Sample records for joo tiago mexia

  1. Effects of best-management practices in Eagle and Joos Valley Creeks in the Waumandee Creek Priority Watershed, Wisconsin, 1990-2007

    USGS Publications Warehouse

    Graczyk, David J.; Walker, John F.; Bannerman, Roger T.; Rutter, Troy D.


    In many watersheds, nonpoint-source contamination is a major contributor to water-quality problems. In response to the recognition of the importance of nonpoint sources, the Wisconsin Nonpoint Source Water Pollution Abatement Program (Nonpoint Program) was enacted in 1978. This report summarizes the results of a study to assess the effectiveness of watershed-management practices for controlling nonpoint-source contamination for the Eagle Creek and Joos Valley Creek Watersheds. Streamflow-gaging stations equipped for automated sample collection and continuous recording of stream stage were installed in July 1990 at Eagle and Joos Valley Creeks and were operated through September 2007. In October 1990, three rain gages were installed in each watershed and were operated through September 2007. Best-Management Practices (BMPs) were installed during 1993 to 2000 in Eagle and Joos Valley Creeks and were tracked throughout the study period. By the year 2000, a majority of the BMPs were implemented in the two watersheds and goals set by the Wisconsin Department of Natural Resources and the local Land Conservation Department had been achieved for the two study watersheds (Wisconsin Department of Natural Resources, 1990). The distributions of the rainstorms that produced surface runoff and storm loads were similar in the pre-BMP (1990-93) and post-BMP implementation (2000-07) periods for both Eagle and Joos Valley Creeks. The highest annual streamflow occurred at both sites in water year 1993, which corresponded to the greatest above normal nonfrozen precipitation measured at two nearby NOAA weather stations. The minimum streamflow occurred in water year 2007 at both sites. Base-flow and stormwater samples were collected and analyzed for suspended solids, total phosphorus, and ammonia nitrogen. For both Eagle and Joos Valley Creeks the median concentrations of suspended solids and total phosphorus in base flow were lower during the post-BMP period compared to the pre-BMP period and were statistically significant at the 0.05 significance level. The decrease in median concentrations of ammonia nitrogen at both sites was not statistically significant at the 0.05 significance level. Multiple linear regression analyses were used to remove the effects of climatologic conditions and seasonality from computed storm loads. For both Eagle and Joos Valley Creeks, the median storm loads for suspended solids, total phosphorus, and ammonia nitrogen were lower during the post-BMP period compared to the pre-BMP period and were statistically significant at the 0.05 significance level. The decreases in storm-load regression residuals from the pre- to the post-BMP periods for both Eagle and Joos Valley Creeks were statistically significant for all three constituents at the 0.05 significance level and indicated an apparent improvement in water-quality in the post-BMP period. Because the rainfall characteristics for individual storms in the pre- and post-BMP periods are likely to be different, separate pre- and post-BMP regressions were used to estimate the theoretical pre- and post-BMP storm loads to allow estimates of precent reductions between the pre- and post-BMP periods. The estimated percent reductions in storm loads for suspended solids, total phosphorus, and ammonia nitrogen were 89, 77, and 66 respectively for Eagle Creek and 84, 67, and 60 respectively for Joos Valley Creek. The apparent improvement in water quality is attributed to the implemented BMPs and to a reduction in the number of cattle in the watersheds.

  2. Bosonic and fermionic Weinberg-Joos (j,0) ⊕ (0,j) states of arbitrary spins as Lorentz tensors or tensor-spinors and second-order theory

    NASA Astrophysics Data System (ADS)

    Delgado Acosta, E. G.; Banda Guzmán, V. M.; Kirchbach, M.


    We propose a general method for the description of arbitrary single spin- j states transforming according to ( j, 0) ⊕ (0, j) carrier spaces of the Lorentz algebra in terms of Lorentz tensors for bosons, and tensor-spinors for fermions, and by means of second-order Lagrangians. The method allows to avoid the cumbersome matrix calculus and higher ∂2 j order wave equations inherent to the Weinberg-Joos approach. We start with reducible Lorentz tensor (tensor-spinor) representation spaces hosting one sole ( j, 0) ⊕ (0, j) irreducible sector and design there a representation reduction algorithm based on one of the Casimir invariants of the Lorentz algebra. This algorithm allows us to separate neatly the pure spin- j sector of interest from the rest, while preserving the separate Lorentz and Dirac indexes. However, the Lorentz invariants are momentum independent and do not provide wave equations. Genuine wave equations are obtained by conditioning the Lorentz tensors under consideration to satisfy the Klein-Gordon equation. In so doing, one always ends up with wave equations and associated Lagrangians that are of second order in the momenta. Specifically, a spin-3/2 particle transforming as (3/2, 0) ⊕ (0, 3/2) is comfortably described by a second-order Lagrangian in the basis of the totally anti-symmetric Lorentz tensor-spinor of second rank, Ψ [ μν]. Moreover, the particle is shown to propagate causally within an electromagnetic background. In our study of (3/2, 0) ⊕ (0, 3/2) as part of Ψ [ μν] we reproduce the electromagnetic multipole moments known from the Weinberg-Joos theory. We also find a Compton differential cross-section that satisfies unitarity in forward direction. The suggested tensor calculus presents itself very computer friendly with respect to the symbolic software FeynCalc.

  3. Development of the juxta-oral organ in rat embryo.


    Velasco, J R Mrida; De La Cuadra Blanco, C; Velasco, J A Mrida


    The aim of this work is to clarify the development and morphology of the juxta-oral organ (JOO) in rat embryos from Day (E)14 to 19. Furthermore, in the region of the JOO, an analysis was made of the expression of the monoclonal antibody HNK-1, which recognizes cranial neural-crest cells. In this study, we report that JOO develops from an epithelial condensation at the end of the transverse groove of the primitive mouth at E14. During E15, it invaginates and is disconnected from the oral epithelium. At E16, the JOO forms an solid epithelial cord with three parts (anterior, middle, and posterior) and is related to the masseter, temporal, medial pterygoid, and tensor veli palatini muscles. During E17-19, no significant changes were detected in their position. Both the mesenchyme caudal to the anlage of the JOO at E14, as well as the mesenchyme that surrounds the bud of the JOO at E15, expressed positivity for HNK-1. Our results suggest that the mesenchyme surrounding the JOO at E15 could emit some inductive signal for the JOO to reach its position at E16. This work shows for the first time that the cranial neural-crest-derived mesenchyme participates in the development of the JOO. PMID:22431151

  4. Integration of geothermal data along the Balcones/Ouachita trend, central Texas. Final report

    SciTech Connect

    Woodruff, C.M. Jr.; Gever, C.; Snyder, Fred R.; Wuerch, David Robert


    This report presents data that address possible controls on warm-water resources. Data are presented on a series of maps, and interpretations appear in the brief text accompanying the maps. It is thought that structural controls provided by the Balcones Fault Zone on the west and by the Luling-Mexia-Talco Fault Zone on the east localize the warm waters. The ultimate controlling attribute is the foundered Ouachita structural belt, which, in turn, has controlled the orientation and magnitude of displacement of the superjacent normal fault systems. This thesis is supported by maps (in pocket) showing the following: distribution of thermal waters measured in wells along the Balcones/Ouachita structural trend showing water temperature in /sup 0/F, total depth of the well measured, water salinity in parts per million, and the geologic formation producing the water; structural contours on the base of the Cretaceous System showing the configuration of the Paleozoic Ouachita basement; structural configuration of the Balcones and Luling Fault Zone, Mexia and Talco Fault Zone, and foreland areas adjacent to the Ouachita Orogen using data from the Buda Limestone, Sligo Formation, and Ellenburger Group; Landsat lineaments and Bouguer gravity contours; and geothermal gradient contours of the Balcones/Ouachita trend based on thermal values from Paleozoic and selected Mesozoic formations.

  5. Invited Reaction: Investigating the Influences of Core Self-Evaluations, Job Autonomy, and Intrinsic Motivation on In-Role Job Performance

    ERIC Educational Resources Information Center

    Collins, Brian J.


    The authors of this featured article (Joo, Jeung, & Yoon, 2010) respond to calls for further examination of how individual differences and workplace environment jointly impact organizational behavior. The authors integrate social psychology and management research to examine employee behavior and its relation to human resource development.…

  6. Financial Stress, Self-Efficacy, and Financial Help-Seeking Behavior of College Students

    ERIC Educational Resources Information Center

    Lim, HanNa; Heckman, Stuart J.; Letkiewicz, Jodi C.; Montalto, Catherine P.


    Financial stress and self-efficacy are examined in relationship to college students' financial help-seeking behavior utilizing Grable and Joo's (1999) framework. A cognitive approach is taken by focusing on the moderating role of financial self-efficacy on the relationship between financial stress and financial help-seeking. Data from…

  7. A Framework for Interaction and Cognitive Engagement in Connectivist Learning Contexts

    ERIC Educational Resources Information Center

    Wang, Zhijun; Chen, Li; Anderson, Terry


    Interaction has always been highly valued in education, especially in distance education (Moore, 1989; Anderson, 2003; Chen, 2004a; Woo & Reeves, 2007; Wang, 2013; Conrad, in press). It has been associated with motivation (Mahle, 2011; Wen-chi, et al., 2011), persistence (Tello, 2007; Joo, Lim, & Kim, 2011), deep learning (Offir, et al.,…

  8. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (86th, Kansas City, Missouri, July 30-August 2, 2003). Communication Theory & Methodology Division.

    ERIC Educational Resources Information Center


    The Communication Theory & Methodology Division of the proceedings contains the following 14 papers: "Interaction As a Unit of Analysis for Interactive Media Research: A Conceptualization" (Joo-Hyun Lee and Hairong Li); "Towards a Network Approach of Human Action: Theoretical Concepts and Empirical Observations in Media Organizations" (Thorsten…

  9. The Implications of Arendt's Concept of Judgment for Humanistic Teaching in a Postmetaphysical Age

    ERIC Educational Resources Information Center

    Kwak, Duck-Joo


    In this essay, Duck-Joo Kwak draws on Hannah Arendt's concept of judgment in exploring what it means to teach the humanities as a form of values education in a postmetaphysical age. Arendt's concept of judgment is closely related to Ciceronian humanism, which is concerned with the wisdom to choose one's company while appreciating this pursuit…

  10. Teaching to Unlearn Community in Order to Make a Claim to Community

    ERIC Educational Resources Information Center

    Kwak, Duck-Joo


    In this essay Duck-Joo Kwak explores a moral perfectionist approach to citizenship education, which is distinct from liberal and communitarian models. One of educational challenges to this approach is how to cultivate our students' sense of membership, which is shaped by a thick sense of the good life, while being not merely compatible with but…

  11. Jimmy Carter and Playboy: A Sociolinguistic Perspective.

    ERIC Educational Resources Information Center

    Solomon, Martha


    Research by Martin Joos and John J. Gumperz to develop a perspective for rhetorical analysis. Carter's final remarks in his Playboy interview are shown to reflect an ineffective sociolinguistic code shift to a stylistic level inappropriate to Carter as public personality and as presidential candidate. (JF)

  12. Invited Reaction: Investigating the Influences of Core Self-Evaluations, Job Autonomy, and Intrinsic Motivation on In-Role Job Performance

    ERIC Educational Resources Information Center

    Collins, Brian J.


    The authors of this featured article (Joo, Jeung, & Yoon, 2010) respond to calls for further examination of how individual differences and workplace environment jointly impact organizational behavior. The authors integrate social psychology and management research to examine employee behavior and its relation to human resource development.

  13. Green's Functions in Nanoscience

    NASA Astrophysics Data System (ADS)

    Tiago, Murilo L.


    Theoretical nanoscience is a fast growing area in physics. It gains momentum with the recent advances in related areas such as nanodevice design, synthesis and characterization of novel nanostructures, nanoscale imaging and spectroscopy. Several techniques common to quantum chemistry and condensed matter physics have been applied successfully to the modeling of nanoscale structures. In particular, methods based on many-body Green's functions (MBGF) are becoming more and more popular. One of the reasons for this success is that these methods have predicted several phenomena at nanoscale, for example the peculiar dimensional confinement of excitons in nanostructures. Further advances in quantum transport and exciton dynamics can be foreseen. Moreover, algorithms tailored to confined systems have made calculations of Green's functions in nanostructures much more manageable [1]. With those algorithms, we were able to investigate the properties of correlated excitations in clusters of semiconductors (CdSe and silicon)[1,2]. We were also able to explain the properties of electronic excitations in fullerenes and other organic compounds [1,3]. This talk will present an overview of the current stage of MBGF techniques, discuss the various approximations that have been proposed, and review recent advances. [4pt] References: [0pt] [1] M. L. Tiago and J. R. Chelikowsky, Phys. Rev. B 73, 205334 (2006) [0pt] [2] M. L. Del Puerto, M. L. Tiago and J. R. Chelikowsky, Phys. Rev. Lett.97, 096401 (2006). [0pt] [3] M. L. Tiago, P. R. C. Kent, R. Q. Hood, and F. A. Reboredo, J. Chem. Phys. 129, 084311 (2008).

  14. Seismic fracture identification and horizontal drilling: Keys to optimizing productivity in fractured reservoir, Giddings Field, Texas

    SciTech Connect

    Kuich, N.M. )


    Anomalies on conventional seismic data and seismic attributes data have been successfully used to identify fracture swarms in the Austin Chalk. Wells drilled to intersect seismic fracture indicators are proven superior producers. Seismic and geologic data demonstrate fracture swarms separated 100-300 ft by impermeable section. Fractures trend northeast-southwest, on strike with the regional Mexia-Talco and Balcones fault trends. Horizontal drilling allows multiple fracture zones, which are not in communication, and therefore cannot be drained by a single well. Horizontal wellbores have been kicked out from two depleted Giddings field wells. Undrained fractures were encountered in both recompletions, some as close as 120 ft from the original vertical hole. Horizontal drilling, directed by seismic data, is recovering hydrocarbons in a fractured reservoir previously bypassed via standard drilling and completion practices.

  15. The 2(2S + 1)-formalism and its connection with other descriptions

    NASA Astrophysics Data System (ADS)

    Dvoeglazov, Valeriy V.


    In the framework of the Joos-Weinberg 2(2S + 1)-theory for massless particles, the dynamical invariants have been derived from the Lagrangian density which is considered to be a 4-vector. A la Majorana interpretation of the 6-component “spinors”, the field operators of S = 1 particles, as the left- and right-circularly polarized radiation, leads us to the conserved quantities which are analogous to those obtained by Lipkin and Sudbery. The scalar Lagrangian of the Joos-Weinberg theory is shown to be equivalent to the Lagrangian of a free massless field, introduced by Hayashi. As a consequence of a new “gauge” invariance this skew-symmetric field describes physical particles with the longitudinal components only. The interaction of the spinor field with the Weinberg’s 2(2S + 1)-component massless field is considered. New interpretation of the Weinberg field function is proposed.

  16. (CO sub 2 uptake in an Ocean Circulation Model)

    SciTech Connect

    Siegenthaler, U.C.


    The traveler collaborated with Drs. J. L. Sarmiento and J. C. Orr of the Program in Atmospheric Sciences at Princeton University to finish the article A Perturbation Simulation of CO{sub 2} Uptake in an Ocean Circulation Model,'' which has been submitted to the Journal of Geophysical Research for publication. With F. Joos, a graduate student from the University of Bern, the traveler started writing a journal article describing a box model of the global carbon cycle that is an extension of the one-dimensional box-diffusion model. The traveler further collaborated with F. Joos and Dr. J. L. Sarmiento on modeling the potential enhancement of oceanic CO{sub 2} uptake by fertilizing the southern ocean with iron. A letter describing the results is currently being written for the journal Nature.

  17. Decoherence in quantum mechanics and quantum cosmology

    NASA Technical Reports Server (NTRS)

    Hartle, James B.


    A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.

  18. Departure from Local Thermodynamic Equilibrium in argon plasmas sustained in a Torche à Injection Axiale sur Guide d'Ondes

    NASA Astrophysics Data System (ADS)

    Rincón, R.; Muñoz, J.; Calzada, M. D.


    Plasma torches are suitable plasma sources for a wide range of applications. The capability of these discharges to produce processes like sample excitation or decomposition of molecules inside them depends on the density of the plasma species and their energies (temperatures). The relation between these parameters determines the specific state of thermodynamic equilibrium in the discharge. Thus, the understanding of plasma possibilities for application purposes is related to the knowledge of the plasma thermodynamic equilibrium degree. In this paper a discussion about the equilibrium state for Ar plasmas generated by using a Torche à Injection Axiale sur Guide d'Ondes, TIAGO device, is presented. Emission spectroscopy techniques were used to measure gas temperature and electron density at the exit of the nozzle torch and along the dart. Boltzmann-plots as well as bp parameters were calculated to characterize the type and degree of departure from partial Local Saha Equilibrium (pLSE). This study indicates that the closer situation to Local Thermodynamic Equilibrium (LTE) of the plasma corresponds to larger Ar flows which highlights the importance of the nitrogen (atmosphere surrounding the plasma) in the kinetics of Ar-TIAGO discharges.

  19. Phase-Transition Nanowires: Protein Recognition by Phase Transition of Aptamer-Linked Polythiophene Single Nanowire (Small 9/2016).


    Cui, Chunzhi; Park, Dong Hyuk; Choi, Hyun; Joo, Jinsoo; Ahn, Dong June


    Direct identification of proteins, important but non-amplifiable biomolecules, is critical in advancing modern biomedicine technologies. J. Joo, D. J. Ahn, and co-workers explore the phase-transition phenomenon of conjugated polymer nanowires in response to the presence of protein particles on page 1154. Even a single polythiophene nanowire having capture aptamers functionalized on its surface responds to a specific interaction with target proteins. Such a unique phase-transition evokes enhancement of photoluminescence and generation of a local resonance Raman signal simultaneously, dramatically corresponding to protein concentration. PMID:26928995

  20. Application of thematic mapper imagery to oil exploration in Austin Chalk, Central Gulf Coast basin, Texas

    SciTech Connect

    Reid, W.M.


    One of the newest major oil plays in the Gulf Coast basin, the Austin Chalk reportedly produces in three belts: an updip belt, where production is from fractured chalk in structurally high positions along faults above 7,000 ft; a shallow downdip belt, where the chalk is uniformly saturated with oil from 7,000 to 9,000 ft; and a deeper downdip belt saturated with gas and condensate below 9,000 ft. The updip fields usually occur on the southeastern, upthrown side of the Luling, Mexia, and Charlotte fault zones. Production is from fractures that connect the relatively sparse matrix pores with more permeable fracture systems. The fractures resulted from regional extensional stress during the opening of the Gulf Coast basin on the divergent margin of the North American plate during the Laramide orogeny. The fractures are more common in the more brittle chalk than in the overlying Navarro and underlying Eagle Ford shales, which are less brittle. The oil in the updip traps in the chalk may have been generated in place downdip, and migrated updip along the extension fractures into the updip traps during or after the Laramide orogeny.

  1. Application of thematic mapper imagery to oil exploration in Austin Chalk, central Gulf Coast basin, Texas

    SciTech Connect

    Reid, W.M.


    One of the newest major oil plays in the Gulf Coast basin, the Austin Chalk reportedly produces in three belts: an updip belt, where production is from fractured chalk in structurally high positions along faults above 7000 ft; a shallow downdip belt, where the chalk is uniformly saturated with oil from 7000 to 9000 ft; and a deeper downdip belt saturated with gas and condensate below 9000 ft. The updip fields usually occur on the southeastern, upthrown side of the Luling, Mexia, and Charlotte fault zones. Production is from fractures that connect the relatively sparse matrix pores with more permeable fracture systems. The fractures resulted from regional extensional stress during the opening of the Gulf Coast basin on the divergent margin of the North American plate during the Laramide orogeny. The fractures are more common in the more brittle chalk than in the overlying Navarro and underlying Eagle Ford shales, which are less brittle. The oil in the updip traps in the chalk may have been generated in place downdip, and migrated updip along the extension fractures into the updip traps during or after the Laramide orogeny. A fairway of previously unmapped updip faults and drag folds has been mapped using Thematic Mapper imagery and seismic, structural, and resistivity maps near the Nixon field, Burleson County, Texas. This fairway, prospective for oil from the Austin Chalk, contains wells reported to produce from the Austin Chalk which lie along lineaments and linear features on the Thematic Mapper imagery and faults in the seismic and structure maps.

  2. Evaluation of nonpoint-source contamination, Wisconsin: water year 1999

    USGS Publications Warehouse

    Walker, John F.; Graczyk, D.J.; Corsi, Steven R.; Wierl, J.A.; Owens, D.W.


    For two of the eight rural streams (Rattlesnake and Kuenster Creeks) minimal BMP implementation has occurred, hence a comparison of pre- BMP and data collected after BMP implementation began is not warranted. For two other rural streams (Brewery and Garfoot Creeks), BMP implementation is complete. For the four remaining rural streams (Bower, Otter, Eagle, and Joos Valley Creeks), the pre-BMP load data were compared to the transitional data to determine if significant reductions in the loads have occurred as a result of the BMP implementation to date. For all sites, the actual constituent loads for suspended solids and total phosphorus exhibit no statistically significant reductions after BMP installation. Multiple regressions were used to remove some of the natural variability in the data. Based on the residual analysis, for Otter Creek, there is a significant difference in the suspended-solids regression residuals between the pre-BMP and transitional periods, indicating a potential reduction as a result of the BMP implementation after accounting for natural variability. For Joos Valley Creek, the residuals for suspended solids and total phosphorus both show a significant reduction after accounting for natural variability. It is possible that the other sites will also show statistically significant reductions in suspended solids and total phosphorus if additional BMPs are implemented.

