time frequency analysis of the surge onset was performed in the centrifugal blower. A pressure signal was registered at the blower inlet, outlet and three locations at the impeller shroud. The time-frequency scalograms were obtained by means of the Continuous Wavelet Transform (CWT). The blower was found to successively operate in four different conditions: stable working condition, inlet recirculation, transient phase and deep surge. Scalograms revealed different spectral structures of aforementioned phases and suggest possible ways of detecting the surge predecessors.

  15. Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis

    PubMed Central

    Gajic, Dragoljub; Djurovic, Zeljko; Gligorijevic, Jovan; Di Gennaro, Stefano; Savic-Gajic, Ivana

    2015-01-01

    We present a new technique for detection of epileptiform activity in EEG signals. After preprocessing of EEG signals we extract representative features in time, frequency and time-frequency domain as well as using non-linear analysis. The features are extracted in a few frequency sub-bands of clinical interest since these sub-bands showed much better discriminatory characteristics compared with the whole frequency band. Then we optimally reduce the dimension of feature space to two using scatter matrices. A decision about the presence of epileptiform activity in EEG signals is made by quadratic classifiers designed in the reduced two-dimensional feature space. The accuracy of the technique was tested on three sets of electroencephalographic (EEG) signals recorded at the University Hospital Bonn: surface EEG signals from healthy volunteers, intracranial EEG signals from the epilepsy patients during the seizure free interval from within the seizure focus and intracranial EEG signals of epileptic seizures also from within the seizure focus. An overall detection accuracy of 98.7% was achieved. PMID:25852534

  16. Inhibition of synovitis and joint destruction by a new single domain antibody specific for cyclophilin A in two different mouse models of rheumatoid arthritis

    PubMed Central

    2013-01-01

    Introduction Cyclophilin A (CypA) is implicated in rheumatoid arthritis (RA) pathogenesis. We studied whether a novel anti-CypA single domain antibody (sdAb) treatment would modulate the severity of the disease in two different animal models of RA. Methods A novel sdAb, named sdAbA1, was screened from an immunized camel sdAb library and found to have a high binding affinity (KD?=?6.9??10-9M) for CypA. The SCID-HuRAg model and the collagen-induced arthritis (CIA) in mice were used to evaluate the effects of sdAbA1 treatment on inflammation and joint destruction. For in vitro analysis, monocytes/macrophages were purified from synovial fluid and peripheral blood of patients with RA and were tested for the effect of anti-CypA sdAb on metalloproteinase (MMP) production. Human monocyte cell line THP-1 cells were selected and western blot analyses were performed to examine the potential signaling pathways. Results In the CIA model of RA, the sdAbA1 treatment resulted in a significant decrease in clinical symptoms as well as of joint damage (P <0.05). In the SCID-HuRAg model, treatment with anti-CypA antibody sdAbA1 significantly reduced cartilage erosion, inflammatory cell numbers and MMP-9 production in the implanted tissues (P <0.05). It also significantly reduced the levels of human inflammatory cytokines IL-6 and IL-8 in mouse serum (P <0.05). No toxic effects were observed in the two animal models. In vitro results showed that sdAbA1 could counteract CypA-dependent MMP-9 secretion and IL-8 production by interfering with the ERK-NF-?B pathway. Conclusions Blockade of CypA significantly inhibited synovitis and cartilage/bone erosion in the two tested animal models of RA. Our findings provide evidence that sdAbA1 may be a potential therapeutic agent for RA. PMID:24314202

  17. A Low Complexity Noise Suppressor with Hybrid Filterbanks and Adaptive Time-Frequency Tiling

    NASA Astrophysics Data System (ADS)

    Shimada, Osamu; Sugiyama, Akihiko; Nomura, Toshiyuki

    This paper proposes a low complexity noise suppressor with hybrid filterbanks and adaptive time-frequency tiling. An analysis hybrid filterbank provides efficient transformation by further decomposing low-frequency bins after a coarse transformation with a short frame size. A synthesis hybrid filterbank also reduces computational complexity in a similar fashion to the analysis hybrid filterbank. Adaptive time-frequency tiling reduces the number of spectral gain calculations. It adaptively generates tiling information in the time-frequency plane based on the signal characteristics. The average number of instructions on a typical DSP chip has been reduced by 30% to 7.5MIPS in case of mono signals sampled at 44.1kHz. A Subjective test result shows that the sound quality of the proposed method is comparable to that of the conventional one.

  18. Application of the combined higher order time-frequency method to the identification of wave propogation

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Kwon; Ko, Sung-Gyu

    2003-10-01

    The wave propagation in a solid is an interesting topic for mechanical engineering since it often gives an idea for the structure damage. However it is often difficult to measure the wave propagation in beam due to the difference of speed of wave depending on frequency. In order to solve this problem, many time-frequency methods have been developed. Especially Wigner-Ville distribution, wavelet analysis and short time-frequency analysis are recently popular methods in this field. These methods have an advantage and a disadvantage depending on the type of structure. In this paper, the combined higher order time-frequency method is developed and used for the good identification of wave propagation. It can be applied to the damage analysis of the structure in detail. [Work supported by the Nuclear Research Project in Korea.

  19. Time-frequency and advanced frequency estimation techniques for the investigation of bat echolocation calls.

    PubMed

    Kopsinis, Yannis; Aboutanios, Elias; Waters, Dean A; McLaughlin, Steve

    2010-02-01

    In this paper, techniques for time-frequency analysis and investigation of bat echolocation calls are studied. Particularly, enhanced resolution techniques are developed and/or used in this specific context for the first time. When compared to traditional time-frequency representation methods, the proposed techniques are more capable of showing previously unseen features in the structure of bat echolocation calls. It should be emphasized that although the study is focused on bat echolocation recordings, the results are more general and applicable to many other types of signal. PMID:20136233

  20. Plastic landmine detection using time-frequency analysis for forward-looking ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Sun, Yijun; Li, Jian

    2003-09-01

    We use the time-frequency analysis techniques for buried plastic landmine detection with a forward-looking Ground Penetrating Radar (GPR) system. Several time-frequency distributions are considered to characterize and interpret the scattering phenomena of both targets and clutter. An ambiguity function based detector is also proposed, which employs principal component analysis for data dimensionality reduction and linear discriminant analysis for feature selection. Experimental results based on the SRI (Stanford Research Institute) experimentally measured forward-looking GPR data are presented, showing a significant detection performance improvement over the conventional detector.

  1. Time-frequency characterization of rail corrugation under a combined auto-regressive and matched filter scheme

    NASA Astrophysics Data System (ADS)

    Hory, C.; Bouillaut, L.; Aknin, P.

    2012-05-01

    Rail corrugation is an oscillatory mechanical wear of rail surface raising from the long-term interaction between rail and wheel. Signal processing approaches to corrugation monitoring, as recommended by the European standards for instance, are designed either in the mileage domain or in the wavelength domain. However a joint mileage and wavelength domain analysis of the monitoring data can provide crucial information about the simultaneous amplitude and wavelength modulations of the corrugation modes. It is proposed in this paper to perform such a mileage-wavelength domain analysis of rail corrugation using the class of Auto-Regressive-MAtched Filterbank (AR-MAFI) methods. We show that these methods assume a statistical model that fits the corrugation data. We discuss also the optimal parameter settings for the analysis of corrugation data. Experimental studies performed on data collected from the French RATP metro network show that the AR-MAFI methods outperform (in terms of readability and accuracy) the standard distance domain or wavelength domain methods in localizing and characterizing corrugation.

  2. Time-frequency and time-scale analyses for structural health monitoring.

    PubMed

    Staszewski, Wies?aw J; Robertson, Amy N

    2007-02-15

    Signal processing is one of the most important elements of structural health monitoring. This paper documents applications of time-variant analysis for damage detection. Two main approaches, the time-frequency and the time-scale analyses are discussed. The discussion is illustrated by application examples relevant to damage detection. PMID:17255047

  3. Time-frequency analysis of epileptic EEG patterns by means of empirical modes and wavelets

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Sitnikova, Evgenia Y.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2015-03-01

    In this paper we perform a time-frequency analysis of epileptic EEG patterns based on two approaches for characterizing nonstationary multi-frequency signals, namely, the continuous wavelet transform (CWT) and the empirical mode decomposition (EMD). Possibilities and limitations of both these techniques are considered, and a combined approach for automatic pattern detection is proposed.

  4. Automated segmentation of linear time-frequency representations of marine-mammal sounds.

    PubMed

    Dadouchi, Florian; Gervaise, Cedric; Ioana, Cornel; Huillery, Julien; Mars, Jrme I

    2013-09-01

    Many marine mammals produce highly nonlinear frequency modulations. Determining the time-frequency support of these sounds offers various applications, which include recognition, localization, and density estimation. This study introduces a low parameterized automated spectrogram segmentation method that is based on a theoretical probabilistic framework. In the first step, the background noise in the spectrogram is fitted with a Chi-squared distribution and thresholded using a Neyman-Pearson approach. In the second step, the number of false detections in time-frequency regions is modeled as a binomial distribution, and then through a Neyman-Pearson strategy, the time-frequency bins are gathered into regions of interest. The proposed method is validated on real data of large sequences of whistles from common dolphins, collected in the Bay of Biscay (France). The proposed method is also compared with two alternative approaches: the first is smoothing and thresholding of the spectrogram; the second is thresholding of the spectrogram followed by the use of morphological operators to gather the time-frequency bins and to remove false positives. This method is shown to increase the probability of detection for the same probability of false alarms. PMID:23968052

  5. Vibration Sensor Data Denoising Using a Time-Frequency Manifold for Machinery Fault Diagnosis

    PubMed Central

    He, Qingbo; Wang, Xiangxiang; Zhou, Qiang

    2014-01-01

    Vibration sensor data from a mechanical system are often associated with important measurement information useful for machinery fault diagnosis. However, in practice the existence of background noise makes it difficult to identify the fault signature from the sensing data. This paper introduces the time-frequency manifold (TFM) concept into sensor data denoising and proposes a novel denoising method for reliable machinery fault diagnosis. The TFM signature reflects the intrinsic time-frequency structure of a non-stationary signal. The proposed method intends to realize data denoising by synthesizing the TFM using time-frequency synthesis and phase space reconstruction (PSR) synthesis. Due to the merits of the TFM in noise suppression and resolution enhancement, the denoised signal would have satisfactory denoising effects, as well as inherent time-frequency structure keeping. Moreover, this paper presents a clustering-based statistical parameter to evaluate the proposed method, and also presents a new diagnostic approach, called frequency probability time series (FPTS) spectral analysis, to show its effectiveness in fault diagnosis. The proposed TFM-based data denoising method has been employed to deal with a set of vibration sensor data from defective bearings, and the results verify that for machinery fault diagnosis the method is superior to two traditional denoising methods. PMID:24379045

  6. Automated segmentation of linear time-frequency representations of marine-mammal sounds.

    TOXLINE Toxicology Bibliographic Information

    Dadouchi F; Gervaise C; Ioana C; Huillery J; Mars J

    2013-09-01

    Many marine mammals produce highly nonlinear frequency modulations. Determining the time-frequency support of these sounds offers various applications, which include recognition, localization, and density estimation. This study introduces a low parameterized automated spectrogram segmentation method that is based on a theoretical probabilistic framework. In the first step, the background noise in the spectrogram is fitted with a Chi-squared distribution and thresholded using a Neyman-Pearson approach. In the second step, the number of false detections in time-frequency regions is modeled as a binomial distribution, and then through a Neyman-Pearson strategy, the time-frequency bins are gathered into regions of interest. The proposed method is validated on real data of large sequences of whistles from common dolphins, collected in the Bay of Biscay (France). The proposed method is also compared with two alternative approaches: the first is smoothing and thresholding of the spectrogram; the second is thresholding of the spectrogram followed by the use of morphological operators to gather the time-frequency bins and to remove false positives. This method is shown to increase the probability of detection for the same probability of false alarms.

  7. Adaptive noise cancelling and time-frequency techniques for rail surface defect detection

    NASA Astrophysics Data System (ADS)

    Liang, B.; Iwnicki, S.; Ball, A.; Young, A. E.

    2015-03-01

    Adaptive noise cancelling (ANC) is a technique which is very effective to remove additive noises from the contaminated signals. It has been widely used in the fields of telecommunication, radar and sonar signal processing. However it was seldom used for the surveillance and diagnosis of mechanical systems before late of 1990s. As a promising technique it has gradually been exploited for the purpose of condition monitoring and fault diagnosis. Time-frequency analysis is another useful tool for condition monitoring and fault diagnosis purpose as time-frequency analysis can keep both time and frequency information simultaneously. This paper presents an ANC and time-frequency application for railway wheel flat and rail surface defect detection. The experimental results from a scaled roller test rig show that this approach can significantly reduce unwanted interferences and extract the weak signals from strong background noises. The combination of ANC and time-frequency analysis may provide us one of useful tools for condition monitoring and fault diagnosis of railway vehicles.

  8. Enhanced Performance by Time-Frequency-Phase Feature for EEG-Based BCI Systems

    PubMed Central

    Xu, Baolei; Fu, Yunfa; Shi, Gang; Yin, Xuxian; Wang, Zhidong; Li, Hongyi; Jiang, Changhao

    2014-01-01

    We introduce a new motor parameter imagery paradigm using clench speed and clench force motor imagery. The time-frequency-phase features are extracted from mu rhythm and beta rhythms, and the features are optimized using three process methods: no-scaled feature using MIFS feature selection criterion, scaled feature using MIFS feature selection criterion, and scaled feature using mRMR feature selection criterion. Support vector machines (SVMs) and extreme learning machines (ELMs) are compared for classification between clench speed and clench force motor imagery using the optimized feature. Our results show that no significant difference in the classification rate between SVMs and ELMs is found. The scaled feature combinations can get higher classification accuracy than the no-scaled feature combinations at significant level of 0.01, and the mRMR feature selection criterion can get higher classification rate than the MIFS feature selection criterion at significant level of 0.01. The time-frequency-phase feature can improve the classification rate by about 20% more than the time-frequency feature, and the best classification rate between clench speed motor imagery and clench force motor imagery is 92%. In conclusion, the motor parameter imagery paradigm has the potential to increase the direct control commands for BCI control and the time-frequency-phase feature has the ability to improve BCI classification accuracy. PMID:25045733

  9. Inverse synthetic aperture radar processing using parametric time-frequency estimators Phase I

    SciTech Connect

    Candy, J.V., LLNL

    1997-12-31

    This report summarizes the work performed for the Office of the Chief of Naval Research (ONR) during the period of 1 September 1997 through 31 December 1997. The primary objective of this research was aimed at developing an alternative time-frequency approach which is recursive-in-time to be applied to the Inverse Synthethic Aperture Radar (ISAR) imaging problem discussed subsequently. Our short term (Phase I) goals were to: 1. Develop an ISAR stepped-frequency waveform (SFWF) radar simulator based on a point scatterer vehicular target model incorporating both translational and rotational motion; 2. Develop a parametric, recursive-in-time approach to the ISAR target imaging problem; 3. Apply the standard time-frequency short-term Fourier transform (STFT) estimator, initially to a synthesized data set; and 4. Initiate the development of the recursive algorithm. We have achieved all of these goals during the Phase I of the project and plan to complete the overall development, application and comparison of the parametric approach to other time-frequency estimators (STFT, etc.) on our synthesized vehicular data sets during the next phase of funding. It should also be noted that we developed a batch minimum variance translational motion compensation (TMC) algorithm to estimate the radial components of target motion (see Section IV). This algorithm is easily extended to recursive solution and will probably become part of the overall recursive processing approach to solve the ISAR imaging problem. Our goals for the continued effort are to: 1. Develop and extend a complex, recursive-in-time, time- frequency parameter estimator based on the recursive prediction error method (RPEM) using the underlying Gauss- Newton algorithms. 2. Apply the complex RPEM algorithm to synthesized ISAR data using the above simulator. 3. Compare the performance of the proposed algorithm to standard time-frequency estimators applied to the same data sets.

  10. Quadratic Time-Frequency Analysis of Hydroacoustic Signals as Applied to Acoustic Emissions of Large Whales

    NASA Astrophysics Data System (ADS)

    Le Bras, Ronan; Victor, Sucic; Damir, Malnar; Götz, Bokelmann

    2014-05-01

    In order to enrich the set of attributes in setting up a large database of whale signals, as envisioned in the Baleakanta project, we investigate methods of time-frequency analysis. The purpose of establishing the database is to increase and refine knowledge of the emitted signal and of its propagation characteristics, leading to a better understanding of the animal migrations in a non-invasive manner and to characterize acoustic propagation in oceanic media. The higher resolution for signal extraction and a better separation from other signals and noise will be used for various purposes, including improved signal detection and individual animal identification. The quadratic class of time-frequency distributions (TFDs) is the most popular set of time-frequency tools for analysis and processing of non-stationary signals. Two best known and most studied members of this class are the spectrogram and the Wigner-Ville distribution. However, to be used efficiently, i.e. to have highly concentrated signal components while significantly suppressing interference and noise simultaneously, TFDs need to be optimized first. The optimization method used in this paper is based on the Cross-Wigner-Ville distribution, and unlike similar approaches it does not require prior information on the analysed signal. The method is applied to whale signals, which, just like the majority of other real-life signals, can generally be classified as multicomponent non-stationary signals, and hence time-frequency techniques are a natural choice for their representation, analysis, and processing. We present processed data from a set containing hundreds of individual calls. The TFD optimization method results into a high resolution time-frequency representation of the signals. It allows for a simple extraction of signal components from the TFD's dominant ridges. The local peaks of those ridges can then be used for the signal components instantaneous frequency estimation, which in turn can be used as one of the features in any subsequent classification of the whale signals.

  11. Evaluation of the modified S-transform for time-frequency synchrony analysis and source localisation

    NASA Astrophysics Data System (ADS)

    Assous, Said; Boashash, Boualem

    2012-12-01

    This article considers the problem of phase synchrony and coherence analysis using a modified version of the S-transform, referred to here as the Modified S-transform (MST). This is a novel and important time-frequency approach to study the phase coupling between two or more different spatially recorded entities with non-stationary characteristics. The basic method includes a cross-spectral analysis to study the phase synchrony of non-stationary signals, and relies on some properties of the MST, such as phase preservation. We demonstrate the usefulness of the technique using simulated examples and real newborn EEG data. The results show the advantage of using the cross-MST in the study of the connectivity between different signals using the time-frequency coherence. The MST led to improvements in resolution of almost twofold over the standard S-Transform in the examples presented in the article.

  12. Time-frequency signal analysis and synthesis - The choice of a method and its application

    NASA Astrophysics Data System (ADS)

    Boashash, Boualem

    In this paper, the problem of choosing a method for time-frequency signal analysis is discussed. It is shown that a natural approach leads to the introduction of the concepts of the analytic signal and instantaneous frequency. The Wigner-Ville Distribution (WVD) is a method of analysis based upon these concepts and it is shown that an accurate Time-Frequency representation of a signal can be obtained by using the WVD for the analysis of a class of signals referred to as 'asymptotic'. For this class of signals, the instantaneous frequency describes an important physical parameter characteristic of the process under investigation. The WVD procedure for signal analysis and synthesis is outlined and its properties are reviewed for deterministic and random signals.

  13. Time-Frequency Signal Analysis And Synthesis The Choice Of A Method And Its Application

    NASA Astrophysics Data System (ADS)

    Boashash, Boualem

    1988-02-01

    In this paper, the problem of choosing a method for time-frequency signal analysis is discussed. It is shown that a natural approach leads to the introduction of the concepts of the analytic signal and in-stantaneous frequency. The Wigner-Ville Distribution (WVD) is a method of analysis based upon these concepts and it is shown that an accurate Time-Frequency representation of a signal can be obtained by using the WVD for the analysis of a class of signals referred to as "asymptotic". For this class of signals, the instantaneous frequency describes an important physical parameter characteristic of the process under investigation. The WVD procedure for signal analysis and synthesis is outlined and its properties are reviewed for deterministic and random signals.

  14. Kolmogorov-Smirnov like test for time-frequency Fourier spectrogram analysis in LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Ferraioli, Luigi; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Gibert, Ferran; Hewitson, Martin; Hueller, Mauro; Karnesis, Nikolaos; Korsakova, Natalia; Nofrarias, Miquel; Plagnol, Eric; Vitale, Stefano

    2015-03-01

    A statistical procedure for the analysis of time-frequency noise maps is presented and applied to LISA Pathfinder mission synthetic data. The procedure is based on the Kolmogorov-Smirnov like test that is applied to the analysis of time-frequency noise maps produced with the spectrogram technique. The influence of the finite size windowing on the statistic of the test is calculated with a Monte Carlo simulation for 4 different windows type. Such calculation demonstrate that the test statistic is modified by the correlations introduced in the spectrum by the finite size of the window and by the correlations between different time bins originated by overlapping between windowed segments. The application of the test procedure to LISA Pathfinder data demonstrates the test capability of detecting non-stationary features in a noise time series that is simulating low frequency non-stationary noise in the system.

  15. Considering the influence of artificial environmental noise to study cough time-frequency features

    NASA Astrophysics Data System (ADS)

    Van Hirtum, A.; Berckmans, D.

    2003-09-01

    In general the study of the cough mechanism and sound in both animal and human is performed by eliciting coughing in a reproducible way by nebulization of an irritating substance. Due to ventilation the controlled evaporation-protocol causes artificial noises from a mechanical origin. The resulting environmental low-frequency noises complicate cough time-frequency features. In order to optimize the study of the cough-sound the research described in this paper attempts on the one hand to characterize and model the environmental noises and on the other hand to evaluate the influence of the noise on the time-frequency representation for the intended cough sounds by comparing different de-noising approaches. Free field acoustic sound is continuously registered during 30 min citric acid cough-challenges on individual Belgian Landrace piglets and during respiratory infection experiments, with a duration of about 10 days, where room-ventilation was present.

  16. Ecological prediction with nonlinear multivariate time-frequency functional data models

    USGS Publications Warehouse

    Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.

    2013-01-01

    Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.

  17. Phase errors estimation based on time-frequency distribution in SAR imagery

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Huang, Jincai

    2005-10-01

    Uncompensated phase errors presented in synthetic-aperture-radar (SAR) data have a disastrous effect on SAR image quality. To estimate and compensate phase errors, a new method is presented based on the time-frequency distributions of the range-compressed SAR signal. Robust phase errors estimates are obtained by utilizing range redundancies The processing results of the simulated data show the validity of the proposed method.

  18. Joint swelling

    MedlinePLUS

    ... care provider if you have: Unexplained joint swelling Joint swelling after an injury ... Your health care provider will examine you. The joint will be closely examined. You will be asked about your joint swelling, such as when it began, ...

  19. Using time-frequency analysis to determine time-resolved detonation velocity with microwave interferometry.

    PubMed

    Kittell, David E; Mares, Jesus O; Son, Steven F

    2015-04-01

    Two time-frequency analysis methods based on the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used to determine time-resolved detonation velocities with microwave interferometry (MI). The results were directly compared to well-established analysis techniques consisting of a peak-picking routine as well as a phase unwrapping method (i.e., quadrature analysis). The comparison is conducted on experimental data consisting of transient detonation phenomena observed in triaminotrinitrobenzene and ammonium nitrate-urea explosives, representing high and low quality MI signals, respectively. Time-frequency analysis proved much more capable of extracting useful and highly resolved velocity information from low quality signals than the phase unwrapping and peak-picking methods. Additionally, control of the time-frequency methods is mainly constrained to a single parameter which allows for a highly unbiased analysis method to extract velocity information. In contrast, the phase unwrapping technique introduces user based variability while the peak-picking technique does not achieve a highly resolved velocity result. Both STFT and CWT methods are proposed as improved additions to the analysis methods applied to MI detonation experiments, and may be useful in similar applications. PMID:25933878

  20. Transient analysis with fast Wilson-Daubechies time-frequency transform

    NASA Astrophysics Data System (ADS)

    Necula, V.; Klimenko, S.; Mitselmakher, G.

    2012-06-01

    The time-frequency transforms are important tools for identification of transient events in the output of the gravitational-wave detectors. Produced by the terrestrial and possibly by astrophysical sources, the transient events can be identified as patterns on the time-frequency plane with the excess power above stationary detector noise. In this paper we consider a particular case of the Wilson-Daubechies time-frequency transform for use in the gravitational-wave burst analysis. The presented Wilson-Daubechies basis shares some properties with the Gabor frames, but circumvents the Balian-Low theorem. It also shares similarity with the Meyer wavelet, which is actively used in the gravitational-wave burst analysis. The main advantages of the Wilson-Daubechies transform are the low computational cost, spectral leakage control, flexible structure of the frequency sub-bands, and the existence of the analytic time-delay filters, which are important for localization of the gravitational-wave sources in the sky. These properties of the Wilson-Daubechies transform may prove useful not only in the transient analysis, but also in other areas of the gravitational wave data analysis and detector characterization.

  1. Time-Frequency Characterization of Cerebral Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals

    NASA Astrophysics Data System (ADS)

    Molinari, Filippo; Rosati, Samanta; Liboni, William; Negri, Emanuela; Mana, Ornella; Allais, Gianni; Benedetto, Chiara

    2010-12-01

    Near-infrared spectroscopy (NIRS) is a noninvasive system for the real-time monitoring of the concentration of oxygenated ([InlineEquation not available: see fulltext.]) and reduced (HHb) hemoglobin in the brain cortex. [InlineEquation not available: see fulltext.] and HHb concentrations vary in response to cerebral autoregulation. Sixty-eight women (14 migraineurs without aura, 49 migraineurs with aura, and 5 controls) performed breath-holding and hyperventilation during NIRS recordings. Signals were processed using the Choi-Williams time-frequency transform in order to measure the power variation of the very-low frequencies (VLF: 20-40 mHz) and of the low frequencies (LF: 40-140 mHz). Results showed that migraineurs without aura present different LF and VLF power levels than controls and migraineurs with aura. The accurate power measurement of the time-frequency analysis allowed for the discrimination of the subjects' hemodynamic patterns. The time-frequency analysis of NIRS signals can be used in clinical practice to assess cerebral hemodynamics.

  2. An enhanced time-frequency-spatial approach for motor imagery classification

    PubMed Central

    Yamawaki, N; Wilke, C; Liu, Z

    2007-01-01

    Human motor imagery (MI) tasks evoke EEG signal changes. The features of these changes appear as subject-specific temporal traces of EEG rhythmic components at specific channels located over the scalp. Accurate classification of MI tasks based upon EEG may lead to a noninvasive brain-computer interface (BCI) to decode and convey intention of human subjects. We have previously proposed two novel methods on time-frequency feature extraction, expression and classification for high-density EEG recordings (Wang & He: J Neural Eng, 1: 1–7, 2004; Wang, Deng & He: Clin Neurophysiol, 115: 2744–2753, 2004). In the present study, we refined the above time-frequency- spatial approach and applied it to a one-dimensional “cursor control” BCI experiment with online feedback. Through offline analysis of the collected data, we evaluated the capability of the present refined method in comparison with the original time- frequency-spatial methods. The enhanced performance in terms of classification accuracy was found for the proposed approach, with a mean accuracy rate of 91.1% for two subjects studied. PMID:16792306

  3. Using time-frequency analysis to determine time-resolved detonation velocity with microwave interferometry

    NASA Astrophysics Data System (ADS)

    Kittell, David E.; Mares, Jesus O.; Son, Steven F.

    2015-04-01

    Two time-frequency analysis methods based on the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used to determine time-resolved detonation velocities with microwave interferometry (MI). The results were directly compared to well-established analysis techniques consisting of a peak-picking routine as well as a phase unwrapping method (i.e., quadrature analysis). The comparison is conducted on experimental data consisting of transient detonation phenomena observed in triaminotrinitrobenzene and ammonium nitrate-urea explosives, representing high and low quality MI signals, respectively. Time-frequency analysis proved much more capable of extracting useful and highly resolved velocity information from low quality signals than the phase unwrapping and peak-picking methods. Additionally, control of the time-frequency methods is mainly constrained to a single parameter which allows for a highly unbiased analysis method to extract velocity information. In contrast, the phase unwrapping technique introduces user based variability while the peak-picking technique does not achieve a highly resolved velocity result. Both STFT and CWT methods are proposed as improved additions to the analysis methods applied to MI detonation experiments, and may be useful in similar applications.

  4. Signal analysis by means of time-frequency (Wigner-type) distributions -- Applications to sonar and radar echoes

    SciTech Connect

    Gaunaurd, G.; Strifors, H.C.

    1996-09-01

    Time series data have been traditionally analyzed in either the time or the frequency domains. For signals with a time-varying frequency content, the combined time-frequency (TF) representations, based on the Cohen class of (generalized) Wigner distributions (WD`s) offer a powerful analysis tool. Using them, it is possible to: (1) trace the time-evolution of the resonance features usually present in a standard sonar cross section (SCS), or in a radar cross section (RCS) and (2) extract target information that may be difficult to even notice in an ordinary SCS or RCS. After a brief review of the fundamental properties of the WD, the authors discuss ways to reduce or suppress the cross term interference that appears in the WD of multicomponent systems. These points are illustrated with a variety of three-dimensional (3-D) plots of Wigner and pseudo-Wigner distributions (PWD), in which the strength of the distribution is depicted as the height of a Wigner surface with height scales measured by various color shades or pseudocolors. The authors also review studies they have made of the echoes returned by conducting or dielectric targets in the atmosphere, when they are illuminated by broadband radar pings. A TF domain analysis of these impulse radar returns demonstrates their superior informative content. These plots allow the identification of targets in an easier and clearer fashion than by the conventional RCS of narrowband systems. The authors show computed and measured plots of WD and PWD of various types of aircraft to illustrate the classification advantages of the approach at any aspect angle. They also show analogous results for metallic objects buried underground, in dielectric media, at various depths.

  5. Applications of time-frequency analysis to signals from manufacturing and machine monitoring sensors

    SciTech Connect

    Atlas, L.E.; Narayanan, S.B.; Bernard, G.D.

    1996-09-01

    Manufacturing industries are now demanding substantial increases in flexibility, productivity and reliability from their process machines as well as increased quality and value of their products. One important strategy to support this goal is sensor-based, on-line, real-time evaluation of key characteristics of both machines and products, throughout the manufacturing process. Recent advances in time-frequency (TF) analysis are particularly well suited to extracting key vibrational characteristics from monitoring sensors. Thus this paper presents applications of TF analysis to several important manufacturing and machine monitoring tasks, to show the value of these forms of digital signal processing applied to manufacturing.

  6. Time-frequency representation of a highly nonstationary signal via the modified Wigner distribution

    NASA Technical Reports Server (NTRS)

    Zoladz, T. F.; Jones, J. H.; Jong, J.

    1992-01-01

    A new signal analysis technique called the modified Wigner distribution (MWD) is presented. The new signal processing tool has been very successful in determining time frequency representations of highly non-stationary multicomponent signals in both simulations and trials involving actual Space Shuttle Main Engine (SSME) high frequency data. The MWD departs from the classic Wigner distribution (WD) in that it effectively eliminates the cross coupling among positive frequency components in a multiple component signal. This attribute of the MWD, which prevents the generation of 'phantom' spectral peaks, will undoubtedly increase the utility of the WD for real world signal analysis applications which more often than not involve multicomponent signals.

  7. Improved time-frequency analysis of ASDEX Upgrade reflectometry data using the reassigned spectrogram technique.

    PubMed

    Varela, P; Silva, A; da Silva, F; da Graa, S; Manso, M E; Conway, G D

    2010-10-01

    The spectrogram is one of the best-known time-frequency distributions suitable to analyze signals whose energy varies both in time and frequency. In reflectometry, it has been used to obtain the frequency content of FM-CW signals for density profile inversion and also to study plasma density fluctuations from swept and fixed frequency data. Being implemented via the short-time Fourier transform, the spectrogram is limited in resolution, and for that reason several methods have been developed to overcome this problem. Among those, we focus on the reassigned spectrogram technique that is both easily automated and computationally efficient requiring only the calculation of two additional spectrograms. In each time-frequency window, the technique reallocates the spectrogram coordinates to the region that most contributes to the signal energy. The application to ASDEX Upgrade reflectometry data results in better energy concentration and improved localization of the spectral content of the reflected signals. When combined with the automatic (data driven) window length spectrogram, this technique provides improved profile accuracy, in particular, in regions where frequency content varies most rapidly such as the edge pedestal shoulder. PMID:21061480

  8. Time-frequency modulation of ERD and EEG coherence in robot-assisted hand performance.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Boscolo Galazzo, Ilaria; Gandolfi, Marialuisa; Geroin, Christian; Smania, Nicola; Fiaschi, Antonio; Manganotti, Paolo

    2015-03-01

    A better understanding of cortical modifications related to movement preparation and execution after robot-assisted training could aid in refining rehabilitation therapy protocols for stroke patients. Electroencephalography (EEG) modifications of cortical activity in healthy subjects were evaluated using time-frequency event-related EEG and task-related coherence (TRCoh). Twenty-one channel EEG was recorded in eight subjects during protocols of active, passive, and imagined movements. The subjects performed robot-assisted tasks using the Bi-Manu-Track robot-assisted arm trainer. We applied time-frequency event-related synchronization/desynchronization (ERS/ERD) and TRCoh approaches to investigate where movement-related decreases in power were localized and to study the functional relationships between areas. Our results showed ERD of sensorimotor (SM) area over the contralateral side before the movement and bilateral ERD during execution of the movement. ERD during passive movements was similar in topography to that observed during voluntary movements, but without pre-movement components. No significant difference in time course ERD was observed among the three types of movement over the two SM areas. The TRCoh topography was similar for active and imagined movement; before passive movement, the frontal regions were uncoupled from the SM regions and did not contribute to task performance. This study suggests new perspectives for the evaluation of brain oscillatory activity and the neurological assessment of motor performance by means of quantitative EEG to better understand the planning and execution of movement. PMID:24838817

  9. Time-frequency analysis in optical coherence tomography for technical objects examination

    NASA Astrophysics Data System (ADS)

    StrÄ kowski, Marcin R.; Kraszewski, Maciej; Trojanowski, Michał; Pluciński, Jerzy

    2014-05-01

    Optical coherence tomography (OCT) is one of the most advanced optical measurement techniques for complex structure visualization. The advantages of OCT have been used for surface and subsurface defect detection in composite materials, polymers, ceramics, non-metallic protective coatings, and many more. Our research activity has been focused on timefrequency spectroscopic analysis in OCT. It is based on time resolved spectral analysis of the backscattered optical signal delivered by the OCT. The time-frequency method gives spectral characteristic of optical radiation backscattered or backreflected from the particular points inside the tested device. This provides more information about the sample, which are useful for further analysis. Nowadays, the applications of spectroscopic analysis for composite layers characterization or tissue recognition have been reported. During our studies we have found new applications of spectroscopic analysis. We have used this method for thickness estimation of thin films, which are under the resolution of OCT. Also, we have combined the spectroscopic analysis with polarization sensitive OCT (PS-OCT). This approach enables to obtain a multiorder retardation value directly and may become a breakthrough in PS-OCT measurements of highly birefringent media. In this work, we present the time-frequency spectroscopic algorithms and their applications for OCT. Also, the theoretical simulations and measurement validation of this method are shown.

  10. Using time-frequency and wavelet analysis to assess turbulence/rotor interactions

    SciTech Connect

    Kelley, N.D.; Osgood, R.M.; Bialasiewicz, J.T.; Jakubowski, A.

    2000-01-05

    Large loading events on wind turbine rotor blades are often associated with transient bursts of coherent turbulent energy in the turbine inflow. These coherent turbulent structures are identified as peaks in the three-dimensional, instantaneous, turbulent shearing stress field. Such organized inflow structures and the accompanying rotor aeroelastic responses typically have time scales of only a few seconds and therefore do not lend themselves for analysis by conventional Fourier spectral techniques. Time-frequency analysis (and wavelet analysis in particular) offers the ability to more closely study the spectral decomposition of short period events such as the interaction of coherent turbulence with a moving rotor blade. In this paper, the authors discuss the initial progress in the application of time-frequency analysis techniques to the decomposition and interpretation of turbulence/rotor interaction. The authors discuss the results of applying both the continuous and discrete wavelet transforms for their application. Several examples are given of the techniques applied to both observed turbulence and turbine responses and those generated using numerical simulations. They found that the presence of coherent turbulent structures, as revealed by the inflow Reynolds stress field, is a major contributor to large load excursions. These bursts of coherent turbulent energy induce a broadband aeroelastic response in the turbine rotor as it passes through them.

