Science.gov

Sample records for juvenile hormone influence

  1. THE INFLUENCE OF INSECT JUVENILE HORMONE AGONISTTS ON METAMORPHOSIS AND REPRODUCTION IN ESTUARINE CRUSTACEANS

    EPA Science Inventory

    Comparative developmental and reproductive studies were performed on several species of estuarine crustaceans in response to three juvenile hormone agonists (JHAs) (methoprene, fenoxycarb, and pyriproxyfen). Larval development of the grass shrimp, Palaemonetes pugio, was greater ...

  2. Advertised quality, caste and food availability influence the survival cost of juvenile hormone in paper wasps.

    PubMed

    Tibbetts, Elizabeth A; Banan, Maral

    2010-11-22

    Life-history trade-offs are often hormonally mediated. Here, we provide a comparative perspective on the endocrine basis of life-history trade-offs by examining the invertebrate hormone juvenile hormone (JH). JH is often associated with benefits, including increased dominance and reproductive success. We tested whether JH reduced survival of Polistes dominulus wasps and whether this survival cost was influenced by factors such as advertised quality, food availability, caste and body size. Overall, JH reduced individual survival. Among fed and unfed queens, JH reduced survival in a dose-dependent manner. Among workers, JH had a stronger effect on survival of fed workers than unfed workers. Unfed workers died quickly and body size was the best predictor of survival. Surprisingly, queens and workers treated with JH survived longer when they had signals advertising high quality than when they had signals advertising low quality. The relationship between advertised quality and ability to withstand high levels of JH suggests that there are differential physiological costs associated with ornament elaboration that could play a role in maintaining signal accuracy over evolutionary time. Overall, the convergence of endocrine-mediated costs across diverse systems suggests that endocrine-mediated trade-offs may be an adaptive way to optimize resource allocation rather than a non-adaptive constraint specific to a particular hormone. PMID:20534614

  3. Juvenile hormone and colony conditions differentially influence cytochrome P450 gene expression in the termite Reticulitermes flavipes.

    PubMed

    Zhou, X; Song, C; Grzymala, T L; Oi, F M; Scharf, M E

    2006-12-01

    In lower termites, the worker caste is a totipotent immature stage that is capable of differentiating into other adult caste phenotypes. We investigated the diversity of family 4 cytochrome P450 (CYP4) genes in Reticulitermes flavipes workers, with the specific goal of identifying P450s potentially involved in regulating caste differentiation. Seven novel CYP4 genes were identified. Quantitative real-time PCR revealed the tissue distribution of expression for the seven CYP4s, as well as temporal expression changes in workers in association with a release from colony influences and during juvenile hormone (JH)-induced soldier caste differentiation. Several fat-body-related CYP4 genes were differentially expressed after JH treatment. Still other genes changed expression in association with removal from colony influences, suggesting that primer pheromones and/or other colony influences impact their expression. These findings add to a growing database of candidate termite caste-regulatory genes, and provide explicit evidence that colony factors influence termite gene expression. PMID:17201768

  4. Influences of octopamine and juvenile hormone on locomotor behavior and period gene expression in the honeybee, Apis mellifera.

    PubMed

    Bloch, Guy; Meshi, Avital

    2007-02-01

    Octopamine (OA) and juvenile hormone (JH) are implicated in the regulation of age-based division of labor in the honeybee, Apis mellifera. We tested the hypothesis that these two neuroendocrine signals influence task-associated plasticity in circadian and diurnal rhythms, and in brain expression of the clock gene period (per). Treatment with OA, OA antagonist (epinastine), or both, did not affect the age at onset of circadian rhythmicity or the free running period in constant darkness (DD). Young bees orally treated with OA in light-dark (LD) illumination regime for 6 days followed by DD showed reduced alpha (the period between the daily onset and offset of activity) during the first 4 days in LD and the first 4 days in DD. Oral treatment with OA, epinastine, or both, but not manipulations of JH levels, caused increased average daily levels and aberrant patterns of brain per mRNA oscillation in young bees. These results suggest that OA and JH do not influence the development or function of the central pacemaker but rather that OA influences the brain expression of a clock gene and characteristics of locomotor behavior that are not thought to be under direct control of the circadian pacemaker. PMID:17082965

  5. Behavioural effects of juvenile hormone and their influence on division of labour in leaf-cutting ant societies.

    PubMed

    Norman, Victoria C; Hughes, William O H

    2016-01-01

    Division of labour in social insects represents a major evolutionary transition, but the physiological mechanisms that regulate this are still little understood. Experimental work with honey bees, and correlational analyses in other social insects, have implicated juvenile hormone (JH) as a regulatory factor, but direct experimental evidence of behavioural effects of JH in social insects is generally lacking. Here, we used experimental manipulation of JH to show that raised JH levels in leaf-cutting ants results in workers becoming more active, phototactic and threat responsive, and engaging in more extranidal activity - behavioural changes that we show are all characteristic of the transition from intranidal work to foraging. These behavioural effects on division of labour suggest that the JH mediation of behaviour occurs across multiple independent evolutions of eusociality, and may be a key endocrine regulator of the division of labour which has produced the remarkable ecological and evolutionary success of social insects. PMID:26739685

  6. IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate.

    PubMed

    Mutti, Navdeep S; Dolezal, Adam G; Wolschin, Florian; Mutti, Jasdeep S; Gill, Kulvinder S; Amdam, Gro V

    2011-12-01

    Regardless of genetic makeup, a female honey bee becomes a queen or worker depending on the food she receives as a larva. For decades, it has been known that nutrition and juvenile hormone (JH) signaling determine the caste fate of the individual bee. However, it is still largely unclear how these factors are connected. To address this question, we suppressed nutrient sensing by RNA interference (RNAi)-mediated gene knockdown of IRS (insulin receptor substrate) and TOR (target of rapamycin) in larvae reared on queen diet. The treatments affected several layers of organismal organization that could play a role in the response to differential nutrition between castes. These include transcript profiles, proteomic patterns, lipid levels, DNA methylation response and morphological features. Most importantly, gene knockdown abolished a JH peak that signals queen development and resulted in a worker phenotype. Application of JH rescued the queen phenotype in either knockdown, which demonstrates that the larval response to JH remains intact and can drive normal developmental plasticity even when IRS or TOR transcript levels are reduced. We discuss our results in the context of other recent findings on honey bee caste and development and propose that IRS is an alternative substrate for the Egfr (epidermal growth factor receptor) in honey bees. Overall, our study describes how the interplay of nutritional and hormonal signals affects many levels of organismal organization to build different phenotypes from identical genotypes. PMID:22071189

  7. Larval feeding substrate and species significantly influence the effect of juvenile hormone analog on sexual development/performance in four tropical tephritid flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The juvenile hormone analog methoprene reduces the amount of time it takes laboratory-reared Anastrepha suspensa (Caribbean fruit fly) males to reach sexual maturity by almost half. Here, we examined if methoprene exerted a similar effect on four other species of Anastrepha (A. ludens, A. obliqua, ...

  8. Hydroxy juvenile hormones: new putative juvenile hormones biosynthesized by locust corpora allata in vitro.

    PubMed

    Darrouzet, E; Mauchamp, B; Prestwich, G D; Kerhoas, L; Ujváry, I; Couillaud, F

    1997-11-26

    The in vitro production of sesquiterpenoids was investigated by using corpora allata (CA) of the African locust Locusta migratoria migratorioides. Labeled products from unstimulated biosynthesis were extracted, purified by normal phase HPLC, and derivatized to determine the functional groups present. An extra hydroxyl group was detected in each of two juvenile hormone (JH) biosynthetic products. One compound, NP-8, was found to co-migrate with a chemically-synthesized (Z)-hydroxymethyl isomer, 12'-OH JH-III, but not with the (E)-hydroxymethyl isomer, 12-OH JH III. Mass spectral analyses further supported the identity of the synthetic material with that biosynthesized by the corpora allata. A second compound was identified as the 8'-OH JH-III based on spectroscopic analyses. 12'-OH JH-III exhibited morphogenetic activity when tested on the heterospecific Tenebrio test. These data suggest that 12'-OH JH-III and 8'-OH JH-III are additional biosynthetically-produced and biologically-active juvenile hormones, and constitute the first known members of the class of hydroxy juvenile hormones (HJHs). PMID:9398639

  9. Aedes aegypti juvenile hormone acid methyl transferase, the ultimate enzyme in the biosynthetic pathway of juvenile hormone III, exhibits substrate control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the cloning, sequencing, characterization, 3D modeling and docking of Aedes aegypti juvenile hormone acid methyl transferase (AeaJHAMT), the enzyme that converts juvenile hormone acid (JHA) into juvenile hormone (JH). Purified recombinant AeaJHAMT was extensively characterized for enzym...

  10. Juvenile Hormone Extraction, Purification, and Quantification in Ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juvenile hormone (JH) is an important insect hormone known to have many effects on development, reproduction, and behavior in both solitary and social insects. A number of questions using ants as a model involve JH. This procedure allows for quantification of circulating levels of JH III, which can ...

  11. Radiochemical Assay of Juvenile Hormone Biosynthesis Rate in Ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juvenile hormone (JH) is an important insect hormone known to have many effects on development, reproduction,and behavior in both solitary and social insects. This protocol describes how to quantify in vitro biosynthesis rates from excised corpora allata (CA), the glands responsible for JH productio...

  12. Bioassays of Compounds with Potential Juvenoid Activity on Drosophila melanogaster: Juvenile Hormone III, Bisepoxide Juvenile Hormone III and Methyl Farnesoates

    PubMed Central

    Harshman, Lawrence G.; Song, Ki-Duck; Casas, Josephina; Schuurmans, A.; Kuwano, Eichii; Kachman, Stephen D.; Riddiford, Lynn M.; Hammock, Bruce D.

    2010-01-01

    Metabolites of the 6,7,10,11 bisepoxide juvenile hormone III (JHB3), and other potential juvenoids, were tested for juvenile hormone activity using early instar or early stage pupae of Drosophila melanogaster. Importantly, methyl farnesoates were tested as they might have JH-like activity on Dipteran juveniles. Larvae were exposed to compounds in medium, or the compounds were applied to white puparia. In the assays employed in the present study, there was no indication for JH activity associated with the metabolites of JHB3. The activity of methyl farnesoate (MF) was higher than that of JH III and far greater than bisepoxide JH III. As opposed to the two endogenous juvenile hormones, methyl farnesoate has weak activity in the white puparial bioassaay. When fluorinated forms of methyl farnesoate, which is unlikely to be converted to JH, were applied to Drosophila medium to which fly eggs were introduced, there was a high degree of larval mortality, but no evidence of subsequent mortality at the pupal stage. One possible explanation for the results is that methyl farnesoate is active as a hormone in larval stages, but has little activity at the pupal stage where only juvenile hormone has a major effect. PMID:20599543

  13. Nervous control of juvenile hormone biosynthesis in Locusta migratoria.

    PubMed Central

    Horseman, G; Hartmann, R; Virant-Doberlet, M; Loher, W; Huber, F

    1994-01-01

    In Locusta migratoria migratorioides R. and F., two types of brain neurons innervate the juvenile hormone (JH)-producing corpora allata (CA). Thirteen cells in each pars lateralis (PL) innervate the ipsilateral CA, while four cells (two in each PL) innervate both glands. We investigated possible influences of these two neuronal types on JH production by a newly developed method. A radiochemical assay was used to measure hourly JH production by a CA with intact nerve connections to the brain. Then, changes in hormone production due to selective nerve stimulation or transection were assessed. In control preparations JH production per h remained approximately constant for at least 9 h. Simultaneous electrical stimulation of all neurons innervating one CA (i.e., 13 ipsilateral plus 4 bilaterally innervating cells) always inhibited JH production, while their transection led to a rapid progressive increase in JH biosynthesis in CA from females with oocytes longer than 4.5 mm. Thus, there is strong neurally mediated inhibition of the CA at certain phases of the vitellogenic cycle. The dramatic effects of nerve transection show that in vitro rates of JH production are an unreliable indicator of in vivo levels. Selective stimulation of the four neurons innervating both CA suggests that they do modulate JH biosynthesis but the effect varies qualitatively depending on the phase of the vitellogenic cycle. Images PMID:8159687

  14. Nervous control of juvenile hormone biosynthesis in Locusta migratoria.

    PubMed

    Horseman, G; Hartmann, R; Virant-Doberlet, M; Loher, W; Huber, F

    1994-04-12

    In Locusta migratoria migratorioides R. and F., two types of brain neurons innervate the juvenile hormone (JH)-producing corpora allata (CA). Thirteen cells in each pars lateralis (PL) innervate the ipsilateral CA, while four cells (two in each PL) innervate both glands. We investigated possible influences of these two neuronal types on JH production by a newly developed method. A radiochemical assay was used to measure hourly JH production by a CA with intact nerve connections to the brain. Then, changes in hormone production due to selective nerve stimulation or transection were assessed. In control preparations JH production per h remained approximately constant for at least 9 h. Simultaneous electrical stimulation of all neurons innervating one CA (i.e., 13 ipsilateral plus 4 bilaterally innervating cells) always inhibited JH production, while their transection led to a rapid progressive increase in JH biosynthesis in CA from females with oocytes longer than 4.5 mm. Thus, there is strong neurally mediated inhibition of the CA at certain phases of the vitellogenic cycle. The dramatic effects of nerve transection show that in vitro rates of JH production are an unreliable indicator of in vivo levels. Selective stimulation of the four neurons innervating both CA suggests that they do modulate JH biosynthesis but the effect varies qualitatively depending on the phase of the vitellogenic cycle. PMID:8159687

  15. [The effect of an injection of synthetic juvenile hormone on Locusta migratoria L].

    PubMed

    Roussel, J P

    1975-05-01

    Hyalophora cecropia synthetic juvenile hormone (Demoute and al., 1973) is injected at doses of 50, 100 or 200 mug in 10 mul of pure peanut oil in fourth stadium of Locusta migratoria migratorioides. This synthetic juvenile hormone shows high chromatotropic, gonadotropic, and juvenilizing actions which are very similar to those of one pair of corpora allata of the species. PMID:807387

  16. Juvenile hormone regulation of longevity in the migratory monarch butterfly.

    PubMed

    Herman, W S; Tatar, M

    2001-12-22

    Monarch butterflies (Danaus plexippus) of eastern North America are well known for their long-range migration to overwintering roosts in south-central Mexico. An essential feature of this migration involves the exceptional longevity of the migrant adults; individuals persist from August/September to March while their summer counterparts are likely to live less than two months as adults. Migrant adults persist during a state of reproductive diapause in which both male and female reproductive development is arrested as a consequence of suppressed synthesis of juvenile hormone. Here, we describe survival in monarch butterflies as a function of the migrant syndrome. We show that migrant adults are longer lived than summer adults when each are maintained under standard laboratory conditions, that the longevity of migrant adults is curtailed by treatment with juvenile hormone and that the longevity of summer adults is increased by 100% when juvenile hormone synthesis is prevented by surgical removal of its source, the corpora allatum. Thus, monarch butterfly persistence through a long winter season is ensured in part by reduced ageing that is under endocrine regulation, as well as by the unique environmental properties of their winter roost sites. Phenotypic plasticity for ageing is an integral component of the monarch butterflies' migration-diapause syndrome. PMID:11749703

  17. Modeling resistance to juvenile hormone analogs: linking evolution, ecology and management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juvenile hormone analogs (JHAs) are insecticides that mimic insect juvenile hormone and interfere with normal insect development. JHAs disrupt a hormonal system that is specific to insects and thus kill some target pests while causing little or no harm to most non-target organisms. Because of thei...

  18. [dFOXO Transcription Factor Regulates Juvenile Hormone Metabolism in Drosophila melanogaster Females].

    PubMed

    Rauschenbach, I Yu; Karpova, E K; Gruntenko, N E

    2015-09-01

    dFOXO transcription factor is a component of the insulin/insulin-like growth factor signaling pathway in Drosophila. Juvenile hormone negatively regulates dFOXO gene expression. In the present work, the effect of hypomorphic dFOXO mutation on juvenile hormone metabolism under normal and stressing conditions and on D. melanogaster female resistance to thermal stress was studied. It was demonstrated that dFOXO mutation in D. melanogaster females induces (1) an increase in the level of juvenile hormone degradation and in the intensity of the response of the juvenile hormone metabolism system to thermal stress and (2) a decrease in thermal stress resistance. These parameters are indicators of the level of juvenile hormone synthesis and indicate its decrease in females with decreased dFOXO expression. Thus, the presence of feedback in the regulation of dFOXO gene expression by juvenile hormone was established for the first time. PMID:26606805

  19. Soldier caste influences on candidate primer pheromone levels and juvenile hormone-dependent caste differentiation in workers of the termite Reticulitermes flavipes.

    PubMed

    Tarver, Matthew R; Schmelz, Eric A; Scharf, Michael E

    2011-06-01

    Caste systems and the division of labor they make possible are common underlying features of all social insects. Multiple extrinsic factors have been shown to impact caste composition in social insect colonies. Primer pheromones are one type of extrinsic caste-regulatory factor; they are chemical signaling molecules produced by certain colony members to impact developmental physiology of recipient nestmates. However, only limited evidence exists regarding primer pheromones and their actions in eusocial termites. In previous research we identified two soldier-produced terpenes, γ-cadinene (CAD) and γ-cadinenal (ALD), as candidate primer pheromones of the lower termite Reticulitermes flavipes. In the present study we tested hypotheses related to CAD and ALD action in recipient individuals. We examined the influences of terminally developed soldier termites on (1) CAD and ALD levels and (2) caste differentiation in developmentally totipotent workers. Our findings show CAD and ALD (respectively) are caste stimulatory and inhibitory components of chemical blends present in soldier heads, ALD levels increase significantly (10.9×) in workers only in the presence of soldiers, and soldiers can reduce developmental-hormone response thresholds of workers, presumably via ALD action. These findings provide novel evidence supporting that CAD and ALD are authentic caste-regulatory primer pheromones in Reticulitermes. PMID:21356212

  20. Ecdysteroids and Juvenile Hormones of Whiteflies, Important Insect Vectors for Plant Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecdysteroids and juvenile hormones (JHs) regulate many physiological events throughout the insect life cycle, including molting, metamorphosis, ecdysis, diapause, reproduction and behavior. Fluctuation of whitefly ecdysteroid levels and the identity of the whitefly molting hormone have only been re...

  1. Effects of juvenile hormone on eggs and adults of the cat flea (Siphonaptera: Pulicidae).

    PubMed

    Meola, R W; Dean, S R; Bhaskaran, G

    2001-01-01

    Juvenile hormone III plays a major role in regulating feeding and reproduction in the adult cat flea, Ctenocephalides felis (Bouché). Both blood consumption and egg production increased in a dose-dependent manner up to a maximum at 1,250 ppm when fleas were continuously exposed to concentrations up to 12,500 ppm juvenile hormone. Histological studies demonstrated that juvenile hormone III also stimulated cellular differentiation of salivary gland epithelia, midgut epithelia, and fat body cells, enhancing the ability of the adult flea to digest blood and synthesize vitellogenins for the maturing oocytes. In unfed fleas, exposure of adults to concentrations of > or = 1,000 ppm juvenile hormone III applied to filter paper resulted in membrane lysis and destruction of salivary gland and midgut epithelial cells, fat body cells, and ovarian tissue. Unlike juvenile hormone mimics, which have potent ovicidal effects in fleas, juvenile hormone had little effect in preventing egg hatch; 58% of the eggs laid by fleas treated with 12,500 ppm juvenile hormone III hatched, and a concentration of 30,000 ppm was required to reduce hatch to 2% in untreated eggs exposed to treated filter paper for 2 h. Compared with the juvenile hormone mimic pyriproxyfen, juvenile hormone III was less toxic to fed adult fleas. However, at a concentration of 12,500 ppm, juvenile hormone killed approximately 45% of the adults and caused autolysis and yolk resorption in the developing oocytes. Thus, at high concentrations, juvenile hormone appears to have a pharmacological effect on fleas, which is highly unusual in insects. PMID:11268696

  2. Protein kinase C mediated phosphorylation blocks juvenile hormone action.

    PubMed

    Kethidi, Damu R; Li, Yiping; Palli, Subba R

    2006-03-01

    Juvenile hormones (JH) regulate a wide variety of developmental and physiological processes in insects. Although the biological actions of JH are well documented, the molecular mechanisms underlying JH action are poorly understood. We studied the molecular basis of JH action using a JH response element (JHRE) identified in the promoter region of JH esterase gene cloned from Choristoneura fumiferana, which is responsive to JH and 20-hydroxyecdysone (20E). In Drosophila melanogaster L57 cells, the JHRE-regulated reporter gene was induced by JH I, JH III, methoprene, and hydroprene. Nuclear proteins isolated from L57 cells bound to the JHRE and exposure of these proteins to ATP resulted in a reduction in their DNA binding. Either JH III or calf intestinal alkaline phosphatase (CIAP) was able to restore the binding of nuclear proteins to the DNA. In addition, protein kinase C inhibitors increased and protein kinase C activators reduced the binding of nuclear proteins to the JHRE. In transactivation assays, protein kinase C inhibitors induced the luciferase gene placed under the control of a minimal promoter and the JHRE. These data suggest that protein kinase C mediated phosphorylation prevents binding of nuclear proteins to juvenile hormone responsive promoters resulting in suppression of JH action. PMID:16448742

  3. Juvenile Hormone Is Required in Adult Males for Drosophila Courtship

    PubMed Central

    Wijesekera, Thilini P.; Saurabh, Sumit; Dauwalder, Brigitte

    2016-01-01

    Juvenile Hormone (JH) has a prominent role in the regulation of insect development. Much less is known about its roles in adults, although functions in reproductive maturation have been described. In adult females, JH has been shown to regulate egg maturation and mating. To examine a role for JH in male reproductive behavior we created males with reduced levels of Juvenile Hormone Acid O-Methyl Transferase (JHAMT) and tested them for courtship. JHAMT regulates the last step of JH biosynthesis in the Corpora Allata (CA), the organ of JH synthesis. Males with reduced levels of JHAMT showed a reduction in courtship that could be rescued by application of Methoprene, a JH analog, shortly before the courtship assays were performed. In agreement with this, reducing JHAMT conditionally in mature flies led to courtship defects that were rescuable by Methoprene. The same result was also observed when the CA were conditionally ablated by the expression of a cellular toxin. Our findings demonstrate that JH plays an important physiological role in the regulation of male mating behavior. PMID:27003411

  4. Socially selected ornaments influence hormone titers of signalers and receivers.

    PubMed

    Tibbetts, Elizabeth A; Crocker, Katherine; Huang, Zachary Y

    2016-07-26

    Decades of behavioral endocrinology research have shown that hormones and behavior have a bidirectional relationship; hormones both influence and respond to social behavior. In contrast, hormones are often thought to have a unidirectional relationship with ornaments. Hormones influence ornament development, but little empirical work has tested how ornaments influence hormones throughout life. Here, we experimentally alter a visual signal of fighting ability in Polistes dominulus paper wasps and measure the behavioral and hormonal consequences of signal alteration in signalers and receivers. We find wasps that signal inaccurately high fighting ability receive more aggression than controls and receiving aggression reduces juvenile hormone (JH) titers. As a result, immediately after contests, inaccurate signalers have lower JH titers than controls. Ornaments also directly influence rival JH titers. Three hours after contests, wasps who interacted with rivals signaling high fighting ability have higher JH titers than wasps who interacted with rivals signaling low fighting ability. Therefore, ornaments influence hormone titers of both signalers and receivers. We demonstrate that relationships between hormones and ornaments are flexible and bidirectional rather than static and unidirectional. Dynamic relationships among ornaments, behavior, and physiology may be an important, but overlooked factor in the evolution of honest communication. PMID:27402762

  5. Identification of putative ecdysteroid and juvenile hormone pathway genes in the shrimp Neocaridina denticulata.

    PubMed

    Sin, Yung Wa; Kenny, Nathan J; Qu, Zhe; Chan, Ka Wo; Chan, Katie W S; Cheong, Sam P S; Leung, Ricky W T; Chan, Ting Fung; Bendena, William G; Chu, Ka Hou; Tobe, Stephen S; Hui, Jerome H L

    2015-04-01

    Although the sesquiterpenoid juvenile hormone (JH) and the steroidal ecdysteroids are of vital importance to the development and reproduction of insects, our understanding of the evolution of these crucial hormonal regulators in other arthropods is limited. To better understand arthropod hormone evolution and regulation, here we describe the hormonal pathway genes (e.g. those involved in hormone biosynthesis, degradation, regulation and signal transduction) of a new decapod model, the shrimp Neocaridina denticulata. The majority of known insect sesquiterpenoid and ecdysteroid pathway genes and their regulators are contained in the N. denticulata genome. In the sesquiterpenoid pathway, these include biosynthetic pathway components: juvenile hormone acid methyltransferase (JHAMT); hormone binding protein: juvenile hormone binding protein (JHBP); and degradation pathway components: juvenile hormone esterase (JHE), juvenile hormone esterase binding protein (JHEBP) and juvenile hormone epoxide hydrolase (JHEH), with the JHBP, JHEBP and JHEH genes being discovered in a crustacean for the first time here. Ecdysteroid biosynthetic pathway genes identified include spook, phantom, disembodied, shadow and CYP18. Potential hormonal regulators and signal transducers such as allatostatins (ASTs), Methoprene-tolerant (Met), Retinoid X receptor (RXR), Ecdysone receptor (EcR), calponin-like protein Chd64, FK509-binding protein (FKBP39), Broad-complex (Br-c), and crustacean hyperglycemic hormone/molt-inhibiting hormone/gonad-inhibiting hormone (CHH/MIH/GIH) genes are all present in the shrimp N. denticulata. To our knowledge, this is the first report of these hormonal pathways and their regulatory genes together in a single decapod, providing a vital resource for further research into development, reproduction, endocrinology and evolution of crustaceans, and arthropods in general. PMID:25101838

  6. Differential Juvenile Hormone Variations in Scale Insect Extreme Sexual Dimorphism

    PubMed Central

    Vea, Isabelle Mifom; Tanaka, Sayumi; Shiotsuki, Takahiro; Jouraku, Akiya; Tanaka, Toshiharu; Minakuchi, Chieka

    2016-01-01

    Scale insects have evolved extreme sexual dimorphism, as demonstrated by sedentary juvenile-like females and ephemeral winged males. This dimorphism is established during the post-embryonic development; however, the underlying regulatory mechanisms have not yet been examined. We herein assessed the role of juvenile hormone (JH) on the diverging developmental pathways occurring in the male and female Japanese mealybug Planococcus kraunhiae (Kuwana). We provide, for the first time, detailed gene expression profiles related to JH signaling in scale insects. Prior to adult emergence, the transcript levels of JH acid O-methyltransferase, encoding a rate-limiting enzyme in JH biosynthesis, were higher in males than in females, suggesting that JH levels are higher in males. Furthermore, male quiescent pupal-like stages were associated with higher transcript levels of the JH receptor gene, Methoprene-tolerant and its co-activator taiman, as well as the JH early-response genes, Krüppel homolog 1 and broad. The exposure of male juveniles to an ectopic JH mimic prolonged the expression of Krüppel homolog 1 and broad, and delayed adult emergence by producing a supernumeral pupal stage. We propose that male wing development is first induced by up-regulated JH signaling compared to female expression pattern, but a decrease at the end of the prepupal stage is necessary for adult emergence, as evidenced by the JH mimic treatments. Furthermore, wing development seems linked to JH titers as JHM treatments on the pupal stage led to wing deformation. The female pedomorphic appearance was not reflected by the maintenance of high levels of JH. The results in this study suggest that differential variations in JH signaling may be responsible for sex-specific and radically different modes of metamorphosis. PMID:26894583

  7. Synthesis and binding affinity of an iodinated juvenile hormone

    SciTech Connect

    Prestwich, G.D.; Eng, W.S.; Robles, S.; Vogt, R.G.; Wisniewski, J.R.; Wawrzenczyk, C.

    1988-01-25

    The synthesis of the first iodinated juvenile hormone (JH) in enantiomerically enriched form is reported. This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera. The unlabeled compound shows approximately 10% of the relative binding affinity for the larval hemolymph JH binding protein (JHBP) of Manduca sexta, which specifically binds natural /sup 3/H-10R,11S-JH I (labeled at 58 Ci/mmol) with a KD of 8 X 10(-8) M. It is also approximately one-tenth as biologically active as JH I in the black Manduca and epidermal commitment assays. The 12-hydroxy and 12-oxo compounds are poor competitors and are also biologically inactive. The radioiodinated (/sup 125/I)12-iodo-JH I can be prepared in low yield at greater than 2500 Ci/mmol by nucleophilic displacement using no-carrier-added /sup 125/I-labeled sodium iodide in acetone; however, synthesis using sodium iodide carrier to give the approximately 50 Ci/mmol radioiodinated ligand proceeds in higher radiochemical yield with fewer by-products and provides a radioligand which is more readily handled in binding assays. The KD of (/sup 125/I)12-iodo-JH I was determined for hemolymph JHBP of three insects: M. sexta, 795 nM; Galleria mellonella, 47 nM; Locusta migratoria, 77 nM. The selectivity of 12-iodo-JH I for the 32-kDa JHBP of M. sexta was demonstrated by direct autoradiography of a native polyacrylamide gel electrophoresis gel of larval hemolymph incubated with the radioiodinated ligand. Thus, the in vitro and in vivo activity of 12-iodo-JH I indicate that it can serve as an important new gamma-emitting probe in the search for JH receptor proteins in target tissues.

  8. Negative regulation of juvenile hormone analog for ecdysteroidogenic enzymes.

    PubMed

    Ogihara, Mari H; Hikiba, Juri; Iga, Masatoshi; Kataoka, Hiroshi

    2015-09-01

    Disruption of the appropriate balance between juvenile hormone (JH) and ecdysteroids causes abnormal insect development. The application of a JH analog (JHA) during the early days of the final (fifth) instar induces dauer larvae with low ecdysteroid titers in insects, but the mechanism that underlies the action of JHA remains unclear. In this study, we clarified the negative effects of JHA on ecdysteroidogenic enzymes. JHA application to Bombyx mori larvae during the early stage of the fifth instar suppressed the expression of four enzymes, i.e., neverland (nvd), spook, phantom, and disembodied but not non-molting glossy and shadow. Furthermore, JHA application reduced the amount of 7-dehydrocholesterol, a metabolite produced by Nvd, in both the prothoracic glands and hemolymph, indicating JHA can disrupt ecdysteroidogenic pathway from the first step. Neck ligation resulted in increased nvd expression, whereas JHA application reversed this increase. These results suggest that the endogenous JH represses ecdysteroidogenesis during the early days in final instar larvae. Neck ligation and JHA application had no substantial effects on the expression of a transcription factor, ftz-f1, or a prothoracicotropic hormone receptor, torso; therefore, the inhibitory regulation of JHA may not involve these factors. Further analysis is required to clarify the regulation of JHA in ecdysteroidogenesis, but this study showed that JHA, and probably endogenous JH, can suppress the transcription of four of six ecdysteroidogenic enzymes. This regulation may be essential for maintaining the appropriate balance between JH and ecdysone during insect development. PMID:25907890

  9. Ecdysis triggering hormone ensures proper timing of juvenile hormone biosynthesis in pharate adult mosquitoes

    PubMed Central

    Areiza, Maria; Nouzova, Marcela; Rivera-Perez, Crisalejandra; Noriega, Fernando G.

