Farr, W. M.; Mandel, I.; Stevens, D.
2015-01-01
Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient ‘global’ proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently. PMID:26543580
Farr, W M; Mandel, I; Stevens, D
2015-06-01
Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient 'global' proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently. PMID:26543580
Geng, Bo; Zhou, Xiaobo; Zhu, Jinmin; Hung, Y S; Wong, Stephen T C
2008-04-01
Computational identification of missing enzymes plays a significant role in accurate and complete reconstruction of metabolic network for both newly sequenced and well-studied organisms. For a metabolic reaction, given a set of candidate enzymes identified according to certain biological evidences, a powerful mathematical model is required to predict the actual enzyme(s) catalyzing the reactions. In this study, several plausible predictive methods are considered for the classification problem in missing enzyme identification, and comparisons are performed with an aim to identify a method with better performance than the Bayesian model used in previous work. In particular, a regression model consisting of a linear term and a nonlinear term is proposed to apply to the problem, in which the reversible jump Markov-chain-Monte-Carlo (MCMC) learning technique (developed in [Andrieu C, Freitas Nando de, Doucet A. Robust full Bayesian learning for radial basis networks 2001;13:2359-407.]) is adopted to estimate the model order and the parameters. We evaluated the models using known reactions in Escherichia coli, Mycobacterium tuberculosis, Vibrio cholerae and Caulobacter cresentus bacteria, as well as one eukaryotic organism, Saccharomyces Cerevisiae. Although support vector regression also exhibits comparable performance in this application, it was demonstrated that the proposed model achieves favorable prediction performance, particularly sensitivity, compared with the Bayesian method. PMID:17950040
Generator estimation of Markov jump processes
NASA Astrophysics Data System (ADS)
Metzner, P.; Dittmer, E.; Jahnke, T.; Schütte, Ch.
2007-11-01
Estimating the generator of a continuous-time Markov jump process based on incomplete data is a problem which arises in various applications ranging from machine learning to molecular dynamics. Several methods have been devised for this purpose: a quadratic programming approach (cf. [D.T. Crommelin, E. Vanden-Eijnden, Fitting timeseries by continuous-time Markov chains: a quadratic programming approach, J. Comp. Phys. 217 (2006) 782-805]), a resolvent method (cf. [T. Müller, Modellierung von Proteinevolution, PhD thesis, Heidelberg, 2001]), and various implementations of an expectation-maximization algorithm ([S. Asmussen, O. Nerman, M. Olsson, Fitting phase-type distributions via the EM algorithm, Scand. J. Stat. 23 (1996) 419-441; I. Holmes, G.M. Rubin, An expectation maximization algorithm for training hidden substitution models, J. Mol. Biol. 317 (2002) 753-764; U. Nodelman, C.R. Shelton, D. Koller, Expectation maximization and complex duration distributions for continuous time Bayesian networks, in: Proceedings of the twenty-first conference on uncertainty in AI (UAI), 2005, pp. 421-430; M. Bladt, M. Sørensen, Statistical inference for discretely observed Markov jump processes, J.R. Statist. Soc. B 67 (2005) 395-410]). Some of these methods, however, seem to be known only in a particular research community, and have later been reinvented in a different context. The purpose of this paper is to compile a catalogue of existing approaches, to compare the strengths and weaknesses, and to test their performance in a series of numerical examples. These examples include carefully chosen model problems and an application to a time series from molecular dynamics.
El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar
2014-11-01
Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data. PMID:26353069
NASA Astrophysics Data System (ADS)
Volchenkov, Dima; Dawin, Jean René
A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.
Stroeer, Alexander; Veitch, John
2009-09-15
The Laser Interferometer Space Antenna (LISA) defines new demands on data analysis efforts in its all-sky gravitational wave survey, recording simultaneously thousands of galactic compact object binary foreground sources and tens to hundreds of background sources like binary black hole mergers and extreme-mass ratio inspirals. We approach this problem with an adaptive and fully automatic Reversible Jump Markov Chain Monte Carlo sampler, able to sample from the joint posterior density function (as established by Bayes theorem) for a given mixture of signals ''out of the box'', handling the total number of signals as an additional unknown parameter beside the unknown parameters of each individual source and the noise floor. We show in examples from the LISA Mock Data Challenge implementing the full response of LISA in its TDI description that this sampler is able to extract monochromatic Double White Dwarf signals out of colored instrumental noise and additional foreground and background noise successfully in a global fitting approach. We introduce 2 examples with fixed number of signals (MCMC sampling), and 1 example with unknown number of signals (RJ-MCMC), the latter further promoting the idea behind an experimental adaptation of the model indicator proposal densities in the main sampling stage. We note that the experienced runtimes and degeneracies in parameter extraction limit the shown examples to the extraction of a low but realistic number of signals.
Bibliometric Application of Markov Chains.
ERIC Educational Resources Information Center
Pao, Miranda Lee; McCreery, Laurie
1986-01-01
A rudimentary description of Markov Chains is presented in order to introduce its use to describe and to predict authors' movements among subareas of the discipline of ethnomusicology. Other possible applications are suggested. (Author)
On a Result for Finite Markov Chains
ERIC Educational Resources Information Center
Kulathinal, Sangita; Ghosh, Lagnojita
2006-01-01
In an undergraduate course on stochastic processes, Markov chains are discussed in great detail. Textbooks on stochastic processes provide interesting properties of finite Markov chains. This note discusses one such property regarding the number of steps in which a state is reachable or accessible from another state in a finite Markov chain with M…
The exit-time problem for a Markov jump process
Burch, N.; D'Elia, Marta; Lehoucq, Richard B.
2014-12-15
The purpose of our paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. Furthermore, this calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.
The exit-time problem for a Markov jump process
NASA Astrophysics Data System (ADS)
Burch, N.; D'Elia, M.; Lehoucq, R. B.
2014-12-01
The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.
Using Games to Teach Markov Chains
ERIC Educational Resources Information Center
Johnson, Roger W.
2003-01-01
Games are promoted as examples for classroom discussion of stationary Markov chains. In a game context Markov chain terminology and results are made concrete, interesting, and entertaining. Game length for several-player games such as "Hi Ho! Cherry-O" and "Chutes and Ladders" is investigated and new, simple formulas are given. Slight…
Bayesian inference for Markov jump processes with informative observations.
Golightly, Andrew; Wilkinson, Darren J
2015-04-01
In this paper we consider the problem of parameter inference for Markov jump process (MJP) representations of stochastic kinetic models. Since transition probabilities are intractable for most processes of interest yet forward simulation is straightforward, Bayesian inference typically proceeds through computationally intensive methods such as (particle) MCMC. Such methods ostensibly require the ability to simulate trajectories from the conditioned jump process. When observations are highly informative, use of the forward simulator is likely to be inefficient and may even preclude an exact (simulation based) analysis. We therefore propose three methods for improving the efficiency of simulating conditioned jump processes. A conditioned hazard is derived based on an approximation to the jump process, and used to generate end-point conditioned trajectories for use inside an importance sampling algorithm. We also adapt a recently proposed sequential Monte Carlo scheme to our problem. Essentially, trajectories are reweighted at a set of intermediate time points, with more weight assigned to trajectories that are consistent with the next observation. We consider two implementations of this approach, based on two continuous approximations of the MJP. We compare these constructs for a simple tractable jump process before using them to perform inference for a Lotka-Volterra system. The best performing construct is used to infer the parameters governing a simple model of motility regulation in Bacillus subtilis. PMID:25720091
Differential evolution Markov chain with snooker updater and fewer chains
Vrugt, Jasper A; Ter Braak, Cajo J F
2008-01-01
Differential Evolution Markov Chain (DE-MC) is an adaptive MCMC algorithm, in which multiple chains are run in parallel. Standard DE-MC requires at least N=2d chains to be run in parallel, where d is the dimensionality of the posterior. This paper extends DE-MC with a snooker updater and shows by simulation and real examples that DE-MC can work for d up to 50--100 with fewer parallel chains (e.g. N=3) by exploiting information from their past by generating jumps from differences of pairs of past states. This approach extends the practical applicability of DE-MC and is shown to be about 5--26 times more efficient than the optimal Normal random walk Metropolis sampler for the 97.5% point of a variable from a 25--50 dimensional Student T{sub 3} distribution. In a nonlinear mixed effects model example the approach outperformed a block-updater geared to the specific features of the model.
Markov chains for testing redundant software
NASA Technical Reports Server (NTRS)
White, Allan L.; Sjogren, Jon A.
1988-01-01
A preliminary design for a validation experiment has been developed that addresses several problems unique to assuring the extremely high quality of multiple-version programs in process-control software. The procedure uses Markov chains to model the error states of the multiple version programs. The programs are observed during simulated process-control testing, and estimates are obtained for the transition probabilities between the states of the Markov chain. The experimental Markov chain model is then expanded into a reliability model that takes into account the inertia of the system being controlled. The reliability of the multiple version software is computed from this reliability model at a given confidence level using confidence intervals obtained for the transition probabilities during the experiment. An example demonstrating the method is provided.
Entropy Computation in Partially Observed Markov Chains
NASA Astrophysics Data System (ADS)
Desbouvries, François
2006-11-01
Let X = {Xn}n∈N be a hidden process and Y = {Yn}n∈N be an observed process. We assume that (X,Y) is a (pairwise) Markov Chain (PMC). PMC are more general than Hidden Markov Chains (HMC) and yet enable the development of efficient parameter estimation and Bayesian restoration algorithms. In this paper we propose a fast (i.e., O(N)) algorithm for computing the entropy of {Xn}n=0N given an observation sequence {yn}n=0N.
Markov Chain Estimation of Avian Seasonal Fecundity
To explore the consequences of modeling decisions on inference about avian seasonal fecundity we generalize previous Markov chain (MC) models of avian nest success to formulate two different MC models of avian seasonal fecundity that represent two different ways to model renestin...
Document Ranking Based upon Markov Chains.
ERIC Educational Resources Information Center
Danilowicz, Czeslaw; Balinski, Jaroslaw
2001-01-01
Considers how the order of documents in information retrieval responses are determined and introduces a method that uses a probabilistic model of a document set where documents are regarded as states of a Markov chain and where transition probabilities are directly proportional to similarities between documents. (Author/LRW)
The cutoff phenomenon in finite Markov chains.
Diaconis, P
1996-01-01
Natural mixing processes modeled by Markov chains often show a sharp cutoff in their convergence to long-time behavior. This paper presents problems where the cutoff can be proved (card shuffling, the Ehrenfests' urn). It shows that chains with polynomial growth (drunkard's walk) do not show cutoffs. The best general understanding of such cutoffs (high multiplicity of second eigenvalues due to symmetry) is explored. Examples are given where the symmetry is broken but the cutoff phenomenon persists. PMID:11607633
Robust mean field games for coupled Markov jump linear systems
NASA Astrophysics Data System (ADS)
Moon, Jun; Başar, Tamer
2016-07-01
We consider robust stochastic large population games for coupled Markov jump linear systems (MJLSs). The N agents' individual MJLSs are governed by different infinitesimal generators, and are affected not only by the control input but also by an individual disturbance (or adversarial) input. The mean field term, representing the average behaviour of N agents, is included in the individual worst-case cost function to capture coupling effects among agents. To circumvent the computational complexity and analyse the worst-case effect of the disturbance, we use robust mean field game theory to design low-complexity robust decentralised controllers and to characterise the associated worst-case disturbance. We show that with the individual robust decentralised controller and the corresponding worst-case disturbance, which constitute a saddle-point solution to a generic stochastic differential game for MJLSs, the actual mean field behaviour can be approximated by a deterministic function which is a fixed-point solution to the constructed mean field system. We further show that the closed-loop system is uniformly stable independent of N, and an approximate optimality can be obtained in the sense of ε-Nash equilibrium, where ε can be taken to be arbitrarily close to zero as N becomes sufficiently large. A numerical example is included to illustrate the results.
Numerical methods in Markov chain modeling
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef; Stewart, William J.
1989-01-01
Several methods for computing stationary probability distributions of Markov chains are described and compared. The main linear algebra problem consists of computing an eigenvector of a sparse, usually nonsymmetric, matrix associated with a known eigenvalue. It can also be cast as a problem of solving a homogeneous singular linear system. Several methods based on combinations of Krylov subspace techniques are presented. The performance of these methods on some realistic problems are compared.
Markov Chain Monte Carlo and Irreversibility
NASA Astrophysics Data System (ADS)
Ottobre, Michela
2016-06-01
Markov Chain Monte Carlo (MCMC) methods are statistical methods designed to sample from a given measure π by constructing a Markov chain that has π as invariant measure and that converges to π. Most MCMC algorithms make use of chains that satisfy the detailed balance condition with respect to π; such chains are therefore reversible. On the other hand, recent work [18, 21, 28, 29] has stressed several advantages of using irreversible processes for sampling. Roughly speaking, irreversible diffusions converge to equilibrium faster (and lead to smaller asymptotic variance as well). In this paper we discuss some of the recent progress in the study of nonreversible MCMC methods. In particular: i) we explain some of the difficulties that arise in the analysis of nonreversible processes and we discuss some analytical methods to approach the study of continuous-time irreversible diffusions; ii) most of the rigorous results on irreversible diffusions are available for continuous-time processes; however, for computational purposes one needs to discretize such dynamics. It is well known that the resulting discretized chain will not, in general, retain all the good properties of the process that it is obtained from. In particular, if we want to preserve the invariance of the target measure, the chain might no longer be reversible. Therefore iii) we conclude by presenting an MCMC algorithm, the SOL-HMC algorithm [23], which results from a nonreversible discretization of a nonreversible dynamics.
SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS
THIEDE, ERIK; VAN KOTEN, BRIAN; WEARE, JONATHAN
2015-01-01
For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations. PMID:26491218
Growth and Dissolution of Macromolecular Markov Chains
NASA Astrophysics Data System (ADS)
Gaspard, Pierre
2016-07-01
The kinetics and thermodynamics of free living copolymerization are studied for processes with rates depending on k monomeric units of the macromolecular chain behind the unit that is attached or detached. In this case, the sequence of monomeric units in the growing copolymer is a kth-order Markov chain. In the regime of steady growth, the statistical properties of the sequence are determined analytically in terms of the attachment and detachment rates. In this way, the mean growth velocity as well as the thermodynamic entropy production and the sequence disorder can be calculated systematically. These different properties are also investigated in the regime of depolymerization where the macromolecular chain is dissolved by the surrounding solution. In this regime, the entropy production is shown to satisfy Landauer's principle.
Stochastic seismic tomography by interacting Markov chains
NASA Astrophysics Data System (ADS)
Bottero, Alexis; Gesret, Alexandrine; Romary, Thomas; Noble, Mark; Maisons, Christophe
2016-07-01
Markov chain Monte Carlo sampling methods are widely used for non-linear Bayesian inversion where no analytical expression for the forward relation between data and model parameters is available. Contrary to the linear(ized) approaches they naturally allow to evaluate the uncertainties on the model found. Nevertheless their use is problematic in high dimensional model spaces especially when the computational cost of the forward problem is significant and/or the a posteriori distribution is multimodal. In this case the chain can stay stuck in one of the modes and hence not provide an exhaustive sampling of the distribution of interest. We present here a still relatively unknown algorithm that allows interaction between several Markov chains at different temperatures. These interactions (based on Importance Resampling) ensure a robust sampling of any posterior distribution and thus provide a way to efficiently tackle complex fully non linear inverse problems. The algorithm is easy to implement and is well adapted to run on parallel supercomputers. In this paper the algorithm is first introduced and applied to a synthetic multimodal distribution in order to demonstrate its robustness and efficiency compared to a Simulated Annealing method. It is then applied in the framework of first arrival traveltime seismic tomography on real data recorded in the context of hydraulic fracturing. To carry out this study a wavelet based adaptive model parametrization has been used. This allows to integrate the a priori information provided by sonic logs and to reduce optimally the dimension of the problem.
Markov Chain Analysis of Musical Dice Games
NASA Astrophysics Data System (ADS)
Volchenkov, D.; Dawin, J. R.
2012-07-01
A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.
Approximating Markov Chains: What and why
Pincus, S.
1996-06-01
Much of the current study of dynamical systems is focused on geometry (e.g., chaos and bifurcations) and ergodic theory. Yet dynamical systems were originally motivated by an attempt to {open_quote}{open_quote}solve,{close_quote}{close_quote} or at least understand, a discrete-time analogue of differential equations. As such, numerical, analytical solution techniques for dynamical systems would seem desirable. We discuss an approach that provides such techniques, the approximation of dynamical systems by suitable finite state Markov Chains. Steady state distributions for these Markov Chains, a straightforward calculation, will converge to the true dynamical system steady state distribution, with appropriate limit theorems indicated. Thus (i) approximation by a computable, linear map holds the promise of vastly faster steady state solutions for nonlinear, multidimensional differential equations; (ii) the solution procedure is unaffected by the presence or absence of a probability density function for the {ital attractor}, entirely skirting singularity, fractal/multifractal, and renormalization considerations. The theoretical machinery underpinning this development also implies that under very general conditions, steady state measures are weakly continuous with control parameter evolution. This means that even though a system may change periodicity, or become chaotic in its limiting behavior, such statistical parameters as the mean, standard deviation, and tail probabilities change continuously, not abruptly with system evolution. {copyright} {ital 1996 American Institute of Physics.}
Equilibrium Control Policies for Markov Chains
Malikopoulos, Andreas
2011-01-01
The average cost criterion has held great intuitive appeal and has attracted considerable attention. It is widely employed when controlling dynamic systems that evolve stochastically over time by means of formulating an optimization problem to achieve long-term goals efficiently. The average cost criterion is especially appealing when the decision-making process is long compared to other timescales involved, and there is no compelling motivation to select short-term optimization. This paper addresses the problem of controlling a Markov chain so as to minimize the average cost per unit time. Our approach treats the problem as a dual constrained optimization problem. We derive conditions guaranteeing that a saddle point exists for the new dual problem and we show that this saddle point is an equilibrium control policy for each state of the Markov chain. For practical situations with constraints consistent to those we study here, our results imply that recognition of such saddle points may be of value in deriving in real time an optimal control policy.
NASA Astrophysics Data System (ADS)
Zhu, Huai-nian; Zhang, Cheng-ke; Bin, Ning
2014-05-01
In this paper, we deal with the problem of stochastic Nash differential games of Markov jump linear systems governed by Itô-type equation. Combining the stochastic stabilizability with the stochastic systems, a necessary and sufficient condition for the existence of the Nash strategy is presented by means of a set of cross-coupled stochastic algebraic Riccati equations. Moreover, the stochastic H2/H∞ control for stochastic Markov jump linear systems is discussed as an immediate application and an illustrative example is presented.
Multivariate Markov chain modeling for stock markets
NASA Astrophysics Data System (ADS)
Maskawa, Jun-ichi
2003-06-01
We study a multivariate Markov chain model as a stochastic model of the price changes of portfolios in the framework of the mean field approximation. The time series of price changes are coded into the sequences of up and down spins according to their signs. We start with the discussion for small portfolios consisting of two stock issues. The generalization of our model to arbitrary size of portfolio is constructed by a recurrence relation. The resultant form of the joint probability of the stationary state coincides with Gibbs measure assigned to each configuration of spin glass model. Through the analysis of actual portfolios, it has been shown that the synchronization of the direction of the price changes is well described by the model.
Cool walking: a new Markov chain Monte Carlo sampling method.
Brown, Scott; Head-Gordon, Teresa
2003-01-15
Effective relaxation processes for difficult systems like proteins or spin glasses require special simulation techniques that permit barrier crossing to ensure ergodic sampling. Numerous adaptations of the venerable Metropolis Monte Carlo (MMC) algorithm have been proposed to improve its sampling efficiency, including various hybrid Monte Carlo (HMC) schemes, and methods designed specifically for overcoming quasi-ergodicity problems such as Jump Walking (J-Walking), Smart Walking (S-Walking), Smart Darting, and Parallel Tempering. We present an alternative to these approaches that we call Cool Walking, or C-Walking. In C-Walking two Markov chains are propagated in tandem, one at a high (ergodic) temperature and the other at a low temperature. Nonlocal trial moves for the low temperature walker are generated by first sampling from the high-temperature distribution, then performing a statistical quenching process on the sampled configuration to generate a C-Walking jump move. C-Walking needs only one high-temperature walker, satisfies detailed balance, and offers the important practical advantage that the high and low-temperature walkers can be run in tandem with minimal degradation of sampling due to the presence of correlations. To make the C-Walking approach more suitable to real problems we decrease the required number of cooling steps by attempting to jump at intermediate temperatures during cooling. We further reduce the number of cooling steps by utilizing "windows" of states when jumping, which improves acceptance ratios and lowers the average number of cooling steps. We present C-Walking results with comparisons to J-Walking, S-Walking, Smart Darting, and Parallel Tempering on a one-dimensional rugged potential energy surface in which the exact normalized probability distribution is known. C-Walking shows superior sampling as judged by two ergodic measures. PMID:12483676
Multiple pattern matching: a Markov chain approach.
Lladser, Manuel E; Betterton, M D; Knight, Rob
2008-01-01
RNA motifs typically consist of short, modular patterns that include base pairs formed within and between modules. Estimating the abundance of these patterns is of fundamental importance for assessing the statistical significance of matches in genomewide searches, and for predicting whether a given function has evolved many times in different species or arose from a single common ancestor. In this manuscript, we review in an integrated and self-contained manner some basic concepts of automata theory, generating functions and transfer matrix methods that are relevant to pattern analysis in biological sequences. We formalize, in a general framework, the concept of Markov chain embedding to analyze patterns in random strings produced by a memoryless source. This conceptualization, together with the capability of automata to recognize complicated patterns, allows a systematic analysis of problems related to the occurrence and frequency of patterns in random strings. The applications we present focus on the concept of synchronization of automata, as well as automata used to search for a finite number of keywords (including sets of patterns generated according to base pairing rules) in a general text. PMID:17668213
Manpower planning using Markov Chain model
NASA Astrophysics Data System (ADS)
Saad, Syafawati Ab; Adnan, Farah Adibah; Ibrahim, Haslinda; Rahim, Rahela
2014-07-01
Manpower planning is a planning model which understands the flow of manpower based on the policies changes. For such purpose, numerous attempts have been made by researchers to develop a model to investigate the track of movements of lecturers for various universities. As huge number of lecturers in a university, it is difficult to track the movement of lecturers and also there is no quantitative way used in tracking the movement of lecturers. This research is aimed to determine the appropriate manpower model to understand the flow of lecturers in a university in Malaysia by determine the probability and mean time of lecturers remain in the same status rank. In addition, this research also intended to estimate the number of lecturers in different status rank (lecturer, senior lecturer and associate professor). From the previous studies, there are several methods applied in manpower planning model and appropriate method used in this research is Markov Chain model. Results obtained from this study indicate that the appropriate manpower planning model used is validated by compare to the actual data. The smaller margin of error gives a better result which means that the projection is closer to actual data. These results would give some suggestions for the university to plan the hiring lecturers and budgetary for university in future.
Robust extended dissipative control for sampled-data Markov jump systems
NASA Astrophysics Data System (ADS)
Shen, Hao; Park, Ju H.; Zhang, Lixian; Wu, Zheng-Guang
2014-08-01
This paper investigates the problem of the sampled-data extended dissipative control for uncertain Markov jump systems. The systems considered are transformed into Markov jump systems with polytopic uncertainties and sawtooth delays by using an input delay approach. The focus is on the design of a mode-independent sampled-data controller such that the resulting closed-loop system is mean-square exponentially stable with a given decay rate and extended dissipative. A novel exponential stability criterion and an extended dissipativty condition are established by proposing a new integral inequality. The reduced conservatism of the criteria is demonstrated by two numerical examples. Furthermore, a sufficient condition for the existence of a desired mode-independent sampled-data controller is obtained by solving a convex optimisation problem. Finally, a resistance, inductance and capacitance (RLC) series circuit is employed to illustrate the effectiveness of the proposed approach.
Unsupervised Segmentation of Hidden Semi-Markov Non Stationary Chains
NASA Astrophysics Data System (ADS)
Lapuyade-Lahorgue, Jérôme; Pieczynski, Wojciech
2006-11-01
In the classical hidden Markov chain (HMC) model we have a hidden chain X, which is a Markov one and an observed chain Y. HMC are widely used; however, in some situations they have to be replaced by the more general "hidden semi-Markov chains" (HSMC) which are particular "triplet Markov chains" (TMC) T = (X, U, Y), where the auxiliary chain U models the semi-Markovianity of X. Otherwise, non stationary classical HMC can also be modeled by a triplet Markov stationary chain with, as a consequence, the possibility of parameters' estimation. The aim of this paper is to use simultaneously both properties. We consider a non stationary HSMC and model it as a TMC T = (X, U1, U2, Y), where U1 models the semi-Markovianity and U2 models the non stationarity. The TMC T being itself stationary, all parameters can be estimated by the general "Iterative Conditional Estimation" (ICE) method, which leads to unsupervised segmentation. We present some experiments showing the interest of the new model and related processing in image segmentation area.
MARKOV CHAIN MONTE CARLO POSTERIOR SAMPLING WITH THE HAMILTONIAN METHOD
K. HANSON
2001-02-01
The Markov Chain Monte Carlo technique provides a means for drawing random samples from a target probability density function (pdf). MCMC allows one to assess the uncertainties in a Bayesian analysis described by a numerically calculated posterior distribution. This paper describes the Hamiltonian MCMC technique in which a momentum variable is introduced for each parameter of the target pdf. In analogy to a physical system, a Hamiltonian H is defined as a kinetic energy involving the momenta plus a potential energy {var_phi}, where {var_phi} is minus the logarithm of the target pdf. Hamiltonian dynamics allows one to move along trajectories of constant H, taking large jumps in the parameter space with relatively few evaluations of {var_phi} and its gradient. The Hamiltonian algorithm alternates between picking a new momentum vector and following such trajectories. The efficiency of the Hamiltonian method for multidimensional isotropic Gaussian pdfs is shown to remain constant at around 7% for up to several hundred dimensions. The Hamiltonian method handles correlations among the variables much better than the standard Metropolis algorithm. A new test, based on the gradient of {var_phi}, is proposed to measure the convergence of the MCMC sequence.
Markov Chains For Testing Redundant Software
NASA Technical Reports Server (NTRS)
White, Allan L.; Sjogren, Jon A.
1990-01-01
Preliminary design developed for validation experiment that addresses problems unique to assuring extremely high quality of multiple-version programs in process-control software. Approach takes into account inertia of controlled system in sense it takes more than one failure of control program to cause controlled system to fail. Verification procedure consists of two steps: experimentation (numerical simulation) and computation, with Markov model for each step.
On a Markov chain roulette-type game
NASA Astrophysics Data System (ADS)
El-Shehawey, M. A.; El-Shreef, Gh A.
2009-05-01
A Markov chain on non-negative integers which arises in a roulette-type game is discussed. The transition probabilities are p01 = ρ, pNj = δNj, pi,i+W = q, pi,i-1 = p = 1 - q, 1 <= W < N, 0 <= ρ <= 1, N - W < j <= N and i = 1, 2, ..., N - W. Using formulae for the determinant of a partitioned matrix, a closed form expression for the solution of the Markov chain roulette-type game is deduced. The present analysis is supported by two mathematical models from tumor growth and war with bargaining.