  11. Applying matching pursuit decomposition time-frequency processing to UGS footstep classification

    NASA Astrophysics Data System (ADS)

    Larsen, Brett W.; Chung, Hugh; Dominguez, Alfonso; Sciacca, Jacob; Kovvali, Narayan; Papandreou-Suppappola, Antonia; Allee, David R.

    2013-06-01

    The challenge of rapid footstep detection and classification in remote locations has long been an important area of study for defense technology and national security. Also, as the military seeks to create effective and disposable unattended ground sensors (UGS), computational complexity and power consumption have become essential considerations in the development of classification techniques. In response to these issues, a research project at the Flexible Display Center at Arizona State University (ASU) has experimented with footstep classification using the matching pursuit decomposition (MPD) time-frequency analysis method. The MPD provides a parsimonious signal representation by iteratively selecting matched signal components from a pre-determined dictionary. The resulting time-frequency representation of the decomposed signal provides distinctive features for different types of footsteps, including footsteps during walking or running activities. The MPD features were used in a Bayesian classification method to successfully distinguish between the different activities. The computational cost of the iterative MPD algorithm was reduced, without significant loss in performance, using a modified MPD with a dictionary consisting of signals matched to cadence temporal gait patterns obtained from real seismic measurements. The classification results were demonstrated with real data from footsteps under various conditions recorded using a low-cost seismic sensor.

  12. Cross Time-Frequency Analysis of Gastrocnemius Electromyographic Signals in Hypertensive and Nonhypertensive Subjects

    NASA Astrophysics Data System (ADS)

    Mitchell, Patrick; Krotish, Debra; Shin, Yong-June; Hirth, Victor

    2010-12-01

    The effects of hypertension are chronic and continuous; it affects gait, balance, and fall risk. Therefore, it is desirable to assess gait health across hypertensive and nonhypertensive subjects in order to prevent or reduce the risk of falls. Analysis of electromyography (EMG) signals can identify age related changes of neuromuscular activation due to various neuropathies and myopathies, but it is difficult to translate these medical changes to clinical diagnosis. To examine and compare geriatrics patients with these gait-altering diseases, we acquire EMG muscle activation signals, and by use of a timesynchronized mat capable of recording pressure information, we localize the EMG data to the gait cycle, ensuring identical comparison across subjects. Using time-frequency analysis on the EMG signal, in conjunction with several parameters obtained from the time-frequency analyses, we can determine the statistical discrepancy between diseases. We base these parameters on physiological manifestations caused by hypertension, as well as other comorbities that affect the geriatrics community. Using these metrics in a small population, we identify a statistical discrepancy between a control group and subjects with hypertension, neuropathy, diabetes, osteoporosis, arthritis, and several other common diseases which severely affect the geriatrics community.

  13. Automated detection of perinatal hypoxia using time-frequency-based heart rate variability features.

    PubMed

    Dong, Shiying; Boashash, Boualem; Azemi, Ghasem; Lingwood, Barbara E; Colditz, Paul B

    2014-02-01

    Perinatal hypoxia is a cause of cerebral injury in foetuses and neonates. Detection of foetal hypoxia during labour based on the pattern recognition of heart rate signals suffers from high observer variability and low specificity. We describe a new automated hypoxia detection method using time-frequency analysis of heart rate variability (HRV) signals. This approach uses features extracted from the instantaneous frequency and instantaneous amplitude of HRV signal components as well as features based on matrix decomposition of the signals' time-frequency distributions using singular value decomposition and non-negative matrix factorization. The classification between hypoxia and non-hypoxia data is performed using a support vector machine classifier. The proposed method is tested on a dataset obtained from a newborn piglet model with a controlled hypoxic insult. The chosen HRV features show strong performance compared to conventional spectral features and other existing methods of hypoxia detection with a sensitivity 93.3 %, specificity 98.3 % and accuracy 95.8 %. The high predictive value of this approach to detecting hypoxia is a substantial step towards developing a more accurate and reliable hypoxia detection method for use in human foetal monitoring. PMID:24272142

  14. Aurally-adequate time-frequency analysis for scattered sound in auditoria

    NASA Astrophysics Data System (ADS)

    Norris, Molly K.; Xiang, Ning; Kleiner, Mendel

    2005-04-01

    The goal of this work was to apply an aurally-adequate time-frequency analysis technique to the analysis of sound scattering effects in auditoria. Time-frequency representations were developed as a motivated effort that takes into account binaural hearing, with a specific implementation of interaural cross-correlation process. A model of the human auditory system was implemented in the MATLAB platform based on two previous models [A. Härmä and K. Palomäki, HUTear, Espoo, Finland; and M. A. Akeroyd, A. Binaural Cross-correlogram Toolbox for MATLAB (2001), University of Sussex, Brighton]. These stages include proper frequency selectivity, the conversion of the mechanical motion of the basilar membrane to neural impulses, and binaural hearing effects. The model was then used in the analysis of room impulse responses with varying scattering characteristics. This paper discusses the analysis results using simulated and measured room impulse responses. [Work supported by the Frank H. and Eva B. Buck Foundation.

  15. Models of the Joint Structure of Domain-Related and Global Distress: Implications for the Reconciliation of Quality of Life and Mental Health Perspectives

    ERIC Educational Resources Information Center

    Magee, William; St-Arnaud, Sebastien

    2012-01-01

    Research on subjective wellbeing includes studies of both domain-related and global distress. The mental health literature, though, focuses almost exclusively on global distress. This seems to be partly due to a common belief that psychological distress, and the moods that comprise distress, necessarily lack referential content. However, if that

  16. Time-frequency characterization of lamb waves for material evaluation and damage inspection of plates

    NASA Astrophysics Data System (ADS)

    Frank Pai, P.; Deng, Haoguang; Sundaresan, Mannur J.

    2015-10-01

    Guided wave-based technique is one major approach for damage inspection of structures. To detect a small damage, an elastic wave's wavelength needs to be in the order of the damage size and hence the frequency needs to be high. Unfortunately, high-frequency wave dynamics always involves complicated wave reflection, refraction and diffraction, and it is difficult to separate them in order to perform detailed examination and system identification. This paper investigates dynamic characteristics of Lamb waves in plates in order to be used for material evaluation and damage inspection of thin-walled structures. A one-dimensional finite-element modeling and analysis technique is developed for computing dispersion curves and all symmetric and antisymmetric modes of Lamb waves in isotropic and multi-layer plates. Moreover, the conjugate-pair decomposition (CPD) method is introduced for time-frequency analysis of propagating Lamb waves. Results show that, under a k-cycle sine-burst excitation at a plate's edge, the time-varying frequency of a surface point's response can reveal the Lamb wave propagating inside the plate being a symmetric or an antisymmetric mode. The frequency of the measured wave packet increases from the wave front to the trailing edge if it is a symmetric mode, and the frequency decreases from the wave front to the trailing edge if it is an antisymmetric mode. Moreover, interaction of two different wave packets results in a peak in the time-frequency curve. These characteristics can be used for accurate separation of wave packets and identification of different wave speeds to enable fast and accurate material evaluation and damage inspection. Transient finite-element analysis of Lamb waves in finite plates with crack/delamination show that k-cycle sine-burst probing waves are good agents for guided wave-based damage inspection of structures. Although crack and delamination introduce different waves into and complicate the probing wave packet, time-frequency analysis makes it possible to separate such damage-induced small waves from the probing wave and enable fast and accurate damage inspection of thin-walled structures.

  17. Flutter of High-Speed Civil Transport Flexible Semispan Model: Time-Frequency Analysis

    NASA Technical Reports Server (NTRS)

    Chabalko, Christopher C.; Hajj, Muhammad R.; Silva, Walter A.

    2006-01-01

    Time/frequency analysis of fluctuations measured by pressure taps and strain gauges in the experimental studies of the flexible semispan model of a high-speed civil transport wing configuration is performed. The interest is in determining the coupling between the aerodynamic loads and structural motions that led to the hard flutter conditions and loss of the model. The results show that, away from the hard flutter point, the aerodynamic loads at all pressure taps near the wing tip and the structural motions contained the same frequency components. On the other hand, in the flow conditions leading to the hard flutter, the frequency content of the pressure fluctuations near the leading and trailing edges varied significantly. This led to contribution to the structural motions over two frequency ranges. The ratio of these ranges was near 2:1, which suggests the possibility of nonlinear structural coupling.

  18. Time-frequency response spectrum of rotational ground motion and its application

    NASA Astrophysics Data System (ADS)

    Che, Wei; Luo, Qifeng

    2010-02-01

    The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rotational motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic motions completely; the characteristics of each component, especially rotational motions, need to be studied. The damage line of the structure and TFRS of ground motion are important for seismic design, only the TFRS of input seismic wave is suitable, the structure design is reliable.

  19. Time-frequency-analysis-based minor cutting edge fracture detection during end milling

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Guan, X. P.

    2004-11-01

    Successful application of tool condition detection during end milling can ensure high-quality parts and safeguard the machining system. This paper proposes an effective algorithm that consists of wavelet-based de-noising, discrete time-frequency analysis, FFT and second differencing for the detection of minor cutting edge fracture during end milling. The algorithm can be successfully applied to extract marked features from the feed-motor current signals to indicate the minor cutting edge fracture. Some typical experiments, the cutter run-out, entry/exit cuts and cutting parameters-variation, have been performed to confirm the robustness of the algorithm. The results show that the new approach has an excellent potential for practical and real-time application at low cost for the detection of minor cutting edge fracture during end milling.

  20. Dynamic response and time-frequency analysis for gear tooth crack detection

    NASA Astrophysics Data System (ADS)

    Mohammed, Omar D.; Rantatalo, Matti

    2016-01-01

    Vibration health monitoring is a non-destructive technique which can be applied to detect cracks propagating in gear teeth. This paper studies gear tooth crack detection by investigating the natural frequencies and by performing time-frequency analysis of a 6 DOF dynamic gear model. The gear mesh stiffness used in the model was calculated analytically for different cases of crack sizes. The frequency response functions (FRFs) of the model were derived for healthy and faulty cases and dynamic simulation was performed to obtain the time signal responses. A new approach involving a short-time Fourier transform (STFT) was applied where a fast Fourier transform (FFT) was calculated for successive blocks with different sizes corresponding to the time segments of the varying gear mesh stiffness. The relationship between the different crack sizes and the mesh-stiffness-dependent eigenfrequencies was studied in order to detect the tooth crack and to estimate its size.

  1. Exploring laser-driven quantum phenomena from a time-frequency analysis perspective: a comprehensive study.

    PubMed

    Sheu, Yae-Lin; Wu, Hau-Tieng; Hsu, Liang-Yan

    2015-11-16

    Time-frequency (TF) analysis is a powerful tool for exploring ultrafast dynamics in atoms and molecules. While some TF methods have demonstrated their usefulness and potential in several quantum systems, a systematic comparison among them is still lacking. To this end, we compare a series of classical and contemporary TF methods by taking hydrogen atom in a strong laser field as a benchmark. In addition, several TF methods such as Cohen class distribution other than the Wigner-Ville distribution, reassignment methods, and the empirical mode decomposition method are first introduced to exploration of ultrafast dynamics. Among these TF methods, the synchrosqueezing transform successfully illustrates the physical mechanisms in the multiphoton ionization regime and in the tunneling ionization regime. Furthermore, an empirical procedure to analyze an unknown complicated quantum system is provided, suggesting the versatility of TF analysis as a new viable venue for exploring quantum dynamics. PMID:26698525

  2. Enhanced sonar array target localization using time-frequency interference phenomena

    NASA Astrophysics Data System (ADS)

    Shibley, Jordan Almon

    The ability of traditional active sonar processing methods to detect targets is often limited by clutter and reverberation from ocean environments. Similarly, multipath arrivals from radiating sources such as ships and submarines are received at sensors in passive sonar systems. Reverberation and multipath signals introduce constructive and destructive interference patterns in received spectrograms in both active and passive sonar applications that vary with target range and frequency. The characterization and use of interference phenomena can provide insights into environmental parameters and target movement in conjunction with standard processing methods including spectrograms and array beamforming. This thesis focuses on utilizing the time-frequency interference structure of moving targets captured on sonar arrays to enhance the resolution and abilities of conventional sonar methods to detect and localize targets. Physics-based methods for interference-based beamforming and target depth separation are presented with application of these methods shown using broadband simulated array data.

  3. Time-frequency processing of track irregularities in high-speed train

    NASA Astrophysics Data System (ADS)

    Ning, Jing; Lin, Jianhui; Zhang, Bing

    2016-01-01

    Track irregularities are the main source of vehicle vibration. With the increase in the speed, the track irregularities have become a more significant issue of concerned. The axle box acceleration signals can be obtained for analyzing the track irregularities, but the signals are usually non-stationary and signal processing results are not normally satisfied with the ordinary way. Thus, time-frequency distribution analysis is proposed to use in this study. To minimize the cross-terms, a new method based on Empirical Mode Decomposition (EMD) and Cohen's class distribution has been developed and advanced. This approach has been tested with three typical simulation signals and then applied to analyze the track irregularities. The result is consistent with the result from track inspection cars. This indicates this new algorithm is suitable for analyzing the track irregularities. It can be applied in rail irregularity measurement to compensate some shortages of the track inspection cars.

  4. Improving resolution of crosswell seismic section based on time-frequency analysis

    SciTech Connect

    Luo, H.; Li, Y.

    1994-12-31

    According to signal theory, to improve resolution of seismic section is to extend high-frequency band of seismic signal. In cross-well section, sonic log can be regarded as a reliable source providing high-frequency information to the trace near the borehole. In such case, what to do is to introduce this high-frequency information into the whole section. However, neither traditional deconvolution algorithms nor some new inversion methods such as BCI (Broad Constraint Inversion) are satisfied because of high-frequency noise and nonuniqueness of inversion results respectively. To overcome their disadvantages, this paper presents a new algorithm based on Time-Frequency Analysis (TFA) technology which has been increasingly received much attention as an useful signal analysis too. Practical applications show that the new method is a stable scheme to improve resolution of cross-well seismic section greatly without decreasing Signal to Noise Ratio (SNR).

  5. Time-frequency analysis of fiber-optic temperature data on groundwater-surface water interactions

    NASA Astrophysics Data System (ADS)

    Mwakanyamale, K. E.; Slater, L. D.; Day-Lewis, F. D.; Alwasif, M. H.; Ntarlagiannis, D.; Johnson, C. D.

    2011-12-01

    Accurate characterization of the hydrogeological framework and groundwater-surface water interactions in particular, is crucial to understanding contaminant transport between aquifers and rivers. Fiber-optic distributed temperature sensing (FODTS) is a novel tool that offers unprecedented resolution for characterizing groundwater-surface water interaction. Time-frequency analysis of FODTS data provides a means to distinguish between a wide range of hydrologic processes at various scales. This work demonstrates the use of the S-Transform to analyze FODTS time series and synchronous river stage time series. Our study focused on improving understanding of the dynamics of groundwater-surface water interaction at the Hanford 300-Area Richland, WA. We used ~1.5 km long fiber optic cable to continuously monitor real time temperature variations along the hyporheic corridor at ~1 m spatial resolution and 5 minutes temporal resolution. It is generally recognized that contaminated groundwater discharge in Hanford site 300-Area is highly controlled by fluctuations in the Columbia River stage. Using S-Transform analysis of the temperature data along the river corridor we investigated in more detail the contributions of periodicity in the river stage to focused groundwater discharge. This time-frequency analysis of the DTS data uniquely identified areas of stage-controlled enhanced exchange along the hyporheic corridor. Dam operations upstream of the site were identified as a factor controlling stage fluctuations with relatively long periods (4 - 8 days). S-Transform analysis was used to map areas of high amplitude in these diagnostic periods indicative of stage-driven exchange along the river corridor.

  6. Time-frequency methods and voluntary ramped-frequency breathing: a powerful combination for exploration of human neurophysiological mechanisms

    PubMed Central

    Stankovski, Tomislav; Cooke, William H.; Rudas, László; Stefanovska, Aneta

    2013-01-01

    We experimentally altered the timing of respiratory motoneuron activity as a means to modulate and better understand otherwise hidden human central neural and hemodynamic oscillatory mechanisms. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, tidal carbon dioxide concentrations, and muscle sympathetic nerve activity in 13 healthy supine young men who gradually increased or decreased their breathing frequencies between 0.05 and 0.25 Hz over 9-min periods. We analyzed results with traditional time- and frequency-domain methods, and also with time-frequency methods (wavelet transform, wavelet phase coherence, and directional coupling). We determined statistical significance and identified frequency boundaries by comparing measurements with randomly generated surrogates. Our results support several major conclusions. First, respiration causally modulates both sympathetic (weakly) and vagal motoneuron (strongly) oscillations over a wide frequency range—one that extends well below the frequency of actual breaths. Second, breathing frequency broadly modulates vagal baroreflex gain, with peak gains registered in the low frequency range. Third, breathing frequency does not influence median levels of sympathetic or vagal activity over time. Fourth, phase relations between arterial pressure and sympathetic and vagal motoneurons are unaffected by breathing, and are therefore likely secondary to intrinsic responsiveness of these motoneurons to other synaptic inputs. Finally, breathing frequency does not affect phase coherence between diastolic pressure and muscle sympathetic oscillations, but it augments phase coherence between systolic pressure and R-R interval oscillations over a limited portion of the usual breathing frequency range. These results refine understanding of autonomic oscillatory processes and those physiological mechanisms known as the human respiratory gate. PMID:24114700

  7. The local maxima method for enhancement of time-frequency map and its application to local damage detection in rotating machines

    NASA Astrophysics Data System (ADS)

    Obuchowski, Jakub; Wyłomańska, Agnieszka; Zimroz, Radosław

    2014-06-01

    In this paper a new method of fault detection in rotating machinery is presented. It is based on a vibration time series analysis in time-frequency domain. A raw vibration signal is decomposed via the short-time Fourier transform (STFT). The time-frequency map is considered as matrix (M×N) with N sub-signals with length M. Each sub-signal is considered as a time series and might be interpreted as energy variation for narrow frequency bins. Each sub-signal is processed using a novel approach called the local maxima method. Basically, we search for local maxima because they should appear in the signal if local damage in bearings or gearbox exists. Finally, information for all sub-signals is combined in order to validate impulsive behavior of energy. Due to random character of the obtained time series, each maximum occurrence has to be checked for its significance. If there are time points for which the average number of local maxima for all sub-signals is significantly higher than for the other time instances, then location of these maxima is “weighted” as more important (at this time instance local maxima create for a set of Δf a pattern on the time-frequency map). This information, called vector of weights, is used for enhancement of spectrogram. When vector of weights is applied for spectrogram, non-informative energy is suppressed while informative features on spectrogram are enhanced. If the distribution of local maxima on spectrogram creates a pattern of wide-band cyclic energy growth, the machine is suspected of being damaged. For healthy condition, the vector of the average number of maxima for each time point should not have outliers, aggregation of information from all sub-signals is rather random and does not create any pattern. The method is illustrated by analysis of very noisy both real and simulated signals.

  8. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Liang, Ming; Chu, Fulei

    2013-07-01

    Nonstationary signal analysis is one of the main topics in the field of machinery fault diagnosis. Time-frequency analysis can identify the signal frequency components, reveals their time variant features, and is an effective tool to extract machinery health information contained in nonstationary signals. Various time-frequency analysis methods have been proposed and applied to machinery fault diagnosis. These include linear and bilinear time-frequency representations (e.g., wavelet transform, Cohen and affine class distributions), adaptive parametric time-frequency analysis (based on atomic decomposition and time-frequency auto-regressive moving average models), adaptive non-parametric time-frequency analysis (e.g., Hilbert-Huang transform, local mean decomposition, and energy separation), and time varying higher order spectra. This paper presents a systematic review of over 20 major such methods reported in more than 100 representative articles published since 1990. Their fundamental principles, advantages and disadvantages, and applications to fault diagnosis of machinery have been examined. Some examples have also been provided to illustrate their performance.

  9. A Time-Frequency Approach to Feature Extraction for a Brain-Computer Interface with a Comparative Analysis of Performance Measures

    NASA Astrophysics Data System (ADS)

    Coyle, Damien; Prasad, Girijesh; McGinnity, T. M.

    2005-12-01

    The paper presents an investigation into a time-frequency (TF) method for extracting features from the electroencephalogram (EEG) recorded from subjects performing imagination of left- and right-hand movements. The feature extraction procedure (FEP) extracts frequency domain information to form features whilst time-frequency resolution is attained by localising the fast Fourier transformations (FFTs) of the signals to specific windows localised in time. All features are extracted at the rate of the signal sampling interval from a main feature extraction (FE) window through which all data passes. Subject-specific frequency bands are selected for optimal feature extraction and intraclass variations are reduced by smoothing the spectra for each signal by an interpolation (IP) process. The TF features are classified using linear discriminant analysis (LDA). The FE window has potential advantages for the FEP to be applied in an online brain-computer interface (BCI). The approach achieves good performance when quantified by classification accuracy (CA) rate, information transfer (IT) rate, and mutual information (MI). The information that these performance measures provide about a BCI system is analysed and the importance of this is demonstrated through the results.

  10. Automated extraction and classification of time-frequency contours in humpback vocalizations.

    PubMed

    Ou, Hui; Au, Whitlow W L; Zurk, Lisa M; Lammers, Marc O

    2013-01-01

    A time-frequency contour extraction and classification algorithm was created to analyze humpback whale vocalizations. The algorithm automatically extracted contours of whale vocalization units by searching for gray-level discontinuities in the spectrogram images. The unit-to-unit similarity was quantified by cross-correlating the contour lines. A library of distinctive humpback units was then generated by applying an unsupervised, cluster-based learning algorithm. The purpose of this study was to provide a fast and automated feature selection tool to describe the vocal signatures of animal groups. This approach could benefit a variety of applications such as species description, identification, and evolution of song structures. The algorithm was tested on humpback whale song data recorded at various locations in Hawaii from 2002 to 2003. Results presented in this paper showed low probability of false alarm (0%-4%) under noisy environments with small boat vessels and snapping shrimp. The classification algorithm was tested on a controlled set of 30 units forming six unit types, and all the units were correctly classified. In a case study on humpback data collected in the Auau Chanel, Hawaii, in 2002, the algorithm extracted 951 units, which were classified into 12 distinctive types. PMID:23297903

  11. Phase retrieval and time-frequency methods in the measurement of ultrashort laser pulses

    SciTech Connect

    DeLong, K.W.; Fittinghoff, D.N.; Ladera, C.L.; Trebino, R.

    1995-02-01

    Recently several techniques have become available to measure the time- (or frequency-) dependent intensity and phase of ultrashort laser pulses. One of these, Frequency-Resolved Optical Gating (FROG), is rigorous and has achieved single-laser-shot operation. FROG combines the concepts of time-frequency analysis in the form of spectrogram generation (in order to create a two-dimensional problem), and uses a phase-retrieval-based algorithm to invert the experimental data to yield the intensity and phase of the laboratory laser pulse. In FROG it is easy to generate a spectrogram of the unknown signal, and inversion of the spectrogram to recover the signal is the main goal. Because the temporal width of a femtosecond laser pulse is much shorter than anything achievable by electronics, FROG uses the pulse to measure itself. In FROG, the laser pulse is split into two replicas of itself by a partially reflecting beamsplitter, and the two replicas interact with each other in a medium with an instantaneous nonlinear-optical response. This interaction generates a signal field that is then frequency-resolved using a spectrometer. The spectrum of the signal field is measured for all relevant values of the temporal delay between the two pulses. Here, the authors employ FROG and FROG related techniques to measure the time-dependent intensity and phase of an ultrashort laser pulse.

  12. Solving the EEG inverse problem based on space-time-frequency structured sparsity constraints.

    PubMed

    Castaño-Candamil, Sebastián; Höhne, Johannes; Martínez-Vargas, Juan-David; An, Xing-Wei; Castellanos-Domínguez, German; Haufe, Stefan

    2015-09-01

    We introduce STOUT (spatio-temporal unifying tomography), a novel method for the source analysis of electroencephalograpic (EEG) recordings, which is based on a physiologically-motivated source representation. Our method assumes that only a small number of brain sources are active throughout a measurement, where each of the sources exhibits focal (smooth but localized) characteristics in space, time and frequency. This structure is enforced through an expansion of the source current density into appropriate spatio-temporal basis functions in combination with sparsity constraints. This approach combines the main strengths of two existing methods, namely Sparse Basis Field Expansions (Haufe et al., 2011) and Time-Frequency Mixed-Norm Estimates (Gramfort et al., 2013). By adjusting the ratio between two regularization terms, STOUT is capable of trading temporal for spatial reconstruction accuracy and vice versa, depending on the requirements of specific analyses and the provided data. Due to allowing for non-stationary source activations, STOUT is particularly suited for the localization of event-related potentials (ERP) and other evoked brain activity. We demonstrate its performance on simulated ERP data for varying signal-to-noise ratios and numbers of active sources. Our analysis of the generators of visual and auditory evoked N200 potentials reveals that the most active sources originate in the temporal and occipital lobes, in line with the literature on sensory processing. PMID:26048621

  13. Time-frequency composition of mosquito flight tones obtained using Hilbert spectral analysis.

    PubMed

    Aldersley, Andrew; Champneys, Alan; Homer, Martin; Robert, Daniel

    2014-10-01

    Techniques for estimating temporal variation in the frequency content of acoustic tones based on short-time fast Fourier transforms are fundamentally limited by an inherent time-frequency trade-off. This paper presents an alternative methodology, based on Hilbert spectral analysis, which is not affected by this weakness, and applies it to the accurate estimation of mosquito wing beat frequencies. Mosquitoes are known to communicate with one another via the sounds generated by their flapping wings. Active frequency modulation between pairs of mosquitoes is thought to take place as a precursor to courtship. Studying the acoustically-based interactions of mosquitoes therefore relies on an accurate representation of flight frequency as a time-evolving property, yet conventional Fourier spectrograms are unable to capture the rapid modulations in frequency that mosquito flight tones exhibit. The algorithms introduced in this paper are able to automatically detect and extract fully temporally resolved frequency information from audio recordings. Application of the technique to experimental recordings of single tethered mosquitoes in flight reveals corroboration with previous reported findings. The advantages of the method for animal communication studies are discussed, with particular attention given to its potential utility for studying pairwise mosquito interactions. PMID:25324097

  14. Time-Frequency Analysis of Rocket Nozzle Wall Pressures During Start-up Transients

    NASA Technical Reports Server (NTRS)

    Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.

    2011-01-01

    Surveys of the fluctuating wall pressure were conducted on a sub-scale, thrust- optimized parabolic nozzle in order to develop a physical intuition for its Fourier-azimuthal mode behavior during fixed and transient start-up conditions. These unsteady signatures are driven by shock wave turbulent boundary layer interactions which depend on the nozzle pressure ratio and nozzle geometry. The focus however, is on the degree of similarity between the spectral footprints of these modes obtained from transient start-ups as opposed to a sequence of fixed nozzle pressure ratio conditions. For the latter, statistically converged spectra are computed using conventional Fourier analyses techniques, whereas the former are investigated by way of time-frequency analysis. The findings suggest that at low nozzle pressure ratios -- where the flow resides in a Free Shock Separation state -- strong spectral similarities occur between fixed and transient conditions. Conversely, at higher nozzle pressure ratios -- where the flow resides in Restricted Shock Separation -- stark differences are observed between the fixed and transient conditions and depends greatly on the ramping rate of the transient period. And so, it appears that an understanding of the dynamics during transient start-up conditions cannot be furnished by a way of fixed flow analysis.

  15. Classification of Hazelnut Kernels by Using Impact Acoustic Time-Frequency Patterns

    NASA Astrophysics Data System (ADS)

    Kalkan, Habil; Ince, Nuri Firat; Tewfik, Ahmed H.; Yardimci, Yasemin; Pearson, Tom

    2007-12-01

    Hazelnuts with damaged or cracked shells are more prone to infection with aflatoxin producing molds ( Aspergillus flavus). These molds can cause cancer. In this study, we introduce a new approach that separates damaged/cracked hazelnut kernels from good ones by using time-frequency features obtained from impact acoustic signals. The proposed technique requires no prior knowledge of the relevant time and frequency locations. In an offline step, the algorithm adaptively segments impact signals from a training data set in time using local cosine packet analysis and a Kullback-Leibler criterion to assess the discrimination power of different segmentations. In each resulting time segment, the signal is further decomposed into subbands using an undecimated wavelet transform. The most discriminative subbands are selected according to the Euclidean distance between the cumulative probability distributions of the corresponding subband coefficients. The most discriminative subbands are fed into a linear discriminant analysis classifier. In the online classification step, the algorithm simply computes the learned features from the observed signal and feeds them to the linear discriminant analysis (LDA) classifier. The algorithm achieved a throughput rate of 45 nuts/s and a classification accuracy of 96% with the 30 most discriminative features, a higher rate than those provided with prior methods.

  16. Time frequency characterization of hand-transmitted, impulsive vibrations using analytic wavelet transform

    NASA Astrophysics Data System (ADS)

    Kim, Jay; Welcome, Daniel E.; Dong, Ren G.; Joon Song, Won; Hayden, Charles

    2007-11-01

    Current guidelines to assess health risk of hand-arm vibration are based on the frequency-weighted rms acceleration level, therefore do not fully consider the effect of temporal variations of the spectral energy. Time averaging effect involved with the frequency analysis may severely underestimate the risk of impact tools. A time-frequency ( T- F) analysis is necessary to characterize a highly transient signal whose spectral characteristics change rapidly in time. The analytic wavelet transform (AWT) is an ideal T- F analysis tool as it possesses the advantages of both the Fourier and wavelet transforms. The AWT is applied to acceleration signals measured from six tools, five impact type tools and one relatively steady-type tool, to explore possible improvements of the current risk assessment method of hand-arm vibration exposure. Based on the unique capability of the AWT, several new concepts including frequency-weighted time history, cumulative injury function, and cumulative injury index are defined in this study. Possible applications of these new concepts to hand-arm vibration research are described. Based on the results from this study, needs for future research are discussed.

  17. Damage detection and quantification in a structural model under seismic excitation using time-frequency analysis

    NASA Astrophysics Data System (ADS)

    Chan, Chun-Kai; Loh, Chin-Hsiung; Wu, Tzu-Hsiu

    2015-04-01

    In civil engineering, health monitoring and damage detection are typically carry out by using a large amount of sensors. Typically, most methods require global measurements to extract the properties of the structure. However, some sensors, like LVDT, cannot be used due to in situ limitation so that the global deformation remains unknown. An experiment is used to demonstrate the proposed algorithms: a one-story 2-bay reinforce concrete frame under weak and strong seismic excitation. In this paper signal processing techniques and nonlinear identification are used and applied to the response measurements of seismic response of reinforced concrete structures subject to different level of earthquake excitations. Both modal-based and signal-based system identification and feature extraction techniques are used to study the nonlinear inelastic response of RC frame using both input and output response data or output only measurement. From the signal-based damage identification method, which include the enhancement of time-frequency analysis of acceleration responses and the estimation of permanent deformation using directly from acceleration response data. Finally, local deformation measurement from dense optical tractor is also use to quantify the damage of the RC frame structure.

  18. Relation between deep bioluminescence and oceanographic variables: A statistical analysis using time-frequency decompositions

    NASA Astrophysics Data System (ADS)

    Martini, S.; Nerini, D.; Tamburini, C.

    2014-09-01

    We consider the statistical analysis of a 1.7-year high-frequency sampled time series, between 2009 and 2010, recorded at the ANTARES observatory in the deep NW Mediterranean Sea (2475 m depth). The objective was to estimate relationships between bioluminescence and environmental time series (temperature, salinity and current speed). As this entire dataset is characterized by non-linearity and non-stationarity, two time-frequency decomposition methods (wavelet and Hilbert-Huang) were used. These mathematical methods are dedicated to the analysis of a signal at various time and frequencies scales. This work propose some statistical tools dedicated to the study of relationships between two time series. Our study highlights three events of high bioluminescence activity in March 2009, December 2009 and March 2010. We demonstrate that the two events occurring in March 2009 and 2010 are correlated to the arrival of newly formed deep water masses at frequencies of approximately 4.8×10-7 (period of 24.1 days). In contrast, the event in December 2009 is only correlated with current speed at frequencies of approximately 1.9×10-6 (period of 6.0 days). The use of both wavelet and Hilbert-Huang transformations has proven to be successful for the analysis of multivariate time series. These methods are well-suited in a context of the increasing number of long time series recorded in oceanography.

  19. Tuning time-frequency methods for the detection of metered HF speech

    NASA Astrophysics Data System (ADS)

    Nelson, Douglas J.; Smith, Lawrence H.

    2002-12-01

    Speech is metered if the stresses occur at a nearly regular rate. Metered speech is common in poetry, and it can occur naturally in speech, if the speaker is spelling a word or reciting words or numbers from a list. In radio communications, the CQ request, call sign and other codes are frequently metered. In tactical communications and air traffic control, location, heading and identification codes may be metered. Moreover metering may be expected to survive even in HF communications, which are corrupted by noise, interference and mistuning. For this environment, speech recognition and conventional machine-based methods are not effective. We describe Time-Frequency methods which have been adapted successfully to the problem of mitigation of HF signal conditions and detection of metered speech. These methods are based on modeled time and frequency correlation properties of nearly harmonic functions. We derive these properties and demonstrate a performance gain over conventional correlation and spectral methods. Finally, in addressing the problem of HF single sideband (SSB) communications, the problems of carrier mistuning, interfering signals, such as manual Morse, and fast automatic gain control (AGC) must be addressed. We demonstrate simple methods which may be used to blindly mitigate mistuning and narrowband interference, and effectively invert the fast automatic gain function.

  20. Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications

    PubMed Central

    2013-01-01

    Background Time-Frequency analysis of electroencephalogram (EEG) during different mental tasks received significant attention. As EEG is non-stationary, time-frequency analysis is essential to analyze brain states during different mental tasks. Further, the time-frequency information of EEG signal can be used as a feature for classification in brain-computer interface (BCI) applications. Methods To accurately model the EEG, band-limited multiple Fourier linear combiner (BMFLC), a linear combination of truncated multiple Fourier series models is employed. A state-space model for BMFLC in combination with Kalman filter/smoother is developed to obtain accurate adaptive estimation. By virtue of construction, BMFLC with Kalman filter/smoother provides accurate time-frequency decomposition of the bandlimited signal. Results The proposed method is computationally fast and is suitable for real-time BCI applications. To evaluate the proposed algorithm, a comparison with short-time Fourier transform (STFT) and continuous wavelet transform (CWT) for both synthesized and real EEG data is performed in this paper. The proposed method is applied to BCI Competition data IV for ERD detection in comparison with existing methods. Conclusions Results show that the proposed algorithm can provide optimal time-frequency resolution as compared to STFT and CWT. For ERD detection, BMFLC-KF outperforms STFT and BMFLC-KS in real-time applicability with low computational requirement. PMID:24274109

  1. Time-Frequency Analysis of Shadow Bands During Recent Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Firneis, M. G.; Marx, P. C.; Leitner, J. J.

    The atmospheric phenomenon of shadow bands sometimes visible during total solar eclipses as grey ripples moving over the ground a few minutes before and after the totality was subjected to detailed data analysis Scintillation theory as explanation for this phenomenon given by Codona J L 1986 was tested during three solar eclipses A time-frequency analysis was carried out for three different colour ranges red blue green defined by the CANON Hi8 video camera system as well as for a radio wavelength of 3 cm The geometrically rectified pictures of a white screen with bands carefully oriented north-south were Fourier-analyzed for the considered colour-ranges yielding a catalogue of intensity contour-plots in the two-dimensional spatial frequency-space These stacked contour-plots represent the time-evolution of the shadow bands in the three colour ranges During the solar eclipse of August 11 th 1999 a wavelength of the phenomenon of 20 cm before totality and 25 cm after totality was determined from an Austrian observation point Bad Fischau A similar experimental setup during the eclipse of June 21 st 2001 in Lusaka Sambia resulted in a detectable wavelength of 5 cm before and 10 cm after totality obviously depending on the different altitudes of the scintillation-band producing turbulence layers For the first time an airborne experiment was performed which used three SHARP BS1R 6EL 100W universal LNB commercial satellite receivers together with modified LNB satellite finders The signals were recorded with three 3890 DT USB

  2. Non-identical smoothing operators for estimating time-frequency interdependence in electrophysiological recordings

    NASA Astrophysics Data System (ADS)

    Mehrkanoon, Saeid; Breakspear, Michael; Daffertshofer, Andreas; Boonstra, Tjeerd W.