    2014-01-01

    Juvenile hormones (JHs) are synthesized by the corpora allata (CA) and play a key role in insect development. A decrease of JH titer in the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which would play an essential role orchestrating reproductive maturation. In the present study, we provide evidence that ecdysis triggering hormone (ETH), a key endocrine factor involved in ecdysis control, acts as an allatotropic regulator of JH biosynthesis, controlling the exact timing of CA activation in the pharate adult mosquito. Analysis of the expression of Aedes aegypti ETH receptors (AeaETHRs) revealed that they are present in the CA and the corpora cardiaca (CC), and their expression peaks 4 h before eclosion. In vitro stimulation of the pupal CA glands with ETH resulted in an increase in JH synthesis. Consistent with this finding, silencing AeaETHRs by RNA interference (RNAi) in pupa resulted in reduced JH synthesis by the CA of one day-old adult females. Stimulation with ETH resulted in increases in the activity of juvenile hormone acid methyltransferase (JHAMT), a key JH biosynthetic enzyme. Furthermore, inhibition of IP3R-operated mobilization of endoplasmic reticulum Ca2+ stores prevented the ETH-dependent increases of JH biosynthesis and JHAMT activity. All together these findings provide compelling evidence that ETH acts as a regulatory peptide that ensures proper developmental timing of JH synthesis in pharate adult mosquitoes. PMID:25257939

  10. [Hormonal contraception in juveniles--beginning at what age?].

    PubMed

    Brennecke, B; Retzke, U

    1982-06-01

    Sexual life today begins between ages 16 and 19. Since there is no desire for children at this time, some contraceptive method is needed. The legalizing of abortion up through the 12th week has reduced the number of young unwed mothers, but it involves a risk of later complications. Thus the pill is the most acceptable variant for young people. They should not be prescribed, however, before the girl has had periods for at least 2 years. Ovarian function should be intact, and the menstrual cycle should be stable. And there must be a genuine need for a permanent contraceptive. If the girl has sexual activity only from time to time, other methods than the pill might be preferable. After 2 years it has been the custom to stop using the pill for a while to check ovarian function, but newer research indicates that this may no longer be necessary. We were worried about the effect of hormones on growth, but it now seems that a dose 4 times as large as that used in contraceptives is needed in order to impede growth. Intrauterine pessaries should be used only in problem cases (such as juvenile diabetics). No minimum age for use of contraceptives can be given, as it depends on the start of menarche. Sequential preparations should be given preference. PMID:7124018

  11. Molecular impact of juvenile hormone agonists on neonatal Daphnia magna.

    PubMed

    Toyota, Kenji; Kato, Yasuhiko; Miyakawa, Hitoshi; Yatsu, Ryohei; Mizutani, Takeshi; Ogino, Yukiko; Miyagawa, Shinichi; Watanabe, Hajime; Nishide, Hiroyo; Uchiyama, Ikuo; Tatarazako, Norihisa; Iguchi, Taisen

    2014-05-01

    Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to understand better the responses to pollutants in aquatic organisms, including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists: methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb) and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical-specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes were clustered as JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for the classification of JH analogs and identification of JH-responsive genes. PMID:24038158

  12. Exploring the role of juvenile hormone and vitellogenin in reproduction and social behavior in bumble bees

    PubMed Central

    2014-01-01

    Background The genetic and physiological pathways regulating behavior in solitary species are hypothesized to have been co-opted to regulate social behavior in social species. One classic example is the interaction between vitellogenin (an egg-yolk and storage protein) and juvenile hormone, which are positively correlated in most insect species but have modified interactions in highly eusocial insects. In some of these species (including some termites, ants, and the honey bee), juvenile hormone and vitellogenin levels are negatively correlated and juvenile hormone has shifted its role from a gonadotropin to a regulator of maturation and division of labor in the primarily sterile workers. The function of vitellogenin also seems to have broadened to encompass similar roles. Thus, the functions and molecular interactions of juvenile hormone and vitellogenin are hypothesized to have undergone changes during the evolution of eusociality, but the mechanisms underlying these changes are unknown. Bumble bees offer an excellent model system for testing how the relationship between juvenile hormone and vitellogenin evolved from solitary to social species. Bumble bee colonies are primitively eusocial and comprised of a single reproductive queen and facultatively sterile workers. In Bombus terrestris, juvenile hormone retains its ancestral role as a gonadotropin and is also hypothesized to regulate aggressive behavior. However, the function of vitellogenin and its interactions with juvenile hormone have not yet been characterized. Results By characterizing vitellogenin RNA expression levels (vg) in B. terrestris we show that vg is not associated with task and only partially associated with worker age, queen presence, and caste (queen vs worker). The correlations of vg with ovarian activation were not consistent across experiments, but both vg and ovarian activation were significantly associated with levels of aggression experienced by workers. Treatment with juvenile hormone

  13. Evolutionary Endocrinology of Hormonal Rhythms: Juvenile Hormone Titer Circadian Polymorphism in Gryllus firmus.

    PubMed

    Zera, Anthony J

    2016-08-01

    Daily rhythms for hormonal traits are likely widespread and important aspects of organismal (e.g., life history) adaptation. Yet they remain substantially understudied, especially with respect to variable rhythms within species. The cricket, Gryllus firmus, exhibits a genetically polymorphic circadian rhythm for the blood titer of the key hormone, juvenile hormone (JH). Gryllus firmus is also wing-polymorphic, consisting of a dispersing morph that delays reproduction and a flightless morph with substantially enhanced egg production. JH circadian phenotype strongly covaries with morph type: The blood JH titer is strongly rhythmic in multiple populations artificially-selected for the dispersing morph (LW(f) = long wings with functional flight muscles) and is essentially arrhythmic in populations selected for the SW (short-winged) morph. Association between JH titer cycle and LW(f) morph is also found in natural populations of G. firmus and in several related species in the field. This is one of the very few studies of endocrine titer variation in natural populations of an insect. The morph-specific cycle is underlain by a circadian rhythm in hormone biosynthesis, which in turn is underlain by a rhythm in a brain neuropeptide regulator of JH biosynthesis. The morph-specific JH titer circadian cycle is also strongly correlated with a morph-specific daily rhythm in global gene expression. This is currently the only example of a genetically-variable hormone circadian rhythm in both the laboratory and field that is strongly associated with an ecologically important polymorphism. The extensive information on the underlying causes of the morph-specific JH titer rhythm, coupled with the strong association between the JH circadian rhythm and wing polymorphism makes this system in G. firmus an exceptional experimental model to investigate the mechanisms underlying circadian hormonal adaptations. Genetic polymorphism for the JH titer circadian rhythm in G. firmus is discussed

  14. Microarray Analysis of Juvenile Hormone Response in Drosophila melanogaster S2 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A microchip array encompassing probes for 14,010 genes of Drosophila melanogaster was used to analyze the effect of juvenile hormone (JH) on genome-wide gene expression. JH is a member of a key group of insect hormones involved in regulating larval development and adult reproductive processes. Altho...

  15. Juvenile hormone regulates extreme mandible growth in male stag beetles.

    PubMed

    Gotoh, Hiroki; Cornette, Richard; Koshikawa, Shigeyuki; Okada, Yasukazu; Lavine, Laura Corley; Emlen, Douglas J; Miura, Toru

    2011-01-01

    The morphological diversity of insects is one of the most striking phenomena in biology. Evolutionary modifications to the relative sizes of body parts, including the evolution of traits with exaggerated proportions, are responsible for a vast range of body forms. Remarkable examples of an insect trait with exaggerated proportions are the mandibular weapons of stag beetles. Male stag beetles possess extremely enlarged mandibles which they use in combat with rival males over females. As with other sexually selected traits, stag beetle mandibles vary widely in size among males, and this variable growth results from differential larval nutrition. However, the mechanisms responsible for coupling nutrition with growth of stag beetle mandibles (or indeed any insect structure) remain largely unknown. Here, we demonstrate that during the development of male stag beetles (Cyclommatus metallifer), juvenile hormone (JH) titers are correlated with the extreme growth of an exaggerated weapon of sexual selection. We then investigate the putative role of JH in the development of the nutritionally-dependent, phenotypically plastic mandibles, by increasing hemolymph titers of JH with application of the JH analog fenoxycarb during larval and prepupal developmental periods. Increased JH signaling during the early prepupal period increased the proportional size of body parts, and this was especially pronounced in male mandibles, enhancing the exaggerated size of this trait. The direction of this response is consistent with the measured JH titers during this same period. Combined, our results support a role for JH in the nutrition-dependent regulation of extreme mandible growth in this species. In addition, they illuminate mechanisms underlying the evolution of trait proportion, the most salient feature of the evolutionary diversification of the insects. PMID:21731659

  16. Juvenile hormone downregulates vitellogenin production in Ectatomma tuberculatum (Hymenoptera: Formicidae) sterile workers.

    PubMed

    Azevedo, Dihego Oliveira; de Paula, Sérgio Oliveira; Zanuncio, José Cola; Martinez, Luis Carlos; Serrão, José Eduardo

    2016-01-01

    In the ant Ectatomma tuberculatum (Olivier 1792), workers have active ovaries and lay trophic eggs that are eaten by the queen and larvae. Vitellogenins are the main proteins found in the eggs of insects and are the source of nutrients for the embryo in the fertilized eggs and for adults in the trophic eggs. In social insects, vitellogenin titres vary between castes and affect reproductive social status, nursing, foraging, longevity, somatic maintenance, and immunity. In most insects, vitellogenin synthesis is mainly regulated by juvenile hormone. However, in non-reproductive worker ants, this relationship is poorly characterized. This study determined the effects of juvenile hormone on vitellogenin synthesis in non-reproductive E. tuberculatum workers. Juvenile hormone was topically applied onto workers, and the effect on vitellogenin synthesis in the fat body and vitellogenin titres in the haemolymph were analysed by ELISA and qPCR. Juvenile hormone downregulated protein synthesis and reduced vitellogenin titres in the haemolymph, suggesting that in workers of E. tuberculatum, juvenile hormone loses its gonadotrophic function. PMID:26567344

  17. ISOLATION OF JUVENILE HORMONES ESTERASE AND ITS PARTIAL CDNA CLONE FROM THE BEETLE, TENEBRIO MOLITOR. (R825433)

    EPA Science Inventory

    Juvenile hormone esterase (JHE) plays an essential role in insect development. It is partially responsible for the clearance of juvenile hormone (JH) which regulates various aspects of insect development and reproduction. Because of its role in regulating JH titer, this enzyme...

  18. High specific activity enantiomerically enriched juvenile hormones: synthesis and binding assay.

    PubMed Central

    Prestwich, G D; Wawrzeńczyk, C

    1985-01-01

    A stereoselective total synthesis of chiral juvenile hormone I is described that allows stoichiometric introduction of two tritium atoms in the final step. Both optical antipodes of the pivotal epoxy alcohol intermediate were prepared in 95% enantiomeric excess by the Sharpless epoxidation of a (Z)-allylic alcohol. Elaboration of the hydroxy-methyl group to a vinyl group followed by selective homogeneous tritiation affords optically active juvenile hormone I analogs at 58 Ci/mmol. Competitive binding of the labeled 10R, 11S and 10S,11R enantiomers with unlabeled enantiomers to the hemolymph binding protein of Manduca sexta larvae was determined by using a dextran-coated charcoal assay. The natural 10R,11S enantiomer has twice the relative binding affinity of the 10S,11R enantiomer. The availability of such high specific activity optically pure hormones will contribute substantially to the search for high-affinity receptors for juvenile hormones in the nuclei of cells. Moreover, the chiral 12-hydroxy-(10R,11S)-epoxy intermediate allows modification of juvenile hormone for solid-phase biochemical and radioimmunochemical work without altering either the biologically important carbomethoxy or epoxy recognition sites. PMID:3860862

  19. High specific activity enantiomerically enriched juvenile hormones: synthesis and binding assay

    SciTech Connect

    Prestwich, G.D.; Wawrzenczyk, C.

    1985-08-01

    A stereoselective total synthesis of chiral juvenile hormone I is described that allows stoichiometric introduction of two tritium atoms in the final step. Both optical antipodes of the pivotal epoxy alcohol intermediate were prepared in 95% enantiomeric excess by the Sharpless epoxidation of a (Z)-allylic alcohol. Elaboration of the hydroxy-methyl group to a vinyl group followed by selective homogeneous tritiation affords optically active juvenile hormone I analogs at 58 Ci/mmol. Competitive binding of the labeled 10R, 11S and 10S,11R enantiomers with unlabeled enantiomers to the hemolymph binding protein of Manduca sexta larvae was determined by using a dextran-coated charcoal assay. The natural 10R,11S enantiomer has twice the relative binding affinity of the 10S,11R enantiomer. The availability of such high specific activity optically pure hormones will contribute substantially to the search for high-affinity receptors for juvenile hormones in the nuclei of cells. Moreover, the chiral 12-hydroxy-(10R,11S)-epoxy intermediate allows modification of juvenile hormone for solid-phase biochemical and radioimmunochemical work without altering either the biologically important carbomethoxy or epoxy recognition sites.

  20. Juvenile Hormone Regulation of Drosophila Epac - A Guanine Nucleotide Exchange Factor for Rap1 Small GTPase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we utilized a microchip array encompassing probes for 14,010 genes of Drosophila melanogaster to analyze the effect of (10R) juvenile hormone III (JH) on genome-wide gene expression in Drosophila S2 cells. Treatment with JH yielded a collection of 32 gene transcripts that demonstrated a ...

  1. EXPRESSION AND CHARACTERIZATION OF THE RECOMBINANT JUVENILE HORMONE EPOXIDE HYDROLASE (JHEH) FROM MANDUCA SEXTA. (R825433)

    EPA Science Inventory

    The cDNA of the microsomal Juvenile Hormone Epoxide Hydrolase (JHEH) from Manduca sexta was expressed in vitro in the baculovirus system. In insect cell culture, the recombinant enzyme (Ms-JHEH) was produced at a high level (100 fold over background EH catalytic activit...

  2. Expression pattern of enzymes related to juvenile hormone metabolism in the silkworm, Bombyx mori L.

    PubMed

    Hua-Jun, Yang; Fang, Zhou; Awquib, Sabhat; Malik, Firdose Ahmad; Roy, Bhaskar; Xing-Hua, Li; Jia-Biao, Hu; Chun-Guang, Sun; Niu, Yan-Shan; Yun-Gen, Miao

    2011-10-01

    The physiological balance of juvenile hormone (JH) in insects depends on its biosynthesis and degradation pathway. Three key enzymes namely, juvenile hormone esterase (JHE), juvenile hormone epoxide hydrolase (JHEH) and juvenile hormone diol kinase (JHDK) are required for degradation in insects. Our present results showed that JHE and JHEH exhibited expression in almost all the tissues. This indicated that JHE and JHEH might degrade JH simultaneously. In addition, the highest levels of JHDK were observed in the midgut, with trace level being found in the malpighian tubule and haemocytes. Since the midgut is a digestive organ and not a JH target, it was hypothesized that both JHE and JHEH hydrolyzed JH to JH diol (JHd) which was then transported to midgut and hydrolyzed further by JHDK, to be finally excreted out of the body. Also the expression studies on JH degradation enzymes in different tissues and stages indicated that the activities of the three enzymes are specific and coincident with the JH functions in silkworm, Bombyx mori L. PMID:21107706

  3. Effects of recombinant human growth hormone in juvenile Nile crocodiles (Crocodylus niloticus).

    PubMed

    Andersen, O; Kimwele, C; Aulie, A; Kanui, T

    1990-01-01

    1. Recombinant human growth hormone (hGH) showed somatotropic activity in juvenile Nile crocodiles (Crocodylus niloticus). 2. Body weight of crocodiles receiving 3.25 micrograms hGH/g body weight twice a week was increased by 49% after five weeks of treatment, compared to 31% increase in controls. 3. Total length was increased by 15 and 5%, respectively, in the two groups. 4. Food conversion efficiency increased from 28% in the controls to 36% in the hormone injected animals. 5. Cessation of hormone treatment was followed by reduced appetite and decreasing body growth. PMID:1981037

  4. A Structural Equation Modeling Analysis of Influences on Juvenile Delinquency

    ERIC Educational Resources Information Center

    Barrett, David E.; Katsiyannis, Antonis; Zhang, Dalun; Zhang, Dake

    2014-01-01

    This study examined influences on delinquency and recidivism using structural equation modeling. The sample comprised 199,204 individuals: 99,602 youth whose cases had been processed by the South Carolina Department of Juvenile Justice and a matched control group of 99,602 youth without juvenile records. Structural equation modeling for the…

  5. Wolbachia-induced paternal defect in Drosophila is likely by interaction with the juvenile hormone pathway.

    PubMed

    Liu, Chen; Wang, Jia-Lin; Zheng, Ya; Xiong, En-Juan; Li, Jing-Jing; Yuan, Lin-Ling; Yu, Xiao-Qiang; Wang, Yu-Feng

    2014-06-01

    Wolbachia are endosymbionts that infect many insect species. They can manipulate the host's reproduction to increase their own maternal transmission. Cytoplasmic incompatibility (CI) is one such manipulation, which is expressed as embryonic lethality when Wolbachia-infected males mate with uninfected females. However, matings between males and females carrying the same Wolbachia strain result in viable progeny. The molecular mechanisms of CI are currently not clear. We have previously reported that the gene Juvenile hormone-inducible protein 26 (JhI-26) exhibited the highest upregulation in the 3rd instar larval testes of Drosophila melanogaster when infected by Wolbachia. This is reminiscent of an interaction between Wolbachia and juvenile hormone (JH) pathway in flies. Considering that Jhamt gene encodes JH acid methyltransferase, a key regulatory enzyme of JH biosynthesis, and that methoprene-tolerant (Met) has been regarded as the best JH receptor candidate, we first compared the expression of Jhamt and Met between Wolbachia-infected and uninfected fly testes to investigate whether Wolbachia infection influence the JH signaling pathway. We found that the expressions of Jhamt and Met were significantly increased in the presence of Wolbachia, suggesting an interaction of Wolbachia with the JH signaling pathway. Then, we found that overexpression of JhI-26 in Wolbachia-free transgenic male flies caused paternal-effect lethality that mimics the defects associated with CI. JhI-26 overexpressing males resulted in significantly decrease in hatch rate. Surprisingly, Wolbachia-infected females could rescue the egg hatch. In addition, we showed that overexpression of JhI-26 caused upregulation of the male accessory gland protein (Acp) gene CG10433, but not vice versa. This result suggests that JhI-26 may function at the upstream of CG10433. Likewise, overexpression of CG10433 also resulted in paternal-effect lethality. Both JhI-26 and CG10433 overexpressing males

  6. Characterization of the juvenile hormone pathway in the viviparous cockroach, Diploptera punctata.

    PubMed

    Huang, Juan; Marchal, Elisabeth; Hult, Ekaterina F; Tobe, Stephen S

    2015-01-01

    Juvenile hormones (JHs) are key regulators of insect development and reproduction. The JH biosynthetic pathway is known to involve 13 discrete enzymatic steps. In the present study, we have characterized the JH biosynthetic pathway in the cockroach Diploptera punctata. The effect of exogenous JH precursors on JH biosynthesis was also determined. Based on sequence similarity, orthologs for the genes directly involved in the pathway were cloned, and their spatial and temporal transcript profiles were determined. The effect of shutting down the JH pathway in adult female cockroaches was studied by knocking down genes encoding HMG-CoA reductase (HMGR) and Juvenile hormone acid methyltransferase (JHAMT). As a result, oocyte development slowed as a consequence of reduction in JH biosynthesis. Oocyte length, fat body transcription of Vg and ovarian vitellin content significantly decreased. In addition, silencing HMGR and JHAMT resulted in a decrease in the transcript levels of other genes in the pathway. PMID:25706877

  7. Endocrine and immunological responses to adrenocorticotrophic hormone (ACTH) administration in juvenile harbor seals (Phoca vitulina) during winter and summer.

    PubMed

    Keogh, Mandy J; Atkinson, Shannon

    2015-10-01

    There is increasing interest in measuring endocrine and immune parameters in free-ranging seals and sea lions, but there is a lack of understanding in how an acute stress response, often associated with capture and handling, influences these parameters of interest. The main objective of this study was to assess the impact of a simulated stressor on both endocrine and immune parameters. During two seasons, exogenous adrenocorticotrophic hormone (ACTH) was administered to seven female juvenile harbor seals and the response of several hormones (cortisol, aldosterone, total and free thyroxine and total triiodothyronine) and immunological parameters (total and differential leukocyte counts and peripheral blood mononuclear cells (PBMC) proliferation) were assessed. Cortisol peaked at 165 min (winter 203.1±84.7 ng/ml; summer 205.3±65.7 ng/ml) and remained significantly elevated 240 min after ACTH infusion in both seasons. Aldosterone peaked at 90 min (winter 359.3±249.3 pg/ml; summer 294.1±83.7 pg/ml) and remained elevated 240 min after administration of ACTH in both seasons. An increase in circulating total white blood cells was driven primarily by the increase in neutrophils which occurred simultaneously with a decrease in lymphocytes leading to an overall increase in neutrophil to lymphocyte ratio. These findings demonstrate that a simulated stress response in juvenile harbor seals results in a predictable increase in both cortisol and aldosterone concentrations, and were associated with altered immunological parameters. PMID:26086360

  8. Differential gene expression in response to juvenile hormone analog treatment in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Archotermopsidae).

    PubMed

    Cornette, Richard; Hayashi, Yoshinobu; Koshikawa, Shigeyuki; Miura, Toru

    2013-04-01

    Termite societies are characterized by a highly organized division of labor among conspicuous castes, groups of individuals with various morphological specializations. Termite caste differentiation is under control of juvenile hormone (JH), but the molecular mechanism underlying the response to JH and early events triggering caste differentiation are still poorly understood. In order to profile candidate gene expression during early soldier caste differentiation of the damp-wood termite, Hodotermopsis sjostedti, we treated pseudergates (workers) with a juvenile hormone analog (JHA) to induce soldier caste differentiation. We then used Suppressive Subtractive Hybridization to create two cDNA libraries enriched for transcripts that were either up- or downregulated at 24h after treatment. Finally, we used quantitative PCR to confirm temporal expression patterns. Hexamerins represent a large proportion of the genes upregulated following JHA treatment and have an expression pattern that shows roughly an inverse correlation to intrinsic JH titers. This data is consistent with the role of a JH "sink", which was demonstrated for hexamerins in another termite, Reticulitermes flavipes. A putative nuclear protein was also upregulated a few hours after JHA treatment, which suggests a role in the early response to JH and subsequent regulation of transcriptional events associated with soldier caste differentiation. Some digestive enzymes, such as endogenous beta-endoglucanase and chymotrypsin, as well as a protein associated to digestion were identified among genes downregulated after JHA treatment. This suggests that JH may directly influence the pseudergate-specific digestive system. PMID:23481672

  9. Cyp15F1: A novel cytochrome P450 gene linked to juvenile hormone-dependent caste differention in the termite R. flavipes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Termites are eusocial insects that perform social interactions that facilitate chemical signaling. Previous research identified two cytochrome P450s that have homology to other insect p450s responsible for the production of juvenile hormone. Juvenile hormone is an important morphogenic hormone tha...

  10. Aedes aegypti juvenile hormone acid methyl transferase, the ultimate enzyme in the biosynthetic pathway of juvenile hormone III, exhibits substrate control.

    PubMed

    Van Ekert, Evelien; Heylen, Kevin; Rougé, Pierre; Powell, Charles A; Shatters, Robert G; Smagghe, Guy; Borovsky, Dov

    2014-05-01

    We report on the cloning, sequencing, characterization, 3D modeling and docking of Aedes aegypti juvenile hormone acid methyl transferase (AeaJHAMT), the enzyme that converts juvenile hormone acid (JHA) into juvenile hormone (JH). Purified recombinant AeaJHAMT was extensively characterized for enzymatic activity and the Michaelis Menten kinetic parameters Km, Vmax, k(cat) (turn over number) and k(cat)/Km (catalytic efficiency) using JHA and its analogues as substrates. AeaJHAMT methylates JHA III 5-fold faster than farnesoic acid (FA). Significant differences in lower methyl transferase (MT) activities towards the cis/trans/trans, cis/trans/cis and the trans/cis/cis isomers of JHA I (1.32, 4.71 and 156-fold, respectively) indicate that substrate chirality is important for proper alignment at the catalytic cavity and for efficient methyl transfer by S-adenosyl methionine (SAM). Our 3D model shows a potential binding site below the main catalytic cavity for JHA analogues causing conformational change and steric hindrance in the transfer of the methyl group to JHA III. These, in silico, observations were corroborated by, in vitro, studies showing that several JHA analogues are potent inhibitors of AeaJHAMT. In vitro, and in vivo studies using [(3)H-methyl]SAM show that the enzyme is present and active throughout the adult life stage of A. aegypti. Tissue specific expressions of the JHAMT gene of A. aegypti (jmtA) transcript during the life cycle of A. aegypti show that AeaJHAMT is a constitutive enzyme and jmtA transcript is expressed in the corpora allata (CA), and the ovary before and after the blood meal. These results indicate that JH III can be synthesized from JHA III by the mosquito ovary, suggesting that ovarian JH III may play an important physiological role in ovarian development and reproduction. Incubating AeaJHAMT with highly pure synthetic substrates indicates that JHA III is the enzyme's preferred substrate, suggesting that AeaJHAMT is the ultimate

  11. Juvenile Hormone Regulates the Expression of Drosophila Epac– a Guanine Nucleotide Exchange Factor for Rap1 Small GTPase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The juvenile hormones (JH) are a key group of insect hormones involved in regulating larval development and adult reproductive processes. Although well-studied from the physiological standpoint, the molecular actions of JH remain unclear. Using cDNA microchip array technology, we previously identifi...

  12. Resistance to juvenile hormone and an insect growth regulator in Drosophila is associated with an altered cytosolic juvenile hormone-binding protein

    SciTech Connect

    Shemshedini, L.; Wilson, T.G. )

    1990-03-01

    The Met mutant of Drosophila melanogaster is highly resistant to juvenile hormone III (JH III) or its chemical analog, methoprene, an insect growth regulator. Five major mechanisms of insecticide resistance were examined in Met and susceptible Met{sup +} flies. These two strains showed only minor differences when penetration, excretion, tissue sequestration, or metabolism of ({sup 3}H)JH III was measured. In contrast, when we examined JH III binding by a cytosolic binding protein from a JH target tissue, Met strains had a 10-fold lower binding affinity than did Met{sup +} strains. Studies using deficiency-bearing chromosomes provide strong evidence that the Met locus controls the binding protein characteristics and may encode the protein. These studies indicate that resistance in Met flies results from reduced binding affinity of a cytosolic binding protein for JH III.

  13. Juvenile hormone-binding proteins of Melanoplus bivittatus identified by EFDA photoaffinity labeling

    SciTech Connect

    Winder, B.S.

    1988-01-01

    Proteins that bind juvenile hormone in the hemolymph and fat body of the grasshopper, Melanoplus bivittatus were identified by photoaffinity labeling with radiolabeled epoxyfarnesyl diazoacetate ({sup 3}H-EFDA), and were characterized by electrophoretic analysis. A protocol was developed which allowed detection of {sup 3}H-EFDA that was covalently linked to proteins upon exposure to ultraviolet light at 254 nm. Quantification of protein-linked {sup 3}H-EFDA by liquid scintillation spectrometry took advantage of the differential solubility of unlinked {sup 3}H-EFDA in toluene alone, and of the protein-linked {sup 3}H-EFDA in toluene plus the detergent, Triton X-100. Competition between EFDA and juvenile hormone (JH) for binding to JH-specific binding sites was measured by hydroxyapatite protein binding assays in the presence of radiolabeled JH or EFDA and competing non-radiolabeled hormone. The protein-linked EFDA was detected on fluorograms of SDS or nondenaturing polyacrylamide gels (PAGE), and by liquid scintillation spectrometry of membranes to which the proteins had been electrophoretically transferred. Proteins which specifically bound JH were identified by photolabeling proteins in the presence and absence of nonlabeled JH-III.

  14. The POU Factor Ventral Veins Lacking/Drifter Directs the Timing of Metamorphosis through Ecdysteroid and Juvenile Hormone Signaling

    PubMed Central

    Chaieb, Leila; Koyama, Takashi; Sarwar, Prioty; Mirth, Christen K.; Smith, Wendy A.; Suzuki, Yuichiro

    2014-01-01

    Although endocrine changes are known to modulate the timing of major developmental transitions, the genetic mechanisms underlying these changes remain poorly understood. In insects, two developmental hormones, juvenile hormone (JH) and ecdysteroids, are coordinated with each other to induce developmental changes associated with metamorphosis. However, the regulation underlying the coordination of JH and ecdysteroid synthesis remains elusive. Here, we examined the function of a homolog of the vertebrate POU domain protein, Ventral veins lacking (Vvl)/Drifter, in regulating both of these hormonal pathways in the red flour beetle, Tribolium castaneum (Tenebrionidae). RNA interference-mediated silencing of vvl expression led to both precocious metamorphosis and inhibition of molting in the larva. Ectopic application of a JH analog on vvl knockdown larvae delayed the onset of metamorphosis and led to a prolonged larval stage, indicating that Vvl acts upstream of JH signaling. Accordingly, vvl knockdown also reduced the expression of a JH biosynthesis gene, JH acid methyltransferase 3 (jhamt3). In addition, ecdysone titer and the expression of the ecdysone response gene, hormone receptor 3 (HR3), were reduced in vvl knockdown larvae. The expression of the ecdysone biosynthesis gene phantom (phm) and spook (spo) were reduced in vvl knockdown larvae in the anterior and posterior halves, respectively, indicating that Vvl might influence ecdysone biosynthesis in both the prothoracic gland and additional endocrine sources. Injection of 20-hydroxyecdysone (20E) into vvl knockdown larvae could restore the expression of HR3 although molting was never restored. These findings suggest that Vvl coordinates both JH and ecdysteroid biosynthesis as well as molting behavior to influence molting and the timing of metamorphosis. Thus, in both vertebrates and insects, POU factors modulate the production of major neuroendocrine regulators during sexual maturation. PMID:24945490

  15. The HMG-CoA reductase inhibitor fluvastatin inhibits insect juvenile hormone biosynthesis.

    PubMed

    Debernard, S; Rossignol, F; Couillaud, F

    1994-07-01

    Fluvastatin (Sandoz Compound XU 62-320), a synthetic HMG-CoA reductase inhibitor, was assayed in vitro and in vivo for its ability to suppress juvenile hormone (JH) biosynthesis by corpora allata of Locusta migratoria migratorioides. Fluvastatin inhibited JH biosynthesis by corpora allata in vitro. Exogenous mevalonic acid lactone restored JH biosynthesis in corpora allata inhibited by fluvastatin. Fluvastatin injected into locusts in vivo inhibited JH biosynthesis, but maximal inhibition lasted for only 6 hr. There were no discernible effects on either JH-regulated metamorphosis or oocyte maturation. Lengthening of the fourth larval stadium was observed and increased doses (single or repeated injections) were fatal. PMID:7926659

  16. Infundibular gonadotropin-releasing hormone neurons are inhibited by direct opioid and autoregulatory synapses in juvenile monkeys.