  3. Environmental Assessment: geothermal direct heat project, Marlin, Texas

    SciTech Connect

    Not Available


    The Federal action addressed by this Environmental Assessment (EA) is joint funding the retrofitting of a heating and hot water system in a hospital at Marlin, Texas, with a geothermal preheat system. The project will be located within the existing hospital boiler room. One supply well was drilled in an existing adjacent parking lot. It was necessary to drill the well prior to completion of this environmental assessment in order to confirm the reservoir and to obtain fluids for analysis in order to assess the environmental effects of fluid disposal. Fluid from operation will be disposed of by discharging it directly into existing street drains, which will carry the fluid to Park Lake and eventually the Brazos River. Fluid disposal activities are regulated by the Texas Railroad Commission. The local geology is determined by past displacements in the East Texas Basin. Boundaries are marked by the Balcones and the Mexia-Talco fault systems. All important water-bearing formations are in the cretaceous sedimentary rocks and are slightly to highly saline. Geothermal fluids are produced from the Trinity Group; they range from approximately 3600 to 4000 ppM TDS. Temperatures are expected to be above 64/sup 0/C (147/sup 0/F). Surface water flows southeastward as a part of the Brazos River Basin. The nearest perennial stream is the Brazos River 5.6 km (3.5 miles) away, to which surface fluids will eventually discharge. Environmental impacts of construction were small because of the existing structures and paved areas. Construction run-off and geothermal flow-test fluid passed through a small pond in the city park, lowering its water quality, at least temporarily. Construction noise was not out of character with existing noises around the hospital.

  4. Statistical analysis of lineaments and their relation to fracturing, faulting, and halokinesis in the East Texas Basin. Report of investigations No. 110

    SciTech Connect

    Dix, O.R.; Jackson, M.P.A.


    Lineament analysis is part of a broad spectrum of structural studies employed to determine the tectonic stability of the East Texas Basin. Such information is necessary to assess the suitability of East Texas salt domes as possible repository sites for the storage of high-level nuclear wastes. A sequence of statistical operations was designed to identify and assess the significance of lineament preferred orientation by means of a variety of statistical tests or parameters. Black-and-white aerial photographs, and band-5 Landsat imagery were analyzed. Well-defined, northeast-trending and northwest-trending lineament populations are present throughout the East Texas Basin. The northeast trend, comprising two peaks oriented at 045/sup 0/ and 055/sup 0/, corresponds to the orientation of the Mexia-Talco peripheral fault zone, to subsurface faults in the center of the basin, and to some lithologic contacts. The northwest trend comprises two peaks oriented at 310/sup 0/ and 325/sup 0/. Both the northeast and northwest trends are thought to result from preferential directions of fracture induced by interference folding at depth. Areas above shallow salt domes, particularly those in the southern part of the basin, are associated with higher lineament densities and lower preferred orientation of lineaments that are non-dome areas or areas above deep salt diapirs; this probably reflects radial and concentric fault and fracture patterns above the shallow domes. Analysis of computer-generated, geologically meaningless sets of lineaments strongly suggests that confidence levels of 99 percent are necessary to exclude randomly generated peaks, and that the significance of orthogonal pairsets has been exaggerated in the literature.

  5. Neoarchean and Paleoproterozoic granitoids marginal to the Jeceaba-Bom Sucesso lineament (SE border of the southern São Francisco craton): Genesis and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Campos, José Carlos Sales; Carneiro, Maurício Antônio


    The sialic crust of the southern São Francisco craton along the Jeceaba-Bom Sucesso lineament, central-southern part of Minas Gerais (Brazil), encompasses, among other rock types, Neoarchean and Paleoproterozoic granitoids. These granitoids, according to their petrographic, lithogeochemical and geochronologic characteristics, were grouped into two Neoarchean suites (Samambaia-Bom Sucesso and Salto Paraopeba-Babilônia) and three Paleoproterozoic suites (Cassiterita-Tabuões, Ritápolis and São Tiago). Varied processes and tectonic environments were involved in the genesis of these suites. In particular, the lithogeochemistry of the (Archean and Paleoproterozoic) TTG-type granitoids indicates an origin by partial melting of hydrated basaltic crust in a subduction environment. In the Neoarchean, between 2780 and 2703 Ma, a dominant TTG granitoid genesis related to an active continental margin was followed by another granite genesis related to crustal anatexis processes at 2612-2550 Ma. In the Paleoproterozoic, the generation of TTG and granites s.s. occurred at three distinct times: 2162, 2127 and 1887 Ma. This fact, plus the rock-type diversity produced by this granite genesis, indicates that the continental margin of the southern portion of the São Francisco craton was affected by more than one consumption episode of oceanic crust, involving different island arc segments, and the late Neoarchean consolidate continent. A Paleoproterozoic tectonic evolution in three stages is proposed in this work.

  6. Exciton self-trapping and Stark effect in the optical response of pentacene crystals from first principles

    NASA Astrophysics Data System (ADS)

    Strubbe, David A.; Sharifzadeh, Sahar; Neaton, Jeffrey B.; Louie, Steven G.


    Pentacene is a prototypical organic semiconductor with optoelectronic and photovoltaic applications. It is known that the lowest-energy singlet excitation has a Stokes shift between absorption and emission of about 0.14 eV, but the deformation associated with this self-trapped exciton remains unknown. We begin with a calculation of the optical properties via the first-principles GW/Bethe-Salpeter (BSE) theory [ML Tiago, JE Northrup, and SG Louie, Phys. Rev. B 67, 115212 (2003); S Sharifzadeh, A Biller, L Kronik, and JB Neaton, arXiv:1110.4928 (2011)]. We then study the self-trapping phenomenon via our reformulation of the Bethe-Salpeter excited-state forces approximation of Ismail-Beigi and Louie [Phys. Rev. Lett. 90, 076401 (2003)], which can describe the structural relaxation after optical excitation. Whether excitons in pentacene have charge-transfer character has been controversial in electro-absorption experiments. We use the same BSE analytic derivatives approach to calculate the changes in excitation energies due to an applied electric field to understand this experimental controversy.

  7. Selections from 2015: An Ancient System of Small Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna


    Editors Note:In these last two weeks of 2015, well be looking at a few selections from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.An Ancient Extrasolar System with Five Sub-Earth-Size PlanetsPublished January2015Main takeaway:Transit light curves for the five planets orbiting Kepler-444. [Campante et al. 2015]A team led by Tiago Campante (University of Birmingham, Aarhus University) reported Kepler spacecraft observations of Kepler-444, a system of five transiting exoplanets around a metal-poor, Sun-like star. All five planets are sub-Earth-sized. Furthermore, the system is measured to be over 11 billion years old making this the oldest known system of terrestrial-size planets.Why its interesting:While gas-giant planets show a preference for forming around metal-rich stars, smaller planets appear to be less picky. This suggests that Earth-size planets may have been able to form at earlier times in the universes history, when metals were scarcer. The determination that Kepler-444 is 11.2 billion years old confirms that terrestrial-size planets have been able to form throughout most of the universes 13.8 billion year history.Awesome technical achievement:The age of the Kepler-444 system was determined from asteroseismology of the host star. The fact that we can measure oscillations in the interior of this ancient star located 116 light-years away and use this to determine its age to a precision of 9%! is a remarkable achievement made possible by 4 years of continuous, high-quality observations of the system.CitationT. L. Campante et al 2015 ApJ 799 170. doi:10.1088/0004-637X/799/2/170

  8. Process development and techno-economic analysis of a novel process for MeOH production from CO2 using solar-thermal energy.

    SciTech Connect

    Henao, Carlos; Kim, Jiyong; Johnson, Terry Alan; Stechel, Ellen Beth; Dedrick, Daniel E.; Maravelias, Christos T.; Miller, James Edward


    Mitigating and overcoming environmental problems brought about by the current worldwide fossil fuel-based energy infrastructure requires the creation of innovative alternatives. In particular, such alternatives must actively contribute to the reduction of carbon emissions via carbon recycling and a shift to the use of renewable sources of energy. Carbon neutral transformation of biomass to liquid fuels is one of such alternatives, but it is limited by the inherently low energy efficiency of photosynthesis with regard to the net production of biomass. Researchers have thus been looking for alternative, energy-efficient chemical routes inspired in the biological transformation of solar power, CO2 and H2O into useful chemicals; specifically, liquid fuels. Methanol has been the focus of a fair number of publications for its versatility as a fuel, and its use as an intermediate chemical in the synthesis of many compounds. In some of these studies, (e.g. Joo et al., (2004), Mignard and Pritchard (2006), Galindo and Badr (2007)) CO2 and renewable H2 (e.g. electrolytic H2) are considered as the raw materials for the production of methanol and other liquid fuels. Several basic PFD diagrams have been proposed. One of the most promising is the so called CAMERE process (Joo et al., 1999 ). In this process, carbon dioxide and renewable hydrogen are fed to a first reactor and transformed according to: H2 + CO2 <=> H2O + CO Reverse Water Gas Shift (RWGS) After eliminating the produced water the resulting H2/CO2/CO mixture is then feed to a second reactor where it is converted to methanol according to: CO2 + 3.H2 <=> CH3OH + H2O Methanol Synthesis (MS) CO + H2O <=> CO2 + H2 Water Gas Shift (WGS) The approach here is to produce enough CO to eliminate, via WGS, the water produced by MS. This is beneficial since water has been proven to block active sites in the MS catalyst. In this work a different process alternative is presented: One that combines the CO2 recycling of the CAMERE process and the use of solar energy implicit in some of the biomass-based process, but in this case with the potential high energy efficiency of thermo-chemical transformations.

  9. The Zimba, the Portuguese, and other cannibals in late sixteenth-century Southeast Africa.


    Allina, Eric


    This article argues that Portuguese accounts of cannibalism in sixteenth-century southeast Africa reflect important but mostly unrecognised elements of the region's political and cultural history. The article analyses descriptions of the Zimba cannibals in Ethiopia Oriental, written by the Portuguese priest Joo dos Santos. Dos Santos's evidence figures significantly in scholarship for this period, and while many historians include his colourful descriptions of cannibalism, none has taken them seriously, largely dismissing them as a product of European myth-making. In focusing on the question of cannibalism, the article asks not whether the Zimba ate human flesh, nor why they might have, but how dos Santos came to believe that they did. Early modern European cultural outlooks had a role in producing such accounts, but the argument here focuses on how claims of cannibalism reflected African, rather than European, perspectives. Such claims were a vernacular expression of beliefs about, and critiques of, political power in the threatening and unsettled political environment of the time. In transmitting descriptions of cannibalism from African informants, dos Santos acted as an unwitting vehicle for this vernacular critique, conveying its meaning quite imperfectly to his readers. PMID:22026025

  10. In situ sensor techniques in modern bioprocess monitoring.


    Beutel, Sascha; Henkel, Steffen


    New reactor concepts as multi-parallel screening systems or disposable bioreactor systems for decentralized and reproducible production increase the need for new and easy applicable sensor technologies to access data for process control. These sophisticated reactor systems require sensors to work with the lowest sampling volumes or, even better, to measure directly in situ, but in situ sensors are directly incorporated into a reactor or fermenter within the sterility barrier and have therefore to stand the sterilization procedures. Consequently, these in situ sensor technologies should enable the measurement of multi-analytes simultaneously online and in real-time at a low price for the robust sensing element. Current research therefore focuses on the implementation of noninvasive spectroscopic and optical technologies, and tries to employ them through fiber optics attached to disposable sensing connectors. Spectroscopic methods reach from ultraviolet to infrared and further comprising fluorescence and Raman spectroscopy. Also, optic techniques like microscopy are adapted for the direct use in bioreactor systems (Ulber et al. in Anal Bioanal Chem 376:342-348, 2003) as well as various electrochemical methods (Joo and Brown in Chem Rev 108:638-651, 2008). This review shows the variety of modern in situ sensing principles in bioprocess monitoring with emphasis on spectroscopic and optical techniques and the progress in the adaption to latest reactor concepts. PMID:21785932

  11. The effect of syllabification and gemination on F2 onsets in Swedish

    NASA Astrophysics Data System (ADS)

    Agwuele, Augustine


    The quest to explain the continuousness of speech on the physical level has been dominated by the co-production theory [Hman, J. Acoust. Soc. Am. 41 (1966)]. According to this view, the production of a VCV sequence involves a diphthongal movement from V1-to-V2, with a superimposed consonantal gesture. However, data from recent studies are at variance with this position-Modaressi [Ph.D. dissertation, UT Austin, 2002], Perkell [Coarticulation Strategies Speech Commun. 5, 47-68 (1986)]. These studies document a trough-phenomena, which suggests a discontinuity in muscular activity during the production of the consonant. This paper provides additional acoustic evidence in support of sequential programming of consonant-vowel events as advocated by Joos [Acoustic Phonetics Lang. 24 (1948)]. It examines symmetrical VCV sequences in Swedish natural speech with syllable boundaries and duration of consonant gemination altered to produce different types of temporal interval between V1 and V2; i.e., V#CV, VCC#V, VC#CV, VCC#CV. F2 of V1mid, V1offset, V2onset, and V2mid were measured. Locus equations were plotted for all VC contacts. Statistical analysis of these data show: (1) de-activation of tongue movement at the CV boundary, (2) a reduction of the influence of V1 on V2 as a function of increasing consonant duration, and (3) a weak degree of CV coarticulation.

  12. Fifty years of progress in acoustic phonetics

    NASA Astrophysics Data System (ADS)

    Stevens, Kenneth N.


    Three events that occurred 50 or 60 years ago shaped the study of acoustic phonetics, and in the following few decades these events influenced research and applications in speech disorders, speech development, speech synthesis, speech recognition, and other subareas in speech communication. These events were: (1) the source-filter theory of speech production (Chiba and Kajiyama; Fant); (2) the development of the sound spectrograph and its interpretation (Potter, Kopp, and Green; Joos); and (3) the birth of research that related distinctive features to acoustic patterns (Jakobson, Fant, and Halle). Following these events there has been systematic exploration of the articulatory, acoustic, and perceptual bases of phonological categories, and some quantification of the sources of variability in the transformation of this phonological representation of speech into its acoustic manifestations. This effort has been enhanced by studies of how children acquire language in spite of this variability and by research on speech disorders. Gaps in our knowledge of this inherent variability in speech have limited the directions of applications such as synthesis and recognition of speech, and have led to the implementation of data-driven techniques rather than theoretical principles. Some examples of advances in our knowledge, and limitations of this knowledge, are reviewed.

  13. Maximum warming occurs about one decade after a carbon dioxide emission

    NASA Astrophysics Data System (ADS)

    Ricke, Katharine L.; Caldeira, Ken


    It is known that carbon dioxide emissions cause the Earth to warm, but no previous study has focused on examining how long it takes to reach maximum warming following a particular CO2 emission. Using conjoined results of carbon-cycle and physical-climate model intercomparison projects (Taylor et al 2012, Joos et al 2013), we find the median time between an emission and maximum warming is 10.1 years, with a 90% probability range of 6.6-30.7 years. We evaluate uncertainties in timing and amount of warming, partitioning them into three contributing factors: carbon cycle, climate sensitivity and ocean thermal inertia. If uncertainty in any one factor is reduced to zero without reducing uncertainty in the other factors, the majority of overall uncertainty remains. Thus, narrowing uncertainty in century-scale warming depends on narrowing uncertainty in all contributing factors. Our results indicate that benefit from avoided climate damage from avoided CO2 emissions will be manifested within the lifetimes of people who acted to avoid that emission. While such avoidance could be expected to benefit future generations, there is potential for emissions avoidance to provide substantial benefit to current generations.

  14. Ground-water geology of Bexar County, Texas

    USGS Publications Warehouse

    Arnow, Ted


    The investigation in Bexar County was part of a comprehensive study of a large area in south-central Texas underlain by the Edwards and associated limestones (Comanche Peak and Georgetown) of Cretaceous age. The limestones form an aquifer which supplies water to the city of San Antonio, several military installations, many industrial plants, and many irrigated farms. The geologic formations that yield water to wells in Bexar County are sedimentary rocks of Mesozoic and Cenozoic age. The rocks strike northeastward and dip southeastward toward the Gulf of Mexico. In the northern part of the county, in an erosional remnant of the Edwards Plateau, the rocks are clearly flat and free from faulting. In the central and southern parts of the county, however, the rocks dip gulfward at gentle to moderately steep angles and are extensively faulted in the Balcones and Mexia fault zones. Individual faults or shatter zones were traced as much as 25 miles; the maximum displacement is at least 600 feet. In general, the formations are either monoclinal or slightly folded; in the western part of the county the broad Culebra anticline plunges southwestward. Most of the large-capacity wells in Bexar County draw water from the Edwards and associated limestones, but a few draw from the Glen Rose limestone, the Austin chalk, and surficial sand and gravel. The Hosston formation, Glen Rose limestone, Buda limestone, and Austin chalk, all of Cretaceous age, generally yield small to large supplies of water; the Wilcox group and Carrizo sand of Tertiary age yield moderate supplies and alluvium of Pleistocene and Recent age generally yield small supplies. The Edwards and associated limestones are recharged primarily by groundwater underflow into Bexar County from the west, and secondarily by seepage from streams that cross the outcrop of the aquifer in Bexar County. During the period 1934-47 the recharge to the aquifer in Bexar County is estimated to have averaged between 400,000 and 430,000 acre-feet per year. Discharge from the aquifer takes place by means of wells and springs and by underflow into Comal and Guadalupe Counties on the northeast. During the period 1934-47 the estimated average discharge from wells and springs was about 174,000 acre-feet per year. The discharge by underflow out of the county during the same period is estimated to have averaged between 220,000 and 260.000 acre-feet per year. Probably only a small amount of water moves downdip southeast of San Antonio. The presence of highly mineralized water in that area suggests that the circulation of water is poor because of the low permeability of the aquifer. During the period 1934-56 the discharge from the Edwards and associated limestones greatly exceeded the recharge; consequently, water levels in wells declined. The decline was greatest in the northwestern part of the county, where the water levels in wells dropped as much as 100 feet. The decline was progressively less toward the east, averaging 40 feet along the Bexar-Comal County line. The area of the greatest concentration of discharge, which includes San Antonio and extends to the southwest and northeast, coincides with the area of maximum faulting and maximum recorded yields from wells and is not the area of greatest decline. The ability of the Edwards and associated limestones to transmit and store water in the San Antonio area apparently is so great that the discharge from wells results in much smaller declines of water level than do similar or even smaller discharges in other areas. The water from the Edwards is almost uniformly a calcium bicarbonate water of good quality, although hard. In the southern part of the San Antonio area the water is charged with hydrogen sulfide; farther downdip it becomes highly mineralized.

  15. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate

    NASA Astrophysics Data System (ADS)

    Hoernle, Kaj; Tilton, George; Le Bas, Mike; Duggen, Svend; Garbe-Schönberg, Dieter


    Major and trace element and Sr-Nd-Pb-O-C isotopic compositions are presented for carbonatites from the Cape Verde (Brava, Fogo, Sáo Tiago, Maio and Sáo Vicente) and Canary (Fuerteventura) Islands. Carbonatites show pronounced enrichment in Ba, Th, REE, Sr and Pb in comparison to most silicate volcanic rocks and relative depletion in Ti, Zr, Hf, K and Rb. Calcio (calcitic)-carbonatites have primary (mantle-like) stable isotopic compositions and radiogenic isotopic compositions similar to HIMU-type ocean island basalts. Cape Verde carbonatites, however, have more radiogenic Pb isotope ratios (e.g. 206Pb/204Pb=19.3-20.4) than reported for silicate volcanic rocks from these islands (18.7-19.9 Gerlach et al. 1988; Kokfelt 1998). We interpret calcio-carbonatites to be derived from the melting of recycled carbonated oceanic crust (eclogite) with a recycling age of 1.6 Ga. Because of the degree of recrystallization, replacement of calcite by secondary dolomite and elevated ∂13C and ∂18O, the major and trace element compositions of the magnesio (dolomitic)-carbonatites are likely to reflect secondary processes. Compared with Cape Verde calcio-carbonatites, the less radiogenic Nd and Pb isotopic ratios and the negative Δ7/4 of the magnesio-carbonatites (also observed in silicate volcanic rocks from the Canary and Cape Verde Islands) cannot be explained through secondary processes or through the assimilation of Cape Verde crust. These isotopic characteristics require the involvement of a mantle component that has thus far only been found in the Smoky Butte lamproites from Montana, which are believed to be derived from subcontinental lithospheric sources. Continental carbonatites show much greater variation in radiogenic isotopic composition than oceanic carbonatites, requiring a HIMU-like component similar to that observed in the oceanic carbonatites and enriched components. We interpret the enriched components to be Phanerozoic through Proterozoic marine carbonate (e.g. limestone) recycled through shallow, subcontinental-lithospheric-mantle and deep, lower-mantle sources.

  16. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate

    NASA Astrophysics Data System (ADS)

    Hoernle, Kaj; Tilton, George; Le Bas, Mike; Duggen, Svend; Garbe-Schönberg, Dieter

    Major and trace element and Sr-Nd-Pb-O-C isotopic compositions are presented for carbonatites from the Cape Verde (Brava, Fogo, Sáo Tiago, Maio and Sáo Vicente) and Canary (Fuerteventura) Islands. Carbonatites show pronounced enrichment in Ba, Th, REE, Sr and Pb in comparison to most silicate volcanic rocks and relative depletion in Ti, Zr, Hf, K and Rb. Calcio (calcitic)-carbonatites have primary (mantle-like) stable isotopic compositions and radiogenic isotopic compositions similar to HIMU-type ocean island basalts. Cape Verde carbonatites, however, have more radiogenic Pb isotope ratios (e.g. 206Pb/204Pb=19.3-20.4) than reported for silicate volcanic rocks from these islands (18.7-19.9 Gerlach et al. 1988; Kokfelt 1998). We interpret calcio-carbonatites to be derived from the melting of recycled carbonated oceanic crust (eclogite) with a recycling age of 1.6 Ga. Because of the degree of recrystallization, replacement of calcite by secondary dolomite and elevated ∂13C and ∂18O, the major and trace element compositions of the magnesio (dolomitic)-carbonatites are likely to reflect secondary processes. Compared with Cape Verde calcio-carbonatites, the less radiogenic Nd and Pb isotopic ratios and the negative Δ7/4 of the magnesio-carbonatites (also observed in silicate volcanic rocks from the Canary and Cape Verde Islands) cannot be explained through secondary processes or through the assimilation of Cape Verde crust. These isotopic characteristics require the involvement of a mantle component that has thus far only been found in the Smoky Butte lamproites from Montana, which are believed to be derived from subcontinental lithospheric sources. Continental carbonatites show much greater variation in radiogenic isotopic composition than oceanic carbonatites, requiring a HIMU-like component similar to that observed in the oceanic carbonatites and enriched components. We interpret the enriched components to be Phanerozoic through Proterozoic marine carbonate (e.g. limestone) recycled through shallow, subcontinental-lithospheric-mantle and deep, lower-mantle sources.