    2013-12-01

    Synchronization of neural activity from distant parts of the brain is crucial for the coordination of cognitive activities. Because neural synchronization varies both in time and frequency, time-frequency (T-F) coherence is commonly employed to assess interdependences in electrophysiological recordings. T-F coherence entails smoothing the cross and power spectra to ensure statistical consistency of the estimate, which reduces its T-F resolution. This trade-off has been described in detail when the cross and power spectra are smoothed using identical smoothing operators, which may yield spurious coherent frequencies. In this article, we examine the use of non-identical smoothing operators for the estimation of T-F interdependence, i.e., phase synchronization is characterized by phase locking between signals captured by the cross spectrum and we may hence improve the trade-off by selectively smoothing the auto spectra. We first show that the frequency marginal density of the present estimate is bound within [0,1] when using non-identical smoothing operators. An analytic calculation of the bias and variance of present estimators is performed and compared with the bias and variance of standard T-F coherence using Monte Carlo simulations. We then test the use of non-identical smoothing operators on simulated data, whose T-F properties are known through construction. Finally, we analyze empirical data from eyes-closed surface electroencephalography recorded in human subjects to investigate alpha-band synchronization. These analyses show that selectively smoothing the auto spectra reduces the bias of the estimator and may improve the detection of T-F interdependence in electrophysiological data at high temporal resolution.

  3. Signal preserving and seismic random noise attenuation by Hurst exponent based time-frequency peak filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Li, Yue; Lin, Hongbo; Yang, Baojun

    2015-11-01

    Attenuating random noise is of great significance in seismic data processing. In recent years, time-frequency peak filtering (TFPF) has been successfully applied to seismic random noise attenuation field. However, a fixed window length (WL) is used in the conventional TFPF. Since a short WL in the TFPF is used to preserve signals while a long WL can eliminate random noise effectively, signal preserving and noise attenuation cannot be balanced by a fixed WL especially when the signal-to-noise ratio of the noisy seismic record is low. Thus, we need to divide a noisy signal into signal and noise segments before the filtering. Then a short WL is used to the signal segments to preserve signals and a long WL is chosen for noise segments to eliminate random noise. In this paper, we test the smoothness of signals and random noise in time using the Hurst exponent which is a statistic for representing smoothness characteristics of signals. The time-series of signals with higher smoothness which lead to larger Hurst exponent values, however random noise is a random series in time without fixed waveforms and thus its smoothness is low, so the signal and noise segments can be divided by the Hurst exponent values. After the segmentation, we can adopt different filtering WLs in the TFPF for different segments to make a trade-off between signal preserving and random noise attenuation. Synthetic and real data experiments demonstrate that the proposed method can remove random noise from seismic record and preserve reflection events effectively.

  4. The benefits of using time-frequency analysis with synthetic aperture focusing technique

    NASA Astrophysics Data System (ADS)

    Albright, Austin; Clayton, Dwight

    2015-03-01

    Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m 2m 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on improved defect/reinforcement isolation in thick and multilayered reinforcement environments. Additionally, the ability to empirically explore the possibility of a frequency-band-defect-type relationship or sensitivity becomes available.

  5. The benefits of using time-frequency analysis with synthetic aperture focusing technique

    SciTech Connect

    Albright, Austin E-mail: claytonda@ornl.gov; Clayton, Dwight E-mail: claytonda@ornl.gov

    2015-03-31

    Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m × 2m × 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on improved defect/reinforcement isolation in thick and multilayered reinforcement environments. Additionally, the ability to empirically explore the possibility of a frequency-band-defect-type relationship or sensitivity becomes available.

  6. The Benefits of Using Time-Frequency Analysis with Synthetic Aperture Focusing Technique

    SciTech Connect

    Albright, Austin P; Clayton, Dwight A

    2015-01-01

    Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band s interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m x 2m x 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on improved defect/reinforcement isolation in thick and multilayered reinforcement environments. Additionally, the ability to empirically explore the possibility of a frequency-band-defect-type relationship or sensitivity becomes available.

  7. 4D time-frequency representation for binaural speech signal processing

    NASA Astrophysics Data System (ADS)

    Mikhael, Raed; Szu, Harold H.

    2006-04-01

    Hearing is the ability to detect and process auditory information produced by the vibrating hair cilia residing in the corti of the ears to the auditory cortex of the brain via the auditory nerve. The primary and secondary corti of the brain interact with one another to distinguish and correlate the received information by distinguishing the varying spectrum of arriving frequencies. Binaural hearing is nature's way of employing the power inherent in working in pairs to process information, enhance sound perception, and reduce undesired noise. One ear might play a prominent role in sound recognition, while the other reinforces their perceived mutual information. Developing binaural hearing aid devices can be crucial in emulating the working powers of two ears and may be a step closer to significantly alleviating hearing loss of the inner ear. This can be accomplished by combining current speech research to already existing technologies such as RF communication between PDAs and Bluetooth. Ear Level Instrument (ELI) developed by Micro-tech Hearing Instruments and Starkey Laboratories is a good example of a digital bi-directional signal communicating between a PDA/mobile phone and Bluetooth. The agreement and disagreement of arriving auditory information to the Bluetooth device can be classified as sound and noise, respectively. Finding common features of arriving sound using a four coordinate system for sound analysis (four dimensional time-frequency representation), noise can be greatly reduced and hearing aids would become more efficient. Techniques developed by Szu within an Artificial Neural Network (ANN), Blind Source Separation (BSS), Adaptive Wavelets Transform (AWT), and Independent Component Analysis (ICA) hold many possibilities to the improvement of acoustic segmentation of phoneme, all of which will be discussed in this paper. Transmitted and perceived acoustic speech signal will improve, as the binaural hearing aid will emulate two ears in sound localization, speech understanding in noisy environment, and loudness differentiation.

  8. Seismic random noise attenuation and signal-preserving by multiple directional time-frequency peak filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Li, Yue; Lin, Hong-bo; Yang, Bao-jun

    2015-01-01

    Time-frequency peak filtering (TFPF) is an effective method for seismic random noise attenuation. The linearity of the signal has a significant influence on the accuracy of the TFPF method. The higher the linearity of the signal to be filtered is, the better the denoising result is. With this in mind, and taking the lateral coherence of reflected events into account, we do TFPF along the reflected events to improve the degree of linearity and enhance the continuity of these events. The key factor to realize this idea is to find the traces of the reflected events. However, the traces of the events are too hard to obtain in the complicated field seismic data. In this paper, we propose a Multiple Directional TFPF (MD-TFPF), in which the filtering is performed in certain direction components of the seismic data. These components are obtained by a directional filter bank. In each direction component, we do TFPF along these decomposed reflected events (the local direction of the events) instead of the channel direction. The final result is achieved by adding up the filtering results of all decomposition directions of seismic data. In this way, filtering along the reflected events is implemented without accurately finding the directions. The effectiveness of the proposed method is tested on synthetic and field seismic data. The experimental results demonstrate that MD-TFPF can more effectively eliminate random noise and enhance the continuity of the reflected events with better preservation than the conventional TFPF, curvelet denoising method and F-X deconvolution method.

  9. Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques

    NASA Astrophysics Data System (ADS)

    Al-Badour, F.; Sunar, M.; Cheded, L.

    2011-08-01

    Time-frequency analysis, including the wavelet transform, is one of the new and powerful tools in the important field of structural health monitoring, using vibration analysis. Commonly-used signal analysis techniques, based on spectral approaches such as the fast Fourier transform, are powerful in diagnosing a variety of vibration-related problems in rotating machinery. Although these techniques provide powerful diagnostic tools in stationary conditions, they fail to do so in several practical cases involving non-stationary data, which could result either from fast operational conditions, such as the fast start-up of an electrical motor, or from the presence of a fault causing a discontinuity in the vibration signal being monitored. Although the short-time Fourier transform compensates well for the loss of time information incurred by the fast Fourier transform, it fails to successfully resolve fast-changing signals (such as transient signals) resulting from non-stationary environments. To mitigate this situation, wavelet transform tools are considered in this paper as they are superior to both the fast and short-time Fourier transforms in effectively analyzing non-stationary signals. These wavelet tools are applied here, with a suitable choice of a mother wavelet function, to a vibration monitoring system to accurately detect and localize faults occurring in this system. Two cases producing non-stationary signals are considered: stator-to-blade rubbing, and fast start-up and coast-down of a rotor. Two powerful wavelet techniques, namely the continuous wavelet and wavelet packet transforms, are used for the analysis of the monitored vibration signals. In addition, a novel algorithm is proposed and implemented here, which combines these two techniques and the idea of windowing a signal into a number of shaft revolutions to localize faults.

  10. Applying Novel Time-Frequency Moments Singular Value Decomposition Method and Artificial Neural Networks for Ballistocardiography

    NASA Astrophysics Data System (ADS)

    Akhbardeh, Alireza; Junnila, Sakari; Koivuluoma, Mikko; Koivistoinen, Teemu; Värri, Alpo

    2006-12-01

    As we know, singular value decomposition (SVD) is designed for computing singular values (SVs) of a matrix. Then, if it is used for finding SVs of an [InlineEquation not available: see fulltext.]-by-1 or 1-by- [InlineEquation not available: see fulltext.] array with elements representing samples of a signal, it will return only one singular value that is not enough to express the whole signal. To overcome this problem, we designed a new kind of the feature extraction method which we call ''time-frequency moments singular value decomposition (TFM-SVD).'' In this new method, we use statistical features of time series as well as frequency series (Fourier transform of the signal). This information is then extracted into a certain matrix with a fixed structure and the SVs of that matrix are sought. This transform can be used as a preprocessing stage in pattern clustering methods. The results in using it indicate that the performance of a combined system including this transform and classifiers is comparable with the performance of using other feature extraction methods such as wavelet transforms. To evaluate TFM-SVD, we applied this new method and artificial neural networks (ANNs) for ballistocardiogram (BCG) data clustering to look for probable heart disease of six test subjects. BCG from the test subjects was recorded using a chair-like ballistocardiograph, developed in our project. This kind of device combined with automated recording and analysis would be suitable for use in many places, such as home, office, and so forth. The results show that the method has high performance and it is almost insensitive to BCG waveform latency or nonlinear disturbance.

  11. Joint Disorders

    MedlinePLUS

    A joint is where two or more bones come together, like the knee, hip, elbow, or shoulder. Joints can be damaged by many types of injuries or diseases, including Arthritis - inflammation of a joint. It causes pain, stiffness, and swelling. Over time, ...

  12. Using wavelets to decompose the time frequency effects of monetary policy

    NASA Astrophysics Data System (ADS)

    Aguiar-Conraria, Luís; Azevedo, Nuno; Soares, Maria Joana

    2008-05-01

    Central banks have different objectives in the short and long run. Governments operate simultaneously at different timescales. Many economic processes are the result of the actions of several agents, who have different term objectives. Therefore, a macroeconomic time series is a combination of components operating on different frequencies. Several questions about economic time series are connected to the understanding of the behavior of key variables at different frequencies over time, but this type of information is difficult to uncover using pure time-domain or pure frequency-domain methods. To our knowledge, for the first time in an economic setup, we use cross-wavelet tools to show that the relation between monetary policy variables and macroeconomic variables has changed and evolved with time. These changes are not homogeneous across the different frequencies.

  13. Feature extraction using time-frequency analysis for monophonic-polyphonic wheeze discrimination.

    PubMed

    Ulukaya, Sezer; Sen, Ipek; Kahya, Yasemin P

    2015-08-01

    The aim of this study is monophonic-polyphonic wheeze episode discrimination rather than the conventional wheeze (versus non-wheeze) episode detection. We used two different methods for feature extraction to discriminate monophonic and polyphonic wheeze episodes. One of the methods is based on frequency analysis and the other is based on time analysis. Frequency analysis based method uses ratios of quartile frequencies to exploit the difference in the power spectrum. Time analysis based method uses mean crossing irregularity to exploit the difference in periodicity in the time domain. Both methods are applied on the data before and after an image processing based preprocessing step. Calculated features are used in classification both individually and in combinations. Support vector machine, k-nearest neighbor and Naive Bayesian classifiers are adopted in leave-one-out scheme. A total of 121 monophonic and 110 polyphonic wheeze episodes are used in the experiments, where the best classification performances are 71.45% for time domain based features, 68.43% for frequency domain based features, and 75.78% for a combination of selected best features. PMID:26737515

  14. Time-frequency analysis of acoustic signals in the audio-frequency range generated during Hadfield's steel friction

    NASA Astrophysics Data System (ADS)

    Dobrynin, S. A.; Kolubaev, E. A.; Smolin, A. Yu.; Dmitriev, A. I.; Psakhie, S. G.

    2010-07-01

    Time-frequency analysis of sound waves detected by a microphone during the friction of Hadfields steel has been performed using wavelet transform and window Fourier transform methods. This approach reveals a relationship between the appearance of quasi-periodic intensity outbursts in the acoustic response signals and the processes responsible for the formation of wear products. It is shown that the time-frequency analysis of acoustic emission in a tribosystem can be applied, along with traditional approaches, to studying features in the wear and friction process.

  15. Time-frequency-wavenumber Decomposition To Investigate Seismic Wavefield: Application To The Annot Experiment

    NASA Astrophysics Data System (ADS)

    Schissele, E.; Cansi, Y.; Gaffet, S.

    Many observations and studies as well as numerical simulations have been done in order to completely understand the whole seismogram recorded during an earthquake. At regional distances, the seismic wavefield is strongly influenced by crustal hetero- geneities. The primary wavefield constituted by Pn, Pg, Sn, Sg, Rg, Lg.... phases is diffracted and refracted by these heterogeneities and hence forms the coda of the seis- mogram. But the different mechanisms of propagation in a heterogeneous medium are not fully understood. The identification of the different phases contributing to the coda seems to be essential to progress in the comprehension of the seismic wavefield propagation. Seismic arrays are then well-adapted tools since they provide the spatio-temporal evo- lution of the wavefield. In 1998, 4 small-scales arrays were deployed for 2 months around the Annot region, located in the southern French Alps. Each array was constituted by 9 short-period seismometers, recording frequencies greater than 0.2 Hz. Its aperture was 250 meters, with a minimal distance between 2 adjacent sensors of 20 meters. That allows us to study the seismic wavefield for very low wavelength without any problem of spatial aliasing. It will be interesting to characterize in terms of wavefield deformation the signature of the different kinds of heterogeneities (fault system, topographic relief, impedance contrast...) surrounding this area. We expect the primary wavefield to be diffracted or refracted by all these heterogeneities. A time-frequency-wavenumber technique which allows us to characterize the whole coherent part of the energy which prop- agates through the seismic array has been derived. Such a characterization involves, for each coherent wavelet, an estimate of: (i) an arrival time and a frequency content and (ii) an azimuth and an apparent velocity. This way, the principal phases will be described. What will be more interesting, is the extraction of the deterministic part of the energy contained in the coda. In different works, a statistical point of view is adopted to explain the coda. Nevertheless, coherent energy remains in the coda and it 1 is especially these kind of seismic arrivals that we would like to describe. It will also be interesting to quantify the deformation between two different arrays, for a given event. This way, we hope to distinguish the regional diffraction (10 km), which should be seen on the 4 arrays, from the local diffraction (10 km), characteristic of a single array. 2

  16. Identification of Damaged Wheat Kernels and Cracked-Shell Hazelnuts with Impact Acoustics Time-Frequency Patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with ...

  17. Time-frequency optimization for discrimination between imagination of right and left hand movements based on two bipolar electroencephalography channels

    NASA Astrophysics Data System (ADS)

    Yang, Yuan; Chevallier, Sylvain; Wiart, Joe; Bloch, Isabelle

    2014-12-01

    To enforce a widespread use of efficient and easy to use brain-computer interfaces (BCIs), the inter-subject robustness should be increased and the number of electrodes should be reduced. These two key issues are addressed in this contribution, proposing a novel method to identify subject-specific time-frequency characteristics with a minimal number of electrodes. In this method, two alternative criteria, time-frequency discrimination factor ( TFDF) and F score, are proposed to evaluate the discriminative power of time-frequency regions. Distinct from classical measures (e.g., Fisher criterion, r 2 coefficient), the TFDF is based on the neurophysiologic phenomena, on which the motor imagery BCI paradigm relies, rather than only from statistics. F score is based on the popular Fisher's discriminant and purely data driven; however, it differs from traditional measures since it provides a simple and effective measure for quantifying the discriminative power of a multi-dimensional feature vector. The proposed method is tested on BCI competition IV datasets IIa and IIb for discriminating right and left hand motor imagery. Compared to state-of-the-art methods, our method based on both criteria led to comparable or even better classification results, while using fewer electrodes (i.e., only two bipolar channels, C3 and C4). This work indicates that time-frequency optimization can not only improve the classification performance but also contribute to reducing the number of electrodes required in motor imagery BCIs.

  18. Ceramic joints

    DOEpatents

    Miller, Bradley J. (Worcester, MA); Patten, Jr., Donald O. (Sterling, MA)

    1991-01-01

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  19. Classification of the intention to generate a shoulder versus elbow torque by means of a time-frequency synthesized spatial patterns BCI algorithm.

    PubMed

    Deng, Jie; Yao, Jun; Dewald, Julius P A

    2005-12-01

    In this paper, we attempt to determine a subject's intention of generating torque at the shoulder or elbow, two neighboring joints, using scalp electroencephalogram signals from 163 electrodes for a brain-computer interface (BCI) application. To achieve this goal, we have applied a time-frequency synthesized spatial patterns (TFSP) BCI algorithm with a presorting procedure. Using this method, we were able to achieve an average recognition rate of 89% in four healthy subjects, which is comparable to the highest rates reported in the literature but now for tasks with much closer spatial representations on the motor cortex. This result demonstrates, for the first time, that the TFSP BCI method can be applied to separate intentions between generating static shoulder versus elbow torque. Furthermore, in this study, the potential application of this BCI algorithm for brain-injured patients was tested in one chronic hemiparetic stroke subject. A recognition rate of 76% was obtained, suggesting that this BCI method can provide a potential control signal for neural prostheses or other movement coordination improving devices for patients following brain injury. PMID:16317237

  20. Classification of the intention to generate a shoulder versus elbow torque by means of a time frequency synthesized spatial patterns BCI algorithm

    NASA Astrophysics Data System (ADS)

    Deng, Jie; Yao, Jun; Dewald, Julius P. A.

    2005-12-01

    In this paper, we attempt to determine a subject's intention of generating torque at the shoulder or elbow, two neighboring joints, using scalp electroencephalogram signals from 163 electrodes for a brain-computer interface (BCI) application. To achieve this goal, we have applied a time-frequency synthesized spatial patterns (TFSP) BCI algorithm with a presorting procedure. Using this method, we were able to achieve an average recognition rate of 89% in four healthy subjects, which is comparable to the highest rates reported in the literature but now for tasks with much closer spatial representations on the motor cortex. This result demonstrates, for the first time, that the TFSP BCI method can be applied to separate intentions between generating static shoulder versus elbow torque. Furthermore, in this study, the potential application of this BCI algorithm for brain-injured patients was tested in one chronic hemiparetic stroke subject. A recognition rate of 76% was obtained, suggesting that this BCI method can provide a potential control signal for neural prostheses or other movement coordination improving devices for patients following brain injury.

  1. Time-frequency analysis of auditory-nerve-fiber and basilar-membrane click responses reveal glide irregularities and non-characteristic-frequency skirts

    NASA Astrophysics Data System (ADS)

    Lin, Tai; Guinan, John J.

    2004-07-01

    Although many properties of click responses can be accounted for by a single, frequency-dispersive traveling wave exciting a single, characteristic-frequency (CF) resonance, some properties, such as waxing and waning cannot. Joint time-frequency distributions (TFDs) were used to help understand click responses of cat single auditory-nerve (AN) fibers (CFs<4 kHz) and published measurements of chinchilla basilar-membrane (BM) motion. For CFs>800 Hz, the peak energy of the response decreased in latency and frequency as the level increased, as expected. However, at high levels the trend reversed for AN, but not BM, responses. Normalized TFDs, which show the frequency with the peak energy at each response time, revealed glides, as previously reported. Classical theory predicts smooth, upward glides. Instead, at low CFs there were downward glides, and at other CFs glides had substantial irregularities. Finally, click skirts, defined as the longest-latency part of click responses, sometimes showed deviations from CF for above-threshold sound levels. Most of these phenomena are not explained by a single, frequency-dispersive traveling wave exciting a single CF resonance, but they can be accounted for by the interaction of two (or more) excitation drives with different latencies and frequency contents.

  2. Signal Existence Verification (SEV) for GPS Low Received Power Signal Detection Using the Time-Frequency Approach

    PubMed Central

    Jan, Shau-Shiun; Sun, Chih-Cheng

    2010-01-01

    The detection of low received power of global positioning system (GPS) signals in the signal acquisition process is an important issue for GPS applications. Improving the miss-detection problem of low received power signal is crucial, especially for urban or indoor environments. This paper proposes a signal existence verification (SEV) process to detect and subsequently verify low received power GPS signals. The SEV process is based on the time-frequency representation of GPS signal, and it can capture the characteristic of GPS signal in the time-frequency plane to enhance the GPS signal acquisition performance. Several simulations and experiments are conducted to show the effectiveness of the proposed method for low received power signal detection. The contribution of this work is that the SEV process is an additional scheme to assist the GPS signal acquisition process in low received power signal detection, without changing the original signal acquisition or tracking algorithms. PMID:22399903

  3. Signal existence verification (SEV) for GPS low received power signal detection using the time-frequency approach.

    PubMed

    Jan, Shau-Shiun; Sun, Chih-Cheng

    2010-01-01

    The detection of low received power of global positioning system (GPS) signals in the signal acquisition process is an important issue for GPS applications. Improving the miss-detection problem of low received power signal is crucial, especially for urban or indoor environments. This paper proposes a signal existence verification (SEV) process to detect and subsequently verify low received power GPS signals. The SEV process is based on the time-frequency representation of GPS signal, and it can capture the characteristic of GPS signal in the time-frequency plane to enhance the GPS signal acquisition performance. Several simulations and experiments are conducted to show the effectiveness of the proposed method for low received power signal detection. The contribution of this work is that the SEV process is an additional scheme to assist the GPS signal acquisition process in low received power signal detection, without changing the original signal acquisition or tracking algorithms. PMID:22399903

  4. Definitions of non-stationary vibration power for time-frequency analysis and computational algorithms based upon harmonic wavelet transform

    NASA Astrophysics Data System (ADS)

    Heo, YongHwa; Kim, Kwang-joon

    2015-02-01

    While the vibration power for a set of harmonic force and velocity signals is well defined and known, it is not as popular yet for a set of stationary random force and velocity processes, although it can be found in some literatures. In this paper, the definition of the vibration power for a set of non-stationary random force and velocity signals will be derived for the purpose of a time-frequency analysis based on the definitions of the vibration power for the harmonic and stationary random signals. The non-stationary vibration power, defined as the short-time average of the product of the force and velocity over a given frequency range of interest, can be calculated by three methods: the Wigner-Ville distribution, the short-time Fourier transform, and the harmonic wavelet transform. The latter method is selected in this paper because band-pass filtering can be done without phase distortions, and the frequency ranges can be chosen very flexibly for the time-frequency analysis. Three algorithms for the time-frequency analysis of the non-stationary vibration power using the harmonic wavelet transform are discussed. The first is an algorithm for computation according to the full definition, while the others are approximate. Noting that the force and velocity decomposed into frequency ranges of interest by the harmonic wavelet transform are constructed with coefficients and basis functions, for the second algorithm, it is suggested to prepare a table of time integrals of the product of the basis functions in advance, which are independent of the signals under analysis. How to prepare and utilize the integral table are presented. The third algorithm is based on an evolutionary spectrum. Applications of the algorithms to the time-frequency analysis of the vibration power transmitted from an excitation source to a receiver structure in a simple mechanical system consisting of a cantilever beam and a reaction wheel are presented for illustration.

  5. Time-frequency demodulation analysis based on iterative generalized demodulation for fault diagnosis of planetary gearbox under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Chen, Xiaowang; Liang, Ming; Ma, Fei

    2015-10-01

    The vibration signal of planetary gearboxes exhibits the characteristics of both amplitude modulation (AM) and frequency modulation (FM), and thus has a complex sideband structure. Time-varying speed and/or load will result in time variant characteristic frequency components. Since the modulating frequency is related to the gear fault characteristic frequency, the AM and FM parts each alone contains the information of the gear fault. We propose a time-frequency amplitude and frequency demodulation analysis metbhod to avoid the complex time-variant sideband analysis, and thereby identify the time-variant gear fault characteristic frequency. We enhance the time-frequency analysis via iterative generalized demodulation (IGD). The time-varying amplitude and frequency demodulated spectra have fine time-frequency resolution and are free of cross term interferences. They do not involve complex time-variant sidebands, thus considerably facilitating fault diagnosis of planetary gearboxes under nonstationary conditions. The method is validated using both numerically simulated data and experimental signals.

  6. The Time-Frequency Signatures of Advanced Seismic Signals Generated by Debris Flows

    NASA Astrophysics Data System (ADS)

    Chu, C. R.; Huang, C. J.; Lin, C. R.; Wang, C. C.; Kuo, B. Y.; Yin, H. Y.

    2014-12-01

    The seismic monitoring is expected to reveal the process of debris flow from the initial area to alluvial fan, because other field monitoring techniques, such as the video camera and the ultrasonic sensor, are limited by detection range. For this reason, seismic approaches have been used as the detection system of debris flows over the past few decades. The analysis of the signatures of the seismic signals in time and frequency domain can be used to identify the different phases of debris flow. This study dedicates to investigate the different stages of seismic signals due to debris flow, including the advanced signal, the main front, and the decaying tail. Moreover, the characteristics of the advanced signals forward to the approach of main front were discussed for the warning purpose. This study presents a permanent system, composed by two seismometers, deployed along the bank of Ai-Yu-Zi Creek in Nantou County, which is one of the active streams with debris flow in Taiwan. The three axes seismometer with frequency response of 7 sec - 200 Hz was developed by the Institute of Earth Sciences (IES), Academia Sinica for the purpose to detect debris flow. The original idea of replacing the geophone system with the seismometer technique was for catching the advanced signals propagating from the upper reach of the stream before debris flow arrival because of the high sensitivity. Besides, the low frequency seismic waves could be also early detected because of the low attenuation. However, for avoiding other unnecessary ambient vibrations, the sensitivity of seismometer should be lower than the general seismometer for detecting teleseism. Three debris flows with different mean velocities were detected in 2013 and 2014. The typical triangular shape was obviously demonstrated in time series data and the spectrograms of the seismic signals from three events. The frequency analysis showed that enormous debris flow bearing huge boulders would induce low frequency seismic waves. Owing to the less attenuation of low frequency waves, advanced signals mainly ranged between 2 and 10 Hz were detected in several minutes prior to the arrival of the main surge of a debris flow. As the results, the prior time of the advanced signals could be used not only to extend the warning time, but also to identify the initial location of a developing debris flow.

  7. Joint pain

    MedlinePLUS

    ... both rest and exercise are important. Warm baths, massage, and stretching exercises should be used as often ... Does keeping the joint elevated help? Do medicines, massage, or applying heat reduce the pain? What other ...

  8. Joint Problems

    MedlinePLUS

    ... ankles and toes. Other types of arthritis include gout or pseudogout. Sometimes, there is a mechanical problem ... for more information on osteoarthritis, rheumatoid arthritis and gout. How Common are Joint Problems? Osteoarthritis, which affects ...

  9. Compliant joint

    NASA Technical Reports Server (NTRS)

    Eklund, Wayne D. (Inventor); Kerley, James J. (Inventor)

    1990-01-01

    A compliant joint is provided for prosthetic and robotic devices which permits rotation in three different planes. The joint provides for the controlled use of cable under motion. Perpendicular outer mounting frames are joined by swaged cables that interlock at a center block. Ball bearings allow for the free rotation of the second mounting frame relative to the first mounting frame within a predetermined angular rotation that is controlled by two stop devices. The cables allow for compliance at the stops and the cables allow for compliance in six degrees of freedom enabling the duplication or simulation of the rotational movement and flexibility of a natural hip or knee joint, as well as the simulation of a joint designed for a specific robotic component for predetermined design parameters.

  10. Spot event detection along a large-scale sensor based on ultra-weak fiber Bragg gratings using time-frequency analysis.

    PubMed

    Ricchiuti, Amelia Lavinia; Sales, Salvador

    2016-02-10

    A simple scheme for interrogating a 5 m long photonics device and its potential applications to quasi-distributed fiber sensing is proposed. The sensor consists of an array of 500 identical, very weak fiber Bragg gratings (FBGs). The gratings are 9 mm long and have been serially written in cascade along a single optical fiber. The measurement system is based on a combination of optical time domain reflectometry and frequency scanning of the interrogating pulse. The time-frequency analysis is performed by launching an optical pulse into the sensor and retrieving and analyzing the back-reflected signal. The measurement of the temperature, length, and position of spot events along the sensors is demonstrated with good accuracy. As both spatial and temperature resolution of the method depend on the input pulse duration, the system performance can be controlled and optimized by properly choosing the temporal duration of the interrogating pulse. A spatial resolution of 9 mm (ultimately dictated by one grating length) has been obtained with an 80 ps optical pulse, while a temperature resolution of less than 0.42 K has been demonstrated using a 500 ps incident pulse. The sensor proposed proves to be simple, robust, and polarization insensitive and alleviates the instrumentation complexity for distributed sensing applications. PMID:26906375

  11. A continuous wavelet transform-based method for time-frequency analysis of artefact-corrected heart rate variability data.

    PubMed

    Peters, C H L; Vullings, R; Rooijakkers, M J; Bergmans, J W M; Oei, S G; Wijn, P F F

    2011-10-01

    Time-frequency analysis of heart rate variability (HRV) provides relevant clinical information. However, time-frequency analysis is very sensitive to artefacts. Artefacts that are present in heart rate recordings may be corrected, but this reduces the variability in the signal and therefore adversely affects the accuracy of calculated spectral estimates. To overcome this limitation of traditional techniques for time-frequency analysis, a new continuous wavelet transform (CWT)-based method was developed in which parts of the scalogram that have been affected by artefact correction are excluded from power calculations. The method was evaluated by simulating artefact correction on HRV data that were originally free of artefacts. Commonly used spectral HRV parameters were calculated by the developed method and by the short-time Fourier transform (STFT), which was used as a reference. Except for the powers in the very low-frequency and low-frequency (LF) bands, powers calculated by the STFT proved to be extremely sensitive to artefact correction. The CWT-based calculations in the high-frequency and very high-frequency bands corresponded well with their theoretical values. The standard deviations of these powers, however, increase with the number of corrected artefacts which is the result of the non-stationarity of the R-R interval series that were analysed. The powers calculated in the LF band turned out to be slightly sensitive to artefact correction, but the results were acceptable up to 20% artefact correction. Therefore, the CWT-based method provides a valuable alternative for the analysis of HRV data that cannot be guaranteed to be free of artefacts. PMID:21849721

  12. Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion

    NASA Astrophysics Data System (ADS)

    Nunn, J.; Wright, L. J.; Sller, C.; Zhang, L.; Walmsley, I. A.; Smith, B. J.

    2013-07-01

    We introduce a novel time-frequency quantum key distribution (TFQKD) scheme based on photon pairs entangled in these two conjugate degrees of freedom. The scheme uses spectral detection and phase modulation to enable measurements in the temporal basis by means of time-to-frequency conversion. This allows large-alphabet encoding to be implemented with realistic components. A general security analysis for TFQKD with binned measurements reveals a close connection with finite-dimensional QKD protocols and enables analysis of the effects of dark counts on the secure key size.

  13. A new time-frequency method to reveal quantum dynamics of atomic hydrogen in intense laser pulses: Synchrosqueezing transform

    SciTech Connect

    Sheu, Yae-lin; Hsu, Liang-Yan; Wu, Hau-tieng; Li, Peng-Cheng; Chu, Shih-I

    2014-11-15

    This study introduces a new adaptive time-frequency (TF) analysis technique, the synchrosqueezing transform (SST), to explore the dynamics of a laser-driven hydrogen atom at an ab initio level, upon which we have demonstrated its versatility as a new viable venue for further exploring quantum dynamics. For a signal composed of oscillatory components which can be characterized by instantaneous frequency, the SST enables rendering the decomposed signal based on the phase information inherited in the linear TF representation with mathematical support. Compared with the classical type of TF methods, the SST clearly depicts several intrinsic quantum dynamical processes such as selection rules, AC Stark effects, and high harmonic generation.

  14. Multiple-Clock-Cycle Architecture for the VLSI Design of a System for Time-Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Ivanovi?, Veselin N.; Stojanovi?, Radovan; Stankovi?, L. Jubiva

    2006-12-01

    Multiple-clock-cycle implementation (MCI) of a flexible system for time-frequency (TF) signal analysis is presented. Some very important and frequently used time-frequency distributions (TFDs) can be realized by using the proposed architecture: (i) the spectrogram (SPEC) and the pseudo-Wigner distribution (WD), as the oldest and the most important tools used in TF signal analysis; (ii) the S-method (SM) with various convolution window widths, as intensively used reduced interference TFD. This architecture is based on the short-time Fourier transformation (STFT) realization in the first clock cycle. It allows the mentioned TFDs to take different numbers of clock cycles and to share functional units within their execution. These abilities represent the major advantages of multicycle design and they help reduce both hardware complexity and cost. The designed hardware is suitable for a wide range of applications, because it allows sharing in simultaneous realizations of the higher-order TFDs. Also, it can be accommodated for the implementation of the SM with signal-dependent convolution window width. In order to verify the results on real devices, proposed architecture has been implemented with a field programmable gate array (FPGA) chips. Also, at the implementation (silicon) level, it has been compared with the single-cycle implementation (SCI) architecture.

  15. Sound propagation in a lattice of elastic beads: Time of flight, dispersion relation and time-frequency analysis

    NASA Astrophysics Data System (ADS)

    Coste, Christophe; Gilles, Bruno

    2010-01-01

    We study sound propagation in a model granular medium, which is a triangular array of nominally identical spherical beads under isotropic stress. Because of the point-like nature of the contacts between the beads, the slightest polydispersity makes the lattice of effective contacts random. This randomness evolves with the overall stress applied on the boundaries, and we use detection of longitudinal burst waves, with gaussian envelope, as a probe for the medium. At low and moderate stress, the velocity dependency on the applied stress exhibits clear discrepancies with Hertzian behavior, which shows that the contact lattice is indeed random. Time-frequency analysis gives full access to the dispersion relation of the lattice, both for long and short waves. For long waves, the time-of-flight is shown to be identical to the group delay, as expected. This method also allows measurements for short waves, which probe small-scale heterogeneities in the contact lattice: At high stress, almost all possible contacts are effective, and time-of-flight measurements indicate almost perfect Hertzian behavior. Group delay measurements for short waves, on the contrary, reveal persistent small-scale disorder. We discuss in some details the algorithms used for time-frequency analysis (Wigner-Ville distributions, pseudo Wigner-Ville distributions, reassignment method).

  16. Experimental validation of a signal-based approach for structural earthquake damage detection using fractal dimension of time frequency feature

    NASA Astrophysics Data System (ADS)

    Tao, Dongwang; Mao, Chenxi; Zhang, Dongyu; Li, Hui

    2014-12-01

    This article extends a signal-based approach formerly proposed by the authors, which utilizes the fractal dimension of time frequency feature (FDTFF) of displacements, for earthquake damage detection of moment resist frame (MRF), and validates the approach with shaking table tests. The time frequency feature (TFF) of the relative displacement at measured story is defined as the real part of the coefficients of the analytical wavelet transform. The fractal dimension (FD) is to quantify the TFF within the fundamental frequency band using box counting method. It is verified that the FDTFFs at all stories of the linear MRF are identical with the help of static condensation method and modal superposition principle, while the FDTFFs at the stories with localized nonlinearities due to damage will be different from those at the stories without nonlinearities using the reverse-path methodology. By comparing the FDTFFs of displacements at measured stories in a structure, the damage-induced nonlinearity of the structure under strong ground motion can be detected and localized. Finally shaking table experiments on a 1:8 scale sixteen-story three-bay steel MRF with added frictional dampers, which generate local nonlinearities, are conducted to validate the approach.