    PubMed

    Thind, K K; Goldsmith, P C

    1988-03-01

    A consistent group of gonadotropin-releasing hormone (GnRH) cell bodies occurs in the ventral hypothalamic tract at the infundibular lip (IL), just below the arcuate nucleus (ARC), at the site of the so-called GnRH 'pulse generator'. Immunocytochemical studies were performed to examine contacts between these GnRH neurons and nearby opioid peptide (OP) neurons in the ARC. Vibratome sections of the medial basal hypothalamus were obtained from colchicine-treated, perfusion-fixed juvenile female rhesus macaques. They were sequentially immunostained for GnRH using the peroxidase antiperoxidase (PAP) technique and for adrenocorticotropic hormone (to identify OP neurons) using colloidal gold. The PAP and colloidal gold markers could be clearly differentiated at both the light and electron microscopic levels. OP+ and GnRH+ neuronal cell bodies occurred close together in the ARC-IL region, sometimes within the same electron microscope grid square. At the electron microscopic level, OP+ axons formed symmetrical synapses with GnRH+ somata and proximal axons, suggesting a pronounced inhibitory influence on GnRH neuronal activity. Examples of OP+/GnRH+ axodendritic and dendrodendritic contacts were also observed. Furthermore, symmetrical synapses between GnRH+ axons and GnRH+ perikarya or dendrites were occasionally present. The data obtained here clearly indicate that direct OP inhibition of GnRH 'pulse generator' neurons occurs at the ARC-IL in juvenile primates. It is suggested that these OP neurons help mediate steroid-negative feedback at the hypothalamic level. Furthermore, it is suggested that OP/GnRH and GnRH/GnRH inhibitory contacts may play a role in maturation and control of reproductive function. PMID:2834660

  17. Aspergillus nidulans Synthesize Insect Juvenile Hormones upon Expression of a Heterologous Regulatory Protein and in Response to Grazing by Drosophila melanogaster Larvae

    PubMed Central

    Rohlfs, Marko; Anyaogu, Diana Chinyere; Nielsen, Jakob Blæsbjerg; Gotfredsen, Charlotte Held; Andersen, Mikael Rørdam; Hansen, Bjarne Gram; Mortensen, Uffe Hasbro; Larsen, Thomas Ostenfeld

    2013-01-01

    Secondary metabolites are known to serve a wide range of specialized functions including communication, developmental control and defense. Genome sequencing of several fungal model species revealed that the majority of predicted secondary metabolite related genes are silent in laboratory strains, indicating that fungal secondary metabolites remain an underexplored resource of bioactive molecules. In this study, we combine heterologous expression of regulatory proteins in Aspergillus nidulans with systematic variation of growth conditions and observe induced synthesis of insect juvenile hormone-III and methyl farnesoate. Both compounds are sesquiterpenes belonging to the juvenile hormone class. Juvenile hormones regulate developmental and metabolic processes in insects and crustaceans, but have not previously been reported as fungal metabolites. We found that feeding by Drosophila melanogaster larvae induced synthesis of juvenile hormone in A. nidulans indicating a possible role of juvenile hormone biosynthesis in affecting fungal-insect antagonisms. PMID:23991191

  18. Identification of two juvenile hormone inducible transcription factors from the silkworm, Bombyx mori.

    PubMed

    Matsumoto, Hitoshi; Ueno, Chihiro; Nakamura, Yuki; Kinjoh, Terunori; Ito, Yuka; Shimura, Sachiko; Noda, Hiroaki; Imanishi, Shigeo; Mita, Kazuei; Fujiwara, Haruhiko; Hiruma, Kiyoshi; Shinoda, Tetsuro; Kamimura, Manabu

    2015-09-01

    Juvenile hormone (JH) regulates many physiological processes in insects. However, the signal cascades in which JH is active have not yet been fully elucidated, particularly in comparison to another major hormone ecdysteroid. Here we identified two JH inducible transcription factors as candidate components of JH signaling pathways in the silkworm, Bombyx mori. DNA microarray analysis showed that expression of two transcription factor genes, E75 and Enhancer of split mβ (E(spl)mβ), was induced by juvenile hormone I (JH I) in NIAS-Bm-aff3 cells. Real time RT-PCR analysis confirmed that expression of four E75 isoforms (E75A, E75B, E75C and E75D) and E(spl)mβ was 3-8 times greater after JH I addition. Addition of the protein synthesis inhibitor cycloheximide did not suppress JH-induced expression of the genes, indicating that they were directly induced by JH. JH-induced expression of E75 and E(spl)mβ was also observed in four other B. mori cell lines and in larval hemocytes of final instar larvae. Notably, E75A expression was induced very strongly in larval hemocytes by topical application of the JH analog fenoxycarb; the level of induced expression was comparable to that produced by feeding larvae with 20-hydroxyecdysone. These results suggest that E75 and E(spl)mβ are general and direct target genes of JH and that the transcription factors encoded by these genes play important roles in JH signaling. PMID:25770979

  19. Brain sex differences and hormone influences

    PubMed Central

    Tobet, Stuart; Knoll, J. Gabriel; Hartshorn, Cheryl; Aurand, Emily; Stratton, Matthew; Kumar, Pankaj; Searcy, Brian; McClellan, Kristy

    2009-01-01

    Sex differences in the nervous system come in many forms. Although a majority of sexually dimorphic characteristics in brain have been described in older animals, mechanisms that determine sexually differentiated brain characteristics often operate during critical perinatal periods. Both genetic and hormonal factors likely contribute to physiological mechanisms in development to generate the ontogeny of sexual dimorphisms in brain. Relevant mechanisms may include neurogenesis, cell migration, cell differentiation, cell death, axon guidance and synaptogenesis. On a molecular level, there are several ways to categorize factors that drive brain development. These range from the actions of transcription factors in cell nuclei that regulate the expression of genes that control cell development and differentiation, to effector molecules that directly contribute to signaling from one cell to another. In addition, several peptides or proteins in these and other categories might be referred to as “biomarkers” of sexual differentiation with undetermined functions in development or adulthood. While a majority of sex differences are revealed as a direct consequence of hormone actions, some may only be revealed following genetic or environmental disruption. Sex differences in cell positions in the developing hypothalamus, and steroid hormone influences on cell movements in vitro, suggest that cell migration may be one target for early molecular actions that impact brain development and sexual differentiation. PMID:19207813

  20. Steroid hormone inactivation is required during the juvenile-adult transition in Drosophila.

    PubMed

    Rewitz, Kim F; Yamanaka, Naoki; O'Connor, Michael B

    2010-12-14

    Steroid hormones are systemic signaling molecules that regulate juvenile-adult transitions in both insects and mammals. In insects, pulses of the steroid hormone 20-hydroxyecdysone (20E) are generated by increased biosynthesis followed by inactivation/clearance. Although mechanisms that control 20E synthesis have received considerable recent attention, the physiological significance of 20E inactivation remains largely unknown. We show that the cytochrome P450 Cyp18a1 lowers 20E titer during the Drosophila prepupal to pupal transition. Furthermore, this reduction of 20E levels is a prerequisite to induce βFTZ-F1, a key factor in the genetic hierarchy that controls early metamorphosis. Resupplying βFTZ-F1 rescues Cyp18a1-deficient prepupae. Because Cyp18a1 is 20E-inducible, it appears that the increased production of steroid is responsible for its eventual decline, thereby generating the regulatory pulse required for proper temporal progression of metamorphosis. The coupling of hormone clearance to βFTZ-F1 expression suggests a general mechanism by which transient signaling drives unidirectional progression through a multistep process. PMID:21145504

  1. Juvenile hormone receptors in insect larval epidermis: Identification by photoaffinity labeling

    SciTech Connect

    Palli, S.R.; Osir, E.O.; Edwards, M.; Hiruma, K.; Riddiford, L.M. ); Eng, W.; Boehm, M.F.; Kulscar, P.; Ujvary, I.; Prestwich, G.D. )

    1990-01-01

    Tritiated photoaffinity analogs of the natural lepidopteran juvenile hormones, JH I and II (epoxy({sup 3}H)bishomofarnesyl diazoacetate (({sup 3}H)EHDA) and epoxy({sup 3}H)homofarnesyl diazoacetate (({sup 3}H)EHDA)), and of the JH analog methoprene (({sup 3}H)methoprene diazoketone (({sup 3}H)MDK)) were synthesized and used to identify specific JH binding proteins in the larval epidermis of the tobacco hornworm (Manduca sexta). EBDA and EHDA specifically photolabeled a 29-kDa nuclear protein (pI 5.8). This protein and a second 29-kDa protein (pI 6.0) were labeled by MDK, but excess unlabeled methoprene or MDK only prevented binding to the latter. These 29-kDa proteins are also present in larval fat body but not in epidermis from either wandering stage or allatectomized larvae, which lack high-affinity JH binding sites. A 29-kDa nuclear protein with the same developmental specificity as this JH binder bound the DNA of two larval endocuticle genes. A 38-kDa cytosolic protein was also specifically photolabeled by these photoaffinity analogs. The 29-kDa nuclear protein is likely the high-affinity receptor for JH that mediates its genomic action, whereas the 38-kDa cytosolic protein may serve as an intracellular carrier for these highly lipophilic hormones and hormone analogs.

  2. Subacute Microcystin-LR Exposure Alters the Metabolism of Thyroid Hormones in Juvenile Zebrafish (Danio Rerio)

    PubMed Central

    Liu, Zidong; Tang, Rong; Li, Dapeng; Hu, Qing; Wang, Ying

    2015-01-01

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs. PMID:25647779

  3. Subacute microcystin-LR exposure alters the metabolism of thyroid hormones in juvenile zebrafish (Danio Rerio).

    PubMed

    Liu, Zidong; Tang, Rong; Li, Dapeng; Hu, Qing; Wang, Ying

    2015-02-01

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs. PMID:25647779

  4. BLACK SPOT INFESTATION IN JUVENILE COHO SALMON AND THE INFLUENCE OF OREGON COASTAL STREAM SUMMER TEMPERATURES

    EPA Science Inventory

    Freshwater survival and growth of juvenile salmon are affected by many factors, including high summer temperatures and other stressors such as parasitism. Delayed or suppressed growth related to stress can influence subsequent survival of juvenile salmonids in freshwater and mar...

  5. Overexpression of Drosophila juvenile hormone esterase binding protein results in anti-JH effects and reduced pheromone abundance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The titer of juvenile hormone (JH), which has wide ranging physiological effects in insects, is regulated in part by JH esterase (JHE). We show that overexpression in Drosophila melanogaster of the JHE binding protein, DmP29 results in a series of apparent anti-JH effects. We hypothesize that DmP29 ...

  6. Control of larval and egg development in Aedes aegypti with Ribonucleic acid interference (RNAi) against juvenile hormone acid methyl transferase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ribonucleic acid interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pi...

  7. Precocious sexual signalling and mating in Anastrepha fraterculus (Diptera: Tephritidae) sterile males achieved through juvenile hormone treatment and protein supplements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sexual maturation of Anastrepha fraterculus is a long process. Methoprene (a mimic of juvenile hormone) considerably reduces the time for sexual maturation in males. However, in other Anastrepha species, this effect depends on protein intake at the adult stage. Here, we evaluated the mating competit...

  8. Gustatory Perception and Fat Body Energy Metabolism Are Jointly Affected by Vitellogenin and Juvenile Hormone in Honey Bees

    PubMed Central

    Wang, Ying; Brent, Colin S.; Fennern, Erin; Amdam, Gro V.

    2012-01-01

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or “foraging gene” Amfor). Our study demonstrates that the Vg–JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders. PMID

  9. Hemolymph juvenile hormone titers in worker honey bees under normal and preswarming conditions.

    PubMed

    Zeng, Zhijiang; Huang, Zachary Y; Qin, Yuchuan; Pang, Huizhong

    2005-04-01

    Swarming is an important mechanism by which honey bee, Apis mellifera L., colonies reproduce, yet very little is known about the physiological changes in workers that are preparing to swarm. In this study, we determined the endocrine status of worker honey bees in preswarming colonies and in normal (nonswarming) colonies. Juvenile hormone (JH) titers in worker bees were similar in both groups before queen cells were present, but they became significantly lower in preswarming colonies compared with normal colonies when queen cells occurred in preswarming colonies. The lower JH titers in the preswarming colonies suggest that behavioral development is delayed in these colonies, consistent with previous reports that preswarming colonies have reduced foraging activities. Understanding the endocrine status of bees preparing for swarming will help us to better understand the biology of swarming. PMID:15889713

  10. Microarray Analysis of the Juvenile Hormone Response in Larval Integument of the Silkworm, Bombyx mori.

    PubMed

    Cheng, Daojun; Peng, Jian; Meng, Meng; Wei, Ling; Kang, Lixia; Qian, Wenliang; Xia, Qingyou

    2014-01-01

    Juvenile hormone (JH) coordinates with 20-hydroxyecdysone (20E) to regulate larval growth and molting in insects. However, little is known about how this cooperative control is achieved during larval stages. Here, we induced silkworm superlarvae by applying the JH analogue (JHA) methoprene and used a microarray approach to survey the mRNA expression changes in response to JHA in the silkworm integument. We found that JHA application significantly increased the expression levels of most genes involved in basic metabolic processes and protein processing and decreased the expression of genes associated with oxidative phosphorylation in the integument. Several key genes involved in the pathways of insulin/insulin-like growth factor signaling (IIS) and 20E signaling were also upregulated after JHA application. Taken together, we suggest that JH may mediate the nutrient-dependent IIS pathway by regulating various metabolic pathways and further modulate 20E signaling. PMID:24809046

  11. Microarray Analysis of the Juvenile Hormone Response in Larval Integument of the Silkworm, Bombyx mori

    PubMed Central

    Cheng, Daojun; Peng, Jian; Meng, Meng; Wei, Ling; Kang, Lixia; Qian, Wenliang; Xia, Qingyou

    2014-01-01

    Juvenile hormone (JH) coordinates with 20-hydroxyecdysone (20E) to regulate larval growth and molting in insects. However, little is known about how this cooperative control is achieved during larval stages. Here, we induced silkworm superlarvae by applying the JH analogue (JHA) methoprene and used a microarray approach to survey the mRNA expression changes in response to JHA in the silkworm integument. We found that JHA application significantly increased the expression levels of most genes involved in basic metabolic processes and protein processing and decreased the expression of genes associated with oxidative phosphorylation in the integument. Several key genes involved in the pathways of insulin/insulin-like growth factor signaling (IIS) and 20E signaling were also upregulated after JHA application. Taken together, we suggest that JH may mediate the nutrient-dependent IIS pathway by regulating various metabolic pathways and further modulate 20E signaling. PMID:24809046

  12. The effect of juvenile hormone III, methyl farnesoate, and methoprene on Na/K-ATPase activity in larvae of the brine shrimp, Artemia.

    PubMed

    Ahl, J S; Brown, J J

    1991-01-01

    1. Ion transport enzyme (Na/K-ATPase) activity in stage III larvae of the brine shrimp, Artemia, remains elevated throughout the stadium when populations are exposed to methoprene in artificial seawater. 2. Infusion of methoprene, juvenile hormone, or methyl farnesoate causes increased Na/K-ATPase activity in homogenates of mid-stadium larvae that would otherwise exhibit low activity. 3. The sensitivity of the enzyme system to extremely low concentrations of the juvenoids suggests that this may be a common mode of action of these compounds. Additionally it suggests that the enzyme may be under the influence of a similar compound present in the larvae. PMID:1682091

  13. Is Juvenile Hormone a potential mechanism that underlay the "branched Y-model"?

    PubMed

    Márquez-García, Armando; Canales-Lazcano, Jorge; Rantala, Markus J; Contreras-Garduño, Jorge

    2016-05-01

    Trade-offs are a central tenet in the life-history evolution and the simplest model to understand it is the "Y" model: the investment of one arm will affect the investment of the other arm. However, this model is by far more complex, and a "branched Y-model" is proposed: trade-offs could exist within each arm of the Y, but the mechanistic link is unknown. Here we used Tenebrio molitor to test if Juvenile Hormone (JH) could be a mechanistic link behind the "branched Y-model". Larvae were assigned to one of the following experimental groups: (1) low, (2) medium and (3) high doses of methoprene (a Juvenile Hormone analogue, JHa), (4) acetone (methoprene diluents; control one) or (5) näive (handled in the same way as other groups; control two). The JHa lengthened the time of development from larvae to pupae and larvae to adults, resulting in adults with a larger size. Males with medium and long JHa treatment doses were favored with female choice, but had smaller testes and fewer viable sperm. There were no differences between groups in regard to the number of spermatozoa of males, or the number of ovarioles or eggs of females. This results suggest that JH: (i) is a mechanistic link of insects "branched Y model", (ii) is a double ended-sword because it may not only provide benefits on reproduction but could also impose costs, and (iii) has a differential effect on each sex, being males more affected than females. PMID:27013379

  14. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle.

    PubMed

    Daimon, Takaaki; Uchibori, Miwa; Nakao, Hajime; Sezutsu, Hideki; Shinoda, Tetsuro

    2015-08-01

    Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor. PMID:26195792

  15. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle

    PubMed Central

    Daimon, Takaaki; Uchibori, Miwa; Nakao, Hajime; Sezutsu, Hideki; Shinoda, Tetsuro

    2015-01-01

    Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor. PMID:26195792

  16. High juvenile hormone titre and abdominal activation of JH signalling may induce reproduction of termite neotenics.

    PubMed

    Saiki, R; Gotoh, H; Toga, K; Miura, T; Maekawa, K

    2015-08-01

    Termite castes are a key example of polyphenism, in which reproductive division of labour is clearly seen in colonies. The reproductive castes in termites include primary and neotenic reproductives; primary reproductives found a new colony whereas neotenics succeed them in the reproductive role when the primary reproductives die or become senescent. Neotenics usually differentiate from nymphs or workers by developing functional gonads while retaining juvenile characteristics; however, the developmental mechanism during neotenic differentiation remains poorly understood. Juvenile hormone (JH) mediates a number of aspects of developmental regulation in caste differentiation in termites. In the present study we quantified JH titres in neotenic reproductives of Reticulitermes speratus, and compared these with other developmental stages. In addition, expression changes in JH signalling gene homologues (Methoprene-tolerant [Met], Krüppel-homolog1, Broad-Complex) in the head, thorax and abdomen were investigated during neotenic differentiation. Finally, we examined the function of Met in reproduction of neotenics by RNA interference (RNAi). Our results showed that the JH titres of neotenics were significantly higher than those of nymphs and workers. JH signalling genes were highly expressed in neotenic abdomens, compared with those in workers and nymphs. Met RNAi resulted in the inhibition of vitellogenin gene expression in newly moulted neotenics. These results suggest that the fertility of neotenics might be controlled by a large increase of JH titres and body-part-specific activation of JH signalling pathways. PMID:25847681

  17. Effects of the juvenile hormone analogue methoprene and dietary protein on male melon fly Bactrocera cucurbitae (Diptera: Tephritidae) mating success.

    PubMed

    ul Haq, Ihsan; Cáceres, Carlos; Hendrichs, Jorge; Teal, Peter; Wornoayporn, Viwat; Stauffer, Christian; Robinson, Alan S

    2010-11-01

    The effect of access to dietary protein (P) and the topical application of a juvenile hormone analogue (methoprene (M)) on mating behaviour of male melon fly Bactrocera cucurbitae was assessed in the laboratory and in field cages. Age, dietary protein and methoprene application increased the mating success and influenced the mating behaviour. Treatment with methoprene (M+) to protein-deprived (P-) males had only a modest effect on the acceleration of sexual maturity, but application of methoprene (M+) to protein-fed (P+) males greatly accelerated sexual maturity. Protein diet (P+) increased mating success of males in comparison to protein-deprived (P-) males. Protein and methoprene have a synergistic effect on mating behaviour, since M+P+ treated males exhibit reduced mating latency and achieved higher mating in younger ages than methoprene and/or protein-deprived males. Copulation duration was correlated with nutritional status and M+P+ males copulated longer at the age of advanced sexual maturity than M-P+ males. Our results suggest that in this species with a lek mating system, females discriminate between the males based on their sexual signals, which were influenced by protein in the adult diet, methoprene application and age. The results are discussed in the light of mating competitiveness of precocious treated young males and their relevance to Sterile Insect Technique application against this pest species. PMID:20438735

  18. Regulatory roles of biogenic amines and juvenile hormone in the reproductive behavior of the western tarnished plant bug (Lygus hesperus).

    PubMed

    Brent, Colin S; Miyasaki, Katelyn; Vuong, Connor; Miranda, Brittany; Steele, Bronwen; Brent, Kristoffer G; Nath, Rachna

    2016-02-01

    Mating induces behavioral and physiological changes in the plant bug Lygus hesperus Knight (Hemiptera: Miridae). After receiving seminal products, which include the systemic regulator juvenile hormone (JH), females enter a post-mating period lasting several days during which they enhance their oviposition rate and lose interest in remating. To elucidate the regulation of these behavioral changes in L. hesperus, biogenic amines were quantified in the heads of females at 5 min, 1 h and 24 h after copulation and compared to levels in virgins using high-performance liquid chromatography coupled with electrochemical detection. Mating significantly increased dopamine (DA) after 1 and 24 h, and decreased octopamine (OA) after 5 min and 1 h. Serotonin did not change with mating, but tyramine was significantly reduced after 5 min. While injection of amines into virgin females did not influence sexual receptivity, OA caused a decrease in oviposition during the 24 h following injection. Topical application of the JH analog methoprene to virgins caused an increase in DA, and a decline in mating propensity, but did not influence other amines or the oviposition rate. The results suggest the decline in OA observed immediately after mating may promote egg laying, and that male-derived JH may induce an increase in DA that could account for the post-mating loss of sexual receptivity. PMID:26686231

  19. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori.

    PubMed

    Daimon, Takaaki; Kozaki, Toshinori; Niwa, Ryusuke; Kobayashi, Isao; Furuta, Kenjiro; Namiki, Toshiki; Uchino, Keiro; Banno, Yutaka; Katsuma, Susumu; Tamura, Toshiki; Mita, Kazuei; Sezutsu, Hideki; Nakayama, Masayoshi; Itoyama, Kyo; Shimada, Toru; Shinoda, Tetsuro

    2012-01-01

    Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis. PMID:22412378

  20. Molecular Determinants of Juvenile Hormone Action as Revealed by 3D QSAR Analysis in Drosophila

    PubMed Central

    Beňo, Milan; Farkaš, Robert

    2009-01-01

    Background Postembryonic development, including metamorphosis, of many animals is under control of hormones. In Drosophila and other insects these developmental transitions are regulated by the coordinate action of two principal hormones, the steroid ecdysone and the sesquiterpenoid juvenile hormone (JH). While the mode of ecdysone action is relatively well understood, the molecular mode of JH action remains elusive. Methodology/Principal Findings To gain more insights into the molecular mechanism of JH action, we have tested the biological activity of 86 structurally diverse JH agonists in Drosophila melanogaster. The results were evaluated using 3D QSAR analyses involving CoMFA and CoMSIA procedures. Using this approach we have generated both computer-aided and species-specific pharmacophore fingerprints of JH and its agonists, which revealed that the most active compounds must possess an electronegative atom (oxygen or nitrogen) at both ends of the molecule. When either of these electronegative atoms are replaced by carbon or the distance between them is shorter than 11.5 Å or longer than 13.5 Å, their biological activity is dramatically decreased. The presence of an electron-deficient moiety in the middle of the JH agonist is also essential for high activity. Conclusions/Significance The information from 3D QSAR provides guidelines and mechanistic scope for identification of steric and electrostatic properties as well as donor and acceptor hydrogen-bonding that are important features of the ligand-binding cavity of a JH target protein. In order to refine the pharmacophore analysis and evaluate the outcomes of the CoMFA and CoMSIA study we used pseudoreceptor modeling software PrGen to generate a putative binding site surrogate that is composed of eight amino acid residues corresponding to the defined molecular interactions. PMID:19547707

  1. National Implications in Juvenile Justice: The Influence of Juvenile Mentoring Programs on At Risk Youth.

    ERIC Educational Resources Information Center

    Belshaw, Scott H.; Kritsonis, William Allan

    2007-01-01

    In 1972 the federal government created the Juvenile Justice Delinquency Prevention Act that procured funding for various governmental programs to combat the sudden increase in juvenile crime. A provision of this Act set out the creation of mentoring programs to help decrease the juvenile crime rate and dropout rates in secondary schools. This…

  2. Sex-steroid and thyroid hormone concentrations in juvenile alligators (Alligator mississippiensis) from contaminated and reference lakes in Florida, USA

    USGS Publications Warehouse

    Grain, D.A.; Guillette, L.J., Jr.; Pickford, D.B.; Percival, H.F.; Woodward, A.R.

    1998-01-01

    Sex-steroid and thyroid hormones are critical regulators of growth and reproduction in all vertebrates, and several recent studies suggest that environmental chemicals can alter circulating concentrations of these hormones. This study examines plasma concentrations of estradiol-171?? (E2), testosterone (T), triiodothyronine (T3), and thyroxine (T4) in juvenile alligators (60-140 cm total length) from two contaminated lakes and one reference lake in Florida. First, the data were analyzed by comparing hormone concentrations among males and females from the different lakes. Whereas there were no differences in plasma E2 concentrations among animals of the three lakes, male alligators from the contaminated lakes (Lake Apopka and Lake Okeechobee) had significantly lower plasma T concentrations compared 10 males from the reference take (Lake Woodruff). Concentrations of thyroid hormones also differed in animals of the three lakes, with T4 concentrations being elevated in Lake Okeechobee males compared to Lake Woodruff males. Second, the relationship between body size and hormone concentration was examined using regression analysis. Most notably for steroid hormones, no clear relationship was detected between E2 and total length in Apopka females (r2 0.09, p = 0.54) or between T and total length in Apopka males (r2 = 0.007, p = 0.75). Females from Apopka (r2 = 0.318, p = 0.09) and Okeechobee (r2 = 0.222, p = 0.09) exhibited weak correlations between T3 and total length. Males from Apopka (r2 = 0.015, p = 0.66) and Okeechobee (r2 = 0.128, p = 0.19) showed no correlation between T4 and total length. These results indicate: some of the previously reported abnormalities in steroid hormones of hatchling alligators persist, at least, through the juvenile years; steroid and thyroid hormones are related to body size in juvenile alligators from the reference lake, whereas alligators living in lakes Apopka and Okeechobee experience alterations in circulating thyroid and steroid

  3. Effect of juvenile hormone on senescence in males with terminal investment.

    PubMed

    González-Tokman, D; González-Santoyo, I; Munguía-Steyer, R; Córdoba-Aguilar, A

    2013-11-01

    Senescence, a decline in survival and reproductive prospects with age, is controlled by hormones. In insects, juvenile hormone (JH) is involved in senescence with captive individuals, but its effect under natural conditions is unknown. We have addressed this gap by increasing JH levels in young and old wild males of the damselfly Hetaerina americana. We assessed survival in males that were treated with a JH analogue (methoprene), which is known to promote sexual activity, and an immune challenge, which is known to promote terminal investment in reproduction in the studied species. We replicated the same procedure in captivity (to control for environmental variation), where males were deprived of any activity or food. We expected old males to show the lowest survival after being treated with JH and immune-challenged, because the effect of terminal investment on senescence would be exacerbated by JH. However, this should be the case for wild animals, but not for captive animals, as the effects of JH and immune challenge should lead to an increase in high energetic-demanding activities only occurring in the wild. Old animals died sooner compared with young animals in both the wild and captivity, confirming that males are subject to senescence. In wild but not captive animals, JH decreased survival in young males and increased it in old males, confirming that JH is sensitive to the environment when shaping animal senescence. Immune challenge had no effect on survival, suggesting no effect of terminal investment on senescence. Additionally, contrary to the expected effects of terminal investment, with an immune challenge, recapture rates increased in young males and decreased in old males. Our results show that male senescence in the wild is mediated by JH and that terminal investment does not cause senescence. One explanation is that animals undergoing senescence and terminal investment modify their feeding behaviour to compensate for their physiological state. PMID

  4. Genetic and molecular studies of apterous: a gene implicated in the juvenile hormone system of Drosophila.

    PubMed

    Shtorch, A; Werczberger, R; Segal, D

    1995-01-01

    The apterous (ap) gene in Drosophila melanogaster encodes a homeodomain transcription factor. It is required for the development of the wings and of a subset of embryonic muscles. The gene has been implicated in the juvenile hormone (JH) system because mutations in ap lead to JH deficiency, and are associated with defective histolysis of the larval fat body, arrested vitellogenesis, sterility, and aberrant sexual behavior, all of which are dependent on JH. We describe here the use of hemizygotes and germ-line clones, of X-ray- and hybrid dysgenesis-induced lethal ap alleles to determine the primary role of the gene during development. We find that ap lethality is polyphasic, but occurs primarily at the larval and pupal stages. The lethal phenotype is not associated with any overt morphological abnormality, suggesting that death occurs from a systemic malfunction. Strong interallelic complementation for the wing phenotype was found between some ap mutations induced by X-rays or by hybrid-dysgenesis. By Northern blot analysis, we demonstrate an increase in ap expression in pupae and adults as compared to embryos and larvae, suggesting that it is developmentally regulated. Finally, primer extension is used to determine the transcription start site of the gene. PMID:7579572

  5. Gonadotropic and Physiological Functions of Juvenile Hormone in Bumblebee (Bombus terrestris) Workers

    PubMed Central

    Shpigler, Hagai; Amsalem, Etya; Huang, Zachary Y.; Cohen, Mira; Siegel, Adam J.; Hefetz, Abraham; Bloch, Guy

    2014-01-01

    The evolution of advanced sociality in bees is associated with apparent modifications in juvenile hormone (JH) signaling. By contrast to most insects in which JH is a gonadotropin regulating female fertility, in the highly eusocial honey bee (Apis mellifera) JH has lost its gonadotrophic function in adult females, and instead regulates age-related division of labor among worker bees. In order to shed light on the evolution of JH signaling in bees we performed allatectomy and replacement therapies to manipulate JH levels in workers of the "primitively eusocial" bumblebee Bombus terrestris. Allatectomized worker bees showed remarkable reduction in ovarian development, egg laying, Vitellogenin and Krüppel homolog 1 fat body transcript levels, hemolymph Vitellogenin protein abundance, wax secretion, and egg-cell construction. These effects were reverted, at least partially, by treating allatectomized bees with JH-III, the natural JH of bees. Allatectomy also affected the amount of ester component in Dufour's gland secretion, which is thought to convey a social signal relating to worker fertility. These findings provide a strong support for the hypothesis that in contrast to honey bees, JH is a gonadotropin in bumblebees and lend credence to the hypothesis that the evolution of advanced eusociality in honey bees was associated with major modifications in JH signaling. PMID:24959888

  6. Synthesis, biological activity, and conformational study of N-methylated allatostatin analogues inhibiting juvenile hormone biosynthesis.

    PubMed

    Xie, Yong; Zhang, Li; Zhang, Chuanliang; Wu, Xiaoqing; Deng, Xile; Yang, Xinling; Tobe, Stephen S

    2015-03-25

    An allatostatin (AST) neuropeptide mimic (H17) is a potential insect growth regulator, which inhibits the production of juvenile hormone (JH) by the corpora allata. To determine the effect of conformation of novel AST analogues and their ability to inhibit JH biosynthesis, eight insect AST analogues were synthesized using H17 as the lead compound by N-methylation scanning, which is a common strategy for improving the biological properties of peptides. A bioassay using JH production by corpora allata of the cockroach Diploptera punctata indicated that single N-methylation mimics (analogues 1-4) showed more activity than double N-methylation mimics (analogues 5-8). Especially, analogues 1 and 4 showed roughly equivalent activity to that of H17, with IC50 values of 5.17 × 10(-8) and 6.44 × 10(-8) M, respectively. Molecular modeling based on nuclear magnetic resonance data showed that the conformation of analogues 1 and 4 seems to be flexible, whereas analogues 2 and 3 showed a type IV β-turn. This flexible linear conformation was hypothesized to be a new important and indispensable structural element beneficial to the activity of AST mimics. PMID:25751662

  7. Molecular and biochemical characterization of juvenile hormone epoxide hydrolase from the silkworm, Bombyx mori.

    PubMed

    Zhang, Qi-Rui; Xu, Wei-Hua; Chen, Fu-Sheng; Li, Sheng

    2005-02-01

    One major route of insect juvenile hormone (JH) degradation is epoxide hydration by JH epoxide hydrolase (JHEH). A full-length cDNA (1536 bp) encoding a microsomal JHEH was isolated from the silkworm, Bombyx mori. Bommo-JHEH cDNA contains an open reading frame encoding a 461-amino acid protein (52 kDa), which reveals a high degree of similarity to the previously reported insect JHEHs. The residues Tyr298, Tyr373, and the HGWP motif corresponding to the oxyanion hole of JHEHs and the residues Asp227, His430, and Glu403 in the catalytic triad are well conserved in Bommo-JHEH. Bommo-JHEH was highly expressed in the fat body, where its mRNA expression pattern was in contrast to the pattern of hemolymph levels of JH during the larval development, suggesting that Bommo-JHEH plays an important role in JH degradation. Recombinant Bommo-JHEH (52 kDa) expressed in Sf9 insect cells was membrane-bound and had a high level of enzyme activity (300-fold over the control activity). This Bommo-JHEH study provides a better understanding of how JH levels are regulated in the domesticated silkworm. PMID:15681225

  8. Synthesis and bioassay of radiolabeled, chiral probes for juvenile hormone receptor study

    SciTech Connect

    Eng, W.