A fast exact simulation method for a class of Markov jump processes
Li, Yao; Hu, Lili
2015-11-14
A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze its properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.
Markov Jump-Linear Performance Models for Recoverable Flight Control Computers
NASA Technical Reports Server (NTRS)
Zhang, Hong; Gray, W. Steven; Gonzalez, Oscar R.
2004-01-01
Single event upsets in digital flight control hardware induced by atmospheric neutrons can reduce system performance and possibly introduce a safety hazard. One method currently under investigation to help mitigate the effects of these upsets is NASA Langley s Recoverable Computer System. In this paper, a Markov jump-linear model is developed for a recoverable flight control system, which will be validated using data from future experiments with simulated and real neutron environments. The method of tracking error analysis and the plan for the experiments are also described.
Shen, Mouquan; Park, Ju H
2016-07-01
This paper addresses the H∞ filtering of continuous Markov jump linear systems with general transition probabilities and output quantization. S-procedure is employed to handle the adverse influence of the quantization and a new approach is developed to conquer the nonlinearity induced by uncertain and unknown transition probabilities. Then, sufficient conditions are presented to ensure the filtering error system to be stochastically stable with the prescribed performance requirement. Without specified structure imposed on introduced slack variables, a flexible filter design method is established in terms of linear matrix inequalities. The effectiveness of the proposed method is validated by a numerical example. PMID:27129765
Influence of credit scoring on the dynamics of Markov chain
NASA Astrophysics Data System (ADS)
Galina, Timofeeva
2015-11-01
Markov processes are widely used to model the dynamics of a credit portfolio and forecast the portfolio risk and profitability. In the Markov chain model the loan portfolio is divided into several groups with different quality, which determined by presence of indebtedness and its terms. It is proposed that dynamics of portfolio shares is described by a multistage controlled system. The article outlines mathematical formalization of controls which reflect the actions of the bank's management in order to improve the loan portfolio quality. The most important control is the organization of approval procedure of loan applications. The credit scoring is studied as a control affecting to the dynamic system. Different formalizations of "good" and "bad" consumers are proposed in connection with the Markov chain model.
Some Interesting Characteristics of Markov Chain Transition Matrices.
ERIC Educational Resources Information Center
Egelston, Richard L.
A Monte Carlo investigation of Markov chain matrices was conducted to create empirical distributions for two statistics created from the transition matrices. Curve fitting techniques developed by Karl Pearson were used to deduce if theoretical equations could be fit to the two sets of distributions. The set of distributions which describe the…
Markov chain for estimating human mitochondrial DNA mutation pattern
NASA Astrophysics Data System (ADS)
Vantika, Sandy; Pasaribu, Udjianna S.
2015-12-01
The Markov chain was proposed to estimate the human mitochondrial DNA mutation pattern. One DNA sequence was taken randomly from 100 sequences in Genbank. The nucleotide transition matrix and mutation transition matrix were estimated from this sequence. We determined whether the states (mutation/normal) are recurrent or transient. The results showed that both of them are recurrent.
Students' Progress throughout Examination Process as a Markov Chain
ERIC Educational Resources Information Center
Hlavatý, Robert; Dömeová, Ludmila
2014-01-01
The paper is focused on students of Mathematical methods in economics at the Czech university of life sciences (CULS) in Prague. The idea is to create a model of students' progress throughout the whole course using the Markov chain approach. Each student has to go through various stages of the course requirements where his success depends on the…
Building Higher-Order Markov Chain Models with EXCEL
ERIC Educational Resources Information Center
Ching, Wai-Ki; Fung, Eric S.; Ng, Michael K.
2004-01-01
Categorical data sequences occur in many applications such as forecasting, data mining and bioinformatics. In this note, we present higher-order Markov chain models for modelling categorical data sequences with an efficient algorithm for solving the model parameters. The algorithm can be implemented easily in a Microsoft EXCEL worksheet. We give a…
Operations and support cost modeling using Markov chains
NASA Technical Reports Server (NTRS)
Unal, Resit
1989-01-01
Systems for future missions will be selected with life cycle costs (LCC) as a primary evaluation criterion. This reflects the current realization that only systems which are considered affordable will be built in the future due to the national budget constaints. Such an environment calls for innovative cost modeling techniques which address all of the phases a space system goes through during its life cycle, namely: design and development, fabrication, operations and support; and retirement. A significant portion of the LCC for reusable systems are generated during the operations and support phase (OS). Typically, OS costs can account for 60 to 80 percent of the total LCC. Clearly, OS costs are wholly determined or at least strongly influenced by decisions made during the design and development phases of the project. As a result OS costs need to be considered and estimated early in the conceptual phase. To be effective, an OS cost estimating model needs to account for actual instead of ideal processes by associating cost elements with probabilities. One approach that may be suitable for OS cost modeling is the use of the Markov Chain Process. Markov chains are an important method of probabilistic analysis for operations research analysts but they are rarely used for life cycle cost analysis. This research effort evaluates the use of Markov Chains in LCC analysis by developing OS cost model for a hypothetical reusable space transportation vehicle (HSTV) and suggests further uses of the Markov Chain process as a design-aid tool.
Adiabatic condition and the quantum hitting time of Markov chains
Krovi, Hari; Ozols, Maris; Roland, Jeremie
2010-08-15
We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P{sup '} where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP{sup '} and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.
Using Markov Chain Analyses in Counselor Education Research
ERIC Educational Resources Information Center
Duys, David K.; Headrick, Todd C.
2004-01-01
This study examined the efficacy of an infrequently used statistical analysis in counselor education research. A Markov chain analysis was used to examine hypothesized differences between students' use of counseling skills in an introductory course. Thirty graduate students participated in the study. Independent raters identified the microskills…
Analyzing Sequential Categorical Data: Individual Variation in Markov Chains.
ERIC Educational Resources Information Center
Gardner, William
1990-01-01
This paper provides a method for analyzing data consisting of event sequences and covariate observations associated with Markov chains. The objective is to use the covariate data to explain differences between individuals in the transition probability matrices characterizing their sequential data. (TJH)
Exploring Mass Perception with Markov Chain Monte Carlo
ERIC Educational Resources Information Center
Cohen, Andrew L.; Ross, Michael G.
2009-01-01
Several previous studies have examined the ability to judge the relative mass of objects in idealized collisions. With a newly developed technique of psychological Markov chain Monte Carlo sampling (A. N. Sanborn & T. L. Griffiths, 2008), this work explores participants; perceptions of different collision mass ratios. The results reveal…
Regenerative Markov Chain Monte Carlo for any distribution.
Minh, D.
2012-01-01
While Markov chain Monte Carlo (MCMC) methods are frequently used for difficult calculations in a wide range of scientific disciplines, they suffer from a serious limitation: their samples are not independent and identically distributed. Consequently, estimates of expectations are biased if the initial value of the chain is not drawn from the target distribution. Regenerative simulation provides an elegant solution to this problem. In this article, we propose a simple regenerative MCMC algorithm to generate variates for any distribution
Markov chain Monte Carlo linkage analysis of a complex qualitative phenotype.
Hinrichs, A; Lin, J H; Reich, T; Bierut, L; Suarez, B K
1999-01-01
We tested a new computer program, LOKI, that implements a reversible jump Markov chain Monte Carlo (MCMC) technique for segregation and linkage analysis. Our objective was to determine whether this software, designed for use with continuously distributed phenotypes, has any efficacy when applied to the discrete disease states of the simulated data from the Mordor data from GAW Problem 1. Although we were able to identify the genomic location for two of the three quantitative trait loci by repeated application of the software, the MCMC sampler experienced significant mixing problems indicating that the method, as currently formulated in LOKI, was not suitable for the discrete phenotypes in this data set. PMID:10597502
Fuzzy Markov random fields versus chains for multispectral image segmentation.
Salzenstein, Fabien; Collet, Christophe
2006-11-01
This paper deals with a comparison of recent statistical models based on fuzzy Markov random fields and chains for multispectral image segmentation. The fuzzy scheme takes into account discrete and continuous classes which model the imprecision of the hidden data. In this framework, we assume the dependence between bands and we express the general model for the covariance matrix. A fuzzy Markov chain model is developed in an unsupervised way. This method is compared with the fuzzy Markovian field model previously proposed by one of the authors. The segmentation task is processed with Bayesian tools, such as the well-known MPM (Mode of Posterior Marginals) criterion. Our goal is to compare the robustness and rapidity for both methods (fuzzy Markov fields versus fuzzy Markov chains). Indeed, such fuzzy-based procedures seem to be a good answer, e.g., for astronomical observations when the patterns present diffuse structures. Moreover, these approaches allow us to process missing data in one or several spectral bands which correspond to specific situations in astronomy. To validate both models, we perform and compare the segmentation on synthetic images and raw multispectral astronomical data. PMID:17063681
An Overview of Markov Chain Methods for the Study of Stage-Sequential Developmental Processes
ERIC Educational Resources Information Center
Kapland, David
2008-01-01
This article presents an overview of quantitative methodologies for the study of stage-sequential development based on extensions of Markov chain modeling. Four methods are presented that exemplify the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition analysis, and the mixture latent Markov model.…
Bayesian Smoothing Algorithms in Partially Observed Markov Chains
NASA Astrophysics Data System (ADS)
Ait-el-Fquih, Boujemaa; Desbouvries, François
2006-11-01
Let x = {xn}n∈N be a hidden process, y = {yn}n∈N an observed process and r = {rn}n∈N some auxiliary process. We assume that t = {tn}n∈N with tn = (xn, rn, yn-1) is a (Triplet) Markov Chain (TMC). TMC are more general than Hidden Markov Chains (HMC) and yet enable the development of efficient restoration and parameter estimation algorithms. This paper is devoted to Bayesian smoothing algorithms for TMC. We first propose twelve algorithms for general TMC. In the Gaussian case, these smoothers reduce to a set of algorithms which include, among other solutions, extensions to TMC of classical Kalman-like smoothing algorithms (originally designed for HMC) such as the RTS algorithms, the Two-Filter algorithms or the Bryson and Frazier algorithm.
Constructing 1/ωα noise from reversible Markov chains
NASA Astrophysics Data System (ADS)
Erland, Sveinung; Greenwood, Priscilla E.
2007-09-01
This paper gives sufficient conditions for the output of 1/ωα noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/ωα condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/ω noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/ωα noise which also has a long memory.
Statistical significance test for transition matrices of atmospheric Markov chains
NASA Technical Reports Server (NTRS)
Vautard, Robert; Mo, Kingtse C.; Ghil, Michael
1990-01-01
Low-frequency variability of large-scale atmospheric dynamics can be represented schematically by a Markov chain of multiple flow regimes. This Markov chain contains useful information for the long-range forecaster, provided that the statistical significance of the associated transition matrix can be reliably tested. Monte Carlo simulation yields a very reliable significance test for the elements of this matrix. The results of this test agree with previously used empirical formulae when each cluster of maps identified as a distinct flow regime is sufficiently large and when they all contain a comparable number of maps. Monte Carlo simulation provides a more reliable way to test the statistical significance of transitions to and from small clusters. It can determine the most likely transitions, as well as the most unlikely ones, with a prescribed level of statistical significance.
Constructing 1/omegaalpha noise from reversible Markov chains.
Erland, Sveinung; Greenwood, Priscilla E
2007-09-01
This paper gives sufficient conditions for the output of 1/omegaalpha noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/omegaalpha condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/omega noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/omegaalpha noise which also has a long memory. PMID:17930206
Parallel algorithms for simulating continuous time Markov chains
NASA Technical Reports Server (NTRS)
Nicol, David M.; Heidelberger, Philip
1992-01-01
We have previously shown that the mathematical technique of uniformization can serve as the basis of synchronization for the parallel simulation of continuous-time Markov chains. This paper reviews the basic method and compares five different methods based on uniformization, evaluating their strengths and weaknesses as a function of problem characteristics. The methods vary in their use of optimism, logical aggregation, communication management, and adaptivity. Performance evaluation is conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.
Space system operations and support cost analysis using Markov chains
NASA Technical Reports Server (NTRS)
Unal, Resit; Dean, Edwin B.; Moore, Arlene A.; Fairbairn, Robert E.
1990-01-01
This paper evaluates the use of Markov chain process in probabilistic life cycle cost analysis and suggests further uses of the process as a design aid tool. A methodology is developed for estimating operations and support cost and expected life for reusable space transportation systems. Application of the methodology is demonstrated for the case of a hypothetical space transportation vehicle. A sensitivity analysis is carried out to explore the effects of uncertainty in key model inputs.
A constructive method to static output stabilisation of Markov jump systems
NASA Astrophysics Data System (ADS)
Shen, Mouquan; Fei, Shumin
2015-05-01
This paper is concerned with the static output feedback stabilisation of Markov jump systems. Transition probabilities are assumed to be incomplete, namely, they may be known, uncertain with known lower and upper bounds and unknown. To linearise the nonlinearities induced by unknown transition probabilities, a linearisation is developed. To solve the static output feedback problem by means of linear matrix inequalities, a constructive method is proposed to separate the controller gain matrices from Lyapunov variables. Based on the linearisation and the separation, sufficient conditions are established to guarantee that the closed-loop system is stochastically stable by the designed static output feedback controller. The obtained results are further extended to deal with norm-bounded or polytopic uncertainties on system matrices. Numerical examples are given to demonstrate the effectiveness of the proposed method.
Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan
2014-12-01
In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method. PMID:25420238
Markov chain evaluation of acute postoperative pain transition states.
Tighe, Patrick J; Bzdega, Matthew; Fillingim, Roger B; Rashidi, Parisa; Aytug, Haldun
2016-03-01
Previous investigations on acute postoperative pain dynamicity have focused on daily pain assessments, and so were unable to examine intraday variations in acute pain intensity. We analyzed 476,108 postoperative acute pain intensity ratings, which were clinically documented on postoperative days 1 to 7 from 8346 surgical patients using Markov chain modeling to describe how patients are likely to transition from one pain state to another in a probabilistic fashion. The Markov chain was found to be irreducible and positive recurrent, with no absorbing states. Transition probabilities ranged from 0.0031, for the transition from state 10 to state 1, to 0.69 for the transition from state 0 to state 0. The greatest density of transitions was noted in the diagonal region of the transition matrix, suggesting that patients were generally most likely to transition to the same pain state as their current state. There were also slightly increased probability densities in transitioning to a state of asleep or 0 from the current state. An examination of the number of steps required to traverse from a particular first pain score to a target state suggested that overall, fewer steps were required to reach a state of 0 (range 6.1-8.8 steps) or asleep (range 9.1-11) than were required to reach a mild pain intensity state. Our results suggest that using Markov chains is a feasible method for describing probabilistic postoperative pain trajectories, pointing toward the possibility of using Markov decision processes to model sequential interactions between pain intensity ratings, and postoperative analgesic interventions. PMID:26588689
Robust Dynamics and Control of a Partially Observed Markov Chain
Elliott, R. J. Malcolm, W. P. Moore, J. P.
2007-12-15
In a seminal paper, Martin Clark (Communications Systems and Random Process Theory, Darlington, 1977, pp. 721-734, 1978) showed how the filtered dynamics giving the optimal estimate of a Markov chain observed in Gaussian noise can be expressed using an ordinary differential equation. These results offer substantial benefits in filtering and in control, often simplifying the analysis and an in some settings providing numerical benefits, see, for example Malcolm et al. (J. Appl. Math. Stoch. Anal., 2007, to appear).Clark's method uses a gauge transformation and, in effect, solves the Wonham-Zakai equation using variation of constants. In this article, we consider the optimal control of a partially observed Markov chain. This problem is discussed in Elliott et al. (Hidden Markov Models Estimation and Control, Applications of Mathematics Series, vol. 29, 1995). The innovation in our results is that the robust dynamics of Clark are used to compute forward in time dynamics for a simplified adjoint process. A stochastic minimum principle is established.
Topological Charge Evolution in the Markov-Chain of QCD
Derek Leinweber; Anthony Williams; Jian-bo Zhang; Frank Lee
2004-04-01
The topological charge is studied on lattices of large physical volume and fine lattice spacing. We illustrate how a parity transformation on the SU(3) link-variables of lattice gauge configurations reverses the sign of the topological charge and leaves the action invariant. Random applications of the parity transformation are proposed to traverse from one topological charge sign to the other. The transformation provides an improved unbiased estimator of the ensemble average and is essential in improving the ergodicity of the Markov chain process.
On Construction of Quantum Markov Chains on Cayley trees
NASA Astrophysics Data System (ADS)
Accardi, Luigi; Mukhamedov, Farrukh; Souissi, Abdessatar
2016-03-01
The main aim of the present paper is to provide a new construction of quantum Markov chain (QMC) on arbitrary order Cayley tree. In that construction, a QMC is defined as a weak limit of finite volume states with boundary conditions, i.e. QMC depends on the boundary conditions. Note that this construction reminds statistical mechanics models with competing interactions on trees. If one considers one dimensional tree, then the provided construction reduces to well-known one, which was studied by the first author. Our construction will allow to investigate phase transition problem in a quantum setting.
Deterioration Prediction Model of Irrigation Facilities by Markov Chain Model
NASA Astrophysics Data System (ADS)
Mori, Takehisa; Nishino, Noriyasu; Fujiwara, Tetsuro
"Stock Management" launched in all over Japan is an activity to use irrigation facilities effectively and to reduce life cycle costs of theirs. Deterioration prediction of the irrigation facility condition is a vital process for the study of maintenance measures and the estimation of maintenance cost. It is important issue to establish the prediction technique with higher accuracy. Thereupon, we established a deterioration prediction model by a statistical method "Markov chain", and analyzed a function diagnosis data of irrigation facilities. As a result, we clarified the deterioration characteristics into each structure type and facilities.
Generalised nonlinear l2-l∞ filtering of discrete-time Markov jump descriptor systems
NASA Astrophysics Data System (ADS)
Li, Lin; Zhong, Lei
2014-03-01
This paper is devoted to the l2-l∞ filter design problem for nonlinear discrete-time Markov jump descriptor systems subject to partially unknown transition probabilities. The partially unknown transition probabilities are modelled via the polytopic uncertainties. The objective is to propose a generalised nonlinear full-order filter design method, such that the resulting filtering error system is regular, casual, and stochastically stable, and a prescribed l2-l∞ attenuation level is satisfied. For the autonomous discrete-time descriptor system subject to Lipschitz nonlinear condition, by introducing some slack matrix variables, a mode-dependent stability criterion is established. It cannot only ensure the regularity, casuality, and stochastic stability of system, but also guarantee the considered system has a unique solution. Based on this obtained criterion, a sufficient condition in terms of linear matrix inequalities (LMIs) is derived, such that the resulting filtering error system is regular, casual, stochastically stable while satisfying a given l2-l∞ performance index. Further, the nonlinear mode-dependent l2-l∞ filter design method is proposed, and by solving a set of LMIs, the desired filter gain matrices are also explicitly given. Finally, a numerical example is included to illustrate the effectiveness of our proposed approach.
A new look at the robust control of discrete-time Markov jump linear systems
NASA Astrophysics Data System (ADS)
Todorov, M. G.; Fragoso, M. D.
2016-03-01
In this paper, we make a foray in the role played by a set of four operators on the study of robust H2 and mixed H2/H∞ control problems for discrete-time Markov jump linear systems. These operators appear in the study of mean square stability for this class of systems. By means of new linear matrix inequality (LMI) characterisations of controllers, which include slack variables that, to some extent, separate the robustness and performance objectives, we introduce four alternative approaches to the design of controllers which are robustly stabilising and at the same time provide a guaranteed level of H2 performance. Since each operator provides a different degree of conservatism, the results are unified in the form of an iterative LMI technique for designing robust H2 controllers, whose convergence is attained in a finite number of steps. The method yields a new way of computing mixed H2/H∞ controllers, whose conservatism decreases with iteration. Two numerical examples illustrate the applicability of the proposed results for the control of a small unmanned aerial vehicle, and for an underactuated robotic arm.
Markov Jump Linear Systems-Based Position Estimation for Lower Limb Exoskeletons
Nogueira, Samuel L.; Siqueira, Adriano A. G.; Inoue, Roberto S.; Terra, Marco H.
2014-01-01
In this paper, we deal with Markov Jump Linear Systems-based filtering applied to robotic rehabilitation. The angular positions of an impedance-controlled exoskeleton, designed to help stroke and spinal cord injured patients during walking rehabilitation, are estimated. Standard position estimate approaches adopt Kalman filters (KF) to improve the performance of inertial measurement units (IMUs) based on individual link configurations. Consequently, for a multi-body system, like a lower limb exoskeleton, the inertial measurements of one link (e.g., the shank) are not taken into account in other link position estimation (e.g., the foot). In this paper, we propose a collective modeling of all inertial sensors attached to the exoskeleton, combining them in a Markovian estimation model in order to get the best information from each sensor. In order to demonstrate the effectiveness of our approach, simulation results regarding a set of human footsteps, with four IMUs and three encoders attached to the lower limb exoskeleton, are presented. A comparative study between the Markovian estimation system and the standard one is performed considering a wide range of parametric uncertainties. PMID:24451469
Efficient Parallel Learning of Hidden Markov Chain Models on SMPs
NASA Astrophysics Data System (ADS)
Li, Lei; Fu, Bin; Faloutsos, Christos
Quad-core cpus have been a common desktop configuration for today's office. The increasing number of processors on a single chip opens new opportunity for parallel computing. Our goal is to make use of the multi-core as well as multi-processor architectures to speed up large-scale data mining algorithms. In this paper, we present a general parallel learning framework, Cut-And-Stitch, for training hidden Markov chain models. Particularly, we propose two model-specific variants, CAS-LDS for learning linear dynamical systems (LDS) and CAS-HMM for learning hidden Markov models (HMM). Our main contribution is a novel method to handle the data dependencies due to the chain structure of hidden variables, so as to parallelize the EM-based parameter learning algorithm. We implement CAS-LDS and CAS-HMM using OpenMP on two supercomputers and a quad-core commercial desktop. The experimental results show that parallel algorithms using Cut-And-Stitch achieve comparable accuracy and almost linear speedups over the traditional serial version.
Radiative transfer calculated from a Markov chain formalism
NASA Technical Reports Server (NTRS)
Esposito, L. W.; House, L. L.
1978-01-01
The theory of Markov chains is used to formulate the radiative transport problem in a general way by modeling the successive interactions of a photon as a stochastic process. Under the minimal requirement that the stochastic process is a Markov chain, the determination of the diffuse reflection or transmission from a scattering atmosphere is equivalent to the solution of a system of linear equations. This treatment is mathematically equivalent to, and thus has many of the advantages of, Monte Carlo methods, but can be considerably more rapid than Monte Carlo algorithms for numerical calculations in particular applications. We have verified the speed and accuracy of this formalism for the standard problem of finding the intensity of scattered light from a homogeneous plane-parallel atmosphere with an arbitrary phase function for scattering. Accurate results over a wide range of parameters were obtained with computation times comparable to those of a standard 'doubling' routine. The generality of this formalism thus allows fast, direct solutions to problems that were previously soluble only by Monte Carlo methods. Some comparisons are made with respect to integral equation methods.
A Markov chain model for reliability growth and decay
NASA Technical Reports Server (NTRS)
Siegrist, K.
1982-01-01
A mathematical model is developed to describe a complex system undergoing a sequence of trials in which there is interaction between the internal states of the system and the outcomes of the trials. For example, the model might describe a system undergoing testing that is redesigned after each failure. The basic assumptions for the model are that the state of the system after a trial depends probabilistically only on the state before the trial and on the outcome of the trial and that the outcome of a trial depends probabilistically only on the state of the system before the trial. It is shown that under these basic assumptions, the successive states form a Markov chain and the successive states and outcomes jointly form a Markov chain. General results are obtained for the transition probabilities, steady-state distributions, etc. A special case studied in detail describes a system that has two possible state ('repaired' and 'unrepaired') undergoing trials that have three possible outcomes ('inherent failure', 'assignable-cause' 'failure' and 'success'). For this model, the reliability function is computed explicitly and an optimal repair policy is obtained.
SATMC: Spectral energy distribution Analysis Through Markov Chains
NASA Astrophysics Data System (ADS)
Johnson, S. P.; Wilson, G. W.; Tang, Y.; Scott, K. S.
2013-12-01
We present the general purpose spectral energy distribution (SED) fitting tool SED Analysis Through Markov Chains (SATMC). Utilizing Monte Carlo Markov Chain (MCMC) algorithms, SATMC fits an observed SED to SED templates or models of the user's choice to infer intrinsic parameters, generate confidence levels and produce the posterior parameter distribution. Here, we describe the key features of SATMC from the underlying MCMC engine to specific features for handling SED fitting. We detail several test cases of SATMC, comparing results obtained from traditional least-squares methods, which highlight its accuracy, robustness and wide range of possible applications. We also present a sample of submillimetre galaxies (SMGs) that have been fitted using the SED synthesis routine GRASIL as input. In general, these SMGs are shown to occupy a large volume of parameter space, particularly in regards to their star formation rates which range from ˜30 to 3000 M⊙ yr-1 and stellar masses which range from ˜1010 to 1012 M⊙. Taking advantage of the Bayesian formalism inherent to SATMC, we also show how the fitting results may change under different parametrizations (i.e. different initial mass functions) and through additional or improved photometry, the latter being crucial to the study of high-redshift galaxies.
Improving Bayesian analysis for LISA Pathfinder using an efficient Markov Chain Monte Carlo method
NASA Astrophysics Data System (ADS)
Ferraioli, Luigi; Porter, Edward K.; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Gibert, Ferran; Hewitson, Martin; Hueller, Mauro; Karnesis, Nikolaos; Korsakova, Natalia; Nofrarias, Miquel; Plagnol, Eric; Vitale, Stefano
2014-02-01
We present a parameter estimation procedure based on a Bayesian framework by applying a Markov Chain Monte Carlo algorithm to the calibration of the dynamical parameters of the LISA Pathfinder satellite. The method is based on the Metropolis-Hastings algorithm and a two-stage annealing treatment in order to ensure an effective exploration of the parameter space at the beginning of the chain. We compare two versions of the algorithm with an application to a LISA Pathfinder data analysis problem. The two algorithms share the same heating strategy but with one moving in coordinate directions using proposals from a multivariate Gaussian distribution, while the other uses the natural logarithm of some parameters and proposes jumps in the eigen-space of the Fisher Information matrix. The algorithm proposing jumps in the eigen-space of the Fisher Information matrix demonstrates a higher acceptance rate and a slightly better convergence towards the equilibrium parameter distributions in the application to LISA Pathfinder data. For this experiment, we return parameter values that are all within ˜1 σ of the injected values. When we analyse the accuracy of our parameter estimation in terms of the effect they have on the force-per-unit of mass noise, we find that the induced errors are three orders of magnitude less than the expected experimental uncertainty in the power spectral density.