  17. Q factor estimation from the amplitude spectrum of the time-frequency transform of stacked reflection seismic data

    NASA Astrophysics Data System (ADS)

    Lupinacci, Wagner Moreira; Oliveira, Srgio Adriano Moura

    2015-03-01

    Attenuation is one factor that degrades the quality of reflection seismic subsurface imaging. It causes a progressive decrease in the seismic pulse energy and is also responsible for limiting seismic resolution. Currently, many methods exist for inverse Q filtering, which can be used to correct these effects to some extent; however, but all of these methods require the value of the Q factor to be known, and this information is rarely available. In this paper we present and evaluate three different strategies to derive the Q factor from the time-frequency amplitude spectrum of the seismic trace. They are based in the analyses of the amplitude decay trend curves that can be measured along time, along frequency or along a compound variable obtained from the time-frequency product. Some difficulties are highlighted, such as the impossibility to use short time window intervals that prevents the method from providing a precise map of the Q factor value of the subsurface layers. However, the Q factor estimation made in this way can be used to guide the parameterization of attenuation correction by means of inverse Q filtering applied to a stacked seismic section; this is demonstrated in a real data example.

  18. A novel approach to predict sudden cardiac death (SCD) using nonlinear and time-frequency analyses from HRV signals.

    PubMed

    Ebrahimzadeh, Elias; Pooyan, Mohammad; Bijar, Ahmad

    2014-01-01

    Investigations show that millions of people all around the world die as the result of sudden cardiac death (SCD). These deaths can be reduced by using medical equipment, such as defibrillators, after detection. We need to propose suitable ways to assist doctors to predict sudden cardiac death with a high level of accuracy. To do this, Linear, Time-Frequency (TF) and Nonlinear features have been extracted from HRV of ECG signal. Finally, healthy people and people at risk of SCD are classified by k-Nearest Neighbor (k-NN) and Multilayer Perceptron Neural Network (MLP). To evaluate, we have compared the classification rates for both separate and combined Nonlinear and TF features. The results show that HRV signals have special features in the vicinity of the occurrence of SCD that have the ability to distinguish between patients prone to SCD and normal people. We found that the combination of Time-Frequency and Nonlinear features have a better ability to achieve higher accuracy. The experimental results show that the combination of features can predict SCD by the accuracy of 99.73%, 96.52%, 90.37% and 83.96% for the first, second, third and forth one-minute intervals, respectively, before SCD occurrence. PMID:24504331

  19. Effects of the air-sea coupling time frequency on the ocean response during Mediterranean intense events

    NASA Astrophysics Data System (ADS)

    Lebeaupin Brossier, Cindy; Ducrocq, Vronique; Giordani, Herv

    2009-08-01

    The near-sea surface meteorological conditions associated with the Mediterranean heavy precipitation events constitute, on a short time scale, a strong forcing on the ocean mixed layer. This study addresses the question of the optimal time frequency of the atmospheric forcing to drive an ocean model in order to make it able to capture the fine scale ocean mixed layer response to severe meteorological conditions. The coupling time frequency should allow the ocean model to reproduce the formation of internal low-salty boundary layers due to sudden input of intense precipitation, as well as the cooling and deepening of the ocean mixed layer through large latent heat fluxes and stress under the intense low-level jet associated with these events. In this study, the one-dimensional ocean model is driven by 2.4-km atmospheric simulated fields on a case of Mediterranean heavy precipitation, varying the time resolution of the atmospheric forcing. The results show that using a finer temporal resolution than 1 h for the atmospheric forcing is not necessary, but a coarser temporal resolution (3 or 6 h) modifies the event course and intensity perceived by the ocean. Consequently, when using a too coarse temporal resolution forcing, typically 6 h, the ocean model fails to reproduce the ocean mixed layer fine scale response under the heavy rainfall pulses and the strong wind gusts.

  20. Method for Identifying Micro-seismic P-Arrival by Time-frequency Analysis Using Intrinsic Time-Scale Decomposition

    NASA Astrophysics Data System (ADS)

    Zhang, Ruihong; Zhang, Lihua

    2015-04-01

    A method to identify the P-arrival of microseismic signals is proposed in this work, based on the algorithm of intrinsic timescale decomposition (ITD). Using the results of ITD decomposition of observed data, information of instantaneous amplitude and frequency can be determined. The improved ratio function of short-time average over long-time average and the information of instantaneous frequency are applied to the time-frequency-energy denoised signal for picking the P-arrival of the microseismic signal. We compared the proposed method with the wavelet transform method based on the denoised signal resulting from the best basis wavelet packet transform and the single-scale reconstruction of the wavelet transform. The comparison results showed that the new method is more effective and reliable for identifying P-arrivals of microseismic signals.

  1. RAPID COMMUNICATION: A novel time frequency-based 3D Lissajous figure method and its application to the determination of oxygen saturation from the photoplethysmogram

    NASA Astrophysics Data System (ADS)

    Addison, Paul S.; Watson, James N.

    2004-11-01

    We present a novel time-frequency method for the measurement of oxygen saturation using the photoplethysmogram (PPG) signals from a standard pulse oximeter machine. The method utilizes the time-frequency transformation of the red and infrared PPGs to derive a 3D Lissajous figure. By selecting the optimal Lissajous, the method provides an inherently robust basis for the determination of oxygen saturation as regions of the time-frequency plane where high- and low-frequency signal artefacts are to be found are automatically avoided.

  2. A multivariate time-frequency method to characterize the influence of respiration over heart period and arterial pressure

    NASA Astrophysics Data System (ADS)

    Orini, Michele; Bailón, Raquel; Laguna, Pablo; Mainardi, Luca T.; Barbieri, Riccardo

    2012-12-01

    Respiratory activity introduces oscillations both in arterial pressure and heart period, through mechanical and autonomic mechanisms. Respiration, arterial pressure, and heart period are, generally, non-stationary processes and the interactions between them are dynamic. In this study we present a methodology to robustly estimate the time course of cross spectral indices to characterize dynamic interactions between respiratory oscillations of heart period and blood pressure, as well as their interactions with respiratory activity. Time-frequency distributions belonging to Cohen's class are used to estimate time-frequency (TF) representations of coherence, partial coherence and phase difference. The characterization is based on the estimation of the time course of cross spectral indices estimated in specific TF regions around the respiratory frequency. We used this methodology to describe the interactions between respiration, heart period variability (HPV) and systolic arterial pressure variability (SAPV) during tilt table test with both spontaneous and controlled respiratory patterns. The effect of selective autonomic blockade was also studied. Results suggest the presence of common underling mechanisms of regulation between cardiovascular signals, whose interactions are time-varying. SAPV changes followed respiratory flow both in supine and standing positions and even after selective autonomic blockade. During head-up tilt, phase differences between respiration and SAPV increased. Phase differences between respiration and HPV were comparable to those between respiration and SAPV during supine position, and significantly increased during standing. As a result, respiratory oscillations in SAPV preceded respiratory oscillations in HPV during standing. Partial coherence was the most sensitive index to orthostatic stress. Phase difference estimates were consistent among spontaneous and controlled breathing patterns, whereas coherence was higher in spontaneous breathing. Parasympathetic blockade did not affect interactions between respiration and SAPV, reduced the coherence between SAPV and HPV and between respiration and HPV. Our results support the hypothesis that non-autonomic, possibly mechanically mediated, mechanisms also contributes to the respiratory oscillations in HPV. A small contribution of sympathetic activity on HPV-SAPV interactions around the respiratory frequency was also observed.

  3. A time-frequency analysis of the dynamics of cortical networks of sleep spindles from MEG-EEG recordings

    PubMed Central

    Zerouali, Younes; Lina, Jean-Marc; Sekerovic, Zoran; Godbout, Jonathan; Dube, Jonathan; Jolicoeur, Pierre; Carrier, Julie

    2014-01-01

    Sleep spindles are a hallmark of NREM sleep. They result from a widespread thalamo-cortical loop and involve synchronous cortical networks that are still poorly understood. We investigated whether brain activity during spindles can be characterized by specific patterns of functional connectivity among cortical generators. For that purpose, we developed a wavelet-based approach aimed at imaging the synchronous oscillatory cortical networks from simultaneous MEG-EEG recordings. First, we detected spindles on the EEG and extracted the corresponding frequency-locked MEG activity under the form of an analytic ridge signal in the time-frequency plane (Zerouali et al., 2013). Secondly, we performed source reconstruction of the ridge signal within the Maximum Entropy on the Mean framework (Amblard et al., 2004), yielding a robust estimate of the cortical sources producing observed oscillations. Lastly, we quantified functional connectivity among cortical sources using phase-locking values. The main innovations of this methodology are (1) to reveal the dynamic behavior of functional networks resolved in the time-frequency plane and (2) to characterize functional connectivity among MEG sources through phase interactions. We showed, for the first time, that the switch from fast to slow oscillatory mode during sleep spindles is required for the emergence of specific patterns of connectivity. Moreover, we show that earlier synchrony during spindles was associated with mainly intra-hemispheric connectivity whereas later synchrony was associated with global long-range connectivity. We propose that our methodology can be a valuable tool for studying the connectivity underlying neural processes involving sleep spindles, such as memory, plasticity or aging. PMID:25389381

  4. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  5. Teaching Children with Autism to Respond to Joint Attention Initiations

    ERIC Educational Resources Information Center

    Martins, Megan P.; Harris, Sandra L.

    2006-01-01

    Children with autism fail to develop joint attention skills appropriate to developmental age. Joint attention is a predictor of ability in several core domains of autism including language, social development, affective sharing, and theory of mind capacity, thus establishing the significance of teaching joint attention. However, there is limited

  6. Time-frequency Analysis of the Superorbital Modulation of the X-Ray Binary SMC X-1 Using the Hilbert-Huang Transform

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Chou, Yi; Wu, Ming-Chya; Yang, Ting-Chang; Su, Yi-Hao

    2011-10-01

    The high-mass X-ray binary SMC X-1 exhibits a superorbital modulation with a dramatically varying period ranging between ~40 days and ~60 days. This research studies the time-frequency properties of the superorbital modulation of SMC X-1 based on the observations made by the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE). We analyzed the entire ASM database collected since 1996. The Hilbert-Huang transform (HHT), developed for non-stationary and nonlinear time-series analysis, was adopted to derive the instantaneous superorbital frequency. The resultant Hilbert spectrum is consistent with the dynamic power spectrum as it shows more detailed information in both the time and frequency domains. The RXTE observations show that the superorbital modulation period was mostly between ~50 days and ~65 days, whereas it changed to ~45 days around MJD 50,800 and MJD 54,000. Our analysis further indicates that the instantaneous frequency changed to a timescale of hundreds of days between ~MJD 51,500 and ~MJD 53,500. Based on the instantaneous phase defined by HHT, we folded the ASM light curve to derive a superorbital profile, from which an asymmetric feature and a low state with barely any X-ray emissions (lasting for ~0.3 cycles) were observed. We also calculated the correlation between the mean period and the amplitude of the superorbital modulation. The result is similar to the recently discovered relationship between the superorbital cycle length and the mean X-ray flux for Her X-1.

  7. TIME-FREQUENCY ANALYSIS OF THE SUPERORBITAL MODULATION OF THE X-RAY BINARY SMC X-1 USING THE HILBERT-HUANG TRANSFORM

    SciTech Connect

    Hu, Chin-Ping; Chou, Yi; Yang, Ting-Chang; Su, Yi-Hao; Wu, Ming-Chya E-mail: yichou@astro.ncu.edu.tw

    2011-10-20

    The high-mass X-ray binary SMC X-1 exhibits a superorbital modulation with a dramatically varying period ranging between {approx}40 days and {approx}60 days. This research studies the time-frequency properties of the superorbital modulation of SMC X-1 based on the observations made by the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE). We analyzed the entire ASM database collected since 1996. The Hilbert-Huang transform (HHT), developed for non-stationary and nonlinear time-series analysis, was adopted to derive the instantaneous superorbital frequency. The resultant Hilbert spectrum is consistent with the dynamic power spectrum as it shows more detailed information in both the time and frequency domains. The RXTE observations show that the superorbital modulation period was mostly between {approx}50 days and {approx}65 days, whereas it changed to {approx}45 days around MJD 50,800 and MJD 54,000. Our analysis further indicates that the instantaneous frequency changed to a timescale of hundreds of days between {approx}MJD 51,500 and {approx}MJD 53,500. Based on the instantaneous phase defined by HHT, we folded the ASM light curve to derive a superorbital profile, from which an asymmetric feature and a low state with barely any X-ray emissions (lasting for {approx}0.3 cycles) were observed. We also calculated the correlation between the mean period and the amplitude of the superorbital modulation. The result is similar to the recently discovered relationship between the superorbital cycle length and the mean X-ray flux for Her X-1.

  8. Periodicity analysis of δ18O in precipitation over Central Europe: Time-frequency considerations of the isotopic 'temperature' effect

    NASA Astrophysics Data System (ADS)

    Salamalikis, V.; Argiriou, A. A.; Dotsika, E.

    2016-03-01

    In this paper the periodic patterns of the isotopic composition of precipitation (δ18O) for 22 stations located around Central Europe are investigated through sinusoidal models and wavelet analysis over a 23 years period (1980/01-2002/12). The seasonal distribution of δ18O follows the temporal variability of air temperature providing seasonal amplitudes ranging from 0.94‰ to 4.47‰; the monthly isotopic maximum is observed in July. The isotopic amplitude reflects the geographical dependencies of the isotopic composition of precipitation providing higher values when moving inland. In order to describe the dominant oscillation modes included in δ18O time series, the Morlet Continuous Wavelet Transform is evaluated. The main periodicity is represented at 12-months (annual periodicity) where the wavelet power is mainly concentrated. Stations (i.e. Cuxhaven, Trier, etc.) with limited seasonal isotopic effect provide sparse wavelet power areas at the annual periodicity mode explaining the fact that precipitation has a complex isotopic fingerprint that cannot be examined solely by the seasonality effect. Since temperature is the main contributor of the isotopic variability in mid-latitudes, the isotope-temperature effect is also investigated. The isotope-temperature slope ranges from 0.11‰/°C to 0.47‰/°C with steeper values observed at the southernmost stations of the study area. Bivariate wavelet analysis is applied in order to determine the correlation and the slope of the δ18O - temperature relationship over the time-frequency plane. High coherencies are detected at the annual periodicity mode. The time-frequency slope is calculated at the annual periodicity mode ranging from 0.45‰/°C to 0.83‰/°C with higher values at stations that show a more distinguishable seasonal isotopic behavior. Generally the slope fluctuates around a mean value but in certain cases (sites with low seasonal effect) abrupt slope changes are derived and the slope becomes strongly unstable.

  9. Wavelets, period-doubling, and time-frequency localization with application to organization of convection over the tropical western Pacific

    NASA Technical Reports Server (NTRS)

    Weng, Hengyi; Lau, K.-M.

    1994-01-01

    In this paper, preliminary results in using orthogonal and continuous wavelet transform (WT) to identify period doubling and time-frequency localization in both synthetic and real data are presented. First, the Haar WT is applied to synthetic time series derived from a simple nonlinear dynamical system- a first-order quadratic difference equation. Second, the complex Morlet WT is used to study the time-frequency localization of tropical convection based on a high-resolution Japanese Geostationary Meteorological Satellite infrared (IR) radiance dataset. The Haar WT of the synthetic time series indicates the presence and distinct separation of multiple frequencies in a period-doubling sequence. The period-doubling process generates a multiplicity of intermediate frequencies, which are manifested in the nonuniformity in time with respect to the phase of oscillations in the lower frequencies. Wavelet transform also enables the detection of extremely weak signals in high-order subharmonics resulting from the period-doubling bifurcations. These signals are either undetected or considered statistically insignificant by traditional Fourier analysis. The Morlet WT of the IR radiance dataset indicates the presence of multiple timescales, which are localized in both frequency and time. There are two regimes in the variation of IR radiance, corresponding to the wet and dry periods. Multiple timescales, ranging from semidiurnal, diurnal, synoptic, to intraseasonal with embedding structures, are active in the wet regime. In particular, synoptic variability is more prominent during the wet phase of an intensive intraseasonal cycle. These are not only consistent with, but also show more details than, previous findings by using other techniques. The phase-locking relationships among the oscillations with different time-scales suggest that both synoptic and intraseasonal variations may be mixed oscillations due to the interaction of self-excited oscillations in the tropical atmosphere and external forcings such as annual and diurnal solar radiation variations. Both examples show that WT is a powerful tool for analysis of phenomena involving multiscale interactions that exhibit localization in both frequency and time. A discussion on the caveats in the use of WT in geophysical data analysis is also presented.

  10. [Research on Time-frequency Characteristics of Magneto-acoustic Signal of Different Thickness Medium Based on Wave Summing Method].

    PubMed

    Zhang, Shunqi; Yin, Tao; Ma, Ren; Liu, Zhipeng

    2015-08-01

    Functional imaging method of biological electrical characteristics based on magneto-acoustic effect gives valuable information of tissue in early tumor diagnosis, therein time and frequency characteristics analysis of magneto-acoustic signal is important in image reconstruction. This paper proposes wave summing method based on Green function solution for acoustic source of magneto-acoustic effect. Simulations and analysis under quasi 1D transmission condition are carried out to time and frequency characteristics of magneto-acoustic signal of models with different thickness. Simulation results of magneto-acoustic signal were verified through experiments. Results of the simulation with different thickness showed that time-frequency characteristics of magneto-acoustic signal reflected thickness of sample. Thin sample, which is less than one wavelength of pulse, and thick sample, which is larger than one wavelength, showed different summed waveform and frequency characteristics, due to difference of summing thickness. Experimental results verified theoretical analysis and simulation results. This research has laid a foundation for acoustic source and conductivity reconstruction to the medium with different thickness in magneto-acoustic imaging. PMID:26710438

  11. Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions.

    PubMed

    Bonato, P; Roy, S H; Knaflitz, M; De Luca, C J

    2001-07-01

    The time-dependent shift in the spectral content of the surface myoelectric signal to lower frequencies has proven to be a useful tool for assessing localized muscle fatigue. Unfortunately, the technique has been restricted to constant-force, isometric contractions because of limitations in the processing methods used to obtain spectral estimates. A novel approach is proposed for calculating spectral parameters from the surface myoelectric signal during cyclic dynamic contractions. The procedure was developed using Cohen class time-frequency transforms to define the instantaneous median and mean frequency during cyclic dynamic contractions. Changes in muscle length, force, and electrode position contribute to the nonstationarity of the surface myoelectric signal. These factors, unrelated to localized fatigue, can be constrained and isolated for cyclic dynamic contractions, where they are assumed to be constant for identical phases of each cycle. Estimation errors for the instantaneous median and mean frequency are calculated from synthesized signals. It is shown that the instantaneous median frequency is affected by an error slightly lower than that related to the instantaneous mean frequency. In addition, we present a sample application to surface myoelectric signals recorded from the first dorsal interosseous muscle during repetitive abduction/adduction of the index finger against resistance. Results indicate that the variability of the instantaneous median frequency is related to the repeatability of the biomechanics of the exercise. PMID:11442286

  12. Timing, frequency and environmental conditions associated with mainstem-tributary movement by a lowland river fish, golden perch (Macquaria ambigua).

    PubMed

    Koster, Wayne M; Dawson, David R; O'Mahony, Damien J; Moloney, Paul D; Crook, David A

    2014-01-01

    Tributary and mainstem connections represent important links for the movement of fish and other biota throughout river networks. We investigated the timing, frequency and environmental conditions associated with movements by adult golden perch (Macquaria ambigua) between the mainstem of the mid-Murray River and a tributary, the Goulburn River, in south-eastern Australia, using acoustic telemetry over four years (2007-2011). Fish were tagged and released in autumn 2007-2009 in the mid-Murray (n = 42) and lower Goulburn (n = 37) rivers within 3-6 km of the mid-Murray-lower Goulburn junction. 38% of tagged fish undertook mainstem-tributary movements, characterised mostly by temporary occupation followed by return of fish to the original capture river. Approximately 10% of tagged fish exhibited longer-term shifts between the mainstem and tributary. Movement of fish from the tributary into the mainstem occurred primarily during the spawning season and in some years coincided with the presence of golden perch eggs/larvae in drift samples in the mainstem. Many of the tributary-to-mainstem movements occurred during or soon after changes in flow. The movements of fish from the mainstem into the tributary were irregular and did not appear to be associated with spawning. The findings show that golden perch moved freely across the mainstem-tributary interface. This demonstrates the need to consider the spatial, behavioural and demographic interdependencies of aquatic fauna across geographic management units such as rivers. PMID:24788137

  13. A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions

    NASA Astrophysics Data System (ADS)

    Antoniadou, I.; Manson, G.; Staszewski, W. J.; Barszcz, T.; Worden, K.

    2015-12-01

    This paper deals with the condition monitoring of wind turbine gearboxes under varying operating conditions. Generally, gearbox systems include nonlinearities so a simplified nonlinear gear model is developed, on which the time-frequency analysis method proposed is first applied for the easiest understanding of the challenges faced. The effect of varying loads is examined in the simulations and later on in real wind turbine gearbox experimental data. The Empirical Mode Decomposition (EMD) method is used to decompose the vibration signals into meaningful signal components associated with specific frequency bands of the signal. The mode mixing problem of the EMD is examined in the simulation part and the results in that part of the paper suggest that further research might be of interest in condition monitoring terms. For the amplitude-frequency demodulation of the signal components produced, the Hilbert Transform (HT) is used as a standard method. In addition, the Teager-Kaiser energy operator (TKEO), combined with an energy separation algorithm, is a recent alternative method, the performance of which is tested in the paper too. The results show that the TKEO approach is a promising alternative to the HT, since it can improve the estimation of the instantaneous spectral characteristics of the vibration data under certain conditions.

  14. Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time-frequency ridge enhancement.

    PubMed

    Li, Chuan; Sanchez, Vinicio; Zurita, Grover; Cerrada Lozada, Mariela; Cabrera, Diego

    2016-01-01

    Healthy rolling element bearings are vital guarantees for safe operation of the rotating machinery. Time-frequency (TF) signal analysis is an effective tool to detect bearing defects under time-varying shaft speed condition. However, it is a challenging work dealing with defective characteristic frequency and rotation frequency simultaneously without a tachometer. For this reason, a technique using the generalized synchrosqueezing transform (GST) guided by enhanced TF ridge extraction is suggested to detect the existence of the bearing defects. The low frequency band and the resonance band are first chopped from the Fourier spectrum of the bearing vibration measurements. The TF information of the lower band component and the resonance band envelope are represented using short-time Fourier transform, where the TF ridge are extracted by harmonic summation search and ridge candidate fusion operations. The inverse of the extracted TF ridge is subsequently used to guide the GST mapping the chirped TF representation to the constant one. The rectified TF pictures are then synchrosqueezed as sharper spectra where the rotation frequency and the defective characteristic frequency can be identified, respectively. Both simulated and experimental signals were used to evaluate the present technique. The results validate the effectiveness of the suggested technique for the bearing defect detection. PMID:26542359

  15. Timing, Frequency and Environmental Conditions Associated with MainstemTributary Movement by a Lowland River Fish, Golden Perch (Macquaria ambigua)

    PubMed Central

    Koster, Wayne M.; Dawson, David R.; OMahony, Damien J.; Moloney, Paul D.; Crook, David A.

    2014-01-01

    Tributary and mainstem connections represent important links for the movement of fish and other biota throughout river networks. We investigated the timing, frequency and environmental conditions associated with movements by adult golden perch (Macquaria ambigua) between the mainstem of the mid-Murray River and a tributary, the Goulburn River, in south-eastern Australia, using acoustic telemetry over four years (20072011). Fish were tagged and released in autumn 20072009 in the mid-Murray (n?=?42) and lower Goulburn (n?=?37) rivers within 36 km of the mid-Murray-lower Goulburn junction. 38% of tagged fish undertook mainstemtributary movements, characterised mostly by temporary occupation followed by return of fish to the original capture river. Approximately 10% of tagged fish exhibited longer-term shifts between the mainstem and tributary. Movement of fish from the tributary into the mainstem occurred primarily during the spawning season and in some years coincided with the presence of golden perch eggs/larvae in drift samples in the mainstem. Many of the tributary-to-mainstem movements occurred during or soon after changes in flow. The movements of fish from the mainstem into the tributary were irregular and did not appear to be associated with spawning. The findings show that golden perch moved freely across the mainstemtributary interface. This demonstrates the need to consider the spatial, behavioural and demographic interdependencies of aquatic fauna across geographic management units such as rivers. PMID:24788137

  16. Time-frequency analysis of stimulus frequency otoacoustic emissions and their changes with efferent stimulation in guinea pigs

    NASA Astrophysics Data System (ADS)

    Berezina-Greene, Maria A.; Guinan, John J.

    2015-12-01

    To aid in understanding their origin, stimulus frequency otoacoustic emissions (SFOAEs) were measured at a series of tone frequencies using the suppression method, both with and without stimulation of medial olivocochlear (MOC) efferents, in anesthetized guinea pigs. Time-frequency analysis showed SFOAE energy peaks in 1-3 delay components throughout the measured frequency range (0.5-12 kHz). One component's delay usually coincided with the phase-gradient delay. When multiple delay components were present, they were usually near SFOAE dips. Below 2 kHz, SFOAE delays were shorter than predicted from mechanical measurements. With MOC stimulation, SFOAE amplitude was decreased at most frequencies, but was sometimes enhanced, and all SFOAE delay components were affected. The MOC effects and an analysis of model data suggest that the multiple SFOAE delay components arise at the edges of the traveling-wave peak, not far basal of the peak. Comparisons with published guinea-pig neural data suggest that the short latencies of low-frequency SFOAEs may arise from coherent reflection from an organ-of-Corti motion that has a shorter group delay than the traveling wave.

  17. Time-frequency analysis of short-lasting modulation of EEG induced by TMS during wake, sleep deprivation and sleep

    PubMed Central

    Manganotti, Paolo; Formaggio, Emanuela; Del Felice, Alessandra; Storti, Silvia F.; Zamboni, Alessandro; Bertoldo, Alessandra; Fiaschi, Antonio; Toffolo, Gianna M.

    2013-01-01

    The occurrence of dynamic changes in spontaneous electroencephalogram (EEG) rhythms in the awake state or sleep is highly variable. These rhythms can be externally modulated during transcranial magnetic stimulation (TMS) with a perturbation method to trigger oscillatory brain activity. EEG-TMS co-registration was performed during standard wake, during wake after sleep deprivation and in sleep in six healthy subjects. Dynamic changes in the regional neural oscillatory activity of the cortical areas were characterized using time-frequency analysis based on the wavelet method, and the modulation of induced oscillations were related to different vigilance states. A reciprocal synchronizing/desynchronizing effect on slow and fast oscillatory activity was observed in response to focal TMS after sleep deprivation and sleep. We observed a sleep-related slight desynchronization of alpha mainly over the frontal areas, and a widespread increase in theta synchronization. These findings could be interpreted as proof of the interference external brain stimulation can exert on the cortex, and how this could be modulated by the vigilance state. Potential clinical applications may include evaluation of hyperexcitable states such as epilepsy or disturbed states of consciousness such as minimal consciousness. PMID:24302903

  18. Compressive sampling of swallowing accelerometry signals using time-frequency dictionaries based on modulated discrete prolate spheroidal sequences

    NASA Astrophysics Data System (ADS)

    Sejdi?, Ervin; Can, Azime; Chaparro, Luis F.; Steele, Catriona M.; Chau, Tom

    2012-12-01

    Monitoring physiological functions such as swallowing often generates large volumes of samples to be stored and processed, which can introduce computational constraints especially if remote monitoring is desired. In this article, we propose a compressive sensing (CS) algorithm to alleviate some of these issues while acquiring dual-axis swallowing accelerometry signals. The proposed CS approach uses a time-frequency dictionary where the members are modulated discrete prolate spheroidal sequences (MDPSS). These waveforms are obtained by modulation and variation of discrete prolate spheroidal sequences (DPSS) in order to reflect the time-varying nature of swallowing acclerometry signals. While the modulated bases permit one to represent the signal behavior accurately, the matching pursuit algorithm is adopted to iteratively decompose the signals into an expansion of the dictionary bases. To test the accuracy of the proposed scheme, we carried out several numerical experiments with synthetic test signals and dual-axis swallowing accelerometry signals. In both cases, the proposed CS approach based on the MDPSS yields more accurate representations than the CS approach based on DPSS. Specifically, we show that dual-axis swallowing accelerometry signals can be accurately reconstructed even when the sampling rate is reduced to half of the Nyquist rate. The results clearly indicate that the MDPSS are suitable bases for swallowing accelerometry signals.

  19. Differential neural responses to acupuncture revealed by MEG using wavelet-based time-frequency analysis: a pilot study.

    PubMed

    You, Youbo; Bai, Lijun; Dai, Ruwei; Xue, Ting; Zhong, Chongguang; Feng, Yuanyuan; Wang, Hu; Liu, Zhenyu; Tian, Jie

    2011-01-01

    Acupoint specificity, lying at the core of the Traditional Chinese Medicine, still faces many controversies. As previous neuroimaging studies on acupuncture mainly adopted relatively low time-resolution functional magnetic resonance imaging (fMRI) technology and inappropriate block-designed experimental paradigm due to sustained effect, in the current study, we employed a single block-designed paradigm together with high temporal-resolution magnetoencephalography (MEG) technology. We applied time-frequency analysis based upon Morlet wavelet transforming approach to detect differential oscillatory brain dynamics induced by acupuncture at Stomach Meridian 36 (ST36) using a nearby nonacupoint (NAP) as control condition. We observed that frequency power changes were mainly restricted to delta band for both ST36 group and NAP group. Consistently increased delta band power in contralateral temporal regions and decreased power in the counterparts of ipsilateral hemisphere were detected following stimulation at ST36 on the right leg. Compared with ST36, no significant delta ranges were found in temporal regions in NAP group, illustrating different oscillatory brain patterns. Our results may provide additional evidence to support the specificity of acupuncture modulation effects. PMID:22255974

  20. Joint Commission on rock properties

    NASA Astrophysics Data System (ADS)

    A joint commission on Rock Properties for Petroleum Engineers (RPPE) has been established by the International Society of Rock Mechanics and the Society of Petroleum Engineers to set up data banks on the properties of sedimentary rocks encountered during drilling. Computer-based data banks of complete rock properties will be organized for sandstones (GRESA), shales (ARSHA) and carbonates (CARCA). The commission hopes to access data sources from members of the commission, private companies and the public domain.

  1. Modulation domain infrared target models

    NASA Astrophysics Data System (ADS)

    Havlicek, Joseph P.; Nguyen, Chuong T.; Yeary, Mark

    2006-05-01

    We compute joint AM-FM models that characterize infrared targets and backgrounds in the modulation domain. We consider spatially localized structures within an IR image as sums of nonstationary, quasi-sinusoidal functions admitting locally narrowband amplitude and frequency modulations. By quantitatively estimating the modulations that dominate the signal spectrum on a spatially local basis, we obtain a new modulation domain feature vector that can augment the more traditional pixel domain, Fourier spectrum, and multispectral color features that have been used in IR target detection and tracking systems for a long time. Our preliminary studies, based primarily on midwave and longwave missile approach sequences, suggest that IR targets and backgrounds do typically possess sufficient spatially local modulated structure (i.e., texture) for modulation domain techniques to be meaningfully applied. We also present qualitative results strongly indicating that the modulation domain feature vector is a powerful tool for discriminating infrared targets and backgrounds.

  2. Method of joint frame synchronization and data-aided channel estimation for 100-Gb/s polarization-division multiplexing-single carrier frequency domain equalization coherent optical transmission systems

    NASA Astrophysics Data System (ADS)

    Cheng, Yun; Tan, Jun; Liu, Liu; He, Jing; Tang, Jin; Chen, Lin; Zhang, Jun; Li, Qiang; Xiao, Minlei

    2016-02-01

    To improve the performance of channel estimation (CE), a method of joint frame synchronization and data-aided CE using less training overhead is proposed. A 100-Gb/s polarization-division multiplexing coherent transmission system with quaternary phase-shift keying based on the proposed method is demonstrated by simulation. The simulation results show that the proposed method could achieve accurate timing offset and CE in the presence of strong amplified spontaneous emission noise.

  3. Decoding a bistable percept with integrated time-frequency representation of single-trial local field potential

    NASA Astrophysics Data System (ADS)

    Wang, Zhisong; Logothetis, Nikos K.; Liang, Hualou

    2008-12-01

    Bistable perception emerges when a stimulus under continuous view is perceived as the alternation of two mutually exclusive states. Such a stimulus provides a unique opportunity for understanding the neural basis of visual perception because it dissociates the perception from the visual input. In this paper we analyze the dynamic activity of local field potential (LFP), simultaneously collected from multiple channels in the middle temporal (MT) visual cortex of a macaque monkey, for decoding its bistable structure-from-motion (SFM) perception. Based on the observation that the discriminative information of neuronal population activity evolves and accumulates over time, we propose to select features from the integrated time-frequency representation of LFP using a relaxation (RELAX) algorithm and a sequential forward selection (SFS) algorithm with maximizing the Mahalanobis distance as the criterion function. The integrated-spectrogram based feature selection is much more robust and can achieve significantly better features than the instantaneous-spectrogram based feature selection. We exploit the support vector machines (SVM) classifier and the linear discriminant analysis (LDA) classifier based on the selected features to decode the reported perception on a single trial basis. Our results demonstrate the excellent performance of the integrated-spectrogram based feature selection and suggest that the features in the gamma frequency band (30-100 Hz) of LFP within specific temporal windows carry the most discriminative information for decoding bistable perception. The proposed integrated-spectrogram based feature selection approach may have potential for a myriad of applications involving multivariable time series such as brain-computer interfaces (BCI).

  4. Temporal features of spike trains in the moth antennal lobe revealed by a comparative time-frequency analysis.

    PubMed

    Capurro, Alberto; Baroni, Fabiano; Kuebler, Linda S; Kárpáti, Zsolt; Dekker, Teun; Lei, Hong; Hansson, Bill S; Pearce, Timothy C; Olsson, Shannon B

    2014-01-01

    The discrimination of complex sensory stimuli in a noisy environment is an immense computational task. Sensory systems often encode stimulus features in a spatiotemporal fashion through the complex firing patterns of individual neurons. To identify these temporal features, we have developed an analysis that allows the comparison of statistically significant features of spike trains localized over multiple scales of time-frequency resolution. Our approach provides an original way to utilize the discrete wavelet transform to process instantaneous rate functions derived from spike trains, and select relevant wavelet coefficients through statistical analysis. Our method uncovered localized features within olfactory projection neuron (PN) responses in the moth antennal lobe coding for the presence of an odor mixture and the concentration of single component odorants, but not for compound identities. We found that odor mixtures evoked earlier responses in biphasic response type PNs compared to single components, which led to differences in the instantaneous firing rate functions with their signal power spread across multiple frequency bands (ranging from 0 to 45.71 Hz) during a time window immediately preceding behavioral response latencies observed in insects. Odor concentrations were coded in excited response type PNs both in low frequency band differences (2.86 to 5.71 Hz) during the stimulus and in the odor trace after stimulus offset in low (0 to 2.86 Hz) and high (22.86 to 45.71 Hz) frequency bands. These high frequency differences in both types of PNs could have particular relevance for recruiting cellular activity in higher brain centers such as mushroom body Kenyon cells. In contrast, neurons in the specialized pheromone-responsive area of the moth antennal lobe exhibited few stimulus-dependent differences in temporal response features. These results provide interesting insights on early insect olfactory processing and introduce a novel comparative approach for spike train analysis applicable to a variety of neuronal data sets. PMID:24465391

  5. Joint Aspiration (Arthrocentesis)

    MedlinePLUS

    ... the joint. It is usually due to a bacterial infection in the joint. Joint aspiration helps to diagnose ... at the time of the test. If a bacterial infection such as septic arthritis is suspected, a culture ...

  6. Joint x-ray

    MedlinePLUS

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  7. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  8. Joint services electronics program

    NASA Astrophysics Data System (ADS)

    Peters, Leon, Jr.

    1992-11-01

    The report represents the fifteenth annual summary of The Ohio State University Joint Services Electronics Program (JSEP). The transfer of the compact range identification technology initiated under JSEP support for time domain studies continues to make large advances. We are also assisting Rockwell (Tulsa) to update their RCS facilities. This work is on a subcontract to the ESL from the Air Force. This has lead to involvement in the study of Ultra Wide Band radar systems. The research activities devoted to the Generalized Ray and Gaussian Beams continues. Our JSEP research continues to be expanded by external funding. This program is being expanded by use of such funds which are more focussed on the requirements of the sponsors which includes both the Air Force and the Navy. Our JSEP research continues to focus on electromagnetic related topics. There are four major electromagnetics areas that were pursued in the past year. The Diffraction Studies Work Unit has initiated research on a time domain version of the Uniform Theory of Diffraction. A second topic under the Diffraction Studies Work Unit involves further extensions of the generalized resistive boundary condition and the generalized impedance boundary condition. These have been applied to scattering from a chiral slab. A third topic of interest is the diffraction from a corner. A fourth task involves the reflection/diffraction of a Gaussian beam. This represents an approach to replace the usual ray optics solution for very complex geometries where the versatile ray optics solution becomes cumbersome.