    1987-01-01

    Four different types of compounds were synthesized for the detailed study on interactions between insect juvenile hormone (JH) and the corresponding binding proteins, receptor proteins and catabolic enzymes: (1) High specific activity /sup 3/H-labeled, chiral alkyldiazoacetates with their skeletons approaching those of natural JH I and JH II were synthesized as photoaffinity labels for probing JH receptor proteins in Lepidoptera. Compared with epoxy farnesyl diazoacetate (EFDA), epoxy bishomofarnesyl diazoacetate (EBDA) and epoxy homofarnesyl diazoacetate (EHDA) have largely increased affinity to Manduca sexta JH binding proteins (JHBP) as demonstrated by gel electrophoresis. (2) Chiral JH I and JH II acids, as well as 12-hydroxy-JH I and JH II were synthesized. The hydroxy groups in these compounds provide tether points for attachment to proteins to serve as antigens with most of the recognition sites preserved to be used in JH radioimmunoassays. (3) The first radioiodine-labeled JH, (/sup 125/I)-12-iodo-JH I, was synthesized, both in no-carrier-added and carrier-added forms, as one of the probes for JH receptor study. (4) Four alkylthioltrifluoropropanones with skeletons approaching that of JH III and functional groups mimicking the JH epoxide moiety were synthesized as inhibitors for JH esterase (JHE).

  9. Protein kinase C modulates transcriptional activation by the juvenile hormone receptor methoprene-tolerant.

    PubMed

    Ojani, Reyhaneh; Liu, Pengcheng; Fu, Xiaonan; Zhu, Jinsong

    2016-03-01

    Juvenile hormone (JH) controls many biological events in insects by triggering dramatic changes in gene expression in target cells. The Methoprene-tolerant (MET) protein, an intracellular JH receptor, acts as a transcriptional regulator and binds to the promoters of tissue- and stage-specific JH target genes when JH is present. Our recent study has demonstrated that the transcriptional activation by MET is modulated by a membrane-initiated JH signaling pathway, involving phospholipase C (PLC) and calcium/calmodulin-dependent protein kinase II (CaMKII). Here we report that protein kinase C (PKC) is another essential intermediate of this pathway. PKC was activated by JH and this action was PLC-dependent. Inhibition of the PKC activity substantially weakened the JH-induced gene expression in mosquito cells. RNAi experiments indicated that several PKC isoforms were involved in the JH action during the post-emergence development of adult female mosquitoes. JH treatment considerably increased the binding of MET to the promoters of JH response genes in cultured mosquito abdomens that were collected from newly emerged female adults. The JH-induced DNA binding of MET was hindered when the abdomens were treated with a PKC inhibitor and JH. Therefore, the results suggest that PKC modulates the transactivation activity of MET by enhancing the binding of MET to JH response elements in the JH target genes. This mechanism may allow for variable and stage- and tissue-specific genomic responses to JH. PMID:26689644

  10. Diofenolan induces male offspring production through binding to the juvenile hormone receptor in Daphnia magna.

    PubMed

    Abe, Ryoko; Toyota, Kenji; Miyakawa, Hitoshi; Watanabe, Haruna; Oka, Tomohiro; Miyagawa, Shinichi; Nishide, Hiroyo; Uchiyama, Ikuo; Tollefsen, Knut Erik; Iguchi, Taisen; Tatarazako, Norihisa

    2015-02-01

    Juvenile hormone (JH) and JH agonists have been reported to induce male offspring production in various daphnid species including Daphnia magna. We recently established a short-term in vivo screening assay to detect chemicals having male offspring induction activity in adult D. magna. Diofenolan has been developed as a JH agonist for insect pest control, but its male offspring induction activity in daphnids has not been investigated yet. In this study, we found that the insect growth regulator (IGR) diofenolan exhibited a potent male offspring induction activity at low ng/L to μg/L concentrations, as demonstrated by the short-term in vivo screening assay and the recently developed TG211 ANNEX 7 test protocol. A two-hybrid assay performed using the D. magna JH receptor confirmed that diofenolan had a strong JH activity. Global whole body transcriptome analysis of D. magna exposed to 10 ng/L diofenolan showed an up-regulation of JH-responsive genes and modulation of several genes involved in the ecdysone receptor signaling pathway. These results clearly demonstrate that diofenolan has strong JH activity and male offspring induction activity, and that a combination of modified standardized regulatory testing protocols and rapid in vitro and in vivo screening assays are able to identify potential endocrine disruptors in D. magna. The observation that diofenolan modulates multiple endocrine signaling pathways in D. magna suggests that further investigation of potential interference with growth, development and reproduction is warranted. PMID:25506888

  11. Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila.

    PubMed

    Mirth, Christen Kerry; Tang, Hui Yuan; Makohon-Moore, Sasha C; Salhadar, Samy; Gokhale, Rewatee H; Warner, Raechel D; Koyama, Takashi; Riddiford, Lynn M; Shingleton, Alexander W

    2014-05-13

    The role of juvenile hormone (JH) in regulating the timing and nature of insect molts is well-established. Increasing evidence suggests that JH is also involved in regulating final insect size. Here we elucidate the developmental mechanism through which JH regulates body size in developing Drosophila larvae by genetically ablating the JH-producing organ, the corpora allata (CA). We found that larvae that lack CA pupariated at smaller sizes than control larvae due to a reduced larval growth rate. Neither the timing of the metamorphic molt nor the duration of larval growth was affected by the loss of JH. Further, we show that the effects of JH on growth rate are dependent on the forkhead box O transcription factor (FOXO), which is negatively regulated by the insulin-signaling pathway. Larvae that lacked the CA had elevated levels of FOXO activity, whereas a loss-of-function mutation of FOXO rescued the effects of CA ablation on final body size. Finally, the effect of JH on growth appears to be mediated, at least in part, via ecdysone synthesis in the prothoracic gland. These results indicate a role of JH in regulating growth rate via the ecdysone- and insulin-signaling pathways. PMID:24778227

  12. Behavioral Deficits in Juveniles Mediated by Maternal Stress Hormones in Mice

    PubMed Central

    Maguire, Jamie; Mody, Istvan

    2016-01-01

    Maternal depression has been shown to negatively impact offspring development. Investigation into the impact of maternal depression and offspring behavior has relied on correlative studies in humans. Further investigation into the underlying mechanisms has been hindered by the lack of useful animal models. We previously characterized a mouse model which exhibits depression-like behaviors restricted to the postpartum period and abnormal/fragmented maternal care (Gabrd−/− mice). Here we utilized this unique mouse model to investigate the mechanism(s) through which maternal depression-like behaviors adversely impact offspring development. Cross-fostering experiments reveal increased anxiety-like and depression-like behaviors in mice reared by Gabrd−/− mothers. Wild type and Gabrd−/− mice subjected to unpredictable stress during late pregnancy exhibit decreased pup survival and depression-like behavior in the postpartum period. Exogenous corticosterone treatment in wild type mice during late pregnancy is sufficient to decrease pup survival and induce anxiety-like and depression-like behaviors in the offspring. Further, the abnormal behaviors in juvenile mice reared by Gabrd−/− mice are alleviated by treatment of the mothers with the corticotropin-releasing hormone (CRH) antagonist, Antalarmin. These studies suggest that hyperresponsiveness of the HPA axis is associated with postpartum depression and may mediate the adverse effects of maternal depression on offspring behavior. PMID:26819762

  13. Juvenile hormone binding protein and transferrin from Galleria mellonella share a similar structural motif.

    PubMed

    Krzyzanowska, D; Ozyhar, A; Lalik, A; Parkitna, J M; Szkudlarek, J; Waśniowska, K; Lisowska, E; Kochman, M

    2001-07-01

    It has been previously suggested that juvenile hormone binding protein(s) (JHBP) belongs to a new class of proteins. In the search for other protein(s) that may contain structural motifs similar to those found in JHBP, hemolymph from Galleria mellonella (Lepidoptera) was chromatographed over a Sephadex G-200 column and resulting fractions were subjected to SDS-PAGE, transferred onto nitrocellulose membrane and scanned with a monoclonal antibody, mAb 104, against hemolymph JHBP. Two proteins yielded a positive reaction with mAb 104, one corresponding to JHBP and the second corresponding to a transferrin, as judged from N-terminal amino acid sequencing staining. Transferrin was purified to about 80% homogeneity using a two-step procedure including Sephadex G-200 gel filtration and HPLC MonoQ column chromatography. Panning of a random peptide display library and analysis with immobilized synthetic peptides were applied for finding a common epitope present in JHBP and the transferrin molecule. The postulated epitope motif recognized by mAb 104 in the JHBP sequence is RDTKAVN, and is localized at position 82-88. PMID:11530933

  14. Homeodomain Protein Scr Regulates the Transcription of Genes Involved in Juvenile Hormone Biosynthesis in the Silkworm

    PubMed Central

    Meng, Meng; Liu, Chun; Peng, Jian; Qian, Wenliang; Qian, Heying; Tian, Ling; Li, Jiarui; Dai, Dandan; Xu, Anying; Li, Sheng; Xia, Qingyou; Cheng, Daojun

    2015-01-01

    The silkworm Dominant trimolting (Moltinism, M3) mutant undergoes three larval molts and exhibits precocious metamorphosis. In this study, we found that compared with the wild-type (WT) that undergoes four larval molts, both the juvenile hormone (JH) concentration and the expression of the JH-responsive gene Krüppel homolog 1 (Kr-h1) began to be greater in the second instar of the M3 mutant. A positional cloning analysis revealed that only the homeodomain transcription factor gene Sex combs reduced (Scr) is located in the genomic region that is tightly linked to the M3 locus. The expression level of the Scr gene in the brain-corpora cardiaca-corpora allata (Br-CC-CA) complex, which controls the synthesis of JH, was very low in the final larval instar of both the M3 and WT larvae, and exhibited a positive correlation with JH titer changes. Importantly, luciferase reporter analysis and electrophoretic mobility shift assay (EMSA) demonstrated that the Scr protein could promote the transcription of genes involved in JH biosynthesis by directly binding to the cis-regulatory elements (CREs) of homeodomain protein on their promoters. These results conclude that the homeodomain protein Scr is transcriptionally involved in the regulation of JH biosynthesis in the silkworm. PMID:26540044

  15. Identification of plant compounds that disrupt the insect juvenile hormone receptor complex

    PubMed Central

    Lee, Seok-Hee; Oh, Hyun-Woo; Fang, Ying; An, Saes-Byeol; Park, Doo-Sang; Song, Hyuk-Hwan; Oh, Sei-Ryang; Kim, Soo-Young; Kim, Seonghyun; Kim, Namjung; Raikhel, Alexander S.; Je, Yeon Ho; Shin, Sang Woon

    2015-01-01

    Insects impact human health through vector-borne diseases and cause major economic losses by damaging crops and stored agricultural products. Insect-specific growth regulators represent attractive control agents because of their safety to the environment and humans. We identified plant compounds that serve as juvenile hormone antagonists (PJHANs). Using the yeast two-hybrid system transformed with the mosquito JH receptor as a reporter system, we demonstrate that PJHANs affect the JH receptor, methoprene-tolerant (Met), by disrupting its complex with CYCLE or FISC, formation of which is required for mediating JH action. We isolated five diterpene secondary metabolites with JH antagonist activity from two plants: Lindera erythrocarpa and Solidago serotina. They are effective in causing mortality of mosquito larvae at relatively low LD50 values. Topical application of two diterpenes caused reduction in the expression of Met target genes and retardation of follicle development in mosquito ovaries. Hence, the newly discovered PJHANs may lead to development of a new class of safe and effective pesticides. PMID:25624480

  16. Identification of plant compounds that disrupt the insect juvenile hormone receptor complex.

    PubMed

    Lee, Seok-Hee; Oh, Hyun-Woo; Fang, Ying; An, Saes-Byeol; Park, Doo-Sang; Song, Hyuk-Hwan; Oh, Sei-Ryang; Kim, Soo-Young; Kim, Seonghyun; Kim, Namjung; Raikhel, Alexander S; Je, Yeon Ho; Shin, Sang Woon

    2015-02-10

    Insects impact human health through vector-borne diseases and cause major economic losses by damaging crops and stored agricultural products. Insect-specific growth regulators represent attractive control agents because of their safety to the environment and humans. We identified plant compounds that serve as juvenile hormone antagonists (PJHANs). Using the yeast two-hybrid system transformed with the mosquito JH receptor as a reporter system, we demonstrate that PJHANs affect the JH receptor, methoprene-tolerant (Met), by disrupting its complex with CYCLE or FISC, formation of which is required for mediating JH action. We isolated five diterpene secondary metabolites with JH antagonist activity from two plants: Lindera erythrocarpa and Solidago serotina. They are effective in causing mortality of mosquito larvae at relatively low LD50 values. Topical application of two diterpenes caused reduction in the expression of Met target genes and retardation of follicle development in mosquito ovaries. Hence, the newly discovered PJHANs may lead to development of a new class of safe and effective pesticides. PMID:25624480

  17. Effects of juvenile hormone analogs on new reproductives and colony growth of Pharaoh ant (Hymenoptera: Formicidae).

    PubMed

    Lim, S P; Lee, C Y

    2005-12-01

    Two juvenile hormone analogs (JHAs), pyriproxyfen and S-methoprene, were impregnated into dried tuna fish and fed to colonies of Monomorium pharaonis (L.) at very low concentrations (1.0, 2.0, 3.0, 4.0, and 5.0 microg/ml). Its effects on the production of sexuals and colonial growth were observed. Colonies treated with pyriproxyfen yielded sexuals with physical abnormalities. Both female and male sexuals developed bulbous wings, decreased melanization, and died shortly after emergence. Sexuals emerged from colonies treated with S-methoprene did not possess anomalous characteristics. Both pyriproxyfen and S-methoprene did not have significant effects on colonial growth because of the low concentrations of the baits. A commercial bait containing 0.3% S-methoprene (Bioprene-BM) also was evaluated for its efficacy on Pharaoh's ant colonies. Results showed that Pharaoh's ant colonies succumbed to the lethal effects of S-methoprene. Colony members were reduced significantly. Production of queens also decreased significantly in treated colonies and treated queens were unable to lay eggs. JHAs are slow acting and eliminate ant colonies at a relatively slow rate. At low concentrations, pyriproxyfen recorded baffling results, i.e., bulbous wings and demelanized exoskeleton, and it is vital that further studies are initiated to solidify these findings. PMID:16539147

  18. Fast, ultra-trace detection of juvenile hormone III from mosquitoes using mass spectrometry.

    PubMed

    Ramirez, Cesar E; Nouzova, Marcela; Benigni, Paolo; Quirke, J Martin E; Noriega, Fernando G; Fernandez-Lima, Francisco

    2016-10-01

    In the present work, a new protocol for fast separation and quantification of JH III from biological samples using liquid chromatography coupled to electrospray tandem mass spectrometry is described. In particular, the proposed protocol improves existing methodologies by combining a limited number of sample preparation steps with fast LC-MS/MS detection, providing lower limits of detection and demonstrated matrix effect control, together with high inter and intraday reproducibility. A limit of detection of 8pg/mL (0.32pg on column) was achieved, representing a 15-fold gain in sensitivity with respect to previous LC-MS based protocols. The performance of the LC-MS/MS protocol is comparable to previously described JH III quantitation protocol based on fluorescence detection, with the added advantage that quantification is independent of the availability of fluorescent tags that are often unavailable or show quite diverse responses on a batch-to-batch basis. Additionally, a detailed description of the JH III fragmentation pathway is provided for the first time, based on isolation of the molecular ion and their intermediate fragments using in-source MS/MS, MS/MS(n) and FT-ICR MS/MS measurements. The JH III workflow was evaluated as a function of developmental changes, sugar feeding and farnesoic acid stimulation in mosquitoes and can be applied to the detection of other juvenile hormones. PMID:27474320

  19. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein

    PubMed Central

    Liu, Pengcheng; Peng, Hong-Juan; Zhu, Jinsong

    2015-01-01

    Juvenile hormone (JH) is a key regulator of a wide diversity of developmental and physiological events in insects. Although the intracellular JH receptor methoprene-tolerant protein (MET) functions in the nucleus as a transcriptional activator for specific JH-regulated genes, some JH responses are mediated by signaling pathways that are initiated by proteins associated with plasma membrane. It is unknown whether the JH-regulated gene expression depends on the membrane-mediated signal transduction. In Aedes aegypti mosquitoes, we found that JH activated the phospholipase C (PLC) pathway and quickly increased the levels of inositol 1,4,5-trisphosphate, diacylglycerol, and intracellular calcium, leading to activation and autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). When abdomens from newly emerged mosquitoes were cultured in vitro, the JH-activated gene expression was repressed substantially if specific inhibitors of PLC or CaMKII were added to the medium together with JH. In newly emerged female mosquitoes, RNAi-mediated depletion of PLC or CaMKII considerably reduced the expression of JH-responsive genes, including the Krüppel homolog 1 gene (AaKr-h1) and the early trypsin gene (AaET). JH-induced loading of MET to the promoters of AaKr-h1 and AaET was weakened drastically when either PLC or CaMKII was inactivated in the cultured tissues. Therefore, the results suggest that the membrane-initiated signaling pathway modifies the DNA-binding activity of MET via phosphorylation and thus facilitates the genomic responses to JH. In summary, this study reveals an interplay of genomic and nongenomic signaling mechanisms of JH. PMID:25825754

  20. Juvenile hormone and its receptor, methoprene-tolerant, control the dynamics of mosquito gene expression

    PubMed Central

    Zou, Zhen; Saha, Tusar T.; Roy, Sourav; Shin, Sang Woon; Backman, Tyler W. H.; Girke, Thomas; White, Kevin P.; Raikhel, Alexander S.

    2013-01-01

    Juvenile hormone III (JH) plays a key role in regulating the reproduction of female mosquitoes. Microarray time-course analysis revealed dynamic changes in gene expression during posteclosion (PE) development in the fat body of female Aedes aegypti. Hierarchical clustering identified three major gene clusters: 1,843 early-PE (EPE) genes maximally expressed at 6 h PE, 457 mid-PE (MPE) genes at 24 h PE, and 1,815 late-PE (LPE) genes at 66 h PE. The RNAi microarray screen for the JH receptor Methoprene-tolerant (Met) showed that 27% of EPE and 40% of MPE genes were up-regulated whereas 36% of LPE genes were down-regulated in the absence of this receptor. Met repression of EPE and MPE and activation of LPE genes were validated by an in vitro fat-body culture experiment using Met RNAi. Sequence motif analysis revealed the consensus for a 9-mer Met-binding motif, CACGC/TGA/GT/AG. Met-binding motif variants were overrepresented within the first 300 bases of the promoters of Met RNAi–down-regulated (LPE) genes but not in Met RNAi–up-regulated (EPE) genes. EMSAs using a combination of mutational and anti-Met antibody supershift analyses confirmed the binding properties of the Met consensus motif variants. There was a striking temporal separation of expression profiles among major functional gene groups, with carbohydrate, lipid, and xenobiotics metabolism belonging to the EPE and MPE clusters and transcription and translation to the LPE cluster. This study represents a significant advancement in the understanding of the regulation of gene expression by JH and its receptor Met during female mosquito reproduction. PMID:23633570

  1. TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis

    PubMed Central

    Ishimaru, Yoshiyasu; Tomonari, Sayuri; Matsuoka, Yuji; Watanabe, Takahito; Miyawaki, Katsuyuki; Bando, Tetsuya; Tomioka, Kenji; Ohuchi, Hideyo; Noji, Sumihare; Mito, Taro

    2016-01-01

    Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect’s life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb’Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb’jhamt. In contrast, JH production is up-regulated by Decapentaplegic (Gb’Dpp) and Glass-bottom boat/60A (Gb’Gbb) signaling that occurs as part of the transcriptional activation of Gb’jhamt. Gb’Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb’myo expression is suppressed, the activation of Gb’jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb’myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb’myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5–8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development. PMID:27140602

  2. Properties and sequence of a female-specific, juvenile hormone-induced protein from locust hemolymph.

    PubMed

    Zhang, J; McCracken, A; Wyatt, G R

    1993-02-15

    In the fat body of Locusta migratoria, an RNA transcript of about 800 nucleotides has been detected that is specific to the adult female and dependent on induction by juvenile hormone (JH) or an analog. The corresponding cDNA has been cloned (lambda 21) and a 718-base pair sequence determined. It encodes a 196-amino acid polypeptide, including a signal peptide. An NH2-terminal sequence has 24 out of 28 amino acids identical with those of a previously described 19K locust hemolymph protein, but the remainder of the sequence shows no similarity. From adult female hemolymph, a 21-kDa protein, designated 21K protein, has been purified, with an NH2-terminal sequence exactly matching that deduced from clone lambda 21. This 21K protein is found only in the adult female, is dependent on induction by JH, and is assumed to represent the product of the lambda 21 gene. It shows no immunochemical cross-reaction with locust 19K protein, apolipophorin III, nor with vitellogenin (Vg). Its isoelectric point is pH 5.4; it contains some carbohydrate. 21K protein is synthesized in adult female fat body, accumulates in hemolymph, and is taken up into the developing oocytes in parallel with Vg. In locusts deprived of JH with precocene, production of 21K protein and of lambda 21-hybridizing transcripts is induced by the JH analog, methoprene, in parallel with Vg and its mRNA. Because of its sex-, stage-, and JH-dependent regulation, coordinate with Vg, the 21K protein will be valuable for analysis of gene expression. PMID:7679110

  3. Characterization of two juvenile hormone epoxide hydrolases by RNA interference in the Colorado potato beetle.

    PubMed

    Lü, Feng-Gong; Fu, Kai-Yun; Guo, Wen-Chao; Li, Guo-Qing

    2015-10-10

    In insect, juvenile hormone (JH) titers are tightly regulated in different development stages through synthesis and degradation pathways. During JH degradation, JH epoxide hydrolase (JHEH) converts JH to JH diol, and hydrolyses JH acid to JH acid diol. In this study, two full length LdJHEH cDNAs were cloned from Leptinotarsa decemlineata, and were provisionally designated LdJHEH1 and LdJHEH2. Both mRNAs were detectable in the thoracic muscles, brain-corpora cardiaca-corpora allata complex, foregut, midgut, hindgut, ventral ganglia, Malpighian tubules, fat bodies, epidermis, and hemocytes of the day 2 fourth-instar larvae, and in female ovaries as well as male reproductive organs of the adults. Moreover, both LdJHEH1 and LdJHEH2 were expressed throughout all larval life, with the highest peaks occurring 32h after ecdysis of the final (fourth) instar larvae. Four double-stranded RNAs (dsRNAs) (dsJHEH1-1, dsJHEH1-2, dsJHEH2-1, dsJHEH2-2) respectively targeting LdJHEH1 and LdJHEH2 were constructed and bacterially expressed. Ingestion of dsJHEH1-1, dsJHEH1-2, dsJHEH2-1, dsJHEH2-2, and a mixture of dsJHEH1-1+dsJHEH2-1 successfully knocked down corresponding target gene function, and significantly increased JH titer and upregulated Krüppel homolog 1 (LdKr-h1) mRNA level. Knockdown of either LdJHEH1 or LdJHEH2, or both genes slightly reduced larval weight and delayed larval development, and significantly impaired adult emergence. Therefore, it is suggested that knockdown LdJHEH1 and LdJHEH2 affected JH degradation in the Colorado potato beetle. PMID:26079572

  4. Role of juvenile hormone esterase and epoxide hydrolase in reproduction of the cotton bollworm, Helicoverpa zea.

    PubMed

    Khalil, Sayed M S; Anspaugh, Douglas D; Michael Roe, R

    2006-07-01

    The role of juvenile hormone (JH) esterase (JHE) and epoxide hydrolase (EH) in reproduction of the cotton bollworm, Helicoverpa zea, was investigated. Peak emergence of male and female bollworm adults occurred early in the scotophase. Female adults were added to males in a 1:2 ratio, respectively, at the beginning of the first photophase after emergence (d0). The highest oviposition rates for mated females were noted on d 2-4. The in vitro JH III esterase and JH III EH activity was measured in whole body homogenates of virgin and mated females from d0 to d8 post-emergence. Maximal JHE activity for virgin females occurred on d2 (1.09+/-0.14(+/-1 SEM) nmol of JH III degraded/min/mg protein), which was approximately twice that of mated females on the same day. The same results were observed for EH where the activity peaked on d2 at 0.053+/-0.003 as compared to 0.033+/-0.003 nmol of JH III degraded/min/mg protein, respectively. By d4, both JHE and JH EH activities declined significantly in virgin and mated females and were the same through d7. The developmental changes and effects of mating on JH degradation were similar when measured per insect. The highest levels of JHE and JH EH activity/min/mg protein in d2 virgin and mated females was found in ovaries followed by the carcass and then haemolymph; no EH activity was found in haemolymph as expected. For ovary, the JHE and JH EH activity was highest in virgin compared to mated females. The role of both enzymes in the regulation of reproduction is discussed. PMID:16678198

  5. Modulation of Juvenile Hormone Esterase Gene Expression Against Development of Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    2016-04-01

    The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a widespread and destructive pest of cruciferous crops. Owing to its increasing resistance to conventional pesticides, new strategies need to be developed for diamondback moth control. Here, we investigated factors that modulate juvenile hormone esterase (JHE) activity and jhe (Px004817) transcription, and determined the effects of these factors on subsequent growth and development in diamondback moth. Starvation inhibited JHE activity and jhe transcription, increased mortality, and decreased the rate of molting from the third- to the fourth-instar stages. Larvae kept at 32°C molted earlier and showed increased JHE activity and jhe transcription after 24-h treatment. Exposure to 1,325 mg/liter OTFP (3-octylthio-1,1,1-trifluoro-2-propanone) delayed molting and pupation, increased pupal weight, and decreased JHE activity and jhe transcription at both 24 and 48 h. Treatment with 500 mg/liter pyriproxyfen delayed molting, completely suppressed pupation, and significantly increased JHE activity at 48 h and jhe transcription at 24 and 48 h. A combination of OTFP (1,325 mg/liter) and pyriproxyfen (500 mg/liter) induced the highest mortality, delayed molting, completely suppressed pupation, and significantly increased JHE activity at 48 h and jhe transcription at 24 and 48 h. These effects on JHE activity and jhe transcription were similar to those in insects treated only with pyriproxyfen. The results demonstrated that JHE and jhe (Px004817) were involved in the responses of diamondback moth to external modulators and caused changes in growth and development. The combination of OTFP and pyriproxyfen increased the effectiveness of action against diamondback moth. PMID:26880398

  6. Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression.

    PubMed

    Saha, Tusar T; Shin, Sang Woon; Dou, Wei; Roy, Sourav; Zhao, Bo; Hou, Yuan; Wang, Xue-Li; Zou, Zhen; Girke, Thomas; Raikhel, Alexander S

    2016-02-01

    The arthropod-specific juvenile hormone (JH) controls numerous essential functions. Its involvement in gene activation is known to be mediated by the transcription factor Methoprene-tolerant (Met), which turns on JH-controlled genes by directly binding to E-box-like motifs in their regulatory regions. However, it remains unclear how JH represses genes. We used the Aedes aegypti female mosquito, in which JH is necessary for reproductive maturation, to show that a repressor, Hairy, is required for the gene-repressive action of JH and Met. The RNA interference (RNAi) screen for Met and Hairy in the Aedes female fat body revealed a large cohort of Met- and Hairy-corepressed genes. Analysis of selected genes from this cohort demonstrated that they are repressed by JH, but RNAi of either Met or Hairy renders JH ineffective in repressing these genes in an in vitro fat-body culture assay. Moreover, this JH action was prevented by the addition of the translational inhibitor cycloheximide (CHX) to the culture, indicating the existence of an indirect regulatory hierarchy. The lack of Hairy protein in the CHX-treated tissue was verified using immunoblot analysis, and the upstream regions of Met/Hairy-corepressed genes were shown to contain common binding motifs that interact with Hairy. Groucho (gro) RNAi silencing phenocopied the effect of Hairy RNAi knockdown, indicating that it is involved in the JH/Met/Hairy hierarchy. Finally, the requirement of Hairy and Gro for gene repression was confirmed in a cell transfection assay. Thus, our study has established that Hairy and its cofactor Gro mediate the repressive function of JH and Met. PMID:26744312

  7. Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus.

    PubMed

    Smykal, Vlastimil; Bajgar, Adam; Provaznik, Jan; Fexova, Silvie; Buricova, Marcela; Takaki, Keiko; Hodkova, Magdalena; Jindra, Marek; Dolezel, David

    2014-02-01

    Juvenile hormone (JH), a sesquiterpenoid produced by the insect corpus allatum gland (CA), prevents metamorphosis in larvae and stimulates vitellogenesis in adult females. Whether the same JH signaling pathway regulates both processes is presently unknown. Here, we employ the robust JH response during reproduction and development of the linden bug, Pyrrhocoris apterus, to compare the function of key JH-signaling genes encoding the JH receptor, Methoprene-tolerant (Met), its binding partner Taiman (Tai), and a JH-inducible protein, Krüppel-homolog 1 (Kr-h1). RNA interference (RNAi) with Met or Tai, but not Kr-h1, blocked ovarian development and suppressed vitellogenin gene expression in the fat body of females raised under reproduction-inducing conditions. Loss of Met and Tai matched the effects of CA ablation or the natural absence of JH during reproductive diapause. Stimulation of vitellogenesis by treatment of diapausing females with a JH mimic methoprene also required both Met and Tai in the fat body, whereas Kr-h1 RNAi had no effect. Therefore, the Met-Tai complex likely functions as a JH receptor during vitellogenesis. In contrast to Met and Kr-h1 that are both required for JH to prevent precocious metamorphosis in P. apterus larvae, removal of Tai disrupted larval ecdysis without causing premature adult development. Our results show that while Met operates during metamorphosis in larvae and reproduction in adult females, its partner Tai is only required for the latter. The diverse functions of JH thus likely rely on a common receptor whose actions are modulated by distinct components. PMID:24361539

  8. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein.