  17. Mucociliary clearance and submucosal gland secretion in the ex vivo ferret trachea.


    Jeong, Jin Hyeok; Joo, Nam Soo; Hwang, Peter H; Wine, Jeffrey J


    In many species submucosal glands are an important source of tracheal mucus, but the extent to which mucociliary clearance (MCC) depends on gland secretion is unknown. To explore this relationship, we measured basal and agonist-stimulated MCC velocities in ex vivo tracheas from adult ferrets and compared the velocities with previously measured rates of ferret glandular mucus secretion (Cho HJ, Joo NS, Wine JJ. Am J Physiol Lung Cell Mol Physiol 299: L124-L136, 2010). Stimulated MCC velocities (mm/min, means ± SE for 10- to 35-min period poststimulation) were as follows: 1 μM carbachol: 19.1 ± 3.3 > 10 μM phenylephrine: 15.3 ± 2.4 ≈ 10 μM isoproterenol: 15.0 ± 1.9 ≈ 10 μM forskolin: 14.6 ± 3.1 > 1 μM vasoactive intestinal peptide (VIP): 10.2 ± 2.2 > basal (t15): 1.8 ± 0.3; n = 5-10 for each condition. Synergistic stimulation of MCC was observed between low concentrations of carbachol (100 nM) and isoproterenol (300 nM). Bumetanide inhibited carbachol-stimulated MCC by ~70% and abolished the increase in MCC stimulated by forskolin + VIP, whereas HCO3 (-)-free solutions did not significantly inhibit MCC to either intracellular Ca(2+) concentration or intracellular cAMP concentration ([cAMP]i)-elevating agonists. Stimulation and inhibition of MCC and gland secretion differed in several respects: most importantly, elevating [cAMP]i increased MCC much more effectively than expected from its effects on gland secretion, and bumetanide almost completely inhibited [cAMP]i-stimulated MCC while it had a smaller effect on gland secretion. We conclude that changes in glandular fluid secretion are complexly related to MCC and discuss possible reasons for this. PMID:24793168

  18. Rudolf Mössbauer in Munich

    NASA Astrophysics Data System (ADS)

    Kalvius, G. M.; Kienle, P.

    Mössbauer and one of the authors (PK) started in 1949 studying physics at the Technische Hochschule München (THM), which was still under reconstruction from the war damages. It offered two directions for studying physics: "Physik A" and "Physik B." I took courses in "Physik A," which meant Technical Physics; Mössbauer studied "Physik B," which was General Physics. Actually, the lectures of both directions were not too different up to the forth semester, followed by a "pre-diploma" examination, which Mössbauer passed in 1952. I as "Physik A" student had besides the various physics, chemistry, and mathematics courses, in addition lectures in Technical Electricity, Technical Mechanics, Technical Thermodynamics, and later Measurement Engineering offered by very famous professors, such as W.O. Schumann, L. Föppl, W. Nußelt, and H. Piloty. Our physics teachers were G. Joos (Experimental physics), G. Hettner (Theoretical Physics), and W. Meissner (Technical Physics); in mathematics, we enjoyed lectures by J. Lense and R. Sauer, and interesting chemistry lectures by W. Hieber. Thus we received a high-class classical education, but quantum mechanics was not a compulsory subject. Mössbauer complained about this deficiency when he realized that the effect he found was a quantum mechanical phenomenon. Quantum mechanics was offered as an optional subject by Prof. Fick and Prof. Haug. Mössbauer just missed to take these advanced lectures, although he was highly talented in mathematics and received even a tutoring position in the mathematics institute of Prof. R. Sauer, while I worked in engineering projects and had extensive industrial training.

  19. BOOK REVIEW: Decoherence and the Appearance of a Classical World in Quantum Theory

    NASA Astrophysics Data System (ADS)

    Alicki, R.


    In the last decade decoherence has become a very popular topic mainly due to the progress in experimental techniques which allow monitoring of the process of decoherence for single microscopic or mesoscopic systems. The other motivation is the rapid development of quantum information and quantum computation theory where decoherence is the main obstacle in the implementation of bold theoretical ideas. All that makes the second improved and extended edition of this book very timely. Despite the enormous efforts of many authors decoherence with its consequences still remains a rather controversial subject. It touches on, namely, the notoriously confusing issues of quantum measurement theory and interpretation of quantum mechanics. The existence of different points of view is reflected by the structure and content of the book. The first three authors (Joos, Zeh and Kiefer) accept the standard formalism of quantum mechanics but seem to reject orthodox Copenhagen interpretation, Giulini and Kupsch stick to both while Stamatescu discusses models which go beyond the standard quantum theory. Fortunately, most of the presented results are independent of the interpretation and the mathematical formalism is common for the (meta)physically different approaches. After a short introduction by Joos followed by a more detailed review of the basic concepts by Zeh, chapter 3 (the longest chapter) by Joos is devoted to the environmental decoherence. Here the author considers mostly rather `down to earth' and well-motivated mechanisms of decoherence through collisions with atoms or molecules and the processes of emission, absorption and scattering of photons. The issues of decoherence induced superselection rules and localization of objects including the possible explanation of the molecular structure are discussed in details. Many other topics are also reviewed in this chapter, e.g., the so-called Zeno effect, relationships between quantum chaos and decoherence, the role of decoherence in quantum information processing and even decoherence in the brain. The next chapter, written by Kiefer, is devoted to decoherence in quantum field theory and quantum gravity which is a much more speculative and less explored topic. Two complementary aspects are studied in this approach: decoherence of particle states by the quantum fields and decoherence of field states by the particles. Cosmological issues related to decoherence are discussed, not only within the standard Friedmann cosmology, but also using the elements of the theory of black holes, wormholes and strings. The relations between the formalism of consistent histories defined in terms of decoherence functionals and the environmental decoherence are discussed in chapter 5, also written by Kiefer. The Feynman--Vernon influence functional for the quantum open system is presented in detail as the first example of decoherence functional. Then the general theory is outlined together with possible interpretations including cosmological aspects. The next chapter by Giulini presents an overview of the superselection rules arising from physical symmetries and gauge transformations both for nonrelativistic quantum mechanics and quantum field theory. Critical discussion of kinematical superselection rules versus dynamical ones is illustrated by numerous examples like Galilei invariant quantum mechanics, quantum electrodynamics and quantum gravity. The introduction to the theory of quantum open systems and its applications to decoherence models is given in chapter 7 by Kupsch. Generalized master equations, Markovian approximation and a few Hamiltonian models relevant for decoherence are discussed. Some mathematical tools, e.g., complete positivity and entropy inequalities are also presented. The last chapter by Stamatescu is devoted to stochastic collapse models which can be interpreted either as certain representations of the dynamics of open quantum systems or as fundamental modifications of the Schr\\"odinger equation. The final part of the book consists of remarks by Zeh on related concepts and methods and seven appendices. The broad spectrum, mathematically-friendly presentation, inclusion of the very recent developments and the extensive bibliography (about 550 references) make this book a valuable reference for all researchers, graduate and PhD students interested in the foundations of quantum mechanics, quantum open systems and quantum information. The relative independence of the chapters and numerous redundancies allow for selective reading, which is very helpful for newcomers to this field.

  20. Committees

    NASA Astrophysics Data System (ADS)


    Leadership Team of the IAHR Committee for Hydraulic Machinery and Systems Eduard EGUSQUIZA, UPC Barcelona, Spain, Chair François AVELLAN, EPFL-LMH, Switzerland, Past Chair Richard K FISHER, Voith Hydro Inc., USA, Past Chair Fidel ARZOLA, Edelca, Venezuela Michel COUSTON, Alstom Hydro, France Niklas DAHLBÄCKCK, Vatenfall, Sweden Normand DESY, Andritz VA TECH Hydro Ltd., Canada Chisachi KATO, University of Tokyo, Japan Andrei LIPEJ, Turboinstitut, Slovenija Torbjørn NIELSEN, NTNU, Norway Romeo SUSAN-RESIGA, 'Politehnica' University Timisoara, Romania Stefan RIEDELBAUCH, Stuggart University, Germany Albert RUPRECHT, Stuttgart University, Germany Qing-Hua SHI, Dong Fang Electrical Machinery Co., China Geraldo TIAGO, Universidade Federal de Itajubá, Brazil International Advisory Committee Shouqi YUAN (principal) Jiangsu University China QingHua SHI (principal) Dong Fang Electrical Machinery Co. China Fidel ARZOLA EDELCA Venezuela Thomas ASCHENBRENNER Voith Hydro GmbH & Co. KG Germany Anton BERGANT Litostroj Power doo Slovenia B C BHAOYAL Research & Technology Centre India Hermod BREKKE NTNU Norway Stuart COULSON Voith Hydro Inc. USA Paul COOPER Fluid Machinery Research Inc USA V A DEMIANOV Power Machines OJSC Russia Bart van ESCH Technische Universiteit Eindhoven Netherland Arno GEHRER Andritz Hydro Graz Austria Akira GOTO Ebara Corporation Japan Adiel GUINZBURG The Boeing Company USA D-H HELLMANN KSB AG Germany Ashvin HOSANGADI Combustion Research and Flow Technology USA Byung-Sun HWANG Korea Institute of Material Science Korea Toshiaki KANEMOTO Kyushu Institute of Technology Japan Mann-Eung KIM Korean Register of Shipping Korea Jiri KOUTNIK Voith Hydro GmbH & Co. KG Germany Jinkook LEE Eaton Corporation USA Young-Ho LEE Korea Maritime University Korea Woo-Seop LIM Hyosung Goodsprings Inc Korea Jun MATSUI Yokohama National University Japan Kazuyoshi Mitsubishi H I Ltd, Japan MIYAGAWA Christophe NICOLET Power Vision Engineering Srl Switzerland Maryse PAGE Hydro Quebec IREQ, Varennes Canada Etienne PARKINSON Andritz Hydro Ltd. Switzerland B V S S S PRASAD Indian Institute of Technology Madras India Stefan RIEDELBAUCH Stuttgart University Germany Michel SABOURIN Alstom Hydro Canada Inc Canada Bruno SCHIAVELLO Flowserve Corporation USA Katsumasa SHIMMEI Hitachi Ltd Japan Christoph SINGRTüN VDMA Germany Ale? SKOTAK CKD Blansko Engineering, a s Czech Republic Toshiaki SUZUKI Toshiba Corporation Japan Andy C C TAN Queensland University of Technology Australia Geraldo TIAGO FILHO Universidade Federal de Itajuba Brazi Thi C VU Andritz Hydro Ltd Canada Satoshi WATANABE Kyushu University Japan S H WINOTO National University of Singapore Singapore Woo-Seong WOO STX Institute of Technology Korea International Technical Committee François AVELLAN (principal) EPFL-LMH Switzerland Xingqi LUO (principal) Xi'an University of Technology China Martin BÖHLE Kaiserslautern University Germany Gerard BOIS ENSAM France Young-Seok CHOI KITECH Korea Luca d'AGOSTINO University of Pisa Italy Eduard EGUSQUIZA Polytechnical University Catalonia Spain Arpad FAY University of Miskolcz Hungary Richard FISHER Voith Hydro Inc USA Regiane FORTES-PATELLA Institute Polytechnique de Grenoble France Aleksandar GAJIC University of Belgrade Serbia José GONZÁLEZ Universidad de Oviedo Spain François GUIBAULT Ecole Polytechnique de Montreal Canada Toshiaki IKOHAGI Tohoku University Japan Chisachi KATO University of Tokyo Japan Kwang-Yong KIM Inha University Korea Youn-Jea KIM Sungkyunkwan University Korea Smaine KOUIDRI Université Pierre et Marie Curie (Paris 6) France Shengcai LI Warwick University UK Adrian LUNGU Dunarea de Jos University of Galati Romania Torbjøm K NIELSEN NTNU Norway Michihiro NISHI Tsinghua University China Peter PELZ Darmstadt University Germany Frantisek POCHYLY Brno University Czech Republic Albert RUPRECHT University of Stuttgart Germany Rudolf SCHILLING Technische University München Germany Wei SHYY HKUST Hong Kong,China Romeo SUSAN-RESIGA Politehnica University of Timisoara Romania Kazuhiro TANAKA Kyushu Institute of Technology Japan Yoshinobu TSUJIMOTO Osaka University Japan Local Organizing Committee Chairman Yulin WU Tsinghua University Beijing Executive Chairman Zhengwei WANG Tsinghua University Beijing Members Shuliang CAO Tsinghua University Beijing Cichang CHEN South West University of Petroleum Chengdu Hongxun CHEN Shanghai University Shanghai Jiang DAI China Sanxia General Co Yichang Huashu DOU National University of Singapore Singapore Fengqin HAN Huanan University of Sci & Tech Guangzhou Kun LI Hefei Inst of General Machinery Hefei Rennian LI Lanzhou University of Sci & Tech Lanzhou Wanhong LI National Natural Science Foundation of China Beijing Chao LIU Yangzhou University Yangzhou Li LU China Inst of Water Resources and Hydropower Research Beijing Xingqi LUO Xi'an University of Tech Xi'an Zhenyue MA Dalian University of Sci & Tech Dalian Jiegang MU Zhejiang University of Tech Hangzhou Daqing QIN Harbin Electric Machinery Group Harbin Fujun WANG China Agriculture University Beijing Guoyu WANG Beijing Institute of Technology (BIT) Beijing Leqin WANG Zhejiang University Hangzhou Yuzhen WU NERCSPV Beijing Hongyuan XU Tsinghua University Beijing Jiandong YANG Wuhan University Wuhan Minguan YANG Jiangsu University Zhenjiang Shouqi YUAN Jiangsu University Zhenjiang Lefu ZHANG Harbin Electric Machinery Group Harbin Lixiang ZHANG Yunnan University of Sci & Tech Kunming Shengchang ZHANG Zhejiang University of Tech Hangzhou Kun ZHAO China Water & Electric Consulting Corp Beijing Yuan ZHENG Hehai University Nanjing Jianzhong ZHOU Huazhong University of Sci & Tech Wuhan Lingjiu ZHOU China Agriculture University Beijing Hongwu ZHU China Petroleum University Beijing Zuchao ZHU Zhejiang Sci-Tech University Hangzhou Secretaries Shuhong LIU (Academic), Xianwu LUO (Registration), Baoshan ZHU (Finance),

  1. Application of multi-dimensional discrimination diagrams and probability calculations to Paleoproterozoic acid rocks from Brazilian cratons and provinces to infer tectonic settings

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Oliveira, Elson P.


    In present work, we applied two sets of new multi-dimensional geochemical diagrams (Verma et al., 2013) obtained from linear discriminant analysis (LDA) of natural logarithm-transformed ratios of major elements and immobile major and trace elements in acid magmas to decipher plate tectonic settings and corresponding probability estimates for Paleoproterozoic rocks from Amazonian craton, São Francisco craton, São Luís craton, and Borborema province of Brazil. The robustness of LDA minimizes the effects of petrogenetic processes and maximizes the separation among the different tectonic groups. The probability based boundaries further provide a better objective statistical method in comparison to the commonly used subjective method of determining the boundaries by eye judgment. The use of readjusted major element data to 100% on an anhydrous basis from SINCLAS computer program, also helps to minimize the effects of post-emplacement compositional changes and analytical errors on these tectonic discrimination diagrams. Fifteen case studies of acid suites highlighted the application of these diagrams and probability calculations. The first case study on Jamon and Musa granites, Carajás area (Central Amazonian Province, Amazonian craton) shows a collision setting (previously thought anorogenic). A collision setting was clearly inferred for Bom Jardim granite, Xingú area (Central Amazonian Province, Amazonian craton) The third case study on Older São Jorge, Younger São Jorge and Maloquinha granites Tapajós area (Ventuari-Tapajós Province, Amazonian craton) indicated a within-plate setting (previously transitional between volcanic arc and within-plate). We also recognized a within-plate setting for the next three case studies on Aripuanã and Teles Pires granites (SW Amazonian craton), and Pitinga area granites (Mapuera Suite, NW Amazonian craton), which were all previously suggested to have been emplaced in post-collision to within-plate settings. The seventh case studies on Cassiterita-Tabuões, Ritápolis, São Tiago-Rezende Costa (south of São Francisco craton, Minas Gerais) showed a collision setting, which agrees fairly reasonably with a syn-collision tectonic setting indicated in the literature. A within-plate setting is suggested for the Serrinha magmatic suite, Mineiro belt (south of São Francisco craton, Minas Gerais), contrasting markedly with the arc setting suggested in the literature. The ninth case study on Rio Itapicuru granites and Rio Capim dacites (north of São Francisco craton, Serrinha block, Bahia) showed a continental arc setting. The tenth case study indicated within-plate setting for Rio dos Remédios volcanic rocks (São Francisco craton, Bahia), which is compatible with these rocks being the initial, rift-related igneous activity associated with the Chapada Diamantina cratonic cover. The eleventh, twelfth and thirteenth case studies on Bom Jesus-Areal granites, Rio Diamante-Rosilha dacite-rhyolite and Timbozal-Cantão granites (São Luís craton) showed continental arc, within-plate and collision settings, respectively. Finally, the last two case studies, fourteenth and fifteenth showed a collision setting for Caicó Complex and continental arc setting for Algodões (Borborema province).

  2. Bioenergetics of Continental Serpentinites

    NASA Astrophysics Data System (ADS)

    Cardace, D.; Meyer-Dombard, D. R.


    Serpentinization is the aqueous alteration of ultramafic (Fe- and Mg-rich) rocks, resulting in secondary mineral assemblages of serpentine, brucite, iron oxyhydroxides and magnetite, talc, and possibly carbonate and silica-rich veins and other minor phases-all depending on the evolving pressure-temperature-composition of the system. The abiotic evolution of hydrogen and possibly organic compounds via serpentinization (McCollom and Bach, 2009) highlights the relevance of this geologic process to carbon and energy sources for the deep biosphere. Serpentinization may fuel life over long stretches of geologic time, throughout the global seabed and in exposed, faulted peridotite blocks (as at Lost City Hydrothermal Field, Kelley et al., 2005), and in obducted oceanic mantle units in ophiolites (e.g., Tiago et al., 2004). Relatively little work has been published on life in continental serpentinite settings, though they likely host a unique resident microbiota. In this work, we systematically model the serpentinizing fluid as an environmental niche. Reported field data for high and moderate pH serpentinizing fluids were modeled from Cyprus, the Philippines, Oman, Northern California, New Caledonia, Yugoslavia, Portugal, Italy, Newfoundland Canada, New Zealand, and Turkey. Values for Gibbs Energy of reaction (ΔGr), kJ per mole of electrons transferred for a given metabolism, are calculated for each field site. Cases are considered both for (1) modest assumptions of 1 nanomolar hydrogen and 1 micromolar methane, based on unpublished data for a similar northern California field site (Cardace and Hoehler, in prep.) and (2) an upper estimate of 10 nanomolar hydrogen and 500 micromolar methane. We survey the feasibility of microbial metabolisms for key steps in the nitrogen cycle, oxidation of sulfur in pyrite, iron oxidation or reduction reactions, sulfate reduction coupled to hydrogen or methane oxidation, methane oxidation coupled to the reduction of oxygen, and methanogenesis. We find that there is strong energetic yield from most reactions considered, except for transformation of nitrite to nitrate, ammonia to nitrite, ferrous to ferric iron, and carbon dioxide to methane. Laying out foundational metabolic models for microbiological communities sustained by chemosynthesis in this setting (mining energy from ultramafic rocks and chemical systems, not tied to photosynthesis in any way) has enticing relevance to the search for extraterrestrial life, in that similar rocks have been detected on our sibling planet Mars, with transient atmospheric detection of hydrogen and methane (Schulte et al., 2006, Mumma et al., 2009). To a first order, this work explores the intersection of serpentinite groundwater chemistry and bioenergetics to determine what kinds of life can be sustained in these significant subsurface settings. References cited: Kelley et al. 2005. Science 307:1428-1434. McCollom and Bach. 2009. GCA 73:856-875. Mumma et al., 2009. Science 323:1041-1045. Schulte et al., 2006. Astrobiology 6:364-376.