Bayesian seismic tomography by parallel interacting Markov chains
NASA Astrophysics Data System (ADS)
Gesret, Alexandrine; Bottero, Alexis; Romary, Thomas; Noble, Mark; Desassis, Nicolas
2014-05-01
The velocity field estimated by first arrival traveltime tomography is commonly used as a starting point for further seismological, mineralogical, tectonic or similar analysis. In order to interpret quantitatively the results, the tomography uncertainty values as well as their spatial distribution are required. The estimated velocity model is obtained through inverse modeling by minimizing an objective function that compares observed and computed traveltimes. This step is often performed by gradient-based optimization algorithms. The major drawback of such local optimization schemes, beyond the possibility of being trapped in a local minimum, is that they do not account for the multiple possible solutions of the inverse problem. They are therefore unable to assess the uncertainties linked to the solution. Within a Bayesian (probabilistic) framework, solving the tomography inverse problem aims at estimating the posterior probability density function of velocity model using a global sampling algorithm. Markov chains Monte-Carlo (MCMC) methods are known to produce samples of virtually any distribution. In such a Bayesian inversion, the total number of simulations we can afford is highly related to the computational cost of the forward model. Although fast algorithms have been recently developed for computing first arrival traveltimes of seismic waves, the complete browsing of the posterior distribution of velocity model is hardly performed, especially when it is high dimensional and/or multimodal. In the latter case, the chain may even stay stuck in one of the modes. In order to improve the mixing properties of classical single MCMC, we propose to make interact several Markov chains at different temperatures. This method can make efficient use of large CPU clusters, without increasing the global computational cost with respect to classical MCMC and is therefore particularly suited for Bayesian inversion. The exchanges between the chains allow a precise sampling of the
Nonequilibrium thermodynamic potentials for continuous-time Markov chains
NASA Astrophysics Data System (ADS)
Verley, Gatien
2016-01-01
We connect the rare fluctuations of an equilibrium (EQ) process and the typical fluctuations of a nonequilibrium (NE) stationary process. In the framework of large deviation theory, this observation allows us to introduce NE thermodynamic potentials. For continuous-time Markov chains, we identify the relevant pairs of conjugated variables and propose two NE ensembles: one with fixed dynamics and fluctuating time-averaged variables, and another with fixed time-averaged variables, but a fluctuating dynamics. Accordingly, we show that NE processes are equivalent to conditioned EQ processes ensuring that NE potentials are Legendre dual. We find a variational principle satisfied by the NE potentials that reach their maximum in the NE stationary state and whose first derivatives produce the NE equations of state and second derivatives produce the NE Maxwell relations generalizing the Onsager reciprocity relations.
Markov Chain Monte Carlo Bayesian Learning for Neural Networks
NASA Technical Reports Server (NTRS)
Goodrich, Michael S.
2011-01-01
Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.
Projection methods for the numerical solution of Markov chain models
NASA Technical Reports Server (NTRS)
Saad, Youcef
1989-01-01
Projection methods for computing stationary probability distributions for Markov chain models are presented. A general projection method is a method which seeks an approximation from a subspace of small dimension to the original problem. Thus, the original matrix problem of size N is approximated by one of dimension m, typically much smaller than N. A particularly successful class of methods based on this principle is that of Krylov subspace methods which utilize subspaces of the form span(v,av,...,A(exp m-1)v). These methods are effective in solving linear systems and eigenvalue problems (Lanczos, Arnoldi,...) as well as nonlinear equations. They can be combined with more traditional iterative methods such as successive overrelaxation, symmetric successive overrelaxation, or with incomplete factorization methods to enhance convergence.
On the Multilevel Solution Algorithm for Markov Chains
NASA Technical Reports Server (NTRS)
Horton, Graham
1997-01-01
We discuss the recently introduced multilevel algorithm for the steady-state solution of Markov chains. The method is based on an aggregation principle which is well established in the literature and features a multiplicative coarse-level correction. Recursive application of the aggregation principle, which uses an operator-dependent coarsening, yields a multi-level method which has been shown experimentally to give results significantly faster than the typical methods currently in use. When cast as a multigrid-like method, the algorithm is seen to be a Galerkin-Full Approximation Scheme with a solution-dependent prolongation operator. Special properties of this prolongation lead to the cancellation of the computationally intensive terms of the coarse-level equations.
Kinetics and thermodynamics of first-order Markov chain copolymerization
NASA Astrophysics Data System (ADS)
Gaspard, P.; Andrieux, D.
2014-07-01
We report a theoretical study of stochastic processes modeling the growth of first-order Markov copolymers, as well as the reversed reaction of depolymerization. These processes are ruled by kinetic equations describing both the attachment and detachment of monomers. Exact solutions are obtained for these kinetic equations in the steady regimes of multicomponent copolymerization and depolymerization. Thermodynamic equilibrium is identified as the state at which the growth velocity is vanishing on average and where detailed balance is satisfied. Away from equilibrium, the analytical expression of the thermodynamic entropy production is deduced in terms of the Shannon disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is recovered in the fully irreversible growth regime. The theory also applies to Bernoullian chains in the case where the attachment and detachment rates only depend on the reacting monomer.
Kinetics and thermodynamics of first-order Markov chain copolymerization.
Gaspard, P; Andrieux, D
2014-07-28
We report a theoretical study of stochastic processes modeling the growth of first-order Markov copolymers, as well as the reversed reaction of depolymerization. These processes are ruled by kinetic equations describing both the attachment and detachment of monomers. Exact solutions are obtained for these kinetic equations in the steady regimes of multicomponent copolymerization and depolymerization. Thermodynamic equilibrium is identified as the state at which the growth velocity is vanishing on average and where detailed balance is satisfied. Away from equilibrium, the analytical expression of the thermodynamic entropy production is deduced in terms of the Shannon disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is recovered in the fully irreversible growth regime. The theory also applies to Bernoullian chains in the case where the attachment and detachment rates only depend on the reacting monomer. PMID:25084957
On the multi-level solution algorithm for Markov chains
Horton, G.
1996-12-31
We discuss the recently introduced multi-level algorithm for the steady-state solution of Markov chains. The method is based on the aggregation principle, which is well established in the literature. Recursive application of the aggregation yields a multi-level method which has been shown experimentally to give results significantly faster than the methods currently in use. The algorithm can be reformulated as an algebraic multigrid scheme of Galerkin-full approximation type. The uniqueness of the scheme stems from its solution-dependent prolongation operator which permits significant computational savings in the evaluation of certain terms. This paper describes the modeling of computer systems to derive information on performance, measured typically as job throughput or component utilization, and availability, defined as the proportion of time a system is able to perform a certain function in the presence of component failures and possibly also repairs.
Kinetics and thermodynamics of first-order Markov chain copolymerization
Gaspard, P.; Andrieux, D.
2014-07-28
We report a theoretical study of stochastic processes modeling the growth of first-order Markov copolymers, as well as the reversed reaction of depolymerization. These processes are ruled by kinetic equations describing both the attachment and detachment of monomers. Exact solutions are obtained for these kinetic equations in the steady regimes of multicomponent copolymerization and depolymerization. Thermodynamic equilibrium is identified as the state at which the growth velocity is vanishing on average and where detailed balance is satisfied. Away from equilibrium, the analytical expression of the thermodynamic entropy production is deduced in terms of the Shannon disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is recovered in the fully irreversible growth regime. The theory also applies to Bernoullian chains in the case where the attachment and detachment rates only depend on the reacting monomer.
A Quantum Algorithm for Estimating Hitting Times of Markov Chains
NASA Astrophysics Data System (ADS)
Narayan Chowdhury, Anirban; Somma, Rolando
We present a quantum algorithm to estimate the hitting time of a reversible Markov chain faster than classically possible. To this end, we show that the hitting time is given by an expected value of the inverse of a Hermitian matrix. To obtain this expected value, our algorithm combines three important techniques developed in the literature. One such a technique is called spectral gap amplification and we use it to amplify the gap of the Hermitian matrix or reduce its condition number. We then use a new algorithm by Childs, Kothari, and Somma to implement the inverse of a matrix, and finally use methods developed in the context of quantum metrology to reduce the complexity of expected-value estimation for a given precision. The authors acknowledge support from AFOSR Grant Number FA9550-12-1-0057 and the Google Research Award.
Accelerating Monte Carlo Markov chains with proxy and error models
NASA Astrophysics Data System (ADS)
Josset, Laureline; Demyanov, Vasily; Elsheikh, Ahmed H.; Lunati, Ivan
2015-12-01
In groundwater modeling, Monte Carlo Markov Chain (MCMC) simulations are often used to calibrate aquifer parameters and propagate the uncertainty to the quantity of interest (e.g., pollutant concentration). However, this approach requires a large number of flow simulations and incurs high computational cost, which prevents a systematic evaluation of the uncertainty in the presence of complex physical processes. To avoid this computational bottleneck, we propose to use an approximate model (proxy) to predict the response of the exact model. Here, we use a proxy that entails a very simplified description of the physics with respect to the detailed physics described by the "exact" model. The error model accounts for the simplification of the physical process; and it is trained on a learning set of realizations, for which both the proxy and exact responses are computed. First, the key features of the set of curves are extracted using functional principal component analysis; then, a regression model is built to characterize the relationship between the curves. The performance of the proposed approach is evaluated on the Imperial College Fault model. We show that the joint use of the proxy and the error model to infer the model parameters in a two-stage MCMC set-up allows longer chains at a comparable computational cost. Unnecessary evaluations of the exact responses are avoided through a preliminary evaluation of the proposal made on the basis of the corrected proxy response. The error model trained on the learning set is crucial to provide a sufficiently accurate prediction of the exact response and guide the chains to the low misfit regions. The proposed methodology can be extended to multiple-chain algorithms or other Bayesian inference methods. Moreover, FPCA is not limited to the specific presented application and offers a general framework to build error models.
Plug-in Estimator of the Entropy Rate of a Pure-Jump Two-State Markov Process
NASA Astrophysics Data System (ADS)
Regnault, Philippe
2009-12-01
The entropy of a distribution with finite support is widely used in all applications involving random variables. A natural equivalent for random processes is the entropy rate. For ergodic pure-jump finite-state Markov processes, this rate is an explicit function of the stationary distribution and the infinitesimal generator. The case of two-state Markov processes is of particular interest. We estimate the entropy rate of such processes by plug-in, from estimators of the stationary distribution and the infinitesimal generator. Three situations of observation are discussed, several independant trajectories are observed, one long trajectory is observed, or the process is observed at discrete times. The asymptotic behavior of the plug-in estimators is established.
Bayesian restoration of a hidden Markov chain with applications to DNA sequencing.
Churchill, G A; Lazareva, B
1999-01-01
Hidden Markov models (HMMs) are a class of stochastic models that have proven to be powerful tools for the analysis of molecular sequence data. A hidden Markov model can be viewed as a black box that generates sequences of observations. The unobservable internal state of the box is stochastic and is determined by a finite state Markov chain. The observable output is stochastic with distribution determined by the state of the hidden Markov chain. We present a Bayesian solution to the problem of restoring the sequence of states visited by the hidden Markov chain from a given sequence of observed outputs. Our approach is based on a Monte Carlo Markov chain algorithm that allows us to draw samples from the full posterior distribution of the hidden Markov chain paths. The problem of estimating the probability of individual paths and the associated Monte Carlo error of these estimates is addressed. The method is illustrated by considering a problem of DNA sequence multiple alignment. The special structure for the hidden Markov model used in the sequence alignment problem is considered in detail. In conclusion, we discuss certain interesting aspects of biological sequence alignments that become accessible through the Bayesian approach to HMM restoration. PMID:10421527
A graph theoretic approach to global earthquake sequencing: A Markov chain model
NASA Astrophysics Data System (ADS)
Vasudevan, K.; Cavers, M. S.
2012-12-01
We construct a directed graph to represent a Markov chain of global earthquake sequences and analyze the statistics of transition probabilities linked to earthquake zones. For earthquake zonation, we consider the simplified plate boundary template of Kagan, Bird, and Jackson (KBJ template, 2010). We demonstrate the applicability of the directed graph approach to hazard-related forecasting using some of the properties of graphs that represent the finite Markov chain. We extend the present study to consider Bird's 52-plate zonation (2003) describing the global earthquakes at and within plate boundaries to gain further insight into the usefulness of digraphs corresponding to a Markov chain model.
Regeneration and Fixed-Width Analysis of Markov Chain Monte Carlo Algorithms
NASA Astrophysics Data System (ADS)
Latuszynski, Krzysztof
2009-07-01
In the thesis we take the split chain approach to analyzing Markov chains and use it to establish fixed-width results for estimators obtained via Markov chain Monte Carlo procedures (MCMC). Theoretical results include necessary and sufficient conditions in terms of regeneration for central limit theorems for ergodic Markov chains and a regenerative proof of a CLT version for uniformly ergodic Markov chains with E_{π}f^2< infty. To obtain asymptotic confidence intervals for MCMC estimators, strongly consistent estimators of the asymptotic variance are essential. We relax assumptions required to obtain such estimators. Moreover, under a drift condition, nonasymptotic fixed-width results for MCMC estimators for a general state space setting (not necessarily compact) and not necessarily bounded target function f are obtained. The last chapter is devoted to the idea of adaptive Monte Carlo simulation and provides convergence results and law of large numbers for adaptive procedures under path-stability condition for transition kernels.
Finding and Testing Network Communities by Lumped Markov Chains
Piccardi, Carlo
2011-01-01
Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold. By means of a lumped Markov chain model of a random walker, a quality measure called “persistence probability” is associated to a cluster, which is then defined as an “-community” if such a probability is not smaller than . Consistently, a partition composed of -communities is an “-partition.” These definitions turn out to be very effective for finding and testing communities. If a set of candidate partitions is available, setting the desired -level allows one to immediately select the -partition with the finest decomposition. Simultaneously, the persistence probabilities quantify the quality of each single community. Given its ability in individually assessing each single cluster, this approach can also disclose single well-defined communities even in networks that overall do not possess a definite clusterized structure. PMID:22073245
Ensemble bayesian model averaging using markov chain Monte Carlo sampling
Vrugt, Jasper A; Diks, Cees G H; Clark, Martyn P
2008-01-01
Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.
Hidden Markov chain modeling for epileptic networks identification.
Le Cam, Steven; Louis-Dorr, Valérie; Maillard, Louis
2013-01-01
The partial epileptic seizures are often considered to be caused by a wrong balance between inhibitory and excitatory interneuron connections within a focal brain area. These abnormal balances are likely to result in loss of functional connectivities between remote brain structures, while functional connectivities within the incriminated zone are enhanced. The identification of the epileptic networks underlying these hypersynchronies are expected to contribute to a better understanding of the brain mechanisms responsible for the development of the seizures. In this objective, threshold strategies are commonly applied, based on synchrony measurements computed from recordings of the electrophysiologic brain activity. However, such methods are reported to be prone to errors and false alarms. In this paper, we propose a hidden Markov chain modeling of the synchrony states with the aim to develop a reliable machine learning methods for epileptic network inference. The method is applied on a real Stereo-EEG recording, demonstrating consistent results with the clinical evaluations and with the current knowledge on temporal lobe epilepsy. PMID:24110697
ENSO informed Drought Forecasting Using Nonhomogeneous Hidden Markov Chain Model
NASA Astrophysics Data System (ADS)
Kwon, H.; Yoo, J.; Kim, T.
2013-12-01
The study aims at developing a new scheme to investigate the potential use of ENSO (El Niño/Southern Oscillation) for drought forecasting. In this regard, objective of this study is to extend a previously developed nonhomogeneous hidden Markov chain model (NHMM) to identify climate states associated with drought that can be potentially used to forecast drought conditions using climate information. As a target variable for forecasting, SPI(standardized precipitation index) is mainly utilized. This study collected monthly precipitation data over 56 stations that cover more than 30 years and K-means cluster analysis using drought properties was applied to partition regions into mutually exclusive clusters. In this study, six main clusters were distinguished through the regionalization procedure. For each cluster, the NHMM was applied to estimate the transition probability of hidden states as well as drought conditions informed by large scale climate indices (e.g. SOI, Nino1.2, Nino3, Nino3.4, MJO and PDO). The NHMM coupled with large scale climate information shows promise as a technique for forecasting drought scenarios. A more detailed explanation of large scale climate patterns associated with the identified hidden states will be provided with anomaly composites of SSTs and SLPs. Acknowledgement This research was supported by a grant(11CTIPC02) from Construction Technology Innovation Program (CTIP) funded by Ministry of Land, Transport and Maritime Affairs of Korean government.
Threshold partitioning of sparse matrices and applications to Markov chains
Choi, Hwajeong; Szyld, D.B.
1996-12-31
It is well known that the order of the variables and equations of a large, sparse linear system influences the performance of classical iterative methods. In particular if, after a symmetric permutation, the blocks in the diagonal have more nonzeros, classical block methods have a faster asymptotic rate of convergence. In this paper, different ordering and partitioning algorithms for sparse matrices are presented. They are modifications of PABLO. In the new algorithms, in addition to the location of the nonzeros, the values of the entries are taken into account. The matrix resulting after the symmetric permutation has dense blocks along the diagonal, and small entries in the off-diagonal blocks. Parameters can be easily adjusted to obtain, for example, denser blocks, or blocks with elements of larger magnitude. In particular, when the matrices represent Markov chains, the permuted matrices are well suited for block iterative methods that find the corresponding probability distribution. Applications to three types of methods are explored: (1) Classical block methods, such as Block Gauss Seidel. (2) Preconditioned GMRES, where a block diagonal preconditioner is used. (3) Iterative aggregation method (also called aggregation/disaggregation) where the partition obtained from the ordering algorithm with certain parameters is used as an aggregation scheme. In all three cases, experiments are presented which illustrate the performance of the methods with the new orderings. The complexity of the new algorithms is linear in the number of nonzeros and the order of the matrix, and thus adding little computational effort to the overall solution.
Markov chain Monte Carlo methods: an introductory example
NASA Astrophysics Data System (ADS)
Klauenberg, Katy; Elster, Clemens
2016-02-01
When the Guide to the Expression of Uncertainty in Measurement (GUM) and methods from its supplements are not applicable, the Bayesian approach may be a valid and welcome alternative. Evaluating the posterior distribution, estimates or uncertainties involved in Bayesian inferences often requires numerical methods to avoid high-dimensional integrations. Markov chain Monte Carlo (MCMC) sampling is such a method—powerful, flexible and widely applied. Here, a concise introduction is given, illustrated by a simple, typical example from metrology. The Metropolis-Hastings algorithm is the most basic and yet flexible MCMC method. Its underlying concepts are explained and the algorithm is given step by step. The few lines of software code required for its implementation invite interested readers to get started. Diagnostics to evaluate the performance and common algorithmic choices are illustrated to calibrate the Metropolis-Hastings algorithm for efficiency. Routine application of MCMC algorithms may be hindered currently by the difficulty to assess the convergence of MCMC output and thus to assure the validity of results. An example points to the importance of convergence and initiates discussion about advantages as well as areas of research. Available software tools are mentioned throughout.
Markov Chain Monte-Carlo Orbit Computation for Binary Asteroids
NASA Astrophysics Data System (ADS)
Oszkiewicz, D.; Hestroffer, D.; Pedro, David C.
2013-11-01
We present a novel method of orbit computation for resolved binary asteroids. The method combines the Thiele, Innes, van den Bos method with a Markov chain Monte Carlo technique (MCMC). The classical Thiele-van den Bos method has been commonly used in multiple applications before, including orbits of binary stars and asteroids; conversely this novel method can be used for the analysis of binary stars, and of other gravitationally bound binaries. The method requires a minimum of three observations (observing times and relative positions - Cartesian or polar) made at the same tangent plane - or close enough for enabling a first approximation. Further, the use of the MCMC technique for statistical inversion yields the whole bundle of possible orbits, including the one that is most probable. In this new method, we make use of the Metropolis-Hastings algorithm to sample the parameters of the Thiele-van den Bos method, that is the orbital period (or equivalently the double areal constant) together with three randomly selected observations from the same tangent plane. The observations are sampled within their observational errors (with an assumed distribution) and the orbital period is the only parameter that has to be tuned during the sampling procedure. We run multiple chains to ensure that the parameter phase space is well sampled and that the solutions have converged. After the sampling is completed we perform convergence diagnostics. The main advantage of the novel approach is that the orbital period does not need to be known in advance and the entire region of possible orbital solutions is sampled resulting in a maximum likelihood solution and the confidence regions. We have tested the new method on several known binary asteroids and conclude a good agreement with the results obtained with other methods. The new method has been implemented into the Gaia DPAC data reduction pipeline and can be used to confirm the binary nature of a suspected system, and for deriving
User’s manual for basic version of MCnest Markov chain nest productivity model
The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...
Technical manual for basic version of the Markov chain nest productivity model (MCnest)
The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...
Markov chain analysis of succession in a rocky subtidal community.
Hill, M Forrest; Witman, Jon D; Caswell, Hal
2004-08-01
We present a Markov chain model of succession in a rocky subtidal community based on a long-term (1986-1994) study of subtidal invertebrates (14 species) at Ammen Rock Pinnacle in the Gulf of Maine. The model describes successional processes (disturbance, colonization, species persistence, and replacement), the equilibrium (stationary) community, and the rate of convergence. We described successional dynamics by species turnover rates, recurrence times, and the entropy of the transition matrix. We used perturbation analysis to quantify the response of diversity to successional rates and species removals. The equilibrium community was dominated by an encrusting sponge (Hymedesmia) and a bryozoan (Crisia eburnea). The equilibrium structure explained 98% of the variance in observed species frequencies. Dominant species have low probabilities of disturbance and high rates of colonization and persistence. On average, species turn over every 3.4 years. Recurrence times varied among species (7-268 years); rare species had the longest recurrence times. The community converged to equilibrium quickly (9.5 years), as measured by Dobrushin's coefficient of ergodicity. The largest changes in evenness would result from removal of the dominant sponge Hymedesmia. Subdominant species appear to increase evenness by slowing the dominance of Hymedesmia. Comparison of the subtidal community with intertidal and coral reef communities revealed that disturbance rates are an order of magnitude higher in coral reef than in rocky intertidal and subtidal communities. Colonization rates and turnover times, however, are lowest and longest in coral reefs, highest and shortest in intertidal communities, and intermediate in subtidal communities. PMID:15278851
NASA Astrophysics Data System (ADS)
Han, Hua; Ding, Yongsheng; Hao, Kuangrong; Hu, Liangjian
2013-07-01
In this article, we first introduce the problem of state estimation of jump Markov nonlinear systems (JMNSs). Since the density evolution method for predictor equations satisfies Fokker-Planck-Kolmogorov equation (FPKE) in Bayes estimation, the FPKE in conjunction with Bayes' conditional density update formula can provide optimal estimation for a general continuous-discrete nonlinear filtering problem. It is well known that the analytical solution of the FPKE and Bayes' formula is extremely difficult to obtain except a few special cases. Hence, we try to design a particle filter to achieve Bayes estimation of the JMNSs. In order to test the viability of our algorithm, we apply it to multiple targets tracking in video surveillance. Before starting simulation, we introduce the 'birth' and 'death' description of targets, targets' transitional probability model, and observation probability. The experiment results show good performance of our proposed filter for multiple targets tracking.
NASA Astrophysics Data System (ADS)
Jamaluddin, Fadhilah; Rahim, Rahela Abdul
2015-12-01
Markov Chain has been introduced since the 1913 for the purpose of studying the flow of data for a consecutive number of years of the data and also forecasting. The important feature in Markov Chain is obtaining the accurate Transition Probability Matrix (TPM). However to obtain the suitable TPM is hard especially in involving long-term modeling due to unavailability of data. This paper aims to enhance the classical Markov Chain by introducing Exponential Smoothing technique in developing the appropriate TPM.
Weighted Markov Chains and Graphic State Nodes for Information Retrieval.
ERIC Educational Resources Information Center
Benoit, G.
2002-01-01
Discusses users' search behavior and decision making in data mining and information retrieval. Describes iterative information seeking as a Markov process during which users advance through states of nodes; and explains how the information system records the decision as weights, allowing the incorporation of users' decisions into the Markov…
Reliability analysis and prediction of mixed mode load using Markov Chain Model
NASA Astrophysics Data System (ADS)
Nikabdullah, N.; Singh, S. S. K.; Alebrahim, R.; Azizi, M. A.; K, Elwaleed A.; Noorani, M. S. M.
2014-06-01
The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading.
Reliability analysis and prediction of mixed mode load using Markov Chain Model
Nikabdullah, N.; Singh, S. S. K.; Alebrahim, R.; Azizi, M. A.; K, Elwaleed A.; Noorani, M. S. M.
2014-06-19
The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading.
Finding noncommunicating sets for Markov chain Monte Carlo estimations on pedigrees.
Lin, S.; Thompson, E.; Wijsman, E.
1994-01-01
Markov chain Monte Carlo (MCMC) has recently gained use as a method of estimating required probability and likelihood functions in pedigree analysis, when exact computation is impractical. However, when a multiallelic locus is involved, irreducibility of the constructed Markov chain, an essential requirement of the MCMC method, may fail. Solutions proposed by several researchers, which do not identify all the noncommunicating sets of genotypic configurations, are inefficient with highly polymorphic loci. This is a particularly serious problem in linkage analysis, because highly polymorphic markers are much more informative and thus are preferred. In the present paper, we describe an algorithm that finds all the noncommunicating classes of genotypic configurations on any pedigree. This leads to a more efficient method of defining an irreducible Markov chain. Examples, including a pedigree from a genetic study of familial Alzheimer disease, are used to illustrate how the algorithm works and how penetrances are modified for specific individuals to ensure irreducibility. PMID:8128968
Finding noncommunicating sets for Markov chain Monte Carlo estimations on pedigrees
Lin, S. ); Thompson, E.; Wijsman, E. )
1994-04-01
Markov chain Monte Carlo (MCMC) has recently gained use as a method of estimating required probability and likelihood functions in pedigree analysis, when exact computation is impractical. However, when a multiallelic locus is involved, irreducibility of the constructed Markov chain, an essential requirement of the MCMC method, may fail. Solutions proposed by several researchers, which do not identify all the noncommunicating sets of genotypic configurations, are inefficient with highly polymorphic loci. This is a particularly serious problem in linkage analysis, because highly polymorphic markers are much more informative and thus are preferred. In the present paper, the authors describe an algorithm that finds all the noncommunicating classes of genotypic configurations on any pedigree. This leads to a more efficient method of defining an irreducible Markov chain. Examples, including a pedigree from a genetic study of familial Alzheimer disease, are used to illustrate how the algorithm works and how penetrances are modified for specific individuals to ensure irreducibility. 20 refs., 7 figs., 6 tabs.
Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms.