    PubMed

    Liu, Pengcheng; Peng, Hong-Juan; Zhu, Jinsong

    2015-04-14

    Juvenile hormone (JH) is a key regulator of a wide diversity of developmental and physiological events in insects. Although the intracellular JH receptor methoprene-tolerant protein (MET) functions in the nucleus as a transcriptional activator for specific JH-regulated genes, some JH responses are mediated by signaling pathways that are initiated by proteins associated with plasma membrane. It is unknown whether the JH-regulated gene expression depends on the membrane-mediated signal transduction. In Aedes aegypti mosquitoes, we found that JH activated the phospholipase C (PLC) pathway and quickly increased the levels of inositol 1,4,5-trisphosphate, diacylglycerol, and intracellular calcium, leading to activation and autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). When abdomens from newly emerged mosquitoes were cultured in vitro, the JH-activated gene expression was repressed substantially if specific inhibitors of PLC or CaMKII were added to the medium together with JH. In newly emerged female mosquitoes, RNAi-mediated depletion of PLC or CaMKII considerably reduced the expression of JH-responsive genes, including the Krüppel homolog 1 gene (AaKr-h1) and the early trypsin gene (AaET). JH-induced loading of MET to the promoters of AaKr-h1 and AaET was weakened drastically when either PLC or CaMKII was inactivated in the cultured tissues. Therefore, the results suggest that the membrane-initiated signaling pathway modifies the DNA-binding activity of MET via phosphorylation and thus facilitates the genomic responses to JH. In summary, this study reveals an interplay of genomic and nongenomic signaling mechanisms of JH. PMID:25825754

  9. MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway.

    PubMed

    Lozano, Jesus; Montañez, Raúl; Belles, Xavier

    2015-03-24

    In 2009 we reported that depletion of Dicer-1, the enzyme that catalyzes the final step of miRNA biosynthesis, prevents metamorphosis in Blattella germanica. However, the precise regulatory roles of miRNAs in the process have remained elusive. In the present work, we have observed that Dicer-1 depletion results in an increase of mRNA levels of Krüppel homolog 1 (Kr-h1), a juvenile hormone-dependent transcription factor that represses metamorphosis, and that depletion of Kr-h1 expression in Dicer-1 knockdown individuals rescues metamorphosis. We have also found that the 3'UTR of Kr-h1 mRNA contains a functional binding site for miR-2 family miRNAs (for miR-2, miR-13a, and miR-13b). These data suggest that metamorphosis impairment caused by Dicer-1 and miRNA depletion is due to a deregulation of Kr-h1 expression and that this deregulation is derived from a deficiency of miR-2 miRNAs. We corroborated this by treating the last nymphal instar of B. germanica with an miR-2 inhibitor, which impaired metamorphosis, and by treating Dicer-1-depleted individuals with an miR-2 mimic to allow nymphal-to-adult metamorphosis to proceed. Taken together, the data indicate that miR-2 miRNAs scavenge Kr-h1 transcripts when the transition from nymph to adult should be taking place, thus crucially contributing to the correct culmination of metamorphosis. PMID:25775510

  10. TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis.

    PubMed

    Ishimaru, Yoshiyasu; Tomonari, Sayuri; Matsuoka, Yuji; Watanabe, Takahito; Miyawaki, Katsuyuki; Bando, Tetsuya; Tomioka, Kenji; Ohuchi, Hideyo; Noji, Sumihare; Mito, Taro

    2016-05-17

    Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect's life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb'Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb'jhamt In contrast, JH production is up-regulated by Decapentaplegic (Gb'Dpp) and Glass-bottom boat/60A (Gb'Gbb) signaling that occurs as part of the transcriptional activation of Gb'jhamt Gb'Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb'myo expression is suppressed, the activation of Gb'jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb'myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb'myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5-8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development. PMID:27140602

  11. Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression

    PubMed Central

    Saha, Tusar T.; Shin, Sang Woon; Dou, Wei; Roy, Sourav; Zhao, Bo; Hou, Yuan; Wang, Xue-Li; Zou, Zhen; Girke, Thomas; Raikhel, Alexander S.

    2016-01-01

    The arthropod-specific juvenile hormone (JH) controls numerous essential functions. Its involvement in gene activation is known to be mediated by the transcription factor Methoprene-tolerant (Met), which turns on JH-controlled genes by directly binding to E-box–like motifs in their regulatory regions. However, it remains unclear how JH represses genes. We used the Aedes aegypti female mosquito, in which JH is necessary for reproductive maturation, to show that a repressor, Hairy, is required for the gene-repressive action of JH and Met. The RNA interference (RNAi) screen for Met and Hairy in the Aedes female fat body revealed a large cohort of Met- and Hairy-corepressed genes. Analysis of selected genes from this cohort demonstrated that they are repressed by JH, but RNAi of either Met or Hairy renders JH ineffective in repressing these genes in an in vitro fat-body culture assay. Moreover, this JH action was prevented by the addition of the translational inhibitor cycloheximide (CHX) to the culture, indicating the existence of an indirect regulatory hierarchy. The lack of Hairy protein in the CHX-treated tissue was verified using immunoblot analysis, and the upstream regions of Met/Hairy-corepressed genes were shown to contain common binding motifs that interact with Hairy. Groucho (gro) RNAi silencing phenocopied the effect of Hairy RNAi knockdown, indicating that it is involved in the JH/Met/Hairy hierarchy. Finally, the requirement of Hairy and Gro for gene repression was confirmed in a cell transfection assay. Thus, our study has established that Hairy and its cofactor Gro mediate the repressive function of JH and Met. PMID:26744312

  12. Juvenile hormone, reproduction, and worker behavior in the neotropical social wasp Polistes canadensis

    PubMed Central

    Giray, Tugrul; Giovanetti, Manuela; West-Eberhard, Mary Jane

    2005-01-01

    Previous studies of the division of labor in colonies of eusocial Hymenoptera (wasps and bees) have led to two hypotheses regarding the evolution of juvenile hormone (JH) involvement. The novel- or single-function hypothesis proposes that the role of JH has changed from an exclusively reproductive function in primitively eusocial species (those lacking morphologically distinct queen and worker castes), to an exclusively behavioral function in highly eusocial societies (those containing morphologically distinct castes). In contrast, the split-function hypothesis proposes that JH originally functioned in the regulation of both reproduction and behavior in ancestral solitary species. Then, when reproductive and brood-care tasks came to be divided between queens and workers, the effects of JH were divided as well, with JH involved in regulation of reproductive maturation of egg-laying queens, and behavioral maturation, manifested as age-correlated changes in worker tasks, of workers. We report experiments designed to test these hypotheses. After documenting age-correlated changes in worker behavior (age polyethism) in the neotropical primitively eusocial wasp Polistes canadensis, we demonstrate that experimental application of the JH analog methoprene accelerates the onset of guarding behavior, an age-correlated task, and increases the number of foraging females; and we demonstrate that JH titers correlate with both ovarian development of queens and task differentiation in workers, as predicted by the split-function hypothesis. These findings support a view of social insect evolution that sees the contrasting worker and queen phenotypes as derived via decoupling of reproductive and brood-care components of the ancestral solitary reproductive physiology. PMID:15728373

  13. NADP+-dependent farnesol dehydrogenase, a corpora allata enzyme involved in juvenile hormone synthesis

    PubMed Central

    Mayoral, Jaime G.; Nouzova, Marcela; Navare, Arti; Noriega, Fernando G.

    2009-01-01

    The synthesis of juvenile hormone (JH) is an attractive target for control of insect pests and vectors of disease, but the minute size of the corpora allata (CA), the glands that synthesize JH, has made it difficult to identify important biosynthetic enzymes by classical biochemical approaches. Here, we report identification and characterization of an insect farnesol dehydrogenase (AaSDR-1) that oxidizes farnesol into farnesal, a precursor of JH, in the CA. AaSDR-1 was isolated as an EST in a library of the corpora allata-corpora cardiaca of the mosquito Aedes aegypti. The 245-amino acid protein presents the typical short-chain dehydrogenase (SDR) Rossmann-fold motif for nucleotide binding. This feature, together with other conserved sequence motifs, place AaSDR-1 into the “classical” NADP+-dependent cP2 SDR subfamily. The gene is part of a group of highly conserved paralogs that cluster together in the mosquito genome; similar clusters of orthologs were found in other insect species. AaSDR-1 acts as a homodimer and efficiently oxidizes C10 to C15 isoprenoid and aliphatic alcohols, showing the highest affinity for the conversion of farnesol into farnesal. Farnesol dehydrogenase activity was not detected in the CA of newly emerged mosquitoes but significant activity was detected 24 h later. Real time PCR experiments revealed that AaSDR-1 mRNA levels were very low in the inactive CA of the newly emerged female, but increased >30-fold 24 h later during the peak of JH synthesis. These results suggest that oxidation of farnesol might be a rate-limiting step in JH III synthesis in adult mosquitoes. PMID:19940247

  14. Influences of Neighborhood Context, Individual History and Parenting Behavior on Recidivism among Juvenile Offenders

    ERIC Educational Resources Information Center

    Grunwald, Heidi E.; Lockwood, Brian; Harris, Philip W.; Mennis, Jeremy

    2010-01-01

    This study examined the effects of neighborhood context on juvenile recidivism to determine if neighborhoods influence the likelihood of reoffending. Although a large body of literature exists regarding the impact of environmental factors on delinquency, very little is known about the effects of these factors on juvenile recidivism. The sample…

  15. Hormonal influences on sexually differentiated behavior in nonhuman primates.

    PubMed

    Wallen, Kim

    2005-04-01

    Sexually dimorphic behavior in nonhuman primates results from behavioral predispositions organized by prenatal androgens. The rhesus monkey has been the primary primate model for understanding the hormonal organization of sexually dimorphic behavior. Historically, female fetuses have received high prenatal androgen doses to investigate the masculinizing and defeminizing effects of androgens. Such treatments masculinized juvenile and adult copulatory behavior and defeminized female-typical sexual initiation to adult estrogen treatment. Testosterone and the nonaromatizable androgen, 5alpha-dihydrotestosterone, produced similar effects suggesting that estrogenic metabolites of androgens are not critical for masculinization and defeminization in rhesus monkeys. Long duration androgen treatments masculinized both behavior and genitalia suggesting that socializing responses to the females' male-like appearance may have produced the behavioral changes. Treatments limited to 35 days early or late in gestation differentially affected behavioral and genital masculinization demonstrating direct organizing actions of prenatal androgens. Recent studies exposed fetal females to smaller doses of androgens and interfered with endogenous androgens using the anti-androgen flutamide. Low dose androgen treatment only significantly masculinized infant vocalizations and produced no behavioral defeminization. Females receiving late gestation flutamide showed masculinized infant vocalizations and defeminized interest in infants. Both late androgen and flutamide treatment hypermasculinized some male juvenile behaviors. Early flutamide treatment blocked full male genital masculinization, but did not alter their juvenile or adult behavior. The role of neuroendocrine feedback mechanisms in the flutamide effects is discussed. Sexually differentiated behavior ultimately reflects both hormonally organized behavioral predispositions and the social experience that converts these predispositions

  16. The influence of hormone therapies on colon and rectal cancer.

    PubMed

    Mørch, Lina Steinrud; Lidegaard, Øjvind; Keiding, Niels; Løkkegaard, Ellen; Kjær, Susanne Krüger

    2016-05-01

    Exogenous sex hormones seem to play a role in colorectal carcinogenesis. Little is known about the influence of different types or durations of postmenopausal hormone therapy (HT) on colorectal cancer risk. A nationwide cohort of women 50-79 years old without previous cancer (n = 1,006,219) were followed 1995-2009. Information on HT exposures was from the National Prescription Register and updated daily, while information on colon (n = 8377) and rectal cancers (n = 4742) were from the National Cancer Registry. Potential confounders were obtained from other national registers. Poisson regression analyses with 5-year age bands included hormone exposures as time-dependent covariates. Use of estrogen-only therapy and combined therapy were associated with decreased risks of colon cancer (adjusted incidence rate ratio 0.77, 95 % confidence interval 0.68-0.86 and 0.88, 0.80-0.96) and rectal cancer (0.83, 0.72-0.96 and 0.89, 0.80-1.00), compared to never users. Transdermal estrogen-only therapy implied more protection than oral administration, while no significant influence was found of regimen, progestin type, nor of tibolone. The benefit of HT was stronger for long-term hormone users; and hormone users were at lower risk of advanced stage of colorectal cancer, which seems supportive for a causal association between hormone therapy and colorectal cancer. PMID:26758900

  17. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål)

    PubMed Central

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-01-01

    The “target of rapamycin” (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens. PMID:27043527

  18. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål).

    PubMed

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-01-01

    The "target of rapamycin" (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens. PMID:27043527

  19. Nutritional Signaling Regulates Vitellogenin Synthesis and Egg Development through Juvenile Hormone in Nilaparvata lugens (Stål)

    PubMed Central

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhang, Xin-Yu; Chen, Ming-Xiao; Zhou, Qiang

    2016-01-01

    Insect female reproduction which comprises the synthesis of vitellogenein (Vg) in the fat body and its incorporation into developing oocytes, needs a large amount of energy and food resources. Our previous studies found that juvenile hormone (JH) regulates vitellogenesis in the brown planthopper, Nilaparvata lugens. Here, we report on the role of JH in nutrient-regulated Vg synthesis and egg development. We first cloned the genes coding for juvenile hormone acid methyltransferase (JHAMT) which is involved in JH biosynthesis and methoprene-tolerant (Met) for JH action. Amino acids (AAs) induced the expression of jmtN, while showing no effects on the expression of met using an artificial diet culture system. Reduction in JH biosynthesis or its action by RNA interference (RNAi)-mediated silencing of jmtN or met led to a severe inhibition of AAs-induced Vg synthesis and oocyte maturation, together with lower fecundity. Furthermore, exogenous application of JH III partially restored Vg expression levels in jmtN RNAi females. However, JH III application did not rescue Vg synthesis in these met RNAi insects. Our results show that AAs induce Vg synthesis in the fat body and egg development in concert with JH biosynthesis in Nilaparvata lugens (Stål), rather than through JH action. PMID:26927076

  20. Nutritional Signaling Regulates Vitellogenin Synthesis and Egg Development through Juvenile Hormone in Nilaparvata lugens (Stål).

    PubMed

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhang, Xin-Yu; Chen, Ming-Xiao; Zhou, Qiang

    2016-01-01

    Insect female reproduction which comprises the synthesis of vitellogenein (Vg) in the fat body and its incorporation into developing oocytes, needs a large amount of energy and food resources. Our previous studies found that juvenile hormone (JH) regulates vitellogenesis in the brown planthopper, Nilaparvata lugens. Here, we report on the role of JH in nutrient-regulated Vg synthesis and egg development. We first cloned the genes coding for juvenile hormone acid methyltransferase (JHAMT) which is involved in JH biosynthesis and methoprene-tolerant (Met) for JH action. Amino acids (AAs) induced the expression of jmtN, while showing no effects on the expression of met using an artificial diet culture system. Reduction in JH biosynthesis or its action by RNA interference (RNAi)-mediated silencing of jmtN or met led to a severe inhibition of AAs-induced Vg synthesis and oocyte maturation, together with lower fecundity. Furthermore, exogenous application of JH III partially restored Vg expression levels in jmtN RNAi females. However, JH III application did not rescue Vg synthesis in these met RNAi insects. Our results show that AAs induce Vg synthesis in the fat body and egg development in concert with JH biosynthesis in Nilaparvata lugens (Stål), rather than through JH action. PMID:26927076

  1. The time- and age-dependent effects of the juvenile hormone analog pesticide, pyriproxyfen on Daphnia magna reproduction.

    PubMed

    Ginjupalli, Gautam K; Baldwin, William S

    2013-08-01

    Pyriproxyfen is an insecticidal juvenile hormone analog that perturbs insect and tick development. Pyriproxyfen also alters parthenogenic reproduction in non-target cladoceran species as it induces male production that can lead to a decrease in fecundity, a reduction in population density, and subsequent ecological effects. In this study, we investigate the impacts of pyriproxyfen on Daphnia magna reproduction using a series of male production screening assays. These assays demonstrate that pyriproxyfen increases male production in a concentration-dependent fashion with an EC50 of 156pM (50.24ngL(-1)); a concentration considered environmentally relevant. Furthermore, pyriproxyfen decreases overall fecundity at all ages tested (7, 14, 21-d old female parthenogenic daphnids). Juvenile (3-d old) and reproductively mature (10-d old) female daphnids were also exposed to 155pM pyriproxyfen for 2-12d and reproduction measured for 16d to compare the effects of short-term and prolonged exposures, and determine the potential for recovery. Results indicate that longer pyriproxyfen exposures (8-12d) extend male production and decrease reproduction; however, daphnids exposed for only 2-4d recover and produce a relatively normal abundance of neonates. In addition, juvenile daphnids are also very sensitive to pyriproxyfen, but the primary effect on juvenile daphnids is reduced reproduction and protracted development not male production. Taken together, continued use of pyriproxyfen around water bodies needs due caution because of its potential adverse effects with significant developmental delays and male production compounded by prolonged exposure. PMID:23714148

  2. Gender Differences in Cardiovascular Disease: Hormonal and Biochemical Influences

    PubMed Central

    Pérez-López, Faustino R.; Larrad-Mur, Luis; Kallen, Amanda; Chedraui, Peter; Taylor, Hugh S.

    2011-01-01

    Objective Atherosclerosis is a complex process characterized by an increase in vascular wall thickness owing to the accumulation of cells and extracellular matrix between the endothelium and the smooth muscle cell wall. There is evidence that females are at lower risk of developing cardiovascular disease (CVD) as compared to males. This has led to an interest in examining the contribution of genetic background and sex hormones to the development of CVD. The objective of this review is to provide an overview of factors, including those related to gender, that influence CVD. Methods Evidence analysis from PubMed and individual searches concerning biochemical and endocrine influences and gender differences, which affect the origin and development of CVD. Results Although still controversial, evidence suggests that hormones including estradiol and androgens are responsible for subtle cardiovascular changes long before the development of overt atherosclerosis. Conclusion Exposure to sex hormones throughout an individual's lifespan modulates many endocrine factors involved in atherosclerosis. PMID:20460551

  3. Structural studies of a potent insect maturation inhibitor bound to the juvenile hormone esterase of Manduca sexta†‡

    PubMed Central

    Wogulis, Mark; Wheelock, Craig E.; Kamita, Shizuo G.; Hinton, Andrew C.; Whetstone, Paul A.; Hammock, Bruce D.; Wilson, David K.

    2008-01-01

    Juvenile hormone (JH) is an insect hormone containing an α,β unsaturated ester consisting of a small alcohol and long, hydrophobic acid. JH degradation is required for proper insect development. One pathway of this degradation is through juvenile hormone esterase (JHE), which cleaves the JH ester bond to produce methanol and JH acid. JHE is a member of the functionally divergent α/β-hydrolase family of enzymes, and is a highly efficient enzyme that cleaves JH at very low in vivo concentrations. We present here a 2.7 Å crystal structure of JHE from the tobacco hornworm Manduca sexta (MsJHE) in complex with the transition state analog inhibitor 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP) covalently bound to the active site. This crystal structure, the first JHE structure reported, contains a long, hydrophobic binding pocket with the solvent inaccessible catalytic triad located at the end. The structure explains many of the interactions observed between JHE and its substrates and inhibitors, such as the preference for small alcohol groups and long hydrophobic backbones. The most potent JHE inhibitors identified to date contain a trifluoromethyl ketone (TFK) moiety and have a sulfur atom beta to the ketone. In this study, sulfur-aromatic interactions were observed between the sulfur atom of OTFP and a conserved aromatic residue in the crystal structure. Mutational analysis supported the hypothesis that these interactions contribute to the potency of sulfur-containing TFK inhibitors. Together these results clarify the binding mechanism of JHE inhibitors and provide useful observations for the development of additional enzyme inhibitors for a variety of enzymes. PMID:16566578

  4. Effects of juvenile hormone (JH) analog insecticides on larval development and JH esterase activity in two spodopterans.

    PubMed

    El-Sheikh, El-Sayed A; Kamita, Shizuo G; Hammock, Bruce D

    2016-03-01

    Juvenile hormone analog (JHA) insecticides are biological and structural mimics of JH, a key insect developmental hormone. Toxic and anti-developmental effects of the JHA insecticides methoprene, fenoxycarb, and pyriproxyfen were investigated on the larval and pupal stages of Spodoptera littoralis and Spodoptera frugiperda. Bioassays showed that fenoxycarb has the highest toxicity and fastest speed of kill in 2nd instar S. littoralis. All three JHAs affected the development of 6th instar (i.e., final instar) and pupal S. frugiperda. JH esterase (JHE) is a critical enzyme that helps to regulate JH levels during insect development. JHE activity in the last instar S. littoralis and S. frugiperda was 11 and 23 nmol min(-1) ml(-1) hemolymph, respectively. Methoprene and pyriproxyfen showed poor inhibition of JHE activity from these insects, whereas fenoxycarb showed stronger inhibition. The inhibitory activity of fenoxycarb, however, was more than 1000-fold lower than that of OTFP, a highly potent inhibitor of JHEs. Surprisingly, topical application of methoprene, fenoxycarb or pyriproxyfen on 6th instars of S. littoralis and S. frugiperda prevented the dramatic reduction in JHE activity that was found in control insects. Our findings suggest that JHAs may function as JH agonists that play a disruptive role or a hormonal replacement role in S. littoralis and S. frugiperda. PMID:26969437

  5. Precocene-I inhibits juvenile hormone biosynthesis, ovarian activation, aggression and alters sterility signal production in bumble bee (Bombus terrestris) workers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juvenile hormone (JH) is an important regulator of development and physiology in insects. While in many insect species, including bumble bees, JH function as gonadotropin in adults, in some highly eusocial insects its role has shifted to regulate social behavior including division of labor, dominanc...

  6. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB)

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations from 1 ...

  7. Enhancing male sexual success in a lekking fly (Ananstrepha suspensa (Diptera: Tephritidae) through a juvenile hormone analog has no effect on adult mortality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While defending lek-territories, male Anastrepha suspensa (Loew) produce chemical, acoustic and visual courtship signals. In the laboratory and under semi-natural conditions, topical application of the juvenile hormone analog methoprene doubles pheromone production and subsequently doubles sexual su...

  8. Effects of the juvenile hormone analogue methoprene and dietary protein on male melon fly Bactrocera cucurbitae (Diptera:Tephritidae) mating success

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of access to dietary protein (P) and the topical application of a juvenile hormone analogue (methoprene (M)) on mating behaviour of male melon fly Bactrocera cucurbitae was assessed in the laboratory and in field cages. Age, dietary protein and methoprene application increased the mating...

  9. Estrous cycle phase and gonadal hormones influence conditioned fear extinction

    PubMed Central

    Milad, Mohammed R; Igoe, Sarah A; Lebron-Milad, Kelimer; Novales, Juan E

    2009-01-01

    Gonadal hormones modulate fear acquisition, but less is known about the influence of gonadal hormones on fear extinction. We assessed sex differences and the influence of gonadal hormone fluctuations and exogenous manipulations of estrogen and progesterone on acquisition, extinction learning and extinction recall in a 3-day auditory fear conditioning and extinction protocol. Experiments were conducted on males and naturally cycling female rats. Regarding female rats, significant differences in fear extinction were observed between subgroups of females, depending on their phase of the estrous cycle. Extinction that took place during the proestrus (high estrogen/progesterone) phase was more fully consolidated, as evidenced by low freezing during a recall test. This suggests that estrogen and/or progesterone facilitate extinction. In support of this, injection of both estrogen and progesterone prior to extinction learning in female rats during the metestrus phase of the cycle (low estrogen/progesterone) facilitated extinction consolidation, and blockade of estrogen and progesterone receptors during the proestrus phase impaired extinction consolidation. When comparing male to female rats without consideration of the estrous cycle phase, no significant sex differences were observed. When accounting for cycle phase in females, sex differences were observed only during extinction recall. Female rats that underwent extinction during the metestrus phase showed significantly higher freezing during the recall test relative to males. Collectively, these data suggest that gonadal hormones influence extinction behavior possibly by influencing the function of brain regions involved in the consolidation of fear extinction. Moreover, the elevated fear observed in female relative to male rats during extinction recall suggests that gonadal hormones may in part play a role in the higher prevalence of anxiety disorders in women. PMID:19761818

  10. SEX DIFFERENCES AND REPRODUCTIVE HORMONE INFLUENCES ON HUMAN ODOR PERCEPTION

    PubMed Central

    Doty, Richard L.; Cameron, E. Leslie

    2009-01-01

    The question of whether men and women differ in their ability to smell has been the topic of scientific investigation for over a hundred years. Although conflicting findings abound, most studies suggest that, for at least some odorants, women outperform men on tests of odor detection, identification, discrimination, and memory. Most functional imaging and electrophysiological studies similarly imply that, when sex differences are present, they favor women. In this review we examine what is known about sex-related alterations in human smell function, including influences of the menstrual cycle, pregnancy, gonadectomy, and hormone replacement therapy on a range of olfactory measures. We conclude that the relationship between reproductive hormones and human olfactory function is complex and that simple associations between circulating levels of gonadal hormones and measures of olfactory function are rarely present. PMID:19272398

  11. The influence of plant hormones on phospholipid monolayer stability.

    PubMed

    Gzyl-Malchera, Barbara; Filek, Maria; Brezesinski, Gerald; Fischer, Antje

    2007-01-01

    The influence of hormones in water subphase on the stability of monolayers built of phospholipid mixtures extracted from embryogenic (PLE) and nonembryogenic (PLNE) wheat calli was examined. Additionally, experiments on individual lipids, dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidic acid (DPPA), were performed. DPPC was chosen because it was the main phospholipid present in both calli. Negatively charged DPPA could mimic a negatively charged natural mixture of lipids. As hormones, auxins (IAA and 2,4-D), cytokinins (zeatin and kinetin) and zearalenone were chosen. The time of monolayer stability for PLNE calli was much longer than for PLE calli. Kinetics of monolayer stability of PLNE was similar to DPPA, whereas that of PLE was similar to DPPC. Generally, hormones increased the time after which the monolayer stability was reached and decreased the surface pressure. The greatest effect was observed for auxins (especially IAA), whereas cytokinins affected the monolayer stability to a lesser degree. PMID:17425106

  12. Influence of thyroid hormones on maturation of rat cerebellar astrocytes.

    PubMed

    Manzano, Jimena; Bernal, Juan; Morte, Beatriz

    2007-05-01

    Thyroid hormone influences brain maturation through interaction with nuclear receptors and regulation of gene expression. Their role on astrocyte maturation remains unclear. We have analyzed the role of thyroid hormone in rat cerebellar astrocyte maturation by comparing the sequential patterns of intermediate filament expression in normal and hypothyroid animals. During normal development astroglial cells sequentially express nestin, vimentin, and glial fibrillary acidic protein. Differentiated astrocytes appeared in the superior medullary vellum by postnatal day 2 and reached the white mater and internal granular layer by postnatal day 4. Intermediate filament marker expression was transiently lost from postnatal days 6 to 8 in anterior lobes, without an increased apoptosis. Vimentin expression was replaced by glial fibrillary acidic protein between postnatal days 10 and 32. The differentiated astrocytes were evenly distributed throughout the cerebellar slices, including the internal granular layer. Differences between normal and hypothyroid rats were observed starting from postnatal day 4, with lack of differentiated astrocytes in the internal granular layer. The transient decrease of astrocyte markers immunoreactivity in the anterior lobe did not take place in hypothyroid rats. The vimentin-glial fibrillary acidic protein transition was delayed and most differentiated astrocytes remained confined to the white matter. The results indicate that thyroid hormone deficiency induces a delay and a partial arrest of astrocyte differentiation. Astrocytes express thyroid hormone receptor alpha and beta subtypes suggesting that astrocytes are direct target cells of thyroid hormones. PMID:17408906

  13. Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus.

    PubMed

    Urbanová, Veronika; Bazalová, Olga; Vaněčková, Hanka; Dolezel, David

    2016-03-01

    Adult reproductive diapause is characterized by lower behavioral activity, ceased reproduction and absence of juvenile hormone (JH). The role of JH receptor Methoprene-tolerant (Met) in female reproduction is well established; however, its function in male reproductive development and behavior is unclear. In the bean bug, Riptortus pedestris, circadian genes are essential for mediating photoperiodically-dependent growth of the male accessory glands (MAGs). The present study explores the role of circadian genes and JH receptor in male diapause in the linden bug, Pyrrhocoris apterus. These data indicate that circadian factors Clock, Cycle and Cry2 are responsible for photoperiod measurement, whereas Met and its partner protein Taiman participate in JH reception. Surprisingly, knockdown of the JH receptor neither lowered locomotor activity nor reduced mating behavior of males. These data suggest existence of a parallel, JH-independent or JH-upstream photoperiodic regulation of reproductive behavior. PMID:26826599

  14. Farnesol-like endogenous sesquiterpenoids in vertebrates: the probable but overlooked functional "inbrome" anti-aging counterpart of juvenile hormone of insects?

    PubMed

    De Loof, Arnold; Marchal, Elisabeth; Rivera-Perez, Crisalejandra; Noriega, Fernando G; Schoofs, Liliane

    2014-01-01

    Literature on the question whether the juvenile stage of vertebrates is hormonally regulated is scarce. It seems to be intuitively assumed that this stage of development is automated, and does not require any specific hormone(s). Such reasoning mimics the state of affairs in insects until it was shown that surgical removal of a tiny pair of glands in the head, the corpora allata, ended larval life and initiated metamorphosis. Decades later, the responsible hormone was found and named "juvenile hormone" (JH) because when present, it makes a larva molt into another larval stage. JH is a simple ester of farnesol, a sesquiterpenoid present in all eukaryotes. Whereas vertebrates do not have an anatomical counterpart of the corpora allata, their tissues do contain farnesol-like sesquiterpenoids (FLS). Some display typical JH activity when tested in appropriate insect bioassays. Some FLS are intermediates in the biosynthetic pathway of cholesterol, a compound that insects and nematodes (=Ecdysozoa) cannot synthesize by themselves. They ingest it as a vitamin. Until a recent (2014) reexamination of the basic principle underlying insect metamorphosis, it had been completely overlooked that the Ca(2+)-pump (SERCA) blocker thapsigargin is a sesquiterpenoid that mimics the absence of JH in inducing apoptosis. In our opinion, being in the juvenile state is primarily controlled by endogenous FLS that participate in controlling the activity of Ca(2+)-ATPases in the sarco(endo)plasmic reticulum (SERCAs), not only in insects but in all eukaryotes. Understanding the control mechanisms of being in the juvenile state may boost research not only in developmental biology in general, but also in diseases that develop after the juvenile stage, e.g., Alzheimer's disease. It may also help to better understand some of the causes of obesity, a syndrome that holometabolous last larval insects severely suffer from, and for which they found a very drastic but efficient solution, namely

  15. Central administration of corticotropin-releasing hormone alters downstream movement in an artificial stream in juvenile chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Clements, Shaun; Schreck, Carl B

    2004-05-15

    We evaluated the effect of corticotropin-releasing hormone (CRH) on spatial distribution and downstream movement in an artificial stream in juvenile Chinook salmon (Oncorhynchus tshawytscha) during the period when the fish were able to tolerate seawater. An intracerebroventricular (ICV) injection of CRH (500 ng) to hatchery fish significantly increased the proportion of fish that were distributed downstream of a mid-stream release site. A second group of hatchery fish were given ICV injections of saline (control) or CRH (500 ng) and released near the top of the stream. The time taken to enter a trap at the lower end of the stream was recorded. In all cases the groups given CRH had a higher proportion of fish that did not enter the trap within 60 min of release. However, in those fish that did enter the trap, treatment with CRH increased the speed of downstream movement to this point relative to control fish. Wild sub-yearling Chinook salmon were captured during their downstream migration to the estuary and given ICV injections of saline or CRH (500 ng) either 2, 3, or 7 days after transport from the river. As with hatchery fish, a significantly higher proportion of wild fish that were administered CRH did not enter the trap at the lower end of the stream. The mean time of passage for control fish decreased on each successive day (day 2 > day 3 > day 7). In contrast, the mean passage time of the wild fish that were given CRH was relatively constant through time, and was only significantly faster than control fish on day 2. The current study provides evidence that CRH alters the downstream movement of juvenile Chinook in a simulated stream environment, and produces behavioral effects similar to those of juvenile salmonids that are stressed during their downstream migration. PMID:15094330

  16. Elevated body weight gain during the juvenile period alters neuropeptide Y-gonadotropin-releasing hormone circuitry in prepubertal heifers.