  3. Peer review statement

    NASA Astrophysics Data System (ADS)


    All papers published in this Volume 12 of IOP Conference Series: Earth and Environmental Science have been peer reviewed through processes administered by the editors of the 25th IAHR Symposium on Hydraulic Machinery and Systems proceedings, Professor Romeo Susan-Resiga, Dr Sebastian Muntean and Dr Sandor Bernad. Reviews were conducted by expert referees from the Scientific Committee to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. The members of the Scientific Committee who selected and reviewed the papers included in the Proceedings of the 25th IAHR Symposium on Hydraulic Machinery and Systems are: Anton ANTONTechnical University of Civil Engineering, BucharestRomania François AVELLANEcole Polytechnique Fédérale de LausanneSwitzerland Fidel ARZOLAEDELCAVenezuela Thomas ASCHENBRENNERVoith Hydro Gmb H & Co. KG, HeidenheimGermany Anton BERGANTLitostroj Power d.o.o., LjubljanaSlovenia Gerard BOISENSAM, LilleFrance Hermod BREKKENTNU, TrondheimNorway Stuart COULSON Voith Hydro Inc., YorkUSA Eduard EGUSQUIZAPolytechnical University Catalonia BarcelonaSpain Arpad FAYUniversity of MiskolczHungary Richard FISHERVoith Hydro Inc., York USA Regiane FORTES-PATELLAInstitut Polytechnique de GrenobleFrance Aleksandar GAJICUniversity of BelgradeSerbia Arno GEHRERAndritz Hydro GrazAustria José GONZÁLEZUniversidad de OviedoSpain François GUIBAULTEcole Polytechnique de MontrealCanada Chisachi KATOUniversity of TokyoJapan Kwang-Yong KIMInha University, IncheonKorea Jiri KOUTNIKVoith Hydro Gmb H & Co. KG, HeidenheimGermany Adrian LUNGUDunarea de Jos University of GalatiRomania Christophe NICOLETPower Vision Engineering Sàrl, LausanneSwitzerland Torbjøm K. NIELSENNTNU, TrodheimNorway Michihiro NISHIKyushu Institute of TechnologyJapan Maryse PAGEHydro Quebec IREQ, VarennesCanada Etienne PARKINSONAndritz Hydro LtdSwitzerland František POCHYLYBrno UniversityCzech Republic Stefan RIEDELBAUCHVoith Hydro Gmb H & Co. KG, HeidenheimGermany Albert RUPRECHTUniversity of StuttgartGermany Michel SABOURINAlstom Hydro Canada Inc.Canada Rudolf SCHILLINGTechnische Universität MünchenGermany Qing-Hua SHIDong Fang Electrical Machinery Co.China Aleš SKOTAKCKD Blansko Engineering, a. s.Czech Republic Romeo F. SUSAN-RESIGAPolitehnica University of TimisoaraRomania Geraldo TIAGO FILHOUniversidade Federal de ItajubaBrazil Yoshinobu TSUJIMOTOOsaka UniversityJapan Bart van ESCHTechnische Universiteit EindhovenNetherland Thi C. VUAndritz Hydro Ltd, QuebecCanada Satoshi WATANABEKyushu University, FukuokaJapan Yulin WUTsinghua University, BeijingChina The reviewing process was organized in several steps. First, the 238 abstracts submitted for the symposium were reviewed, and 197 were accepted, with 30 abstracts having recommendations. Second, the authors have submitted 152 full-length papers, and each paper has been reviewed by two referees. The recommendations have been sent back to the authors, in order to prepare the final form or the paper. Third, 118 papers have been received in final form, accounting for the referees recommendations, to be included in the proceedings and to be presented at the symposium.

  4. 13c Measurements On Air of Small Ice Samples

    NASA Astrophysics Data System (ADS)

    Eyer, M.; Leuenberger, M.

    We have developed a new method for 13C analysis for very small air amounts of less than 0.5 cc STP, corresponding to less than 10 gram of ice. It is based on the needle-crasher technique, which we routinely use for CO2 concentration measurements by infrared laser absorption. The extracted air is slowly expanded into a large volume through a water trap held at ­100°C. This sampled air is then carried by a high helium flux through a modified Precon system of Thermo-Finnigan to separate CO2 from the air and to inject the pure CO2 gas in a low helium stream via an open split device to a Delta Plus XL mass spectrometer. The overall precision based on replicates of standard air is significantly better than 0.1 for a single analysis and is further improved by a triplicate measurement of the same sample through a specially designed gas splitter. We have used this new method for investigations on polar ice cores. The 13C measurements are important for climate reconstructions, e.g. to reconstruct the evolution and its variability in the terrestrial and oceanic carbon sinks and to identify natural variations in the marine carbon cycle. During the industrialization atmospheric 13C decreased by about -2, mainly due to the anthropogenic release of biogenic CO2 by fossil fuel burning. Reconstructions of carbon and oxygen cycles of Joos at al. [1999] using a double deconvolution method show that between 1930 and 1950 the net terrestrial release is changing to a net terrestrial uptake of CO2. A highly resolved 13C dataset of this time window would replenish the documentation of this behaviour. Further, it would be interesting to compare such data with O2/N2 measurements, known as an other partitioning tool for carbon sources and sinks. At the EGS 2002 we will present a highly resolved 13C record from Antarctic ice covering this time period.

  5. A Record of Deglacial Ventilation from Foraminiferal Radiocarbon at Intermediate Depths in the Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Umling, N. E.; Thunell, R.


    Ice core records reveal episodes of rapid atmospheric CO2 rise and Δ14C excursions during deglaciation. Recent evidence suggests that this CO2 was sequestered in deep and intermediate waters during glacial periods and then released to the atmosphere due to changes in ocean circulation. Scenarios involving a more efficient biological pump and reduced ventilation of Southern Ocean deep waters have been cited as likely methods for glacial carbon storage (Sigman and Boyle, 2000). A more efficient biological pump calls on increased CaCO3 compensation as a buffer for reduced deep ocean alkalinity along with increased nutrient supply and primary production as a method of sequestering carbon from the surface ocean to the deep ocean (Marchitto et al., 2005). Modeling studies suggest that reduced ventilation of Southern Ocean waters due to increased sea ice cover and reduced upwelling is the dominant mechanism for carbon storage with a smaller contribution from the biological pump (Joos et al., 2011; Toggweiler., 2006). This study further examines the issue of changes in ocean ventilation by providing records of paired benthic and planktonic foraminiferal 14C ages from the deglacial sections of Eastern Equatorial Pacific marine sediment cores TR163-23 and TR163-18 at 2730 and 2030 meters depth, respectively. An Antarctic Intermediate Water (AAIW) sourced record of ventilation aids in the constraint of carbon previously sequestered through the Southern Ocean during periods of enhanced brine rejection and increased sea-ice extent (Marchitto et al., 2007; Pahnke et al., 2008; Keeling and Stephens, 2001). North Pacific Intermediate Water (NPIW) production has also been found to vary on millennial time scales reaching as far south as 8°N during glacial periods (Leduc et al., 2010). However, both cores used in this study are sufficiently deep and far enough south (0.41°N, 92.16°W and 2.81°N, 89.85°W) to avoid intrusion of NPIW that might obscure the AAIW signal.

  6. State-dependent climate sensitivity of the last 5 million years

    NASA Astrophysics Data System (ADS)

    Köhler, Peter; de Boer, Bas; von der Heydt, Anna; Stap, Lennert; van de Wal, Roderik


    Equilibrium temperature rise in response to increase in radiative forcing is called equilibrium climate sensitivity, an important quantity calculated by climate models to project future warming. For model validation comparisons with estimates based on paleo reconstructions are necessary. Here we use an energy balance model (Köhler et al., 2010) to estimate climate sensitivity using CO2 proxy data together with model-based reconstruction of land ice (de Boer et al., 2014) over the last 5 million years. We find that equilibrium climate sensitivity containing the radiative forcing of CO2 and land ice albedo depends on the background climate. This state-dependency is mainly contained in the non-linearity of the land-ice forcing. Results differ in detail if based on ice core CO2 of the last 800,000 years covering mainly colder than present climates (von der Heydt et al., 2014) or on CO2 proxies of the last 5 million years. Nevertheless, the climate sensitivity of the warm Pliocene, a paleo-analogy for a warmer future, is at least about a third higher than for preindustrial background climates. References: de Boer, B., Lourens, L. J. & van de Wal, R. S. Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene. Nature Communications 5, 2999 (2014). doi: 10.1038/ncomms3999. Köhler, P. Bintanja, R., Fischer, H., Joos, F., Knutti, R., Lohmann, G. & Masson-Delmotte, V. What caused Earth's temperature variations during the last 800,000 years? Data-based evidences on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews 29, 129-145 (2010). doi: 10.1016/j.quascirev.2009.09.026. von der Heydt, A. S., Köhler, P., van de Wal, R. S. & Dijkstra, H. A. On the state dependency of fast feedback processes in (paleo) climate sensitivity. Geophysical Research Letters 41, 6484-6492 (2014). doi: 10.1002/2014GL061121.

  7. Grammar of Binding in the languages of the world: Innate or learned?


    Cole, Peter; Hermon, Gabriella; Yanti


    Languages around the world often appear to manifest nearly identical grammatical properties, but, at the same time, the grammatical differences can also be great, sometimes even seeming to support Joos's (1958) claim that "languages can differ from each other without limit and in unpredictable way" (p. 96). This state of affairs provides a puzzle for both nativist approaches to language like Generative Grammar that posit a fixed "Universal Grammar", and for approaches that minimize the contribution of innate grammatical structure. We approach this puzzling state of affairs by looking at one area of grammar, "Binding", the system of local and long distance anaphoric elements in a language. This is an area of grammar that has long been central to the Generative approach to language structure. We compare the anaphoric systems found in "familiar" (European-like) languages that contain dedicated classes of bound and free anaphors (pronouns and reflexives) with the anaphoric systems in endangered Austronesian languages of Indonesia, languages in which there is overlap or no distinction between pronouns and reflexives (Peranakan Javanese and Jambi Malay). What is of special interest about Jambi anaphora is not only that conservative dialects of Jambi Malay do not distinguish between pronouns and reflexives, but that Jambi anaphora appear to constitute a live snapshot of a unitary class of anaphora in the process of grammaticalization as a distinct system of pronouns and reflexives. We argue that the facts of Jambi anaphora cannot be explained by theories positing a Universal Grammar of Binding. Thus, these facts provide evidence that complex grammatical systems like Binding cannot be innate. Our results from Austronesian languages are confirmed by data from signed and creole languages. Our conclusion is that the human language learning capacity must include the ability to model the full complexity found in the syntax of the world's languages. From the perspective of child language acquisition, these conclusions suggest that Universal Grammar does not provide a general solution to the problem of poverty of the stimulus, and the solution to that problem must reside at least in part in special properties of the grammar construction tools available to the language learner rather than simply in a fixed set of grammatical rules hard wired into the brains of speakers. PMID:25988914

  8. Hippocampal Substructural Vulnerability to Sleep Disturbance and Cognitive Impairment in Patients with Chronic Primary Insomnia: Magnetic Resonance Imaging Morphometry

    PubMed Central

    Joo, Eun Yeon; Kim, Hosung; Suh, Sooyeon; Hong, Seung Bong


    Study Objectives: Despite compelling evidence from animal studies indicating hippocampal subfield-specific vulnerability to poor sleep quality and related cognitive impairment, there have been no human magnetic resonance imaging (MRI) studies investigating the relationship between hippocampal subfield volume and sleep disturbance. Our aim was to investigate the pattern of volume changes across hippocampal subfields in patients with primary insomnia relative to controls. Design: Pointwise morphometry allowed for volume measurements of hippocampal regions on T1-weighted MRI. Setting: University hospital. Patients: Twenty-seven unmedicated patients (age: 51.2 ± 9.6 y) and 30 good sleepers as controls (50.4 ± 7.1 y). Interventions: N/A. Measurements: We compared hippocampal subfield volumes between patients and controls and correlated volume with clinical and neuropsychological features in patients. Results: Patients exhibited bilateral atrophy across all hippocampal subfields (P < 0.05 corrected). Cornu ammonis (CA) 1 subfield atrophy was associated with worse sleep quality (higher Pittsburgh Sleep Quality Index and higher arousal index of polysomnography) (r < -0.45, P < 0.005). The volume of the combined region, including the dentate gyrus (DG) and CA3-4, negatively correlated with verbal memory, verbal information processing, and verbal fluency in patients (|r| > 0.45, P < 0.05). Hemispheric volume asymmetry of this region (left smaller than right) was associated with impaired verbal domain functions (r = 0.50, P < 0.005). Conclusion: Hippocampal subfield atrophy in chronic insomnia suggests reduced neurogenesis in the dentate gyrus (DG) and neuronal loss in the cornu ammonis (CA) subfields in conditions of sleep fragmentation and related chronic stress condition. Atrophy in the CA3-4-DG region was associated with impaired cognitive functions in patients. These observations may provide insight into pathophysiological mechanisms that make patients with chronic sleep disturbance vulnerable to cognitive impairment. Citation: Joo EY, Kim H, Suh S, Hong SB. Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry. SLEEP 2014;37(7):1189-1198. PMID:25061247

  9. Maximum warming occurs about one decade after carbon dioxide emission

    NASA Astrophysics Data System (ADS)

    Ricke, K.; Caldeira, K.


    There has been a long tradition of estimating the amount of climate change that would result from various carbon dioxide emission or concentration scenarios but there has been relatively little quantitative analysis of how long it takes to feel the consequences of an individual carbon dioxide emission. Using conjoined results of recent carbon-cycle and physical-climate model intercomparison projects, we find the median time between an emission and maximum warming is 10.1 years, with a 90% probability range of 6.6 to 30.7 years. We evaluate uncertainties in timing and amount of warming, partitioning them into three contributing factors: carbon cycle, climate sensitivity and ocean thermal inertia. To characterize the carbon cycle uncertainty associated with the global temperature response to a carbon dioxide emission today, we use fits to the time series of carbon dioxide concentrations from a CO2-impulse response function model intercomparison project's 15 ensemble members (1). To characterize both the uncertainty in climate sensitivity and in the thermal inertia of the climate system, we use fits to the time series of global temperature change from the Coupled Model Intercomparison Project phase 5 (CMIP5; 2) abrupt4xco2 experiment's 20 ensemble's members separating the effects of each uncertainty factors using one of two simple physical models for each CMIP5 climate model. This yields 6,000 possible combinations of these three factors using a standard convolution integral approach. Our results indicate that benefits of avoided climate damage from avoided CO2 emissions will be manifested within the lifetimes of people who acted to avoid that emission. While the relevant time lags imposed by the climate system are substantially shorter than a human lifetime, they are substantially longer than the typical political election cycle, making the delay and its associated uncertainties both economically and politically significant. References: 1. Joos F et al. (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos Chem Phys 13:2793-2825. 2. Taylor KE, Stouffer RJ, Meehl GA (2011) An Overview of CMIP5 and the Experiment Design. Bull Am Meteorol Soc 93:485-498.

  10. Quantification of methane and nitrous oxide emissions from various waste treatment facilities by tracer dilution method

    NASA Astrophysics Data System (ADS)

    Mønster, Jacob; Rella, Chris; Jacobson, Gloria; Kjeldsen, Peter; Scheutz, Charlotte


    Urban activities generate solid and liquid waste, and the handling and aftercare of the waste results in the emission of various compounds into the surrounding environment. Some of these compounds are emitted as gasses into the atmosphere, including methane and nitrous oxide. Methane and nitrous oxide are strong greenhouse gases and are considered to have 25 and 298 times the greenhouse gas potential of carbon dioxide on a hundred years term (Solomon et al. 2007). Global observations of both gasses have shown increasing concentrations that significantly contribute to the greenhouse gas effect. Methane and nitrous oxide are emitted from both natural and anthropogenic sources and inventories of source specific fugitive emissions from the anthropogenic sources of methane and nitrous oxide of are often estimated on the basis of modeling and mass balance. Though these methods are well-developed, actual measurements for quantification of the emissions is a very useful tool for verifying the modeling and mass balance as well as for validation initiatives done for lowering the emissions of methane and nitrous oxide. One approach to performing such measurements is the tracer dilution method (Galle et al. 2001, Scheutz et al. 2011), where the exact location of the source is located and a tracer gas is released at this source location at a known flow. The ratio of downwind concentrations of the tracer gas and the methane and nitrous oxide gives the emissions rates of the greenhouse gases. This tracer dilution method can be performed using both stationary and mobile measurements and in both cases, real-time measurements of both tracer and quantified gas are required, placing high demands on the analytical detection method. To perform the methane and nitrous oxide measurements, two robust instruments capable of real-time measurements were used, based on cavity ring-down spectroscopy and operating in the near-infrared spectral region. One instrument measured the methane and tracer gas concentrations while another measured the nitrous oxide concentration. We present the performance of these instruments at different waste treatment facilities (waste water treatment plants, composting facilities, sludge mineralization beds, anaerobic digesters and landfills) in Denmark, and discuss the strengths and limitations of the method of the method for quantifying methane and nitrous oxide emissions from the different sources. Furthermore, we have measured the methane emissions from 10 landfills with emission rates ranging from 5 to 135 kg/h depending on the age, state, content and aftercare of the landfill. In addition, we have studied 3 waste water treatment plants, and found nitrous oxide emission of 200 to 700 g/h from the aeration tanks and a total methane emission ranging from 2 to 15 kg/h, with the primary emission coming from the sludge treatment. References Galle, B., Samuelsson, J., Svensson, B.H., and Börjesson, G. (2001). Measurements of methane emissions from landfills using a time correlation tracer method based on FTIR absorption spectroscopy. Environmental Science & Technology 35 (1), 21-25 Scheutz, C., Samuelsson, J., Fredenslund, A. M., and Kjeldsen, P. (2011). Quantification of multiple methane emission sources at landfills using a double tracer technique. Waste Management, 31(5), 1009-17 Solomon, S., D. Qin, M. Manning, R.B. Alley, T. Berntsen, N.L. Bindoff, Z. Chen, A. Chidthaisong, J.M. Gregory, G.C. Hegerl, M. Heimann, B. Hewitson, B.J. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, T.Matsuno, M. Molina, N. Nicholls, J.Overpeck, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, R. Somerville, T.F. Stocker, P. Whetton, R.A.Wood and D. Wratt, 2007: Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  11. On the linkages between the global carbon-nitrogen-phosphorus cycles

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsumasa; Mackenzie, Fred; Bouchez, Julien; Knutti, Reto


    State-of-the-art earth system models used for long-term climate projections are becoming ever more complex in terms of not only spatial resolution but also the number of processes. Biogeochemical processes are beginning to be incorporated into these models. The motivation of this study is to quantify how climate projections are influenced by biogeochemical feedbacks. In the climate modeling community, it is virtually accepted that climate-Carbon (C) cycle feedbacks accelerate the future warming (Cox et al. 2000; Friedlingstein et al. 2006). It has been demonstrated that the Nitrogen (N) cycle suppresses climate-C cycle feedbacks (Thornton et al. 2009). On the contrary, biogeochemical studies show that the coupled C-N-Phosphorus (P) cycles are intimately interlinked via biosphere and the N-P cycles amplify C cycle feedbacks (Ver et al. 1999). The question as to whether the N-P cycles enhance or attenuate C cycle feedbacks is debated and has a significant implication for projections of future climate. We delve into this problem by using the Terrestrial-Ocean-aTmosphere Ecosystem Model 3 (TOTEM3), a globally-aggregated C-N-P cycle box model. TOTEM3 is a process-based model that describes the biogeochemical reactions and physical transports involving these elements in the four domains of the Earth system: land, atmosphere, coastal ocean, and open ocean. TOTEM3 is a successor of earlier TOTEM models (Ver et al. 1999; Mackenzie et al. 2011). In our presentation, we provide an overview of fundamental features and behaviors of TOTEM3 such as the mass balance at the steady state and the relaxation time scales to various types of perturbation. We also show preliminary results to investigate how the N-P cycles influence the behavior of the C cycle. References Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. Journal of Climate, 19, 3337-3353. Mackenzie FT, De Carlo EH, Lerman A (2011) Coupled C, N, P, and O biogeochemical cycling at the land-ocean interface. In: Wolanski E, McLusky DS (eds) Treatise on Estuarine and Coastal Science, vol 5. Academic Press, Waltham, pp 317-342. Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque JF, Feddema JJ, Lee YH (2009) Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences, 6, 2099-2120. Ver LMB, Mackenzie FT, Lerman A (1999) Biogeochemical responses of the carbon cycle to natural and human perturbations: Past, present, and future. American Journal of Science, 299, 762-801.

  12. Interglacial climate dynamics and advanced time series analysis

    NASA Astrophysics Data System (ADS)

    Mudelsee, Manfred; Bermejo, Miguel; Köhler, Peter; Lohmann, Gerrit


    Studying the climate dynamics of past interglacials (IGs) helps to better assess the anthropogenically influenced dynamics of the current IG, the Holocene. We select the IG portions from the EPICA Dome C ice core archive, which covers the past 800 ka, to apply methods of statistical time series analysis (Mudelsee 2010). The analysed variables are deuterium/H (indicating temperature) (Jouzel et al. 2007), greenhouse gases (Siegenthaler et al. 2005, Loulergue et al. 2008, L¨ü thi et al. 2008) and a model-co-derived climate radiative forcing (Köhler et al. 2010). We select additionally high-resolution sea-surface-temperature records from the marine sedimentary archive. The first statistical method, persistence time estimation (Mudelsee 2002) lets us infer the 'climate memory' property of IGs. Second, linear regression informs about long-term climate trends during IGs. Third, ramp function regression (Mudelsee 2000) is adapted to look on abrupt climate changes during IGs. We compare the Holocene with previous IGs in terms of these mathematical approaches, interprete results in a climate context, assess uncertainties and the requirements to data from old IGs for yielding results of 'acceptable' accuracy. This work receives financial support from the Deutsche Forschungsgemeinschaft (Project ClimSens within the DFG Research Priority Program INTERDYNAMIK) and the European Commission (Marie Curie Initial Training Network LINC, No. 289447, within the 7th Framework Programme). References Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793. Köhler P, Bintanja R, Fischer H, Joos F, Knutti R, Lohmann G, Masson-Delmotte V (2010) What caused Earth's temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews 29:129. Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383. L¨ü thi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453:379. Mudelsee M (2000) Ramp function regression: A tool for quantifying climate transitions. Computers and Geosciences 26:293. Mudelsee M (2002) TAUEST: A computer program for estimating persistence in unevenly spaced weather/climate time series. Computers and Geosciences 28:69. Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer, Dordrecht, 474 pp. [] Siegenthaler U, Stocker TF, Monnin E, L¨ü thi D, Schwander J, Stauffer B, Raynaud D, Barnola J-M, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the late Pleistocene. Science 310:1313.