  9. Spacesuit mobility knee joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1979-01-01

    Pressure suit mobility joints are for use in interconnecting adjacent segments of an hermetically sealed spacesuit in which low torques, low leakage and a high degree of reliability are required. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics and includes linkages which restrain the joint from longitudinal distension and includes a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  10. Spacesuit mobility joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1978-01-01

    Joints for use in interconnecting adjacent segments of an hermetically sealed spacesuit which have low torques, low leakage and a high degree of reliability are described. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics. Linkages which restrain the joint from longitudinal distension and a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli are featured. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  11. Joint fluid Gram stain

    MedlinePLUS

    Gram stain of joint fluid ... A sample of joint fluid is needed. The fluid sample is sent to a lab where a small drop is placed in a ... on how to prepare for the removal of joint fluid, see joint fluid aspiration .

  12. Kalman filter methods for real-time frequency and mode number estimation of MHD activity in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Alves, D.; Coelho, R.; JET EFDA contributors, the

    2013-10-01

    Magnetohydrodynamic (MHD) activity in magnetically confined fusion experiments is often associated with detrimental effects such as increased radial transport and consequent loss of confinement. In particular, the (2,1) neoclassical tearing mode (NTM), when proceeding to mode-locking, is a potentially disruptive instability hence with the potential to compromise the mechanical integrity of the machine. It is therefore quite significant to be able to characterize in real-time the most virulent and performance limiting instabilities such that adequate mitigation or complete stabilization using feedback control methods are employed during the plasma discharge. This work proposes a Kalman filter (KF) based mechanism for providing, in real-time, the amplitude and phase evolution of instabilities within a predefined set of mode numbers. The method relies on two KF implementations: a non-linear KF isolating the non-stationary dominant signal component of a sensor measurement and subsequently a linear KF which projects the former, for a collection of sensors, onto a predefined set of mode numbers. A basic overview of algorithms commonly used for real-time mode number analysis is also presented along with applications of the proposed algorithm to recently recorded data of the Joint European Torus (JET) tokamak.

  13. Butt Joint Tool Commissioning

    SciTech Connect

    Martovetsky, N N

    2007-12-06

    ITER Central Solenoid uses butt joints for connecting the pancakes in the CS module. The principles of the butt joining of the CICC were developed by the JAPT during CSMC project. The difference between the CSMC butt joint and the CS butt joint is that the CS butt joint is an in-line joint, while the CSMC is a double joint through a hairpin jumper. The CS butt joint has to carry the hoop load. The straight length of the joint is only 320 mm, and the vacuum chamber around the joint has to have a split in the clamp shell. These requirements are challenging. Fig.1 presents a CSMC joint, and Fig.2 shows a CS butt joint. The butt joint procedure was verified and demonstrated. The tool is capable of achieving all specified parameters. The vacuum in the end was a little higher than the target, which is not critical and readily correctable. We consider, tentatively that the procedure is established. Unexpectedly, we discover significant temperature nonuniformity in the joint cross section, which is not formally a violation of the specs, but is a point of concern. All testing parameters are recorded for QA purposes. We plan to modify the butt joining tool to improve its convenience of operation and provide all features necessary for production of butt joints by qualified personnel.

  14. On alias-free discrete time Wigner distributions for time frequency analysis of fusion plasma signals: application to JET magnetic activity data

    NASA Astrophysics Data System (ADS)

    Bizarro, J. P. S.; Figueiredo, A. C. A.; EFDA Contributors, JET

    2006-05-01

    The problem of aliasing in relation to the use of Wigner distributions to process discrete time (DT) non-stationary signals from fusion plasma diagnostics is comprehensively addressed. Three DT Wigner distributions, two of which are alias free (AF), are thoroughly studied and compared, their properties being provided as well as, making use of so-called pseudo-Wigner (p-Wigner) distributions, formulae for their efficient computation. Of the three, one is singled out as that AF form which simultaneously obeys an arguably more complete set of desirable properties for time-frequency distributions and which has a lower computational complexity. Such an AF DT Wigner distribution has been known in quantum mechanics as the rotational Wigner function, where it has been introduced to treat rotation angles and their canonically conjugate angular momenta, whose spectra have the same discrete nature as DT signals. As an illustration of the advantages and shortcomings of each of these three distributions, they are applied to the time-frequency analysis of MHD activity data. Thus, the three DT Wigner distributions, more precisely their p-Wigner counterparts, together with the spectrogram for the sake of comparison, are used to obtain representations in the time-frequency plane of non-stationary events from neoclassical tearing mode (NTM) and toroidal Alfvén eigenmode (TAE) experiments in the JET tokamak. Besides aliasing, the appearance in the time-frequency plane of spurious images due to cross-term interference between different signal components is also discussed. If such undesirable artefacts are generated by negative frequencies interfering with positive frequencies, it is shown that the analytic signal can be of great help in reducing cross-term effects.

  15. Pressure suit joint analyzer

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.; Webbon, B. W. (Inventor)

    1982-01-01

    A measurement system for simultaneously measuring torque and angular flexure in a pressure suit joint is described. One end of a joint under test is held rigid. A torque transducer is pivotably supported on the other movable end of a joint. A potentiometer is attached to the transducer by an arm. The wiper shaft of the potentiometer is gripped by a reference arm that rotates the wiper shaft the same angle as the flexure of joint. A signal is generated by the potentiometer which is representative of the joint flexure. A compensation circuit converts the output of the transducer to a signal representative of joint torque.

  16. A methodology for time-frequency image processing applied to the classification of non-stationary multichannel signals using instantaneous frequency descriptors with application to newborn EEG signals

    NASA Astrophysics Data System (ADS)

    Boashash, Boualem; Boubchir, Larbi; Azemi, Ghasem

    2012-12-01

    This article presents a general methodology for processing non-stationary signals for the purpose of classification and localization. The methodology combines methods adapted from three complementary areas: time-frequency signal analysis, multichannel signal analysis and image processing. The latter three combine in a new methodology referred to as multichannel time-frequency image processing which is applied to the problem of classifying electroencephalogram (EEG) abnormalities in both adults and newborns. A combination of signal related features and image related features are used by merging key instantaneous frequency descriptors which characterize the signal non-stationarities. The results obtained show that, firstly, the features based on time-frequency image processing techniques such as image segmentation, improve the performance of EEG abnormalities detection in the classification systems based on multi-SVM and neural network classifiers. Secondly, these discriminating features are able to better detect the correlation between newborn EEG signals in a multichannel-based newborn EEG seizure detection for the purpose of localizing EEG abnormalities on the scalp.

  17. New matrix decomposition based on transforming the basis sets of the singular value decomposition yields principal features for time-frequency distributions

    NASA Astrophysics Data System (ADS)

    Groutage, Dale; Bennink, David

    2000-11-01

    We present a matrix decomposition that can be used to derive features from processes that are described by discrete-time, time- frequency representations. These include, among others, electrocardiograms, brain wave signals, seismic signals, vibration and shock signals, speech signals for voice recognition, and acoustic transient signals. The new decomposition is based on a transformation of the basis vectors of the singular value decomposition (SVD) which we call transformed singular value decomposition or TSVD. The transformed basis vectors are obtained by forming linear combinations of the original SVD basis vectors in a way such that the means of the transformed vectors are extrema of each other. The TSVD basis vectors are used to identify concentrations of energy density in the discrete-time, time- frequency representation by time and frequency descriptors. That is, descriptors such as the location in time, the spread in time, the location in frequency and the spread in frequency for each principal concentration of energy density can be obtained from the TSVD terms in the matrix decomposition series. Several examples are presented which illustrate the application of the new matrix decomposition for deriving principal time and frequency features from the discrete-time, time-frequency representations of nonstationary processes. Two of the examples illustrate how the derived time and frequency features can be used to classify individual short duration transient signals into respective classes, that is,: (1) automatically classify sonar signals as belonging to one of ten classes, and (2) automatically classify heartbeat signals as belonging to one of two people.

  18. Joint Aspiration (Arthrocentesis)

    MedlinePLUS

    ... arthritis, or JRA), systemic lupus erythematosus (SLE), and Lyme disease. Joint aspiration is diagnostic but it also can ... Parents MORE ON THIS TOPIC Evaluate Your Child's Lyme Disease Risk Living With Lupus Bones, Muscles, and Joints ...

  19. Culture - joint fluid

    MedlinePLUS

    Joint fluid culture ... fungi, or viruses grow. This is called a culture. If these germs are detected, other tests may ... is no special preparation needed for the lab culture. How to prepare for the removal of joint ...

  20. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  1. Temporomandibular Joint Dysfunction

    MedlinePLUS

    The temporomandibular joint (TMJ) connects your jaw to the side of your head. When it works well, it enables you to ... For people with TMJ dysfunction, problems with the joint and muscles around it may cause Pain that ...

  2. Joint Enrollment Report, 2014

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2014

    2014-01-01

    The Iowa Department of Education collects information on joint enrollment in Iowa's 15 community colleges. Jointly enrolled students are high school students enrolled in community college credit coursework. Most jointly enrolled students enroll through Senior Year Plus (SYP) programs such as Postsecondary Enrollment Options (PSEO) and concurrent…

  3. Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, Panel Post, Tie & Diagonal Brace Joint Detail; Chord, Panel Post, Tie & Crossbracing Joint Detail - Dunlapsville Covered Bridge, Spanning East Fork Whitewater River, Dunlapsville, Union County, IN

  4. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    SciTech Connect

    Johnson, Timothy C.; Slater, Lee; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-08-22

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides (1) superior spatial coverage in two or three dimensions, (2) potentially high-resolution information in time, and (3) information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever increasing size and complexity of long-term, three-dimensional time-series conductivity datasets. Here, we use three-dimensional (3D) surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater/surface-water interaction along a stretch of the Columbia River adjacent to the Hanford 300 Area, Hanford WA, USA. We reduce the resulting 3D conductivity time series using both correlation and time-frequency analysis to isolate a paleochannel causing enhanced groundwater/river-water interaction. Correlation analysis on the time-lapse imaging results concisely represents enhanced ground water/surface-water interaction within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) Transform provides additional information by 1) identifying the stage periodicities driving ground water/river-water interaction due to upstream dam operations, 2) identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  5. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    USGS Publications Warehouse

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  6. Source identification and manipulation in stereo music recordings using frequency-domain signal processing

    NASA Astrophysics Data System (ADS)

    Avendano, Carlos

    2001-05-01

    A short-time frequency domain framework for source identification, separation, and manipulation in stereo music recordings is presented. Using a simplified model of the stereo mix, a similarity measure between the short-time fourier transforms (STFTs) of the input signals is computed to identify time-frequency regions occupied by each source based on the panning coefficients assigned to it during the mix. Individual sources are identified and manipulated by clustering time-frequency components with a given panning coefficient and frequency range. After modification, an inverse STFT is used to synthesize a time-domain processed signal. Applications of the technique to source suppression, enhancement and repanning will be described, and audio demonstrations will be presented to illustrate the results.

  7. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines

    PubMed Central

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-01-01

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization. PMID:26343660

  8. Common time-frequency analysis of local field potential and pyramidal cell activity in seizure-like events of the rat hippocampus

    NASA Astrophysics Data System (ADS)

    Cotic, M.; Chiu, A. W. L.; Jahromi, S. S.; Carlen, P. L.; Bardakjian, B. L.

    2011-08-01

    To study cell-field dynamics, physiologists simultaneously record local field potentials and the activity of individual cells from animals performing cognitive tasks, during various brain states or under pathological conditions. However, apart from spike shape and spike timing analyses, few studies have focused on elucidating the common time-frequency structure of local field activity relative to surrounding cells across different periods of phenomena. We have used two algorithms, multi-window time frequency analysis and wavelet phase coherence (WPC), to study common intracellular-extracellular (I-E) spectral features in spontaneous seizure-like events (SLEs) from rat hippocampal slices in a low magnesium epilepsy model. Both algorithms were applied to 'pairs' of simultaneously observed I-E signals from slices in the CA1 hippocampal region. Analyses were performed over a frequency range of 1-100 Hz. I-E spectral commonality varied in frequency and time. Higher commonality was observed from 1 to 15 Hz, and lower commonality was observed in the 15-100 Hz frequency range. WPC was lower in the non-SLE region compared to SLE activity; however, there was no statistical difference in the 30-45 Hz band between SLE and non-SLE modes. This work provides evidence of strong commonality in various frequency bands of I-E SLEs in the rat hippocampus, not only during SLEs but also immediately before and after.

  9. Event-Related EEG Time-Frequency Analysis: An Overview of Measures and An Analysis of Early Gamma Band Phase Locking in Schizophrenia

    PubMed Central

    Roach, Brian J.; Mathalon, Daniel H.

    2008-01-01

    An increasing number of schizophrenia studies have been examining electroencephalography (EEG) data using time-frequency analysis, documenting illness-related abnormalities in neuronal oscillations and their synchronization, particularly in the gamma band. In this article, we review common methods of spectral decomposition of EEG, time-frequency analyses, types of measures that separately quantify magnitude and phase information from the EEG, and the influence of parameter choices on the analysis results. We then compare the degree of phase locking (ie, phase-locking factor) of the gamma band (36–50 Hz) response evoked about 50 milliseconds following the presentation of standard tones in 22 healthy controls and 21 medicated patients with schizophrenia. These tones were presented as part of an auditory oddball task performed by subjects while EEG was recorded from their scalps. The results showed prominent gamma band phase locking at frontal electrodes between 20 and 60 milliseconds following tone onset in healthy controls that was significantly reduced in patients with schizophrenia (P = .03). The finding suggests that the early-evoked gamma band response to auditory stimuli is deficiently synchronized in schizophrenia. We discuss the results in terms of pathophysiological mechanisms compromising event-related gamma phase synchrony in schizophrenia and further attempt to reconcile this finding with prior studies that failed to find this effect. PMID:18684772

  10. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines.

    PubMed

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-01-01

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization. PMID:26343660

  11. Mechanics of Suture Joints

    NASA Astrophysics Data System (ADS)

    Li, Yaning; Song, Juha; Ortiz, Christine; Boyce, Mary; Ortiz Group/DMSE/MIT Team; Boyce Group/ME/MIT Team

    2011-03-01

    Biological sutures are joints which connect two stiff skeletal or skeletal-like components. These joints possess a wavy geometry with a thin organic layer providing adhesion. Examples of biological sutures include mammalian skulls, the pelvic assembly of the armored fish Gasterosteus aculeatus (the three-spined stickleback), and the suture joints in the shell of the red-eared slider turtle. Biological sutures allow for movement and compliance, control stress concentrations, transmit loads, reduce fatigue stress and absorb energy. In this investigation, the mechanics of the role of suture geometry in providing a naturally optimized joint is explored. In particular, analytical and numerical micromechanical models of the suture joint are constructed. The anisotropic mechanical stiffness and strength are studied as a function of suture wavelength, amplitude and the material properties of the skeletal and organic components, revealing key insights into the optimized nature of these ubiquitous natural joints.

  12. Sternoclavicular joint injuries.

    PubMed

    Ferrera, P C; Wheeling, H M

    2000-01-01

    Injuries to the sternoclavicular (SC) joint are infrequently encountered. However, retrosternal SC joint dislocations are potentially life-threatening injuries which must be recognized by the examining physician and treated as soon as possible. Plain radiography often fails to fully distinguish SC joint injuries, and computed tomography has emerged as the diagnostic modality of choice for defining the injury complex and surrounding injuries. We have encountered 6 cases of SC joint injuries over the past 3 years and describe their presentation and management. PMID:10674534

  13. Time, Frequency and Physical Measurement.

    ERIC Educational Resources Information Center

    Hellwig, Helmut; And Others

    1978-01-01

    Describes several developments in atomic clocks and frequency standards pointing out the feasibility and practicality in adopting a unified standard of time and frequency to replace other base standards of length, mass, and temperature. (GA)

  14. Joint Newspaper Operating Agreements.

    ERIC Educational Resources Information Center

    Parsons, Marie

    The number of competing daily newspapers in American cities has dwindled until only about 50 cities boast two papers. Of the newspapers in those cities, 23 now maintain separate editorial operations but have joint printing, advertising, and circulation departments. The concept of joint operation is 50 years old, dating from the Depression years…

  15. Compound solder joints

    NASA Technical Reports Server (NTRS)

    Batista, R. I.; Simonson, R. B.

    1976-01-01

    Joining technique prevents contamination, may be used to join dissimilar metal tubes, minimizes fluid and gas entrapment, expedites repairs, and can yield joints having leakage rates less than 0.000001 standard cubic cm He/min. Components of joint are solder sleeve, two solder rings, Teflon sleeve, and tubing to be joined.

  16. Campylobacter Prosthetic Joint Infection

    PubMed Central

    Vasoo, Shawn; Schwab, Jeramy J.; Cunningham, Scott A.; Robinson, Trisha J.; Cass, Joseph R.; Berbari, Elie F.; Walker, Randall C.; Osmon, Douglas R.

    2014-01-01

    A 75-year-old man was diagnosed with probable Campylobacter jejuni prosthetic knee infection after a diarrheal illness. Joint aspirate and operative cultures were negative, but PCR of prosthesis sonicate fluid was positive, as was stool culture. Nineteen additional cases of Campylobacter prosthetic joint infection reported in the literature are reviewed. PMID:24523462

  17. Shoulder Joint Replacement

    MedlinePLUS

    ... your area through the AAOS “Find an Orthopaedist” program on OrthoInfo.org. Copyright ©1995-2013 by the American Academy of Orthopaedic Surgeons. .org Shoulder Joint Replacement cont. Page ( 4 ) They can show loss of the normal joint space between bones, flattening or irregularity in the shape ...

  18. Time-frequency analysis of VLF for seismic-ionospheric precursor detection: Evaluation of Zhao-Atlas-Marks and Hilbert-Huang Transforms

    NASA Astrophysics Data System (ADS)

    Skeberis, C.; Zaharis, Z. D.; Xenos, T. D.; Spatalas, S.; Arabelos, D. N.; Contadakis, M. E.

    2015-12-01

    This work investigates the application of two post-processing methods of extracting spectra from VLF signals in order to detect disturbances that could be attributed to seismic-ionospheric precursory phenomena. Although precursory phenomena have been investigated in detail in past studies, a different application of time-frequency analysis methods may produce distinct patterns, which reveal disturbances in the VLF spectra received from stations that are in the propagation path over preparation zones, and also pinpoint disturbances that could be attributed to seismic-ionospheric precursors. To this purpose, three different methods of post processing are compared. These are the Wavelet Transform as a benchmark method in the form of the Continuous Wavelet Transform, a noise-assisted variant of the Hilbert-Huang Transform and the Zhao-Atlas-Marks Distribution. Comparative diagrams are presented and the advantages and weaknesses of each method are presented.

  19. Strategies for joint appointments.

    PubMed

    Royle, J; Crooks, D L

    1985-01-01

    The structure and policies governing joint appointments discussed above, are developed primarily through cooperation and collaboration between nursing service and education institutions. The joint appointee participates in the process of negotiation of salary, benefits and role responsibilities and exploration of the implications of the appointment for personal career development. Implementation and maintenance of the appointment requires the collaborative efforts of the joint appointee with both contracting agencies. Factors influencing the functioning of joint appointees have been identified and strategies to facilitate functioning presented. The joint appointee must be independent in thought and action yet adaptable to work within the boundaries of two social systems with differing values and expectations. Nursing management, peers and students can provide the support needed to overcome the frustrations and to achieve the rewards inherent in successful implementation of an exciting and innovative role. PMID:3852805

  20. MISR JOINT_AS Data

    Atmospheric Science Data Center

    2014-07-21

    Joint Aerosol Product (JOINT_AS) The MISR Level 3 Products are global or regional ... field campaigns at daily and monthly time scales. The Joint Aerosol product provides a monthly global statistical summary of MISR ...

  1. Joint Infection (Beyond the Basics)

    MedlinePLUS

    ... organisms and can occur in both natural and artificial joints (eg, after a knee replacement). A common ... called nongonococcal bacterial (septic) arthritis. Infection of an artificial joint is known as prosthetic joint infection. GONOCOCCAL ...

  2. Pressure vessel flex joint

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (inventor)

    1992-01-01

    An airtight, flexible joint is disclosed for the interfacing of two pressure vessels such as between the Space Station docking tunnel and the Space Shuttle Orbiter bulkhead adapter. The joint provides for flexibility while still retaining a structural link between the two vessels required due to the loading created by the internal/external pressure differential. The joint design provides for limiting the axial load carried across the joint to a specific value, a function returned in the Orbiter/Station tunnel interface. The flex joint comprises a floating structural segment which is permanently attached to one of the pressure vessels through the use of an inflatable seal. The geometric configuration of the joint causes the tension between the vessels created by the internal gas pressure to compress the inflatable seal. The inflation pressure of the seal is kept at a value above the internal/external pressure differential of the vessels in order to maintain a controlled distance between the floating segment and pressure vessel. The inflatable seal consists of either a hollow torus-shaped flexible bladder or two rolling convoluted diaphragm seals which may be reinforced by a system of straps or fabric anchored to the hard structures. The joint acts as a flexible link to allow both angular motion and lateral displacement while it still contains the internal pressure and holds the axial tension between the vessels.

  3. Compliant Joints For Robots

    NASA Technical Reports Server (NTRS)

    Kerley, James J., Jr.

    1990-01-01

    Compliant joints devised to accommodate misalignments of tools and/or workpieces with respect to robotic manipulators. Has characteristics and appearance of both universal-joint and cable-spring-type flexible shaft coupling. Compliance derived from elastic properties of short pieces of cable. Compliance of joint determined by lengths, distances between, relative orientations, thickness of strands, number of strands, material, amount of pretwist, and number of short pieces of cable. Worm-drive mechanism used to adjust lengths to vary compliance as needed during operation.

  4. Joint Aspiration: Arthrocentesis

    PubMed Central

    Mackie, John William

    1987-01-01

    Joint aspiration is an easily mastered procedure used to confirm or rule out joint sepsis and crystal-induced arthrosis. It is routinely performed with or without local anaesthetic, or with cooling spray. The time spent obtaining the fluid is short. The procedure is safe, requiring no hospitalization, except in the case of diagnosed sepsis. Arthrocentesis is a necessary procedure to prove beyond reasonable doubt that infection is not the cause of the arthritis. The family physician must be familiar with this procedure and obtain fluid for analysis, or refer when joint fluid cannot be readily aspirated. (Can Fam Physician 1987; 33:2057-2062.) PMID:21263975

  5. See What I See, Do as I Do: Promoting Joint Attention and Imitation in Preschoolers with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Warreyn, Petra; Roeyers, Herbert

    2014-01-01

    Since imitation and joint attention are both important abilities for young children and since children with autism spectrum disorder show a range of problems in these domains, imitation and joint attention are important targets for intervention. In this study, we examined the possibility of promoting imitation and joint attention by means of a

  6. Healthy Joints Matter

    MedlinePLUS

    ... of the quiz. NIAMS Kids Pages Healthy Joints Matter Download PDF (714 KB) October 2015 What exactly ... and never to “play through the pain”—no matter what anyone says—and to take care of ...

  7. [Biomechanics of temporomandibular joint].

    PubMed

    Kang, H; Yi, X

    2000-09-01

    Temporomandibular joint (TMJ) is one of the most intricate and complicate loading joints in the human body. Articular cartilage is characteristic of low infiltrative, porous viscoelastic material. In physiological condition, there is a stress-absorbing architecture system in the TMJ cartilage, which consists of collagen-proteoglycan-water gel network. TMJ disc is a specific connective tissue as stress concentration absorber between condyle and articular fossa, but it does not belong to fibrocartilage. Retrodiscal tissue has high compliance of which the role is to play volume-compensating mechanism in joint movement. Lateral wall is a complexed structure out of ligament and capsule with weak tensile strength and tensile rigidity. Therefore, prolonged oral parafunction will result in joint fatigue and failure. PMID:11285848

  8. Hip joint injection

    MedlinePLUS

    Cortisone shot - hip; Hip injection; Intra-articular steroid injections - hip ... can see where to place the medicine. The steroid medicine is slowly injected into the joint. After the injection, you will remain on the table for another ...

  9. Improved orthopedic arm joint

    NASA Technical Reports Server (NTRS)

    Dane, D. H.

    1971-01-01

    Joint permits smooth and easy movement of disabled arm and is smaller, lighter and less expensive than previous models. Device is interchangeable and may be used on either arm at the shoulder or at the elbow.

  10. Wrist joint assembly

    NASA Technical Reports Server (NTRS)

    Kersten, L.; Johnson, J. D. (Inventor)

    1978-01-01

    A wrist joint assembly is provided for use with a mechanical manipulator arm for finely positioning an end-effector carried by the wrist joint on the terminal end of the manipulator arm. The wrist joint assembly is pivotable about a first axis to produce a yaw motion, a second axis is to produce a pitch motion, and a third axis to produce a roll motion. The wrist joint assembly includes a disk segment affixed to the terminal end of the manipulator arm and a first housing member, a second housing member, and a third housing member. The third housing member and the mechanical end-effector are moved in the yaw, pitch, and roll motion. Drive means are provided for rotating each of the housings about their respective axis which includes a cluster of miniature motors having spur gears carried on the output drive shaft which mesh with a center drive gear affixed on the housing to be rotated.

  11. High pressure ceramic joint

    DOEpatents

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  12. High pressure ceramic joint

    DOEpatents

    Ward, Michael E. (Poway, CA); Harkins, Bruce D. (San Diego, CA)

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  13. Panel Post & Diagonal Brace Joint Detail; Crossbracing Center Joint ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Panel Post & Diagonal Brace Joint Detail; Crossbracing Center Joint Detail; Chord, Panel Post, Tie Bar, & Diagonal Brace Joint Detail; Chord, Tie Bar, & Crossbracing Joint Detail - Medora Bridge, Spanning East Fork of White River at State Route 235, Medora, Jackson County, IN

  14. Understanding the Public Domain.

    ERIC Educational Resources Information Center

    Russell, Carrie

    2003-01-01

    This overview of the public domain covers: defining the public domain; figuring out if a work is protected by copyright; being sure a work is in the public domain; asserting the copyright protection and term; the Creative Commons initiative; building the Information Commons; when permission is needed for using a public domain work; and special

  15. Time-frequency dynamics during sleep spindles on the EEG in rodents with a genetic predisposition to absence epilepsy (WAG/Rij rats)

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Sitnikova, Evgenija Y.; Pavlov, Alexey N.; Grubov, Vadim V.; Koronovskii, Alexey A.; Khramova, Marina V.

    2015-03-01

    Sleep spindles are known to appear spontaneously in the thalamocortical neuronal network of the brain during slow-wave sleep; pathological processes in the thalamocortical network may be the reason of the absence epilepsy. The aim of the present work is to study developed changes in the time-frequency structure of sleep spindles during the progressive development of the absence epilepsy in WAG/Rij rats. EEG recordings were made at age 7 and 9 months. Automatic recognition and subsequent analysis of sleep spindles on the EEG were performed using the continuous wavelet transform. The duration of epileptic discharges and the total duration of epileptic activity were found to increase with age, while the duration of sleep spindles, conversely, decreased. In terms of the mean frequency, sleep spindles could be divided into three classes: `slow' (mean frequency 9.3Hz), `medium' (11.4Hz), and `fast' (13.5Hz). Slow and medium (transitional) spindles in five-month-old animals showed increased frequency from the beginning to the end of the spindle. The more intense the epilepsy is, the shorter are the durations of spindles of all types. The mean frequencies of `medium' and `fast' spindles were higher in rats with more intense signs of epilepsy. Overall, high epileptic activity in WAG/Rij rats was linked with significant changes in spindles of the transitional type, with less marked changes in the two traditionally identified types of spindle, slow and fast.

  16. Time-frequency characterization of electrocorticographic recordings of epileptic patients using frequency-entropy similarity: a comparison to other bi-variate measures.

    PubMed

    Gazit, T; Doron, I; Sagher, O; Kohrman, M H; Towle, V L; Teicher, M; Ben-Jacob, E

    2011-01-15

    Expert evaluation of electrocorticographic (ECoG) recordings forms the linchpin of seizure onset zone localization in the evaluation of epileptic patients for surgical resection. Numerous methods have been developed to analyze these complex recordings, including uni-variate (characterizing single channels), bi-variate (comparing channel pairs) and multivariate measures. Developing reliable algorithms may be helpful in clinical tasks such as localization of epileptogenic zones and seizure anticipation, as well as enabling better understanding of neuronal function and dynamics. Recently we have developed the frequency-entropy (F-E) similarity measure, and have tested its capability in mapping the epileptogenic zones. The F-E similarity measure compares time-frequency characterizations of two recordings. In this study, we examine the method's principles and utility and compare it to previously described bi-variate correspondence measures such as correlation, coherence, mean phase coherence and spectral comparison methods. Specially designed synthetic signals were used for illuminating theoretical differences between the measures. Intracranial recordings of four epileptic patients were then used for the measures' comparative analysis by creating a mean inter-electrode matrix for each of the correspondence measures and comparing the structure of these matrices during the inter-ictal and ictal periods. We found that the F-E similarity measure is able to discover spectral and temporal features in data which are hidden for the other measures and are important for foci localization. PMID:20969891

  17. Comparison of Matching Pursuit Algorithm with Other Signal Processing Techniques for Computation of the Time-Frequency Power Spectrum of Brain Signals.

    PubMed

    Chandran Ks, Subhash; Mishra, Ashutosh; Shirhatti, Vinay; Ray, Supratim

    2016-03-23

    Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided. PMID:27013668

  18. Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data

    USGS Publications Warehouse

    Mwakanyamale, Kisa; Slater, Lee; Day-Lewis, Frederick D.; Elwaseif, Mehrez; Johnson, Carole D.

    2012-01-01

    Characterization of groundwater-surface water exchange is essential for improving understanding of contaminant transport between aquifers and rivers. Fiber-optic distributed temperature sensing (FODTS) provides rich spatiotemporal datasets for quantitative and qualitative analysis of groundwater-surface water exchange. We demonstrate how time-frequency analysis of FODTS and synchronous river stage time series from the Columbia River adjacent to the Hanford 300-Area, Richland, Washington, provides spatial information on the strength of stage-driven exchange of uranium contaminated groundwater in response to subsurface heterogeneity. Although used in previous studies, the stage-temperature correlation coefficient proved an unreliable indicator of the stage-driven forcing on groundwater discharge in the presence of other factors influencing river water temperature. In contrast, S-transform analysis of the stage and FODTS data definitively identifies the spatial distribution of discharge zones and provided information on the dominant forcing periods (?2 d) of the complex dam operations driving stage fluctuations and hence groundwater-surface water exchange at the 300-Area.

  19. Time-frequency characterization of electrocorticographic recordings of epileptic patients using Frequency-Entropy Similarity: A comparison to other bi-variate measures

    PubMed Central

    Gazit, T.; Doron, I.; Sagher, O.; Kohrman, M.H.; Towle, V.L.; Teicher, M.; Ben Jacob, E.

    2010-01-01

    Expert evaluation of electrocorticographic (ECoG) recordings forms the linchpin of seizure onset zone localization in the evaluation of epileptic patients for surgical resection. Numerous methods have been developed to analyze these complex recordings, including uni-variate (characterizing single channels), bi-variate (comparing channel pairs) and multivariate measures. Developing reliable algorithms may be helpful in clinical tasks such as localization of epileptogenic zones and seizure anticipation, as well as enabling better understanding of neuronal function and dynamics. Recently we have developed the Frequency-Entropy (F-E) similarity measure, and have tested its capability in mapping the epileptogenic zones. The F-E similarity measure compares time-frequency characterizations of two recordings. In this study, we examine the method's principles and utility and compare it to previously described bi-variate correspondence measures such as correlation, coherence, mean phase coherence and spectral comparison methods. Specially designed synthetic signals were used for illuminating theoretical differences between the measures. Intracranial recordings of four epileptic patients were then used for the measures' comparative analysis by creating a mean inter-electrode matrix for each of the correspondence measures and comparing the structure of these matrices during the inter-ictal and ictal periods. We found that the F-E similarity measure is able to discover spectral and temporal features in data which are hidden for the other measures and are important for foci localization. PMID:20969891

  20. Time-frequency and principal-component methods for the analysis of EMGs recorded during a mildly fatiguing exercise on a cycle ergometer.

    PubMed

    von Tscharner, Vinzenz

    2002-12-01

    Electromyographic signals contain the information on muscle activity and have to be frequently averaged, compared, classified or details need to be extracted. A time-frequency analysis, based on wavelets, was previously presented. The analysis transformed an EMG signal into an EMG-intensity-pattern showing the intensities at any point in time for the frequencies filtered out by the wavelets. The purpose of the present study was:to define and apply a new EMG-pattern-space for the analysis of EMG-intensity-patterns; and to determine the variation of EMG-intensity-patterns while getting mildly fatigued by cycling on a cycle-ergometer. The coordinates spanning the pattern space were principal components of the measured EMG-intensity-patterns. A point in pattern-space thus represented an EMG-intensity-pattern. Fatigue resulted in points moving along a line in pattern space. The line was characterized by an intercept at time 0 and a slope. Thus mild fatigue caused a shift from an initial intensity-pattern representing the intercept to a final intensity-pattern adding gradually larger amounts of the pattern representing the slope. The intensity-pattern of the slope revealed the physiologically important individual strategies for coping with mild fatigue. Changes were observed at different times and at different frequencies during the cycling movement. PMID:12435545

  1. Sub-Nyquist field trial using time frequency packed DP-QPSK super-channel within fixed ITU-T grid

    NASA Astrophysics Data System (ADS)

    Pot, L.; Meloni, G.; Berrettini, G.; Fresi, F.; Foggi, T.; Secondini, M.; Giorgi, L.; Cavaliere, F.; Hackett, S.; Petronio, A.; Nibbs, P.; Forgan, R.; Leong, A.; Masciulli, R.; Pfander, C.

    2015-06-01

    Sub-Nyquist time frequency packing technique was demonstrated for the first time in a super channel field trial transmission over long-haul distances. The technique allows a limited spectral occupancy even with low order modulation formats. The transmission was successfully performed on a deployed Australian link between Sydney and Melbourne which included 995 km of uncompensated SMF with coexistent traffic. 40 and 100 Gb/s co-propagating channels were transmitted together with the super-channel in a 50 GHz ITU-T grid without additional penalty. The super-channel consisted of eight sub-channels with low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness and reduced complexity with respect to higher order formats. At the receiver side, coherent detection was used together with iterative maximum-a-posteriori (MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully transmitted between Sydney and Melbourne within four 50GHz WSS channels (200 GHz). A maximum potential SE of 5.58 bit/s/Hz was achieved with an OSNR=15.8 dB, comparable to the OSNR of the installed 100 Gb/s channels. The system reliability was proven through long term measurements. In addition, by closing the link in a loop back configuration, a potential SE*d product of 9254 bit/s/Hz*km was achieved.

  2. Surface Wave Dispersion Analysis Using Time-Frequency Filtering and an Interactive Normal Move Out (NMO) Tool with Uncorrelated Garner Valley Vibroseis Data

    NASA Astrophysics Data System (ADS)

    Lord, N. E.; Wang, H. F.; Fratta, D.; Lancelle, C.; Baldwin, J. A.; Nigbor, R. L.; Chalari, A.; Castongia, E.

    2014-12-01

    Frequency swept seismic sources (vibroseis) recorded by seismic arrays can be used to directly measure the surface wave apparent velocity as a function of frequency. Time-frequency filtering (TFF) passes only a narrow frequency band centered on the time varying frequency of the seismic source. This greatly improves the quality of the uncorrelated seismic data by removing noise outside of the narrow band filter. Sources of noise include traffic, harmonics generated by the seismic source and the propagating seismic waves. TFF also allows the separate analysis of the source fundamental frequency and each harmonic. The filtered data is used with an interactive normal move out (NMO) tool to adjust the time and apparent velocity parameters to extract a surface wave dispersion curve. This technique was used on the vibroseis data collected in the September 2013 seismic experiment conducted at the NEES@UCSB Garner Valley field site. Three vibroseis sources were used: a 45 KN shear shaker, a 450 N portable mass shaker, and a 26 KN vibroseis truck. They were recorded by two lines of 1 and 3 component accelerometers and geophones, and a Distributed Acoustic Sensor (Silixa-iDAS) system connected to 762 m of trenched fiber optical cable in a larger rectangular area.