    PubMed

    Alves, Bruna R C; Cardoso, Rodolfo C; Prezotto, Ligia D; Thorson, Jennifer F; Bedenbaugh, Michelle; Sharpton, Sarah M; Caraty, Alain; Keisler, Duane H; Tedeschi, Luis O; Williams, Gary L; Amstalden, Marcel

    2015-02-01

    Increased body weight (BW) gain during the juvenile period leads to early maturation of the reproductive neuroendocrine system. We investigated whether a nutritional regimen that advances the onset of puberty leads to alterations in the hypothalamic neuropeptide Y (NPY) circuitry that are permissive for enhanced gonadotropin-releasing hormone (GnRH) secretion. It was hypothesized that NPY mRNA and NPY projections to GnRH and kisspeptin neurons are reduced in heifers that gain BW at an accelerated rate, compared with a lower one, during the juvenile period. Heifers were weaned at approximately 4 mo of age and fed diets to promote relatively low (0.5 kg/day; low gain [LG]) or high (1.0 kg/day; high gain [HG]) rates of BW gain until 8.5 mo of age. Heifers that gained BW at a higher rate exhibited greater circulating concentrations of leptin and reduced overall NPY expression in the arcuate nucleus. The proportion of GnRH neurons in close apposition to NPY fibers and the magnitude of NPY projections to GnRH neurons located in the mediobasal hypothalamus were reduced in HG heifers. However, no differences in NPY projections to kisspeptin neurons in the arcuate nucleus were detected between HG and LG heifers. Results indicate that a reduction in NPY innervation of GnRH neurons, particularly at the level of the mediobasal hypothalamus, occurs in response to elevated BW gain during the juvenile period. This functional plasticity may facilitate early onset of puberty in heifers. PMID:25505201

  17. The potential role of juvenile hormone acid methyltransferase in methyl farnesoate (MF) biosynthesis in the swimming crab, Portunus trituberculatus.

    PubMed

    Xie, Xi; Tao, Tian; Liu, Mingxin; Zhou, Yanqi; Liu, Zhiye; Zhu, Dongfa

    2016-05-01

    Juvenile hormone (JH) and methyl farnesoate (MF) play essential roles in the development and reproduction of insects and crustaceans respectively. Juvenile hormone acid methyltransferase (JHAMT) catalyzes the methyl esterification in insect JH biosynthesis, while the corresponding step in crustacean MF biosynthesis was long thought to be catalyzed by farnesoic acid O-methyltransferase (FAMeT). However, the new discovery of JHAMT orthologs in crustaceans indicates that JHAMT may also play essential role in the MF biosynthesis in crustaceans. Here we cloned and characterized the full-length cDNA encoding JHAMT in the swimming crab Portunus trituberculatus (PtJHAMT). Sequence and structure analysis of PtJHAMT revealed that it was composed of a 6-stranded β sheet with 9 α helices, and contained a signature Sadenosyl-l-methionine (SAM) binding motif, which is the hallmark in all SAM dependent methyltransferases (SAM-MTs). Several active sites that are critical for the interaction of SAM and JH/FA substrate were also conserved in PtJHAMT. The gene expression of PtJHAMT was highly specific to the mandibular organ, which is the sole site of MF synthesis. PtJHAMT expression significantly increased in the late-vitellogenic stage and mature stage, which suggests a possible role of PtJHAMT in modulating ovarian development. The role of PtJHAMT and PtFAMeT in MF biosynthesis was further investigated by RNA interfering (RNAi). Injection of PtJHAMT and PtFAMeT dsRNA both led to a decrease in hemolymph MF titers. Injection of PtHMGR dsRNA caused the decrease in PtJHAMT expression, but had no effect on mRNA level of PtFAMeT. Together these results suggested that JHAMT and FAMeT are both involved in the MF biosynthesis in crustaceans, while the JHAMT is highly specific to FA substrate, and FAMeT may have more catalytic functions. PMID:26952760

  18. Involvement of a putative allatostatin in regulation of juvenile hormone titer and the larval development in Leptinotarsa decemlineata (Say).

    PubMed

    Meng, Qing-Wei; Liu, Xin-Ping; Lü, Feng-Gong; Fu, Kai-Yun; Guo, Wen-Chao; Li, Guo-Qing

    2015-01-01

    Juvenile hormone III (JH III) plays primary roles in regulation of metamorphosis, reproduction and diapause in Leptinotarsa decemlineata, a notorious defoliator of potato. The neurosecretory cell-borne substance(s) negatively affects the final two steps in JH biosynthesis, catalyzed respectively by an epoxidase CYP15A1 and a juvenile hormone acid methyltransferase (JHAMT). In a few insect species other than L. decemlineata, the inhibitory substance is allatostatin (AS) neuropeptide. In this study, two putative AS genes encoding LdAS-C and LdAS-B precursors were cloned. Both LdAS-C and LdAS-B were expressed in the egg, larvae, pupae and adults, and highly expressed in the brain and the gut. Dietary introduction of double-stranded RNAs (dsRNAs) targeting LdAS-C and LdAS-B successfully knocked down respective target genes. Ingestion during 3 and 6 consecutive days of dsLdAS-C significantly increased the LdJHAMT mRNA levels by 3.8 and 9.9 fold respectively. In contrast, ingestion of dsLdAS-B only slightly increased the LdJHAMT expression level by 1.1 and 1.7 fold. Moreover, after one, two and three days' ingestion of dsLdAS-C, the relative JH levels in the hemolymph of treated larvae were 2.5, 4.2 and 1.9 fold higher than those in control beetles. Furthermore, ingestion of dsLdAS-C and dsLdAS-B significantly affected larval growth and delayed larval development. Thus, we provide a line of experimental evidence in L. decemlineata to support the concept that AS-C acts as an allatostatin and inhibit JH biosynthesis. PMID:25452193

  19. Changes in juvenile hormone biosynthetic rate and whole body content in maturing virgin queens of Solenopsis invicta.

    PubMed

    Brent, Colin S; Vargo, Edward L

    2003-10-01

    Studies were conducted on the physiological and hormonal changes following the release of alates from developmentally suppressive pheromones produced by mature queens of the fire ant Solenopsis invicta Buren. Winged virgin queens were removed from the pheromonal signal and placed in colony fragments. The time for dealation, degree of ovarian development, and biosynthesis rate and whole body content of juvenile hormone (JH) were measured. The production rate and content of JH were highly correlated. Dealation and the initiation of oviposition corresponded to peak production of JH. JH production rose sharply following separation from the natal nest, peaking after 3 days. After 8 days of isolation, JH production gradually subsided to levels similar to that found in pre-release queens, but began to increase again after 12 days. Mature queens had highly elevated levels of JH relative to recently dealate females, probably reflecting the increased reproductive capability of these older females. The results support the hypothesis that the pheromone released by functional queens inhibits reproduction in virgin alates by suppressing corpora allata activity and the production of JH. PMID:14511829

  20. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein.

    PubMed

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-09-19

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. PMID:25096576

  1. Pleiotropic effects of juvenile hormone in ant queens and the escape from the reproduction-immunocompetence trade-off.

    PubMed

    Pamminger, Tobias; Treanor, David; Hughes, William O H

    2016-01-13

    The ubiquitous trade-off between survival and costly reproduction is one of the most fundamental constraints governing life-history evolution. In numerous animals, gonadotropic hormones antagonistically suppressing immunocompetence cause this trade-off. The queens of many social insects defy the reproduction-survival trade-off, achieving both an extraordinarily long life and high reproductive output, but how they achieve this is unknown. Here we show experimentally, by integrating quantification of gene expression, physiology and behaviour, that the long-lived queens of the ant Lasius niger have escaped the reproduction-immunocompetence trade-off by decoupling the effects of a key endocrine regulator of fertility and immunocompetence in solitary insects, juvenile hormone (JH). This modification of the regulatory architecture enables queens to sustain a high reproductive output without elevated JH titres and suppressed immunocompetence, providing an escape from the reproduction-immunocompetence trade-off that may contribute to the extraordinary lifespan of many social insect queens. PMID:26763704

  2. Farnesol-Like Endogenous Sesquiterpenoids in Vertebrates: The Probable but Overlooked Functional “Inbrome” Anti-Aging Counterpart of Juvenile Hormone of Insects?

    PubMed Central

    De Loof, Arnold; Marchal, Elisabeth; Rivera-Perez, Crisalejandra; Noriega, Fernando G.; Schoofs, Liliane

    2014-01-01

    Literature on the question whether the juvenile stage of vertebrates is hormonally regulated is scarce. It seems to be intuitively assumed that this stage of development is automated, and does not require any specific hormone(s). Such reasoning mimics the state of affairs in insects until it was shown that surgical removal of a tiny pair of glands in the head, the corpora allata, ended larval life and initiated metamorphosis. Decades later, the responsible hormone was found and named “juvenile hormone” (JH) because when present, it makes a larva molt into another larval stage. JH is a simple ester of farnesol, a sesquiterpenoid present in all eukaryotes. Whereas vertebrates do not have an anatomical counterpart of the corpora allata, their tissues do contain farnesol-like sesquiterpenoids (FLS). Some display typical JH activity when tested in appropriate insect bioassays. Some FLS are intermediates in the biosynthetic pathway of cholesterol, a compound that insects and nematodes (=Ecdysozoa) cannot synthesize by themselves. They ingest it as a vitamin. Until a recent (2014) reexamination of the basic principle underlying insect metamorphosis, it had been completely overlooked that the Ca2+-pump (SERCA) blocker thapsigargin is a sesquiterpenoid that mimics the absence of JH in inducing apoptosis. In our opinion, being in the juvenile state is primarily controlled by endogenous FLS that participate in controlling the activity of Ca2+-ATPases in the sarco(endo)plasmic reticulum (SERCAs), not only in insects but in all eukaryotes. Understanding the control mechanisms of being in the juvenile state may boost research not only in developmental biology in general, but also in diseases that develop after the juvenile stage, e.g., Alzheimer’s disease. It may also help to better understand some of the causes of obesity, a syndrome that holometabolous last larval insects severely suffer from, and for which they found a very drastic but efficient solution, namely

  3. Ecdysteroids, juvenile hormone and insect neuropeptides: Recent successes and remaining major challenges.

    PubMed

    De Loof, Arnold

    2008-01-01

    In the recent decade, tremendous progress has been realized in insect endocrinology as the result of the application of a variety of advanced methods in neuropeptidome- and receptor research. Hormones of which the existence had been shown by bioassays four decades ago, e.g. bursicon (a member of the glycoprotein hormone family) and pupariation factor (Neb-pyrokinin 2, a myotropin), could be identified, along with their respective receptors. In control of diurnal rhythms, clock genes got company from the neuropeptide Pigment Dispersing Factor (PDF), of which the receptor could also be identified. The discovery of Inka cells and their function in metamorphosis was a true hallmark. Analysis of the genomes of Caenorhabditis elegans, Drosophila melanogaster and Apis mellifera yielded about 75, 100 and 200 genes coding for putative signaling peptides, respectively, corresponding to approximately 57, 100 and 100 peptides of which the expression could already be proven by means of mass spectrometry. The comparative approach invertebrates-vertebrates recently yielded indications for the existence of counterparts in insects for prolactin, atrial natriuretic hormone and Growth Hormone Releasing Hormone (GRH). Substantial progress has been realized in identifying the Halloween genes, a membrane receptor(s) for ecdysteroids, a nuclear receptor for methylfarnesoate, and dozens of GPCRs for insect neuropeptides. The major remaining challenges concern the making match numerous orphan GPCRs with orphan peptidic ligands, and elucidating their functions. Furthermore, the endocrine control of growth, feeding-digestion, and of sexual differentiation, in particular of males, is still poorly understood. The finding that the prothoracic glands produce an autocrine factor with growth factor-like properties and secrete proteins necessitates a reevaluation of their role in development. PMID:17716674

  4. Influence of food availability on the spatial distribution of juvenile fish within soft sediment nursery habitats

    NASA Astrophysics Data System (ADS)

    Tableau, A.; Brind'Amour, A.; Woillez, M.; Le Bris, H.

    2016-05-01

    Soft sediments in coastal shallow waters constitute nursery habitats for juveniles of several flatfishes. The quality of a nursery is defined by its capacity to optimize the growth and the survival of juvenile fish. The influence of biotic factors, such as food availability, is poorly studied at the scale of a nursery ground. Whether food availability limits juvenile survival is still uncertain. A spatial approach is used to understand the influence of food availability on the distribution of juvenile fish of various benthic and demersal species in the Bay of Vilaine (France), a productive nursery ground. We quantified the spatial overlap between benthic macro-invertebrates and their predators (juvenile fish) to assess if the latter were spatially covering the most productive areas of the Bay. Three scenarios describing the shapes of the predator-prey spatial relationship were tested to quantify the strength of the relationship and consequently the importance of food availability in determining fish distribution. Our results underline that both food availability and fish densities vary greatly over the nursery ground. When considering small organisational levels (e.g., a single fish species), the predator-prey spatial relationship was not clear, likely because of additional environmental effects not identified here; but at larger organisational level (the whole juvenile fish community), a strong overlap between the fish predators and their prey was identified. The evidence that fish concentrate in sectors with high food availability suggests that either food is the limiting factor in that nursery or/and fish display behavioural responses by optimising their energetic expenditures associated with foraging. Further investigations are needed to test the two hypotheses and to assess the impact of benthic and demersal juvenile fish in the food web of coastal nurseries.

  5. Insulin receptor-mediated nutritional signalling regulates juvenile hormone biosynthesis and vitellogenin production in the German cockroach.

    PubMed

    Abrisqueta, Marc; Süren-Castillo, Songül; Maestro, José L

    2014-06-01

    Female reproductive processes, which comprise, amongst others, the synthesis of yolk proteins and the endocrine mechanisms which regulate this synthesis, need a considerable amount of energy and resources. The role of communicating that the required nutritional status has been attained is carried out by nutritional signalling pathways and, in particular, by the insulin receptor (InR) pathway. In the present study, using the German cockroach, Blattella germanica, as a model, we analysed the role of InR in different processes, but mainly those related to juvenile hormone (JH) synthesis and vitellogenin production. We first cloned the InR cDNA from B. germanica (BgInR) and then determined that its expression levels were constant in corpora allata and fat body during the first female gonadotrophic cycle. Results showed that the observed increase in BgInR mRNA in fat body from starved compared to fed females was abolished in those females treated with systemic RNAi in vivo against the transcription factor BgFoxO. RNAi-mediated BgInR knockdown during the final two nymphal stages produced significant delays in the moults, together with smaller adult females which could not spread the fore- and hindwings properly. In addition, BgInR knockdown led to a severe inhibition of juvenile hormone synthesis in adult female corpora allata, with a concomitant reduction of mRNA levels corresponding to 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase-1, HMG-CoA synthase-2, HMG-CoA reductase and methyl farnesoate epoxidase. BgInR RNAi treatment also reduced fat body vitellogenin mRNA and oocyte growth. Our results show that BgInR knockdown produces similar phenotypes to those obtained in starved females in terms of corpora allata activity and vitellogenin synthesis, and indicate that the InR pathway mediates the activation of JH biosynthesis and vitellogenin production elicited by nutrition signalling. PMID:24657890

  6. Thyroid hormone-regulated gene expression in juvenile mouse liver: identification of thyroid response elements using microarray profiling and in silico analyses

    PubMed Central

    2011-01-01

    Background Disruption of thyroid hormone signalling can alter growth, development and energy metabolism. Thyroid hormones exert their effects through interactions with thyroid receptors that directly bind thyroid response elements and can alter transcriptional activity of target genes. The effects of short-term thyroid hormone perturbation on hepatic mRNA transcription in juvenile mice were evaluated, with the goal of identifying genes containing active thyroid response elements. Thyroid hormone disruption was induced from postnatal day 12 to 15 by adding goitrogens to dams' drinking water (hypothyroid). A subgroup of thyroid hormone-disrupted pups received intraperitoneal injections of replacement thyroid hormones four hours prior to sacrifice (replacement). An additional group received only thyroid hormones four hours prior to sacrifice (hyperthyroid). Hepatic mRNA was extracted and hybridized to Agilent mouse microarrays. Results Transcriptional profiling enabled the identification of 28 genes that appeared to be under direct thyroid hormone-regulation. The regulatory regions of the genome adjacent to these genes were examined for half-site sequences that resemble known thyroid response elements. A bioinformatics search identified 33 thyroid response elements in the promoter regions of 13 different genes thought to be directly regulated by thyroid hormones. Thyroid response elements found in the promoter regions of Tor1a, 2310003H01Rik, Hect3d and Slc25a45 were further validated by confirming that the thyroid receptor is associated with these sequences in vivo and that it can bind directly to these sequences in vitro. Three different arrangements of thyroid response elements were identified. Some of these thyroid response elements were located far up-stream (> 7 kb) of the transcription start site of the regulated gene. Conclusions Transcriptional profiling of thyroid hormone disrupted animals coupled with a novel bioinformatics search revealed new thyroid

  7. Genetic Evidence for Function of the bHLH-PAS Protein Gce/Met As a Juvenile Hormone Receptor.

    PubMed

    Jindra, Marek; Uhlirova, Mirka; Charles, Jean-Philippe; Smykal, Vlastimil; Hill, Ronald J

    2015-07-01

    Juvenile hormones (JHs) play a major role in controlling development and reproduction in insects and other arthropods. Synthetic JH-mimicking compounds such as methoprene are employed as potent insecticides against significant agricultural, household and disease vector pests. However, a receptor mediating effects of JH and its insecticidal mimics has long been the subject of controversy. The bHLH-PAS protein Methoprene-tolerant (Met), along with its Drosophila melanogaster paralog germ cell-expressed (Gce), has emerged as a prime JH receptor candidate, but critical evidence that this protein must bind JH to fulfill its role in normal insect development has been missing. Here, we show that Gce binds a native D. melanogaster JH, its precursor methyl farnesoate, and some synthetic JH mimics. Conditional on this ligand binding, Gce mediates JH-dependent gene expression and the hormone's vital role during development of the fly. Any one of three different single amino acid mutations in the ligand-binding pocket that prevent binding of JH to the protein block these functions. Only transgenic Gce capable of binding JH can restore sensitivity to JH mimics in D. melanogaster Met-null mutants and rescue viability in flies lacking both Gce and Met that would otherwise die at pupation. Similarly, the absence of Gce and Met can be compensated by expression of wild-type but not mutated transgenic D. melanogaster Met protein. This genetic evidence definitively establishes Gce/Met in a JH receptor role, thus resolving a long-standing question in arthropod biology. PMID:26161662

  8. Low selenium status in the elderly influences thyroid hormones.

    PubMed

    Olivieri, O; Girelli, D; Azzini, M; Stanzial, A M; Russo, C; Ferroni, M; Corrocher, R

    1995-12-01

    1. Iodothyronine 5'-deiodinase, which is mainly responsible for peripheral triiodothyronine (T3) production, has recently been demonstrated to be a selenium-containing enzyme. In the elderly, reduced peripheral conversion of thyroxine (T4) to T3 and overt hypothyroidism are frequently observed. 2. We measured serum selenium and erythrocyte glutathione peroxidase (as indices of selenium status), thyroid hormones and thyroid-stimulating hormone in 109 healthy euthyroid subjects (52 women, 57 men), carefully selected to exclude abnormally low thyroid hormone levels induced by acute or chronic diseases or calorie restriction. The subjects were subdivided into three age groups. To avoid conditions of under-nutrition or malnutrition, dietary records were obtained for a sample of 24 subjects, randomly selected and representative of the whole population for age and sex. 3. In order to properly assess the influence of selenium status on iodothyronine 5'-deiodinase type I activity, a double-blind placebo-controlled trial was also carried out on 36 elderly subjects, resident at a privately owned nursing home. 4. In the free-living population, a progressive reduction of the T3/T4 ratio (due to increased T4 levels) and of selenium and erythrocyte glutathione peroxidase activity was observed with advancing age. A highly significant linear correlation between T4, T3/T4 and selenium was observed in the population as a whole (for T4, R = -0.312, P < 0.002; for T3/T4 ratio, R = 0.32, P < 0.01) and in older subjects (for T4, R = -0.40, P < 0.05; for T3/T4 ratio, R = 0.54, P < 0.002). 5. The main result of the double-blind placebo-controlled trial was a significant improvement of selenium indices and a decrease in the T4 level in selenium-treated subjects; serum selenium, erythrocyte glutathione peroxidase activity and thyroid hormones did not change in placebo-treated subjects. 6. We concluded that selenium status influences thyroid hormones in the elderly, mainly modulating T4

  9. Hormones

    MedlinePlus

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  10. Sources of propionate for the biogenesis of ethyl-braced insect juvenile hormones: role of isoleucine and valine

    SciTech Connect

    Brindle, P.A.; Baker, F.C.; Tsai, L.W.; Reuter, C.C.; Schooley, D.A.

    1987-11-01

    Corpora allata from adult female Manduca sexta biosynthesis the sesquiterpenoid juvenile hormone (JH) III and the unusual ethyl-branched homologue JH II in vitro. The authors maintained corpora allata in medium 199 using (methyl-/sup 3/H)methionine as the source of the JH methyl ester moiety and as a mass marker. This allowed measurement of the relative contributions of /sup 14/C-labeled precursors to the biogenesis of JH II and III carbon skeletons. They showed efficient incorporation of a propionate equivalent, from isoleucine or valine catabolism, into the ethyl-branched portion of JH II, using double-label liquid scintillation counting of isolated JHs and gas chromatography/mass spectrometry with selected ion monitoring of JH deuteromethoxyhydrin derivatives. Methionine was a poor source of propionate for JH II biosynthesis, while glucose, succinate, threonine, and ..beta..-alanine did not contribute propionate at all. Leucine, isoleucine, and glucose incorporated into JH III and the acetate-derivative portion of JH II.

  11. Juvenile hormone-dopamine systems for the promotion of flight activity in males of the large carpenter bee Xylocopa appendiculata

    NASA Astrophysics Data System (ADS)

    Sasaki, Ken; Nagao, Takashi

    2013-12-01

    The reproductive roles of dopamine and dopamine regulation systems are known in social hymenopterans, but the knowledge on the regulation systems in solitary species is still needed. To test the possibility that juvenile hormone (JH) and brain dopamine interact to trigger territorial flight behavior in males of a solitary bee species, the effects on biogenic amines of JH analog treatments and behavioral assays with dopamine injections in males of the large carpenter bee Xylocopa appendiculata were quantified. Brain dopamine levels were significantly higher in methoprene-treated males than in control males 4 days after treatment, but were not significantly different after 7 days. Brain octopamine and serotonin levels did not differ between methoprene-treated and control males at 4 and 7 days after treatment. Injection of dopamine caused significantly higher locomotor activities and a shorter duration for flight initiation in experimental versus control males. These results suggest that brain dopamine can be regulated by JH and enhances flight activities in males. The JH-dopamine system in males of this solitary bee species is similar to that of males of the highly eusocial honeybee Apis mellifera.

  12. Mode of action of allatostatins in the regulation of juvenile hormone biosynthesis in the cockroach, Diploptera punctata.

    PubMed

    Huang, Juan; Marchal, Elisabeth; Hult, Ekaterina F; Zels, Sven; Vanden Broeck, Jozef; Tobe, Stephen S

    2014-11-01

    The FGLamide allatostatins (FGL/ASTs) are a family of neuropeptides with pleiotropic functions, including the inhibition of juvenile hormone (JH) biosynthesis, vitellogenesis and muscle contraction. In the cockroach, Diploptera punctata, thirteen FGLa/ASTs and one allatostatin receptor (AstR) have been identified. However, the mode of action of ASTs in regulation of JH biosynthesis remains unclear. Here, we determined the tissue distribution of Dippu-AstR. And we expressed Dippu-AstR in vertebrate cell lines, and activated the receptor with the Dippu-ASTs. Our results show that all thirteen ASTs activated Dippu-AstR in a dose dependent manner, albeit with different potencies. Functional analysis of AstR in multiple cell lines demonstrated that activation of the AstR receptor resulted in elevated levels of Ca(2+) and cAMP, which suggests that Dippu-AstR can act through the Gαq and Gαs protein pathways. The study on the target of AST action reveals that FGL/AST affects JH biosynthesis prior to the entry of acetyl-CoA into the JH biosynthetic pathway. PMID:25218044

  13. Juvenile Hormone Biosynthesis Gene Expression in the corpora allata of Honey Bee (Apis mellifera L.) Female Castes

    PubMed Central

    Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino

    2014-01-01

    Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution. PMID:24489805

  14. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase.

    PubMed

    Van Ekert, Evelien; Powell, Charles A; Shatters, Robert G; Borovsky, Dov

    2014-11-01

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pivotal role in the control of reproduction in adults and metamorphism in larval mosquitoes. This report describes an approach to control Aedes aegypti using RNAi against JH acid methyl transferase (AeaJHAMT), the ultimate enzyme in the biosynthetic pathway of JH III that converts JH acid III (JHA III) into JH III. In female A. aegypti that were injected or fed jmtA dsRNA targeting the AeaJHAMT gene (jmtA) transcript, egg development was inhibited in 50% of the treated females. In mosquito larvae that were fed transgenic Pichia pastoris cells expressing long hair pin (LHP) RNA, adult eclosion was delayed by 3 weeks causing high mortality. Northern blot analyses and qPCR studies show that jmtA dsRNA causes inhibition of jmtA transcript in adults and larvae, which is consistent with the observed inhibition of egg maturation and larval development. Taken together, these results suggest that jmtA LHP RNA expressed in heat inactivated genetically modified P. pastoris cells could be used to control mosquito populations in the marsh. PMID:25111689

  15. Effects of a juvenile hormone analogue pyriproxyfen on monogynous and polygynous colonies of the Pharaoh ant Monomorium pharaonis (Hymenoptera: Formicidae).

    PubMed

    Tay, J W; Lee, C Y

    2015-09-01

    To evaluate the effects of the juvenile hormone analogue pyriproxyfen on colonies of the Pharaoh ant Monomorium pharaonis (L.), peanut oil containing different concentrations (0.3, 0.6, or 0.9%) of pyriproxyfen was fed to monogynous (1 queen, 500 workers, and 0.1 g of brood) and polygynous (8 queens, 50 workers, and 0.1 g of brood) laboratory colonies of M. pharaonis. Due to its delayed activity, pyriproxyfen at all concentrations resulted in colony elimination. Significant reductions in brood volume were recorded at weeks 3 - 6, and complete brood mortality was observed at week 8 in all treated colonies. Brood mortality was attributed to the disruption of brood development and cessation of egg production by queens. All polygynous colonies exhibited significant reduction in the number of queens present at week 10 compared to week 1. Number of workers was significantly lower in all treated colonies compared to control colonies at week 8 due to old-age attrition of the workers without replacement. At least 98.67 ± 1.33% of workers were dead at week 10 in all treated colonies. Thus, treatment with slow acting pyriproxyfen at concentrations of 0.3 - 0.9% is an effective strategy for eliminating Pharaoh ant colonies. PMID:26695205

  16. Juvenile hormone diol kinase, a calcium-binding protein with kinase activity, from the silkworm, Bombyx mori.

    PubMed

    Li, Sheng; Zhang, Qi-Rui; Xu, Wei-Hua; Schooley, David A

    2005-11-01

    Juvenile hormone (JH) diol kinase (JHDK) is an important enzyme involved in the JH degradation pathway. Bombyx mori (Bommo)-JHDK cDNA (637bp) contains an open reading frame encoding a 183-amino acid protein, which reveals a high degree of identity to the two previously reported JHDKs. JHDK is similar to GTP-binding proteins with three conserved sequence elements involved in purine nucleotide binding, contains eight alpha-helices and three EF-hand motifs, and resembles the three-dimensional model of 2SCP and some other calcium-binding proteins. The Bommo-JHDK gene has only a single copy in the silkworm haploid genome, contains only one exon, and its 5'-upstream sequence does not have a JH response element. Although Bommo-JHDK is highly expressed in the gut of the silkworm, its mRNA expression remains at a constant level during larval development suggesting this enzyme is constitutive and not regulated by JH, at least at the transcriptional level. Recombinant Bommo-JHDK catalyzed the conversion of 10S-JH diol into JH diol phosphate, confirming its enzymatic function. Recombinant enzyme formed a dimer and had biochemical characteristics similar to other JHDKs. Bommo-JHDK, a calcium-binding protein with kinase activity, provides unique insights on how JH levels are regulated in the silkworm. PMID:16203205

  17. Larval Exposure to the Juvenile Hormone Analog Pyriproxyfen Disrupts Acceptance of and Social Behavior Performance in Adult Honeybees

    PubMed Central

    Fourrier, Julie; Deschamps, Matthieu; Droin, Léa; Alaux, Cédric; Fortini, Dominique; Beslay, Dominique; Le Conte, Yves; Devillers, James; Aupinel, Pierrick; Decourtye, Axel

    2015-01-01

    Background Juvenile hormone (JH) plays an important role in honeybee development and the regulation of age-related division of labor. However, honeybees can be exposed to insect growth regulators (IGRs), such as JH analogs developed for insect pest and vector control. Although their side effects as endocrine disruptors on honeybee larval or adult stages have been studied, little is known about the subsequent effects on adults of a sublethal larval exposure. We therefore studied the impact of the JH analog pyriproxyfen on larvae and resulting adults within a colony under semi-field conditions by combining recent laboratory larval tests with chemical analysis and behavioral observations. Oral and chronic larval exposure at cumulative doses of 23 or 57 ng per larva were tested. Results Pyriproxyfen-treated bees emerged earlier than control bees and the highest dose led to a significant rate of malformed adults (atrophied wings). Young pyriproxyfen-treated bees were more frequently rejected by nestmates from the colony, inducing a shorter life span. This could be linked to differences in cuticular hydrocarbon (CHC) profiles between control and pyriproxyfen-treated bees. Finally, pyriproxyfen-treated bees exhibited fewer social behaviors (ventilation, brood care, contacts with nestmates or food stocks) than control bees. Conclusion Larval exposure to sublethal doses of pyriproxyfen affected several life history traits of the honeybees. Our results especially showed changes in social integration (acceptance by nestmates and social behaviors performance) that could potentially affect population growth and balance of the colony. PMID:26171610

  18. Juvenile hormone mediates developmental integration between exaggerated traits and supportive traits in the horned flour beetle Gnatocerus cornutus.

    PubMed

    Okada, Yasukazu; Gotoh, Hiroki; Miura, Toru; Miyatake, Takahisa; Okada, Kensuke

    2012-07-01

    Sexually selected exaggerated traits are often coupled with modifications in other nontarget traits. In insects with weapons, enlargements of nontarget characters that functionally support the weapon often occur (i.e. supportive traits). The support of sexual traits requires developmental coordination among functionally related multiple traits-an explicit example of morphological integration. The genetic theory predicts that developmental integration among different body modules, for which development is regulated via different sets of genes, is likely to be coordinated by pleiotropic factors. However, the developmental backgrounds of morphological integrations are largely unknown. We tested the hypothesis that the juvenile hormone (JH), as a pleiotropic factor, mediates the integration between exaggerated and supportive traits in an armed beetle Gnatocerus cornutus. During combat, males of this beetle use exaggerated mandibles to lift up their opponents with the supportive traits, that is, the head and prothoracic body parts. Application of methoprene, a JH analog (JHA), during the larval to prepupal period, induced the formation of large mandibles relative to the body sizes in males. Morphometric examination of nontarget traits elucidated an increase in the relative sizes of supportive traits, including the head and prothoracic body parts. In addition, reductions in the hind wing area and elytra length, which correspond to flight and reproductive abilities, were detected. Our findings are consistent with the genetic theory and support the idea that JH is a key pleiotropic factor that coordinates the developmental integration of exaggerated traits and supportive characters, as well as resource allocation trade-offs. PMID:22765207

  19. Allatostatin-C reversibly blocks the transport of citrate out of the mitochondria and inhibits juvenile hormone synthesis in mosquitoes.