  13. The biogeophysical climatic impacts of anthropogenic land use change during the Holocene

    NASA Astrophysics Data System (ADS)

    Smith, M. Clare; Singarayer, Joy S.; Valdes, Paul J.; Kaplan, Jed O.; Branch, Nicholas P.


    The first agricultural societies were established around 10 ka BP and had spread across much of Europe and southern Asia by 5.5 ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies (e.g. Joos et al., 2004; Kaplan et al., 2011; Mitchell et al., 2013) have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with Hadley Centre Coupled Model version 3 (HadCM3) were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) one in which potential natural vegetation was simulated by Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) but without land use changes and (ii) one where the anthropogenic land use model Kaplan and Krumhardt 2010 (KK10; Kaplan et al., 2009, 2011) was used to set the HadCM3 crop regions. Snapshot simulations were run at 1000-year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results from our model simulations indicate that in regions of early land disturbance such as Europe and south-east Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7 ka BP in the June-July-August (JJA) season and throughout the entire annual cycle by 2-3 ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. The global annual mean temperature anomalies found in our single model simulations were -0.22 at 1850 CE, -0.11 at 2 ka BP, and -0.03 °C at 7 ka BP. Regionally, the largest temperature changes were in Europe with anomalies of -0.83 at 1850 CE, -0.58 at 2 ka BP, and -0.24 °C at 7 ka BP. Large-scale precipitation features such as the Indian monsoon, the Intertropical Convergence Zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies, and tropospheric stationary wave train disturbances in the mid- to high latitudes led to remote teleconnections.

  14. Quantitative multiplex detection of biomarkers on a waveguide-based biosensor using quantum dots

    SciTech Connect

    Xie, Hongzhi; Mukundan, Harshini; Martinez, Jennifer S; Swanson, Basil I; Anderson, Aaron S; Grace, Kevin


    The quantitative, simultaneous detection of multiple biomarkers with high sensitivity and specificity is critical for biomedical diagnostics, drug discovery and biomarker characterization [Wilson 2006, Tok 2006, Straub 2005, Joos 2002, Jani 2000]. Detection systems relying on optical signal transduction are, in general, advantageous because they are fast, portable, inexpensive, sensitive, and have the potential for multiplex detection of analytes of interest. However, conventional immunoassays for the detection of biomarkers, such as the Enzyme Linked Immunosorbant Assays (ELISAs) are semi-quantitative, time consuming and insensitive. ELISA assays are also limited by high non-specific binding, especially when used with complex biological samples such as serum and urine (REF). Organic fluorophores that are commonly used in such applications lack photostability and possess a narrow Stoke's shift that makes simultaneous detection of multiple fluorophores with a single excitation source difficult, thereby restricting their use in multiplex assays. The above limitations with traditional assay platforms have resulted in the increased use of nanotechnology-based tools and techniques in the fields of medical imaging [ref], targeted drug delivery [Caruthers 2007, Liu 2007], and sensing [ref]. One such area of increasing interest is the use of semiconductor quantum dots (QDs) for biomedical research and diagnostics [Gao and Cui 2004, Voura 2004, Michalet 2005, Chan 2002, Jaiswal 2004, Gao 2005, Medintz 2005, So 2006 2006, Wu 2003]. Compared to organic dyes, QDs provide several advantages for use in immunoassay platforms, including broad absorption bands with high extinction coefficients, narrow and symmetric emission bands with high quantum yields, high photostablility, and a large Stokes shift [Michalet 2005, Gu 2002]. These features prompted the use of QDs as probes in biodetection [Michalet 2005, Medintz 2005]. For example, Jaiswal et al. reported long term multiple color imaging of live cells using QD-bioconjugates [Jaiswal 2003]. Gao [Gao 2004] and So [So 2006] have used QDs as probes for in-vivo cancer targeting and imaging. Medintz et al. reported self-assembled QD-based biosensors for detection of analytes based on energy transfer [Medintz 2003]. Others have developed an approach for multiplex optical encoding of biomolecules using QDs [Han 2001]. Immunoassays have also benefited from the advantages of QDs. Recently, dihydrolipoic acid (DHLA) capped-QDs have been attached to antibodies and used as fluorescence reporters in plate-based multiplex immunoassays [Goodman 2004]. However, DHLA-QDs are associated with low quantum efficiency and are unstable at neutral pH. These problems limit the application of this technology to the sensitive detection of biomolecules, especially in complex biological samples. Thus, the development of a rapid, sensitive, quantitative, and specific multiplex platform for the detection of biomarkers in difficult samples remains an elusive target. The goal stated above has applications in many fields including medical diagnostics, biological research, and threat reduction. The current decade alone has seen the development of a need to rapidly and accurately detect potential biological warfare agents. For example, current methods for the detection of anthrax are grossly inadequate for a variety of reasons including long incubation time (5 days from time of exposure to onset of symptoms) and non-specific ('flu-like') symptoms. When five employees of the United State Senate were exposed to B. anthracis in the mail (2001), only one patient had a confirmed diagnosis before death. Since then, sandwich immunoassays using both colorimetric and fluorescence detectors have been developed for key components of the anthrax lethal toxin, namely protective antigen (PA), lethal factor (LF), and the edema factor [Mourez 2001]. While these platforms were successful in assays against anthrax toxins, the sensitivity was poor. Furthermore, no single platform exists for the simultaneous and quantitative detection of multiple components of the B. anthracis toxin. Addressing multiple biomarkers at the same time will increase confidence in a positive result, and may lead to application in the simultaneous detection of anthrax and other biowarfare agents.

  15. EDITORIAL: Focus on Quantum Control

    NASA Astrophysics Data System (ADS)

    Rabitz, Herschel


    Control of quantum phenomena has grown from a dream to a burgeoning field encompassing wide-ranging experimental and theoretical activities. Theoretical research in this area primarily concerns identification of the principles for controlling quantum phenomena, the exploration of new experimental applications and the development of associated operational algorithms to guide such experiments. Recent experiments with adaptive feedback control span many applications including selective excitation, wave packet engineering and control in the presence of complex environments. Practical procedures are also being developed to execute real-time feedback control considering the resultant back action on the quantum system. This focus issue includes papers covering many of the latest advances in the field. Focus on Quantum Control Contents Control of quantum phenomena: past, present and future Constantin Brif, Raj Chakrabarti and Herschel Rabitz Biologically inspired molecular machines driven by light. Optimal control of a unidirectional rotor Guillermo Pérez-Hernández, Adam Pelzer, Leticia González and Tamar Seideman Simulating quantum search algorithm using vibronic states of I2 manipulated by optimally designed gate pulses Yukiyoshi Ohtsuki Efficient coherent control by sequences of pulses of finite duration Götz S Uhrig and Stefano Pasini Control by decoherence: weak field control of an excited state objective Gil Katz, Mark A Ratner and Ronnie Kosloff Multi-qubit compensation sequences Y Tomita, J T Merrill and K R Brown Environment-invariant measure of distance between evolutions of an open quantum system Matthew D Grace, Jason Dominy, Robert L Kosut, Constantin Brif and Herschel Rabitz Simplified quantum process tomography M P A Branderhorst, J Nunn, I A Walmsley and R L Kosut Achieving 'perfect' molecular discrimination via coherent control and stimulated emission Stephen D Clow, Uvo C Holscher and Thomas C Weinacht A convenient method to simulate and visually represent two-photon power spectra of arbitrarily and adaptively shaped broadband laser pulses M A Montgomery and N H Damrauer Accurate and efficient implementation of the von Neumann representation for laser pulses with discrete and finite spectra Frank Dimler, Susanne Fechner, Alexander Rodenberg, Tobias Brixner and David J Tannor Coherent strong-field control of multiple states by a single chirped femtosecond laser pulse M Krug, T Bayer, M Wollenhaupt, C Sarpe-Tudoran, T Baumert, S S Ivanov and N V Vitanov Quantum-state measurement of ionic Rydberg wavepackets X Zhang and R R Jones On the paradigm of coherent control: the phase-dependent light-matter interaction in the shaping window Tiago Buckup, Jurgen Hauer and Marcus Motzkus Use of the spatial phase of a focused laser beam to yield mechanistic information about photo-induced chemical reactions V J Barge, Z Hu and R J Gordon Coherent control of multiple vibrational excitations for optimal detection S D McGrane, R J Scharff, M Greenfield and D S Moore Mode selectivity with polarization shaping in the mid-IR David B Strasfeld, Chris T Middleton and Martin T Zanni Laser-guided relativistic quantum dynamics Chengpu Liu, Markus C Kohler, Karen Z Hatsagortsyan, Carsten Muller and Christoph H Keitel Continuous quantum error correction as classical hybrid control Hideo Mabuchi Quantum filter reduction for measurement-feedback control via unsupervised manifold learning Anne E B Nielsen, Asa S Hopkins and Hideo Mabuchi Control of the temporal profile of the local electromagnetic field near metallic nanostructures Ilya Grigorenko and Anatoly Efimov Laser-assisted molecular orientation in gaseous media: new possibilities and applications Dmitry V Zhdanov and Victor N Zadkov Optimization of laser field-free orientation of a state-selected NO molecular sample Arnaud Rouzee, Arjan Gijsbertsen, Omair Ghafur, Ofer M Shir, Thomas Back, Steven Stolte and Marc J J Vrakking Controlling the sense of molecular rotation Sharly Fleischer, Yuri Khodorkovsky, Yehiam Prior and Ilya Sh Averbukh Optimal control of interacting particles: a multi-configuration time-dependent Hartree-Fock approach Michael Mundt and David J Tannor Exact quantum dissipative dynamics under external time-dependent driving fields Jian Xu, Rui-Xue Xu and Yi Jing Yan Pulse trains in molecular dynamics and coherent spectroscopy: a theoretical study J Voll and R de Vivie-Riedle Quantum control of electron localization in molecules driven by trains of half-cycle pulses Emil Persson, Joachim Burgdorfer and Stefanie Grafe Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling Jean-Michel Coron, Andreea Grigoriu, Catalin Lefter and Gabriel Turinici Sliding mode control of quantum systems Daoyi Dong and Ian R Petersen Implementation of fault-tolerant quantum logic gates via optimal control R Nigmatullin and S G Schirmer Generalized filtering of laser fields in optimal control theory: application to symmetry filtering of quantum gate operations Markus Schroder and Alex Brown

  16. PREFACE: Introduction to the proceedings of Dynamics Days South America 2010

    NASA Astrophysics Data System (ADS)

    Macau, Elbert E. N.; Pereira, Tiago; Prado, Antonio F. B. A.; Turci, Luiz F. R.; Winter, Othon C.


    This proceedings presents selected contributions from the participants of South America Dynamics Days 2011, which was hosted by the National Institute for Space Research (INPE), Brazil, in July 2010. Dynamics Days was founded in 1980 and is the longest standing and most respected international series of meetings devoted to the field of dynamics and nonlinearity. Traditionally it has brought together researchers from a wide range of backgrounds - including physics, biology, engineering, chemistry and mathematics - for interdisciplinary research into nonlinear science. Dynamics Days South America 2010 marked the beginning of the South American branch of Dynamics Days. It brought together, for the first time in South America, researchers from a wide range of backgrounds who share a common interest in the theory and applications of nonlinear dynamics. Thus, South American researchers had a forum to promote regional as well as international scientific and technological exchange and collaboration especially, but not exclusively, on problems that are particularly relevant for the development of science and technology in the South American region. Furthermore, the conference also brought together prominent scientists from around the world to review recent developments in nonlinear science. This conference comprised plenary invited talks, minisymposia, contributed talks and poster sessions. The articles that are compiled here were chosen from among the works that were presented as contributed talks and posters. They represent a good selection which allows one to put issues that were discussed during the conference into perspective. It is possible to evaluate the success of an initiative by using several indices. In relation to attendees, the conference had 311 participants from 22 countries, who presented 341 works. About 86% of the participants came from South American countries. These figures allow one to classify this Dynamics Days conference as that with the greatest number of attendees ever. Finally, we would like to express our gratitude to all the participants for their presentations, discussions, and remarkable interactions with one another. The tireless work undertaken by all the members of the International Advisory Committee and the Organizing Committee must also be recognized. We also wish to express our deep appreciation for the Scientific Societies and Research Support Agencies which supported the conference and provided all the resources which were necessary to make this idea of a South American Dynamics Days come true. Elbert E N Macau, Tiago Pereira, Antonio F B A Prado, Luiz F R Turci, and Othon C WinterEditors Conference photograph Conference photograph Conference photograph Conference photograph International Advisory Committee Adilson E MotterNorthwestern UniversityEvanston - IL - USA Alfredo OzorioCentro Brasileiro de Pesquisas FísicasRio de Janeiro - RJ - Brazil Celso Grebogi (Chair)University of AberdeenAberdeen - UK Ed OttUniversity of MarylandCollege Park - MD - USA Epaminondas Rosa JrIllinois State UniversityNormal - IL - USA Hans Ingo WeberPontifícia Universidade CatólicaRio de Janeiro - RJ - Brazil Holger KantzMax Planck Institute for the Physics of Complex SystemsDresden - Germany Jason Gallas (Co-chair)Universidade Federal do Rio Grande do SulPorto Alegre - RS - Brazil José Roberto Rios LeiteUniv. Federal de PernanbucoRecife - PE - Brazil Jürgen KurthsPotsdam Institute for climate Impact ResearchHumboldt University, Berlin - Germany Kenneth ShowalterWest Virginia UniversityMorgantown - WV - USA Lou PecoraNaval Research LabWashington - DC - USA Luis Antonio AguirreUniversidade Federal de Minas GeraisBelo Horizonte - MG - Brazil Marcelo VianaIMPA - Instituto Nacional de Matemática Pura e AplicadaRio de Janeiro - RJ - Brazil Miguel A F SanjuánUniversidad Rey Juan CarlosMadrid - Spain Paulo Roberto de Souza MendesPontifícia Universidade CatólicaRio de Janeiro - RJ - Brazil Roland KorbeleUniversidade de São PauloSão Carlos - SP - Brazil Rubens SampaioPontifícia Universidade CatólicaRio de Janeiro - RJ - Brazil Ruedi StoopSwiss Federal Institute of TechnologyUZH/ETHZ Zurich - Switzerland Sylvio Ferraz MelloUniversidade de São PauloSão Paulo - SP - Brazil Takashi YoneyamaITA - Instituto Tecnológico de AeronáuticaSão José dos Campos - SP - Brazil Ying-Cheng LaiArizona State UniversityTempe - AZ - USA Organizing Committee Antonio Carlos Roque da SilvaUSP - Universidade de São PauloRibeirão Preto - SP - Brazil Antonio F Bertachini de Almeida Prado (Co-chair)INPE - Instituto Nacional de Pesquisas EspaciaisSão José dos Campos - SP - Brazil Arturo C MartiFacultad de CienciaMontevideo - Uruguai Carlos Leopoldo Pando LambruschiniBenemérita Universidad Autónoma de PueblaPuebla - Mexico Edson Denis LeonelUNESP - "Júlio de Mesquisa Filho"Rio Claro - SP - Brazil Elbert E N Macau (Chair)INPE - Instituto Nacional de Pesquisas EspaciaisSão José dos Campos - SP - Brazil Gerard Olivar TostUniversidad National de ColombiaManizales - Colombia Hamilton VarelaUSP - Universidade de São PauloSão Carlos - SP - Brazil Hilda Cerdeira (Co-chair)IFT - Instituto de Física TeóricaSão Paulo - SP - Brazil Iberê Luiz CaldasUSP - Universidade de São PauloSão Paulo - SP - Brazil José Manoel BalthazarUNESP - "Júlio de Mesquisa Filho"Rio Claro - SP - Brazil José Roberto Castilho PiqueiraUSP - Universidade de São PauloSão Paulo - SP - Brazil Luciano da Fontoura CostaUSP - Universidade de São PauloSão Carlos - SP - Brazil Luiz de Siqueira Martins FilhoUFABC - Universidade Federal do ABCSanto André - SP - Brazil Marcel G ClercUniversidad de ChileSantiago - Chile Miguel VizcardoUniversidad de ArequipaArequipa - Peru Gonzalo Marcelo Ramirez ÁvilaUniversidad Mayor de San AndrésLa Paz - Bolivia Marco Aurélio Pires IdiartUniversidade Federal do Rio Grande do SulPorto Alegre - RS - Brazil Marcus de AguiarUNICAMPCampinas - SP - Brazil Mario CosenzaUniversidad de Los AndesMerida - Venezuela Othon Cabo WinterUNESP - "Júlio de Mesquisa Filho"Guaratinguetá - SP - Brazil Ricardo Luiz VianaUniversidade Federal do ParanáCuritiba - PA - Brazil Silvina Ponce DawsonUniversidad de Buenos AiresBuenos Aires - Argentina Vivian M GomesINPE - Instituto Nacional de Pesquisas EspaciaisSão José dos Campos - SP - Brazil Realization INPE logo Promotion ABCM logo   SBA logo SBF logo   SBMAC logo Sponsorship CAPES logo   CNPq logo FAPESP logo   ICTP logo Claf logo   SOARD AFOSR logo TAM logo

  17. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.


    A useful synergy is being established between terahertz research and nanotechnology. High power sources [1-3] and detectors [4] in what was once considered the terahertz 'frequency gap' [5] in the electromagnetic spectrum have stimulated research with huge potential benefits in a range of industries including food, medicine and security, as well as fundamental physics and astrophysics. This special section, with guest editors Masayoshi Tonouchi and John Reno, gives a glimpse of the new horizons nanotechnology is broaching in terahertz research. While the wavelengths relevant to the terahertz domain range from hundreds of micrometres to millimetres, structures at the nanoscale reveal interesting low energy dynamics in this region. As a result terahertz spectroscopy techniques are becoming increasingly important in nanomaterial characterization, as demonstrated in this special section by colleagues at the University of Oxford in the UK and the Australian National University. They use terahertz spectroscopy to identify the best nanostructure parameters for specific applications [6]. The low energy dynamics in nanostructures also makes them valuable tools for terahertz detection [7]. In addition the much sought after terahertz detection over broadband frequency ranges has been demonstrated, providing versatility that has been greatly in demand, particularly in spectroscopy applications [8, 9]. Also in this special section, researchers in Germany and China tackle some of the coupling issues in terahertz time domain spectroscopy with an emitter specifically well suited for systems operated with an amplified fibre [3]. 'In medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules, in contrast to hazardous x-ray radiation,' explains Joo-Hiuk Son from the University of Seoul in Korea in his review [10]. As he also points out, the rotational and vibrational energies of water molecules are within the THz spectral region providing an additional benefit. His review describes the principle, characteristics, and applications of terahertz molecular imaging, where the use of nanoparticle probes allows dramatically enhanced sensitivity. Jiaguang Han and Weili Zhang and colleagues in China, Saudi Arabia, Japan and the US report exciting developments for optoelectronics [11]. They describe work on plasmon-induced transparency (PIT), an analogue of electromagnetically induced transparency (EIT) where interference leads to a sharp transparency window that may be useful for nonlinear and slow-light devices, optical switching, pulse delay, and storage for optical information processing. While PIT has advantages over the cumbersome experimental systems required for EIT, it has so far been constrained to very narrow band operation. Now Zhang and colleagues present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning across a frequency range greater than 0.40 THz in the terahertz regime. 'We can foresee a historic breakthrough for science and technology through terahertz research,' concluded Masayoshi Tonouchi in his review over five years ago as momentum in the field was mounting [12]. He added, 'It is also noteworthy that THz research is built on many areas of science and the coordination of a range of disciplines is giving birth to a new science.' With the inherently multidisciplinary nature of nanotechnology research it is not so strange to see the marriage of the two fields form such a fruitful partnership, as this special section highlights. References [1] Williams B S, Kumar S, Hu Q and Reno J L 2006 High-power terahertz quantum-cascade lasers Electron. Lett. 42 89-91 [2] Köhler R et al 2002 Terahertz semiconductor-heterostructure laser Nature 417 156-9 [3] Mittendorff M, Xu M, Dietz R J B, K¨unzel H, Sartorius B, Schneider H, Helm M and Winnerl S 2013 Large area photoconductive THz emitter for 1.55 μm excitation based on an InGaAs heterostructure Nanotechnology 24 214007 [4] Chen H-T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Active terahertz metamaterial devices Nature 444 597-600 [5] Hans H 1991 Microwave technology in the terahertz region Brand Conf. Proc.—European Microwave Conf. vol 1, pp 16-35 [6]Joyce H J, Docherty C J, Gao Q, Tan H H, Jagadish C, Lloyd-Hughes J, Herz L M and Johnston M B 2013 Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy Nanotechnology 24 214006 [7] Knap W, Rumyantsev S, Vitiello M S, Coquillat D, Blin S, Dyakonova N, Shur M, Teppe F, Tredicucci A and Nagatsuma T 2013 Nanometer size field effect transistors for terahertz detectors Nanotechnology 24 214002 [8] Kawano Y 2013 Wide-band frequency-tunable terahertz and infrared detection with graphene Nanotechnology 24 214004 [9]Romeo L, Coquillat D, Pea M, Ercolani D, Beltram F, Sorba L, Knap W, Tredicucci A and Vitiello M S 2013 Nanowire-based field effect transistors for terahertz detection and imaging systems Nanotechnology 24 214005 [10] Son J-H 2013 Principle and applications of terahertz molecular imaging Nanotechnology 24 214001 [11] Zhu Z, Yang X, Gu J, Jiang J, Yue W, Tian Z, Tonouchi M, Han J and Zhang W 2013 Broadband plasmon induced transparency in terahertz metamaterials Nanotechnology 24 214003 [12] Tonouchi M 2007 Cutting-edge terahertz technology Nature Photon. 1 97-105

  18. Human brain evolution and the "Neuroevolutionary Time-depth Principle:" Implications for the Reclassification of fear-circuitry-related traits in DSM-V and for studying resilience to warzone-related posttraumatic stress disorder.