Rechner, Steffen; Berger, Annabell
2016-01-01
We present the software library marathon, which is designed to support the analysis of sampling algorithms that are based on the Markov-Chain Monte Carlo principle. The main application of this library is the computation of properties of so-called state graphs, which represent the structure of Markov chains. We demonstrate applications and the usefulness of marathon by investigating the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graphs. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is often several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time. PMID:26824442
Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms
Rechner, Steffen; Berger, Annabell
2016-01-01
We present the software library marathon, which is designed to support the analysis of sampling algorithms that are based on the Markov-Chain Monte Carlo principle. The main application of this library is the computation of properties of so-called state graphs, which represent the structure of Markov chains. We demonstrate applications and the usefulness of marathon by investigating the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graphs. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is often several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time. PMID:26824442
Peng, Zhihang; Bao, Changjun; Zhao, Yang; Yi, Honggang; Xia, Letian; Yu, Hao; Shen, Hongbing; Chen, Feng
2010-01-01
This paper first applies the sequential cluster method to set up the classification standard of infectious disease incidence state based on the fact that there are many uncertainty characteristics in the incidence course. Then the paper presents a weighted Markov chain, a method which is used to predict the future incidence state. This method assumes the standardized self-coefficients as weights based on the special characteristics of infectious disease incidence being a dependent stochastic variable. It also analyzes the characteristics of infectious diseases incidence via the Markov chain Monte Carlo method to make the long-term benefit of decision optimal. Our method is successfully validated using existing incidents data of infectious diseases in Jiangsu Province. In summation, this paper proposes ways to improve the accuracy of the weighted Markov chain, specifically in the field of infection epidemiology. PMID:23554632
Borodovsky, M; Peresetsky, A
1994-09-01
Non-homogeneous Markov chain models can represent biologically important regions of DNA sequences. The statistical pattern that is described by these models is usually weak and was found primarily because of strong biological indications. The general method for extracting similar patterns is presented in the current paper. The algorithm incorporates cluster analysis, multiple alignment and entropy minimization. The method was first tested using the set of DNA sequences produced by Markov chain generators. It was shown that artificial gene sequences, which initially have been randomly set up along the multiple alignment panels, are aligned according to the hidden triplet phase. Then the method was applied to real protein-coding sequences and the resulting alignment clearly indicated the triplet phase and produced the parameters of the optimal 3-periodic non-homogeneous Markov chain model. These Markov models were already employed in the GeneMark gene prediction algorithm, which is used in genome sequencing projects. The algorithm can also handle the case in which the sequences to be aligned reveal different statistical patterns, such as Escherichia coli protein-coding sequences belonging to Class II and Class III. The algorithm accepts a random mix of sequences from different classes, and is able to separate them into two groups (clusters), align each cluster separately, and define a non-homogeneous Markov chain model for each sequence cluster. PMID:7952897
Simplification of irreversible Markov chains by removal of states with fast leaving rates.
Jia, Chen
2016-07-01
In the recent work of Ullah et al. (2012a), the authors developed an effective method to simplify reversible Markov chains by removal of states with low equilibrium occupancies. In this paper, we extend this result to irreversible Markov chains. We show that an irreversible chain can be simplified by removal of states with fast leaving rates. Moreover, we reveal that the irreversibility of the chain will always decrease after model simplification. This suggests that although model simplification can retain almost all the dynamic information of the chain, it will lose some thermodynamic information as a trade-off. Examples from biology are also given to illustrate the main results of this paper. PMID:27067245
An Evaluation of a Markov Chain Monte Carlo Method for the Rasch Model.
ERIC Educational Resources Information Center
Kim, Seock-Ho
2001-01-01
Examined the accuracy of the Gibbs sampling Markov chain Monte Carlo procedure for estimating item and person (theta) parameters in the one-parameter logistic model. Analyzed four empirical datasets using the Gibbs sampling, conditional maximum likelihood, marginal maximum likelihood, and joint maximum likelihood methods. Discusses the conditions…
Experiences with Markov Chain Monte Carlo Convergence Assessment in Two Psychometric Examples
ERIC Educational Resources Information Center
Sinharay, Sandip
2004-01-01
There is an increasing use of Markov chain Monte Carlo (MCMC) algorithms for fitting statistical models in psychometrics, especially in situations where the traditional estimation techniques are very difficult to apply. One of the disadvantages of using an MCMC algorithm is that it is not straightforward to determine the convergence of the…
A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis
ERIC Educational Resources Information Center
Edwards, Michael C.
2010-01-01
Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show…
Avian life history profiles for use in the Markov chain nest productivity model (MCnest)
The Markov Chain nest productivity model, or MCnest, quantitatively estimates the effects of pesticides or other toxic chemicals on annual reproductive success of avian species (Bennett and Etterson 2013, Etterson and Bennett 2013). The Basic Version of MCnest was developed as a...
Markov Chain Monte Carlo Estimation of Item Parameters for the Generalized Graded Unfolding Model
ERIC Educational Resources Information Center
de la Torre, Jimmy; Stark, Stephen; Chernyshenko, Oleksandr S.
2006-01-01
The authors present a Markov Chain Monte Carlo (MCMC) parameter estimation procedure for the generalized graded unfolding model (GGUM) and compare it to the marginal maximum likelihood (MML) approach implemented in the GGUM2000 computer program, using simulated and real personality data. In the simulation study, test length, number of response…
ERIC Educational Resources Information Center
Kim, Jee-Seon; Bolt, Daniel M.
2007-01-01
The purpose of this ITEMS module is to provide an introduction to Markov chain Monte Carlo (MCMC) estimation for item response models. A brief description of Bayesian inference is followed by an overview of the various facets of MCMC algorithms, including discussion of prior specification, sampling procedures, and methods for evaluating chain…
Teaching Markov Chain Monte Carlo: Revealing the Basic Ideas behind the Algorithm
ERIC Educational Resources Information Center
Stewart, Wayne; Stewart, Sepideh
2014-01-01
For many scientists, researchers and students Markov chain Monte Carlo (MCMC) simulation is an important and necessary tool to perform Bayesian analyses. The simulation is often presented as a mathematical algorithm and then translated into an appropriate computer program. However, this can result in overlooking the fundamental and deeper…
Metastates in Mean-Field Models with Random External Fields Generated by Markov Chains
NASA Astrophysics Data System (ADS)
Formentin, M.; Külske, C.; Reichenbachs, A.
2012-01-01
We extend the construction by Külske and Iacobelli of metastates in finite-state mean-field models in independent disorder to situations where the local disorder terms are a sample of an external ergodic Markov chain in equilibrium. We show that for non-degenerate Markov chains, the structure of the theorems is analogous to the case of i.i.d. variables when the limiting weights in the metastate are expressed with the aid of a CLT for the occupation time measure of the chain. As a new phenomenon we also show in a Potts example that for a degenerate non-reversible chain this CLT approximation is not enough, and that the metastate can have less symmetry than the symmetry of the interaction and a Gaussian approximation of disorder fluctuations would suggest.
NASA Astrophysics Data System (ADS)
Kraaij, Richard
2016-07-01
We prove the large deviation principle (LDP) for the trajectory of a broad class of finite state mean-field interacting Markov jump processes via a general analytic approach based on viscosity solutions. Examples include generalized Ehrenfest models as well as Curie-Weiss spin flip dynamics with singular jump rates. The main step in the proof of the LDP, which is of independent interest, is the proof of the comparison principle for an associated collection of Hamilton-Jacobi equations. Additionally, we show that the LDP provides a general method to identify a Lyapunov function for the associated McKean-Vlasov equation.
Fitting optimum order of Markov chain models for daily rainfall occurrences in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Deni, Sayang Mohd; Jemain, Abdul Aziz; Ibrahim, Kamarulzaman
2009-06-01
The analysis of the daily rainfall occurrence behavior is becoming more important, particularly in water-related sectors. Many studies have identified a more comprehensive pattern of the daily rainfall behavior based on the Markov chain models. One of the aims in fitting the Markov chain models of various orders to the daily rainfall occurrence is to determine the optimum order. In this study, the optimum order of the Markov chain models for a 5-day sequence will be examined in each of the 18 rainfall stations in Peninsular Malaysia, which have been selected based on the availability of the data, using the Akaike’s (AIC) and Bayesian information criteria (BIC). The identification of the most appropriate order in describing the distribution of the wet (dry) spells for each of the rainfall stations is obtained using the Kolmogorov-Smirnov goodness-of-fit test. It is found that the optimum order varies according to the levels of threshold used (e.g., either 0.1 or 10.0 mm), the locations of the region and the types of monsoon seasons. At most stations, the Markov chain models of a higher order are found to be optimum for rainfall occurrence during the northeast monsoon season for both levels of threshold. However, it is generally found that regardless of the monsoon seasons, the first-order model is optimum for the northwestern and eastern regions of the peninsula when the level of thresholds of 10.0 mm is considered. The analysis indicates that the first order of the Markov chain model is found to be most appropriate for describing the distribution of wet spells, whereas the higher-order models are found to be adequate for the dry spells in most of the rainfall stations for both threshold levels and monsoon seasons.
First and second order semi-Markov chains for wind speed modeling
NASA Astrophysics Data System (ADS)
Prattico, F.; Petroni, F.; D'Amico, G.
2012-04-01
The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [3] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [1], by using two models, first
Application of Markov chain to the pattern of mitochondrial deoxyribonucleic acid mutations
NASA Astrophysics Data System (ADS)
Vantika, Sandy; Pasaribu, Udjianna S.
2014-03-01
This research explains how Markov chain used to model the pattern of deoxyribonucleic acid mutations in mitochondrial (mitochondrial DNA). First, sign test was used to see a pattern of nucleotide bases that will appear at one position after the position of mutated nucleotide base. Results obtained from the sign test showed that for most cases, there exist a pattern of mutation except in the mutation cases of adenine to cytosine, adenine to thymine, and cytosine to guanine. Markov chain analysis results on data of mutations that occur in mitochondrial DNA indicate that one and two positions after the position of mutated nucleotide bases tend to be occupied by particular nucleotide bases. From this analysis, it can be said that the adenine, cytosine, guanine and thymine will mutate if the nucelotide base at one and/or two positions after them is cytosine.
An 'adding' algorithm for the Markov chain formalism for radiation transfer
NASA Technical Reports Server (NTRS)
Esposito, L. W.
1979-01-01
An adding algorithm is presented, that extends the Markov chain method and considers a preceding calculation as a single state of a new Markov chain. This method takes advantage of the description of the radiation transport as a stochastic process. Successive application of this procedure makes calculation possible for any optical depth without increasing the size of the linear system used. It is determined that the time required for the algorithm is comparable to that for a doubling calculation for homogeneous atmospheres. For an inhomogeneous atmosphere the new method is considerably faster than the standard adding routine. It is concluded that the algorithm is efficient, accurate, and suitable for smaller computers in calculating the diffuse intensity scattered by an inhomogeneous planetary atmosphere.
Hey, Jody; Nielsen, Rasmus
2007-01-01
In 1988, Felsenstein described a framework for assessing the likelihood of a genetic data set in which all of the possible genealogical histories of the data are considered, each in proportion to their probability. Although not analytically solvable, several approaches, including Markov chain Monte Carlo methods, have been developed to find approximate solutions. Here, we describe an approach in which Markov chain Monte Carlo simulations are used to integrate over the space of genealogies, whereas other parameters are integrated out analytically. The result is an approximation to the full joint posterior density of the model parameters. For many purposes, this function can be treated as a likelihood, thereby permitting likelihood-based analyses, including likelihood ratio tests of nested models. Several examples, including an application to the divergence of chimpanzee subspecies, are provided. PMID:17301231
Hey, Jody; Nielsen, Rasmus
2007-02-20
In 1988, Felsenstein described a framework for assessing the likelihood of a genetic data set in which all of the possible genealogical histories of the data are considered, each in proportion to their probability. Although not analytically solvable, several approaches, including Markov chain Monte Carlo methods, have been developed to find approximate solutions. Here, we describe an approach in which Markov chain Monte Carlo simulations are used to integrate over the space of genealogies, whereas other parameters are integrated out analytically. The result is an approximation to the full joint posterior density of the model parameters. For many purposes, this function can be treated as a likelihood, thereby permitting likelihood-based analyses, including likelihood ratio tests of nested models. Several examples, including an application to the divergence of chimpanzee subspecies, are provided. PMID:17301231
A Markov Chain Model for evaluating the effectiveness of randomized surveillance procedures
Edmunds, T.A.
1994-01-01
A Markov Chain Model has been developed to evaluate the effectiveness of randomized surveillance procedures. The model is applicable for surveillance systems that monitor a collection of assets by randomly selecting and inspecting the assets. The model provides an estimate of the detection probability as a function of the amount of time that an adversary would require to steal or sabotage the asset. An interactive computer code has been written to perform the necessary computations.
Korostil, Igor A; Peters, Gareth W; Cornebise, Julien; Regan, David G
2013-05-20
A Bayesian statistical model and estimation methodology based on forward projection adaptive Markov chain Monte Carlo is developed in order to perform the calibration of a high-dimensional nonlinear system of ordinary differential equations representing an epidemic model for human papillomavirus types 6 and 11 (HPV-6, HPV-11). The model is compartmental and involves stratification by age, gender and sexual-activity group. Developing this model and a means to calibrate it efficiently is relevant because HPV is a very multi-typed and common sexually transmitted infection with more than 100 types currently known. The two types studied in this paper, types 6 and 11, are causing about 90% of anogenital warts. We extend the development of a sexual mixing matrix on the basis of a formulation first suggested by Garnett and Anderson, frequently used to model sexually transmitted infections. In particular, we consider a stochastic mixing matrix framework that allows us to jointly estimate unknown attributes and parameters of the mixing matrix along with the parameters involved in the calibration of the HPV epidemic model. This matrix describes the sexual interactions between members of the population under study and relies on several quantities that are a priori unknown. The Bayesian model developed allows one to estimate jointly the HPV-6 and HPV-11 epidemic model parameters as well as unknown sexual mixing matrix parameters related to assortativity. Finally, we explore the ability of an extension to the class of adaptive Markov chain Monte Carlo algorithms to incorporate a forward projection strategy for the ordinary differential equation state trajectories. Efficient exploration of the Bayesian posterior distribution developed for the ordinary differential equation parameters provides a challenge for any Markov chain sampling methodology, hence the interest in adaptive Markov chain methods. We conclude with simulation studies on synthetic and recent actual data. PMID
Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model.
Jääskinen, Väinö; Parkkinen, Ville; Cheng, Lu; Corander, Jukka
2014-02-01
In many biological applications it is necessary to cluster DNA sequences into groups that represent underlying organismal units, such as named species or genera. In metagenomics this grouping needs typically to be achieved on the basis of relatively short sequences which contain different types of errors, making the use of a statistical modeling approach desirable. Here we introduce a novel method for this purpose by developing a stochastic partition model that clusters Markov chains of a given order. The model is based on a Dirichlet process prior and we use conjugate priors for the Markov chain parameters which enables an analytical expression for comparing the marginal likelihoods of any two partitions. To find a good candidate for the posterior mode in the partition space, we use a hybrid computational approach which combines the EM-algorithm with a greedy search. This is demonstrated to be faster and yield highly accurate results compared to earlier suggested clustering methods for the metagenomics application. Our model is fairly generic and could also be used for clustering of other types of sequence data for which Markov chains provide a reasonable way to compress information, as illustrated by experiments on shotgun sequence type data from an Escherichia coli strain. PMID:24246289
State space orderings for Gauss-Seidel in Markov chains revisited
Dayar, T.
1996-12-31
Symmetric state space orderings of a Markov chain may be used to reduce the magnitude of the subdominant eigenvalue of the (Gauss-Seidel) iteration matrix. Orderings that maximize the elemental mass or the number of nonzero elements in the dominant term of the Gauss-Seidel splitting (that is, the term approximating the coefficient matrix) do not necessarily converge faster. An ordering of a Markov chain that satisfies Property-R is semi-convergent. On the other hand, there are semi-convergent symmetric state space orderings that do not satisfy Property-R. For a given ordering, a simple approach for checking Property-R is shown. An algorithm that orders the states of a Markov chain so as to increase the likelihood of satisfying Property-R is presented. The computational complexity of the ordering algorithm is less than that of a single Gauss-Seidel iteration (for sparse matrices). In doing all this, the aim is to gain an insight for faster converging orderings. Results from a variety of applications improve the confidence in the algorithm.
NASA Astrophysics Data System (ADS)
Bacher, C.; Filgueira, R.; Guyondet, T.
2016-01-01
Markov chain analysis was recently proposed to assess the time scales and preferential pathways into biological or physical networks by computing residence time, first passage time, rates of transfer between nodes and number of passages in a node. We propose to adapt an algorithm already published for simple systems to physical systems described with a high resolution hydrodynamic model. The method is applied to bays and estuaries on the Eastern Coast of Canada for their interest in shellfish aquaculture. Current velocities have been computed by using a 2 dimensional grid of elements and circulation patterns were summarized by averaging Eulerian flows between adjacent elements. Flows and volumes allow computing probabilities of transition between elements and to assess the average time needed by virtual particles to move from one element to another, the rate of transfer between two elements, and the average residence time of each system. We also combined transfer rates and times to assess the main pathways of virtual particles released in farmed areas and the potential influence of farmed areas on other areas. We suggest that Markov chain is complementary to other sets of ecological indicators proposed to analyse the interactions between farmed areas - e.g., depletion index, carrying capacity assessment. Markov chain has several advantages with respect to the estimation of connectivity between pair of sites. It makes possible to estimate transfer rates and times at once in a very quick and efficient way, without the need to perform long term simulations of particle or tracer concentration.
NASA Astrophysics Data System (ADS)
Blanchard, Ph.; Dawin, J. R.; Volchenkov, D.
2010-06-01
Markov chains provide us with a powerful tool for studying the structure of graphs and databases in details. We review the method of generalized inverses for Markov chains and apply it for the analysis of urban structures, evolution of languages, and musical compositions. We also discuss a generalization of Lévy flights over large complex networks and study the interplay between the nonlinearity of diffusion process and the topological structure of the network.
Chen, C; Lin, C-H; Long, Z; Chen, Q
2014-02-01
To quickly obtain information about airborne infectious disease transmission in enclosed environments is critical in reducing the infection risk to the occupants. This study developed a combined computational fluid dynamics (CFD) and Markov chain method for quickly predicting transient particle transport in enclosed environments. The method first calculated a transition probability matrix using CFD simulations. Next, the Markov chain technique was applied to calculate the transient particle concentration distributions. This investigation used three cases, particle transport in an isothermal clean room, an office with an underfloor air distribution system, and the first-class cabin of an MD-82 airliner, to validate the combined CFD and Markov chain method. The general trends of the particle concentrations vs. time predicted by the Markov chain method agreed with the CFD simulations for these cases. The proposed Markov chain method can provide faster-than-real-time information about particle transport in enclosed environments. Furthermore, for a fixed airflow field, when the source location is changed, the Markov chain method can be used to avoid recalculation of the particle transport equation and thus reduce computing costs. PMID:23789964
Exact Likelihood-free Markov Chain Monte Carlo for Elliptically Contoured Distributions
Marjoram, Paul
2015-01-01
Recent results in Markov chain Monte Carlo (MCMC) show that a chain based on an unbiased estimator of the likelihood can have a stationary distribution identical to that of a chain based on exact likelihood calculations. In this paper we develop such an estimator for elliptically contoured distributions, a large family of distributions that includes and generalizes the multivariate normal. We then show how this estimator, combined with pseudorandom realizations of an elliptically contoured distribution, can be used to run MCMC in a way that replicates the stationary distribution of a likelihood based chain, but does not require explicit likelihood calculations. Because many elliptically contoured distributions do not have closed form densities, our simulation based approach enables exact MCMC based inference in a range of cases where previously it was impossible. PMID:26167984
Animal vocal sequences: not the Markov chains we thought they were.
Kershenbaum, Arik; Bowles, Ann E; Freeberg, Todd M; Jin, Dezhe Z; Lameira, Adriano R; Bohn, Kirsten
2014-10-01
Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the 'renewal process' (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins. PMID:25143037
Animal vocal sequences: not the Markov chains we thought they were
Kershenbaum, Arik; Bowles, Ann E.; Freeberg, Todd M.; Jin, Dezhe Z.; Lameira, Adriano R.; Bohn, Kirsten
2014-01-01
Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the ‘renewal process’ (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins. PMID:25143037
A Markov Chain Analysis of Fish Movements to Determine Entrainment Zones
Johnson, Gary E.; Hedgepeth, J; Skalski, John R.; Giorgi, Albert E.
2004-10-01
Fish can become entrained at water withdrawal locations such as fish bypasses or cooling water intakes. Accordingly, the size of a fish entrainment zone (FEZ) is often of interest to fisheries managers and facility operators. This study developed a new technique to map the FEZ, defined here as the region immediately upstream of a portal where the probability of fish movement toward the portal is greater than 90%. To map the FEZ, we applied a Markov chain analysis to fish movement data collected with an active tracking sonar. This device locks onto and follows a target, recording positions through a set of volumetric cells comprising the sampled volume. The probability of a fish moving from one cell to another was calculated from fish position data, which was used to populate a Markov transition matrix. We developed and applied the technique using data on salmon smolts migrating near the ice/trash sluiceway at The Dalles Dam on the Columbia River. The FEZ of the sluiceway entrance in 2000 as determined with this procedure was approximately 5 m across and extended 6-8 m out from the face of the dam in the surface layer 2-3 m deep. In conclusion, using a Markov chain analysis of fish track data we were able to describe and quantify the FEZ of the sluiceway at The Dalles Dam. This technique for FEZ mapping is applicable to other bioengineering efforts aimed at protecting fish populations affected by water withdrawals.
Ancestry inference in complex admixtures via variable-length Markov chain linkage models.
Rodriguez, Jesse M; Bercovici, Sivan; Elmore, Megan; Batzoglou, Serafim
2013-03-01
Inferring the ancestral origin of chromosomal segments in admixed individuals is key for genetic applications, ranging from analyzing population demographics and history, to mapping disease genes. Previous methods addressed ancestry inference by using either weak models of linkage disequilibrium, or large models that make explicit use of ancestral haplotypes. In this paper we introduce ALLOY, an efficient method that incorporates generalized, but highly expressive, linkage disequilibrium models. ALLOY applies a factorial hidden Markov model to capture the parallel process producing the maternal and paternal admixed haplotypes, and models the background linkage disequilibrium in the ancestral populations via an inhomogeneous variable-length Markov chain. We test ALLOY in a broad range of scenarios ranging from recent to ancient admixtures with up to four ancestral populations. We show that ALLOY outperforms the previous state of the art, and is robust to uncertainties in model parameters. PMID:23421795
Ancestry Inference in Complex Admixtures via Variable-length Markov Chain Linkage Models
Bercovici, Sivan; Elmore, Megan; Batzoglou, Serafim
2013-01-01
Abstract Inferring the ancestral origin of chromosomal segments in admixed individuals is key for genetic applications, ranging from analyzing population demographics and history, to mapping disease genes. Previous methods addressed ancestry inference by using either weak models of linkage disequilibrium, or large models that make explicit use of ancestral haplotypes. In this paper we introduce ALLOY, an efficient method that incorporates generalized, but highly expressive, linkage disequilibrium models. ALLOY applies a factorial hidden Markov model to capture the parallel process producing the maternal and paternal admixed haplotypes, and models the background linkage disequilibrium in the ancestral populations via an inhomogeneous variable-length Markov chain. We test ALLOY in a broad range of scenarios ranging from recent to ancient admixtures with up to four ancestral populations. We show that ALLOY outperforms the previous state of the art, and is robust to uncertainties in model parameters. PMID:23421795
The optimum order of a Markov chain model for daily rainfall in Nigeria
NASA Astrophysics Data System (ADS)
Jimoh, O. D.; Webster, P.
1996-11-01
Markov type models are often used to describe the occurrence of daily rainfall. Although models of Order 1 have been successfully employed, there remains uncertainty concerning the optimum order for such models. This paper is concerned with estimation of the optimum order of Markov chains and, in particular, the use of objective criteria of the Akaike and Bayesian Information Criteria (AIC and BIC, respectively). Using daily rainfall series for five stations in Nigeria, it has been found that the AIC and BIC estimates vary with month as well as the value of the rainfall threshold used to define a wet day. There is no apparent system to this variation, although AIC estimates are consistently greater than or equal to BIC estimates, with values of the latter limited to zero or unity. The optimum order is also investigated through generation of synthetic sequences of wet and dry days using the transition matrices of zero-, first- and second-order Markov chains. It was found that the first-order model is superior to the zero-order model in representing the characteristics of the historical sequence as judged using frequency duration curves. There was no discernible difference between the model performance for first- and second-order models. There was no seasonal varation in the model performance, which contrasts with the optimum models identified using AIC and BIC estimates. It is concluded that caution is needed with the use of objective criteria for determining the optimum order of the Markov model and that the use of frequency duration curves can provide a robust alternative method of model identification. Comments are also made on the importance of record length and non-stationarity for model identification
Zhang, Lixian; Zhu, Yanzheng; Zheng, Wei Xing
2015-10-01
In this paper, the problem of energy-to-peak state estimation for a class of discrete-time Markov jump recurrent neural networks (RNNs) with randomly occurring nonlinearities (RONs) and time-varying delays is investigated. A practical phenomenon of nonsynchronous jumps between RNNs modes and desired mode-dependent filters is considered, and a nonstationary mode transition among the filters is used to model the nonsynchronous jumps to different degrees that are also mode dependent. The RONs are used to model a class of sector-like nonlinearities that occur in a probabilistic way according to a Bernoulli sequence. The time-varying delays are supposed to be mode dependent and unknown, but with known lower and upper bounds a priori. Sufficient conditions on the existence of the nonsynchronous filters are obtained such that the filtering error system is stochastically stable and achieves a prescribed energy-to-peak performance index. Further to the recent study on the class of nonsynchronous estimation problem, a monotonicity is observed in obtaining filtering performance index, while changing the degree of nonsynchronous jumps. A numerical example is presented to verify the theoretical findings. PMID:25576580
Vrugt, Jasper A; Hyman, James M; Robinson, Bruce A; Higdon, Dave; Ter Braak, Cajo J F; Diks, Cees G H
2008-01-01
Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. Here we show that significant improvements to the efficiency of MCMC simulation can be made by using a self-adaptive Differential Evolution learning strategy within a population-based evolutionary framework. This scheme, entitled DiffeRential Evolution Adaptive Metropolis or DREAM, runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and orientation of the proposal distribution in randomized subspaces during the search. Ergodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally superior to other adaptive MCMC sampling approaches. The DREAM scheme significantly enhances the applicability of MCMC simulation to complex, multi-modal search problems.
Markov chain Monte Carlo based analysis of post-translationally modified VDAC gating kinetics
Tewari, Shivendra G.; Zhou, Yifan; Otto, Bradley J.; Dash, Ranjan K.; Kwok, Wai-Meng; Beard, Daniel A.
2015-01-01
The voltage-dependent anion channel (VDAC) is the main conduit for permeation of solutes (including nucleotides and metabolites) of up to 5 kDa across the mitochondrial outer membrane (MOM). Recent studies suggest that VDAC activity is regulated via post-translational modifications (PTMs). Yet the nature and effect of these modifications is not understood. Herein, single channel currents of wild-type, nitrosated, and phosphorylated VDAC are analyzed using a generalized continuous-time Markov chain Monte Carlo (MCMC) method. This developed method describes three distinct conducting states (open, half-open, and closed) of VDAC activity. Lipid bilayer experiments are also performed to record single VDAC activity under un-phosphorylated and phosphorylated conditions, and are analyzed using the developed stochastic search method. Experimental data show significant alteration in VDAC gating kinetics and conductance as a result of PTMs. The effect of PTMs on VDAC kinetics is captured in the parameters associated with the identified Markov model. Stationary distributions of the Markov model suggest that nitrosation of VDAC not only decreased its conductance but also significantly locked VDAC in a closed state. On the other hand, stationary distributions of the model associated with un-phosphorylated and phosphorylated VDAC suggest a reversal in channel conformation from relatively closed state to an open state. Model analyses of the nitrosated data suggest that faster reaction of nitric oxide with Cys-127 thiol group might be responsible for the biphasic effect of nitric oxide on basal VDAC conductance. PMID:25628567
Green, P. L.; Worden, K.