    PubMed

    Nouzova, Marcela; Rivera-Perez, Crisalejandra; Noriega, Fernando G

    2015-02-01

    Aedes aegypti allatostatin-C (AeaAST-C or PISCF-AST) is a strong and fast reversible inhibitor of juvenile hormone III (JH III) synthesis by the corpora allata (CA) of mosquitoes; however, its mechanism of action remains poorly understood. AeaAST-C showed no inhibitory activity in the presence of any of the intermediate precursors of JH III indicating that the AeaAST-C target is located before the entry of acetyl-CoA in the pathway. Stimulation experiments using different sources of carbon (glucose, pyruvate, acetate and citrate) suggest that AST-C acts after pyruvate is transformed to citrate in the mitochondria. In vitro inhibition of the citrate mitochondrial carrier (CIC) mimicked the effect of AeaAST-C, and was overridden by addition of citrate or acetate. Our results provide compelling evidence that AeaAST-C inhibits JH III synthesis by blocking the CIC carrier that transports citrate from the mitochondria to the cytosol, obstructing the production of cytoplasmic acetyl-CoA that sustains JH III synthesis in the CA of mosquitoes. PMID:25500428

  20. Krüppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust.

    PubMed

    Song, Jiasheng; Wu, Zhongxia; Wang, Zhiming; Deng, Shun; Zhou, Shutang

    2014-09-01

    Juvenile hormone (JH) prevents insect larval metamorphosis and stimulates processes for adult reproduction. Krüppel-homolog 1 (Kr-h1), a zinc finger transcription factor, is shown to mediate the anti-metamorphic effect of JH in both holometabolous and hemimetabolous insects. However, the role of Kr-h1 in JH-mediated reproduction has not been determined. Using the migratory locust, Locusta migratoria, we showed here that Kr-h1 was expressed in response to JH in female adults, and Kr-h1 transcription was directly regulated by the JH-receptor complex comprised of Methoprene-tolerant (Met) and steroid receptor co-activator. We demonstrated that Kr-h1 RNAi phenocopied Met RNAi and JH-deprived condition during post-eclosion development and vitellogenesis of female locusts. Knockdown of Kr-h1 resulted in substantial reduction of Vg expression in the fat body and lipid accumulation in the primary oocytes, accompanied by blocked follicular epithelium development, oocyte maturation and ovarian growth. Our data therefore reveal a crucial role of Kr-h1 in insect vitellogenesis and egg production. This study suggests that JH-Met-Kr-h1 signaling pathway is also functional in insect reproduction. PMID:25017142

  1. Juvenile Hormone (JH) Esterase of the Mosquito Culex quinquefasciatus Is Not a Target of the JH Analog Insecticide Methoprene

    PubMed Central

    Kamita, Shizuo G.; Samra, Aman I.; Liu, Jun-Yan; Cornel, Anthony J.; Hammock, Bruce D.

    2011-01-01

    Juvenile hormones (JHs) are essential sesquiterpenes that control insect development and reproduction. JH analog (JHA) insecticides such as methoprene are compounds that mimic the structure and/or biological activity of JH. In this study we obtained a full-length cDNA, cqjhe, from the southern house mosquito Culex quinquefasciatus that encodes CqJHE, an esterase that selectively metabolizes JH. Unlike other recombinant esterases that have been identified from dipteran insects, CqJHE hydrolyzed JH with specificity constant (kcat/KM ratio) and Vmax values that are common among JH esterases (JHEs). CqJHE showed picomolar sensitivity to OTFP, a JHE-selective inhibitor, but more than 1000-fold lower sensitivity to DFP, a general esterase inhibitor. To our surprise, CqJHE did not metabolize the isopropyl ester of methoprene even when 25 pmol of methoprene was incubated with an amount of CqJHE that was sufficient to hydrolyze 7,200 pmol of JH to JH acid under the same assay conditions. In competition assays in which both JH and methoprene were available to CqJHE, methoprene did not show any inhibitory effects on the JH hydrolysis rate even when methoprene was present in the assay at a 10-fold higher concentration relative to JH. Our findings indicated that JHE is not a molecular target of methoprene. Our findings also do not support the hypothesis that methoprene functions in part by inhibiting the action of JHE. PMID:22174797

  2. Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L.) female castes.

    PubMed

    Bomtorin, Ana Durvalina; Mackert, Aline; Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino

    2014-01-01

    Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution. PMID:24489805

  3. Juvenile hormone analog enhances calling behavior, mating success, and quantity of volatiles released by Anastrepha obliqua (Diptera: Tephritidae).

    PubMed

    Chacón-Benavente, Roxana; López-Guillen, Guillermo; Hernández, Emilio; Rojas, Julio C; Malo, Edi A

    2013-04-01

    The application of a juvenile hormone analog, methoprene, to newly emerged adult males reduced the time required for sexual maturation and enhanced mating success in several species of tephritid fruit flies. In this work, we investigated the effect of topical methoprene application on West Indian fruit fly, Anastrepha obliqua (Macquart), male calling, mating, and volatile release. Males treated with topical methoprene exhibited sexual maturation and reproductive behavior 2 d earlier when compared with control males treated with acetone. Methoprene-treated males began calling and mating at 4 d old, whereas control males did not call and mate until 6 d old. The gas chromotography-mass spectrometry analysis of volatiles showed that during calling A. obliqua males consistently released four compounds; three of them were identified as (Z)-3-nonenol, (Z,E)-α-farnesene, (E,E)-α-farnesene, and a fourth compound with the appearance of a farnesene isomer. Both treated and control males released the same compounds, although treated males started to release volatiles before that control males. The results are discussed in view of possible methoprene application with the aim of reducing costs in fly emergence and release facilities before eventual release of A. obliqua in the field, thus improving the sterile insect technique. PMID:23575016

  4. Characterization of a juvenile hormone-regulated chymotrypsin-like serine protease gene in Aedes aegypti mosquito

    PubMed Central

    Bian, Guowu; Raikhel, Alexander S; Zhu, Jinsong

    2008-01-01

    After female mosquitoes ingest blood from vertebrate hosts, exopeptidases and endopeptidases are required for digesting blood proteins in the midgut into amino acids, which female mosquitoes use to build yolk proteins. These proteases are not always present in the midgut, and their diverse expression patterns suggest that production of these enzymes is highly regulated in order to meet specific physiological demands at various stages. Here we report identification of a serine-type protease, JHA15, in the yellow fever mosquito Aedes aegypti. This protein shares high sequence homology with chymotrypsins, and indeed exhibits specific chymotrypsin enzymatic activity. The JHA15 gene is expressed primarily in the midgut of adult female mosquitoes. Our results indicate that its transcription is activated by juvenile hormone in the newly emerged female adults. Although its mRNA profile is similar to that of the early trypsin gene, we found that JHA15 proteins were readily detected in the midgut epithelium cells of both non-blood-fed and blood-fed mosquitoes. Analysis of polysomal RNA further substantiated that synthesis of JHA15 occurs before and shortly after blood feeding. Knocking down expression of JHA15 resulted in no evident phenotypic changes, implying that functional redundancy exists among those proteolytic enzymes. PMID:18207080

  5. Urea and amide-based inhibitors of the juvenile hormone epoxide hydrolase of the tobacco hornworm (Manduca sexta: Sphingidae).

    PubMed

    Severson, Tonya F; Goodrow, Marvin H; Morisseau, Christophe; Dowdy, Deanna L; Hammock, Bruce D

    2002-12-01

    A new class of inhibitors of juvenile hormone epoxide hydrolase (JHEH) of Manduca sexta and further in vitro characterization of the enzyme are reported. The compounds are based on urea and amide pharmacophores that were previously demonstrated as effective inhibitors of mammalian soluble and microsomal epoxide hydrolases. The best inhibitors against JHEH activity so far within this class are N-[(Z)-9-octadecenyl]-N'-propylurea and N-hexadecyl-N'-propylurea, which inhibited hydrolysis of a surrogate substrate (t-DPPO) with an IC(50) around 90 nM. The importance of substitution number and type was investigated and results indicated that N, N'-disubstitution with asymmetric alkyl groups was favored. Potencies of pharmacophores decreased as follows: amide>urea>carbamate>carbodiimide>thiourea and thiocarbamate for N, N'-disubstituted compounds with symmetric substituents, and urea>amide>carbamate for compounds with asymmetric N, N'-substituents. JHEH hydrolyzes t-DPPO with a K(m) of 65.6 microM and a V(max) of 59 nmol min(-1) mg(-1) and has a substantially lower K(m) of 3.6 microM and higher V(max) of 322 nmol min(-1) mg(-1) for JH III. Although none of these compounds were potent inhibitors of hydrolysis of JH III by JHEH, they are the first leads toward inhibitors of JHEH that are not potentially subject to metabolism through epoxide degradation. PMID:12429126

  6. Intergenerational effect of juvenile hormone on offspring in Pogonomyrmex harvester ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parents can influence the phenotypes of their offspring via a number of mechanisms. In harvester ants, whether female progeny develop into workers or daughter queens is strongly influenced by the age and temperature conditions experienced by their mother, which is associated with variation in mater...

  7. Maternal influence on philopatry and space use by juvenile brushtail possums (Trichosurus vulpecula).

    PubMed

    Blackie, Helen M; Russell, James C; Clout, Mick N

    2011-03-01

    1.  The causes of juvenile sex-biased philopatry and space use in mammals remain poorly understood, and results of previous research have been conflicting. Experimental interventions and manipulations on wild populations are rare, but can play an important role in establishing the factors governing offspring space use. 2.  We experimentally removed mothers of independent juvenile brushtail possums from the maternal home range and examined changes in offspring space use with global positioning system collars. We examined the influence of mother absence on philopatric behaviour, and determined whether or not maternal presence affected offspring space use. 3.  We fitted a longitudinal linear mixed effects model to demonstrate a change over time in the home range size of juveniles following experimental treatment by the removal of their mothers. When mothers were removed from the natal range, juveniles occupied significantly larger home range areas, with average increases of 175% in 95% kernel density estimates and 289% in minimum convex polygon estimates. This increase occurred within the first month following mother absence and was independent of juvenile sex. Home ranges of control juveniles did not change during the same time period. 4.  Changes in the spatial structure of mammalian populations in response to removal of individuals have important implications for pest management. The impacts of management strategies which target particular individuals in a population may counteract conservation benefits through their effect on the space use of survivors. Studies involving experimental removals provide important information on consequences of control and also yield insights into the causes of mammalian space use, philopatric behaviours and ultimately dispersal. PMID:21155769

  8. Ecdysteroid hormones link the juvenile environment to alternative adult life histories in a seasonal insect.

    PubMed

    Oostra, Vicencio; Mateus, Ana Rita A; van der Burg, Karin R L; Piessens, Thomas; van Eijk, Marleen; Brakefield, Paul M; Beldade, Patrícia; Zwaan, Bas J

    2014-09-01

    The conditional expression of alternative life strategies is a widespread feature of animal life and a pivotal adaptation to life in seasonal environments. To optimally match suites of traits to seasonally changing ecological opportunities, animals living in seasonal environments need mechanisms linking information on environmental quality to resource allocation decisions. The butterfly Bicyclus anynana expresses alternative adult life histories in the alternating wet and dry seasons of its habitat as endpoints of divergent developmental pathways triggered by seasonal variation in preadult temperature. Pupal ecdysteroid hormone titers are correlated with the seasonal environment, but whether they play a functional role in coordinating the coupling of adult traits in the alternative life histories is unknown. Here, we show that manipulating pupal ecdysteroid levels is sufficient to mimic in direction and magnitude the shifts in adult reproductive resource allocation normally induced by seasonal temperature. Crucially, this allocation shift is accompanied by changes in ecologically relevant traits, including timing of reproduction, life span, and starvation resistance. Together, our results support a functional role for ecdysteroids during development in mediating strategic reproductive investment decisions in response to predictive indicators of environmental quality. This study provides a physiological mechanism for adaptive developmental plasticity, allowing organisms to cope with variable environments. PMID:25141151

  9. Somatic growth effects of intramuscular injection of growth hormone in androgen-treated juvenile Nile tilapia, Oreochromis niloticus (Perciformes: Cichlidae).

    PubMed

    Liñán-Cabello, Marco A; Robles-Basto, Cindy M; Mena-herrera, Alfredo

    2013-03-01

    Little is known about the effects of the interaction of growth hormone (GH) with 17 alpha-methyltestosterone (17-MT) during fish growth. We evaluated this in the present study to assess the effect on fish growth. Fish in two batches of juvenile tilapia (Oreochromis niloticus) (approximately 5.0cm in length) were randomly assigned in triplicate to three treatments and a control group, distributed among 12 fiberglass tanks of 1 000L capacity (50 fish per tank) in an experiment covering a period of six weeks. The experimental groups were: a) fish treated with 17-MT and GH in mineral oil (RGH); b) fish treated with 17-MT and mineral oil without the addition of GH (R); c) fish treated with GH in mineral oil but not 17-MT (NGH); and d) fish of the control group, which were treated with mineral oil but not 17-MT or GH (N). The GH was injected into the fish at a rate of 0.625mg/g body weight. Morphometric data were recorded at the beginning of the experiment (T0) and at 15, 30 and 45 days (T15, T30 and T45), and various indicators of growth were assessed: condition factor (K); survival percentage (S), feed conversion rate (FCR), percentage weight gain (WG) and (v) daily weight gain. The optimum dietary level was calculated assuming 5% food conversion to total weight in each group. During the experiment, the fish were provided with a commercial food containing 45% protein. The data showed that GH injection resulted in a greater weight gain in fish treated with 17-MT (the RGH treatment group), being particularly significant increase in weight during T15 and T30 (p<0.05). High values of K were found in the R and RGH treatments during the initial days of the experiment, which may have been a consequence of the better nutritional status affecting both weight gain and growth in body length, as a result of the additive effects of 17-MT and GH. The fish in groups not treated with 17-MT and treated with 17-MT and added GH showed greater increases in WG per day, higher K values and

  10. Expressional and functional analysis of CYP15A1, a juvenile hormone epoxidase, in the red flour beetle Tribolium castaneum.

    PubMed

    Minakuchi, Chieka; Ishii, Fumika; Washidu, Yumiko; Ichikawa, Akio; Tanaka, Toshiharu; Miura, Ken; Shinoda, Tetsuro

    2015-09-01

    Juvenile hormone (JH) is synthesized and secreted by the corpora allata. In the final two steps of JH biosynthesis, farnesoic acid (FA) is converted to JH through methylation by JH acid O-methyltransferase (JHAMT) and epoxidation by the cytochrome P450 enzyme CYP15. In the present study, we identified a homolog of CYP15 from the red flour beetle Tribolium castaneum (TcCYP15A1), and analyzed its expression as well as its role in JH biosynthesis. Quantitative RT-PCR analysis showed that the level of TcCYP15A1 mRNA was high in the embryonic stage as well as in the middle of the final larval instar. In the embryonic stage, the transcript level of TcCYP15A1 started to increase 30h after egg laying (AEL), peaked 54-60h AEL, and was followed by an increase of TcJHAMT mRNA, suggesting that JH biosynthesis started at this time point. TcCYP15A1 mRNA was present, but not exclusively so in the larval corpora allata. The recombinant TcCYP15A1 protein epoxidized both FA and methyl farnesoate (MF) in highly stereo-specific manners. These results confirmed that TcCYP15A1 is involved in JH biosynthesis. The RNAi-mediated knockdown of TcCYP15A1 in the pre-final larval instar did not result in precocious metamorphosis to pupa, indicating that MF may exhibit JH-like activity in order to maintain the larval status. The double knockdown of TcJHAMT and TcCYP15A1 resulted in pupae and adults with shorter wings, suggesting that the precursors of JH, JH acid and MF, may be essential for wing expansion. PMID:25921675

  11. CHARACTERIZATION AND FUNCTIONAL STUDY OF A PUTATIVE JUVENILE HORMONE DIOL KINASE IN THE COLORADO POTATO BEETLE Leptinotarsa decemlineata (Say).

    PubMed

    Fu, Kai-Yun; Lü, Feng-Gong; Guo, Wen-Chao; Li, Guo-Qing

    2015-11-01

    Juvenile hormone diol kinase (JHDK) is an enzyme involved in JH degradation. In the present article, a putative JHDK cDNA (LdJHDK) was cloned from the Colorado potato beetle Leptinotarsa decemlineata. The cDNA consists of 814 bp, containing a 555 bp open reading frame encoding a 184 amino acid protein. LdJHDK reveals a high degree of identity to the previously reported insect JHDKs. It possesses three conserved purine nucleotide-binding elements, and contains three EF-hand motifs (helix-loop-helix structural domains). LdJHDK mRNA was mainly detected in hindgut and Malpighian tubules. Besides, a trace amount of LdJHDK mRNA was also found in thoracic muscles, brain-corpora cardiaca-corpora allata complex, foregut, midgut, ventral ganglia, fat body, epidermis, and hemocytes. Moreover, LdJHDK was expressed throughout all developmental stages. Within the first, second, and third larval instar, the expression levels of LdJHDK were higher just before and right after the molt, and were lower in the intermediate instar. In the fourth larval instar, the highest peak of LdJHDK occurred 56 h after ecdysis. Ingestion of double-stranded RNA (dsRNA) against LdJHDK successfully knocked down the target gene, increased JH titer, and significantly upregulated LdKr-h1 mRNA level. Knockdown of LdJHDK significantly impaired adult emergence. Thus, we provide a line of experimental evidence in L. decemlineata to support that LdJHDK encodes function protein involved in JH degradation. PMID:26280246

  12. Cloning of a putative juvenile hormone-responsive storage protein gene from the tobacco budworm, Heliothis virescens.

    PubMed

    Thompson, D M; Anspaugh, D D; Gahan, L J; Heckel, D G; Roe, R M

    1996-01-01

    A cDNA clone with 78% amino acid identity to a basic juvenile hormone (JH)-suppressible hemolymph protein from the cabbage looper, Trichoplusia ni, was isolated from the tobacco budworm, Heliothis virescens. This clone was obtained upon screening a cDNA library derived from larval fat body of a pesticide resistant strain of H. virescens with a cDNA probe for Drosophila melanogaster glutathione S-transferase. By comparison with other insect storage proteins, this clone was predicted to be part of an approximately 2,300 nucleotide (nt) cDNA, of which 691 nt were isolated and sequenced. The partial cDNA clone hybridizes to a RNA of approximately 2,370 nt in H. virescens. Treatment with a juvenoid (2-[1-methyl-2-(4-phenoxyphenoxy)ethoxy] pyridine; pyriproxifen) leads to a decrease in RNA levels of this putative hemolymph storage protein in early fifth stadium larvae of H. virescens, prior to commitment. In contrast, treatment in late fifth stadium (after commitment to pupal development) leads to an increase in the RNA level of this JH-responsive gene. This is the first report of both induction and suppression of storage protein RNA levels in the same stadium. We have given this gene the designation Hv-SP4 (H. virescens, storage protein 4; accession no. U48594). Genetic segregation analysis of restriction fragment length polymorphisms (RFLPs) defined by Hv-SP4 has shown that it is the product of a single-copy, Mendelian, autosomal gene. PMID:8756305

  13. Juvenile hormone regulates Aedes aegypti Krüppel homolog 1 through a conserved E box motif.

    PubMed

    Cui, Yingjun; Sui, Yipeng; Xu, Jingjing; Zhu, Fang; Palli, Subba Reddy

    2014-09-01

    Juvenile hormone (JH) plays important roles in regulation of many physiological processes including development, reproduction and metabolism in insects. However, the molecular mechanisms of JH signaling pathway are not completely understood. To elucidate the molecular mechanisms of JH regulation of Krüppel homolog 1 gene (Kr-h1) in Aedes aegypti, we employed JH-sensitive Aag-2 cells developed from the embryos of this insect. In Aag-2 cells, AaKr-h1 gene is induced by nanomolar concentration of JH III, its expression peaked at 1.5 h after treatment with JH III. RNAi studies showed that JH induction of this gene requires the presence of Ae. aegypti methoprene-tolerant (AaMet). A conserved 13 nucleotide JH response element (JHRE, TGCCTCCACGTGC) containing canonical E box motif (underlined) identified in the promoter of AaKr-h1 is required for JH induction of this gene. Critical nucleotides in the JHRE required for JH action were identified by employing mutagenesis and reporter assays. Reporter assays also showed that basic helix loop helix (bHLH) domain of AaMet is required for JH induction of AaKr-h1. 5' rapid amplification of cDNA ends method identified two isoforms of AaKr-h1, AaKr-h1α and AaKr-h1β, the expression of both isoforms is induced by JH III, but AaKr-h1α is the predominant isoform in both Aag-2 cells and Ae. aegypti larvae. PMID:24931431

  14. The effect of analogs of juvenile hormone on the morphogenesis of the flight apparatus of the house cricket.

    PubMed

    Bocharova-Messner, O M; Chudakova, I V; Novak, V Y

    1975-03-01

    The morphogenetic action of juvenile hormone (JH) on the development of the flight apparatus was studied on the house cricket (Acheta domestica L.). Simulation of an excess of JH, created by treatment of nymphs of the last instar with analogs of JH, led to the formation of adultoids with various degrees of expression of the imaginal characteristics in the structure of the elytrons and wings. An analysis of the state of the wings, wing base, and wing muscles in the adultoids shows that the flight apparatus develops as an integral functioning system, and not as a result of independent imagination of its individual constituents. The great importance of inversion of the wings was demonstrated: imaginal characteristics absent before inversion were expressed to one degree or another in all parts of the flight apparatus after inversions. The imaginization of the wing musculature is associated primarily with the degree of formation of the wing base, determining the degree of mobility of the wings. It was proposed that the morphogenetic action of JH and its analogs be evaluated on the basis not so much of the length of the wings as the degree of formation of the flight apparatus, which is most simply judged according to the mobility of the wings. It was proposed that the morphogenetic action of JH and its analogs be evaluated on the basis not so much of the length of the wings as the degree of formation of the flight apparatus, which is most simply judged according to the mobility of the wings and their position at rest. PMID:1124419

  15. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning.

    PubMed

    Hamson, Dwayne K; Roes, Meighen M; Galea, Liisa A M

    2016-01-01

    Sex differences in neurological disease exist in incidence, severity, progression, and symptoms and may ultimately influence treatment. Cognitive disturbances are frequent in neuropsychiatric disease with men showing greater cognitive impairment in schizophrenia, but women showing more severe dementia and cognitive decline with Alzheimer's disease. Although there are no overall differences in intelligence between the sexes, men, and women demonstrate slight but consistent differences in a number of cognitive domains. These include a male advantage, on average, in some types of spatial abilities and a female advantage on some measures of verbal fluency and memory. Sex differences in traits or behaviors generally indicate the involvement of sex hormones, such as androgens and estrogens. We review the literature on whether adult levels of testosterone and estradiol influence spatial ability in both males and females from rodent models to humans. We also include information on estrogens and their ability to modulate verbal memory in men and women. Estrone and progestins are common components of hormone therapies, and we also review the existing literature concerning their effects on cognition. We also review the sex differences in the hippocampus and prefrontal cortex as they relate to cognitive performance in both rodents and humans. There has been greater recognition in the scientific literature that it is important to study both sexes and also to analyze study findings with sex as a variable. Only by examining these sex differences can we progress to finding treatments that will improve the cognitive health of both men and women. © 2016 American Physiological Society. Compr Physiol 6:1295-1337, 2016. PMID:27347894

  16. Cyp15F1: a novel cytochrome P450 gene linked to juvenile hormone-dependent caste differention in the termite Reticulitermes flavipes.

    PubMed

    Tarver, Matthew R; Coy, Monique R; Scharf, Michael E

    2012-07-01

    Termites are eusocial insects that jointly utilize juvenile hormone (JH), pheromones, and other semiochemicals to regulate caste differentiation and achieve caste homeostasis. Prior EST sequencing from the symbiont-free gut transcriptome of Reticulitermes flavipes unexpectedly revealed a number of unique cytochrome P450 (Cyp) transcripts, including fragments of a Cyp15 family gene (Cyp15F1) with homology to other insect Cyp15s that participate in JH biosynthesis. The present study investigated the role of Cyp15F1 in termite caste polyphenism and specifically tested the hypothesis that it plays a role in JH-dependent caste differentiation. After assembling the full-length Cyp15F1 cDNA sequence, we (i) determined its mRNA tissue expression profile, (ii) investigated mRNA expression changes in response to JH and the caste-regulatory primer pheromones γ-cadinene (CAD) and γ-cadinenal (ALD), and (iii) used RNA interference (RNAi) in combination with caste differentiation bioassays to investigate gene function at the phenotype level. Cyp15F1 has ubiquitous whole-body expression (including gut tissue); is rapidly and sustainably induced from 3 h to 48 h by JH, CAD, and ALD; and functions at least in part by facilitating JH-dependent soldier caste differentiation. These findings provide the second example of a termite caste regulatory gene identified through the use of RNAi, and significantly build upon our understanding of termite caste homeostatic mechanisms. These results also reinforce the concept of environmental caste determination in termites by revealing how primer pheromones, as socioenvironmental factors, can directly influence Cyp15 expression and caste differentiation. PMID:22550027

  17. Identification of a juvenile hormone esterase-like gene in the honey bee, Apis mellifera L.--expression analysis and functional assays.

    PubMed

    Mackert, Aline; do Nascimento, Adriana Mendes; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino

    2008-05-01

    Tight control over circulating juvenile hormone (JH) levels is of prime importance in an insect's life cycle. Consequently, enzymes involved in JH metabolism, especially juvenile hormone esterases (JHEs), play major roles during metamorphosis and reproduction. In the highly eusocial Hymenoptera, JH has been co-opted into additional functions, primarily in the development of the queen and worker castes and in age-related behavioral development of workers. Within a set of 21 carboxylesterases predicted in the honey bee genome we identified one gene (Amjhe-like) that contained the main functional motifs of insect JHEs. Its transcript levels during larval development showed a maximum at the switch from feeding to spinning behavior, coinciding with a JH titer minimum. In adult workers, the highest levels were observed in nurse bees, where a low JH titer is required to prevent the switch to foraging. Functional assays showed that Amjhe-like expression is induced by JH-III and suppressed by 20-hydroxyecdysone. RNAi-mediated silencing of Amjhe-like gene function resulted in a six-fold increase in the JH titer in adult worker bees. The temporal profile of Amjhe-like expression in larval and adult workers, the pattern of hormonal regulation and the knockdown phenotype are consistent with the function of this gene as an authentic JHE. PMID:18308604

  18. Examination of the influence of juvenile Atlantic salmon on the feeding mode of juvenile steelhead in Lake Ontario tributaries

    USGS Publications Warehouse

    Johnson, James H.; Waldt, Emily M.

    2014-01-01

    We examined diets of 1204 allopatric and sympatric juvenile Atlantic salmon (Salmo salar) and steelhead (Oncorhynchus mykiss) in three tributaries of Lake Ontario. The diet composition of both species consisted primarily of ephemeropterans, trichopterans, and chironomids, although juvenile steelhead consumed more terrestrial invertebrates, especially at the sympatric sites. Subyearlings of both species consumed small prey (i.e. chironomids) whereas large prey (i.e. perlids) made up a higher percentage of the diet of yearlings. The diet of juvenile steelhead at the allopatric sites was more closely associated with the composition of the benthos than with the drift, but was about equally associated with the benthos and drift at the sympatric sites. The diet of both subyearling and yearling Atlantic salmon was more closely associated with the benthos than the drift at the sympatric sites. The evidence suggests that juvenile steelhead may subtly alter their feeding behavior in sympatry with Atlantic salmon. This behavioral adaptation may reduce competitive interactions between these species.

  19. Hormones

    MedlinePlus

    ... the foods you eat Sexual function Reproduction Mood Endocrine glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, thymus, thyroid, adrenal ...

  20. Abiotic factors influencing the spatial and temporal variability of juvenile fish in Pamlico Sound, North Carolina

    SciTech Connect

    Pietrafesa, L.J.; Janowitz, G.S.; Miller, J.M.; Noble, E.B.; Ross, S.W.; Epperly, S.P.

    1985-07-01

    A 3-D, time dependent model of the circulation in Pamlico Sound, NC, is used to relate the direction and magnitude of winds to the number of juvenile fish sampled at specified estuarine nursery locations. NC marine sport fishes are known to be spawned in NC continental waters, and then make transit to an through barrier island inlets, into Pamlico Sound. The juveniles then move 40-70 kilometers across the Sound to the nurseries. It is hypothesized that wind driven, pressure gradient induced and topographically steered currents, all abiotic factors, provide the transport mechanisms, during the recruitment period February-April, necessary for the transect. Moreover, the inherent variability in the atmospherically derived physical factors and the influence of topographic irregularities such as a large shoal which laterally bisects the Sound and bifurcates the bottom currents are seen as sources of the temporal and spatial variation observed in the distribution of juvenile fish, while the influence of biological processes is viewed as providing fine-tuned structuring.

  1. Psychopathy, conduct disorder, and stigma: does diagnostic labeling influence juvenile probation officer recommendations?

    PubMed

    Murrie, Daniel C; Cornell, Dewey G; McCoy, Wendy K

    2005-06-01

    This study investigated the potential influence of labeling a juvenile as psychopathic. Juvenile probation officers (JPOs; N = 260) rendered hypothetical recommendations based on eight mock psychological evaluations. The evaluations varied the presence of two diagnostic criteria (antisocial behavioral history and psychopathic personality traits) and diagnostic labels (psychopathy, conduct disorder, no diagnosis) in order to distinguish criterion effects from labeling effects. The diagnostic criteria of antisocial behavior had a substantial effect on JPO recommendations (effect sizes .50-.79), while the diagnostic criteria of psychopathic personality traits had a more limited effect. Surprisingly, diagnostic labels had little effect, and there were no appreciable differences between conduct disorder and psychopathy diagnoses. These findings illustrate the importance of distinguishing diagnostic criterion effects from diagnostic labeling effects. PMID:15965631

  2. SEX-STEROID AND THYROID HORMONE CONCENTRATIONS IN JUVENILE ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM CONTAMINATED AND REFERENCE LAKES IN FLORIDA, USA

    EPA Science Inventory

    Sex-steroid and thyroid hormones are critical regulators of growth and reproduction in all vertebrates, and several recent studies suggest that environmental chemicals can alter circulating concentrations of these hormones. This study examines plasma concentrations of estradiol-...

  3. Synthesis of analogs of juvenile hormone on the basis of the telomerization reaction of piperylene with sulfones

    SciTech Connect

    Tolstikov, G.A.; Rozentsvet, O.A.; Pantukh, B.I.; Khalilov, L.M.