    Bracha, H Stefan


    The DSM-III, DSM-IV, DSM-IV-TR and ICD-10 have judiciously minimized discussion of etiologies to distance clinical psychiatry from Freudian psychoanalysis. With this goal mostly achieved, discussion of etiological factors should be reintroduced into the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). A research agenda for the DSM-V advocated the "development of a pathophysiologically based classification system". The author critically reviews the neuroevolutionary literature on stress-induced and fear circuitry disorders and related amygdala-driven, species-atypical fear behaviors of clinical severity in adult humans. Over 30 empirically testable/falsifiable predictions are presented. It is noted that in DSM-IV-TR and ICD-10, the classification of stress and fear circuitry disorders is neither mode-of-acquisition-based nor brain-evolution-based. For example, snake phobia (innate) and dog phobia (overconsolidational) are clustered together. Similarly, research on blood-injection-injury-type-specific phobia clusters two fears different in their innateness: 1) an arguably ontogenetic memory-trace-overconsolidation-based fear (hospital phobia) and 2) a hardwired (innate) fear of the sight of one's blood or a sharp object penetrating one's skin. Genetic architecture-charting of fear-circuitry-related traits has been challenging. Various, non-phenotype-based architectures can serve as targets for research. In this article, the author will propose one such alternative genetic architecture. This article was inspired by the following: A) Nesse's "Smoke-Detector Principle", B) the increasing suspicion that the "smooth" rather than "lumpy" distribution of complex psychiatric phenotypes (including fear-circuitry disorders) may in some cases be accounted for by oligogenic (and not necessarily polygenic) transmission, and C) insights from the initial sequence of the chimpanzee genome and comparison with the human genome by the Chimpanzee Sequencing and Analysis Consortium published in late 2005. Neuroevolutionary insights relevant to fear circuitry symptoms that primarily emerge overconsolidationally (especially Combat related Posttraumatic Stress Disorder) are presented. Also introduced is a human-evolution-based principle for clustering innate fear traits. The "Neuroevolutionary Time-depth Principle" of innate fears proposed in this article may be useful in the development of a neuroevolution-based taxonomic re-clustering of stress-triggered and fear-circuitry disorders in DSM-V. Four broad clusters of evolved fear circuits are proposed based on their time-depths: 1) Mesozoic (mammalian-wide) circuits hardwired by wild-type alleles driven to fixation by Mesozoic selective sweeps; 2) Cenozoic (simian-wide) circuits relevant to many specific phobias; 3) mid Paleolithic and upper Paleolithic (Homo sapiens-specific) circuits (arguably resulting mostly from mate-choice-driven stabilizing selection); 4) Neolithic circuits (arguably mostly related to stabilizing selection driven by gene-culture co-evolution). More importantly, the author presents evolutionary perspectives on warzone-related PTSD, Combat-Stress Reaction, Combat-related Stress, Operational-Stress, and other deployment-stress-induced symptoms. The Neuroevolutionary Time-depth Principle presented in this article may help explain the dissimilar stress-resilience levels following different types of acute threat to survival of oneself or one's progency (aka DSM-III and DSM-V PTSD Criterion-A events). PTSD rates following exposure to lethal inter-group violence (combat, warzone exposure or intentionally caused disasters such as terrorism) are usually 5-10 times higher than rates following large-scale natural disasters such as forest fires, floods, hurricanes, volcanic eruptions, and earthquakes. The author predicts that both intentionally-caused large-scale bioevent-disasters, as well as natural bioevents such as SARS and avian flu pandemics will be an exception and are likely to be followed by PTSD rates approaching those that follow warzone exposure. During bioevents, Amygdala-driven and locus-coeruleus-driven epidemic pseudosomatic symptoms may be an order of magnitude more common than infection-caused cytokine-driven symptoms. Implications for the red cross and FEMA are discussed. It is also argued that hospital phobia as well as dog phobia, bird phobia and bat phobia require re-taxonomization in DSM-V in a new "overconsolidational disorders" category anchored around PTSD. The overconsolidational spectrum category may be conceptualized as straddling the fear circuitry spectrum disorders and the affective spectrum disorders categories, and may be a category for which Pitman's secondary prevention propranolol regimen may be specifically indicated as a "morning after pill" intervention. Predictions are presented regarding obsessive-compulsive disorder (OCD) (e.g., female-pattern hoarding vs. male-pattern hoarding) and "culture-bound" acute anxiety symptoms (taijin-kyofusho, koro, shuk yang, shook yong, suo yang, rok-joo, jinjinia-bemar, karoshi, gwarosa, Voodoo death). Also discussed are insights relevant to pseudoneurological symptoms and to the forthcoming Dissociative-Conversive disorders category in DSM-V, including what the author terms fright-triggered acute pseudo-localized symptoms (i.e., pseudoparalysis, pseudocerebellar imbalance, psychogenic blindness, pseudoseizures, and epidemic sociogenic illness). Speculations based on studies of the human abnormal-spindle-like, microcephaly-associated (ASPM) gene, the microcephaly primary autosomal recessive (MCPH) gene, and the forkhead box p2 (FOXP2) gene are made and incorporated into what is termed "The pre-FOXP2 Hypothesis of Blood-Injection-Injury Phobia." Finally, the author argues for a non-reductionistic fusion of "distal (evolutionary) neurobiology" with clinical "proximal neurobiology," utilizing neurological heuristics. It is noted that the value of re-clustering fear traits based on behavioral ethology, human-phylogenomics-derived endophenotypes and on ontogenomics (gene-environment interactions) can be confirmed or disconfirmed using epidemiological or twin studies and psychiatric genomics. PMID:16563589

  19. A new graphical version of STROTAB: The analysis and fitting of singlet triplet spectra of asymmetric top molecules in the prolate or oblate limits

    NASA Astrophysics Data System (ADS)

    Kodet, John; Judge, Richard H.


    The original version of STROTAB has been modified to run under Microsoft Windows using the C++ programming language. The new version takes full advantage of the Microsoft Foundation Classes available within the Microsoft Visual C++ Version 6 development environment. Specifically, windows can be created that edit the input file, summarize the results of the least-squares fit, display the calculated and observed spectra, display whole or partial sections of the calculated spectra as a stick or Gaussian de-convoluted spectrum. A listing of the rotational quantum numbers in the cases (a) and (b) limits for each of the displayed lines is provided. A branch annotating routine provides a quick visual guide to the assignment of the spectrum. A new eigenvalue sorting method has been added as an option that complements the existing method based on the eigenvector coefficients. The new sorting method has eliminated some difficulties that may arise using the existing "Least Ambiguous Method". The program has been extended to handle near-oblate asymmetric tops using a type III r representation. New version summaryTitle of program: STROTAB Version number: 2 Catalogue identifier:ADCA_v2_0 Program summary URL: Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Reference in CPC to previous version: 93 (1996) 241-264 Catalog identifier of previous version: ADCA Authors of previous version: R.H. Judge, E.D. Womeldorf, R.A. Morris, D.E. Shimp, D.J. Clouthier, D.L. Joo, D.C. Moule Does the new version supersede the original program: Yes Computers for which the program is designed and others on which it has been tested: Pentium Xenon, Pentium Pro and Later Operating systems or monitors under which program has been tested: Windows 98, Windows 2000, Windows XP Programming language used in the new version: ANSI C, C++, Microsoft Foundation Class (MFC) No. of lines in distributed program, including test data, etc.:11 913 No. of bytes in distributed program, including test data, etc.: 2 816 652 Memory required to execute with typical data: 7 Meg No of bits in a word: 16 No of processors used: 1 Has the code been vectorized or parallelized?: No No. of bytes in distributed program, including test data, etc.: ˜3.2 MB (compressed) Distribution format: zip file Additional keywords:near oblate top, bootstrap eigenvalue sorting, graphical environment, band contour Nature of physical problem: The least-squares/band contour fitting of the singlet-triplet spectra of asymmetric tops of orthorhombic symmetry using a basis set appropriate to the symmetric top limit (prolate or oblate) of the molecule in either Hund's case (a) or case (b) coupling situations. Method of solution: The calculation of the eigenvectors and eigenvalues remains unchanged from the earlier version. An option to sort the eigenvalues of the current J by fitting them to regular progressions formed from earlier J values (bootstrap method) can be used as an option in place of the existing method based on eigenvector coefficients. Reasons for the new version: The earlier version can only handle oblate tops by diagonalizing using the prolate limit. This has turned out to be unacceptable. An improved method of sorting eigenvalues under certain conditions is also needed. A graphical interface has been added to ease the use of the program. Summary of revisions: The Hamiltonian can now be constructed in a limit appropriate the representation for of the molecule. Sorting by an alternate method is now offered. Numerous graphical features have been added. Restrictions on complexity of the problem: The rotational quantum number restrictions are J⩽255 and K (or P) ⩽127. The allowed transition frequency minus the band origin frequency must be in the range of ±10 000 cm -1. Up to five decimal places may be reported. The number of observed lines is limited by the dynamic memory and the amount of disk space available. Only molecules of symmetry D 2h, D 2 and C 2v can be accommodated in this version. Only constants of the excited triplet state may be varied.

  20. EDITORIAL: Greetings from the new Editor-in-Chief Greetings from the new Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Nielsch, Kornelius


    On 1 January 2012 I will be assuming the position of Editor-in-Chief of the journal Semiconductor Science and Technology (SST). I am flattered by the confidence expressed in my ability to carry out this challenging job and I will try hard to justify this confidence. The previous Editor-in-Chief, Laurens Molenkamp, University of Würzburg, Germany, has worked tirelessly for the last ten years and has done an excellent job for the journal. Everyone at the journal is profoundly grateful for his leadership and for his achievements In 2012 several new members will join the Editorial Board: Professor Deli Wang (University of California, San Diego) with considerable expertise in semiconductor nanowires, Professor Saskia Fischer (Humboldt University, Berlin, Germany) with a background in semiconductor quantum devices, and Professor Erwin Kessels (Eindhoven University of Technology, Netherlands) with extensive experience in plasma processing of thin films and gate oxides. In particular, I want to express my gratitude to Professor Israel Bar-Joseph (Weizmann Institute of Science, Israel) and Professor Maria Tamargo (The City College of New York, USA), who will leave next year and who have vigorously served the Editorial Board for years. The journal has recently introduced a fast-track option for manuscripts. This option is a high-quality, high-profile outlet for new and important research across all areas of semiconductor research. Authors can expect to receive referee reports in less than 20 days from submission. Once accepted, you can expect the articles to be online within two or three weeks from acceptance and to be published in print in less than a month. Furthermore, all fast-track communications published in 2011 will be free to read for ten years. More detailed information on fast-track publication can be found on the following webpage: track communications It is encouraging to see that since the journal introduced pre-review, with the aim to raise the quality of our content, three years later the number of published articles has remained stable at around 220 per year, whilst the number of downloads and citations to the journal has grown. In 2011, three topical issues have been published, on: (Nano)characterization of semiconductor materials and structures (Guest Editor: Alberta Bonanni, University of Linz, Austria) Flexible OLEDs and organic electronics (Guest Editors: Jang-Joo Kim, Min-Koo Han, Cambridge University, UK, and Yong-Young Noh, Seoul National University, Korea) From heterostructures to nanostructures: an 80th birthday tribute to Zhores Alferov (Guest Editor: Dieter Bimberg, Technische Universität Berlin, Germany) For the coming years, I will strongly support that the number of published topical issues will continue on the same level or slightly rise. SST has planned the publication of the following topical issues for 2012: Non-polar and semipolar nitride semiconductors (Guest Editors: Jung Han, Yale University, USA, and Michael Kneissl, Technische Universität Berlin, Germany) Topological insulators (Guest Editors: Alberto Morpurgo, Université de Genève, Switzerland and Björn Trauzettel, Universität Basel, Switzerland) Atomic layer deposition (Guest Editor: Marek Godlewski, Polish Academy of Sciences, Poland) 50th Anniversary of the laser diode (Guest Editors: Mike Adams, Univeristy of Essex, UK and Stephane Calvez, University of Strathclyde, UK) In addition to the traditional topics of SST, I as Editor-in-chief, strongly support and welcome the submission of manuscripts on organic semiconductors, topological insulators, semiconductor nanostructures for photovoltaic, solid-state lighting and energy harvesting, IC application beyond Moore's law and fundamental works on semiconductors based on abundant materials. I am extremely optimistic about the future of SST. I believe that we will raise the standards of acceptance while maintaining the short time from submission to first decision. I am confident that we will continue to improve the quality of the papers published in this already first-class journal. I look forward to working with the journal's excellent staff and Editorial Board Members.

  1. EDITORIAL: Focus on Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Morfill, G. E.; Kong, M. G.; Zimmermann, J. L.


    'Plasma Healthcare' is an emerging interdisciplinary research topic of rapidly growing importance, exploring considerable opportunities at the interface of plasma physics, chemistry and engineering with life sciences. Some of the scientific discoveries reported so far have already demonstrated clear benefits for healthcare in areas of medicine, food safety, environmental hygiene, and cosmetics. Examples include ongoing studies of prion inactivation, chronic wound treatment and plasma-mediated cancer therapy. Current research ranges from basic physical processes, plasma chemical design, to the interaction of plasmas with (i) eukaryotic (mammalian) cells; (ii) prokaryotic (bacteria) cells, viruses, spores and fungi; (iii) DNA, lipids, proteins and cell membranes; and (iv) living human, animal and plant tissues in the presence of biofluids. Of diverse interests in this new field is the need for hospital disinfection, in particular with respect to the alarming increase in bacterial resistance to antibiotics, the concomitant needs in private practices, nursing homes etc, the applications in personal hygiene—and the enticing possibility to 'design' plasmas as possible pharmaceutical products, employing ionic as well as molecular agents for medical treatment. The 'delivery' of the reactive plasma agents occurs at the gaseous level, which means that there is no need for a carrier medium and access to the treatment surface is optimal. This focus issue provides a close look at the current state of the art in Plasma Medicine with a number of forefront research articles as well as an introductory review. Focus on Plasma Medicine Contents Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination Helen C Baxter, Patricia R Richardson, Gaynor A Campbell, Valeri I Kovalev, Robert Maier, James S Barton, Anita C Jones, Greg DeLarge, Mark Casey and Robert L Baxter Inactivation factors of spore-forming bacteria using low-pressure microwave plasmas in an N2 and O2 gas mixture M K Singh, A Ogino and M Nagatsu Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma H J Lee, C H Shon, Y S Kim, S Kim, G C Kim and M G Kong The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air A Helmke, D Hoffmeister, N Mertens, S Emmert, J Schuette and W Vioel Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet D L Bayliss, J L Walsh, G Shama, F Iza and M G Kong The effect of low-temperature plasma on bacteria as observed by repeated AFM imaging René Pompl, Ferdinand Jamitzky, Tetsuji Shimizu, Bernd Steffes, Wolfram Bunk, Hans-Ulrich Schmidt, Matthias Georgi, Katrin Ramrath, Wilhelm Stolz, Robert W Stark, Takuya Urayama, Shuitsu Fujii and Gregor Eugen Morfill Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure Mi Hee Lee, Bong Joo Park, Soo Chang Jin, Dohyun Kim, Inho Han, Jungsung Kim, Soon O Hyun, Kie-Hyung Chung and Jong-Chul Park Cell permeabilization using a non-thermal plasma M Leduc, D Guay, R L Leask and S Coulombe Physical and biological mechanisms of direct plasma interaction with living tissue Danil Dobrynin, Gregory Fridman, Gary Friedman and Alexander Fridman Nosocomial infections-a new approach towards preventive medicine using plasmas G E Morfill, T Shimizu, B Steffes and H-U Schmidt Generation and transport mechanisms of chemical species by a post-discharge flow for inactivation of bacteria Takehiko Sato, Shiroh Ochiai and Takuya Urayama Low pressure plasma discharges for the sterilization and decontamination of surfaces F Rossi, O Kylián, H Rauscher, M Hasiwa and D Gilliland Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding S P Kuo, O Tarasenko, J Chang, S Popovic, C Y Chen, H W Fan, A Scott, M Lahiani, P Alusta, J D Drake and M Nikolic A two-dimensional cold atmospheric plasma jet array for uniform treatment of large-area surfaces for plasma medicine QY Nie, Z Cao, C S Ren, D Z Wang and M G Kong A novel plasma source for sterilization of living tissues E Martines, M Zuin, R Cavazzana, E Gazza, G Serianni, S Spagnolo, M Spolaore, A Leonardi, V Deligianni, P Brun, M Aragona, I Castagliuolo and P Brun Designing plasmas for chronic wound disinfection T Nosenko, T Shimizu and G E Morfill Plasma medicine: an introductory review M G Kong, G Kroesen, G Morfill, T Nosenko, T Shimizu, J van Dijk and J L Zimmermann

  2. PREFACE: Singular interactions in quantum mechanics: solvable models

    NASA Astrophysics Data System (ADS)

    Dell'Antonio, Gianfausto; Exner, Pavel; Geyler, Vladimir


    This issue comprises two dozen research papers which are all in one sense or another devoted to models in which the interaction is singular and sharply localized; a typical example is a quantum particle interacting with a family of δ-type potentials. Such an idealization usually makes analysis of their properties considerably easier, sometimes allowing us to reduce it to a simple algebraic problem—this is why one speaks about solvable models. The subject can be traced back to the early days of quantum mechanics; however, the progress in this field was slow and uneven until the 1960s, mostly because singular interactions are often difficult to deal with mathematically and intuitive arguments do not work. After overcoming the initial difficulties the `classical' theory of point interactions was developed, and finally summarized in 1988 in a monograph by Albeverio, Gesztesy, Høegh-Krohn, and Holden, which you will find quoted in numerous places within this issue. A reliable way to judge theories is to observe the progress they make within one or two decades. In this case there is no doubt that the field has witnessed a continuous development and covered areas which nobody had thought of when the subject first emerged. The reader may see it in the second edition of the aforementioned book which was published by AMS Chelsea only recently and contained a brief survey of these new achievements. It is no coincidence that this topical issue appears at the same time; it has been conceived as its counterpart and a forum at which fresh results in the field can demonstrated. Let us briefly survey the contents of the issue. While the papers included have in common the basic subject, they represent a broad spectrum philosophically as well as technically, and any attempt to classify them is somewhat futile. Nevertheless, we will divide them into a few groups. The first comprises contributions directly related to the usual point-interaction ideology. M Correggi and one of the editors study a toy model of a decay under the influence of a time-periodic δ potential. E Demiralp describes the spectrum of a spherical harmonic oscillator amended with a concentric family of δ-shell interactions. Another of the editors presents an isoperimetric problem for point interactions arranged at vertices of a polygon. W Huddell and R Hughes show how singular perturbations of a one-dimensional Dirac operator can be approximated by regular potentials, and J Brasche constructs a family of Hamiltonians in which the singular interaction has a more complicated support, namely a Brownian path. Finally, B Pavlov and I Antoniou apply the singular perturbation technique to another classical Hamiltonian, that of a generalized Friedrichs model; no matter that the unperturbed observable is called momentum in their paper. The three papers in the following group are distinguished by the fact that they consider systems which are fully or partially periodic. F Bentosela and M Tater analyse scattering on a crystalline `slab' modelled by point interactions distributed periodically on a finite number of parallel plates. E de Prunelé studies evolution of wavepackets in crystal models of different geometries, and M Avdonin et al discuss a simple model of a spin-dependent scattering on a one-dimensional array of quantum dots. The next group of papers is devoted to a topic which was untouched at the time of the aforementioned first edition, namely quantum graphs, which became a subject of interest after numerous applications of such systems to semiconductor, carbon and other nanostructures. Most contributions here deal with the `usual' model in which the Hamiltonian is a Schrödinger operator supported by the graph. P Kuchment describes spectral properties of such graphs, in particular periodic ones and those with decorations. S Albeverio and K Pankrashkin present a modification of Krein's formula which is suitable for constructing Hamiltonians of quantum graphs using boundary conditions at vertices directly. Two papers are devoted to inverse problems in this context: M Harmer studies inverse scattering for the matrix Schrödinger operator on the halfline with applications to star graphs, while P Kurasov and M Nowaczyk give a mathematically rigorous version of the known Gutkin-Smilansky result on the inverse spectral problem. The paper by O Post contributes to the question of how graphs can be approximated by more realistic `fat' graphs, and describes a class leading to disconnected quantum graphs. Finally, S Kondej and one of the editors study scattering in the context of `leaky' graphs which takes quantum tunnelling into account. While most results in this field describe one-particle Hamiltonians, more complicated systems have also been studied. In this issue we have three examples. C Cacciapuito, R Carlone, and R Figari discuss decoherence in a simple model of two particles, one heavy and one light, interacting through a δ potential; they give a rigorous meaning to a formula derived by Joos and Zeh. A related model by R Figari and A Teta is used to describe ionization. M Hallnäs, E Langmann, and C Paufler treat a true N-body situation, namely a model of one-dimensional gas of distinguishable particles interacting through generalized point interactions; they write the Bethe ansatz and present the solution of a particular case. The last group is a collection of contributions which in one sense or another are outside quantum mechanics, either modifying its postulates or applying it to a different physical situation. The latter applies to the paper of D Noja and A Posilicano in which they study nonlinear wave equations with point perturbations and show the existence of a solution to the Cauchy problem. F Coutinho et al discuss one-dimensional point interactions with energy-dependent coupling constant, S Albeverio and S Kuzhel examine a class of point interactions which are not symmetric but P-symmetric, where P is the parity operator, and M Znojil and V Jakubský consider a `double-well' PT-symmetric model with two δ interactions with an imaginary coupling. The last two papers present mathematical constructions. Yu Shondin demonstrates a way to define an interaction more singular than the usual δ potentials obtained by means of self-adjoint extensions, and V Koshmanenko presents a construction of strongly singular perturbations leading to rather unusual `Hamiltonians'.

  3. An estimation of Central Iberian Peninsula atmospheric δ13C and water δD in the Upper Cretaceous using pyrolysis compound specific isotopic analysis (Py-CSIA) of a fossil conifer.