2015-01-01
In this paper, the authors outline the general principles behind an approach to Bayesian system identification and highlight the benefits of adopting a Bayesian framework when attempting to identify models of nonlinear dynamical systems in the presence of uncertainty. It is then described how, through a summary of some key algorithms, many of the potential difficulties associated with a Bayesian approach can be overcome through the use of Markov chain Monte Carlo (MCMC) methods. The paper concludes with a case study, where an MCMC algorithm is used to facilitate the Bayesian system identification of a nonlinear dynamical system from experimentally observed acceleration time histories. PMID:26303916
Markov chain Monte Carlo methods for statistical analysis of RF photonic devices.
Piels, Molly; Zibar, Darko
2016-02-01
The microwave reflection coefficient is commonly used to characterize the impedance of high-speed optoelectronic devices. Error and uncertainty in equivalent circuit parameters measured using this data are systematically evaluated. The commonly used nonlinear least-squares method for estimating uncertainty is shown to give unsatisfactory and incorrect results due to the nonlinear relationship between the circuit parameters and the measured data. Markov chain Monte Carlo methods are shown to provide superior results, both for individual devices and for assessing within-die variation. PMID:26906783
D. L. Kelly
2007-06-01
Markov chain Monte Carlo (MCMC) techniques represent an extremely flexible and powerful approach to Bayesian modeling. This work illustrates the application of such techniques to time-dependent reliability of components with repair. The WinBUGS package is used to illustrate, via examples, how Bayesian techniques can be used for parametric statistical modeling of time-dependent component reliability. Additionally, the crucial, but often overlooked subject of model validation is discussed, and summary statistics for judging the model’s ability to replicate the observed data are developed, based on the posterior predictive distribution for the parameters of interest.
Global characterization of geophysical data using lagrangean data and Markov-chain statistics.
NASA Astrophysics Data System (ADS)
Pares-Sierra, Alejandro; Flores-Morales, Ana Laura
2015-04-01
A method for the global analysis of geophysical data is presented. Using short-period Lagrangean transports, calculated off-line from a numerical circulation ocean model (ROMS), a stochastic transition matrix is constructed. Iteration methods for this last, sparse, very-large matrix are used to solve standard Markov chain problem of time of arrival and destination. The method permits the identification of areas of influence, time of residence and connectivity between regions. Application for the Gulf of Mexico and the Eastern Tropical Pacific circulation is presented.
A multi-level solution algorithm for steady-state Markov chains
NASA Technical Reports Server (NTRS)
Horton, Graham; Leutenegger, Scott T.
1993-01-01
A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.
NASA Astrophysics Data System (ADS)
Alavirad, Hamzeh; Malekjani, Mohammad
2014-02-01
We constrain holographic dark energy (HDE) with time varying gravitational coupling constant in the framework of the modified Friedmann equations using cosmological data from type Ia supernovae, baryon acoustic oscillations, cosmic microwave background radiation and X-ray gas mass fraction. Applying a Markov Chain Monte Carlo (MCMC) simulation, we obtain the best fit values of the model and cosmological parameters within 1 σ confidence level (CL) in a flat universe as: , , and the HDE constant . Using the best fit values, the equation of state of the dark component at the present time w d0 at 1 σ CL can cross the phantom boundary w=-1.
A Markov chain technique for determining the acquisition behavior of a digital tracking loop
NASA Technical Reports Server (NTRS)
Chadwick, H. D.
1972-01-01
An iterative procedure is presented for determining the acquisition behavior of discrete or digital implementations of a tracking loop. The technique is based on the theory of Markov chains and provides the cumulative probability of acquisition in the loop as a function of time in the presence of noise and a given set of initial condition probabilities. A digital second-order tracking loop to be used in the Viking command receiver for continuous tracking of the command subcarrier phase was analyzed using this technique, and the results agree closely with experimental data.
NASA Astrophysics Data System (ADS)
Bao, J.; Ren, H.; Hou, Z.; Ray, J.; Swiler, L.; Huang, M.
2015-12-01
We developed a novel scalable multi-chain Markov chain Monte Carlo (MCMC) method for high-dimensional inverse problems. The method is scalable in terms of number of chains and processors, and is useful for Bayesian calibration of computationally expensive simulators typically used for scientific and engineering calculations. In this study, we demonstrate two applications of this method for hydraulic and geological inverse problems. The first one is monitoring soil moisture variations using tomographic ground penetrating radar (GPR) travel time data, where challenges exist in the inversion of GPR tomographic data for handling non-uniqueness and nonlinearity and high-dimensionality of unknowns. We integrated the multi-chain MCMC framework with the pilot point concept, a curved-ray GPR forward model, and a sequential Gaussian simulation (SGSIM) algorithm for estimating the dielectric permittivity at pilot point locations distributed within the tomogram, as well as its spatial correlation range, which are used to construct the whole field of dielectric permittivity using SGSIM. The second application is reservoir porosity and saturation estimation using the multi-chain MCMC approach to jointly invert marine seismic amplitude versus angle (AVA) and controlled-source electro-magnetic (CSEM) data for a layered reservoir model, where the unknowns to be estimated include the porosity and fluid saturation in each reservoir layer and the electrical conductivity of the overburden and bedrock. The computational efficiency, accuracy, and convergence behaviors of the inversion approach are systematically evaluated.
Effective degree Markov-chain approach for discrete-time epidemic processes on uncorrelated networks
NASA Astrophysics Data System (ADS)
Cai, Chao-Ran; Wu, Zhi-Xi; Guan, Jian-Yue
2014-11-01
Recently, Gómez et al. proposed a microscopic Markov-chain approach (MMCA) [S. Gómez, J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys. Rev. E 84, 036105 (2011), 10.1103/PhysRevE.84.036105] to the discrete-time susceptible-infected-susceptible (SIS) epidemic process and found that the epidemic prevalence obtained by this approach agrees well with that by simulations. However, we found that the approach cannot be straightforwardly extended to a susceptible-infected-recovered (SIR) epidemic process (due to its irreversible property), and the epidemic prevalences obtained by MMCA and Monte Carlo simulations do not match well when the infection probability is just slightly above the epidemic threshold. In this contribution we extend the effective degree Markov-chain approach, proposed for analyzing continuous-time epidemic processes [J. Lindquist, J. Ma, P. Driessche, and F. Willeboordse, J. Math. Biol. 62, 143 (2011), 10.1007/s00285-010-0331-2], to address discrete-time binary-state (SIS) or three-state (SIR) epidemic processes on uncorrelated complex networks. It is shown that the final epidemic size as well as the time series of infected individuals obtained from this approach agree very well with those by Monte Carlo simulations. Our results are robust to the change of different parameters, including the total population size, the infection probability, the recovery probability, the average degree, and the degree distribution of the underlying networks.
NASA Astrophysics Data System (ADS)
Durán, E.
2012-04-01
The interbeded sandstones, siltstones and shale layers within the stratigraphic units of the Oficina Formation were stochastically characterized. The units within the Oritupano field are modeled using the information from 12 wells and a post-stack 3-D seismic cube. The Markov Chain algorithm was successful at maintaining the proportion of lithotypes of the columns in the study area. Different transition probability matrixes are evaluated by changing the length of the sequences represented in the transition matrix and how this choice of length affects ciclicity and the genetic relations between lithotypes. The Gibbs algorithm, using small sequences as building blocks for modeling, kept the main stratigraphic succession according to the geology. Although the modeled stratigraphy depends strongly on initial conditions, the use of longer sequences in the substitution helps not to overweight the transition counts from one lithotype to the same in the main diagonal of the probability matrix of the Markov Chain in the Gibbs algorithm. A methodology based on the phase spectrum of the seismic trace for tying the modeled sequences with the seismic data is evaluated and discussed. The results point to the phase spectrum as an alternate way to cross-correlate synthetic seismograms with the seismic trace in favor of the well known amplitude correlation. Finally, a map of net sand over the study area is generated from the modeled columns and compared with previous stratigraphic and facies analysis at the levels of interest.
Markov chain modelling of reliability analysis and prediction under mixed mode loading
NASA Astrophysics Data System (ADS)
Singh, Salvinder; Abdullah, Shahrum; Nik Mohamed, Nik Abdullah; Mohd Noorani, Mohd Salmi
2015-03-01
The reliability assessment for an automobile crankshaft provides an important understanding in dealing with the design life of the component in order to eliminate or reduce the likelihood of failure and safety risks. The failures of the crankshafts are considered as a catastrophic failure that leads towards a severe failure of the engine block and its other connecting subcomponents. The reliability of an automotive crankshaft under mixed mode loading using the Markov Chain Model is studied. The Markov Chain is modelled by using a two-state condition to represent the bending and torsion loads that would occur on the crankshaft. The automotive crankshaft represents a good case study of a component under mixed mode loading due to the rotating bending and torsion stresses. An estimation of the Weibull shape parameter is used to obtain the probability density function, cumulative distribution function, hazard and reliability rate functions, the bathtub curve and the mean time to failure. The various properties of the shape parameter is used to model the failure characteristic through the bathtub curve is shown. Likewise, an understanding of the patterns posed by the hazard rate onto the component can be used to improve the design and increase the life cycle based on the reliability and dependability of the component. The proposed reliability assessment provides an accurate, efficient, fast and cost effective reliability analysis in contrast to costly and lengthy experimental techniques.
Predicting seasonal fate of phenanthrene in aquatic environment with a Markov chain.
Sun, Caiyun; Ma, Qiyun; Zhang, Jiquan; Zhou, Mo; Chen, Yanan
2016-08-01
Phenanthrene (Phe) with carcinogenicity is ubiquitous in the environment, especially in aquatic environment; its toxicity is greater. To help determine toxicity risk and remediation strategies, this study predicted seasonal fate of Phe in aquatic environment. Candidate mechanisms including biodegradation, sorption, desorption, photodegradation, hydrolysis and volatility were studied; the results for experiments under simulated conditions for normal, wet and dry seasons in the Yinma River Basin indicated that biodegradation in sediment, sorption, desorption, and volatility were important pathways for elimination of Phe from aquatic environment and showed seasonal variations. A microcosm which was used to mimic sediment/water system was set up to illustrate seasonal distribution and transport of Phe. A Markov chain was applied to predict seasonal fate of Phe in air/water/sediment environment, the predicted results were perfectly agreed with results of microcosm experiments. Predicted results with a Markov chain suggested that volatility and biodegradation in sediment were main elimination pathways, and contributions of elimination pathways showed seasonal variations; Phe was eliminated from water and sediment to negligible levels over around 250 h in August and over 1000 h in May; in November, Phe was eliminated from water to a negligible level while about 31 % of Phe amount still remained in sediment over 1000 h. PMID:27180837
Controlling influenza disease: Comparison between discrete time Markov chain and deterministic model
NASA Astrophysics Data System (ADS)
Novkaniza, F.; Ivana, Aldila, D.
2016-04-01
Mathematical model of respiratory diseases spread with Discrete Time Markov Chain (DTMC) and deterministic approach for constant total population size are analyzed and compared in this article. Intervention of medical treatment and use of medical mask included in to the model as a constant parameter to controlling influenza spreads. Equilibrium points and basic reproductive ratio as the endemic criteria and it level set depend on some variable are given analytically and numerically as a results from deterministic model analysis. Assuming total of human population is constant from deterministic model, number of infected people also analyzed with Discrete Time Markov Chain (DTMC) model. Since Δt → 0, we could assume that total number of infected people might change only from i to i + 1, i - 1, or i. Approximation probability of an outbreak with gambler's ruin problem will be presented. We find that no matter value of basic reproductive ℛ0, either its larger than one or smaller than one, number of infection will always tends to 0 for t → ∞. Some numerical simulation to compare between deterministic and DTMC approach is given to give a better interpretation and a better understanding about the models results.
Sampling graphs with a prescribed joint degree distribution using Markov Chains.
Pinar, Ali; Stanton, Isabelle
2010-10-01
One of the most influential results in network analysis is that many natural networks exhibit a power-law or log-normal degree distribution. This has inspired numerous generative models that match this property. However, more recent work has shown that while these generative models do have the right degree distribution, they are not good models for real life networks due to their differences on other important metrics like conductance. We believe this is, in part, because many of these real-world networks have very different joint degree distributions, i.e. the probability that a randomly selected edge will be between nodes of degree k and l. Assortativity is a sufficient statistic of the joint degree distribution, and it has been previously noted that social networks tend to be assortative, while biological and technological networks tend to be disassortative. We suggest that the joint degree distribution of graphs is an interesting avenue of study for further research into network structure. We provide a simple greedy algorithm for constructing simple graphs from a given joint degree distribution, and a Monte Carlo Markov Chain method for sampling them. We also show that the state space of simple graphs with a fixed degree distribution is connected via endpoint switches. We empirically evaluate the mixing time of this Markov Chain by using experiments based on the autocorrelation of each edge.
NASA Astrophysics Data System (ADS)
Adu, Nurlia; Indriati Retno, P.; Suharsono
2016-02-01
Monitoring of micro seismic activity in the geothermal field is useful to know the fracture controllers in the geothermal reservoir area. However, in determining the point of micro earthquake, hypocenters still contain inherent uncertainties due to several factors such as mismatches velocity model used by the actual subsurface conditions. For that reason, hypocenter relocation by Markov Chain method is used, to simulate the hypocenter point spatially based opportunities transition containing the principle of conditional probability. The purpose of this relocation is to improve the models of the hypocenter so that the interpretation of the subsurface structure is better. From the result of the relocation of using Markov Chain identified fault structures trending below the surface of the northeast-southwest (NE-SW) with approximately N38°E. This structure is suspected as the continuity of the structure in the surface. The depth of the hypocenter is located 758 m above mean sea level more than 800 m below mean sea level.
NASA Astrophysics Data System (ADS)
Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice
2016-04-01
We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and gamma-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of thirteen radio surveys as well as the MSP birth rate in the Galaxy and the number of MSPs detected by Fermi. We explore various high-energy emission geometries like the slot gap, outer gap, two pole caustic and pair starved polar cap models. The parameters associated with the birth distributions for the mass accretion rate, magnetic field, and period distributions are well constrained. With the set of four free parameters, we employ Markov Chain Monte Carlo simulations to explore the model parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and gamma-ray pulsar characteristics. We estimate the contribution of MSPs to the diffuse gamma-ray background with a special focus on the Galactic Center.We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).
Short-term droughts forecast using Markov chain model in Victoria, Australia
NASA Astrophysics Data System (ADS)
Rahmat, Siti Nazahiyah; Jayasuriya, Niranjali; Bhuiyan, Muhammed A.
2016-04-01
A comprehensive risk management strategy for dealing with drought should include both short-term and long-term planning. The objective of this paper is to present an early warning method to forecast drought using the Standardised Precipitation Index (SPI) and a non-homogeneous Markov chain model. A model such as this is useful for short-term planning. The developed method has been used to forecast droughts at a number of meteorological monitoring stations that have been regionalised into six (6) homogenous clusters with similar drought characteristics based on SPI. The non-homogeneous Markov chain model was used to estimate drought probabilities and drought predictions up to 3 months ahead. The drought severity classes defined using the SPI were computed at a 12-month time scale. The drought probabilities and the predictions were computed for six clusters that depict similar drought characteristics in Victoria, Australia. Overall, the drought severity class predicted was quite similar for all the clusters, with the non-drought class probabilities ranging from 49 to 57 %. For all clusters, the near normal class had a probability of occurrence varying from 27 to 38 %. For the more moderate and severe classes, the probabilities ranged from 2 to 13 % and 3 to 1 %, respectively. The developed model predicted drought situations 1 month ahead reasonably well. However, 2 and 3 months ahead predictions should be used with caution until the models are developed further.
Wang, Ying; Hu, Haiyan; Li, Xiaoman
2016-08-01
Metagenomics is a next-generation omics field currently impacting postgenomic life sciences and medicine. Binning metagenomic reads is essential for the understanding of microbial function, compositions, and interactions in given environments. Despite the existence of dozens of computational methods for metagenomic read binning, it is still very challenging to bin reads. This is especially true for reads from unknown species, from species with similar abundance, and/or from low-abundance species in environmental samples. In this study, we developed a novel taxonomy-dependent and alignment-free approach called MBMC (Metagenomic Binning by Markov Chains). Different from all existing methods, MBMC bins reads by measuring the similarity of reads to the trained Markov chains for different taxa instead of directly comparing reads with known genomic sequences. By testing on more than 24 simulated and experimental datasets with species of similar abundance, species of low abundance, and/or unknown species, we report here that MBMC reliably grouped reads from different species into separate bins. Compared with four existing approaches, we demonstrated that the performance of MBMC was comparable with existing approaches when binning reads from sequenced species, and superior to existing approaches when binning reads from unknown species. MBMC is a pivotal tool for binning metagenomic reads in the current era of Big Data and postgenomic integrative biology. The MBMC software can be freely downloaded at http://hulab.ucf.edu/research/projects/metagenomics/MBMC.html . PMID:27447888
Quantum Markov chains, sufficiency of quantum channels, and Rényi information measures
NASA Astrophysics Data System (ADS)
Datta, Nilanjana; Wilde, Mark M.
2015-12-01
A short quantum Markov chain is a tripartite state {ρ }{ABC} such that system A can be recovered perfectly by acting on system C of the reduced state {ρ }{BC}. Such states have conditional mutual information I(A;B| C) equal to zero and are the only states with this property. A quantum channel {N} is sufficient for two states ρ and σ if there exists a recovery channel using which one can perfectly recover ρ from {N}(ρ ) and σ from {N}(σ ). The relative entropy difference D(ρ \\parallel σ )-D({N}(ρ )\\parallel {N}(σ )) is equal to zero if and only if {N} is sufficient for ρ and σ. In this paper, we show that these properties extend to Rényi generalizations of these information measures which were proposed in (Berta et al 2015 J. Math. Phys. 56 022205; Seshadreesan et al 2015 J. Phys. A: Math. Theor. 48 395303), thus providing an alternate characterization of short quantum Markov chains and sufficient quantum channels. These results give further support to these quantities as being legitimate Rényi generalizations of the conditional mutual information and the relative entropy difference. Along the way, we solve some open questions of Ruskai and Zhang, regarding the trace of particular matrices that arise in the study of monotonicity of relative entropy under quantum operations and strong subadditivity of the von Neumann entropy.
A new method for RGB to CIELAB color space transformation based on Markov chain Monte Carlo
NASA Astrophysics Data System (ADS)
Chen, Yajun; Liu, Ding; Liang, Junli
2013-10-01
During printing quality inspection, the inspection of color error is an important content. However, the RGB color space is device-dependent, usually RGB color captured from CCD camera must be transformed into CIELAB color space, which is perceptually uniform and device-independent. To cope with the problem, a Markov chain Monte Carlo (MCMC) based algorithms for the RGB to the CIELAB color space transformation is proposed in this paper. Firstly, the modeling color targets and testing color targets is established, respectively used in modeling and performance testing process. Secondly, we derive a Bayesian model for estimation the coefficients of a polynomial, which can be used to describe the relation between RGB and CIELAB color space. Thirdly, a Markov chain is set up base on Gibbs sampling algorithm (one of the MCMC algorithm) to estimate the coefficients of polynomial. Finally, the color difference of testing color targets is computed for evaluating the performance of the proposed method. The experimental results showed that the nonlinear polynomial regression based on MCMC algorithm is effective, whose performance is similar to the least square approach and can accurately model the RGB to the CIELAB color space conversion and guarantee the color error evaluation for printing quality inspection system.
NASA Astrophysics Data System (ADS)
Cavers, M. S.; Vasudevan, K.
2015-10-01
Directed graph representation of a Markov chain model to study global earthquake sequencing leads to a time series of state-to-state transition probabilities that includes the spatio-temporally linked recurrent events in the record-breaking sense. A state refers to a configuration comprised of zones with either the occurrence or non-occurrence of an earthquake in each zone in a pre-determined time interval. Since the time series is derived from non-linear and non-stationary earthquake sequencing, we use known analysis methods to glean new information. We apply decomposition procedures such as ensemble empirical mode decomposition (EEMD) to study the state-to-state fluctuations in each of the intrinsic mode functions. We subject the intrinsic mode functions, derived from the time series using the EEMD, to a detailed analysis to draw information content of the time series. Also, we investigate the influence of random noise on the data-driven state-to-state transition probabilities. We consider a second aspect of earthquake sequencing that is closely tied to its time-correlative behaviour. Here, we extend the Fano factor and Allan factor analysis to the time series of state-to-state transition frequencies of a Markov chain. Our results support not only the usefulness of the intrinsic mode functions in understanding the time series but also the presence of power-law behaviour exemplified by the Fano factor and the Allan factor.
Markov chains at the interface of combinatorics, computing, and statistical physics
NASA Astrophysics Data System (ADS)
Streib, Amanda Pascoe
The fields of statistical physics, discrete probability, combinatorics, and theoretical computer science have converged around efforts to understand random structures and algorithms. Recent activity in the interface of these fields has enabled tremendous breakthroughs in each domain and has supplied a new set of techniques for researchers approaching related problems. This thesis makes progress on several problems in this interface whose solutions all build on insights from multiple disciplinary perspectives. First, we consider a dynamic growth process arising in the context of DNA-based self-assembly. The assembly process can be modeled as a simple Markov chain. We prove that the chain is rapidly mixing for large enough bias in regions of Zd. The proof uses a geometric distance function and a variant of path coupling in order to handle distances that can be exponentially large. We also provide the first results in the case of fluctuating bias, where the bias can vary depending on the location of the tile, which arises in the nanotechnology application. Moreover, we use intuition from statistical physics to construct a choice of the biases for which the Markov chain Mmon requires exponential time to converge. Second, we consider a related problem regarding the convergence rate of biased permutations that arises in the context of self-organizing lists. The Markov chain Mnn in this case is a nearest-neighbor chain that allows adjacent transpositions, and the rate of these exchanges is governed by various input parameters. It was conjectured that the chain is always rapidly mixing when the inversion probabilities are positively biased, i.e., we put nearest neighbor pair x < y in order with bias 1/2 ≤ pxy ≤ 1 and out of order with bias 1 - pxy. The Markov chain Mmon was known to have connections to a simplified version of this biased card-shuffling. We provide new connections between Mnn and Mmon by using simple combinatorial bijections, and we prove that Mnn is
Adaptive relaxation for the steady-state analysis of Markov chains
NASA Technical Reports Server (NTRS)
Horton, Graham
1994-01-01
We consider a variant of the well-known Gauss-Seidel method for the solution of Markov chains in steady state. Whereas the standard algorithm visits each state exactly once per iteration in a predetermined order, the alternative approach uses a dynamic strategy. A set of states to be visited is maintained which can grow and shrink as the computation progresses. In this manner, we hope to concentrate the computational work in those areas of the chain in which maximum improvement in the solution can be achieved. We consider the adaptive approach both as a solver in its own right and as a relaxation method within the multi-level algorithm. Experimental results show significant computational savings in both cases.
Entropy and long-range memory in random symbolic additive Markov chains
NASA Astrophysics Data System (ADS)
Melnik, S. S.; Usatenko, O. V.
2016-06-01
The goal of this paper is to develop an estimate for the entropy of random symbolic sequences with elements belonging to a finite alphabet. As a plausible model, we use the high-order additive stationary ergodic Markov chain with long-range memory. Supposing that the correlations between random elements of the chain are weak, we express the conditional entropy of the sequence by means of the symbolic pair correlation function. We also examine an algorithm for estimating the conditional entropy of finite symbolic sequences. We show that the entropy contains two contributions, i.e., the correlation and the fluctuation. The obtained analytical results are used for numerical evaluation of the entropy of written English texts and DNA nucleotide sequences. The developed theory opens the way for constructing a more consistent and sophisticated approach to describe the systems with strong short-range and weak long-range memory.
Entropy and long-range memory in random symbolic additive Markov chains.
Melnik, S S; Usatenko, O V
2016-06-01
The goal of this paper is to develop an estimate for the entropy of random symbolic sequences with elements belonging to a finite alphabet. As a plausible model, we use the high-order additive stationary ergodic Markov chain with long-range memory. Supposing that the correlations between random elements of the chain are weak, we express the conditional entropy of the sequence by means of the symbolic pair correlation function. We also examine an algorithm for estimating the conditional entropy of finite symbolic sequences. We show that the entropy contains two contributions, i.e., the correlation and the fluctuation. The obtained analytical results are used for numerical evaluation of the entropy of written English texts and DNA nucleotide sequences. The developed theory opens the way for constructing a more consistent and sophisticated approach to describe the systems with strong short-range and weak long-range memory. PMID:27415245
Fisher information and asymptotic normality in system identification for quantum Markov chains
Guta, Madalin
2011-06-15
This paper deals with the problem of estimating the coupling constant {theta} of a mixing quantum Markov chain. For a repeated measurement on the chain's output we show that the outcomes' time average has an asymptotically normal (Gaussian) distribution, and we give the explicit expressions of its mean and variance. In particular, we obtain a simple estimator of {theta} whose classical Fisher information can be optimized over different choices of measured observables. We then show that the quantum state of the output together with the system is itself asymptotically Gaussian and compute its quantum Fisher information, which sets an absolute bound to the estimation error. The classical and quantum Fisher information are compared in a simple example. In the vicinity of {theta}=0 we find that the quantum Fisher information has a quadratic rather than linear scaling in output size, and asymptotically the Fisher information is localized in the system, while the output is independent of the parameter.
NASA Technical Reports Server (NTRS)
Leutenegger, Scott T.; Horton, Graham
1994-01-01
Recently the Multi-Level algorithm was introduced as a general purpose solver for the solution of steady state Markov chains. In this paper, we consider the performance of the Multi-Level algorithm for solving Nearly Completely Decomposable (NCD) Markov chains, for which special-purpose iteractive aggregation/disaggregation algorithms such as the Koury-McAllister-Stewart (KMS) method have been developed that can exploit the decomposability of the the Markov chain. We present experimental results indicating that the general-purpose Multi-Level algorithm is competitive, and can be significantly faster than the special-purpose KMS algorithm when Gauss-Seidel and Gaussian Elimination are used for solving the individual blocks.
NASA Astrophysics Data System (ADS)
Xu, Zuwei; Zhao, Haibo; Zheng, Chuguang
2015-01-01
This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance-rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are
Xu, Zuwei; Zhao, Haibo Zheng, Chuguang
2015-01-15
This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are
NASA Astrophysics Data System (ADS)
Tsai, Christina; Wu, Nai-Kuang
2015-04-01
In this study, transport processes of uniform size sediment particles under steady and uniform flow are described by the multi-state discrete-time Markov chain. The multi-state discrete-time Markov chain is employed to estimate the suspended sediment concentration distribution versus water depth for various steady and uniform flow conditions. Model results are validated against available measurement data and the Rouse profile. Moreover, the multi-state discrete-time Markov chain can be used to quantify the average time spent for the flow to reach the dynamic equilibrium of particle deposition and entrainment processes. In the first part of this study, suspended sediment concentration under three different flow conditions are discussed. As the Rouse number decreases, the difference between the suspended sediment concentration estimated by the Markov chain model and the Rouse profile becomes more significant, and such discrepancy can be observed at a larger relative height from the bed. It can be attributed to the fact that the use of the terminal settling velocity in the transport process can lead to underestimation of the model residence probability and overestimation of the deposition probability. In the second part, laboratory experiments are used to validate the proposed multi-state discrete-time Markov chain model. It is observed that it would take more time for the sediment concentration to reach a dynamic equilibrium as the Rouse number decreases. In addition, the flow depth is found to be a contributing factor that impacts the time spent to reach the concentration dynamic equilibrium. It is recognized that the performance of the proposed multi-state discrete-time Markov chain model relies significantly on the knowledge of the vertical distribution of the turbulence intensity.