  3. Is auditory discrimination mature by middle childhood? A study using time-frequency analysis of mismatch responses from 7 years to adulthood

    PubMed Central

    Bishop, Dorothy VM; Hardiman, Mervyn J; Barry, Johanna G

    2011-01-01

    Behavioural and electrophysiological studies give differing impressions of when auditory discrimination is mature. Ability to discriminate frequency and speech contrasts reaches adult levels only around 12 years of age, yet an electrophysiological index of auditory discrimination, the mismatch negativity (MMN), is reported to be as large in children as in adults. Auditory ERPs were measured in 30 children (7 to 12 years), 23 teenagers (13 to 16 years) and 32 adults (35 to 56 years) in an oddball paradigm with tone or syllable stimuli. For each stimulus type, a standard stimulus (1000 Hz tone or syllable [ba]) occurred on 70% of trials, and one of two deviants (1030 or 1200 Hz tone, or syllables [da] or [bi]) equiprobably on the remaining trials. For the traditional MMN interval of 100–250 ms post-onset, size of mismatch responses increased with age, whereas the opposite trend was seen for an interval from 300 to 550 ms post-onset, corresponding to the late discriminative negativity (LDN). Time-frequency analysis of single trials revealed that the MMN resulted from phase-synchronization of oscillations in the theta (4–7 Hz) range, with greater synchronization in adults than children. Furthermore, the amount of synchronization was significantly correlated with frequency discrimination threshold. These results show that neurophysiological processes underlying auditory discrimination continue to develop through childhood and adolescence. Previous reports of adult-like MMN amplitudes in children may be artefactual results of using peak measurements when comparing groups that differ in variance. PMID:22213909

  4. Optimized fusion method based on adaptation of the RMS time-frequency criterion for simultaneous compression and encryption of multiple images

    NASA Astrophysics Data System (ADS)

    Aldossari, M.; Alfalou, A.; Brosseau, C.

    2013-03-01

    An extension of the recently proposed method of simultaneous compression and encryption of multiple images [Opt. Lett. 35, 1914-1916 (2010)] is developed. This analysis allows us to find a compromise between compression rate and quality of the reconstructed images for target detection applications. This spectral compression method can significantly reduce memory size and can be easily implemented with a VanderLugt correlator (VLC). For that purpose, we determine the size of the useful spectra for each target image by exploiting the root-mean-square time-frequency criterion. This parameter is used to determine the allowed area of each target image within the compressed spectrum. Moreover, this parameter is adapted in order to minimize overlapping between the different spectra. For that purpose we add a shift function adapted to each spectra. Finally, the spectra are merged together by making use of a segmentation criterion. The latter compares the local energy relative to each pixel for each spectrum. Furthermore, it optimizes assignment of the considered pixel by taking into account the adjacent areas to the considered pixel. This permits to avoid the presence of isolated areas and small sized areas (less than 10 pixels). In this paper, we analyse and optimize the shift function needed to separate the different spectra. We use mean square error (MSE) for comparing compression rates. A series of tests with several video sequences show the benefit of this shift function on the quality of reconstructed images and compression rate.

  5. Time frequency analysis of laser Doppler flowmetry signals recorded in response to a progressive pressure applied locally on anaesthetized healthy rats

    NASA Astrophysics Data System (ADS)

    Humeau, Anne; Kotka, Audrey; Abraham, Pierre; Saumet, Jean-Louis; L'Huillier, Jean-Pierre

    2004-03-01

    The laser Doppler flowmetry technique has recently been used to report a significant transient increase of the cutaneous blood flow signal, in response to a local non-noxious pressure applied progressively on the skin of both healthy humans and rats. This phenomenon is not entirely understood yet. In the present work, a time-frequency analysis is applied to signals recorded on anaesthetized healthy rats, at rest and during a cutaneous pressure-induced vasodilation (PIV). The comparison, at rest and during PIV, of the scalogram relative energies and scalogram relative amplitudes in five bands, corresponding to five characteristic frequencies, shows an increased contribution for the endothelial related metabolic activity in PIV signals, till 400 s after the beginning of the progressive pressure application. The other subsystems (heart, respiration, myogenic and neurogenic activities) contribute relatively less during PIV than at rest. The differences are statistically significant for all the relative activities in the interval 0-200 s following the beginning of the pressure. These results and others obtained on patients, such as diabetics, could increase the understanding of some cutaneous pathologies involved in various neurological diseases and in the pathophysiology of decubitus ulcers.

  6. BUILDING MODEL ANALYSIS APPLICATIONS WITH THE JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY (JUPITER) API

    EPA Science Inventory

    The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...

  7. Dissimilar metals joint evaluation

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.; Apodaca, L. E.

    1974-01-01

    Dissimilar metals tubular joints between 2219-T851 aluminum alloy and 304L stainless steel were fabricated and tested to evaluate bonding processes. Joints were fabricated by four processes: (1) inertia (friction) weldings, where the metals are spun and forced together to create the weld; (2) explosive welding, where the metals are impacted together at high velocity; (3) co-extrusion, where the metals are extruded in contact at high temperature to promote diffusion; and (4) swaging, where residual stresses in the metals after a stretching operation maintain forced contact in mutual shear areas. Fifteen joints of each type were prepared and evaluated in a 6.35 cm (2.50 in.) O.D. size, with 0.32 cm (0.13 in.) wall thickness, and 7.6 cm (3.0 in) total length. The joints were tested to evaluate their ability to withstand pressure cycle, thermal cycle, galvanic corrosion and burst tests. Leakage tests and other non-destructive test techniques were used to evaluate the behavior of the joints, and the microstructure of the bond areas was analyzed.

  8. Formation of Exfoliation Joints

    NASA Astrophysics Data System (ADS)

    Martel, S. J.

    2004-12-01

    The Earth's internal stresses interact with the topographic surface to affect many phenomena. Exfoliation joints, or sheeting joints, are widespread manifestations of this interaction. These opening-mode fractures form subparallel to the Earth's surface, bounding roughly concentric slabs of rock that resemble the layers of an onion. They occur worldwide in all major bedrock types, attain in-plane dimensions of hundreds of meters, exert a strong influence on groundwater flow, and help produce spectacular scenery, as in Yosemite National Park. The mechanism that causes them has been enigmatic. They are widely regarded as forming in response to "removal of overburden", but large fractures do not open in rocks merely by relieving a compressive stress. High fluid pressures, thermal effects, rock heterogeneity, and weathering also are rejected as primary causes of these fractures. Tensile stresses normal to the surface are required for large exfoliation fractures to open. Intriguingly, high surface-parallel compressive stresses are widely documented where exfoliation joints occur. Both numerical and analytical solutions for two-dimensional elastic bodies show that localized tensile stresses perpendicular to the ground surface must develop beneath certain topographies subject to strong compressive stresses parallel to the surface. This highly non-intuitive effect reflects the profound influence that topography can have on stresses near the surface of the Earth, and it can explain how exfoliation joints open. The theoretical results also indicate that exfoliation joint distributions could be used to infer the horizontal stresses near the Earth's surface.

  9. Total ankle joint replacement.

    PubMed

    2016-02-01

    Ankle arthritis results in a stiff and painful ankle and can be a major cause of disability.(1) For people with end-stage ankle arthritis, arthrodesis (ankle fusion) is effective at reducing pain in the shorter term, but results in a fixed joint, and over time the loss of mobility places stress on other joints in the foot that may lead to arthritis, pain and dysfunction.(2) Another option is to perform a total ankle joint replacement, with the aim of giving the patient a mobile and pain-free ankle. In this article we review the efficacy of this procedure, including how it compares to ankle arthrodesis, and consider the indications and complications. PMID:26868932

  10. Robotic Bladder Joint

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1995-01-01

    Reliable, lightweight robotic joint suitable for variety of applications, actuated hydraulically, without need for heavy mechanical cylinders or gears on joint itself. Includes two members; first member rotates about pin at end of second member. Includes cam, over which tension line stretched. Ends of tension line anchored at end of second member opposite end that holds pin. Bladder placed on each side of second member, squeezed between second member and tension line. Pressures and/or amounts of fluid in bladders controlled by use of conventional equipment like pumps, valves, and reservoirs. Bladder on one side inflated more than on other side; greater inflation on one side causes greater stretching of tension line on that side. Greater tension pulls on cam, turning first member toward that side. Angle of joint controlled by controlling differential inflation of two bladders.

  11. Periprosthetic joint infection.

    PubMed

    Kapadia, Bhaveen H; Berg, Richard A; Daley, Jacqueline A; Fritz, Jan; Bhave, Anil; Mont, Michael A

    2016-01-23

    Periprosthetic joint infections are a devastating complication after arthroplasty and are associated with substantial patient morbidity. More than 25% of revisions are attributed to these infections, which are expected to increase. The increased prevalence of obesity, diabetes, and other comorbidities are some of the reasons for this increase. Recognition of the challenge of surgical site infections in general, and periprosthetic joint infections particularly, has prompted implementation of enhanced prevention measures preoperatively (glycaemic control, skin decontamination, decolonisation, etc), intraoperatively (ultraclean operative environment, blood conservation, etc), and postoperatively (refined anticoagulation, improved wound dressings, etc). Additionally, indications for surgical management have been refined. In this Review, we assess risk factors, preventive measures, diagnoses, clinical features, and treatment options for prosthetic joint infection. An international consensus meeting about such infections identified the best practices and further research needs. Orthopaedics could benefit from enhanced preventive, diagnostic, and treatment methods. PMID:26135702

  12. Time-frequency analysis of neonatal cranial ultrasonic movies for selective detection of pulsatile tissues by avoiding probe-motion artifact

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Masayuki; Tabata, Yuki; Izuwaki, Yusuke; Nakamori, Nobuyuki; Kitsunezuka, Yoshiki

    2015-03-01

    In order to detect the pulsatile tissues in neonatal cranial ultrasonic movies by avoiding probe-motion artifact, a time-frequency analysis has been performed in several movie fragments at typical three scenes: (a) a brain-lost, (b) a brain-captured and probe-stabilized, and (c) a brain-captured and probe-swayed ones. The pulsatile tissue, which is a key point of pediatric diagnosis, had successfully detected with an algorithm based on Fourier transform but it had required us to extract the probe-stabilized scene manually by visual observation of the movie. A spatial mean square of echo intensity Etot and a total AC power Ptot over a fan-shape of field of view were evaluated according to a power spectrum of a time-variation of 64 samples of echo intensity at each pixel in each movie fragment split from actual B-mode ultrasonic movies taken at coronal sections of a neonate. The results revealed that (1) significant low Etot was found at the brain-lost scene rather than that at the other scenes, and (2) lower Ptot was found at the probe-stabilized scene rather than the probe-swayed ones. This fact strongly suggests that the Etot and Ptot are promising features for automatic extraction of probe-stabilized scenes. It must lead to detect the pulsatile tissues selectively by avoiding probe-motion artifact and to realize systematic analysis of the whole of our extensive movie archives, which is useful not only for retrospective study of ischemic diseases but also for bedside diagnosis to stabilize the freehand ultrasonic probe.

  13. One hundred ways to process time, frequency, rate and scale in the central auditory system: a pattern-recognition meta-analysis

    PubMed Central

    Hemery, Edgar; Aucouturier, Jean-Julien

    2015-01-01

    The mammalian auditory system extracts features from the acoustic environment based on the responses of spatially distributed sets of neurons in the subcortical and cortical auditory structures. The characteristic responses of these neurons (linearly approximated by their spectro-temporal receptive fields, or STRFs) suggest that auditory representations are formed, as early as in the inferior colliculi, on the basis of a time, frequency, rate (temporal modulations) and scale (spectral modulations) analysis of sound. However, how these four dimensions are integrated and processed in subsequent neural networks remains unclear. In this work, we present a new methodology to generate computational insights into the functional organization of such processes. We first propose a systematic framework to explore more than a hundred different computational strategies proposed in the literature to process the output of a generic STRF model. We then evaluate these strategies on their ability to compute perceptual distances between pairs of environmental sounds. Finally, we conduct a meta-analysis of the dataset of all these algorithms' accuracies to examine whether certain combinations of dimensions and certain ways to treat such dimensions are, on the whole, more computationally effective than others. We present an application of this methodology to a dataset of ten environmental sound categories, in which the analysis reveals that (1) models are most effective when they organize STRF data into frequency groupings—which is consistent with the known tonotopic organization of receptive fields in auditory structures -, and that (2) models that treat STRF data as time series are no more effective than models that rely only on summary statistics along time—which corroborates recent experimental evidence on texture discrimination by summary statistics. PMID:26190996

  14. One hundred ways to process time, frequency, rate and scale in the central auditory system: a pattern-recognition meta-analysis.

    PubMed

    Hemery, Edgar; Aucouturier, Jean-Julien

    2015-01-01

    The mammalian auditory system extracts features from the acoustic environment based on the responses of spatially distributed sets of neurons in the subcortical and cortical auditory structures. The characteristic responses of these neurons (linearly approximated by their spectro-temporal receptive fields, or STRFs) suggest that auditory representations are formed, as early as in the inferior colliculi, on the basis of a time, frequency, rate (temporal modulations) and scale (spectral modulations) analysis of sound. However, how these four dimensions are integrated and processed in subsequent neural networks remains unclear. In this work, we present a new methodology to generate computational insights into the functional organization of such processes. We first propose a systematic framework to explore more than a hundred different computational strategies proposed in the literature to process the output of a generic STRF model. We then evaluate these strategies on their ability to compute perceptual distances between pairs of environmental sounds. Finally, we conduct a meta-analysis of the dataset of all these algorithms' accuracies to examine whether certain combinations of dimensions and certain ways to treat such dimensions are, on the whole, more computationally effective than others. We present an application of this methodology to a dataset of ten environmental sound categories, in which the analysis reveals that (1) models are most effective when they organize STRF data into frequency groupings-which is consistent with the known tonotopic organization of receptive fields in auditory structures -, and that (2) models that treat STRF data as time series are no more effective than models that rely only on summary statistics along time-which corroborates recent experimental evidence on texture discrimination by summary statistics. PMID:26190996

  15. Prosthetic Joint Infection

    PubMed Central

    Tande, Aaron J.

    2014-01-01

    SUMMARY Prosthetic joint infection (PJI) is a tremendous burden for individual patients as well as the global health care industry. While a small minority of joint arthroplasties will become infected, appropriate recognition and management are critical to preserve or restore adequate function and prevent excess morbidity. In this review, we describe the reported risk factors for and clinical manifestations of PJI. We discuss the pathogenesis of PJI and the numerous microorganisms that can cause this devastating infection. The recently proposed consensus definitions of PJI and approaches to accurate diagnosis are reviewed in detail. An overview of the treatment and prevention of this challenging condition is provided. PMID:24696437

  16. Bone and joint infections.

    PubMed

    Pääkkönen, Markus; Peltola, Heikki

    2013-04-01

    An acute osteoarticular infection in a child is most often hematogenous. The infection manifests as osteomyelitis or septic arthritis. The most common causative organism is Staphylococcus aureus. Medical advice is usually sought within 2 to 6 days from the onset of symptoms. A child with an osteomyelitis in a lower extremity characteristically presents with limping with or without notable local tenderness, whereas acute septic arthritis is often readily visible because the joint is red, tender, and swollen. Early diagnosis and prompt treatment remain pivotal in avoiding complications in acute bacterial bone and joint infections. PMID:23481109

  17. Joint reversible data hiding and image encryption

    NASA Astrophysics Data System (ADS)

    Yang, Bian; Busch, Christoph; Niu, Xiamu

    2010-01-01

    Image encryption process is jointed with reversible data hiding in this paper, where the data to be hided are modulated by different secret keys selected for encryption. To extract the hided data from the cipher-text, the different tentative decrypted results are tested against typical random distribution in both spatial and frequency domain and the goodnessof- fit degrees are compared to extract one hided bit. The encryption based data hiding process is inherently reversible. Experiments demonstrate the proposed scheme's effectiveness on natural and textural images, both in gray-level and binary forms.

  18. Heterogeneous domain adaptation and classification by exploiting the correlation subspace.

    PubMed

    Yeh, Yi-Ren; Huang, Chun-Hao; Wang, Yu-Chiang Frank

    2014-05-01

    We present a novel domain adaptation approach for solving cross-domain pattern recognition problems, i.e., the data or features to be processed and recognized are collected from different domains of interest. Inspired by canonical correlation analysis (CCA), we utilize the derived correlation subspace as a joint representation for associating data across different domains, and we advance reduced kernel techniques for kernel CCA (KCCA) if nonlinear correlation subspace are desirable. Such techniques not only makes KCCA computationally more efficient, potential over-fitting problems can be alleviated as well. Instead of directly performing recognition in the derived CCA subspace (as prior CCA-based domain adaptation methods did), we advocate the exploitation of domain transfer ability in this subspace, in which each dimension has a unique capability in associating cross-domain data. In particular, we propose a novel support vector machine (SVM) with a correlation regularizer, named correlation-transfer SVM, which incorporates the domain adaptation ability into classifier design for cross-domain recognition. We show that our proposed domain adaptation and classification approach can be successfully applied to a variety of cross-domain recognition tasks such as cross-view action recognition, handwritten digit recognition with different features, and image-to-text or text-to-image classification. From our empirical results, we verify that our proposed method outperforms state-of-the-art domain adaptation approaches in terms of recognition performance. PMID:24710401

  19. Time-frequency dynamics of the sum of intra- and extracerebral hemodynamic functional connectivity during resting-state and respiratory challenges assessed by multimodal functional near-infrared spectroscopy.

    PubMed

    Holper, L; Scholkmann, F; Seifritz, E

    2015-10-15

    Monitoring respiratory processes is important for evaluating neuroimaging data, given their influence on time-frequency dynamics of intra- and extracerebral hemodynamics. Here we investigated the time-frequency dynamics of the sum of intra- and extracerebral hemodynamic functional connectivity states during hypo- and hypercapnia by using three different respiratory challenge tasks (i.e., hyperventilation, breath-holding, and rebreathing) compared to resting-state. The sum of intra- and extracerebral hemodynamic responses were assessed using functional near-infrared spectroscopy (fNIRS) within two regions of interest (i.e., the dorsolateral and the medial prefrontal cortex). Time-frequency fNIRS analysis was performed based on wavelet transform coherence to quantify functional connectivity in terms of positive and negative phase-coupling within each region of interest. Physiological measures were assessed in the form of partial end-tidal carbon dioxide, heart rate, arterial tissue oxygen saturation, and respiration rate. We found that the three respiration challenges modulated time-frequency dynamics differently with respect to resting-state: 1) Hyperventilation and breath-holding exhibited inverse patterns of positive and negative phase-coupling. 2) In contrast, rebreathing had no significant effect. 3) Low-frequency oscillations contributed to a greater extent to time-frequency dynamics compared to high-frequency oscillations. The results highlight that there exist distinct differences in time-frequency dynamics of the sum of intra- and extracerebral functional connectivity not only between hypo- (hyperventilation) and hypercapnia but also between different states of hypercapnia (breath-holding versus rebreathing). This suggests that a multimodal assessment of intra-/extracerebral and systemic physiological changes during respiratory challenges compared to resting-state may have potential use in the differentiation between physiological and pathological respiratory behavior accompanied by the psycho-physiological state of a human. PMID:26169319

  20. Clad metal joint closure

    SciTech Connect

    Siebert, O.W.

    1985-04-09

    A plasma arc spray overlay of cladding metals is used over joints between clad metal pieces to provide a continuous cladding metal surface. The technique permits applying an overlay of a high melting point cladding metal to a cladding metal surface without excessive heating of the backing metal.

  1. Joint services electronics program

    NASA Astrophysics Data System (ADS)

    Lundstrom, S. F.

    1984-06-01

    This report describes work performed under the Joint Services Electronics Program, sponsored by the Departments of the Air Force (Air Force Office of Scientific Research), Army (Army Research Office), and Navy (Office of Naval Research), under contract DAAG29-81-K-0057 at the Stanford Electronics Laboratories, Stanford University, Stanford, California.

  2. Realignment Subtalar Joint Arthrodesis.

    PubMed

    Hentges, Matthew J; Gesheff, Martin G; Lamm, Bradley M

    2016-01-01

    Subtalar joint arthrodesis is a commonly performed procedure for the correction of hindfoot deformity and/or the relief of pain related to osteoarthritis. The purpose of the present study was to provide preoperative and intraoperative objective radiographic parameters to improve the accuracy and long-term success of realignment arthrodesis of the subtalar joint. We retrospectively reviewed the data from 16 patients, 11 male (57.9%) and 8 female (42.1%) feet, who had undergone realignment subtalar joint arthrodesis. A total of 19 fusions were performed in 9 (47.4%) right and 10 (52.6%) left feet, with a mean follow-up period of 2 (range 1 to 4.8) years. The mean age at surgery was 54.5 (range 14 to 77) years. Statistically significant improvement in radiographic alignment was found in the anteroposterior talo-first metatarsal angle (p=.002), lateral talo-first metatarsal angle (p<.001), tibial-calcaneal angle (p<.001), and tibial-calcaneal distance (p<.001). A positive correlation was observed between the tibial-calcaneal angle and tibial-calcaneal distance (r=0.825, p<.001). The statistically significant improvement in tibial-calcaneal alignment, in both angulation and distance, support our conclusions that proper realignment of the calcaneus to vertical and central under the tibia will lead to short-term success and, likely, long-term success of subtalar joint arthrodesis. PMID:26028600

  3. Estimating Average Domain Scores.

    ERIC Educational Resources Information Center

    Pommerich, Mary; Nicewander, W. Alan

    A simulation study was performed to determine whether a group's average percent correct in a content domain could be accurately estimated for groups taking a single test form and not the entire domain of items. Six Item Response Theory (IRT) -based domain score estimation methods were evaluated, under conditions of few items per content area per

  4. Internationalized Domain Names.

    ERIC Educational Resources Information Center

    Wielansky, Marc D.

    2002-01-01

    Reports on an investigation of what may appear at first to be an arcane topic--the internationalization of domain names on the Internet. Concludes that expanding domain names internationally poses challenges to the inherent open structure of the Internet; to its ease of use for those accustomed to Latin-alphabet-only domain names; and to corporate

  5. Anaerobic prosthetic joint infection.

    PubMed

    Shah, Neel B; Tande, Aaron J; Patel, Robin; Berbari, Elie F

    2015-12-01

    In an effort to improve mobility and alleviate pain from degenerative and connective tissue joint disease, an increasing number of individuals are undergoing prosthetic joint replacement in the United States. Joint replacement is a highly effective intervention, resulting in improved quality of life and increased independence [1]. By 2030, it is predicted that approximately 4 million total hip and knee arthroplasties will be performed yearly in the United States [2]. One of the major complications associated with this procedure is prosthetic joint infection (PJI), occurring at a rate of 1-2% [3-7]. In 2011, the Musculoskeletal Infectious Society created a unifying definition for prosthetic joint infection [8]. The following year, the Infectious Disease Society of America published practice guidelines that focused on the diagnosis and management of PJI. These guidelines focused on the management of commonly encountered organisms associated with PJI, including staphylococci, streptococci and select aerobic Gram-negative bacteria. However, with the exception of Propionibacterium acnes, management of other anaerobic organisms was not addressed in these guidelines [1]. Although making up approximately 3-6% of PJI [9,10], anaerobic microorganisms cause devastating complications, and similar to the more common organisms associated with PJI, these bacteria also result in significant morbidity, poor outcomes and increased health-care costs. Data on diagnosis and management of anaerobic PJI is mostly derived from case reports, along with a few cohort studies [3]. There is a paucity of published data outlining factors associated with risks, diagnosis and management of anaerobic PJI. We therefore reviewed available literature on anaerobic PJI by systematically searching the PubMed database, and collected data from secondary searches to determine information on pathogenesis, demographic data, clinical features, diagnosis and management. We focused our search on five commonly encountered anaerobic organisms associated with PJI. Since anaerobic PJI has also been linked to dental procedures, we also reviewed information on the use of dental procedures and prophylaxis, when available. PMID:26341272

  6. New Joint Sealants. Criteria, Design and Materials.

    ERIC Educational Resources Information Center

    Building Research Inst., Inc., Washington, DC.

    Contents include--(1) sealing concrete joints, (2) sealing glass and metal joints, (3) metal and glass joint sealants from a fabricator's viewpoint, (4) a theory of adhesion for joint sealants, (5) geometry of simple joint seals under strain, (6) joint sealant specifications from a manufacturer's viewpoint, (7) joint sealant requirements from an…

  7. Auditory display of knee-joint vibration signals

    NASA Astrophysics Data System (ADS)

    Krishnan, Sridhar; Rangayyan, Rangaraj M.; Bell, G. Douglas; Frank, Cyril B.

    2001-12-01

    Sounds generated due to rubbing of knee-joint surfaces may lead to a potential tool for noninvasive assessment of articular cartilage degeneration. In the work reported in the present paper, an attempt is made to perform computer-assisted auscultation of knee joints by auditory display (AD) of vibration signals (also known as vibroarthrographic or VAG signals) emitted during active movement of the leg. Two types of AD methods are considered: audification and sonification. In audification, the VAG signals are scaled in time and frequency using a time-frequency distribution to facilitate aural analysis. In sonification, the instantaneous mean frequency and envelope of the VAG signals are derived and used to synthesize sounds that are expected to facilitate more accurate diagnosis than the original signals by improving their aural quality. Auditory classification experiments were performed by two orthopedic surgeons with 37 VAG signals including 19 normal and 18 abnormal cases. Sensitivity values (correct detection of abnormality) of 31%, 44%, and 83%, and overall classification accuracies of 53%, 40%, and 57% were obtained with the direct playback, audification, and sonification methods, respectively. The corresponding d' scores were estimated to be 1.10, -0.36, and 0.55. The high sensitivity of the sonification method indicates that the technique could lead to improved detection of knee-joint abnormalities; however, additional work is required to improve its specificity and achieve better overall performance.

  8. Shoulder Joint For Protective Suit

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Smallcombe, Richard D.

    1994-01-01

    Shoulder joint allows full range of natural motion: wearer senses little or no resisting force or torque. Developed for space suit, joint offers advantages in protective garments for underwater work, firefighting, or cleanup of hazardous materials.

  9. Determination of Parachute Joint Factors using Seam and Joint Testing

    NASA Technical Reports Server (NTRS)

    Mollmann, Catherine

    2015-01-01

    This paper details the methodology for determining the joint factor for all parachute components. This method has been successfully implemented on the Capsule Parachute Assembly System (CPAS) for the NASA Orion crew module for use in determining the margin of safety for each component under peak loads. Also discussed are concepts behind the joint factor and what drives the loss of material strength at joints. The joint factor is defined as a "loss in joint strength...relative to the basic material strength" that occurs when "textiles are connected to each other or to metals." During the CPAS engineering development phase, a conservative joint factor of 0.80 was assumed for each parachute component. In order to refine this factor and eliminate excess conservatism, a seam and joint testing program was implemented as part of the structural validation. This method split each of the parachute structural joints into discrete tensile tests designed to duplicate the loading of each joint. Breaking strength data collected from destructive pull testing was then used to calculate the joint factor in the form of an efficiency. Joint efficiency is the percentage of the base material strength that remains after degradation due to sewing or interaction with other components; it is used interchangeably with joint factor in this paper. Parachute materials vary in type-mainly cord, tape, webbing, and cloth -which require different test fixtures and joint sample construction methods. This paper defines guidelines for designing and testing samples based on materials and test goals. Using the test methodology and analysis approach detailed in this paper, the minimum joint factor for each parachute component can be formulated. The joint factors can then be used to calculate the design factor and margin of safety for that component, a critical part of the design verification process.

  10. Achieving joint benefits from joint implementation

    SciTech Connect

    Moomaw, W.R.

    1995-11-01

    Joint Implementation (JI) appears to have been born with Applied Energy Services Guatemala project in 1988. That project, to plant 52 million trees, protect existing forests from cutting and fire, and enhance rural development, is being implemented by CARE Guatemala to offset 120 per cent of the emissions of a small coal burning power plant that has been built in Connecticut. Since that time, several utilities and governments have initiated additional projects. Not all of these necessarily consist of tree planting in other countries, but may consist of energy efficiency or energy conservation programs designed to reduce carbon emissions by at least as much as the additional releases from a new facility. All JI projects share the characteristic of linking the release of greenhouse gases in an industrial country with an offset that reduces or absorbs a comparable amount in another country. The emitter in the industrial country is willing to pay for the reduction elsewhere because costs are less than they would be at home.

  11. Cellular Pressure-Actuated Joint

    NASA Technical Reports Server (NTRS)

    McGuire, John R.

    2003-01-01

    A modification of a pressure-actuated joint has been proposed to improve its pressure actuation in such a manner as to reduce the potential for leakage of the pressurizing fluid. The specific joint for which the modification is proposed is a field joint in a reusable solid-fuel rocket motor (RSRM), in which the pressurizing fluid is a mixture of hot combustion gases. The proposed modification could also be applicable to other pressure-actuated joints of similar configuration.

  12. Double slotted socket spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2001-05-22

    A new class of spherical joints is disclosed. These spherical joints are capable of extremely large angular displacements (full cone angles in excess of 270.degree.), while exhibiting no singularities or dead spots in their range of motion. These joints can improve or simplify a wide range of mechanical devices.

  13. Phase 1 Program Joint Report

    NASA Technical Reports Server (NTRS)

    Nield, George C. (Editor); Vorobiev, Pavel Mikhailovich (Editor)

    1999-01-01

    This report consists of inputs from each of the Phase I Program Joint Working Groups. The Working Groups were tasked to describe the organizational structure and work processes that they used during the program, joint accomplishments, lessons learned, and applications to the International Space Station Program. This report is a top-level joint reference document that contains information of interest to both countries.

  14. Finger joint injuries.

    PubMed

    Prucz, Roni B; Friedrich, Jeffrey B

    2015-01-01

    Finger joint dislocations and collateral ligament tears are common athletic hand injuries. Treatment of the athlete requires a focus on safe return to play and maximizing function. Certain dislocations, such as proximal interphalangeal and distal interphalangeal volar dislocations, may be associated with tendon injuries and must be treated accordingly. Treatment of other dislocations is ultimately determined by postreduction stability, with many dislocations amenable to nonoperative treatment (ie, immobilization followed by rehabilitation). Protective splinting does not necessarily preclude athletic participation. Minor bone involvement typically does not affect the treatment plan, but significant articular surface involvement may necessitate surgical repair or stabilization. Percutaneous and internal fixation are the mainstays of surgical treatment. Treatment options that do not minimize recovery or allow the patient to return to protected play, such as external fixation, are generally avoided during the season of play. Undertreated joint injuries and unrecognized ligament injuries can result in long term disability. PMID:25455398

  15. Prosthetic elbow joint

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce C. (Inventor)

    1994-01-01

    An artificial, manually positionable elbow joint for use in an upper extremity, above-elbow, prosthetic is described. The prosthesis provides a locking feature that is easily controlled by the wearer. The instant elbow joint is very strong and durable enough to withstand the repeated heavy loadings encountered by a wearer who works in an industrial, construction, farming, or similar environment. The elbow joint of the present invention comprises a turntable, a frame, a forearm, and a locking assembly. The frame generally includes a housing for the locking assembly and two protruding ears. The forearm includes an elongated beam having a cup-shaped cylindrical member at one end and a locking wheel having a plurality of holes along a circular arc on its other end with a central bore for pivotal attachment to the protruding ears of the frame. The locking assembly includes a collar having a central opening with a plurality of internal grooves, a plurality of internal cam members each having a chamfered surface at one end and a V-shaped slot at its other end; an elongated locking pin having a crown wheel with cam surfaces and locking lugs secured thereto; two coiled compression springs; and a flexible filament attached to one end of the elongated locking pin and extending from the locking assembly for extending and retracting the locking pin into the holes in the locking wheel to permit selective adjustment of the forearm relative to the frame. In use, the turntable is affixed to the upper arm part of the prosthetic in the conventional manner, and the cup-shaped cylindrical member on one end of the forearm is affixed to the forearm piece of the prosthetic in the conventional manner. The elbow joint is easily adjusted and locked between maximum flex and extended positions.

  16. Temporomandibular joint dislocation

    PubMed Central

    Sharma, Naresh Kumar; Singh, Akhilesh Kumar; Pandey, Arun; Verma, Vishal; Singh, Shreya

    2015-01-01

    Temporomandibular joint (TMJ) dislocation is an uncommon but debilitating condition of the facial skeleton. The condition may be acute or chronic. Acute TMJ dislocation is common in clinical practice and can be managed easily with manual reduction. Chronic recurrent TMJ dislocation is a challenging situation to manage. In this article, we discuss the comprehensive review of the different treatment modalities in managing TMJ dislocation. PMID:26668447

  17. Nonarthritic hip joint pain.

    PubMed

    Enseki, Keelan; Harris-Hayes, Marcie; White, Douglas M; Cibulka, Michael T; Woehrle, Judith; Fagerson, Timothy L; Clohisy, John C

    2014-06-01

    The Orthopaedic Section of the American Physical Therapy Association (APTA) has an ongoing effort to create evidence-based practice guidelines for orthopaedic physical therapy management of patients with musculoskeletal impairments described in the World Health Organization's International Classification of Functioning, Disability, and Health (ICF). The purpose of these clinical practice guidelines is to describe the peer-reviewed literature and make recommendations related to nonarthritic hip joint pain. PMID:24881906

  18. Optimized bolted joint

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.; Bunin, B. L.; Watts, D. J. (inventors)

    1986-01-01

    A method is disclosed for joining segments of the skin of an aircraft. The ends of the skin are positioned in close proximity or abutt each other. The skin is of constant thickness throughout the joint and is sandwiched between splice plates, which taper in thickness from the last to the first bolt rows in order to reduce the stiffness of the splice plate and thereby reduce the load transfer at the location where bypass loads are the highest.

  19. Dynamic characteristics analysis of deployable space structures considering joint clearance

    NASA Astrophysics Data System (ADS)

    Li, Tuanjie; Guo, Jian; Cao, Yuyan

    2011-04-01

    The clearance in joints influences the dynamic stability and the performance of deployable space structures (DSS). A virtual experimental modal analysis (VEMA) method is proposed to deal with the effects of joint clearance and link flexibility on the dynamic characteristics of the DSS in this paper. The focus is on the finite element modeling of the clearance joint, VEMA and the modal parameters identification of the DSS. The finite element models (FEM) of the clearance joint and the deployable structure are established in ANSYS. The transient dynamic analysis is conducted to provide the time history data of excitation and response for the VEMA. The fast Fourier transform (FFT) technique is used to transform the data from time domain to frequency domain. The frequency response function is calculated to identify the modal parameters of the deployable structure. Experimental verification is provided to indicate the VEMA method is both a cost and time efficient approach to obtain the dynamic characteristics of the DSS. Finally, we analyze the effects of clearance size and gravity on the dynamic characteristics of the DSS. The analysis results indicate that the joint clearance and gravity strongly influence the dynamic characteristics of the DSS.

  20. Formation of tough composite joints

    SciTech Connect

    Brun, M.K.

    1997-05-01

    Joints which exhibit tough fracture behavior were formed in a composite with a Si/SiC matrix reinforced with Textron SCS-6 fibers with either boron nitride or silicon nitride fiber coatings. In composites with BN coatings fibers were aligned uniaxially, while composites with Si{sub 3}N{sub 4}-coated fibers had a 0/90{degree} architecture. Lapped joints (joints with overlapping fingers) were necessary to obtain tough behavior. Geometrical requirements necessary to avoid brittle joint failure have been proposed. Joints with a simple overlap geometry (only a few fingers) would have to be very long in order to prevent brittle failure. Typical failure in these joints is caused by a crack propagating along the interfaces between the joint fingers. Joints of the same overall length, but with geometry changed to be symmetric about the joint centerline and with an extra shear surface exhibited tough fractures accompanied with extensive fiber pullout. The initial matrix cracking of these joints was relatively low because cracks propagated easily through the ends of the fingers. Joints with an optimized stepped sawtooth geometry produced composite-like failures with the stress/strain curves containing an elastic region followed by a region of rising stress with an increase of strain. Increasing the fiber/matrix interfacial strength from 9 to 25 MPa, by changing the fiber coating, increased matrix cracking and ultimate strength of the composite significantly. The best joints had matrix cracking stress and ultimate strength of 138 and 240 MPa, respectively. Joint failure was preceded by multiple matrix cracking in the entire composite. The high strength of the joints will permit building of structures containing joints with only a minor reduction of design stresses.