    NASA Astrophysics Data System (ADS)

    González-Pérez, José A.; Jiménez-Morillo, Nicasio T.; De la Rosa, José M.; Almendros, Gonzalo; González-Vila, Francisco J.


    Frenelopsis is a frequently found genus of the Cretaceous floras adapted to dry, saline and in general to environmental conditions marked by severe water stress [1]. Stable isotope analysis of fossil organic materials can be used to infer palaeoenvironmental variables helpful to reconstruct plant paleohabitats [2]. In this study stable isotope analysis of organic fossil remains (FR) and humic fractions (FA, HA and humin) of Frenelopsis oligiostomata are studied in bulk (C, H, O, N IRMS) and in specific compounds released by pyrolysis (C, H, Py-CSIA). Well preserved F. oligiostomata fossils were handpicked from a limestone included in compacted marls from Upper Cretaceous (Senonian c. 72 Mya) in Guadalix de la Sierra (Madrid, Spain) [3]. The fossils were decarbonated with 6M HCl. Humic substances were extracted from finely ground fossil remains (FR) by successive treatments with 0.1M Na4P2O7 + NaOH [4]. The extract was acidified resulting into insoluble HA and soluble FA fractions. The HA and FA were purified as in [5] and [6] respectively. Bulk stable isotopic analysis (δ13C, δD, δ18O, δ15N IRMS) was done in an elemental micro-analyser coupled to a continuous flow Delta V Advantage isotope ratio mass spectrometer (IRMS). Pyrolysis compound specific isotopic analysis Py-CSIA (δ13C, δD): was done by coupling a double-shot pyrolyzer to a chromatograph connected to an IRMS. Structural features of specific peaks were inferred by comparing/matching mass spectra from conventional Py-GC/MS (data not shown) with Py-GC/IRMS chromatograms obtained using the same chromatographic conditions. Bulk C isotopic signature found for FR (-20.5±0.02 ‰) was in accordance with previous studies [2, 7-9]. This heavy isotopic δ13C signature indicates a depleted stomatal conductance and paleoenvironmental growth conditions of water and salt stress. This is in line with the morphological and depositional characteristics [3] confirming that F. oligostomata was adapted to highly xeric and saline habitats being a component of salt-marsh vegetation. The values obtained for δD (-101.9±2.2 ‰), δ15N (10.7±0.2 ‰) and δ18O (20.9±0.39 ‰) lay within those previously reported for fossil floras [10] growing in warm environment and probably with very high evaporation rates. δ13C Py-CSIA was recorded for biogenic compound; polysaccharides, lipid series, lignin and degraded lignin compounds (alkyl benzenes and alkyl phenols) and for a S containing compounds probably with a diagenetic origin. In general δ13C Py-CSIA values were more depleted that the bulk ones and can be considered a better approach to the real plant δ13C value (c. -22 ‰). Considering that plant-air C fractionation in degraded lignin compounds for a C4 photosystem plant is c. Δ13C≈ 20.0 ‰ [11] and a an extra fractionation (Δ13C≈ -3.0 ‰) due to the plant depleted stomatal conductance growing in extreme warm, saline and dry conditions, we estimate atmospheric δ13C value in the area during the Upper Cretaceous in c. δ13C = -5.3±0.2 ‰. This indicates that our F.oligostomata probably grew on a 13C enriched atmosphere, more enriched than preindustrial one (δ13C ≈ -6.5 ‰; [12]). This could be caused by a combination of reasons i.e. emissions of heavy 13C isotope to the atmosphere by an increase in ocean's temperature and acidification by volcanic S depositions during this geologically active and warm period, and/or an increase of primary production and net terrestrial C uptake with selective removal of light 12C isotope by plants. Values for δD CSIA of lipid compounds such as n-alkanes with C chain lengths, C23-C31 are believed to derive exclusively from leaf waxes of higher plants. Plant δD carries isotope information of environmental water that is particularly preserved during the geological record in n-alkyl structures, whereas other structures i.e. isoprenoids, are most prone to hydrogen exchange [13-14]. We were able to measure δD for long chain alkane/alkene series in the range C24-C29 (δD = -124.44±5.2‰). This was taken as a proxy to infer the original H isotopic signal of water in the area in the Upper Cretaceous. Poole et al. (2004) proposed that δDpalaeowarter= δDC24-C29 n-alkanes + 100 giving a value for plaeowater δD = -24.44±5.2‰. This indicates that 75 Mya our plant probably uptake deuterium enriched rain water that again points to warm growing environmental conditions. (1) Gómez, B.; Martín-Closas C.; Brale G.; Solé de Porta N.; Thévenard F.; Guignard G. Paleontology 2002 45, 997-1036. (2) Nguyen Tu, T.T.; Kvaček, J.; Uličnỷ, D.; Bocherens, H.; Mariotti, A.; Broutin, J. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002 183, 43-70. (3) Almendros, G.; Álvarez-Ramis, C.; Polo, A. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales 1982 76, 285-302. (4) Dabin, B. Chah. ORSTOM Ser. Pedol. 1976 4, 287-297. (5) Schnitzer, M.; Khan, S.U. Humic Substances in the Environment. Marcel Dekker Inc. 1972, New York, N.Y. (6) Dorado, E.; Polo. A. An. Edafol. Agrobiol. 1976 55, 723-732. (7) Bocherens, H.; Friis, E.M.; Mariotti, A.; Pedersen, K.R. Lethaia 1993 26, 347-358. (8) Nguyen Tu, T.T.; Bocherens, H.; Mariotti, A.; Baudin, F.; Pons, D.; Broutin, J.; Derenne, S.; Largeau C. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999 145, 79-93. (9) Aucour, A-.M.; Gomez, B.; Sheppard, S.M.F., Thévenard, F. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008 257, 462-473. (10) Michener, N.; Lajtha K. (Eds). Stable Isotopes in Ecology and Environmental Science (2nd Ed) 2007 Blackwell Publishing. (11) Poole, I., van Bergen, P.F.; Kool, K.; Schouten , S.; Cantrill, D. J. Org. Geochem. 2004 35, 1261-1274. (12) Gerber, S.; Joos, F.; Brügger, P.; Stocker, T.F.; Mann, M.E.; Sitch, S.; Scholze, M. Clim. Dyn. 2003 20, 281-299, 2003 (13) Pedentchouk, N.; Freeman, K.H.; Harris, N.B. Geochim. Cosmochim. Acta 2006 70, 2063-2072. (14) Radke, J.; Bechtel, A.; Gaupp, R.; Püttmann, W.; Schwark, L.; Sachse D.; Gleixner, G. Geochim. Cosmochim. Acta 2005 69, 5517-5530. Acknowledgements Projects CGL2012-38655-C04-01 and CGL2008-04296 and fellowship BES-2013-062573 given by the Spanish Ministry for Economy and Competitiveness to N.T.J.M. Dr. J.M. R. is the recipient of a fellowship from the JAE-Doc subprogram financed by the CSIC and the European Social Fund.

  4. PREFACE: Fourth Meeting on Constrained Dynamics and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Cavaglia, Marco; Nelson, Jeanette E.


    The formulation of a quantum theory of gravity seems to be the unavoidable endpoint of modern theoretical physics. Yet the quantum description of the gravitational field remains elusive. The year 2005 marks the tenth anniversary of the First Meeting on Constrained Dynamics and Quantum Gravity, held in Dubna (Russia) due to the efforts of Alexandre T. Filippov (JINR, Dubna) and Vittorio de Alfaro (University of Torino, Italy). At the heart of this initiative was the desire for an international forum where the status and perspectives of research in quantum gravity could be discussed from the broader viewpoint of modern gauge field theories. Since the Dubna meeting, an increasing number of scientists has joined this quest. Progress was reported in two other conferences in this series: in Santa Margherita Ligure (Italy) in 1996 and in Villasimius (Sardinia, Italy) in 1999. After a few years of ``working silence'' the time was now mature for a new gathering. The Fourth Meeting on Constrained Dynamics and Quantum Gravity (QG05) was held in Cala Gonone (Sardinia, Italy) from Monday 12th to Friday 16th September 2005. Surrounded by beautiful scenery, 100 scientists from 23 countries working in field theory, general relativity and related areas discussed the latest developments in the quantum treatment of gravitational systems. The QG05 edition covered many of the issues that had been addressed in the previous meetings and new interesting developments in the field, such as brane world models, large extra dimensions, analogue models of gravity, non-commutative techniques etc. The format of the meeting was similar to the previous ones. The programme consisted of invited plenary talks and parallel sessions on cosmology, quantum gravity, strings and phenomenology, gauge theories and quantisation and black holes. A major goal was to bring together senior scientists and younger people at the beginning of their scientific career. We were able to give financial support to both groups. In particular, help was provided to students and scientists from non-EU countries. It is our great pleasure to thank those people and institutions whose help and support was crucial to the success of the meeting. We appreciate the enthusiastic support of our colleagues of the academic community, especially those from the Istituto Nazionale di Fisica Nucleare and the Universities of Cagliari, Pisa, Torino and Mississippi. Financial support was provided by the Istituto Nazionale di Fisica Nucleare, the Universities of Cagliari, Torino, Pisa and Mississippi. This was used largely to support participants, especially younger people. Special thanks go to Pietro Menotti (University of Pisa) and Stefano Sciuto (University of Torino) for their friendship and their universities' financial contributions. It is also a pleasure to acknowledge financial support from the Regione Autonoma della Sardegna and from Tiscali, the communications and Internet company, for providing free telephone cards. Technical support and local organisation was provided by the Sezione di Cagliari of the Istituto Nazionale di Fisica Nucleare. Warmest thanks go to our administrative and technical staff - Maria Assunta Lecca and Simona Renieri, for their untiring assistance, and to Palmasera Village and Hotel Smeraldo for their splendid hospitality. And finally, our gratitude goes to all the participants and especially the many experienced scientists. Their contributions highlighted the meeting and were largely without support. The success of the meeting is due to them and to the enthusiasm of the younger participants. The Editors January 2006 COMMITTEES Organising Committee Mariano Cadoni (Università and INFN Cagliari) Marco Cavaglià (University of Mississippi) Jeanette E. Nelson (Università and INFN Torino) Advisory Committee Orfeu Bertolami (IST Lisboa, Portugal) Luca Bombelli (Univ. Mississippi) Steve Carlip (UC Davis, USA) Alessandro D'Adda (INFN Torino, Italy) Stanley Deser (Brandeis, USA) Georgi Dvali (NYU, USA) Sergio Ferrara (CERN) Gian Francesco Giudice (CERN) Roman Jackiw (MIT, USA) Edward W. Kolb (Fermilab, USA) Luca Lusanna (INFN Firenze, Italy) Roy Maartens (Univ. Portsmouth, UK) Hermann Nicolai (AEI, Potsdam, Germany) Tullio Regge (Politecnico di Torino, Italy) Augusto Sagnotti (Univ. Roma Tor Vergata, Italy) Kellogg S. Stelle (Imperial College London, UK) Ruth Williams (DAMTP, Cambridge, UK) SPONSORS Istituto Nazionale di Fisica Nucleare Università di Cagliari Università di Torino University of Mississippi Università di Pisa Regione autonoma della Sardegna Tiscali LIST OF PARTICIPANTS Eun-Joo Ahn (University of Chicago, USA) David Alba (Università di Firenze, Italy) Stanislav Alexeyev (Lomonosov Moscow State U., Russia) Damiano Anselmi (Università di Pisa, Italy) Ignatios Antoniadis (CERN, Geneva, Switzerland) Maria Da Conceicao Bento (Instituto Superior Técnico, Lisboa, Portugal) Orfeu Bertolami (Instituto Superior Técnico, Lisboa, Portugal) Massimo Bianchi (Università di Roma Tor Vergata, Italy) Mariam Bouhmadi-Lopez (University of Portsmouth, UK) Raphael Bousso (University of California at Berkeley, USA) Mariano Cadoni (Università di Cagliari, Italy) Steven Carlip (University of California at Davis, USA) Roberto Casadio (Università di Bologna, Italy) Marco Cavaglià (University of Mississippi, USA) Demian Cho (Raman Research Institute, Bangalore, India) Theodosios Christodoulakis (University of Athens, Greece) Chryssomalis Chryssomalakos (Inst. de Ciencias Nucleares - UNAM, Mexico) Diego Julio Cirilo-Lombardo (JINR, Dubna, Russia) Denis Comelli INFN, Sezione di Ferrara, Italy ) Ruben Cordero-Elizalde (Instituto Politecnico Nacional, Mexico) Lorenzo Cornalba (Università di Roma Tor Vergata, Italy) Branislav Cvetkovic (Institute of Physics, Belgrade, Serbia ) Maro Cvitan (University of Zagreb, Croatia) Alessandro D'Adda (Università di Torino, Italy) Claudio Dappiaggi (Università di Pavia, Italy) Roberto De Leo (Università di Cagliari, Italy) Roberto De Pietri (Università di Parma, Italy) Giuseppe De Risi (Università di Bari, Italy) Hans-Thomas Elze (Univ. Federal do Rio de Janeiro, Brasil) Alessandro Fabbri (Università di Bologna, Italy) Sergey Fadeev (VNIIMS, Moscow, Russia) Serena Fagnocchi (Università di Bologna, Italy) Sara Farese (Universidad de Valencia, Spain) Alessandra Feo (Università di Parma, Italy) Dario Francia (Università di Roma Tor Vergata, Italy) Francesco Fucito (Università di Roma Tor Vergata, Italy) Dmitri Fursaev (JINR, Dubna, Russia) Daniel Galehouse (University of Akron, Ohio, USA) Remo Garattini (Università di Bergamo, Italy) Florian Girelli (Perimeter Institute, Waterloo, Canada) Luca Griguolo (Università di Parma, Italy) Daniel Grumiller (Universität Leipzig, Germany) Shinichi Horata (Hayama Center of Advanced Research, Japan) Giorgio Immirzi (Università di Perugia, Italy) Roman Jackiw (MIT, Cambridge, USA) Matyas Karadi (DAMTP, University of Cambridge, UK) Mikhail Katanaev (Steklov Mathematical Institute, Moscow, Russia) Claus Kiefer (Universität Koln, Germany) John Klauder (University of Florida, Gainesville, USA) Pavel Klepac (Masaryk University, Brno, Czech Republic) Jen-Chi Lee (National Chiao-Tung University, Taiwan) Carlos Leiva (Universidad de Tarapacá, Arica, Chile) Stefano Liberati (SISSA/ISAS, Trieste, Italy) Jorma Louko (University of Nottingham, UK) Luca Lusanna (INFN, Sezione di Firenze, Italy) Roy Maartens (University of Portsmouth, UK) Fotini Markopoulou (Perimeter Institute, Waterloo, Canada) Annalisa Marzuoli (Università di Pavia, Italy) Evangelos Melas (QMW, University of London, UK) Maurizio Melis (Università di Cagliary, Italy) Vitaly Melnikov (VNIIMS, Moscow, Russia) Guillermo A. Mena Marugan (CSIC, Madrid, Spain) Pietro Menotti (Università di Pisa, Italy) Salvatore Mignemi (Università di Cagliari, Italy) Aleksandar Mikovic (Universidade Lusófona, Lisboa, Portugal) Leonardo Modesto (Université de la Mediterranée, Marseille, France) Michael Mueller (, Cagliari, Italy) Mario Nadalini (Università di Trento, Italy) José Navarro-Salas (Universidad de Valencia, Spain) Jeanette E. Nelson (Università di Torino, Italy) Alexander Nesterov (Universidad de Guadalajara, Mexico) Hermann Nicolai (Albert-Einstein-Institut, Golm, Germany) Daniele Oriti (DAMTP, University of Cambridge, UK) Marcello Ortaggio (Charles University, Prague, Czech Republic) Silvio Pallua (University of Zagreb, Croatia) Matej Pavsic (Jozef Stefan Institute, Ljubljana, Slovenia) Wlodzimierz Piechocki (Soltan Inst. for Nuclear Studies, Warsaw, Poland) Nicola Pinamonti (Università di Trento, Italy) J. Brian Pitts (University of Notre Dame, Indiana, USA) Vojtech Pravda (Academy of Sciences, Praha, Czech Rep.) Gianpaolo Procopio (DAMTP, University of Cambridge, UK) Alice Rogers (King's College London, UK) Efrain Rojas (Universidad Veracruzana, Mexico) James Ryan (DAMTP, University of Cambridge, UK) Augusto Sagnotti (Università di Roma Tor Vergata, Italy) Wenceslao Santiago-German (University of California at Davis, USA) Stefano Sciuto (Università di Torino, Italy) Domenico Seminara (Università di Firenze, Italy) Lorenzo Sindoni (Università di Udine, Italy) Kellogg S. Stelle (Imperial College, London, UK) Cosimo Stornaiolo (INFN, Sezione di Napoli, Italy) Ward Struyve (Perimeter Institute, Waterloo, Canada) Makoto Tanabe (Waseda University, Tokyo, Japan) Daniel Terno (Perimeter Institute, Waterloo, Canada) Charles Wang (Lancaster University, UK) Silke Weinfurtner (Victoria University, Wellington, New Zealand) Hans Westman (Perimeter Institute, Waterloo, Canada) Ruth Williams (DAMTP, University of Cambridge, UK) Tetsuyuki Yukawa (Graduate U. for Adv. Studies, Kanagawa, Japan) Jorge Zanelli (CECS, Santiago, Chile) Fourth Meeting on Constrained Dynamics and Quantum Gravity Conference photo

  5. Solid State Ionics Advanced Materials for Emerging Technologies

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.