NASA Astrophysics Data System (ADS)
Li, Xuesong; Northrop, William F.
2016-04-01
This paper describes a quantitative approach to approximate multiple scattering through an isotropic turbid slab based on Markov Chain theorem. There is an increasing need to utilize multiple scattering for optical diagnostic purposes; however, existing methods are either inaccurate or computationally expensive. Here, we develop a novel Markov Chain approximation approach to solve multiple scattering angular distribution (AD) that can accurately calculate AD while significantly reducing computational cost compared to Monte Carlo simulation. We expect this work to stimulate ongoing multiple scattering research and deterministic reconstruction algorithm development with AD measurements.
Unsupervised SAR images change detection with hidden Markov chains on a sliding window
NASA Astrophysics Data System (ADS)
Bouyahia, Zied; Benyoussef, Lamia; Derrode, Stéphane
2007-10-01
This work deals with unsupervised change detection in bi-date Synthetic Aperture Radar (SAR) images. Whatever the indicator of change used, e.g. log-ratio or Kullback-Leibler divergence, we have observed poor quality change maps for some events when using the Hidden Markov Chain (HMC) model we focus on in this work. The main reason comes from the stationary assumption involved in this model - and in most Markovian models such as Hidden Markov Random Fields-, which can not be justified in most observed scenes: changed areas are not necessarily stationary in the image. Besides the few non stationary Markov models proposed in the literature, the aim of this paper is to describe a pragmatic solution to tackle stationarity by using a sliding window strategy. In this algorithm, the criterion image is scanned pixel by pixel, and a classical HMC model is applied only on neighboring pixels. By moving the window through the image, the process is able to produce a change map which can better exhibit non stationary changes than the classical HMC applied directly on the whole criterion image. Special care is devoted to the estimation of the number of classes in each window, which can vary from one (no change) to three (positive change, negative change and no change) by using the corrected Akaike Information Criterion (AICc) suited to small samples. The quality assessment of the proposed approach is achieved with speckle-simulated images in which simulated changes is introduced. The windowed strategy is also evaluated with a pair of RADARSAT images bracketing the Nyiragongo volcano eruption event in January 2002. The available ground truth confirms the effectiveness of the proposed approach compared to a classical HMC-based strategy.
Zhang, Lixian; Ning, Zepeng; Shi, Peng
2015-11-01
This paper is concerned with H∞ control problem for a class of discrete-time Takagi-Sugeno fuzzy Markov jump systems with time-varying delays under unreliable communication links. It is assumed that the data transmission between the plant and the controller are subject to randomly occurred packet dropouts satisfying Bernoulli distribution and the dropout rate is uncertain. Based on a fuzzy-basis-dependent and mode-dependent Lyapunov function, the existence conditions of the desired H∞ state-feedback controllers are derived by employing the scaled small gain theorem such that the closed-loop system is stochastically stable and achieves a guaranteed H∞ performance. The gains of the controllers are constructed by solving a set of linear matrix inequalities. Finally, a practical example of robot arm is provided to illustrate the performance of the proposed approach. PMID:26470060
Modeling and computing of stock index forecasting based on neural network and Markov chain.
Dai, Yonghui; Han, Dongmei; Dai, Weihui
2014-01-01
The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market. PMID:24782659
A Markov chain analysis of fish movements to determine entrainment zones
Johnson, Gary E.; Hedgepeth, J.; Skalski, John R.; Giorgi, Albert E.
2004-06-01
The extent of the biological zone of influence (BZI) of a water withdrawal port, such as a cooling water intake or a smolt bypass, directly reflects its local effect on fish. This study produced a new technique to determine the BZI, defined as the region immediately upstream of a portal where the probability of fish movement toward the portal is greater than 90%. We developed and applied the technique at The Dalles Dam on the Columbia River, where the ice/trash sluiceway functions as a surface flow smolt bypass. To map the BZI, we applied a Markov-Chain analysis to smolt movement data collected with an active fish tracking sonar system. Probabilities of fish movement from cell to cell in the sample volume, calculated from tracked fish data, formed a Markov transition matrix. Multiplying this matrix by itself many times with absorption at the boundaries produced estimates of probability of passage out each side of the sample volume from the cells within. The BZI of a sluiceway entrance at The Dalles Dam was approximately 5 m across and extended 6-8 m out from the face of the dam in the surface layer 2-3 m deep. BZI mapping is applicable to many bioengineering efforts to protect fish populations.
Pasyanos, M E; Franz, G A; Ramirez, A L
2004-08-30
In an effort to build seismic models that are most consistent with multiple data sets, we have applied a new probabilistic inverse technique. This method uses a Markov Chain Monte Carlo (MCMC) algorithm to sample models from a prior distribution and test them against multiple data types to generate a posterior distribution. While computationally expensive, this approach has several advantages over a single deterministic model, notably the reconciliation of different data types that constrain the model, the proper handling of uncertainties, and the ability to include prior information. We also benefit from the advantage of forward modeling rather than inverting the data. Here, we use this method to determine the crust and upper mantle structure of the Yellow Sea and Korean Peninsula (YSKP) region. We discuss the data sets, parameterization and starting model, outline the technique and its implementation, observe the behavior of the inversion, and demonstrate some of the advantages of this approach.
Study of behavior and determination of customer lifetime value(CLV) using Markov chain model
Permana, Dony; Indratno, Sapto Wahyu; Pasaribu, Udjianna S.
2014-03-24
Customer Lifetime Value or CLV is a restriction on interactive marketing to help a company in arranging financial for the marketing of new customer acquisition and customer retention. Additionally CLV can be able to segment customers for financial arrangements. Stochastic models for the fairly new CLV used a Markov chain. In this model customer retention probability and new customer acquisition probability play an important role. This model is originally introduced by Pfeifer and Carraway in 2000 [1]. They introduced several CLV models, one of them only involves customer and former customer. In this paper we expand the model by adding the assumption of the transition from former customer to customer. In the proposed model, the CLV value is higher than the CLV value obtained by Pfeifer and Caraway model. But our model still requires a longer convergence time.
A methodology for stochastic analysis of share prices as Markov chains with finite states.
Mettle, Felix Okoe; Quaye, Enoch Nii Boi; Laryea, Ravenhill Adjetey
2014-01-01
Price volatilities make stock investments risky, leaving investors in critical position when uncertain decision is made. To improve investor evaluation confidence on exchange markets, while not using time series methodology, we specify equity price change as a stochastic process assumed to possess Markov dependency with respective state transition probabilities matrices following the identified state pace (i.e. decrease, stable or increase). We established that identified states communicate, and that the chains are aperiodic and ergodic thus possessing limiting distributions. We developed a methodology for determining expected mean return time for stock price increases and also establish criteria for improving investment decision based on highest transition probabilities, lowest mean return time and highest limiting distributions. We further developed an R algorithm for running the methodology introduced. The established methodology is applied to selected equities from Ghana Stock Exchange weekly trading data. PMID:25520904
NASA Astrophysics Data System (ADS)
King, J. A.; Mortlock, D. J.; Webb, J. K.; Murphy, M. T.
Recent attempts to constrain cosmological variation in the fine structure constant, alpha , using quasar absorption lines have yielded two statistical samples which initially appear to be inconsistent. One of these samples was subsequently demonstrated to not pass consistency tests; it appears that the optimisation algorithm used to fit the model to the spectra failed. Nevertheless, the results of the other hinge on the robustness of the spectral fitting program VPFIT, which has been tested through simulation but not through direct exploration of the likelihood function. We present the application of Markov Chain Monte Carlo (MCMC) methods to this problem, and demonstrate that VPFIT produces similar values and uncertainties for Delta alpha /alpha , the fractional change in the fine structure constant, as our MCMC algorithm, and thus that VPFIT is reliable.
NASA Astrophysics Data System (ADS)
King, Julian; Mortlock, Daniel; Webb, John; Murphy, Michael
2010-11-01
Recent attempts to constrain cosmological variation in the fine structure constant, α, using quasar absorption lines have yielded two statistical samples which initially appear to be inconsistent. One of these samples was subsequently demonstrated to not pass consistency tests; it appears that the optimisation algorithm used to fit the model to the spectra failed. Nevertheless, the results of the other hinge on the robustness of the spectral fitting program VPFIT, which has been tested through simulation but not through direct exploration of the likelihood function. We present the application of Markov Chain Monte Carlo (MCMC) methods to this problem, and demonstrate that VPFIT produces similar values and uncertainties for Δα/α, the fractional change in the fine structure constant, as our MCMC algorithm, and thus that VPFIT is reliable.
Markov chain Mote Carlo solution of BK equation through Newton-Kantorovich method
NASA Astrophysics Data System (ADS)
BoŻek, Krzysztof; Kutak, Krzysztof; Placzek, Wieslaw
2013-07-01
We propose a new method for Monte Carlo solution of non-linear integral equations by combining the Newton-Kantorovich method for solving non-linear equations with the Markov Chain Monte Carlo (MCMC) method for solving linear equations. The Newton-Kantorovich method allows to express the non-linear equation as a system of the linear equations which then can be treated by the MCMC (random walk) algorithm. We apply this method to the Balitsky-Kovchegov (BK) equation describing evolution of gluon density at low x. Results of numerical computations show that the MCMC method is both precise and efficient. The presented algorithm may be particularly suited for solving more complicated and higher-dimensional non-linear integral equation, for which traditional methods become unfeasible.
Markov chain algorithms: a template for building future robust low-power systems
Deka, Biplab; Birklykke, Alex A.; Duwe, Henry; Mansinghka, Vikash K.; Kumar, Rakesh
2014-01-01
Although computational systems are looking towards post CMOS devices in the pursuit of lower power, the expected inherent unreliability of such devices makes it difficult to design robust systems without additional power overheads for guaranteeing robustness. As such, algorithmic structures with inherent ability to tolerate computational errors are of significant interest. We propose to cast applications as stochastic algorithms based on Markov chains (MCs) as such algorithms are both sufficiently general and tolerant to transition errors. We show with four example applications—Boolean satisfiability, sorting, low-density parity-check decoding and clustering—how applications can be cast as MC algorithms. Using algorithmic fault injection techniques, we demonstrate the robustness of these implementations to transition errors with high error rates. Based on these results, we make a case for using MCs as an algorithmic template for future robust low-power systems. PMID:24842030
A Markov-Chain Monte-Carlo Based Method for Flaw Detection in Beams
Glaser, R E; Lee, C L; Nitao, J J; Hickling, T L; Hanley, W G
2006-09-28
A Bayesian inference methodology using a Markov Chain Monte Carlo (MCMC) sampling procedure is presented for estimating the parameters of computational structural models. This methodology combines prior information, measured data, and forward models to produce a posterior distribution for the system parameters of structural models that is most consistent with all available data. The MCMC procedure is based upon a Metropolis-Hastings algorithm that is shown to function effectively with noisy data, incomplete data sets, and mismatched computational nodes/measurement points. A series of numerical test cases based upon a cantilever beam is presented. The results demonstrate that the algorithm is able to estimate model parameters utilizing experimental data for the nodal displacements resulting from specified forces.
Study of behavior and determination of customer lifetime value(CLV) using Markov chain model
NASA Astrophysics Data System (ADS)
Permana, Dony; Indratno, Sapto Wahyu; Pasaribu, Udjianna S.
2014-03-01
Customer Lifetime Value or CLV is a restriction on interactive marketing to help a company in arranging financial for the marketing of new customer acquisition and customer retention. Additionally CLV can be able to segment customers for financial arrangements. Stochastic models for the fairly new CLV used a Markov chain. In this model customer retention probability and new customer acquisition probability play an important role. This model is originally introduced by Pfeifer and Carraway in 2000 [1]. They introduced several CLV models, one of them only involves customer and former customer. In this paper we expand the model by adding the assumption of the transition from former customer to customer. In the proposed model, the CLV value is higher than the CLV value obtained by Pfeifer and Caraway model. But our model still requires a longer convergence time.
Markov Chain Monte Carlo Sampling Methods for 1D Seismic and EM Data Inversion
Energy Science and Technology Software Center (ESTSC)
2008-09-22
This software provides several Markov chain Monte Carlo sampling methods for the Bayesian model developed for inverting 1D marine seismic and controlled source electromagnetic (CSEM) data. The current software can be used for individual inversion of seismic AVO and CSEM data and for joint inversion of both seismic and EM data sets. The structure of the software is very general and flexible, and it allows users to incorporate their own forward simulation codes and rockmore » physics model codes easily into this software. Although the softwae was developed using C and C++ computer languages, the user-supplied codes can be written in C, C++, or various versions of Fortran languages. The software provides clear interfaces for users to plug in their own codes. The output of this software is in the format that the R free software CODA can directly read to build MCMC objects.« less
3D+t brain MRI segmentation using robust 4D Hidden Markov Chain.
Lavigne, François; Collet, Christophe; Armspach, Jean-Paul
2014-01-01
In recent years many automatic methods have been developed to help physicians diagnose brain disorders, but the problem remains complex. In this paper we propose a method to segment brain structures on two 3D multi-modal MR images taken at different times (longitudinal acquisition). A bias field correction is performed with an adaptation of the Hidden Markov Chain (HMC) allowing us to take into account the temporal correlation in addition to spatial neighbourhood information. To improve the robustness of the segmentation of the principal brain structures and to detect Multiple Sclerosis Lesions as outliers the Trimmed Likelihood Estimator (TLE) is used during the process. The method is validated on 3D+t brain MR images. PMID:25571045
Of bugs and birds: Markov Chain Monte Carlo for hierarchical modeling in wildlife research
Link, W.A.; Cam, E.; Nichols, J.D.; Cooch, E.G.
2002-01-01
Markov chain Monte Carlo (MCMC) is a statistical innovation that allows researchers to fit far more complex models to data than is feasible using conventional methods. Despite its widespread use in a variety of scientific fields, MCMC appears to be underutilized in wildlife applications. This may be due to a misconception that MCMC requires the adoption of a subjective Bayesian analysis, or perhaps simply to its lack of familiarity among wildlife researchers. We introduce the basic ideas of MCMC and software BUGS (Bayesian inference using Gibbs sampling), stressing that a simple and satisfactory intuition for MCMC does not require extraordinary mathematical sophistication. We illustrate the use of MCMC with an analysis of the association between latent factors governing individual heterogeneity in breeding and survival rates of kittiwakes (Rissa tridactyla). We conclude with a discussion of the importance of individual heterogeneity for understanding population dynamics and designing management plans.
Analysis of aerial survey data on Florida manatee using Markov chain Monte Carlo.
Craig, B A; Newton, M A; Garrott, R A; Reynolds, J E; Wilcox, J R
1997-06-01
We assess population trends of the Atlantic coast population of Florida manatee, Trichechus manatus latirostris, by reanalyzing aerial survey data collected between 1982 and 1992. To do so, we develop an explicit biological model that accounts for the method by which the manatees are counted, the mammals' movement between surveys, and the behavior of the population total over time. Bayesian inference, enabled by Markov chain Monte Carlo, is used to combine the survey data with the biological model. We compute marginal posterior distributions for all model parameters and predictive distributions for future counts. Several conclusions, such as a decreasing population growth rate and low sighting probabilities, are consistent across different prior specifications. PMID:9192449
Effects of tour boats on dolphin activity examined with sensitivity analysis of Markov chains.
Dans, Silvana Laura; Degrati, Mariana; Pedraza, Susana Noemí; Crespo, Enrique Alberto
2012-08-01
In Patagonia, Argentina, watching dolphins, especially dusky dolphins (Lagenorhynchus obscurus), is a new tourist activity. Feeding time decreases and time to return to feeding after feeding is abandoned and time it takes a group of dolphins to feed increase in the presence of boats. Such effects on feeding behavior may exert energetic costs on dolphins and thus reduce an individual's survival and reproductive capacity or maybe associated with shifts in distribution. We sought to predict which behavioral changes modify the activity pattern of dolphins the most. We modeled behavioral sequences of dusky dolphins with Markov chains. We calculated transition probabilities from one activity to another and arranged them in a stochastic matrix model. The proportion of time dolphins dedicated to a given activity (activity budget) and the time it took a dolphin to resume that activity after it had been abandoned (recurrence time) were calculated. We used a sensitivity analysis of Markov chains to calculate the sensitivity of the time budget and the activity-resumption time to changes in behavioral transition probabilities. Feeding-time budget was most sensitive to changes in the probability of dolphins switching from traveling to feeding behavior and of maintaining feeding behavior. Thus, an increase in these probabilities would be associated with the largest reduction in the time dedicated to feeding. A reduction in the probability of changing from traveling to feeding would also be associated with the largest increases in the time it takes dolphins to resume feeding. To approach dolphins when they are traveling would not affect behavior less because presence of the boat may keep dolphins from returning to feeding. Our results may help operators of dolphin-watching vessels minimize negative effects on dolphins. PMID:22624561
Binary 3-D Markov Chain Random Fields: Finite-size Scaling Analysis of Percolation Properties
NASA Astrophysics Data System (ADS)
Harter, T.
2004-12-01
Percolation phenomena in random media have been extensively studied in a wide variety of fields in physics, chemistry, engineering, bio-, earth-, and environmental sciences. Most work has focused on uncorrelated random fields. The critical behavior in media with short-range correlations is thought to be identical to that in uncorrelated systems. However, the percolation threshold, pc, which is 0.3116 in uncorrelated media, has been observed to vary with the correlation scale and also with the random field type. Here, we present percolation properties and finite-size scaling effects in three-dimensional binary cubic lattices represented by correlated Markov-chain random fields and compare them to those in sequential Gaussian and sequential indicator random fields. We find that the computed percolation threshold in correlated random fields is significantly lower than in the uncorrelated lattice and decreases with increasing correlation scale. The rate of decrease rapidly flattens out for correlation lengths larger than 2-3 grid-blocks. At correlation scales of 5-6 grid blocks, pc is found to be 0.126 for the Markov chain random fields and slightly higher for sequential Gaussian and indicator random fields. The universal scaling constants for mean cluster size, backbone fraction, and connectivity are found to be consistent with results on uncorrelated lattices. For numerical studies, it is critical to understand finite-size effects on the percolation and associated phase connectivity properties of lattices. We present detailed statistical results on the percolation properties in finite sized lattice and their dependence on correlation scale. We show that appropriate grid resolution and choice of simulation boundaries is critical to properly simulate correlated natural geologic systems, which may display significant finite-size effects.
Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution
Djordjevic, Ivan B.
2015-01-01
Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i) Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage) Markov chain-like models of aging, which are mutually
Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET
NASA Astrophysics Data System (ADS)
Hatt, M.; Lamare, F.; Boussion, N.; Turzo, A.; Collet, C.; Salzenstein, F.; Roux, C.; Jarritt, P.; Carson, K.; Cheze-LeRest, C.; Visvikis, D.
2007-07-01
Accurate volume of interest (VOI) estimation in PET is crucial in different oncology applications such as response to therapy evaluation and radiotherapy treatment planning. The objective of our study was to evaluate the performance of the proposed algorithm for automatic lesion volume delineation; namely the fuzzy hidden Markov chains (FHMC), with that of current state of the art in clinical practice threshold based techniques. As the classical hidden Markov chain (HMC) algorithm, FHMC takes into account noise, voxel intensity and spatial correlation, in order to classify a voxel as background or functional VOI. However the novelty of the fuzzy model consists of the inclusion of an estimation of imprecision, which should subsequently lead to a better modelling of the 'fuzzy' nature of the object of interest boundaries in emission tomography data. The performance of the algorithms has been assessed on both simulated and acquired datasets of the IEC phantom, covering a large range of spherical lesion sizes (from 10 to 37 mm), contrast ratios (4:1 and 8:1) and image noise levels. Both lesion activity recovery and VOI determination tasks were assessed in reconstructed images using two different voxel sizes (8 mm3 and 64 mm3). In order to account for both the functional volume location and its size, the concept of % classification errors was introduced in the evaluation of volume segmentation using the simulated datasets. Results reveal that FHMC performs substantially better than the threshold based methodology for functional volume determination or activity concentration recovery considering a contrast ratio of 4:1 and lesion sizes of <28 mm. Furthermore differences between classification and volume estimation errors evaluated were smaller for the segmented volumes provided by the FHMC algorithm. Finally, the performance of the automatic algorithms was less susceptible to image noise levels in comparison to the threshold based techniques. The analysis of both
A stochastic Markov chain model to describe lung cancer growth and metastasis.
Newton, Paul K; Mason, Jeremy; Bethel, Kelly; Bazhenova, Lyudmila A; Nieva, Jorge; Kuhn, Peter
2012-01-01
A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50 potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold). Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the ensemble of transition matrices calculated using the means and variances of their singular value distributions as a diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed random variables. The model allows us to simulate and quantify disease progression pathways and timescales of progression from the lung position to other sites and we highlight several key findings based on the model. PMID:22558094
A Markov Chain Model for Changes in Users’ Assessment of Search Results
Zhitomirsky-Geffet, Maayan; Bar-Ilan, Judit; Levene, Mark
2016-01-01
Previous research shows that users tend to change their assessment of search results over time. This is a first study that investigates the factors and reasons for these changes, and describes a stochastic model of user behaviour that may explain these changes. In particular, we hypothesise that most of the changes are local, i.e. between results with similar or close relevance to the query, and thus belong to the same”coarse” relevance category. According to the theory of coarse beliefs and categorical thinking, humans tend to divide the range of values under consideration into coarse categories, and are thus able to distinguish only between cross-category values but not within them. To test this hypothesis we conducted five experiments with about 120 subjects divided into 3 groups. Each student in every group was asked to rank and assign relevance scores to the same set of search results over two or three rounds, with a period of three to nine weeks between each round. The subjects of the last three-round experiment were then exposed to the differences in their judgements and were asked to explain them. We make use of a Markov chain model to measure change in users’ judgments between the different rounds. The Markov chain demonstrates that the changes converge, and that a majority of the changes are local to a neighbouring relevance category. We found that most of the subjects were satisfied with their changes, and did not perceive them as mistakes but rather as a legitimate phenomenon, since they believe that time has influenced their relevance assessment. Both our quantitative analysis and user comments support the hypothesis of the existence of coarse relevance categories resulting from categorical thinking in the context of user evaluation of search results. PMID:27171426
A Markov Chain Model for Changes in Users' Assessment of Search Results.
Zhitomirsky-Geffet, Maayan; Bar-Ilan, Judit; Levene, Mark
2016-01-01
Previous research shows that users tend to change their assessment of search results over time. This is a first study that investigates the factors and reasons for these changes, and describes a stochastic model of user behaviour that may explain these changes. In particular, we hypothesise that most of the changes are local, i.e. between results with similar or close relevance to the query, and thus belong to the same"coarse" relevance category. According to the theory of coarse beliefs and categorical thinking, humans tend to divide the range of values under consideration into coarse categories, and are thus able to distinguish only between cross-category values but not within them. To test this hypothesis we conducted five experiments with about 120 subjects divided into 3 groups. Each student in every group was asked to rank and assign relevance scores to the same set of search results over two or three rounds, with a period of three to nine weeks between each round. The subjects of the last three-round experiment were then exposed to the differences in their judgements and were asked to explain them. We make use of a Markov chain model to measure change in users' judgments between the different rounds. The Markov chain demonstrates that the changes converge, and that a majority of the changes are local to a neighbouring relevance category. We found that most of the subjects were satisfied with their changes, and did not perceive them as mistakes but rather as a legitimate phenomenon, since they believe that time has influenced their relevance assessment. Both our quantitative analysis and user comments support the hypothesis of the existence of coarse relevance categories resulting from categorical thinking in the context of user evaluation of search results. PMID:27171426
ERIC Educational Resources Information Center
Kieftenbeld, Vincent; Natesan, Prathiba
2012-01-01
Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…
ERIC Educational Resources Information Center
Nicholls, Miles G.
2007-01-01
In this paper, absorbing markov chains are used to analyse the flows of higher degree by research candidates (doctoral and master) within an Australian faculty of business. The candidates are analysed according to whether they are full time or part time. The need for such analysis stemmed from what appeared to be a rather poor completion rate (as…
A Markov Random Field Framework for Protein Side-Chain Resonance Assignment
NASA Astrophysics Data System (ADS)
Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall
Nuclear magnetic resonance (NMR) spectroscopy plays a critical role in structural genomics, and serves as a primary tool for determining protein structures, dynamics and interactions in physiologically-relevant solution conditions. The current speed of protein structure determination via NMR is limited by the lengthy time required in resonance assignment, which maps spectral peaks to specific atoms and residues in the primary sequence. Although numerous algorithms have been developed to address the backbone resonance assignment problem [68,2,10,37,14,64,1,31,60], little work has been done to automate side-chain resonance assignment [43, 48, 5]. Most previous attempts in assigning side-chain resonances depend on a set of NMR experiments that record through-bond interactions with side-chain protons for each residue. Unfortunately, these NMR experiments have low sensitivity and limited performance on large proteins, which makes it difficult to obtain enough side-chain resonance assignments. On the other hand, it is essential to obtain almost all of the side-chain resonance assignments as a prerequisite for high-resolution structure determination. To overcome this deficiency, we present a novel side-chain resonance assignment algorithm based on alternative NMR experiments measuring through-space interactions between protons in the protein, which also provide crucial distance restraints and are normally required in high-resolution structure determination. We cast the side-chain resonance assignment problem into a Markov Random Field (MRF) framework, and extend and apply combinatorial protein design algorithms to compute the optimal solution that best interprets the NMR data. Our MRF framework captures the contact map information of the protein derived from NMR spectra, and exploits the structural information available from the backbone conformations determined by orientational restraints and a set of discretized side-chain conformations (i.e., rotamers). A Hausdorff
Multi-Physics Markov Chain Monte Carlo Methods for Subsurface Flows
NASA Astrophysics Data System (ADS)
Rigelo, J.; Ginting, V.; Rahunanthan, A.; Pereira, F.
2014-12-01
For CO2 sequestration in deep saline aquifers, contaminant transport in subsurface, and oil or gas recovery, we often need to forecast flow patterns. Subsurface characterization is a critical and challenging step in flow forecasting. To characterize subsurface properties we establish a statistical description of the subsurface properties that are conditioned to existing dynamic and static data. A Markov Chain Monte Carlo (MCMC) algorithm is used in a Bayesian statistical description to reconstruct the spatial distribution of rock permeability and porosity. The MCMC algorithm requires repeatedly solving a set of nonlinear partial differential equations describing displacement of fluids in porous media for different values of permeability and porosity. The time needed for the generation of a reliable MCMC chain using the algorithm can be too long to be practical for flow forecasting. In this work we develop fast and effective computational methods for generating MCMC chains in the Bayesian framework for the subsurface characterization. Our strategy consists of constructing a family of computationally inexpensive preconditioners based on simpler physics as well as on surrogate models such that the number of fine-grid simulations is drastically reduced in the generated MCMC chains. In particular, we introduce a huff-puff technique as screening step in a three-stage multi-physics MCMC algorithm to reduce the number of expensive final stage simulations. The huff-puff technique in the algorithm enables a better characterization of subsurface near wells. We assess the quality of the proposed multi-physics MCMC methods by considering Monte Carlo simulations for forecasting oil production in an oil reservoir.