  1. Domains and Naive Theories

    PubMed Central

    Gelman, Susan A.; Noles, Nicholaus S.

    2013-01-01

    Human cognition entails domain-specific cognitive processes that influence memory, attention, categorization, problem-solving, reasoning, and knowledge organization. This review examines domain-specific causal theories, which are of particular interest for permitting an examination of how knowledge structures change over time. We first describe the properties of commonsense theories, and how commonsense theories differ from scientific theories, illustrating with children’s classification of biological and non-biological kinds. We next consider the implications of domain-specificity for broader issues regarding cognitive development and conceptual change. We then examine the extent to which domain-specific theories interact, and how people reconcile competing causal frameworks. Future directions for research include examining how different content domains interact, the nature of theory change, the role of context (including culture, language, and social interaction) in inducing different frameworks, and the neural bases for domain-specific reasoning. PMID:24187603

  2. Formation of tough composite joints

    SciTech Connect

    Brun, M.K.

    1998-12-01

    Joints that exhibited tough fracture behavior were formed in a Si/SiC matrix reinforced with Textron SCS-6 fibers with either boron nitride or silicon nitride fiber coatings. Lapped joints (joints with overlapping fingers) were necessary to obtain tough behavior. Geometrical requirements necessary to avoid brittle joint failure were proposed. Joints with a simple overlap geometry (only a few fingers) had to be very long in order to prevent brittle failure. Joints with an optimized stepped sawtooth geometry produced composite-like failures with the stress/strain curves containing an elastic region followed by a region of rising stress with an increase of strain. Increasing the fiber/matrix interfacial strength, by changing the fiber coating, significantly increased matrix cracking and ultimate strength of the joints. The best joints had matrix cracking stress and ultimate strength of 138 and 240 MPa, respectively. Joint failure was preceded by multiple matrix cracking in the entire composite. The high strength of the joints should permit building of structures containing joints with only a minor reduction of design stresses.

  3. Laboratory characterization of rock joints

    SciTech Connect

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A.

    1994-05-01

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed.

  4. Learning and Domain Adaptation

    NASA Astrophysics Data System (ADS)

    Mansour, Yishay

    Domain adaptation is a fundamental learning problem where one wishes to use labeled data from one or several source domains to learn a hypothesis performing well on a different, yet related, domain for which no labeled data is available. This generalization across domains is a very significant challenge for many machine learning applications and arises in a variety of natural settings, including NLP tasks (document classification, sentiment analysis, etc.), speech recognition (speakers and noise or environment adaptation) and face recognition (different lighting conditions, different population composition).

  5. Visualizing domain wall and reverse domain superconductivity

    NASA Astrophysics Data System (ADS)

    Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.

    2014-08-01

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  6. 17 CFR 300.105 - Joint accounts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Joint accounts. 300.105... Customers of Sipc Members 300.105 Joint accounts. (a) A joint account shall be deemed to be a qualifying joint account if it is owned jointly, whether by the owners thereof as joint tenants with the right...

  7. 49 CFR 213.351 - Rail joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Rail joints. 213.351 Section 213.351... Rail joints. (a) Each rail joint, insulated joint, and compromise joint shall be of a structurally sound design and dimensions for the rail on which it is applied. (b) If a joint bar is cracked,...

  8. 17 CFR 300.105 - Joint accounts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Joint accounts. 300.105... Customers of Sipc Members 300.105 Joint accounts. (a) A joint account shall be deemed to be a qualifying joint account if it is owned jointly, whether by the owners thereof as joint tenants with the right...

  9. 49 CFR 213.351 - Rail joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Rail joints. 213.351 Section 213.351... Rail joints. (a) Each rail joint, insulated joint, and compromise joint shall be of a structurally sound design and dimensions for the rail on which it is applied. (b) If a joint bar is cracked,...

  10. 49 CFR 213.351 - Rail joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Rail joints. 213.351 Section 213.351... Rail joints. (a) Each rail joint, insulated joint, and compromise joint shall be of a structurally sound design and dimensions for the rail on which it is applied. (b) If a joint bar is cracked,...

  11. 17 CFR 300.105 - Joint accounts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Joint accounts. 300.105... Customers of Sipc Members 300.105 Joint accounts. (a) A joint account shall be deemed to be a qualifying joint account if it is owned jointly, whether by the owners thereof as joint tenants with the right...

  12. 17 CFR 300.105 - Joint accounts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Joint accounts. 300.105... Customers of Sipc Members 300.105 Joint accounts. (a) A joint account shall be deemed to be a qualifying joint account if it is owned jointly, whether by the owners thereof as joint tenants with the right...

  13. 49 CFR 213.351 - Rail joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Rail joints. 213.351 Section 213.351... Rail joints. (a) Each rail joint, insulated joint, and compromise joint shall be of a structurally sound design and dimensions for the rail on which it is applied. (b) If a joint bar is cracked,...

  14. 49 CFR 213.351 - Rail joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Rail joints. 213.351 Section 213.351... Rail joints. (a) Each rail joint, insulated joint, and compromise joint shall be of a structurally sound design and dimensions for the rail on which it is applied. (b) If a joint bar is cracked,...

  15. 17 CFR 300.105 - Joint accounts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Joint accounts. 300.105... Customers of Sipc Members 300.105 Joint accounts. (a) A joint account shall be deemed to be a qualifying joint account if it is owned jointly, whether by the owners thereof as joint tenants with the right...

  16. Nanotechnology in joint replacement.

    PubMed

    Torrecillas, Ramn; Moya, Jos S; Daz, Luis A; Bartolom, Jos F; Fernndez, Adolfo; Lopez-Esteban, Sonia

    2009-01-01

    This paper reviews the most relevant achievements and new developments in the field of nanomaterials and their possible impact on the fabrication of a new generation of reliable and longer lasting implants for joint replacement. Special emphasis is given to the role of nanocomposites with different microstructural designs: micro-nano composites, nano-nano composites, macro-micro-nano composites as well as bioinspired hierarchical composite materials. These nanostructured materials have opened up an exciting avenue in the design of non-metallic biocompatible, crack growth resistant, tough, and mechanically resistant implants with a lifespan close to the life expectancy of the patients. PMID:20049816

  17. Osteoarthritis: The Peripheral Joints

    PubMed Central

    Robinson, Harold S.

    1981-01-01

    Understanding of osteoarthritis has increased: the simplistic wear and tear concept no longer holds and this has positive clinical implications. A parallel development has taken place in treatment techniques: there is increasing expertise in the use of physical measures and in new orthopedic reconstructive surgical approaches to multiple joints. This gives the physician alternative approaches to the patient with painful and disabling osteoarthritis. The timing of these treatment options and some considerations which lead to orthopedic referral are considered in this general discussion. Imagesp285-aFig. 1Fig. 2Fig. 3 PMID:20469342

  18. Bladder operated robotic joint

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (inventor)

    1993-01-01

    This invention is a robotic joint which is operated by inflatable bladders and which can be used in applications where it is desired to move or hold an object. A support block supports an elongated plate to which is pivotally attached a finger. A tension strip passes over a lever attached to the finger and is attached at its ends to the support block on opposite sides of the plate. Bladders positioned between the plate and the tension strip on opposite sides of the plate can be inflated by pumps to pivot the finger, with one of the bladders being inflated while the other is being deflated.

  19. Just how joint is joint action in infancy?

    PubMed

    Carpenter, Malinda

    2009-04-01

    Joint action is central to countless aspects of human life. Here I examine the roots of joint action in infancy. First, I provide evidence that-contrary to popular belief-1-year-old infants do have the social-cognitive prerequisites needed to participate in joint action, even in a relatively strict sense: they can read others' goals and intentions, they have some basic understanding of common knowledge, and they have the ability and motivation to help others achieve their goals. Then I review some evidence of infants' and young children's active participation in different types of joint action, from prelinguistic communication to more instrumental collaborations with others, with a particular focus on whether young children show evidence of an understanding of the commitments and obligations entailed in joint action. I conclude that the uniquely human ability and motivation to participate in joint action is already seen in infants by 1 year of age. PMID:25164940

  20. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  1. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the

  2. Domain wall filters

    SciTech Connect

    Baer, Oliver; Narayanan, Rajamani; Neuberger, Herbert; Witzel, Oliver

    2007-03-15

    We propose using the extra dimension separating the domain walls carrying lattice quarks of opposite handedness to gradually filter out the ultraviolet fluctuations of the gauge fields that are felt by the fermionic excitations living in the bulk. This generalization of the homogeneous domain wall construction has some theoretical features that seem nontrivial.

  3. Joint-sparing Corrections in Malunited Lisfranc Joint Injuries.

    PubMed

    Nery, Caio; Raduan, Fernando; Baumfeld, Daniel

    2016-03-01

    Lisfranc fracture-dislocations are very serious and potentially disabling injuries. Unfortunately, they are often misdiagnosed. Multiplanar midfoot deformities that result from these fracture-dislocations are precursors of joint degeneration and significant functional disabilities. Anatomic reduction with different types of internal fixation is an efficient method to reconstruct midfoot alignment and stability. Joint-preserving reconstruction techniques emerge as a viable alternative to corrective fusion as they achieve stable joint realignment with preserved motion. PMID:26915786

  4. Joint attention studies in normal and autistic children using NIRS

    NASA Astrophysics Data System (ADS)

    Chaudhary, Ujwal; Hall, Michael; Gutierrez, Anibal; Messinger, Daniel; Rey, Gustavo; Godavarty, Anuradha

    2011-03-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic. In this study Near infrared spectroscopy (NIRS) is being applied for the first time to study the difference in activation and connectivity in the frontal cortex of typically developing (TD) and autistic children between 4-8 years of age in response to joint attention task. The optical measurements are acquired in real time from frontal cortex using Imagent (ISS Inc.) - a frequency domain based NIRS system in response to video clips which engenders a feeling of joint attention experience in the subjects. A block design consisting of 5 blocks of following sequence 30 sec joint attention clip (J), 30 sec non-joint attention clip (NJ) and 30 sec rest condition is used. Preliminary results from TD child shows difference in brain activation (in terms of oxy-hemoglobin, HbO) during joint attention interaction compared to the nonjoint interaction and rest. Similar activation study did not reveal significant differences in HbO across the stimuli in, unlike in an autistic child. Extensive studies are carried out to validate the initial observations from both brain activation as well as connectivity analysis. The result has significant implication for research in neural pathways associated with autism that can be mapped using NIRS.

  5. Use of time-frequency analysis to investigate temporal patterns of cardiac autonomic response during head-up tilt in chronic fatigue syndrome.

    PubMed

    Yoshiuchi, Kazuhiro; Quigley, Karen S; Ohashi, Kyoko; Yamamoto, Yoshiharu; Natelson, Benjamin H

    2004-06-30

    Although a number of studies have reported alterations in cardiac autonomic nervous system function in chronic fatigue syndrome (CFS), the results are not consistent across studies. Reasons for these discrepancies include (1) the use of a heterogeneous patient sample that included those with orthostatic postural tachycardia (POTS), a condition with an autonomic changes, and (2) the use of frequency domain techniques which require a stationary signal and averaging data across relatively long epochs. To deal with these shortcomings, we used the smoothed pseudo-Wigner-Ville transform (SPWVT) to analyze heart rate variability (HRV) and blood pressure variability (BPV) during head-up tilt (HUT) by separating CFS patients into those with and without POTS. SPWVT has the advantage of providing instantaneous information about autonomic function under nonstable physiological conditions. We studied 18 CFS patients without POTS, eight CFS patients with POTS and 25 sedentary healthy controls during supine rest and during the first 10 min after HUT. While we found significant effects of postural change in both groups for all autonomic variables, there were significant group x time interactions between CFS without POTS and controls for only instant center frequency (ICF) within the low frequency region both from HRV (p=0.02) and from BPV (p=0.01). Although the physiological meaning of ICF still remains unknown, the data suggest that even CFS patients without POTS may have a subtle underlying disturbance in autonomic function. PMID:15296795

  6. Joint-Sparing Corrections of Malunited Chopart Joint Injuries.

    PubMed

    Schneiders, Wolfgang; Rammelt, Stefan

    2016-03-01

    Treatment of malunion and nonunion at the Chopart joint aims at axial realignment of the midfoot to the hindfoot and restoration of the normal relationship of the lateral and medial columns of the foot. In carefully selected patients with intact cartilage, joint-preserving osteotomies are feasible at all 4 bony components of the Chopart joint to restore near-normal function. Priority should be given to the anatomic reconstruction of the talonavicular joint because it is essential for global foot function. Patients must be counseled about the risk of progressive arthritis or osteonecrosis necessitating late fusion. PMID:26915785

  7. On representations for joint moments using a joint coordinate system.

    PubMed

    O'Reilly, Oliver M; Sena, Mark P; Feeley, Brian T; Lotz, Jeffrey C

    2013-11-01

    In studies of the biomechanics of joints, the representation of moments using the joint coordinate system has been discussed by several authors. The primary purpose of this technical brief is to emphasize that there are two distinct, albeit related, representations for moment vectors using the joint coordinate system. These distinct representations are illuminated by exploring connections between the Euler and dual Euler bases, the "nonorthogonal projections" presented in a recent paper by Desroches et al. (2010, "Expression of Joint Moment in the Joint Coordinate System," ASME J. Biomech. Eng., 132(11), p. 11450) and seminal works by Grood and Suntay (Grood and Suntay, 1983, "A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee," ASME J. Biomech. Eng., 105(2), pp. 136-144) and Fujie et al. (1996, "Forces and Moment in Six-DOF at the Human Knee Joint: Mathematical Description for Control," Journal of Biomechanics, 29(12), pp. 1577-1585) on the knee joint. It is also shown how the representation using the dual Euler basis leads to straightforward definition of joint stiffnesses. PMID:24008987

  8. Joint collaborative technology experiment

    NASA Astrophysics Data System (ADS)

    Wills, Michael; Ciccimaro, Donny; Yee, See; Denewiler, Thomas; Stroumtsos, Nicholas; Messamore, John; Brown, Rodney; Skibba, Brian; Clapp, Daniel; Wit, Jeff; Shirts, Randy J.; Dion, Gary N.; Anselmo, Gary S.

    2009-05-01

    Use of unmanned systems is rapidly growing within the military and civilian sectors in a variety of roles including reconnaissance, surveillance, explosive ordinance disposal (EOD), and force-protection and perimeter security. As utilization of these systems grows at an ever increasing rate, the need for unmanned systems teaming and inter-system collaboration becomes apparent. Collaboration provides a means of enhancing individual system capabilities through relevant data exchange that contributes to cooperative behaviors between systems and enables new capabilities not possible if the systems operate independently. A collaborative networked approach to development holds the promise of adding mission capability while simultaneously reducing the workload of system operators. The Joint Collaborative Technology Experiment (JCTE) joins individual technology development efforts within the Air Force, Navy, and Army to demonstrate the potential benefits of interoperable multiple system collaboration in a force-protection application. JCTE participants are the Air Force Research Laboratory, Materials and Manufacturing Directorate, Airbase Technologies Division, Force Protection Branch (AFRL/RXQF); the Army Aviation and Missile Research, Development, and Engineering Center Software Engineering Directorate (AMRDEC SED); and the Space and Naval Warfare Systems Center - Pacific (SSC Pacific) Unmanned Systems Branch operating with funding provided by the Joint Ground Robotics Enterprise (JGRE). This paper will describe the efforts to date in system development by the three partner organizations, development of collaborative behaviors and experimentation in the force-protection application, results and lessons learned at a technical demonstration, simulation results, and a path forward for future work.

  9. Jointly Sponsored Research Program

    SciTech Connect

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  10. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  11. Strength of Welded Aircraft Joints

    NASA Technical Reports Server (NTRS)

    Brueggeman, W C

    1937-01-01

    This investigation is a continuation of work started in 1928 and described in NACA-TR-348 which shows that the insertion of gusset plates was the most satisfactory way of strengthening a joint. Additional tests of the present series show that joints of this type could be improved by cutting out the portion of the plate between the intersecting tubes. T and lattice joints in thin-walled tubing 1 1/2 by 0.020 inch have somewhat lower strengths than joints in tubing of greater wall thickness because of failure by local buckling. In welding the thin-walled tubing, the recently developed "carburizing flux" process was found to be the only method capable of producing joints free from cracks. The "magnetic powder" inspection was used to detect cracks in the joints and flaws in the tubing.

  12. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, John V. (Livonia, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1991-01-01

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  13. Ball-joint grounding ring

    NASA Technical Reports Server (NTRS)

    Aperlo, P. J. A.; Buck, P. A.; Weldon, V. A.

    1981-01-01

    In ball and socket joint where electrical insulator such as polytetrafluoroethylene is used as line to minimize friction, good electrical contact across joint may be needed for lightning protection or to prevent static-charge build-up. Electrical contact is maintained by ring of spring-loaded fingers mounted in socket. It may be useful in industry for cranes, trailers, and other applications requiring ball and socket joint.

  14. OIG targets contractual joint ventures.

    PubMed

    O'Hare, Patrick K

    2003-09-01

    A recent OIG Special Advisory Bulletin raises questions for providers involved in joint ventures. The Bulletin describes several characteristics that the OIG views as potentially suspect, including a referral stream controlled by the provider initiating the joint venture and the use of a wholly owned subsidiary of the provider to bill and collect for services. According to the OIG, profits paid by the subsidiary to the provider owner in such "suspect contractual joint ventures" could constitute illegal remuneration for referrals. PMID:14503145

  15. Imaging of the subtalar joint.

    PubMed

    Lopez-Ben, Robert

    2015-06-01

    Imaging of the subtalar joint can be challenging because of its complex planar anatomy. This article reviews the anatomy and common anatomic variants as seen with different imaging techniques. Although radiography remains the initial mode of imaging, computed tomography and MRI are frequently needed to better delineate the joint anatomy and improve the sensitivity and the specificity of detection of joint pathology. A short review of arthrographic techniques and various examples of imaging of common pathology involving this joint are also included. PMID:26043240

  16. Rotary Joint for Heat Transfer

    NASA Technical Reports Server (NTRS)

    Shauback, R.

    1986-01-01

    Rotary joint exchanges heat between two heat pipes - one rotating and one stationary. Joint accommodates varying heat loads with little temperature drop across interface. According to concept, heat pipe enters center of disklike stationary section of joint. There, wicks in central artery of heat pipe separate into multiple strands that lead to concentric channels on rotaryinterface side of stationary disk. Thin layer of liquid sodium/potassium alloy carries heat from one member of rotary joint to other. Liquid conducts heat efficiently while permitting relative motion between members. Polypropylene rings contain liquid without interfering with rotation.

  17. Disorders of the sacroiliac joint.

    PubMed

    Sizer, Phillip S; Phelps, Valerie; Thompsen, Kirk

    2002-03-01

    Controversies have surrounded the sacroiliac joint. The sacroiliac joint (SIJ) is a considerably complex and strong joint with limited mobility, mechanically serving as a force transducer and a shock absorber. Anatomical changes are seen in the SIJ throughout an individual's lifetime. The ligamentous system associated with the SIJ serves to enhance stability and offer proprioceptive feedback in context with the rich plexus of articular receptors. Stability in the SIJ is related to form and force closure. Movement in the SIJ is 3-D about an axis outside of the joint. The functional examination of the SIJ is related to a clinical triad. PMID:17134467

  18. Interpolation function for approximating knee joint behavior in human gait

    NASA Astrophysics Data System (ADS)

    Toth-Ta?c?u, Mirela; Pater, Flavius; Stoia, Dan Ioan

    2013-10-01

    Starting from the importance of analyzing the kinematic data of the lower limb in gait movement, especially the angular variation of the knee joint, the paper propose an approximation function that can be used for processing the correlation among a multitude of knee cycles. The approximation of the raw knee data was done by Lagrange polynomial interpolation on a signal acquired using Zebris Gait Analysis System. The signal used in approximation belongs to a typical subject extracted from a lot of ten investigated subjects, but the function domain of definition belongs to the entire group. The study of the knee joint kinematics plays an important role in understanding the kinematics of the gait, this articulation having the largest range of motion in whole joints, in gait. The study does not propose to find an approximation function for the adduction-abduction movement of the knee, this being considered a residual movement comparing to the flexion-extension.

  19. Joint shape morphogenesis precedes cavitation of the developing hip joint

    PubMed Central

    Nowlan, Niamh C; Sharpe, James

    2014-01-01

    The biology and mechanobiology of joint cavitation have undergone extensive investigation, but we have almost no understanding of the development of joint shape. Joint morphogenesis, the development of shape, has been identified as the ‘least understood aspect of joint formation’ (2005, Birth Defects Res C Embryo Today 75, 237), despite the clinical relevance of shape morphogenesis to postnatal skeletal malformations such as developmental dysplasia of the hip. In this study, we characterise development of early hip joint shape in the embryonic chick using direct capture 3D imaging. Contrary to formerly held assumptions that cavitation precedes morphogenesis in joint development, we have found that the major anatomical features of the adult hip are present at Hamburger Hamilton (HH)32, a full day prior to cavitation of the joint at HH34. We also reveal that the pelvis undergoes significant changes in orientation with respect to the femur, despite the lack of a joint cavity between the rudiments. Furthermore, we have identified the appearance of the ischium and pubis several developmental stages earlier than was previously reported, illustrating the value and importance of direct capture 3D imaging. PMID:24266523

  20. Joint shape morphogenesis precedes cavitation of the developing hip joint.

    PubMed

    Nowlan, Niamh C; Sharpe, James

    2014-04-01

    The biology and mechanobiology of joint cavitation have undergone extensive investigation, but we have almost no understanding of the development of joint shape. Joint morphogenesis, the development of shape, has been identified as the 'least understood aspect of joint formation' (2005, Birth Defects Res C Embryo Today 75, 237), despite the clinical relevance of shape morphogenesis to postnatal skeletal malformations such as developmental dysplasia of the hip. In this study, we characterise development of early hip joint shape in the embryonic chick using direct capture 3D imaging. Contrary to formerly held assumptions that cavitation precedes morphogenesis in joint development, we have found that the major anatomical features of the adult hip are present at Hamburger Hamilton (HH)32, a full day prior to cavitation of the joint at HH34. We also reveal that the pelvis undergoes significant changes in orientation with respect to the femur, despite the lack of a joint cavity between the rudiments. Furthermore, we have identified the appearance of the ischium and pubis several developmental stages earlier than was previously reported, illustrating the value and importance of direct capture 3D imaging. PMID:24266523

  1. Smart material joint band

    NASA Astrophysics Data System (ADS)

    Tucchio, Michael A.; Stoodt, Robert A.; Livsey, Robert A.

    1993-12-01

    The present invention relates to an improved connector for joining two tubular members together. The connector is formed by a plurality of longitudinally extending fingers extending from an end of one of the tubular members and at least one locking groove in the other of the tubular members for receiving the fingers. The connector further includes a circumferentially extending wire member which is received in a notch in a head portion of each of the plurality of fingers. The wire member is preferably formed from a shape memory alloy and has an original circumference less than the circumference of a circle formed by the notches in the head portions of the fingers. The connector includes apertures through which electric wires may be connected to the shape memory alloy ring member so as to cause the shape memory alloy ring member to return to its original shape and allow release of the joint connection.

  2. Smart material joint band

    NASA Astrophysics Data System (ADS)

    Tucchio, Michael A.; Stoodt, Robert A.; Livsey, Robert A.

    1994-11-01

    The present invention relates to an improved connector for joining two tubular members together. The connector is formed by a plurality of longitudinally extending fingers extending from an end of one of tubular members and at least one locking groove in the other of the tubular members for receiving the fingers. The connector further includes a circumferentially extending wire member which is received in a notch in a head portion of each of the plurality of fingers. The wire member is preferably formed from a shape memory alloy and has an original circumference less than the circumference of a circle formed by the notches in a head portions of the fingers. The connector includes apertures through which electric wires may be connected to the shape memory alloy ring member so as to cause the shape memory alloy ring member to return to its original shape and allow release of the joint connection.

  3. Corynebacterium Prosthetic Joint Infection

    PubMed Central

    Cazanave, Charles; Greenwood-Quaintance, Kerryl E.; Hanssen, Arlen D.

    2012-01-01

    Identification of Corynebacterium species may be challenging. Corynebacterium species are occasional causes of prosthetic joint infection (PJI), but few data are available on the subject. Based on the literature, C. amycolatum, C. aurimucosum, C. jeikeium, and C. striatum are the most common Corynebacterium species that cause PJI. We designed a rapid PCR assay to detect the most common human Corynebacterium species, with a specific focus on PJI. A polyphosphate kinase gene identified using whole-genome sequence was targeted. The assay differentiates the antibiotic-resistant species C. jeikeium and C. urealyticum from other species in a single assay. The assay was applied to a collection of human Corynebacterium isolates from multiple clinical sources, and clinically relevant species were detected. The assay was then tested on Corynebacterium isolates specifically associated with PJI; all were detected. We also describe the first case of C. simulans PJI. PMID:22337986

  4. Slip joint connector

    NASA Technical Reports Server (NTRS)

    Thomas, Frank P. (inventor)

    1994-01-01

    A slip joint connector for joining first and second structural elements together is presented. The connector has a first body member attachable to the first structural element and a second body member attachable to the second structural element. The first body member has a male protuberance including a conical portion and the second body member has a conical receptacle for cooperatively receiving the conical portion of the protuberance. The protuberance includes a bridging portion for spacing the conical portion from the remainder of the first body member and the second body member has a well communicating with the conical receptacle for receiving the bridging portion. The conical male portion internally carries a nut while the second body member may receive a bolt through the receptacle to be threadedly received by the nut to secure the first and second body members tightly together.

  5. Visualizing Knowledge Domains.

    ERIC Educational Resources Information Center

    Borner, Katy; Chen, Chaomei; Boyack, Kevin W.

    2003-01-01

    Reviews visualization techniques for scientific disciplines and information retrieval and classification. Highlights include historical background of scientometrics, bibliometrics, and citation analysis; map generation; process flow of visualizing knowledge domains; measures and similarity calculations; vector space model; factor analysis;…

  6. Joint Interdisciplinary Earth Science Information Center

    NASA Technical Reports Server (NTRS)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  7. Surrogate modeling of deformable joint contact using artificial neural networks.

    PubMed

    Eskinazi, Ilan; Fregly, Benjamin J

    2015-09-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. PMID:26220591

  8. Joint Statement on School Health.

    ERIC Educational Resources Information Center

    Riley, Richard W.; Shalala, Donna E.

    1994-01-01

    Recognizing a fundamental relationship between health and education, the Secretaries of Education and Health and Human Services issued a joint statement on school health in 1994 that underscored the cooperation between departments in efforts to improve child health. After describing the partnership, the article prints the one-page joint statement.

  9. Robotic joint experiments under ultravacuum

    NASA Technical Reports Server (NTRS)

    Borrien, A.; Petitjean, L.

    1988-01-01

    First, various aspects of a robotic joint development program, including gearbox technology, electromechanical components, lubrication, and test results, are discussed. Secondly, a test prototype of the joint allowing simulation of robotic arm dynamic effects is presented. This prototype is tested under vacuum with different types of motors and sensors to characterize the functional parameters: angular position error, mechanical backlash, gearbox efficiency, and lifetime.

  10. Exercise and the Knee Joint.

    ERIC Educational Resources Information Center

    Clarke, H. Harrison, Ed.

    1976-01-01

    This report by the President's Council on Physical Fitness and Sports examines the effects of various forms of physical exercise on the knee joint which, because of its vulnerability, is especially subject to injury. Discussion centers around the physical characteristics of the joint, commonly used measurements for determining knee stability,

  11. Method of forming a joint

    DOEpatents

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-08-22

    A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.

  12. Shock transmissibility of threaded joints

    SciTech Connect

    Hansen, N.R.; Bateman, V.I.; Brown, F.A.

    1996-12-31

    Sandia National Laboratories (SNL) designs mechanical systems with threaded joints that must survive high shock environments. These mechanical systems include penetrators that must survive soil and rock penetration; drilling pipe strings that must survive rock-cutting, shock environments; and laydown weapons that must survive delivery impact shock. This paper summarizes an analytical study and an experimental evaluation of compressive, one-dimensional, shock transmission through a threaded joint in a split Hopkinson bar configuration. Thread geometries were scaled to simulate large diameter threaded joints with loadings parallel to the axis of the threads. Both strain and acceleration were evaluated with experimental measurements and analysis. Analytical results confirm the experimental conclusions that in this split Hopkinson bar configuration, the change in the one-dimensional shock wave by the threaded joint is localized to a length equal to a few diameters` length beyond the threaded joint.

  13. Space Station alpha joint bearing

    NASA Technical Reports Server (NTRS)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  14. 14 CFR 27.935 - Shafting joints.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Shafting joints. 27.935 Section 27.935... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System 27.935 Shafting joints. Each universal joint, slip joint, and other shafting joints whose lubrication is necessary for operation must...

  15. 14 CFR 27.935 - Shafting joints.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Shafting joints. 27.935 Section 27.935... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System 27.935 Shafting joints. Each universal joint, slip joint, and other shafting joints whose lubrication is necessary for operation must...

  16. 14 CFR 29.935 - Shafting joints.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Shafting joints. 29.935 Section 29.935... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System 29.935 Shafting joints. Each universal joint, slip joint, and other shafting joints whose lubrication is necessary for operation...

  17. 37 CFR 1.45 - Joint inventors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Joint inventors. 1.45 Section... Patent 1.45 Joint inventors. (a) Joint inventors must apply for a patent jointly and each must make the... joint application under 35 U.S.C. 116. If multiple inventors are named in a provisional...

  18. 37 CFR 1.45 - Joint inventors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Joint inventors. 1.45 Section... Patent 1.45 Joint inventors. (a) Joint inventors must apply for a patent jointly and each must make the... joint application under 35 U.S.C. 116. If multiple inventors are named in a provisional...

  19. 37 CFR 1.45 - Joint inventors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Joint inventors. 1.45 Section... Patent 1.45 Joint inventors. (a) Joint inventors must apply for a patent jointly and each must make the... joint application under 35 U.S.C. 116. If multiple inventors are named in a provisional...

  20. 14 CFR 29.935 - Shafting joints.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Shafting joints. 29.935 Section 29.935... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System 29.935 Shafting joints. Each universal joint, slip joint, and other shafting joints whose lubrication is necessary for operation...

  1. 14 CFR 27.935 - Shafting joints.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Shafting joints. 27.935 Section 27.935... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System 27.935 Shafting joints. Each universal joint, slip joint, and other shafting joints whose lubrication is necessary for operation must...

  2. 20 CFR 410.645 - Joint hearings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Joint hearings. 410.645 Section 410.645..., Finality of Decisions, and Representation of Parties 410.645 Joint hearings. When two or more hearings... joint hearing, a joint hearing may not be held. Where joint hearings are held, a single record of...

  3. 14 CFR 29.935 - Shafting joints.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Shafting joints. 29.935 Section 29.935... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System 29.935 Shafting joints. Each universal joint, slip joint, and other shafting joints whose lubrication is necessary for operation...

  4. 14 CFR 27.935 - Shafting joints.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Shafting joints. 27.935 Section 27.935... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System 27.935 Shafting joints. Each universal joint, slip joint, and other shafting joints whose lubrication is necessary for operation must...

  5. 14 CFR 29.935 - Shafting joints.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Shafting joints. 29.935 Section 29.935... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System 29.935 Shafting joints. Each universal joint, slip joint, and other shafting joints whose lubrication is necessary for operation...

  6. 14 CFR 29.935 - Shafting joints.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Shafting joints. 29.935 Section 29.935... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System 29.935 Shafting joints. Each universal joint, slip joint, and other shafting joints whose lubrication is necessary for operation...

  7. 14 CFR 27.935 - Shafting joints.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Shafting joints. 27.935 Section 27.935... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System 27.935 Shafting joints. Each universal joint, slip joint, and other shafting joints whose lubrication is necessary for operation must...

  8. Domains in Ferroelectric Nanostructures

    NASA Astrophysics Data System (ADS)

    Gregg, Marty

    2010-03-01

    Ferroelectric materials have great potential in influencing the future of small scale electronics. At a basic level, this is because ferroelectric surfaces are charged, and so interact strongly with charge-carrying metals and semiconductors - the building blocks for all electronic systems. Since the electrical polarity of the ferroelectric can be reversed, surfaces can both attract and repel charges in nearby materials, and can thereby exert complete control over both charge distribution and movement. It should be no surprise, therefore, that microelectronics industries have already looked very seriously at harnessing ferroelectric materials in a variety of applications, from solid state memory chips (FeRAMs) to field effect transistors (FeFETs). In all such applications, switching the direction of the polarity of the ferroelectric is a key aspect of functional behavior. The mechanism for switching involves the field-induced nucleation and growth of domains. Domain coarsening, through domain wall propagation, eventually causes the entire ferroelectric to switch its polar direction. It is thus the existence and behavior of domains that determine the switching response, and ultimately the performance of the ferroelectric device. A major issue, associated with the integration of ferroelectrics into microelectronic devices, has been that the fundamental properties associated with ferroelectrics, when in bulk form, appear to change quite dramatically and unpredictably when at the nanoscale: new modes of behaviour, and different functional characteristics from those seen in bulk appear. For domains, in particular, the proximity of surfaces and boundaries have a dramatic effect: surface tension and depolarizing fields both serve to increase the equilibrium density of domains, such that minor changes in scale or morphology can have major ramifications for domain redistribution. Given the importance of domains in dictating the overall switching characteristics of a device, the need to fully understand how size and morphology affect domain behaviour in small scale ferroelectrics is obvious. In this talk, observations from a programme of study examining domains in meso and nano-scale BaTiO3 shapes, that have been cut directly from bulk single crystal using focused ion beam milling, will be presented. In general, the equilibrium static domain configurations that occur appear to be the result of a simultaneous desire to minimize both the macroscopic strain and depolarizing fields developed on cooling through the Curie Temperature. While such governing factors might be obvious, the specific patterns that result as a function of morphology are often non-intuitive, and a series of images of domains in nanodots, rods and wires will be presented and rationalised. In addition, the nature in which morphological factors influence domain dynamics during switching will be discussed, with particular focus on axial switching in nanowires, and the manner in which local surface perturbations (such as notches and antinotches) affect domain wall propagation. In collaboration with Alina Schilling, Li-Wu Chang, Mark McMillen, Raymond McQuaid, and Leo McGilly, Queen's University Belfast; Gustau Catalan, Universitat Autonoma de Barcelona; and James Scott, University of Cambridge.