    Keynote lecture. Challenges and opportunities of solid state ionic devices / W. Weppner -- pt. I. Ionically conducting inorganic solids. Invited papers. Multinuclear NMR studies of mass transport of phosphoric acid in water / J. R. P. Jayakody ... [et al.]. Crystalline glassy and polymeric electrolytes: similarities and differences in ionic transport mechanisms / J.-L. Souquet. 30 years of NMR/NQR experiments in solid electrolytes / D. Brinkmann. Analysis of conductivity and NMR measurements in Li[symbol]La[symbol]TiO[symbol] fast Li[symbol] ionic conductor: evidence for correlated Li[symbol] motion / O. Bohnké ... [et al.]. Transport pathways for ions in disordered solids from bond valence mismatch landscapes / S. Adams. Proton conductivity in condensed phases of water: implications on linear and ball lightning / K. Tennakone -- Contributed papers. Proton transport in nanocrystalline bioceramic materials: an investigative study of synthetic bone with that of natural bone / H. Jena, B. Rambabu. Synthesis and properties of the nanostructured fast ionic conductor Li[symbol]La[symbol]TiO[symbol] / Q. N. Pham ... [et al.]. Hydrogen production: ceramic materials for high temperature water electrolysis / A. Hammou. Influence of the sintering temperature on pH sensor ability of Li[symbol]La[symbol]TiO[symbol]. Relationship between potentiometric and impedance spectroscopy measurements / Q. N. Pham ... [et al.]. Microstructure chracterization and ionic conductivity of nano-sized CeO[symbol]-Sm[symbol]O[symbol] system (x=0.05 - 0.2) prepared by combustion route / K. Singh, S. A. Acharya, S. S. Bhoga. Red soil in Northern Sri Lanka is a natural magnetic ceramic / K. Ahilan ... [et al.]. Neutron scattering of LiNiO[symbol] / K. Basar ... [et al.]. Preparation and properties of LiFePO[symbol] nanorods / L. Q. Mai ... [et al.]. Structural and electrochemical properties of monoclinic and othorhombic MoO[symbol] phases / O. M. Hussain ... [et al.]. Preparation of Zircon (ZrSiO[symbol]) ceramics via solid state sintering of Zr)[symbol] and SiO[symbol] and the effect of dopants on the zircon yield / U. Dhanayake, B. S. B. Karunaratne. Preparation and properties of vanadium doped ZnTe cermet thin films / M. S. Hossain, R. Islam, K. A. Khan. Dynamical properties and electronic structure of lithium-ion conductor / M. Kobayashi ... [et al.]. Cuprous ion conducting Montmorillonite-Polypyrrole nanocomposites / D. M. M. Krishantha ... [et al.]. Frequency dependence of conductivity studies on a newly synthesized superionic solid solution/mixed system: [0.75AgI: 0.25AgCl] / R. K. Nagarch, R. Kumar. Diffuse X-ray and neutron scattering from Powder PbS / X. Lian ... [et al.]. Electron affinity and work function of Pyrolytic MnO[symbol] thin films prepared from Mn(C[symbol]H[symbol]O[symbol])[symbol].4H[symbol]) / A. K. M. Farid Ul Islam, R. Islam, K. A. Khan. Crystal structure and heat capacity of Ba[symbol]Ca[symbol]Nb[symbol]O[symbol] / T. Shimoyama ... [et al.]. XPS and impedance investigations on amorphous vanadium oxide thin films / M. Kamalanathan ... [et al.]. Sintering and mixed electronic-ionic conducting properties of La[symbol]Sr[symbol]NiO[symbol] derived from a polyaminocarboxylate complex precursor / D.-P. Huang ... [et al.]. Preparation and characteristics of ball milled MgH[symbol] + M (M= Fe, VF[symbol] and FeF[symbol]) nanocomposites for hydrogen storage / N. W. B. Balasooriya, Ch. Poinsignon. Structural studies of oxysulfide glasses by X-ray diffraction and molecular dynamics simulation / R. Prasada Rao, M. Seshasayee, J. Dheepa. Synthesis, sintering and oxygen ionic conducting properties of Bi[symbol]V[symbol]Cu[symbol]O[symbol] / F. Zhang ... [et al.]. Synthesis and transport characteristics of PbI[symbol]-Ag[symbol]O-Cr[symbol]O[symbol] superioninc system / S. A. Suthanthiraraj, V. Mathew. Electronic conductivity of La[symbol]Sr[symbol]Ga[symbol]Mg[symbol]Co[symbol]O[symbol] electrolytes / K. Yamaji ... [et al.] -- pt. II. Electrode materials. Invited papers. Cathodic properties of Al-doped LiCoO[symbol] prepared by molten salt method Li-Ion batteries / M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari. Layered ion-electron conducting materials / M. A. Santa Ana, E. Benavente, G. González. LiNi[symbol]Co[symbol]O[symbol] cathode thin-film prepared by RF sputtering for all-solid-state rechargeable microbatteries / X. J. Zhu ... [et al.] -- Contributed papers. Contributed papers. Nanocomposite cathode for SOFCs prepared by electrostatic spray deposition / A. Princivalle, E. Djurado. Effect of the addition of nanoporous carbon black on the cycling characteristics of Li[symbol]Co[symbol](MoO[symbol])[symbol] for lithium batteries / K. M. Begam, S. R. S. Prabaharan. Protonic conduction in TiP[symbol]O[symbol] / V. Nalini, T. Norby, A. M. Anuradha. Preparation and electrochemical LiMn[symbol]O[symbol] thin film by a solution deposition method / X. Y. Gan ... [et al.]. Synthesis and characterization LiMPO[symbol] (M = Ni, Co) / T. Savitha, S. Selvasekarapandian, C. S. Ramya. Synthesis and electrical characterization of LiCoO[symbol] LiFeO[symbol] and NiO compositions / A. Wijayasinghe, B. Bergman. Natural Sri Lanka graphite as conducting enhancer in manganese dioxide (Emd type) cathode of alkaline batteries / N. W. B. Balasooriya ... [et al.]. Electrochemical properties of LiNi[symbol]Al[symbol]Zn[symbol]O[symbol] cathode material synthesized by emulsion method / B.-H. Kim ... [et al.]. LiNi[symbol]Co[symbol]O[symbol] cathode materials synthesized by particulate sol-gel method for lithium ion batteries / X. J. Zhu ... [et al.]. Pulsed laser deposition of highly oriented LiCoO[symbol] and LiMn[symbol]O[symbol] thin films for microbattery applications / O. M. Hussain ... [et al.]. Preparation of LiNi[symbol]Co[symbol]O[symbol] thin films by a sol-gel method / X. J. Zhu ... [et al.]. Electrochemical lithium insertion into a manganese dioxide electrode in aqueous solutions / M. Minakshi ... [et al.]. AC impedance spectroscopic analysis of thin film LiNiVO[symbol] prepared by pulsed laser deposition technique / S. Selvasekarapandian ... [et al.]. Synthesis and characterization of LiFePO[symbol] cathode materials by microwave processing / J. Zhou ... [et al.]. Characterization of Nd[symbol]Sr[symbol]CoO[symbol] including Pt second phase as the cathode material for low-temperature SOFCs / J. W. Choi ... [et al.]. Thermodynamic behavior of lithium intercalation into natural vein and synthetic graphite / N. W. B. Balasooriya, P. W. S. K. Bandaranayake, Ph. Touzain -- pt. III. Electroactive polymers. Invited papers. Organised or disorganised? looking at polymer electrolytes from both points of view / Y.-P. Liao ... [et al.]. Polymer electrolytes - simple low permittivity solutions? / I. Albinsson, B.-E. Mellander. Dependence of conductivity enhancement on the dielectric constant of the dispersoid in polymer-ferroelectric composite electrolytes / A. Chandra, P. K. Singh, S. Chandra. Design and application of boron compounds for high-performance polymer electrolytes / T. Fujinami. Structural, vibrational and AC impedance analysis of nano composite polymer electrolytes based on PVAC / S. Selvasekarapandian ... [et al.]. Absorption intensity variation with ion association in PEO based electrolytes / J. E. Furneaux ... [et al.]. Study of ion-polymer interactions in cationic and anionic ionomers from the dependence of conductivity on pressure and temperature / M. Duclot ... [et al.]. Triol based polyurethane gel electrolytes for electrochemical devices / A. R. Kulkarni. Contributed papers. Accurate conductivity measurements to solvation energies in nafion / M. Maréchal, J.-L Souquet. Ion conducting behaviour of composite polymer gel electrolyte: PEG-PVA-(NH[symbol]CH[symbol]CO[symbol])[symbol] system / S. L. Agrawal, A. Awadhia, S. K. Patel. Impedance spectroscopy and DSC studies of poly(vinylalcohol)/ silicotungstic acid crosslinked composite membranes / A. Anis, A. K. Banthia. (PEO)[symbol]:Na[symbol]P[symbol]O[symbol]: a report on complex formation / A. Bhide, K. Hariharan. Experimental studies on (PVC+LiClO[symbol]+DMP) polymer electrolyte systems for lithium battery / Ch. V. S. Reddy. Stability of the gel electrolyte, PAN: EC: PC: LiCF[symbol]SO[symbol] towards lithium / K. Perera ... [et al.]. Montmorillonite as a conductivity enhancer in (PEO)[symbol]LiCF[symbol]SO[symbol] polymer electrolyte / C. H. Manoratne ... [et al.]. Polymeric gel electrolytes for electrochemical capacitors / M. Morita ... [et al.]. Electrical conductivity studies on proton conducting polymer electrolytes based on poly (viniyl acetate) / D. Arun Kumar ... [et al.]. Conductivity and thermal studies on plasticized PEO:LiTf-Al[symbol]O[symbol] composite polymer electrolyte / H. M. J. C. Pitawala, M. A. K. L. Dissanayake, V. A. Seneviratne. Investigation of transport properties of a new biomaterials - gum mangosteen / S. S. Pradhan, A. Sarkar. Investigation of ionic conductivity of PEO-MgCl[symbol] based solid polymer electrolyte / M. Sundar ... [et al.]. [symbol]H NMR and Raman analysis of proton conducting polymer electrolytes based on partially hydrolyzed poly (vinyl alcohol) / G. Hirankumar ... [et al.]. Influence of Al[symbol]O[symbol] nanoparticles on the phase matrix of polyethylene oxide-silver triflate polymer electrolytes / S. Austin Suthanthiraraj, D. Joice Sheeba. Effect of different types of ceramic fillers on thermal, dielectric and transport properties of PEO[symbol]LiTf solid polymer electrolyte / K. Vignarooban ... [et al.]. Characterization of PVP based solid polymer electrolytes using spectroscopic techniques / C. S. Ramya ... [et al.]. Electrochemical and structural properties of poly vinylidene fluoride - silver triflate solid polymer electrolyte system / S. Austin Suthanthiraraj, B. Joseph Paul. Micro Raman, Li NMR and AC impedance analysis of PVAC:LiClO[symbol] solid polymer eectrolytes / R. Baskaran ... [et al.].Study of Na+ ion conduction in PVA-NaSCN solid polymer electrolytes / G. M. Brahmanandhan ... [et al.]. Effect of filler addition on plasticized polymer electrolyte systems / M. Sundar, S. Selladurai. Ionic motion in PEDOT and PPy conducting polymer bilayers / U. L. Zainudeen, S. Skaarup, M. A. Careem. Film formation mechanism and electrochemical characterization of V[symbol]O[symbol] xerogel intercalated by polyaniniline / Q. Zhu ... [et al.]. Effect of NH[symbol]NO[symbol] concentration on the conductivity of PVA based solid polymer electrolyte / M. Hema ... [et al.]. Dielectric and conductivity studies of PVA-KSCN based solid polymer electrolytes / J. Malathi ... [et al.] -- pt. IV. Emerging applications. Invited papers. The use of solid state ionic materials and devices in medical applications / R. Linford. Development of all-solid-state lithium batteries / V. Thangadurai, J. Schwenzei, W. Weppner. Reversible intermediate temperature solid oxide fuel cells / B.-E. Mellander, I. Albinsson. Nano-size effects in lithium batteries / P. Balaya, Y. Hu, J. Maier. Electrochromics: fundamentals and applications / C. G. Granqvist. Electrochemical CO[symbol] gas sensor / K. Singh. Polypyrrole for artificial muscles: ionic mechanisms / S. Skaarup. Development and characterization of polyfluorene based light emitting diodes and their colour tuning using Forster resonance energy transfer / P. C. Mattur ... [et al.]. Mesoporous and nanoparticulate metal oxides: applications in new photocatalysis / C. Boxall. Proton Conducting (PC) perovskite membranes for hydrogen separation and PC-SOFC electrodes and electrolytes / H. Jena, B. Rambabu. Contributed papers. Electroceramic materials for the development of natural gas fuelled SOFC/GT plant in developing country (Trinidad and Tobogo (T&T)) / R. Saunders, H. Jena, B. Rambabu. Thin film SOFC supported on nano-porous substrate / J. Hoon Joo, G. M. Choi. Characterization and fabrication of silver solid state battery Ag/AGI-AgPO[symbol]/I[symbol], C / E. Kartini ... [et al.]. Performance of lithium polymer cells with polyacrylonitrile based electrolyte / K. Perera ... [et al.]. Hydrothermal synthesis and electrochemical behavior of MoO[symbol] nanobelts for lithium batteries / Y. Qi ... [et al.]. Electrochemical behaviour of a PPy (DBS)/polyacrylonitrile: LiTF:EC:PC/Li cell / K. Vidanapathirana ... [et al.]. Characteristics of thick film CO[symbol] sensors based on NASICON using Li[symbol]CO[symbol]-CaCO[symbol] auxiliary phases / H. J. Kim ... [et al.]. Solid state battery discharge characteristic study on fast silver ion conducting composite system: 0.9[0.75AgI:0.25AgCl]: 0.1TiO[symbol] / R. K. Nagarch, R. Kumar, P. Rawat. Intercalating protonic solid-state batteries with series and parallel combination / K. Singh, S. S. Bhoga, S. M. Bansod. Synthesis and characterization of ZnO fiber by microwave processing / Lin Wang ... [et al.]. Preparation of Sn-Ge alloy coated Ge nanoparticles and Sn-Si alloy coated Si nanoparticles by ball-milling / J. K. D. S. Jayanett, S. M. Heald. Synthesis of ultrafine and crystallized TiO[symbol] by alalkoxied free polymerizable precursor method / M. Vijayakumar ... [et al.]. Development and characterization of polythiophene/fullerene composite solar cells and their degradation studies / P. K. Bhatnagar ... [et al.].

  6. Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Bojowald, Martin

    The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge. 1.Lachieze-Rey, M., Luminet, J.P.: Phys. Rept. 254,135 (1995), gr-qc/9605010 2.BSDeWitt1967Phys. Rev.160511131967PhRv..160.1113D0158.4650410.1103/PhysRev.160.1113DeWitt, B.S.: Phys. Rev. 160(5), 1113 (1967) 3.Wiltshire, D.L.: In: Robson B., Visvanathan N., Woolcock W.S. (eds.) Cosmology: The Physics of the Universe, pp. 473-531. World Scientific, Singapore (1996). gr-qc/0101003 4.Isham C.J.: In: DeWitt, B.S., Stora, R. (eds.) Relativity, Groups and Topology II. Lectures Given at the 1983 Les Houches Summer School on Relativity, Groups and Topology, Elsevier Science Publishing Company (1986) 5.Klauder, J.: Int. J. Mod. Phys. D 12, 1769 (2003), gr-qc/0305067 6.Klauder, J.: Int. J. Geom. Meth. Mod. Phys. 3, 81 (2006), gr-qc/0507113 7.DGiulini1995Phys. Rev. D5110563013381161995PhRvD..51.5630G10.1103/PhysRevD.51.5630Giulini, D.: Phys. Rev. D 51(10), 5630 (1995) 8.Kiefer, C., Zeh, H.D.: Phys. Rev. D 51, 4145 (1995), gr-qc/9402036 9.WFBlythCJIsham1975Phys. Rev. D117684086991975PhRvD..11..768B10.1103/PhysRevD.11.768Blyth, W.F., Isham, C.J.: Phys. Rev. D 11, 768 (1975) 10.JDBrownKVKuchař1995Phys. Rev. D51560013381151995PhRvD..51.5600B10.1103/PhysRevD.51.5600Brown, J.D., Kuchař, K.V.: Phys. Rev. D 51, 5600 (1995) 11.Alvarenga, F.G., Fabris, J.C., Lemos, N.A., Monerat, G.A.: Gen. Rel. Grav. 34, 651 (2002), gr-qc/0106051 12.JAcaciode BarrosNPinto-NetoMASagiaro-Leal1998Phys. Lett. A.2412291998PhLA..241..229D10.1016/S0375-9601(98)00169-8Acacio de Barros, J., Pinto-Neto, N., Sagiaro-Leal, M.A.: Phys. Lett. A. 241, 229 (1998), gr-qc/9710084 13.DBohm1952Phys. Rev.85166462871952PhRv...85..166B0046.2100410.1103/PhysRev.85.166Bohm, D.: Phys. Rev. 85, 166 (1952) 14.DBohm1952Phys. Rev.85180462881952PhRv...85..180B10.1103/PhysRev.85.180Bohm, D.: Phys. Rev. 85, 180 (1952) 15.DBohm1953Phys. Rev.89458669531953PhRv...89..458B0051.2050210.1103/PhysRev.89.458Bohm, D.: Phys. Rev. 89, 458 (1953) 16.Goldstein, S.: Stanford Encyclopedia of Philosophy. 17.RColisteteJrJCFabrisNPinto-Neto2000Phys. Rev. D620835072000PhRvD..62h3507C10.1103/PhysRevD.62.083507Colistete, R. Jr, Fabris, J.C., Pinto-Neto, N.: Phys. Rev. D 62, 083507 (2000), gr-qc/0005013 18.FTFalcianoNPinto-NetoESSantini2007Phys. Rev. D760835212007PhRvD..76h3521F10.1103/PhysRevD.76.083521Falciano, F.T., Pinto-Neto, N., Santini, E.S.: Phys. Rev. D 76, 083521 (2007), arXiv:0707.1088 19.FTFalcianoNPinto-Neto2009Phys. Rev. D7902350724911632009PhRvD..79b3507F10.1103/PhysRevD.79.023507Falciano, F.T., Pinto-Neto, N.: Phys. Rev. D 79, 023507 (2009), arXiv:0810.3542 20.AShojaiFShojai2005Europhys. Lett.718862005EL.....71..886S10.1209/epl/i2005-10186-yShojai, A., Shojai, F.: Europhys. Lett. 71, 886 (2005), gr-qc/0409020 21.RBGriffiths1993Phys. Rev. Lett.70220112145601993PhRvL..70.2201G1051.8150610.1103/PhysRevLett.70.2201Griffiths, R.B.: Phys. Rev. Lett. 70, 2201 (1993) 22.ROmnés1992Rev. Mod. Phys.643391992RvMP...64..339O10.1103/RevModPhys.64.339Omnés, R.: Rev. Mod. Phys. 64, 339 (1992) 23.MGell-MannJBHartle1993Phys. Rev. D47334512188231993PhRvD..47.3345G10.1103/PhysRevD.47.3345Gell-Mann, M., Hartle, J.B.: Phys. Rev. D 47, 3345 (1993), gr-qc/9210010 24.FDowkerAKent1996J. Statist. Phys.82157513749291996JSP....82.1575D1042.8150710.1007/BF02183396Dowker, F., Kent, A.: J. Statist. Phys. 82, 1575 (1996), gr-qc/9412067 25.Dias, N.C., Mikovic, A, Prata, J.N.: J. Math. Phys. 47, 082101 (2006), hep-th/0507255 26.MBojowaldASkirzewski2006Rev. Math. Phys.1871322671131124.8201010.1142/S0129055X06002772Bojowald, M., Skirzewski, A.: Rev. Math. Phys. 18, 713 (2006), math-ph/0511043 27.MBojowaldBSandhöferASkirzewskiATsobanjan2009Rev. Math. Phys.2111124931141167.8102510.1142/S0129055X09003591Bojowald, M., Sandhöfer, B., Skirzewski, A., Tsobanjan, A.: Rev. Math. Phys. 21, 111 (2009), arXiv:0804.3365 28.JJHalliwellSWHawking1985Phys. Rev. D31817777877481985PhRvD..31.1777H10.1103/PhysRevD.31.1777Halliwell, J.J., Hawking, S.W.: Phys. Rev. D 31(8), 1777 (1985) 29.PDD'Eath2005Supersymmetric Quantum CosmologyCambridge University PressCambridgeD'Eath, P.D.: Supersymmetric Quantum Cosmology. Cambridge University Press, Cambridge (2005) 30.PVMoniz2010Quantum Cosmology - The Supersymmetric PerspectiveSpringerBerlinMoniz, P.V.: Quantum Cosmology—The Supersymmetric Perspective. Springer, Berlin(2010) 31.PDD'EathJJHalliwell1987Phys. Rev. D3511008785261987PhRvD..35.1100D10.1103/PhysRevD.35.1100D'Eath, P.D., Halliwell, J.J.: Phys. Rev. D 35, 1100 (1987) 32.TGold1962Am. J. Phys.304031962AmJPh..30..403G0105.2250110.1119/1.1942052Gold, T.: Am. J. Phys. 30, 403 (1962) 33.SWHawking1985Phys. Rev. D3224898114021985PhRvD..32.2489H10.1103/PhysRevD.32.2489Hawking, S.W.: Phys. Rev. D 32, 2489 (1985) 24.DNPage1985Phys. Rev. D3224968114031985PhRvD..32.2496P10.1103/PhysRevD.32.2496Page, D.N.: Phys. Rev. D 32, 2496 (1985) 35.BCarr2007Universe or Multiverse?Cambridge University PressCambridgeCarr, B.(ed.): Universe or Multiverse? Cambridge University Press, Cambridge (2007) 1.D.GiuliniCKieferE.JoosJKupschI.O.StamatescuH.D.Zeh1996Decoherence and the Appearance of a Classical World in Quantum TheorySpringerBerlin0855.0000310.1007/978-3-662-03263-3Giulini, D., Kiefer, C., Joos, E., Kupsch, J., Stamatescu, I.O., Zeh, H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (1996) 2.Bojowald, M., Brizuela, D., Hernandez, H.H., Koop, M.J., Morales-Técotl, H.A.:arXiv:1011.3022 3.J.P.GazeauJ.Klauder1999J. Phys. A: Math. Gen.3212316685761999JPhA...32..123G0919.4706110.1088/0305-4470/32/1/013arXiv:1011.3022Gazeau, J.P., Klauder, J.: J. Phys. A: Math. Gen. 32, 123 (1999) 4.M.NovelloS.E.P.Bergliaffa2008Phys. Rep.46312724370502008PhR...463..127N10.1016/j.physrep.2008.04.006Novello, M., Bergliaffa, S.E.P.: Phys. Rep. 463, 127 (2008) 5.M.Bojowald2010Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum GravityCambridge University PressCambridge10.1017/CBO9780511921759Bojowald, M.: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity. Cambridge University Press, Cambridge (2010) 6.A.Ashtekar1987Phys. Rev. D36615879096671987PhRvD..36.1587A10.1103/PhysRevD.36.1587Ashtekar, A.: Phys. Rev. D 36(6), 1587 (1987) 7.Barbero G.J.F., (1995) Phys. Rev. D 51(10): 5507 8.G.Immirzi1997Class. Quantum Grav.14L 17714765391997CQGra..14L.177I10.1088/0264-9381/14/10/002Immirzi, G.: Class. Quantum Grav. 14, L 177 (1997) 9.J.LewandowskiE.T.NewmanC.Rovelli1993J. Math. Phys.34464612359631993JMP....34.4646L0790.5305710.1063/1.530362Lewandowski, J., Newman, E.T., Rovelli, C.: J. Math. Phys. 34, 4646 (1993) 10.C.RovelliL.Smolin1990Nucl. Phys. B3318010444931990NuPhB.331...80R10.1016/0550-3213(90)90019-ARovelli, C., Smolin, L.: Nucl. Phys. B 331, 80 (1990) 11.A.CorichiK.Krasnov1998Mod. Phys. Lett. A13133916358811998MPLA...13.1339C10.1142/S0217732398001406hep-th/9703177Corichi, A., Krasnov, K.: Mod. Phys. Lett. A 13, 1339 (1998). hep-th/9703177 12.A.AshtekarJ.LewandowskiD.MarolfJ.Mour aoT.Thiemann1995J. Math. Phys.3611645613559161995JMP....36.6456A0856.5800610.1063/1.531252gr-qc/9504018Ashtekar, A., Lewandowski, J., Marolf, D., Mour ao, J., Thiemann, T.: J. Math. Phys. 36(11), 6456 (1995). gr-qc/9504018 13.A.AshtekarJ.Lewandowski1995J. Math. Phys.365217013292511995JMP....36.2170A0844.5800910.1063/1.531037Ashtekar, A., Lewandowski, J.: J. Math. Phys. 36(5), 2170 (1995) 14.C.RovelliL.Smolin1995Phys. Rev. D5210574313604271995PhRvD..52.5743R10.1103/PhysRevD.52.5743Rovelli, C., Smolin, L.: Phys. Rev. D 52(10), 5743 (1995) 15.C.RovelliL.Smolin1995Nucl. Phys. B44259313327051995NuPhB.442..593R0925.8301310.1016/0550-3213(95)00150-Qgr-qc/9411005, Erratum: Nucl. Phys. B 456 (1995) 753Rovelli, C., Smolin, L.: Nucl. Phys. B 442, 593 (1995). gr-qc/9411005 16.A.AshtekarJ.Lewandowski1997Class Quantum Grav.14A 5516918871997CQGra..14A..55Agr-qc/9602046Ashtekar, A., Lewandowski, J.: Class Quantum Grav. 14, A 55 (1997). gr-qc/9602046 17.A.AshtekarJ.Lewandowski1998Adv. Theor. Math. Phys.13881605640gr-qc/9711031Ashtekar, A., Lewandowski, J.: Adv. Theor. Math. Phys. 1, 388 (1998). gr-qc/9711031 18.R.De PietriC.Rovelli1996Phys. Rev. D