Efficient variants of the minimal diffusion formulation of Markov chain ensembles
NASA Astrophysics Data System (ADS)
Güler, Marifi
2016-02-01
This study is concerned with ensembles of continuous-time Markov chains evolving independently under a common transition rate matrix in some finite state space. In this context, our prior work [Phys. Rev. E 91, 062116 (2015), 10.1103/PhysRevE.91.062116] has formulated an approximation scheme, called the minimal diffusion formulation, to deduce how the number of chains in a prescribed relevant state evolves in time. The formulation consists of two specifically coupled Ornstein-Uhlenbeck processes in a stochastic differential equation representation; it is minimal in the sense that its structure does not change with the state space size or the transition matrix density, and it requires no matrix square-root operations. In the present study, we first calculate the autocorrelation function of the relevant state density in the minimal diffusion formulation, which is fundamental to the identification of the ensemble dynamics. The obtained autocorrelation function is then employed to develop two diffusion formulations that reduce the structural complexity of the minimal diffusion formulation without significant loss of accuracy in the dynamics. One of these variant formulations includes one less noise term than the minimal diffusion formulation and still satisfies the above-mentioned autocorrelation function in its dynamics. The second variant is in the form of a one-dimensional Langevin equation, therefore it is the simplest possible diffusion formulation one can obtain for the problem, yet its autocorrelation function is first-order accurate in time gap. Numerical simulations supporting the theoretical analysis are delivered.
Efficient variants of the minimal diffusion formulation of Markov chain ensembles.
Güler, Marifi
2016-02-01
This study is concerned with ensembles of continuous-time Markov chains evolving independently under a common transition rate matrix in some finite state space. In this context, our prior work [Phys. Rev. E 91, 062116 (2015)] has formulated an approximation scheme, called the minimal diffusion formulation, to deduce how the number of chains in a prescribed relevant state evolves in time. The formulation consists of two specifically coupled Ornstein-Uhlenbeck processes in a stochastic differential equation representation; it is minimal in the sense that its structure does not change with the state space size or the transition matrix density, and it requires no matrix square-root operations. In the present study, we first calculate the autocorrelation function of the relevant state density in the minimal diffusion formulation, which is fundamental to the identification of the ensemble dynamics. The obtained autocorrelation function is then employed to develop two diffusion formulations that reduce the structural complexity of the minimal diffusion formulation without significant loss of accuracy in the dynamics. One of these variant formulations includes one less noise term than the minimal diffusion formulation and still satisfies the above-mentioned autocorrelation function in its dynamics. The second variant is in the form of a one-dimensional Langevin equation, therefore it is the simplest possible diffusion formulation one can obtain for the problem, yet its autocorrelation function is first-order accurate in time gap. Numerical simulations supporting the theoretical analysis are delivered. PMID:26986304
NASA Astrophysics Data System (ADS)
Zhang, Hua; Harter, Thomas; Sivakumar, Bellie
2006-06-01
Facies-based geostatistical models have become important tools for analyzing flow and mass transport processes in heterogeneous aquifers. Yet little is known about the relationship between these latter processes and the parameters of facies-based geostatistical models. In this study, we examine the transport of a nonpoint source solute normal (perpendicular) to the major bedding plane of an alluvial aquifer medium that contains multiple geologic facies, including interconnected, high-conductivity (coarse textured) facies. We also evaluate the dependence of the transport behavior on the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system's hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute traveltime probability density function (pdf) for solute flux from the water table to the bottom boundary (the production horizon) of the aquifer. The cases examined include two-, three-, and four-facies models, with mean length anisotropy ratios for horizontal to vertical facies, ek, from 25:1 to 300:1 and with a wide range of facies volume proportions (e.g., from 5 to 95% coarse-textured facies). Predictions of traveltime pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer. Those predictions of traveltime pdfs also are affected by the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and, to a lesser degree, the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, traveltime is not lognormally distributed as is often assumed. Also, macrodispersive behavior (variance of the traveltime) is found not to be a unique function of the conductivity variance. For the parameter range
Exceptional motifs in different Markov chain models for a statistical analysis of DNA sequences.
Schbath, S; Prum, B; de Turckheim, E
1995-01-01
Identifying exceptional motifs is often used for extracting information from long DNA sequences. The two difficulties of the method are the choice of the model that defines the expected frequencies of words and the approximation of the variance of the difference T(W) between the number of occurrences of a word W and its estimation. We consider here different Markov chain models, either with stationary or periodic transition probabilities. We estimate the variance of the difference T(W) by the conditional variance of the number of occurrences of W given the oligonucleotides counts that define the model. Two applications show how to use asymptotically standard normal statistics associated with the counts to describe a given sequence in terms of its outlying words. Sequences of Escherichia coli and of Bacillus subtilis are compared with respect to their exceptional tri- and tetranucleotides. For both bacteria, exceptional 3-words are mainly found in the coding frame. E. coli palindrome counts are analyzed in different models, showing that many overabundant words are one-letter mutations of avoided palindromes. PMID:8521272
NASA Astrophysics Data System (ADS)
Al-Ma'shumah, Fathimah; Permana, Dony; Sidarto, Kuntjoro Adji
2015-12-01
Customer Lifetime Value is an important and useful concept in marketing. One of its benefits is to help a company for budgeting marketing expenditure for customer acquisition and customer retention. Many mathematical models have been introduced to calculate CLV considering the customer retention/migration classification scheme. A fairly new class of these models which will be described in this paper uses Markov Chain Models (MCM). This class of models has the major advantage for its flexibility to be modified to several different cases/classification schemes. In this model, the probabilities of customer retention and acquisition play an important role. From Pfeifer and Carraway, 2000, the final formula of CLV obtained from MCM usually contains nonlinear form of the transition probability matrix. This nonlinearity makes the inverse problem of CLV difficult to solve. This paper aims to solve this inverse problem, yielding the approximate transition probabilities for the customers, by applying metaheuristic optimization algorithm developed by Yang, 2013, Flower Pollination Algorithm. The major interpretation of obtaining the transition probabilities are to set goals for marketing teams in keeping the relative frequencies of customer acquisition and customer retention.
DIM SUM: demography and individual migration simulated using a Markov chain.
Brown, Jeremy M; Savidge, Kevin; McTavish, Emily Jane B
2011-03-01
An increasing number of studies seek to infer demographic history, often jointly with genetic relationships. Despite numerous analytical methods for such data, few simulations have investigated the methods' power and robustness, especially when underlying assumptions have been violated. DIM SUM (Demography and Individual Migration Simulated Using a Markov chain) is a stand-alone Java program for the simulation of population demography and individual migration while recording ancestor-descendant relationships. It does not employ coalescent assumptions or discrete population boundaries. It is extremely flexible, allowing the user to specify border positions, reactions of organisms to borders, local and global carrying capacities, individual dispersal kernels, rates of reproduction and strategies for sampling individuals. Spatial variables may be specified using image files (e.g., as exported from gis software) and may vary through time. In combination with software for genetic marker simulation, DIM SUM will be useful for testing phylogeographic (e.g., nested clade phylogeographic analysis, coalescent-based tests and continuous-landscape frameworks) and landscape-genetic methods, specifically regarding violations of coalescent assumptions. It can also be used to explore the qualitative features of proposed demographic scenarios (e.g. regarding biological invasions) and as a pedagogical tool. DIM SUM (with user's manual) can be downloaded from http://code.google.com/p/bio-dimsum. PMID:21429144
Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems
NASA Astrophysics Data System (ADS)
Suwa, Hidemaro
2013-03-01
We have developed novel Monte Carlo methods for precisely calculating quantum spin-boson models and investigated the critical phenomena of the spin-Peierls systems. Three significant methods are presented. The first is a new optimization algorithm of the Markov chain transition kernel based on the geometric weight allocation. This algorithm, for the first time, satisfies the total balance generally without imposing the detailed balance and always minimizes the average rejection rate, being better than the Metropolis algorithm. The second is the extension of the worm (directed-loop) algorithm to non-conserved particles, which cannot be treated efficiently by the conventional methods. The third is the combination with the level spectroscopy. Proposing a new gap estimator, we are successful in eliminating the systematic error of the conventional moment method. Then we have elucidated the phase diagram and the universality class of the one-dimensional XXZ spin-Peierls system. The criticality is totally consistent with the J1 -J2 model, an effective model in the antiadiabatic limit. Through this research, we have succeeded in investigating the critical phenomena of the effectively frustrated quantum spin system by the quantum Monte Carlo method without the negative sign. JSPS Postdoctoral Fellow for Research Abroad
A Markov chain model for image ranking system in social networks
NASA Astrophysics Data System (ADS)
Zin, Thi Thi; Tin, Pyke; Toriu, Takashi; Hama, Hiromitsu
2014-03-01
In today world, different kinds of networks such as social, technological, business and etc. exist. All of the networks are similar in terms of distributions, continuously growing and expanding in large scale. Among them, many social networks such as Facebook, Twitter, Flickr and many others provides a powerful abstraction of the structure and dynamics of diverse kinds of inter personal connection and interaction. Generally, the social network contents are created and consumed by the influences of all different social navigation paths that lead to the contents. Therefore, identifying important and user relevant refined structures such as visual information or communities become major factors in modern decision making world. Moreover, the traditional method of information ranking systems cannot be successful due to their lack of taking into account the properties of navigation paths driven by social connections. In this paper, we propose a novel image ranking system in social networks by using the social data relational graphs from social media platform jointly with visual data to improve the relevance between returned images and user intentions (i.e., social relevance). Specifically, we propose a Markov chain based Social-Visual Ranking algorithm by taking social relevance into account. By using some extensive experiments, we demonstrated the significant and effectiveness of the proposed social-visual ranking method.
Efficient Approximate Bayesian Computation Coupled With Markov Chain Monte Carlo Without Likelihood
Wegmann, Daniel; Leuenberger, Christoph; Excoffier, Laurent
2009-01-01
Approximate Bayesian computation (ABC) techniques permit inferences in complex demographic models, but are computationally inefficient. A Markov chain Monte Carlo (MCMC) approach has been proposed (Marjoram et al. 2003), but it suffers from computational problems and poor mixing. We propose several methodological developments to overcome the shortcomings of this MCMC approach and hence realize substantial computational advances over standard ABC. The principal idea is to relax the tolerance within MCMC to permit good mixing, but retain a good approximation to the posterior by a combination of subsampling the output and regression adjustment. We also propose to use a partial least-squares (PLS) transformation to choose informative statistics. The accuracy of our approach is examined in the case of the divergence of two populations with and without migration. In that case, our ABC–MCMC approach needs considerably lower computation time to reach the same accuracy than conventional ABC. We then apply our method to a more complex case with the estimation of divergence times and migration rates between three African populations. PMID:19506307
NASA Astrophysics Data System (ADS)
Vrugt, Jasper A.; Ter Braak, Cajo J. F.; Clark, Martyn P.; Hyman, James M.; Robinson, Bruce A.
2008-12-01
There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled differential evolution adaptive Metropolis (DREAM), that is especially designed to efficiently estimate the posterior probability density function of hydrologic model parameters in complex, high-dimensional sampling problems. This MCMC scheme adaptively updates the scale and orientation of the proposal distribution during sampling and maintains detailed balance and ergodicity. It is then demonstrated how DREAM can be used to analyze forcing data error during watershed model calibration using a five-parameter rainfall-runoff model with streamflow data from two different catchments. Explicit treatment of precipitation error during hydrologic model calibration not only results in prediction uncertainty bounds that are more appropriate but also significantly alters the posterior distribution of the watershed model parameters. This has significant implications for regionalization studies. The approach also provides important new ways to estimate areal average watershed precipitation, information that is of utmost importance for testing hydrologic theory, diagnosing structural errors in models, and appropriately benchmarking rainfall measurement devices.
Testing the efficiency of Markov chain Monte Carlo with People using facial affect categories.
Martin, Jay B; Griffiths, Thomas L; Sanborn, Adam N
2012-01-01
Exploring how people represent natural categories is a key step toward developing a better understanding of how people learn, form memories, and make decisions. Much research on categorization has focused on artificial categories that are created in the laboratory, since studying natural categories defined on high-dimensional stimuli such as images is methodologically challenging. Recent work has produced methods for identifying these representations from observed behavior, such as reverse correlation (RC). We compare RC against an alternative method for inferring the structure of natural categories called Markov chain Monte Carlo with People (MCMCP). Based on an algorithm used in computer science and statistics, MCMCP provides a way to sample from the set of stimuli associated with a natural category. We apply MCMCP and RC to the problem of recovering natural categories that correspond to two kinds of facial affect (happy and sad) from realistic images of faces. Our results show that MCMCP requires fewer trials to obtain a higher quality estimate of people's mental representations of these two categories. PMID:21972923
Study on the Calculation Models of Bus Delay at Bays Using Queueing Theory and Markov Chain
Sun, Li; Sun, Shao-wei; Wang, Dian-hai
2015-01-01
Traffic congestion at bus bays has decreased the service efficiency of public transit seriously in China, so it is crucial to systematically study its theory and methods. However, the existing studies lack theoretical model on computing efficiency. Therefore, the calculation models of bus delay at bays are studied. Firstly, the process that buses are delayed at bays is analyzed, and it was found that the delay can be divided into entering delay and exiting delay. Secondly, the queueing models of bus bays are formed, and the equilibrium distribution functions are proposed by applying the embedded Markov chain to the traditional model of queuing theory in the steady state; then the calculation models of entering delay are derived at bays. Thirdly, the exiting delay is studied by using the queueing theory and the gap acceptance theory. Finally, the proposed models are validated using field-measured data, and then the influencing factors are discussed. With these models the delay is easily assessed knowing the characteristics of the dwell time distribution and traffic volume at the curb lane in different locations and different periods. It can provide basis for the efficiency evaluation of bus bays. PMID:25759720
CIGALEMC: GALAXY PARAMETER ESTIMATION USING A MARKOV CHAIN MONTE CARLO APPROACH WITH CIGALE
Serra, Paolo; Amblard, Alexandre; Temi, Pasquale; Im, Stephen; Noll, Stefan
2011-10-10
We introduce a fast Markov Chain Monte Carlo (MCMC) exploration of the astrophysical parameter space using a modified version of the publicly available code Code Investigating GALaxy Emission (CIGALE). The original CIGALE builds a grid of theoretical spectral energy distribution (SED) models and fits to photometric fluxes from ultraviolet to infrared to put constraints on parameters related to both formation and evolution of galaxies. Such a grid-based method can lead to a long and challenging parameter extraction since the computation time increases exponentially with the number of parameters considered and results can be dependent on the density of sampling points, which must be chosen in advance for each parameter. MCMC methods, on the other hand, scale approximately linearly with the number of parameters, allowing a faster and more accurate exploration of the parameter space by using a smaller number of efficiently chosen samples. We test our MCMC version of the code CIGALE (called CIGALEMC) with simulated data. After checking the ability of the code to retrieve the input parameters used to build the mock sample, we fit theoretical SEDs to real data from the well-known and -studied Spitzer Infrared Nearby Galaxy Survey sample. We discuss constraints on the parameters and show the advantages of our MCMC sampling method in terms of accuracy of the results and optimization of CPU time.
Mapping systematic errors in helium abundance determinations using Markov Chain Monte Carlo
Aver, Erik; Olive, Keith A.; Skillman, Evan D. E-mail: olive@umn.edu
2011-03-01
Monte Carlo techniques have been used to evaluate the statistical and systematic uncertainties in the helium abundances derived from extragalactic H II regions. The helium abundance is sensitive to several physical parameters associated with the H II region. In this work, we introduce Markov Chain Monte Carlo (MCMC) methods to efficiently explore the parameter space and determine the helium abundance, the physical parameters, and the uncertainties derived from observations of metal poor nebulae. Experiments with synthetic data show that the MCMC method is superior to previous implementations (based on flux perturbation) in that it is not affected by biases due to non-physical parameter space. The MCMC analysis allows a detailed exploration of degeneracies, and, in particular, a false minimum that occurs at large values of optical depth in the He I emission lines. We demonstrate that introducing the electron temperature derived from the [O III] emission lines as a prior, in a very conservative manner, produces negligible bias and effectively eliminates the false minima occurring at large optical depth. We perform a frequentist analysis on data from several ''high quality'' systems. Likelihood plots illustrate degeneracies, asymmetries, and limits of the determination. In agreement with previous work, we find relatively large systematic errors, limiting the precision of the primordial helium abundance for currently available spectra.
Accelerating Markov chain Monte Carlo simulation through sequential updating and parallel computing
NASA Astrophysics Data System (ADS)
Ren, Ruichao
Monte Carlo simulation is a statistical sampling method used in studies of physical systems with properties that cannot be easily obtained analytically. The phase behavior of the Restricted Primitive Model of electrolyte solutions on the simple cubic lattice is studied using grand canonical Monte Carlo simulations and finite-size scaling techniques. The transition between disordered and ordered, NaCl-like structures is continuous, second-order at high temperatures and discrete, first-order at low temperatures. The line of continuous transitions meets the line of first-order transitions at a tricritical point. A new algorithm-Random Skipping Sequential (RSS) Monte Carl---is proposed, justified and shown analytically to have better mobility over the phase space than the conventional Metropolis algorithm satisfying strict detailed balance. The new algorithm employs sequential updating, and yields greatly enhanced sampling statistics than the Metropolis algorithm with random updating. A parallel version of Markov chain theory is introduced and applied in accelerating Monte Carlo simulation via cluster computing. It is shown that sequential updating is the key to reduce the inter-processor communication or synchronization which slows down parallel simulation with increasing number of processors. Parallel simulation results for the two-dimensional lattice gas model show substantial reduction of simulation time by the new method for systems of large and moderate sizes.
Sanov and central limit theorems for output statistics of quantum Markov chains
Horssen, Merlijn van; Guţă, Mădălin
2015-02-15
In this paper, we consider the statistics of repeated measurements on the output of a quantum Markov chain. We establish a large deviations result analogous to Sanov’s theorem for the multi-site empirical measure associated to finite sequences of consecutive outcomes of a classical stochastic process. Our result relies on the construction of an extended quantum transition operator (which keeps track of previous outcomes) in terms of which we compute moment generating functions, and whose spectral radius is related to the large deviations rate function. As a corollary to this, we obtain a central limit theorem for the empirical measure. Such higher level statistics may be used to uncover critical behaviour such as dynamical phase transitions, which are not captured by lower level statistics such as the sample mean. As a step in this direction, we give an example of a finite system whose level-1 (empirical mean) rate function is independent of a model parameter while the level-2 (empirical measure) rate is not.
Markov-chain approach to the distribution of ancestors in species of biparental reproduction
NASA Astrophysics Data System (ADS)
Caruso, M.; Jarne, C.
2014-08-01
We studied how to obtain a distribution for the number of ancestors in species of sexual reproduction. Present models concentrate on the estimation of distributions repetitions of ancestors in genealogical trees. It has been shown that it is not possible to reconstruct the genealogical history of each species along all its generations by means of a geometric progression. This analysis demonstrates that it is possible to rebuild the tree of progenitors by modeling the problem with a Markov chain. For each generation, the maximum number of possible ancestors is different. This presents huge problems for the resolution. We found a solution through a dilation of the sample space, although the distribution defined there takes smaller values with respect to the initial problem. In order to correct the distribution for each generation, we introduced the invariance under a gauge (local) group of dilations. These ideas can be used to study the interaction of several processes and provide a new approach on the problem of the common ancestor. In the same direction, this model also provides some elements that can be used to improve models of animal reproduction.
Two-state Markov-chain Poisson nature of individual cellphone call statistics
NASA Astrophysics Data System (ADS)
Jiang, Zhi-Qiang; Xie, Wen-Jie; Li, Ming-Xia; Zhou, Wei-Xing; Sornette, Didier
2016-07-01
Unfolding the burst patterns in human activities and social interactions is a very important issue especially for understanding the spreading of disease and information and the formation of groups and organizations. Here, we conduct an in-depth study of the temporal patterns of cellphone conversation activities of 73 339 anonymous cellphone users, whose inter-call durations are Weibull distributed. We find that the individual call events exhibit a pattern of bursts, that high activity periods are alternated with low activity periods. In both periods, the number of calls are exponentially distributed for individuals, but power-law distributed for the population. Together with the exponential distributions of inter-call durations within bursts and of the intervals between consecutive bursts, we demonstrate that the individual call activities are driven by two independent Poisson processes, which can be combined within a minimal model in terms of a two-state first-order Markov chain, giving significant fits for nearly half of the individuals. By measuring directly the distributions of call rates across the population, which exhibit power-law tails, we purport the existence of power-law distributions, via the ‘superposition of distributions’ mechanism. Our findings shed light on the origins of bursty patterns in other human activities.
Study on the calculation models of bus delay at bays using queueing theory and Markov chain.
Sun, Feng; Sun, Li; Sun, Shao-Wei; Wang, Dian-Hai
2015-01-01
Traffic congestion at bus bays has decreased the service efficiency of public transit seriously in China, so it is crucial to systematically study its theory and methods. However, the existing studies lack theoretical model on computing efficiency. Therefore, the calculation models of bus delay at bays are studied. Firstly, the process that buses are delayed at bays is analyzed, and it was found that the delay can be divided into entering delay and exiting delay. Secondly, the queueing models of bus bays are formed, and the equilibrium distribution functions are proposed by applying the embedded Markov chain to the traditional model of queuing theory in the steady state; then the calculation models of entering delay are derived at bays. Thirdly, the exiting delay is studied by using the queueing theory and the gap acceptance theory. Finally, the proposed models are validated using field-measured data, and then the influencing factors are discussed. With these models the delay is easily assessed knowing the characteristics of the dwell time distribution and traffic volume at the curb lane in different locations and different periods. It can provide basis for the efficiency evaluation of bus bays. PMID:25759720
Yoo, Chulsang; Lee, Jinwook; Ro, Yonghun
2016-01-01
This paper evaluates the effect of climate change on daily rainfall, especially on the mean number of wet days and the mean rainfall intensity. Assuming that the mechanism of daily rainfall occurrences follows the first-order Markov chain model, the possible changes in the transition probabilities are estimated by considering the climate change scenarios. Also, the change of the stationary probabilities of wet and dry day occurrences and finally the change in the number of wet days are derived for the comparison of current (1x CO2) and 2x CO2conditions. As a result of this study, the increase or decrease in themore » mean number of wet days was found to be not enough to explain all of the change in monthly rainfall amounts, so rainfall intensity should also be modified. The application to the Seoul weather station in Korea shows that about 30% of the total change in monthly rainfall amount can be explained by the change in the number of wet days and the remaining 70% by the change in the rainfall intensity. That is, as an effect of climate change, the increase in the rainfall intensity could be more significant than the increase in the wet days and, thus, the risk of flood will be much highly increased.« less
Fitting complex population models by combining particle filters with Markov chain Monte Carlo.
Knape, Jonas; de Valpine, Perry
2012-02-01
We show how a recent framework combining Markov chain Monte Carlo (MCMC) with particle filters (PFMCMC) may be used to estimate population state-space models. With the purpose of utilizing the strengths of each method, PFMCMC explores hidden states by particle filters, while process and observation parameters are estimated using an MCMC algorithm. PFMCMC is exemplified by analyzing time series data on a red kangaroo (Macropus rufus) population in New South Wales, Australia, using MCMC over model parameters based on an adaptive Metropolis-Hastings algorithm. We fit three population models to these data; a density-dependent logistic diffusion model with environmental variance, an unregulated stochastic exponential growth model, and a random-walk model. Bayes factors and posterior model probabilities show that there is little support for density dependence and that the random-walk model is the most parsimonious model. The particle filter Metropolis-Hastings algorithm is a brute-force method that may be used to fit a range of complex population models. Implementation is straightforward and less involved than standard MCMC for many models, and marginal densities for model selection can be obtained with little additional effort. The cost is mainly computational, resulting in long running times that may be improved by parallelizing the algorithm. PMID:22624307
Improving Hydrologic Data Assimilation by a Multivariate Particle Filter-Markov Chain Monte Carlo
NASA Astrophysics Data System (ADS)
Yan, H.; DeChant, C. M.; Moradkhani, H.
2014-12-01
Data assimilation (DA) is a popular method for merging information from multiple sources (i.e. models and remotely sensing), leading to improved hydrologic prediction. With the increasing availability of satellite observations (such as soil moisture) in recent years, DA is emerging in operational forecast systems. Although these techniques have seen widespread application, developmental research has continued to further refine their effectiveness. This presentation will examine potential improvements to the Particle Filter (PF) through the inclusion of multivariate correlation structures. Applications of the PF typically rely on univariate DA schemes (such as assimilating the outlet observed discharge), and multivariate schemes generally ignore the spatial correlation of the observations. In this study, a multivariate DA scheme is proposed by introducing geostatistics into the newly developed particle filter with Markov chain Monte Carlo (PF-MCMC) method. This new method is assessed by a case study over one of the basin with natural hydrologic process in Model Parameter Estimation Experiment (MOPEX), located in Arizona. The multivariate PF-MCMC method is used to assimilate the Advanced Scatterometer (ASCAT) grid (12.5 km) soil moisture retrievals and the observed streamflow in five gages (four inlet and one outlet gages) into the Sacramento Soil Moisture Accounting (SAC-SMA) model for the same scale (12.5 km), leading to greater skill in hydrologic predictions.
Zou, Yonghong; Christensen, Erik R; Zheng, Wei; Wei, Hua; Li, An
2014-11-01
A stochastic process was developed to simulate the stepwise debromination pathways for polybrominated diphenyl ethers (PBDEs). The stochastic process uses an analogue Markov Chain Monte Carlo (AMCMC) algorithm to generate PBDE debromination profiles. The acceptance or rejection of the randomly drawn stepwise debromination reactions was determined by a maximum likelihood function. The experimental observations at certain time points were used as target profiles; therefore, the stochastic processes are capable of presenting the effects of reaction conditions on the selection of debromination pathways. The application of the model is illustrated by adopting the experimental results of decabromodiphenyl ether (BDE209) in hexane exposed to sunlight. Inferences that were not obvious from experimental data were suggested by model simulations. For example, BDE206 has much higher accumulation at the first 30 min of sunlight exposure. By contrast, model simulation suggests that, BDE206 and BDE207 had comparable yields from BDE209. The reason for the higher BDE206 level is that BDE207 has the highest depletion in producing octa products. Compared to a previous version of the stochastic model based on stochastic reaction sequences (SRS), the AMCMC approach was determined to be more efficient and robust. Due to the feature of only requiring experimental observations as input, the AMCMC model is expected to be applicable to a wide range of PBDE debromination processes, e.g. microbial, photolytic, or joint effects in natural environments. PMID:25113201
NASA Astrophysics Data System (ADS)
Jokar Arsanjani, Jamal; Helbich, Marco; Kainz, Wolfgang; Darvishi Boloorani, Ali
2013-04-01
This research analyses the suburban expansion in the metropolitan area of Tehran, Iran. A hybrid model consisting of logistic regression model, Markov chain (MC), and cellular automata (CA) was designed to improve the performance of the standard logistic regression model. Environmental and socio-economic variables dealing with urban sprawl were operationalised to create a probability surface of spatiotemporal states of built-up land use for the years 2006, 2016, and 2026. For validation, the model was evaluated by means of relative operating characteristic values for different sets of variables. The approach was calibrated for 2006 by cross comparing of actual and simulated land use maps. The achieved outcomes represent a match of 89% between simulated and actual maps of 2006, which was satisfactory to approve the calibration process. Thereafter, the calibrated hybrid approach was implemented for forthcoming years. Finally, future land use maps for 2016 and 2026 were predicted by means of this hybrid approach. The simulated maps illustrate a new wave of suburban development in the vicinity of Tehran at the western border of the metropolis during the next decades.