  9. Extending Protein Domain Boundary Predictors to Detect Discontinuous Domains

    PubMed Central

    Xue, Zhidong; Jang, Richard; Govindarajoo, Brandon; Huang, Yichu; Wang, Yan

    2015-01-01

    A variety of protein domain predictors were developed to predict protein domain boundaries in recent years, but most of them cannot predict discontinuous domains. Considering nearly 40% of multidomain proteins contain one or more discontinuous domains, we have developed DomEx to enable domain boundary predictors to detect discontinuous domains by assembling the continuous domain segments. Discontinuous domains are predicted by matching the sequence profile of concatenated continuous domain segments with the profiles from a single-domain library derived from SCOP and CATH, and Pfam. Then the matches are filtered by similarity to library templates, a symmetric index score and a profile-profile alignment score. DomEx recalled 32.3% discontinuous domains with 86.5% precision when tested on 97 non-homologous protein chains containing 58 continuous and 99 discontinuous domains, in which the predicted domain segments are within ±20 residues of the boundary definitions in CATH 3.5. Compared with our recently developed predictor, ThreaDom, which is the state-of-the-art tool to detect discontinuous-domains, DomEx recalled 26.7% discontinuous domains with 72.7% precision in a benchmark with 29 discontinuous-domain chains, where ThreaDom failed to predict any discontinuous domains. Furthermore, combined with ThreaDom, the method ranked number one among 10 predictors. The source code and datasets are available at https://github.com/xuezhidong/DomEx. PMID:26502173

  10. Acromioclavicular joint cyst formation.

    PubMed

    Hiller, Andrew D; Miller, Joshua D; Zeller, John L

    2010-03-01

    Acromioclavicular joint (ACJ) cysts are an uncommon and unusual sequela associated with shoulder pathophysiology. The majority of literature on ACJ cysts consists of individual case reports with no definitive literature review currently available. In addition to a comprehensive literature review, four clinical cases are presented in this report. First described by Craig (1984), a total of 41 cases have been previously reported in the literature. Of these cases, five occurred with the rotator cuff musculature intact. The remaining 36 cases of ACJ cysts occurred in patients with a complete tear/avulsion of the rotator cuff. Previous attempts at compiling a complete record of all reported cases have combined several distinct conditions into a single category. This article presents two distinct etiologies for the pathogenesis of ACJ cyst formation. In the presence of an intact rotator cuff, a Type 1 cyst can form superficially and be limited to the ACJ. Following a massive or traumatic tear of the rotator cuff, mechanical instability of the humeral head can cause a deterioration of the inferior acromioclavicular capsule (cuff tear arthropathy) and an overproduction of synovial fluid. Overtime, a "geyser" of fluid can form between the glenohumeral and the ACJ, forming a Type 2 cyst. This differentiation and categorization is essential for appropriate classification and treatment. PMID:20069645

  11. Just how versatile are domains?

    PubMed Central

    2008-01-01

    Background Creating new protein domain arrangements is a frequent mechanism of evolutionary innovation. While some domains always form the same combinations, others form many different arrangements. This ability, which is often referred to as versatility or promiscuity of domains, its a random evolutionary model in which a domain's promiscuity is based on its relative frequency of domains. Results We show that there is a clear relationship across genomes between the promiscuity of a given domain and its frequency. However, the strength of this relationship differs for different domains. We thus redefine domain promiscuity by defining a new index, DV I ("domain versatility index"), which eliminates the effect of domain frequency. We explore links between a domain's versatility, when unlinked from abundance, and its biological properties. Conclusion Our results indicate that domains occurring as single domain proteins and domains appearing frequently at protein termini have a higher DV I. This is consistent with previous observations that the evolution of domain re-arrangements is primarily driven by fusion of pre-existing arrangements and single domains as well as loss of domains at protein termini. Furthermore, we studied the link between domain age, defined as the first appearance of a domain in the species tree, and the DV I. Contrary to previous studies based on domain promiscuity, it seems as if the DV I is age independent. Finally, we find that contrary to previously reported findings, versatility is lower in Eukaryotes. In summary, our measure of domain versatility indicates that a random attachment process is sufficient to explain the observed distribution of domain arrangements and that several views on domain promiscuity need to be revised. PMID:18854028

  12. Qualification of improved joint heaters

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Qualification testing of the Redesigned Solid Rocket Motor improved igniter-to-case joint and field joint heaters was conducted on the fired TEM-04 static test motor and was completed on 7 Sep. 1989. The purpose of the test was to certify the installation and performance of the improved joint heaters for use on flight motors. The changes incorporated in the improved heaters improve durability and should reduce handling damage. The igniter-to-case joint and field joint primary heater circuits were subjected to five 20-hr ON cycles. The heater redundant circuits were then subjected to one 20-hr ON cycle. Voltage, current, and temperature set point values were maintained within the specified limits for both heaters during each ON cycle. When testing was complete, both heaters were removed and inspected. No discolorations or any other anomalies were found on either of the heaters. Based on the successful completion of this test, it is recommended that the improved igniter-to-case joint and field joint heaters be used on future flight motors.

  13. Common Bolted Joint Analysis Tool

    NASA Technical Reports Server (NTRS)

    Imtiaz, Kauser

    2011-01-01

    Common Bolted Joint Analysis Tool (comBAT) is an Excel/VB-based bolted joint analysis/optimization program that lays out a systematic foundation for an inexperienced or seasoned analyst to determine fastener size, material, and assembly torque for a given design. Analysts are able to perform numerous what-if scenarios within minutes to arrive at an optimal solution. The program evaluates input design parameters, performs joint assembly checks, and steps through numerous calculations to arrive at several key margins of safety for each member in a joint. It also checks for joint gapping, provides fatigue calculations, and generates joint diagrams for a visual reference. Optimum fastener size and material, as well as correct torque, can then be provided. Analysis methodology, equations, and guidelines are provided throughout the solution sequence so that this program does not become a "black box:" for the analyst. There are built-in databases that reduce the legwork required by the analyst. Each step is clearly identified and results are provided in number format, as well as color-coded spelled-out words to draw user attention. The three key features of the software are robust technical content, innovative and user friendly I/O, and a large database. The program addresses every aspect of bolted joint analysis and proves to be an instructional tool at the same time. It saves analysis time, has intelligent messaging features, and catches operator errors in real time.

  14. Axion domain wall baryogenesis

    SciTech Connect

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu

    2015-07-28

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m≃10{sup 8}–10{sup 13} GeV and f≃10{sup 13}–10{sup 16} GeV. Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  15. Compliant Prosthetic Or Robotic Joint

    NASA Technical Reports Server (NTRS)

    Kerley, James J.; Eklund, Wayne D.

    1989-01-01

    Rotation partly free and partly restrained by resilience and damping. Joint includes U-shaped x- and y-axis frames joined by cables that cross in at center piece. The y-axis frame rotates about y-axis on roller bearing within predetermined angular range. The y-axis frame rotates slightly farther when arm strikes stop, because cables can twist. This mimics compliant resistance of knee joint reaching limit of its forward or backward motion. Used in prosthetic device to replace diseased or damage human joint, or in robot linkage to limit movement and cushion overloads.

  16. Optimal domain decomposition strategies

    NASA Technical Reports Server (NTRS)

    Yoon, Yonghyun; Soni, Bharat K.

    1995-01-01

    The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.

  17. Characteristics of temporomandibular joint in patients with temporomandibular joint complaint

    PubMed Central

    Li, Yanfeng; Guo, Xiaoqian; Sun, Xiaoxue; Wang, Ning; Xie, Min; Zhang, Jianqiang; Lv, Yuan; Han, Weili; Hu, Min; Liu, Hongchen

    2015-01-01

    Introduction: This study was to investigate whether there was statistical difference between the bilateral temporomandibular joint (TMJ) in patients with unilateral TMJ pain or joint sounds, using cone beam computed tomography (CBCT). Methods: TMJ CBCT images of 123 cases were used to preliminarily determine the indicators suitable for the measuring method. TMJ CBCT image reconstruction was performed and 19 indicators were measured. Thirty-six cases without TMJ complaint served as controls. The comparison of bilateral TMJs was analyzed by paired t-test to find out the indicators without statistical significance. Twenty-nine patients with unilateral TMJ pain or joint sounds who underwent CBCT at the hospital were enrolled for the comparative study. The measured values were analyzed by paired t-test to determine the indicators with statistical difference. Results: In the control group, only radius value of bilateral TMJ was different statistically (P < 0.05). In the TMJ complaint group, the vertical 60 joint space of the bilateral TMJ was statistically different (P < 0.05) and the rest of the measured values showed no statistical difference. Conclusions: In the patients with unilateral TMJ pain or joint sounds, the vertical 60 joint space of the symptomatic side was significantly increased comparing with the asymptomatic side. PMID:26629112

  18. The Affective Domain: Undiscovered Country

    ERIC Educational Resources Information Center

    Pierre, Eleanor; Oughton, John

    2007-01-01

    The authors argue that the affective is the most-overlooked of the three domains identified by Bloom & Krathwohl's committees. Research suggest the affective domain is the gateway to learning, yet the cognitive and psychomotor domains take precedence. Some complexities of the affective domain are neglected. They further suggest that many college

  19. Acromioclavicular and sternoclavicular joint injuries.

    PubMed

    Macdonald, Peter B; Lapointe, Pierre

    2008-10-01

    Acromioclavicular (AC) joint injuries are a frequent diagnosis following an acute shoulder injury. The literature on AC joint dislocation is extensive, reflecting the intense debate surrounding the topic. The choice of treatment is influenced by factors including the type of injury, the patient's occupation, the patient's past medical history, the acuity of the injury, and patient expectations. Sternoclavicular (SC) joint dislocation is an uncommon injury. The treatment of acute anterior SC joint dislocations is controversial. It is difficult to study with a well-designed prospective study because of the low frequency of this injury. Posterior dislocations are much less common than anterior dislocations. Posterior dislocations, however, are more serious; they are associated with significant complications and require prompt attention. PMID:18803982

  20. Joint state and parameter estimation

    NASA Technical Reports Server (NTRS)

    Carmichael, N.; Quinn, M. D.

    1983-01-01

    Recent results are described concerning the problem of state reconstruction for a class of nonlinear distributed systems. The methods are then applied to the problem of joint state and parameter estimation. An example with the wave equation is presented.

  1. Osteochondral Lesions of Major Joints

    PubMed Central

    Durur-Subasi, Irmak; Durur-Karakaya, Afak; Yildirim, Omer Selim

    2015-01-01

    This paper provides information about osteochondral lesions (OCL) and example cases of OCL occurring in major joints, some of which are rarely seen. This simple tutorial is presented in question and answer format. PMID:26180500

  2. Campus/Industry Joint Ventures.

    ERIC Educational Resources Information Center

    McDonald, Eugene J.

    1985-01-01

    Opportunities for joint economic ventures of colleges and industry are discussed, and a variety of ventures undertaken by Duke University are outlined, including a health club, hotel, and office building. Tax and financing considerations are noted. (MSE)

  3. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  4. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. Time-domain imaging

    NASA Technical Reports Server (NTRS)

    Tolliver, C. L.

    1989-01-01

    The quest for the highest resolution microwave imaging and principle of time-domain imaging has been the primary motivation for recent developments in time-domain techniques. With the present technology, fast time varying signals can now be measured and recorded both in magnitude and in-phase. It has also enhanced our ability to extract relevant details concerning the scattering object. In the past, the interface of object geometry or shape for scattered signals has received substantial attention in radar technology. Various scattering theories were proposed to develop analytical solutions to this problem. Furthermore, the random inversion, frequency swept holography, and the synthetic radar imaging, have two things in common: (1) the physical optic far-field approximation, and (2) the utilization of channels as an extra physical dimension, were also advanced. Despite the inherent vectorial nature of electromagnetic waves, these scalar treatments have brought forth some promising results in practice with notable examples in subsurface and structure sounding. The development of time-domain techniques are studied through the theoretical aspects as well as experimental verification. The use of time-domain imaging for space robotic vision applications has been suggested.

  6. Joint probabilities and quantum cognition

    NASA Astrophysics Data System (ADS)

    de Barros, J. Acacio

    2012-12-01

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  7. A pain in the joints.

    PubMed

    Peters, Rosie; Virani, Farzana; Haddadin, Yazan; Baldowska, Helena

    2015-01-01

    Arthralgia is a rare but recognised complication of meningococcal septicaemia. We report a case of a 29-year-old man presenting with a 24?h history of fever, joint swelling and subsequent development of a non-blanching, petechial rash. He was treated for probable meningococcal septicaemia and the causative pathogen was later identified as Neisseria meningitidis. He was treated with ceftriaxone and after 10?days the pain and swelling in his joints improved. PMID:25694633

  8. Joint probabilities and quantum cognition

    SciTech Connect

    Acacio de Barros, J.

    2012-12-18

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  9. Continuum description for jointed media

    SciTech Connect

    Thomas, R.K.

    1982-04-01

    A general three-dimensional continuum description is presented for a material containing regularly spaced and approximately parallel jointing planes within a representative elementary volume. Constitutive relationships are introduced for linear behavior of the base material and nonlinear normal and shear behavior across jointing planes. Furthermore, a fracture permeability tensor is calculated so that deformation induced alterations to the in-situ values can be measured. Examples for several strain-controlled loading paths are presented.

  10. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System.

    PubMed

    Liu, Ying-Pei; Liang, Hai-Ping; Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane. PMID:26098556

  11. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System

    PubMed Central

    Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane. PMID:26098556

  12. Adaptive multimode lubrication in natural synovial joints and artificial joints.

    PubMed

    Murakami, T; Higaki, H; Sawae, Y; Ohtsuki, N; Moriyama, S; Nakanishi, Y

    1998-01-01

    To examine the lubrication mechanisms in both natural synovial joints and artificial joints with artificial cartilages, pendulum tests of pig shoulder joints and simulator tests of sliding pairs of a stainless steel spherical component and natural articular cartilage or artificial cartilage have been conducted. Firstly, it was shown in pendulum tests of pig shoulder joints that both concentration of hyaluronic acid or viscosity and adsorbed film formation of proteins and phospholipids exerted a significant effect on frictional behaviour in swinging motion immediately after a loading of 100 N. Under a high load of 1 kN, low friction was observed under wide-ranging viscosity conditions, since a high load similar to body weight probably enhanced the squeeze film effect due to improved congruity. Next, frictional behaviour of sliding pairs in knee joint models, consisting of a stainless steel spherical surface and either specimens of pig tibial cartilage or polyvinylalcohol (PVA) hydrogel, was examined during walking in simulator tests. In these tests, the influences of lubricant viscosity and addition of protein on frictional behaviour were evaluated. For both compliant materials, the appropriate addition of gamma-globulin to sodium hyaluronate (HA) solution maintained low friction and protected rubbing surfaces under thin film conditions. These phenomena are discussed from the viewpoint of adaptive multimode lubrication. PMID:9529934

  13. Outcomes of Pyrolytic Carbon Arthroplasty for the Proximal Interphalangeal Joint

    PubMed Central

    Chung, Kevin C.; Ram, Ashwin N.; Shauver, Melissa J.

    2015-01-01

    Background Arthritis of the PIP joint is a debilitating condition commonly treated with arthroplasty. The pyrolytic carbon (pyrocarbon) implant has been developed for PIP joint arthroplasty in these patients. This prospective outcomes study will evaluate the outcomes and complications of the pyrocarbon implant for the PIP joint. Methods Consecutive candidates for PIP joint arthroplasty with pyrocarbon implant were prospectively evaluated. Functional measurements and the Michigan Hand Outcomes Questionnaire (MHQ) were administered pre-operatively and at 3, 6 and 12 months postoperatively. Pre-operative means and 12-month post-operative means for all functional measures were compared using paired t-tests and nonparametric Wilcoxon signed-rank sum test, and effect size was reported for MHQ. Results Fourteen patients treated with 21 implants enrolled in the study. At the 12-month follow-up period, mean active arc of motion (AAM) was 38, decreasing slightly from the pre-operative value. Mean grip strength improved from 11.3 kg to 15.1 kg, although the difference was not statistically significant. Mean key pinch values improved significantly from 6.6 kg pre-operatively to 9.2 kg at the 12-month follow-up time (p=0.03). Jebsen-Taylor test scores showed improvement, although not significantly. Changes in all MHQ domains showed high effect size. Complications were minimal. Three patients experienced squeaking of the implant and three patients experienced dislocation of the pyrocarbon joint. Conclusions The pyrocarbon implant for PIP joint arthroplasty shows encouraging results, primarily in patient satisfaction and pain relief, but is associated with complications related to implant dislocations, which required prolonged treatment with external fixators. PMID:19407625

  14. Time-frequency analysis of pediatric murmurs

    NASA Astrophysics Data System (ADS)

    Lombardo, Joseph S.; Blodgett, Lisa A.; Rosen, Ron S.; Najmi, Amir-Homayoon; Thompson, W. Reid

    1998-05-01

    Technology has provided many new tools to assist in the diagnosis of pathologic conditions of the heart. Echocardiography, Ultrafast CT, and MRI are just a few. While these tools are a valuable resource, they are typically too expensive, large and complex in operation for use in rural, homecare, and physician's office settings. Recent advances in computer performance, miniaturization, and acoustic signal processing, have yielded new technologies that when applied to heart sounds can provide low cost screening for pathologic conditions. The short duration and transient nature of these signals requires processing techniques that provide high resolution in both time and frequency. Short-time Fourier transforms, Wigner distributions, and wavelet transforms have been applied to signals form hearts with various pathologic conditions. While no single technique provides the ideal solution, the combination of tools provides a good representation of the acoustic features of the pathologies selected.

  15. Total joint prostheses: a bearing problem

    NASA Astrophysics Data System (ADS)

    Elloy, M. A.

    1992-04-01

    Synovial joints at the ends of long bones, provide the means of articulation of the human skeleton. These joints provide varying degrees of freedom, from the simple hinge action of the elbow or the middle joints of the finger through the ball and socket joint of the hip to the complex rotating hinge with translation of the knee.

  16. Preloaded Composite-Strut/End-Fitting Joint

    NASA Technical Reports Server (NTRS)

    Monitor, Dean S.

    1990-01-01

    Proposed structural joint between composite strut and metal end fitting strong and light in weight. Joint configured to distribute stresses fairly uniformly, with little interlaminar stress. Composite-strut/metal-fitting joint built up integrally with strut in layup process. Joint remains tight under reversals of loads and changes in temperature.

  17. Simplified procedures for designing composite bolted joints

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1988-01-01

    Simplified procedures are described to design and analyze single and multi-bolt composite joints. Numerical examples illustrate the use of these methods. Factors affecting composite bolted joints are summarized. References are cited where more detailed discussion is presented on specific aspects of composite bolted joints. Design variables associated with these joints are summarized in the appendix.

  18. Simplified procedures for designing composite bolted joints

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1990-01-01

    Simplified procedures are described to design and analyze single and multi-bolt composite joints. Numerical examples illustrate the use of these methods. Factors affecting composite bolted joints are summarized. References are cited where more detailed discussion is presented on specific aspects of composite bolted joints. Design variables associated with these joints are summarized in the appendix.

  19. 49 CFR 234.233 - Rail joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Rail joints. 234.233 Section 234.233..., Inspection, and Testing Maintenance Standards 234.233 Rail joints. Each non-insulated rail joint located... than joint bars and the bonds shall be maintained in such condition to ensure electrical conductivity....

  20. 14 CFR 23.693 - Joints.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Joints. 23.693 Section 23.693 Aeronautics... Systems 23.693 Joints. Control system joints (in push-pull systems) that are subject to angular motion... factor may be reduced to 2.0 for joints in cable control systems. For ball or roller bearings,...

  1. 12 CFR 347.107 - Joint ventures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Joint ventures. 347.107 Section 347.107 Banks... INTERNATIONAL BANKING 347.107 Joint ventures. (a) Joint ventures. If a bank, directly or indirectly, acquires or holds an equity interest in a foreign organization that is a joint venture, and the bank or...

  2. 21 CFR 26.73 - Joint Committee.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Joint Committee. 26.73 Section 26.73 Food and...Framework Provisions 26.73 Joint Committee. (a) A Joint Committee consisting of representatives of the United States and the European Community (EC) will be established. The Joint Committee shall...

  3. 32 CFR 536.54 - Joint tortfeasors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Joint tortfeasors. 536.54 Section 536.54 National... UNITED STATES Investigation and Processing of Claims 536.54 Joint tortfeasors. When joint tortfeasors... United States rather than pay the claim in full and then bring suit against the joint tortfeasor...

  4. 42 CFR 423.1040 - Joint hearings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Joint hearings. 423.1040 Section 423.1040 Public... 423.1040 Joint hearings. When two or more affected parties have requested hearings and the same or... the prehearing conference or hearing and conduct all proceedings jointly. If joint hearings are...

  5. 32 CFR 536.54 - Joint tortfeasors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Joint tortfeasors. 536.54 Section 536.54 National... UNITED STATES Investigation and Processing of Claims 536.54 Joint tortfeasors. When joint tortfeasors... United States rather than pay the claim in full and then bring suit against the joint tortfeasor...

  6. 14 CFR 23.693 - Joints.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Joints. 23.693 Section 23.693 Aeronautics... Systems 23.693 Joints. Control system joints (in push-pull systems) that are subject to angular motion... factor may be reduced to 2.0 for joints in cable control systems. For ball or roller bearings,...

  7. 49 CFR 234.233 - Rail joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Rail joints. 234.233 Section 234.233... joints. Each non-insulated rail joint located within the limits of a highway-rail grade crossing train detection circuit shall be bonded by means other than joint bars and the bonds shall be maintained in...

  8. 42 CFR 422.1040 - Joint hearings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Joint hearings. 422.1040 Section 422.1040 Public...) MEDICARE PROGRAM MEDICARE ADVANTAGE PROGRAM Appeal procedures for Civil Money Penalties 422.1040 Joint... conference or hearing and conduct all proceedings jointly. If joint hearings are held, a single record of...

  9. 21 CFR 26.73 - Joint Committee.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Joint Committee. 26.73 Section 26.73 Food and...Framework Provisions 26.73 Joint Committee. (a) A Joint Committee consisting of representatives of the United States and the European Community (EC) will be established. The Joint Committee shall...

  10. 32 CFR 536.54 - Joint tortfeasors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Joint tortfeasors. 536.54 Section 536.54 National... UNITED STATES Investigation and Processing of Claims 536.54 Joint tortfeasors. When joint tortfeasors... United States rather than pay the claim in full and then bring suit against the joint tortfeasor...

  11. 14 CFR 23.693 - Joints.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Joints. 23.693 Section 23.693 Aeronautics... Systems 23.693 Joints. Control system joints (in push-pull systems) that are subject to angular motion... factor may be reduced to 2.0 for joints in cable control systems. For ball or roller bearings,...

  12. 12 CFR 347.107 - Joint ventures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Joint ventures. 347.107 Section 347.107 Banks... INTERNATIONAL BANKING 347.107 Joint ventures. (a) Joint ventures. If a bank, directly or indirectly, acquires or holds an equity interest in a foreign organization that is a joint venture, and the bank or...

  13. 49 CFR 234.233 - Rail joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Rail joints. 234.233 Section 234.233..., Inspection, and Testing Maintenance Standards 234.233 Rail joints. Each non-insulated rail joint located... than joint bars and the bonds shall be maintained in such condition to ensure electrical conductivity....

  14. 42 CFR 422.1040 - Joint hearings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Joint hearings. 422.1040 Section 422.1040 Public....1040 Joint hearings. When two or more affected parties have requested hearings and the same or... the prehearing conference or hearing and conduct all proceedings jointly. If joint hearings are...

  15. 42 CFR 422.1040 - Joint hearings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Joint hearings. 422.1040 Section 422.1040 Public....1040 Joint hearings. When two or more affected parties have requested hearings and the same or... the prehearing conference or hearing and conduct all proceedings jointly. If joint hearings are...

  16. 32 CFR 536.54 - Joint tortfeasors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Joint tortfeasors. 536.54 Section 536.54... AGAINST THE UNITED STATES Investigation and Processing of Claims 536.54 Joint tortfeasors. When joint... United States rather than pay the claim in full and then bring suit against the joint tortfeasor...

  17. 21 CFR 26.73 - Joint Committee.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Joint Committee. 26.73 Section 26.73 Food and...Framework Provisions 26.73 Joint Committee. (a) A Joint Committee consisting of representatives of the United States and the European Community (EC) will be established. The Joint Committee shall...

  18. 12 CFR 347.107 - Joint ventures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Joint ventures. 347.107 Section 347.107 Banks... INTERNATIONAL BANKING 347.107 Joint ventures. (a) Joint ventures. If a bank, directly or indirectly, acquires or holds an equity interest in a foreign organization that is a joint venture, and the bank or...

  19. 49 CFR 234.233 - Rail joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Rail joints. 234.233 Section 234.233... joints. Each non-insulated rail joint located within the limits of a highway-rail grade crossing train detection circuit shall be bonded by means other than joint bars and the bonds shall be maintained in...

  20. 14 CFR 23.693 - Joints.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Joints. 23.693 Section 23.693 Aeronautics... Systems 23.693 Joints. Control system joints (in push-pull systems) that are subject to angular motion... factor may be reduced to 2.0 for joints in cable control systems. For ball or roller bearings,...

  1. 21 CFR 26.73 - Joint Committee.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Joint Committee. 26.73 Section 26.73 Food and...Framework Provisions 26.73 Joint Committee. (a) A Joint Committee consisting of representatives of the United States and the European Community (EC) will be established. The Joint Committee shall...

  2. 12 CFR 347.107 - Joint ventures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Joint ventures. 347.107 Section 347.107 Banks... INTERNATIONAL BANKING 347.107 Joint ventures. (a) Joint ventures. If a bank, directly or indirectly, acquires or holds an equity interest in a foreign organization that is a joint venture, and the bank or...

  3. 42 CFR 422.1040 - Joint hearings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Joint hearings. 422.1040 Section 422.1040 Public....1040 Joint hearings. When two or more affected parties have requested hearings and the same or... the prehearing conference or hearing and conduct all proceedings jointly. If joint hearings are...

  4. 32 CFR 536.54 - Joint tortfeasors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Joint tortfeasors. 536.54 Section 536.54... AGAINST THE UNITED STATES Investigation and Processing of Claims 536.54 Joint tortfeasors. When joint... United States rather than pay the claim in full and then bring suit against the joint tortfeasor...

  5. 49 CFR 234.233 - Rail joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Rail joints. 234.233 Section 234.233... joints. Each non-insulated rail joint located within the limits of a highway-rail grade crossing train detection circuit shall be bonded by means other than joint bars and the bonds shall be maintained in...

  6. 14 CFR 23.693 - Joints.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Joints. 23.693 Section 23.693 Aeronautics... Systems 23.693 Joints. Control system joints (in push-pull systems) that are subject to angular motion... factor may be reduced to 2.0 for joints in cable control systems. For ball or roller bearings,...

  7. Simplified Parallel Domain Traversal

    SciTech Connect

    Erickson III, David J

    2011-01-01

    Many data-intensive scientific analysis techniques require global domain traversal, which over the years has been a bottleneck for efficient parallelization across distributed-memory architectures. Inspired by MapReduce and other simplified parallel programming approaches, we have designed DStep, a flexible system that greatly simplifies efficient parallelization of domain traversal techniques at scale. In order to deliver both simplicity to users as well as scalability on HPC platforms, we introduce a novel two-tiered communication architecture for managing and exploiting asynchronous communication loads. We also integrate our design with advanced parallel I/O techniques that operate directly on native simulation output. We demonstrate DStep by performing teleconnection analysis across ensemble runs of terascale atmospheric CO{sub 2} and climate data, and we show scalability results on up to 65,536 IBM BlueGene/P cores.

  8. Dynamic dilatonic domain walls

    NASA Astrophysics Data System (ADS)

    Chamblin, H. A.; Reall, H. S.

    1999-12-01

    Motivated by the "universe as a brane" idea, we investigate the motion of a ( D-2)-brane (or domain wall) that couples to bulk matter. Usually one would expect the space-time outside such a wall to be time dependent however we show that in certain cases it can be static, with consistency of the Israel equations yielding relationships between the bulk metric and matter that can be used as anstze to solve the Einstein equations. As a concrete model we study a domain wall coupled to a bulk dilaton with Liouville potentials for the dilaton both in the bulk and on the wall. The bulk solutions we find are all singular. Some have black hole or cosmological horizons, beyond which our solutions describe domain walls moving in time dependent bulks. A significant period of world-volume inflation occurs if the potential on the wall is not too steep; in some cases the bulk also inflates (with the wall comoving) while in others the wall moves relative to a non-inflating bulk. We apply our method to obtain cosmological solutions of Ho?ava-Witten theory compactified on a Calabi-Yau space.

  9. Joint position sense in the normal and pathologic knee joint.

    PubMed

    Skinner, H B; Barrack, R L

    1991-09-01

    Joint position sense has been suggested to be an important factor in the etiology of degenerative joint disease. It is also believed to be important in the rehabilitative process after reconstructive surgery of the knee. Despite this awareness, in many areas of orthopaedic surgery little effort has been devoted to study of this crucial topic. Therefore, we conducted several studies of knee joint position sense by measuring the ability of healthy subjects to reproduce an angle and detect the threshold of motion. Our goal was to evaluate the effects of the following factors: aging; degenerative joint disease; total knee replacement, i.e., both absence of the anterior cruciate ligament (ACL) and sensory loss due to the absence of capsular structures; fatigue; athletic training; disruption and reconstruction of the ACL; and the role of ligament mechanoreceptors. Our results show that normal individuals can actively reproduce an angle with their knee to an average error of 2.5. Furthermore, normal subjects require passive movement of ?2.5-4 to detect a change in position at the speeds used in this study (?0.5/s). Muscular training improves the ability to detect motion. On the other hand, muscular training and fatigue appear to decrease the ability to reproduce an angle. Changes in the knee and its associated structures caused by damage (ACL disruption, arthritis, total knee replacement) as well as aging uniformly cause deterioration of joint position sense. Total knee replacement and arthritic change cause the greatest deterioration. Reconstruction of ligamentous structures and/or rehabilitation appears to restore joint position sense to a near normal level. PMID:20870508

  10. Strength evaluation of socket joints

    NASA Technical Reports Server (NTRS)

    Rash, Larry C.

    1994-01-01

    This report documents the development of a set of equations that can be used to provide a relatively simple solution for identifying the strength of socket joints and for most cases avoid the need of more lengthy analyses. The analytical approach was verified by comparison of the contact load distributions to results obtained from a finite element analysis. The contacting surfaces for the specific joint in this analysis are in the shape of frustrums of a cone and are representative of the tapered surfaces in the socket-type joints used to join segments of model support systems for wind tunnels. The results are in the form of equations that can be used to determine the contact loads and stresses in the joint from the given geometry and externally applied loads. Equations were determined to define the bending moments and stresses along the length of the joints based on strength and materials principles. The results have also been programmed for a personal computer and a copy of the program is included.

  11. Load transfer in composite bolted joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Perry, J. C.; Lightfoot, M. C.

    1980-01-01

    The study deals with composite bolted joints, specifically those required to transmit primary loads. Consideration is given to the ultimate load capacity of quasi-isotropic bolted joint specimens as a function of the width of the joint, the diameter of the bolt, the joint thickness, and the number of bolts. Emphasis is placed on the effect of adding a second bolt, in tandem, on the load capacity of the joint.

  12. Domain Specific vs Domain General: Implications for Dynamic Assessment

    ERIC Educational Resources Information Center

    Kaniel, Shlomo

    2010-01-01

    The article responds to the need for evidence-based dynamic assessment. The article is divided into two sections: In Part 1 we examine the scientific answer to the question of how far human mental activities and capabilities are domain general (DG) / domain specific (DS). A highly complex answer emerges from the literature review of domains such…

  13. Domain Specific vs Domain General: Implications for Dynamic Assessment

    ERIC Educational Resources Information Center

    Kaniel, Shlomo

    2010-01-01

    The article responds to the need for evidence-based dynamic assessment. The article is divided into two sections: In Part 1 we examine the scientific answer to the question of how far human mental activities and capabilities are domain general (DG) / domain specific (DS). A highly complex answer emerges from the literature review of domains such

  14. Comparison of the domain and frequency domain state feedbacks

    SciTech Connect

    Zhang, S.Y.

    1986-01-01

    In this paper, we present explicitly the equivalence of the time domain and frequency domain state feedbacks, as well as the dynamic state feedback and a modified frequency domain state feedback, from the closed-loop transfer function point of view. The difference of the two approaches is also shown.

  15. Solving permutations in frequency-domain for blind separation of an arbitrary number of speech sources.

    PubMed

    Durán-Díaz, Iván; Sarmiento, Auxiliadora; Cruces, Sergio; Aguilera, Pablo

    2012-02-01

    Blind separation of speech sources in reverberant environments is usually performed in the time-frequency domain, which gives rise to the permutation problem: the different ordering of estimated sources for different frequency components. A two-stage method to solve permutations with an arbitrary number of sources is proposed. The suggested procedure is based on the spectral consistency of the sources. At the first stage frequency bins are compared with each other, while at the second stage the neighboring frequencies are emphasized. Experiments for perfect separation situations and for live recordings show that the proposed method improves the results of existing approaches. PMID:22352613

  16. Declarative joint attention as a foundation of theory of mind.

    PubMed

    Sodian, Beate; Kristen-Antonow, Susanne

    2015-09-01

    Theories of social-cognitive development have attributed a foundational role to declarative joint attention. The present longitudinal study of 83 children, who were assessed on a battery of social-cognitive tasks at multiple measurement points from the age of 12 to 50 months, tested a predictive model of theory of mind (false-belief understanding). Thereby, declarative, but not imperative, point production predicted false-belief understanding at 50 months. Predictive relations, which remained significant beyond the influence of child gender and language abilities, and were unrelated to child temperament and emotion recognition, were not mediated by mirror self-recognition or Level 1 visual perspective taking, which were both related to joint attention. These findings conform to theoretical predictions and provide empirical support for conceptual continuity in the social domain. PMID:26192041

  17. An analysis of a joint shear model for jointed media with orthogonal joint sets; Yucca Mountain Site Characterization Project

    SciTech Connect

    Koteras, J.R.

    1991-10-01

    This report describes a joint shear model used in conjunction with a computational model for jointed media with orthogonal joint sets. The joint shear model allows nonlinear behavior for both joint sets. Because nonlinear behavior is allowed for both joint sets, a great many cases must be considered to fully describe the joint shear behavior of the jointed medium. An extensive set of equations is required to describe the joint shear stress and slip displacements that can occur for all the various cases. This report examines possible methods for simplifying this set of equations so that the model can be implemented efficiently form a computational standpoint. The shear model must be examined carefully to obtain a computationally efficient implementation that does not lead to numerical problems. The application to fractures in rock is discussed. 5 refs., 4 figs.

  18. Rheumatoid arthritis affecting temporomandibular joint

    PubMed Central

    Sodhi, Amandeep; Naik, Shobha; Pai, Anuradha; Anuradha, Ardra

    2015-01-01

    Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune inflammatory disorder that is characterized by joint inflammation, erosive properties and symmetric multiple joint involvement. Temporomandibular joint (TMJ) is very rare to be affected in the early phase of the disease, thus posing diagnostic challenges for the dentist. Conventional radiographs fail to show the early lesions due to its limitations. More recently cone-beam computed tomography (CBCT) has been found to diagnose the early degenerative changes of TMJ and hence aid in the diagnosis of the lesions more accurately. Our case highlights the involvement of TMJ in RA and the role of advanced imaging (CBCT) in diagnosing the bony changes in the early phase of the disease. PMID:25684928

  19. The joint in psoriatic arthritis.

    PubMed

    Mortezavi, Mahta; Thiele, Ralph; Ritchlin, Christopher

    2015-01-01

    Psoriatic arthritis (PsA), a chronic inflammatory joint disease associated with psoriasis, is notable for diversity in disease presentation, course and response to treatment. Equally varied are the types of musculoskeletal involvement which include peripheral and axial joint disease, dactylitis and enthesitis. In this review, we focus on the psoriatic joint and discuss pathways that underlie synovial, cartilage and bone inflammation and highlight key histopathologic features. The pivotal inflammatory mechanisms and pathobiology of PsA parallel findings in other forms of spondyloarthritis but are distinct from disease pathways described in rheumatoid synovitis and bone disease. The diagnosis of PsA from both a clinical and imaging perspective is also discussed. PMID:26472472

  20. Joint inversion of MRS and TEM data

    NASA Astrophysics Data System (ADS)

    Behroozmand, A.; Auken, E.; Fiandaca, G.; Christiansen, A. V.

    2011-12-01

    In this study we present a joint inversion of Magnetic resonance Sounding (MRS) and time domain electromagnetic (TEM) data. The joint scheme offers a better resolution of the model parameters than a traditional independent inversion of MRS and TEM. MRS is a non-invasive geophysical technique applied to groundwater investigations. The method offers a direct quantification of water content from surface measurements. TEM measures the conductivity of the formation which is only indirectly related to the water content. Though, TEM is essential for the interpretation of the MRS data as the conductivity of the formation highly influences the MRS kernel calculation. Based on the physical principle of nuclear magnetic resonance (NMR), protons of the water molecules in the subsurface are excited at the specific Larmor frequency. Although the NMR signal is relatively weak, a large investigated volume of water in the subsurface makes it possible to measure the NMR signals using a loop on the surface. The typical loop sizes are 50 x 50 m2 and 100 x 100 m2. An alternating current is passed through a large transmitter loop deployed on the surface, and the superposition of signals from all precessing protons within the investigated volume is measured in a receiver loop. The observed data are inverted directly for the water content of the subsurface. In cases where the inversion of TEM data does not represent the true conductivity structure accurate because of equivalent models, the MRS response will be biased due to the wrong estimation of the magnetic field. In these cases, the MRS inversion does not retrieve the correct model parameters, such as water content. In this study we present a joint inversion scheme of MRS and TEM data, where the resistivity structure is inverted simultaneously with the MRS parameters. The model space thus consist of resistivity, water content, relaxation time, layer thickness and the spectral information of the layers. The resistivity structure is adapted for each calculation of the MRS forward response in the iterative inversion procedure leading to a more reliable and robust determination of aquifer characteristics than single MRS inversion. The inversion scheme uses a new MRS forward routine where data are the full free induction decays (FID), and a stretched exponential model is used for description of multi-exponential behavior of the MRS signal. The MRS forward response is calculated in an efficient numerical manner which speeds up the computation time considerably, reduces the model space but maintains the numerical accuracy.