Mapping absorption processes onto a Markov chain, conserving the mean first passage time
NASA Astrophysics Data System (ADS)
Biswas, Katja
2013-04-01
The dynamics of a multidimensional system is projected onto a discrete state master equation using the transition rates W(k → k‧ t, t + dt) between a set of states {k} represented by the regions {ζk} in phase or discrete state space. Depending on the dynamics Γi(t) of the original process and the choice of ζk, the discretized process can be Markovian or non-Markovian. For absorption processes, it is shown that irrespective of these properties of the projection, a master equation with time-independent transition rates \\bar{W}(k\\rightarrow k^{\\prime }) can be obtained, which conserves the total occupation time of the partitions of the phase or discrete state space of the original process. An expression for the transition probabilities \\bar{p}(k^{\\prime }|k) is derived based on either time-discrete measurements {ti} with variable time stepping Δ(i + 1)i = ti + 1 - ti or the theoretical knowledge at continuous times t. This allows computational methods of absorbing Markov chains to be used to obtain the mean first passage time (MFPT) of the system. To illustrate this approach, the procedure is applied to obtain the MFPT for the overdamped Brownian motion of particles subject to a system with dichotomous noise and the escape from an entropic barrier. The high accuracy of the simulation results confirms with the theory.
Phase Transitions for Quantum Markov Chains Associated with Ising Type Models on a Cayley Tree
NASA Astrophysics Data System (ADS)
Mukhamedov, Farrukh; Barhoumi, Abdessatar; Souissi, Abdessatar
2016-05-01
The main aim of the present paper is to prove the existence of a phase transition in quantum Markov chain (QMC) scheme for the Ising type models on a Cayley tree. Note that this kind of models do not have one-dimensional analogous, i.e. the considered model persists only on trees. In this paper, we provide a more general construction of forward QMC. In that construction, a QMC is defined as a weak limit of finite volume states with boundary conditions, i.e. QMC depends on the boundary conditions. Our main result states the existence of a phase transition for the Ising model with competing interactions on a Cayley tree of order two. By the phase transition we mean the existence of two distinct QMC which are not quasi-equivalent and their supports do not overlap. We also study some algebraic property of the disordered phase of the model, which is a new phenomena even in a classical setting.
Markov chain Monte Carlo analysis to constrain dark matter properties with directional detection
Billard, J.; Mayet, F.; Santos, D.
2011-04-01
Directional detection is a promising dark matter search strategy. Indeed, weakly interacting massive particle (WIMP)-induced recoils would present a direction dependence toward the Cygnus constellation, while background-induced recoils exhibit an isotropic distribution in the Galactic rest frame. Taking advantage of these characteristic features, and even in the presence of a sizeable background, it has recently been shown that data from forthcoming directional detectors could lead either to a competitive exclusion or to a conclusive discovery, depending on the value of the WIMP-nucleon cross section. However, it is possible to further exploit these upcoming data by using the strong dependence of the WIMP signal with: the WIMP mass and the local WIMP velocity distribution. Using a Markov chain Monte Carlo analysis of recoil events, we show for the first time the possibility to constrain the unknown WIMP parameters, both from particle physics (mass and cross section) and Galactic halo (velocity dispersion along the three axis), leading to an identification of non-baryonic dark matter.
Extracting g tensor values from experimental data with Markov Chain Monte Carlo methods
NASA Astrophysics Data System (ADS)
Kulkarni, Anagha; Liu, Weiwen; Zurakowski, Ryan; Doty, Matthew
Quantum Dot Molecules(QDMs) have emerged as a new platform for optoelectronic and spintronic devices.QDMs consist of multiple Quantum Dots (QDs) arranged in close proximity such that interactions between them can tailor their optical and spin properties.These properties can be tuned during growth and in-situ by applying electric fields that vary the coupling between QDs,which controls the formation of delocalized molecular-like states.Engineering the formation of molecular states in QDMS can be used to achieve new functionalities unavailable with individual QDs. Using molecular engineering approaches to tailor QDMs require precise knowledge of parameters such as binding energies of charge complexes,magnitude of many body interactions or components of the g tensor.Precise values of these parameters are difficult to extract from either experimental measurements or theoretical calculations.We develop and demonstrate a Markov Chain Monte Carlo method for extracting elements of the g tensor for a single hole confined in a QDM from photoluminescence data obtained as a function of electric and magnetic fields.This method can be applied to extract precise quantitative values of other physical parameters from sparse experimental data on a variety of systems.
Yoo, Chulsang; Lee, Jinwook; Ro, Yonghun
2016-01-01
This paper evaluates the effect of climate change on daily rainfall, especially on the mean number of wet days and the mean rainfall intensity. Assuming that the mechanism of daily rainfall occurrences follows the first-order Markov chain model, the possible changes in the transition probabilities are estimated by considering the climate change scenarios. Also, the change of the stationary probabilities of wet and dry day occurrences and finally the change in the number of wet days are derived for the comparison of current (1x CO_{2}) and 2x CO_{2}conditions. As a result of this study, the increase or decrease in the mean number of wet days was found to be not enough to explain all of the change in monthly rainfall amounts, so rainfall intensity should also be modified. The application to the Seoul weather station in Korea shows that about 30% of the total change in monthly rainfall amount can be explained by the change in the number of wet days and the remaining 70% by the change in the rainfall intensity. That is, as an effect of climate change, the increase in the rainfall intensity could be more significant than the increase in the wet days and, thus, the risk of flood will be much highly increased.
NASA Astrophysics Data System (ADS)
Esquível, Manuel L.; Fernandes, José Moniz; Guerreiro, Gracinda R.
2016-06-01
We introduce a schematic formalism for the time evolution of a random population entering some set of classes and such that each member of the population evolves among these classes according to a scheme based on a Markov chain model. We consider that the flow of incoming members is modeled by a time series and we detail the time series structure of the elements in each of the classes. We present a practical application to data from a credit portfolio of a Cape Verdian bank; after modeling the entering population in two different ways - namely as an ARIMA process and as a deterministic sigmoid type trend plus a SARMA process for the residues - we simulate the behavior of the population and compare the results. We get that the second method is more accurate in describing the behavior of the populations when compared to the observed values in a direct simulation of the Markov chain.
NASA Astrophysics Data System (ADS)
Yoo, Jiyoung; Kwon, Hyun-Han; So, Byung-Jin; Rajagopalan, Balaji; Kim, Tae-Woong
2015-04-01
This study proposed a hidden Markov chain model-based drought analysis (HMM-DA) tool to understand the beginning and ending of meteorological drought and to further characterize typhoon-induced drought busters (TDB) by exploring spatiotemporal drought patterns in South Korea. It was found that typhoons have played a dominant role in ending drought events (EDE) during the typhoon season (July-September) over the last four decades (1974-2013). The percentage of EDEs terminated by TDBs was about 43-90% mainly along coastal regions in South Korea. Furthermore, the TDBs, mainly during summer, have a positive role in managing extreme droughts during the subsequent autumn and spring seasons. The HMM-DA models the temporal dependencies between drought states using Markov chain, consequently capturing the dependencies between droughts and typhoons well, thus, enabling a better performance in modeling spatiotemporal drought attributes compared to traditional methods.
NASA Astrophysics Data System (ADS)
Kamal Chowdhury, AFM; Lockart, Natalie; Willgoose, Garry; Kuczera, George
2015-04-01
One of the overriding issues in the rainfall simulation is the underestimation of observed rainfall variability in longer timescales (e.g. monthly, annual and multi-year), which usually results into under-estimation of reservoir reliability in urban water planning. This study has developed a Compound Distribution Markov Chain (CDMC) model for stochastic generation of daily rainfall. We used two parameters of Markov Chain process (transition probabilities of wet-to-wet and dry-to-dry days) for simulating rainfall occurrence and two parameters of gamma distribution (calculated from mean and standard deviation of wet-day rainfall) for simulating wet-day rainfall amounts. While two models with deterministic parameters underestimated long term variability, our investigation found that the long term variability of rainfall in the model is predominantly governed by the long term variability of gamma parameters, rather than the variability of Markov Chain parameters. Therefore, in the third approach, we developed the CDMC model with deterministic parameters of Markov Chain process, but stochastic parameters of gamma distribution by sampling the mean and standard deviation of wet-day rainfall from their log-normal and bivariate-normal distribution. We have found that the CDMC is able to replicate both short term and long term rainfall variability, when we calibrated the model at two sites in east coast of Australia using three types of daily rainfall data - (1) dynamically downscaled, 10 km resolution gridded data produced by NSW/ACT Regional Climate Modelling project, (2) 5 km resolution gridded data by Australian Water Availability Project and (3) point scale raingauge stations data by Bureau of Meteorology, Australia. We also examined the spatial variability of parameters and their link with local orography at our field site. The suitability of the model in runoff generation and urban reservoir-water simulation will be discussed.
NASA Astrophysics Data System (ADS)
Schofield, Jeremy; Bayat, Hanif
2014-09-01
A Markov state model of the dynamics of a protein-like chain immersed in an implicit hard sphere solvent is derived from first principles for a system of monomers that interact via discontinuous potentials designed to account for local structure and bonding in a coarse-grained sense. The model is based on the assumption that the implicit solvent interacts on a fast time scale with the monomers of the chain compared to the time scale for structural rearrangements of the chain and provides sufficient friction so that the motion of monomers is governed by the Smoluchowski equation. A microscopic theory for the dynamics of the system is developed that reduces to a Markovian model of the kinetics under well-defined conditions. Microscopic expressions for the rate constants that appear in the Markov state model are analyzed and expressed in terms of a temperature-dependent linear combination of escape rates that themselves are independent of temperature. Excellent agreement is demonstrated between the theoretical predictions of the escape rates and those obtained through simulation of a stochastic model of the dynamics of bond formation. Finally, the Markov model is studied by analyzing the eigenvalues and eigenvectors of the matrix of transition rates, and the equilibration process for a simple helix-forming system from an ensemble of initially extended configurations to mainly folded configurations is investigated as a function of temperature for a number of different chain lengths. For short chains, the relaxation is primarily single-exponential and becomes independent of temperature in the low-temperature regime. The profile is more complicated for longer chains, where multi-exponential relaxation behavior is seen at intermediate temperatures followed by a low temperature regime in which the folding becomes rapid and single exponential. It is demonstrated that the behavior of the equilibration profile as the temperature is lowered can be understood in terms of the
BENCHMARK TESTS FOR MARKOV CHAIN MONTE CARLO FITTING OF EXOPLANET ECLIPSE OBSERVATIONS
Rogers, Justin; Lopez-Morales, Mercedes; Apai, Daniel; Adams, Elisabeth
2013-04-10
Ground-based observations of exoplanet eclipses provide important clues to the planets' atmospheric physics, yet systematics in light curve analyses are not fully understood. It is unknown if measurements suggesting near-infrared flux densities brighter than models predict are real, or artifacts of the analysis processes. We created a large suite of model light curves, using both synthetic and real noise, and tested the common process of light curve modeling and parameter optimization with a Markov Chain Monte Carlo algorithm. With synthetic white noise models, we find that input eclipse signals are generally recovered within 10% accuracy for eclipse depths greater than the noise amplitude, and to smaller depths for higher sampling rates and longer baselines. Red noise models see greater discrepancies between input and measured eclipse signals, often biased in one direction. Finally, we find that in real data, systematic biases result even with a complex model to account for trends, and significant false eclipse signals may appear in a non-Gaussian distribution. To quantify the bias and validate an eclipse measurement, we compare both the planet-hosting star and several of its neighbors to a separately chosen control sample of field stars. Re-examining the Rogers et al. Ks-band measurement of CoRoT-1b finds an eclipse 3190{sup +370}{sub -440} ppm deep centered at {phi}{sub me} = 0.50418{sup +0.00197}{sub -0.00203}. Finally, we provide and recommend the use of selected data sets we generated as a benchmark test for eclipse modeling and analysis routines, and propose criteria to verify eclipse detections.
NASA Astrophysics Data System (ADS)
Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Nadeeka, P. M.
2014-12-01
This study used high resolution spatially distributed rainfall data produced by NSW/ACT Regional Climate Modelling (NARCliM) project. NARCliM dynamically downscaled four Global Climate Models using three Regional Climate Models within the Weather Research and Forecasting model to generate gridded climate data at 10 km spatial resolution for south eastern Australia. These dataset are being used in this project to evaluate the urban water security of reservoirs on the east coast of Australia. A stochastic model to simulate rainfall series was developed for runoff generation using parameters calibrated to NARCliM. This study has developed a Markov Chain model, which simulates the occurrence of daily rainfall using the transition probability of dry and wet days, while the precipitation for the wet days are generated using a two parameter gamma distribution. We have identified significant seasonal and intra- to inter-decadal variations of the model parameters at our field site. Incorporating the temporal variability (for instance, calibrating the model parameters to each decade independently), we have found that the model satisfactorily preserves the daily, monthly and annual characteristics of the NARCliM rainfall. In addition to the temporal variability, we have observed that the model parameters vary spatially at our site with potential orographic effects that vary both seasonally and decadally. However, the parameters of the model fitted to the NARCliM rainfall are significantly different from the parameters fitted to the ground-based climate station rainfall. Suitability of the model for the generation of long time series (e.g. 1000 years) required for reservoir simulation will be discussed.
A Markov Chain Monte Carlo Approach to Estimate AIDS after HIV Infection
Apenteng, Ofosuhene O.; Ismail, Noor Azina
2015-01-01
The spread of human immunodeficiency virus (HIV) infection and the resulting acquired immune deficiency syndrome (AIDS) is a major health concern in many parts of the world, and mathematical models are commonly applied to understand the spread of the HIV epidemic. To understand the spread of HIV and AIDS cases and their parameters in a given population, it is necessary to develop a theoretical framework that takes into account realistic factors. The current study used this framework to assess the interaction between individuals who developed AIDS after HIV infection and individuals who did not develop AIDS after HIV infection (pre-AIDS). We first investigated how probabilistic parameters affect the model in terms of the HIV and AIDS population over a period of time. We observed that there is a critical threshold parameter, R0, which determines the behavior of the model. If R0 ≤ 1, there is a unique disease-free equilibrium; if R0 < 1, the disease dies out; and if R0 > 1, the disease-free equilibrium is unstable. We also show how a Markov chain Monte Carlo (MCMC) approach could be used as a supplement to forecast the numbers of reported HIV and AIDS cases. An approach using a Monte Carlo analysis is illustrated to understand the impact of model-based predictions in light of uncertain parameters on the spread of HIV. Finally, to examine this framework and demonstrate how it works, a case study was performed of reported HIV and AIDS cases from an annual data set in Malaysia, and then we compared how these approaches complement each other. We conclude that HIV disease in Malaysia shows epidemic behavior, especially in the context of understanding and predicting emerging cases of HIV and AIDS. PMID:26147199
An informational transition in conditioned Markov chains: Applied to genetics and evolution.
Zhao, Lei; Lascoux, Martin; Waxman, David
2016-08-01
In this work we assume that we have some knowledge about the state of a population at two known times, when the dynamics is governed by a Markov chain such as a Wright-Fisher model. Such knowledge could be obtained, for example, from observations made on ancient and contemporary DNA, or during laboratory experiments involving long term evolution. A natural assumption is that the behaviour of the population, between observations, is related to (or constrained by) what was actually observed. The present work shows that this assumption has limited validity. When the time interval between observations is larger than a characteristic value, which is a property of the population under consideration, there is a range of intermediate times where the behaviour of the population has reduced or no dependence on what was observed and an equilibrium-like distribution applies. Thus, for example, if the frequency of an allele is observed at two different times, then for a large enough time interval between observations, the population has reduced or no dependence on the two observed frequencies for a range of intermediate times. Given observations of a population at two times, we provide a general theoretical analysis of the behaviour of the population at all intermediate times, and determine an expression for the characteristic time interval, beyond which the observations do not constrain the population's behaviour over a range of intermediate times. The findings of this work relate to what can be meaningfully inferred about a population at intermediate times, given knowledge of terminal states. PMID:27105672
Input estimation for drug discovery using optimal control and Markov chain Monte Carlo approaches.
Trägårdh, Magnus; Chappell, Michael J; Ahnmark, Andrea; Lindén, Daniel; Evans, Neil D; Gennemark, Peter
2016-04-01
Input estimation is employed in cases where it is desirable to recover the form of an input function which cannot be directly observed and for which there is no model for the generating process. In pharmacokinetic and pharmacodynamic modelling, input estimation in linear systems (deconvolution) is well established, while the nonlinear case is largely unexplored. In this paper, a rigorous definition of the input-estimation problem is given, and the choices involved in terms of modelling assumptions and estimation algorithms are discussed. In particular, the paper covers Maximum a Posteriori estimates using techniques from optimal control theory, and full Bayesian estimation using Markov Chain Monte Carlo (MCMC) approaches. These techniques are implemented using the optimisation software CasADi, and applied to two example problems: one where the oral absorption rate and bioavailability of the drug eflornithine are estimated using pharmacokinetic data from rats, and one where energy intake is estimated from body-mass measurements of mice exposed to monoclonal antibodies targeting the fibroblast growth factor receptor (FGFR) 1c. The results from the analysis are used to highlight the strengths and weaknesses of the methods used when applied to sparsely sampled data. The presented methods for optimal control are fast and robust, and can be recommended for use in drug discovery. The MCMC-based methods can have long running times and require more expertise from the user. The rigorous definition together with the illustrative examples and suggestions for software serve as a highly promising starting point for application of input-estimation methods to problems in drug discovery. PMID:26932466
A Markov Chain Monte Carlo Approach to Estimate AIDS after HIV Infection.
Apenteng, Ofosuhene O; Ismail, Noor Azina
2015-01-01
The spread of human immunodeficiency virus (HIV) infection and the resulting acquired immune deficiency syndrome (AIDS) is a major health concern in many parts of the world, and mathematical models are commonly applied to understand the spread of the HIV epidemic. To understand the spread of HIV and AIDS cases and their parameters in a given population, it is necessary to develop a theoretical framework that takes into account realistic factors. The current study used this framework to assess the interaction between individuals who developed AIDS after HIV infection and individuals who did not develop AIDS after HIV infection (pre-AIDS). We first investigated how probabilistic parameters affect the model in terms of the HIV and AIDS population over a period of time. We observed that there is a critical threshold parameter, R0, which determines the behavior of the model. If R0 ≤ 1, there is a unique disease-free equilibrium; if R0 < 1, the disease dies out; and if R0 > 1, the disease-free equilibrium is unstable. We also show how a Markov chain Monte Carlo (MCMC) approach could be used as a supplement to forecast the numbers of reported HIV and AIDS cases. An approach using a Monte Carlo analysis is illustrated to understand the impact of model-based predictions in light of uncertain parameters on the spread of HIV. Finally, to examine this framework and demonstrate how it works, a case study was performed of reported HIV and AIDS cases from an annual data set in Malaysia, and then we compared how these approaches complement each other. We conclude that HIV disease in Malaysia shows epidemic behavior, especially in the context of understanding and predicting emerging cases of HIV and AIDS. PMID:26147199
Discovering Beaten Paths in Collaborative Ontology-Engineering Projects using Markov Chains
Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A.; Noy, Natalya F.
2014-01-01
Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50, 000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology
Cosmological constraints on generalized Chaplygin gas model: Markov Chain Monte Carlo approach
Xu, Lixin; Lu, Jianbo E-mail: lvjianbo819@163.com
2010-03-01
We use the Markov Chain Monte Carlo method to investigate a global constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Constitution dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a non-flat universe, the constraint results for GCG model are, Ω{sub b}h{sup 2} = 0.0235{sup +0.0021}{sub −0.0018} (1σ) {sup +0.0028}{sub −0.0022} (2σ), Ω{sub k} = 0.0035{sup +0.0172}{sub −0.0182} (1σ) {sup +0.0226}{sub −0.0204} (2σ), A{sub s} = 0.753{sup +0.037}{sub −0.035} (1σ) {sup +0.045}{sub −0.044} (2σ), α = 0.043{sup +0.102}{sub −0.106} (1σ) {sup +0.134}{sub −0.117} (2σ), and H{sub 0} = 70.00{sup +3.25}{sub −2.92} (1σ) {sup +3.77}{sub −3.67} (2σ), which is more stringent than the previous results for constraint on GCG model parameters. Furthermore, according to the information criterion, it seems that the current observations much support ΛCDM model relative to the GCG model.
Asteroid orbital inversion using a virtual-observation Markov-chain Monte Carlo method
NASA Astrophysics Data System (ADS)
Muinonen, Karri; Granvik, Mikael; Oszkiewicz, Dagmara; Pieniluoma, Tuomo; Pentikäinen, Hanna
2012-12-01
A novel virtual-observation Markov-chain Monte Carlo method (MCMC) is presented for the asteroid orbital inverse problem posed by small to moderate numbers of astrometric observations. In the method, the orbital-element proposal probability density is chosen to mimic the convolution of the a posteriori density by itself: first, random errors are simulated for each observation, resulting in a set of virtual observations; second, least-squares orbital elements are derived for the virtual observations using the Nelder-Mead downhill simplex method; third, repeating the procedure gives a difference between two sets of what can be called virtual least-squares elements; and, fourth, the difference obtained constitutes a symmetric proposal in a random-walk Metropolis-Hastings algorithm, avoiding the explicit computation of the proposal density. In practice, the proposals are based on a large number of pre-computed sets of orbital elements. Virtual-observation MCMC is thus based on the characterization of the phase-space volume of solutions before the actual MCMC sampling. Virtual-observation MCMC is compared to MCMC orbital ranging, a random-walk Metropolis-Hastings algorithm based on sampling with the help of Cartesian positions at two observation dates, in the case of the near-Earth asteroid (85640) 1998 OX4. In the present preliminary comparison, the methods yield similar results for a 9.1-day observational time interval extracted from the full current astrometry of the asteroid. In the future, both of the methods are to be applied to the astrometric observations of the Gaia mission.
Recovering the inflationary potential: An analysis using flow methods and Markov chain Monte Carlo
NASA Astrophysics Data System (ADS)
Powell, Brian A.
Since its inception in 1980 by Guth [1], inflation has emerged as the dominant paradigm for describing the physics of the early universe. While inflation has matured theoretically over two decades, it has only recently begun to be rigorously tested observationally. Measurements of the cosmic microwave background (CMB) and large-scale structure surveys (LSS) have begun to unravel the mysteries of the inflationary epoch with exquisite and unprecedented accuracy. This thesis is a contribution to the effort of reconstructing the physics of inflation. This information is largely encoded in the potential energy function of the inflaton, the field that drives the inflationary expansion. With little theoretical guidance as to the probable form of this potential, reconstruction is a predominantly data-driven endeavor. This thesis presents an investigation of the constrainability of the inflaton potential given current CMB and LSS data. We develop a methodology based on the inflationary flow formalism that provides an assessment of our current ability to resolve the form of the inflaton potential in the face of experimental and statistical error. We find that there is uncertainty regarding the initial dynamics of the inflaton field, related to the poor constraints that can be drawn on the primordial power spectrum on large scales. We also investigate the future prospects of potential reconstruction, as might be expected when data from ESA's Planck Surveyor becomes available. We develop an approach that utilizes Markov chain Monte Carlo to analyze the statistical properties of the inflaton potential. Besides providing constraints on the parameters of the potential, this method makes it possible to perform model selection on the inflationary model space. While future data will likely determine the general features of the inflaton, there will likely be many different models that remain good fits to the data. Bayesian model selection will then be needed to draw comparisons
NASA Astrophysics Data System (ADS)
Sadegh, M.; Vrugt, J. A.
2013-12-01
The ever increasing pace of computational power, along with continued advances in measurement technologies and improvements in process understanding has stimulated the development of increasingly complex hydrologic models that simulate soil moisture flow, groundwater recharge, surface runoff, root water uptake, and river discharge at increasingly finer spatial and temporal scales. Reconciling these system models with field and remote sensing data is a difficult task, particularly because average measures of model/data similarity inherently lack the power to provide a meaningful comparative evaluation of the consistency in model form and function. The very construction of the likelihood function - as a summary variable of the (usually averaged) properties of the error residuals - dilutes and mixes the available information into an index having little remaining correspondence to specific behaviors of the system (Gupta et al., 2008). The quest for a more powerful method for model evaluation has inspired Vrugt and Sadegh [2013] to introduce "likelihood-free" inference as vehicle for diagnostic model evaluation. This class of methods is also referred to as Approximate Bayesian Computation (ABC) and relaxes the need for an explicit likelihood function in favor of one or multiple different summary statistics rooted in hydrologic theory that together have a much stronger and compelling diagnostic power than some aggregated measure of the size of the error residuals. Here, we will introduce an efficient ABC sampling method that is orders of magnitude faster in exploring the posterior parameter distribution than commonly used rejection and Population Monte Carlo (PMC) samplers. Our methodology uses Markov Chain Monte Carlo simulation with DREAM, and takes advantage of a simple computational trick to resolve discontinuity problems with the application of set-theoretic summary statistics. We will also demonstrate a set of summary statistics that are rather insensitive to
Discovering beaten paths in collaborative ontology-engineering projects using Markov chains.
Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A; Noy, Natalya F
2014-10-01
Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50,000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology
NASA Astrophysics Data System (ADS)
Lopes, Artur O.; Neumann, Adriana
2015-05-01
In the present paper, we consider a family of continuous time symmetric random walks indexed by , . For each the matching random walk take values in the finite set of states ; notice that is a subset of , where is the unitary circle. The infinitesimal generator of such chain is denoted by . The stationary probability for such process converges to the uniform distribution on the circle, when . Here we want to study other natural measures, obtained via a limit on , that are concentrated on some points of . We will disturb this process by a potential and study for each the perturbed stationary measures of this new process when . We disturb the system considering a fixed potential and we will denote by the restriction of to . Then, we define a non-stochastic semigroup generated by the matrix , where is the infinifesimal generator of . From the continuous time Perron's Theorem one can normalized such semigroup, and, then we get another stochastic semigroup which generates a continuous time Markov Chain taking values on . This new chain is called the continuous time Gibbs state associated to the potential , see (Lopes et al. in J Stat Phys 152:894-933, 2013). The stationary probability vector for such Markov Chain is denoted by . We assume that the maximum of is attained in a unique point of , and from this will follow that . Thus, here, our main goal is to analyze the large deviation principle for the family , when . The deviation function , which is defined on , will be obtained from a procedure based on fixed points of the Lax-Oleinik operator and Aubry-Mather theory. In order to obtain the associated Lax-Oleinik operator we use the Varadhan's Lemma for the process . For a careful analysis of the problem we present full details of the proof of the Large Deviation Principle, in the Skorohod space, for such family of Markov Chains, when . Finally, we compute the entropy of the invariant probabilities on the Skorohod space associated to the Markov Chains we analyze.