    1986-10-20

    In continuing the work on the study of the telomerization of 1,3-dienes with sulfones containing an active H atom, and also with the aim of synthesizing analogs of juvenile hormone (JH) based on the telomers obtained, they studied the catalytic telomerization of 1,3-pentadiene (piperylene) with ..beta..-substituted sulfonates. It was established that trans-piperlyene participates in the telomerization reaction with sulfones in the presence of the catalytic system PdCl/sub 2/(Ph/sub 3/P)/sub 2/-PhONa. Methyl 2-phenylsulfonyl-3,7-dimethyl-4(E), 9-decadienecarboxylate (II) is formed in a yield of 65% by the reaction of methyl phenylsulfonylacetate (I) with piperylene in the course of 20 h at 85/sup 0/C. The presence of absorption bands at 920 (CH/sub 2/=C) and 980 cm/sup -1/ (E-CH=CH) in the IR spectrum of compound (II) and the presence of a group of multiplet signals at delta 4.8-5.3 ppm in the PMR spectrum, corresponding to five protons of double bonds, indicate the addition of two molecules of piperylene to the molecule of the sulfone (I). The oxidation with oxygen on a Pd/Cu-catalyst proceeds smoothly to the methyl ketone (III); this clearly confirms the presence of the terminal C=C bond in the telomer (II). In the PMR spectrum of (II), notice is taken of the group of signals in the region of 3.30-3.53 ppm corresponding to three methoxy protons. There are three pairs of doublets (J = 7 Hz) in the region of 0.1-1.3 ppm which correspond to the methyl group. The complexity of the PMR spectrum is probably explained by the fact that the reaction leads to the formation of a complex mixture of diastereoisomers. As was to be expected, methyl 3,7-dimethyl-4,9-decadienoate (IV) is formed as the sole product with a yield of 70% in the desulfonation of the telomer (II) using Na/Hg in methanol according to the method of (5); the structure of (IV) was established with the aid of /sup 13/C NMR spectroscopy.

  4. Sexual difference in juvenile-hormone titer in workers leads to sex-biased soldier differentiation in termites.

    PubMed

    Toga, Kouhei; Hanmoto, Shutaro; Suzuki, Ryutaro; Watanabe, Dai; Miura, Toru; Maekawa, Kiyoto

    2016-04-01

    In termites, the soldier caste, with its specialized defensive morphology, is one of the most important characteristics for sociality. Most of the basal termite species have both male and female soldiers, and the soldier sex ratio is almost equal or only slightly biased. However, in the apical lineages (especially family Termitidae), there are many species that have soldiers with strongly biased sex ratio. Generally in termites, since high juvenile hormone (JH) titer is required for soldier differentiation from a worker via a presoldier stage, it was hypothesized that the biased soldier-sex ratio was caused by differences in JH sensitivity and/or JH titer between male and female workers. Therefore, we focused on the presoldier differentiation and the worker JH titer in species with only male soldiers (Nasutitermes takasagoensis) and with both male and female soldiers (Reticulitermes speratus) in natural conditions. In the former species, there are four types of workers; male minor, male medium, female medium and female major workers, and presoldiers differentiate from male minor workers. First, we tried to artificially induce presoldiers from male and female workers. In N. takasagoensis, the presoldier differentiation rate and mortality was significantly higher in male minor workers. Morphological analyses showed that both male and female induced presoldiers possessed normal soldier-specific morphologies. It was suggested that female workers, from which soldiers do not differentiate under natural conditions, also maintained the physiological and developmental potential for soldier differentiation. In R. speratus, however, no differences were observed in solder differentiation rate and mortality between male and female workers. Second, the JH titers of each sex/type of workers were quantified by high performance liquid chromatography-mass spectrometry in two different seasons (April and December). The results showed that, in N. takasagoensis, JH titer in male minor

  5. Influence of hormonal contraceptives on microbial flora of gingival sulcus.

    PubMed

    Klinger, G; Eick, S; Klinger, G; Pfister, W; Gräser, T; Moore, C; Oettel, M

    1998-06-01

    To determine a possible influence of two different hormonal contraceptives on bacterial microflora of gingival sulcus, subgingival plaque samples of 29 healthy women aged between 20 and 32 years were investigated bacteriologically before subjects took a contraceptive and 10 and 20 days after subjects started the medication. In 14 women, and oral contraceptive containing 0.02 mg ethinyl estradiol and 0.15 mg desogestrel (preparation A) was used, and 15 women took a contraceptive containing 0.03 mg ethinyl estradiol and 2.00 mg dienogest (preparation B) daily over 21 days. There were no changes in clinical parameters of the teeth investigated during 3 weeks of the study. The periodontopathogenic bacteria Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans were never detected throughout the study. On the other hand, the periodontopathogenic species Prevotella intermedia was found in plaque samples of 22 women. The content of this microorganism showed only a little change between the pretreatment period and plaque sampling after 10 days of contraceptive treatment, but a striking increase occurred after 20 days of contraceptive treatment, especially in the preparation A group. In this respect, there was a significant difference between preparations A and B. PMID:9693397

  6. Youth pathways to placement: the influence of gender, mental health need and trauma on confinement in the juvenile justice system.

    PubMed

    Espinosa, Erin M; Sorensen, Jon R; Lopez, Molly A

    2013-12-01

    Although the juvenile crime rate has generally declined, the involvement of girls in the juvenile justice system has been increasing. Possible explanations for this gender difference include the impact of exposure to trauma and mental health needs on developmental pathways and the resulting influence of youth's involvement in the justice system. This study examined the influence of gender, mental health needs and trauma on the risk of out-of-home placement for juvenile offenders. The sample included youth referred to three urban juvenile probation departments in Texas between January 1, 2007 and December 31, 2008 and who received state-mandated mental health screening (N = 34,222; 30.1 % female). The analysis revealed that, for both genders, elevated scores on the seven factor-analytically derived subscales of a mental health screening instrument (Alcohol and Drug Use, Depressed-Anxious, Somatic Complaints, Suicidal Ideation, Thought Disturbance, and Traumatic Experiences), especially related to past traumatic experiences, influenced how deeply juveniles penetrated the system. The findings suggest that additional research is needed to determine the effectiveness of trauma interventions and the implementation of trauma informed systems for youth involved with the juvenile justice system. PMID:23824982

  7. The Influence of Sex Hormones on Functional Cerebral Asymmetries in Postmenopausal Women

    ERIC Educational Resources Information Center

    Bayer, Ulrike; Erdmann, Gisela

    2008-01-01

    Studies investigating changes in functional cerebral asymmetries (FCAs) with hormonal fluctuations during the menstrual cycle in young women have led to controversial hypotheses about an influence of estrogen (E) and/or progesterone (P) on FCAs. Based on methodical, but also on principal problems in deriving conclusions about hormone effects from…

  8. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata

    PubMed Central

    Helvig, C.; Koener, J. F.; Unnithan, G. C.; Feyereisen, R.

    2004-01-01

    The molecular analysis of insect hormone biosynthesis has long been hampered by the minute size of the endocrine glands producing them. Expressed sequence tags from the corpora allata of the cockroach Diploptera punctata yielded a new cytochrome P450, CYP15A1. Its full-length cDNA encoded a 493-aa protein that has only 34% amino acid identity with CYP4C7, a terpenoid ω-hydroxylase previously cloned from this tissue. Heterologous expression of the cDNA in Escherichia coli produced >300 nmol of CYP15A1 per liter of culture. After purification, its catalytic activity was reconstituted by using phospholipids and house fly P450 reductase. CYP15A1 metabolizes methyl (2E,6E)-3,7,11-trimethyl-2,6-dodecatrienoate (methyl farnesoate) to methyl (2E,6E)-(10R)-10,11-epoxy-3,7,11-trimethyl-2,6-dodecadienoate [juvenile hormone III, JH III] with a turnover of 3–5 nmol/min/nmol P450. The enzyme produces JH III with a ratio of ≈98:2 in favor of the natural (10R)-epoxide enantiomer. This result is in contrast to other insect P450s, such as CYP6A1, that epoxidize methyl farnesoate with lower regio- and stereoselectivity. RT-PCR experiments show that the CYP15A1 gene is expressed selectively in the corpora allata of D. punctata, at the time of maximal JH production by the glands. We thus report the cloning and functional expression of a gene involved in an insect-specific step of juvenile hormone biosynthesis. Heterologously expressed CYP15A1 from D. punctata or its ortholog from economically important species may be useful in the design and screening of selective insect control agents. PMID:15024118

  9. Naturally occurring insect growth regulators. II. Screening of insect and plant extracts as insect juvenile hormone mimics.

    PubMed

    Jacobson, M; Redfern, R E; Mills, G D

    1975-01-01

    Ethereal extracts prepared from the larvae, pupae, or eggs of 10 species of insects and from various parts of 343 species of higher plants were screened for juvenilizing effects against Tenebrio molitor and Oncopeltus fasciatus. Activity in both species was shown by an extract of the larvae of the stable fly, Stomoxys calcitrans, whereas an extract of the pupae was active in O. fasiatus only. Extracts of two plant species (Echinacea angustifolia roots and Chamaecyparis lawsoniana seeds) showed high juvenilizing activity in T. MOLITOR, AND EXtracts of five plant species (Clethra alnifolia stems, leaves, and fruits, Sassafras albidum roots and root bark, Eucalyptus camaldulensis stems and bark, Pinus rigida twigs and leaves, and Iris douglasiana roots, stems, and fruits) were highly active in O. fasciatus an extract of Tsuga canadensis leaves showed lower activity in this insect. Extracts of 16 species of plants showed high insecticidal activity (mortality) in O. fasciatus but lacked juvenilizing properties in both species of test insects. PMID:1221244

  10. The influence of competitor density on space use in juvenile striped plateau lizards ( Sceloporus virgatus)

    NASA Astrophysics Data System (ADS)

    Manteuffel, V. Mark; Eiblmaier, Martin

    2008-05-01

    To investigate the role of competitor density in influencing space use patterns of juvenile striped plateau lizards ( Sceloporus virgatus), a density manipulation experiment was conducted within large (800 m 2) field enclosures treated with low (20) and high (60) densities of hatchlings. Enclosures were monitored for 10 months, after which the experiment was replicated. Home range and core area sizes after release of lizards and initial establishment in the fall were significantly reduced in the high-density treatments; fall home range shape, measured as the perimeter-to-area ratio, was significantly reduced in low-density treatments; no significant differences were detected between treatments in core area shape or overlap. During the spring/early summer activity season after the lizard's first winter, no significant differences between density treatments were detected for any of these variables, as enclosure densities had converged between treatments. Individuals in high-density enclosures had increased their space use as competitor density had declined. These results illustrate that competitor density has significant influence on space use by juvenile lizards.

  11. COMPARATIVE EMBRYONIC AND LARVAL DEVELOPMENTAL RESPONSES OF THE ESTUARINE GRASS SHRIMP (PALAEMONETES PUGIO) TO THE JUVENILE HORMONE AGONIST FENOXYCARB

    EPA Science Inventory

    This work was undertaken in order to develop a sensitive bioassay which indicates adverse effects of estuarine-applied insecticides on nontarget species. Newly developed 'third generation' insecticides are designed to act as hormone agonists and bind to endogenous insect hormone...

  12. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB(R))

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone (JH) analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations fr...

  13. Early Hormonal Influences on Cognitive Functioning in Congenital Adrenal Hyperplasia.

    ERIC Educational Resources Information Center

    Resnick, Susan M.; And Others

    1986-01-01

    Reports the results of cognitive test performance and early childhood activities in individuals with congenital adrenal hyperplasia, an autosomal recessive disorder associated with elevated prenatal adrenal androgen levels, demonstrating the effects of early exposure to excess androgenizing hormones on sexually dimorphic cognitive functioning.…

  14. Establishment of a short-term, in vivo screening method for detecting chemicals with juvenile hormone activity using adult Daphnia magna.

    PubMed

    Abe, Ryoko; Watanabe, Haruna; Yamamuro, Masumi; Iguchi, Taisen; Tatarazako, Norihisa

    2015-01-01

    Juvenile hormone (JH) and JH agonists have been shown to induce male offspring production in various daphnids, including Daphnia magna using OECD TG211. The critical period (about 1h) for JH action on ova in the parent's ovary to induce male offspring is existing at 7-8h later from ovulation. Therefore, we considered that adult D. magna could be used to produce a short-term screening method for detecting JH analogs. Using this method, we successfully demonstrated male offspring induction in the second broods after exposure to JH or JH agonists. After investigating the exposure time, the number of repetitions and the exposure concentration, we established a short-term, in vivo screening method for detecting JH analogs using adult D. magna. We examined positive and negative control chemicals using a previously developed method and verified the validity of our new testing method. PMID:24477940

  15. Effects of the juvenile hormone analogue methoprene on rate of behavioural development, foraging performance and navigation in honey bees (Apis mellifera).

    PubMed

    Chang, Lun-Hsien; Barron, Andrew B; Cheng, Ken

    2015-06-01

    Worker honey bees change roles as they age as part of a hormonally regulated process of behavioural development that ends with a specialised foraging phase. The rate of behavioural development is highly plastic and responsive to changes in colony condition such that forager losses, disease or nutritional stresses accelerate behavioural development and cause an early onset of foraging in workers. It is not clear to what degree the behavioural development of workers can be accelerated without there being a cost in terms of reduced foraging performance. Here, we compared the foraging performance of bees induced to accelerate their behavioural development by treatment with the juvenile hormone analogue methoprene with that of controls that developed at a normal rate. Methoprene treatment accelerated the onset of both flight and foraging behaviour in workers, but it also reduced foraging span, the total time spent foraging and the number of completed foraging trips. Methoprene treatment did not alter performance in a short-range navigation task, however. These data indicate a limitation to the physiological plasticity of bees, and a trade off between forager performance and the speed at which bees begin foraging. Chronic stressors will be expected to reduce the mean age of the foraging force, and therefore also reduce the efficiency of the foraging force. This interaction may explain why honey bee colonies react to sustained stressors with non-linear population decline. PMID:25883376

  16. Growth Hormone Deficiency, Short Stature, and Juvenile Rheumatoid Arthritis in a Patient with Autoimmune Polyglandular Syndrome Type 1: Case Report and Brief Review of the Literature

    PubMed Central

    Pun, Teresa; Chandurkar, Vikram

    2011-01-01

    Autoimmune polyglandular syndromes (APSs) include a cluster of autoimmune and nonautoimmune conditions which have been classified into subtypes. APSs type 1 is characterized by at least two of the following: chronic mucocutaneous candidiasis, chronic hypoparathyroidism, and autoimmune Addison's disease (AD). We report the chronological history of a female patient who presented with features most consistent with APS type 1, along with growth hormone deficiency and juvenile rheumatoid arthritis (JRA). In terms of her autoimmune diagnoses, she first presented with JRA at three years of age, then hypocalcemia and hypoparathyroidism at five years of age, type 1 diabetes (DM 1) at age eleven years, adrenal insufficiency at age fourteen years, recurrent mucocutaneous candidiasis as a teenager, growth hormone deficiency at age fourteen years leading to significant short stature, primary amenorrhoea, and hypogonadism, and finally alopecia at age twenty-six years. In addition to this, she has suffered other nonautoimmune medical problems including a Tetralogy of Fallot with a surgical repair at age six years. On review of the medical literature, we found no other previously reported case with this unique combination of medical problems. PMID:22363878

  17. A juvenile hormone transcription factor Bmdimm-fibroin H chain pathway is involved in the synthesis of silk protein in silkworm, Bombyx mori.

    PubMed

    Zhao, Xiao-Ming; Liu, Chun; Jiang, Li-Jun; Li, Qiong-Yan; Zhou, Meng-Ting; Cheng, Ting-Cai; Mita, Kazuei; Xia, Qing-You

    2015-01-01

    The genes responsible for silk biosynthesis are switched on and off at particular times in the silk glands of Bombyx mori. This switch appears to be under the control of endogenous and exogenous hormones. However, the molecular mechanisms by which silk protein synthesis is regulated by the juvenile hormone (JH) are largely unknown. Here, we report a basic helix-loop-helix transcription factor, Bmdimm, its silk gland-specific expression, and its direct involvement in the regulation of fibroin H-chain (fib-H) by binding to an E-box (CAAATG) element of the fib-H gene promoter. Far-Western blots, enzyme-linked immunosorbent assays, and co-immunoprecipitation assays revealed that Bmdimm protein interacted with another basic helix-loop-helix transcription factor, Bmsage. Immunostaining revealed that Bmdimm and Bmsage proteins are co-localized in nuclei. Bmdimm expression was induced in larval silk glands in vivo, in silk glands cultured in vitro, and in B. mori cell lines after treatment with a JH analog. The JH effect on Bmdimm was mediated by the JH-Met-Kr-h1 signaling pathway, and Bmdimm expression did not respond to JH by RNA interference with double-stranded BmKr-h1 RNA. These data suggest that the JH regulatory pathway, the transcription factor Bmdimm, and the targeted fib-H gene contribute to the synthesis of fibroin H-chain protein in B. mori. PMID:25371208

  18. Modelling the Influence of Long-Term Hydraulic Conditions on Juvenile Salmon Habitats in AN Upland Scotish River

    NASA Astrophysics Data System (ADS)

    Fabris, L.; Malcolm, I.; Millidine, K. J.; Buddendorf, B.; Tetzlaff, D.; Soulsby, C.

    2015-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream

  19. Dietary contaminant exposure affects plasma testosterone, but not thyroid hormones, vitamin A, and vitamin E, in male juvenile arctic foxes (Vulpes lagopus).

    PubMed

    Hallanger, Ingeborg G; Jørgensen, Even H; Fuglei, Eva; Ahlstrøm, Øystein; Muir, Derek C G; Jenssen, Bjørn Munro

    2012-01-01

    Levels of persistent organic pollutants (POP), such as polychlorinated biphenyls (PCB), are high in many Arctic top predators, including the Arctic fox (Vulpes lagopus). The aim of this study was to examine possible endocrine-disruptive effects of dietary POP exposure in male juvenile Arctic foxes in a controlled exposure experiment. The study was conducted using domesticated farmed blue foxes (Vulpes lagopus) as a model species. Two groups of newly weaned male foxes received a diet supplemented with either minke whale (Baleneoptera acutorostrata) blubber that was naturally contaminated with POP (exposed group, n = 5 or 21), or pork (Sus scrofa) fat (control group, n = 5 or 21). When the foxes were 6 mo old and had received the 2 diets for approximately 4 mo (147 d), effects of the dietary exposure to POP on plasma concentrations of testosterone (T), thyroid hormones (TH), thyroid-stimulating hormone (TSH), retinol (vitamin A), and tocopherol (viramin E) were examined. At sampling, the total body concentrations of 104 PCB congeners were 0.1 ± 0.03 μg/g lipid weight (l.w.; n = 5 [mean ± standard deviation]) and 1.5 ± 0.17 μg/g l.w. (n = 5) in the control and exposed groups, respectively. Plasma testosterone concentrations in the exposed male foxes were significantly lower than in the control males, being approximately 25% of that in the exposed foxes. There were no between-treatment differences for TH, TSH, retinol, or tocopherol. The results suggest that the high POP levels experienced by costal populations of Arctic foxes, such as in Svalbard and Iceland, may result in delayed masculine maturation during adolescence. Sex hormone disruption during puberty may thus have lifetime consequences on all aspects of reproductive function in adult male foxes. PMID:23030655

  20. Body size and condition influence migration timing of juvenile Arctic grayling

    USGS Publications Warehouse

    Heim, Kurt C.; Wipfli, Mark S.; Whitman, Matthew S.; Seitz, Andrew C

    2016-01-01

    Freshwater fishes utilising seasonally available habitats within annual migratory circuits time movements out of such habitats with changing hydrology, although individual attributes of fish may also mediate the behavioural response to environmental conditions. We tagged juvenile Arctic grayling in a seasonally flowing stream on the Arctic Coastal Plain in Alaska and recorded migration timing towards overwintering habitat. We examined the relationship between individual migration date, and fork length (FL) and body condition index (BCI) for fish tagged in June, July and August in three separate models. Larger fish migrated earlier; however, only the August model suggested a significant relationship with BCI. In this model, 42% of variability in migration timing was explained by FL and BCI, and fish in better condition were predicted to migrate earlier than those in poor condition. Here, the majority (33%) of variability was captured by FL with an additional 9% attributable to BCI. We also noted strong seasonal trends in BCI reflecting overwinter mass loss and subsequent growth within the study area. These results are interpreted in the context of size and energetic state-specific risks of overwinter starvation and mortality (which can be very high in the Arctic), which may influence individuals at greater risk to extend summer foraging in a risky, yet prey rich, habitat. Our research provides further evidence that heterogeneity among individuals within a population can influence migratory behaviour and identifies potential risks to late season migrants in Arctic beaded stream habitats influenced by climate change and petroleum development.

  1. Effect of a peri-juvenile exposure to Triclosan on serum androgens and thyroid hormone in the male Wistar rat

    EPA Science Inventory

    Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a potent antibacterial and antifungal compound that is widely used in personal care products. Studies testing triclosan exposure in the bullfrog showed altered thyroid hormone homeostasis. More recently, triclosan has been s...

  2. Factors influencing the quality of life of Moroccan patients with juvenile idiopathic arthritis.

    PubMed

    Ezzahri, M; Amine, B; Rostom, S; Badri, D; Mawani, N; Gueddari, S; Shyen, S; Wabi, M; Moussa, F; Abouqal, R; Chkirate, B; Hajjaj-Hassouni, N

    2014-11-01

    The aim of our study is to investigate the factors influencing the quality of life, assessed by the Pediatric Quality of Life Inventory 4.0 (PedsQL4) Generic Score Scales, in Moroccan patients with juvenile idiopathic arthritis. This is a cross-sectional study conducted between January and June 2012, covering children with juvenile idiopathic arthritis (JIA) seen at the consultations of El Ayachi Hospital and Children's Hospital of the University Hospital of Rabat. Quality of life is assessed by the PedsQL4 which is a questionnaire composed of 23 items, completed by the child and the parent; the response to each item ranges from 0 to 100, so that higher scores indicate a better quality of life. The functional impact is assessed by the Childhood Health Assessment Questionnaire (CHAQ), and the disease activity by the number of tender and swollen joints, visual analogue scale (VAS) activity, erythrocyte sedimentation rate (ESR), and C-reactive protein. Forty-seven patients are included; the average age of the patients is 11 ± 3.35 years, and 40.4 % are females, with a median disease duration of 4 (2; 6) years. The oligoarticular form presents 26.7 %, the systemic form 24.4 %, and the enthesic form 22.2 %. The median of PedsQL4 is 80.43 (63.19; 92.93), and the median of the CHAQ is 0 (0; 1). Our study shows that some clinical and biological characteristics have significant effects on PedsQL by both parent and child reports. This study suggests that the achievement of the quality of life of our patients with JIA depends on the disease activity measured by swollen joints, the number of awakenings, parent VAS, physician VAS, patient VAS, and the ESR. PMID:24445385

  3. Influence of Cancer-Associated Endometrial Stromal Cells on Hormone-Driven Endometrial Tumor Growth

    PubMed Central

    Pineda, M. J.; Lu, Z.; Cao, D.

    2016-01-01

    Cancer-associated fibroblasts have been shown to inhibit or stimulate tumor growth depending on stage, grade, and tumor type. It remains unclear, however, the effect of endometrial-cancer-associated fibroblasts on hormone-driven responses in endometrial cancer. In this study, we investigated the effect of normal and cancer-associated stromal cells from patients with and without endometrial cancer on endometrial tumor growth in response to estradiol (E2) and progesterone (P4). Compared to benign endometrial stromal cells, the low-grade and high-grade cancer-associated stromal cells exhibited a blunted hormone response for proliferation as well as IGFBP1 secretion. Additional analysis of the influence of stromal cells on hormone-driven tumor growth was done by mixing stromal cells from benign, low-grade, or high-grade tumors, with Ishikawa cells for subcutaneous tumor formation. The presence of both benign and high-grade cancer-associated stromal cells increased estradiol-driven xenografted tumor growth compared to Ishikawa cells alone. Low-grade cancer-associated stromal cells did not significantly influence hormone-regulated tumor growth. Addition of P4 attenuated tumor growth in Ishikawa + benign or high-grade stromal cells, but not in Ishikawa cells alone or with low-grade stromal cells. Using an angiogenesis focused real-time array TGFA, TGFB2 and TGFBR1 and VEGFC were identified as potential candidates for hormone-influenced growth regulation of tumors in the presence of benign and high-grade stromal cells. In summary, endometrial-cancer-associated cells responded differently to in vitro hormone treatment compared to benign endometrial stromal cells. Additionally, presence of stromal cells differentially influenced hormone-driven xenograft growth in vivo depending on the disease status of the stromal cells. PMID:25976290

  4. Influence of Photoperiod on Hormones, Behavior, and Immune Function

    PubMed Central

    Walton, James C.; Weil, Zachary M.; Nelson, Randy J.

    2011-01-01

    Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally- appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival. PMID:21156187

  5. Molecular cloning and characterization of juvenile hormone acid methyltransferase in the honey bee, Apis mellifera, and its differential expression during caste differentiation.

    PubMed

    Li, Wenfeng; Huang, Zachary Y; Liu, Fang; Li, Zhiguo; Yan, Limin; Zhang, Shaowu; Chen, Shenglu; Zhong, Boxiong; Su, Songkun

    2013-01-01

    Juvenile hormone acid methyltransferase (JHAMT) is an enzyme involved in one of the final steps of juvenile hormone biosynthesis in insects. It transfers a methyl group from S-adenosyl-L-methionine (SAM) to the carboxyl group of either farnesoic acid (FA) or JH acid (JHA). Several genes coding for JHAMT have been cloned and characterized from insects from different orders, and they have been shown to play critical roles in metamorphosis and reproduction. However, the significance of JHAMT in Hymenopteran insects is unknown. We used RACE amplification method to clone JHAMT cDNA from the honey bee, Apis mellifera (AmJHAMT). The full length cDNA of AmJHAMT that we cloned is 1253bp long and encodes a 278-aa protein that shares 32-36% identity with known JHAMTs. A SAM-binding motif, conserved in the SAM-dependent methyltransferase (SAM-MT) superfamily, is present in AmJHAMT. Its secondary structure also contains a typical SAM-MT fold. Most of the active sites bound with SAM and substrates (JHA or FA) are conserved in AmJHAMT as in other JHAMT orthologs. Phylogenetic analysis clustered AmJHAMT with the other orthologs from Hymenoptera to form a major clade in the phylogenetic tree. Purified recombinant AmJHAMT protein expressed in E. coli was used to produce polyclonal antibodies and to verify the identity of AmJHAMT by immunoblotting and mass spectrometry. Quantitative RT-PCR and immunoblotting analyses revealed that queen larvae contained significantly higher levels of AmJHAMT mRNA and protein than worker larvae during the periods of caste development. The temporal profiles of both AmJHAMT mRNA and protein in queens and workers showed a similar pattern as the JH biosynthesis. These results suggest that the gene that we cloned codes for a functional JHAMT that catalyzes the final reactions of JH biosynthesis in honey bees. In addition, AmJHAMT may play an important role in honey bee caste differentiation. PMID:23874662

  6. Molecular Cloning and Characterization of Juvenile Hormone Acid Methyltransferase in the Honey Bee, Apis mellifera, and Its Differential Expression during Caste Differentiation

    PubMed Central

    Li, Wenfeng; Huang, Zachary Y.; Liu, Fang; Li, Zhiguo; Yan, Limin; Zhang, Shaowu; Chen, Shenglu; Zhong, Boxiong; Su, Songkun

    2013-01-01

    Juvenile hormone acid methyltransferase (JHAMT) is an enzyme involved in one of the final steps of juvenile hormone biosynthesis in insects. It transfers a methyl group from S-adenosyl-L-methionine (SAM) to the carboxyl group of either farnesoic acid (FA) or JH acid (JHA). Several genes coding for JHAMT have been cloned and characterized from insects from different orders, and they have been shown to play critical roles in metamorphosis and reproduction. However, the significance of JHAMT in Hymenopteran insects is unknown. We used RACE amplification method to clone JHAMT cDNA from the honey bee, Apis mellifera (AmJHAMT). The full length cDNA of AmJHAMT that we cloned is 1253bp long and encodes a 278-aa protein that shares 32-36% identity with known JHAMTs. A SAM-binding motif, conserved in the SAM-dependent methyltransferase (SAM-MT) superfamily, is present in AmJHAMT. Its secondary structure also contains a typical SAM-MT fold. Most of the active sites bound with SAM and substrates (JHA or FA) are conserved in AmJHAMT as in other JHAMT orthologs. Phylogenetic analysis clustered AmJHAMT with the other orthologs from Hymenoptera to form a major clade in the phylogenetic tree. Purified recombinant AmJHAMT protein expressed in E. coli was used to produce polyclonal antibodies and to verify the identity of AmJHAMT by immunoblotting and mass spectrometry. Quantitative RT-PCR and immunoblotting analyses revealed that queen larvae contained significantly higher levels of AmJHAMT mRNA and protein than worker larvae during the periods of caste development. The temporal profiles of both AmJHAMT mRNA and protein in queens and workers showed a similar pattern as the JH biosynthesis. These results suggest that the gene that we cloned codes for a functional JHAMT that catalyzes the final reactions of JH biosynthesis in honey bees. In addition, AmJHAMT may play an important role in honey bee caste differentiation. PMID:23874662

  7. Influence of Thyroid Hormone Disruption on the Incidence of Shingles

    PubMed Central

    Ajavon, Amakoe; Killian, Dennis; Odom, Randy; Figliozzi, Robert W.; Chen, Feng; Balish, Matthew; Parmar, Jayesh; Freeman, Robert; Snitzer, Jack; Hsia, S. Victor

    2015-01-01

    SUMMARY The reactivation of dormant alpha-Human Herpes Virus (αHHV) has been attributed to various causes often referred to as stressors. However, no clinical study investigating the relationship between stressors and reactivation exists in humans at this time. Herpes Simplex Virus Type-1 (HSV-1), an important αHHV, was shown to have its gene expression and replication regulated by Thyroid hormone (TH) using molecular biology approaches. Varicella Zoster Virus (VZV) is categorized in αHHV superfamily and shares similar homology with HSV-1. We hypothesize that a history of TH imbalance may be associated with the incidence of shingles (VZV reactivation). This current pilot study, based on a hospital medical claim database, was conducted as a retrospective case-controlled investigation to determine if a putative link between TH imbalance and incidence of shingles is present. An OR of 2.95 with a Chi-square of 51.74 was calculated for the total population diagnosed with TH disruption and shingles. Further analyses indicated that African American males exhibited much higher chance of simultaneous diagnoses. These results showed that a TH imbalance history may affect VZV reactivation at different incidence rates in different races and age groups. PMID:26189668

  8. Influence of thyroid hormone disruption on the incidence of shingles.

    PubMed

    Ajavon, A; Killian, D; Odom, R; Figliozzi, R W; Chen, F; Balish, M; Parmar, J; Freeman, R; Snitzer, J; Hsia, S V

    2015-12-01

    The reactivation of dormant alpha-human herpesvirus (αHHV) has been attributed to various causes often referred to as stressors. However, no clinical study investigating the relationship between stressors and reactivation exists in humans at this time. Herpes simplex virus type-1 (HSV-1), an important αHHV, was shown to have its gene expression and replication regulated by thyroid hormone (TH) using molecular biology approaches. Varicella zoster virus (VZV) is categorized in αHHV superfamily and shares similar homology with HSV-1. We hypothesize that a history of TH imbalance may be associated with the incidence of shingles (VZV reactivation). This current pilot study, based on a hospital medical claims database, was conducted as a retrospective case-controlled investigation to determine if a putative link between TH imbalance and incidence of shingles is present. An odds ratio of 2·95 with a χ 2 value of 51·74 was calculated for the total population diagnosed with TH disruption and shingles. Further analyses indicated that African American males exhibited a much higher chance of simultaneous diagnoses. These results show that a TH imbalance history may affect VZV reactivation at different incidence rates in different races and age groups. PMID:26189668

  9. Initiation of metamorphosis and control of ecdysteroid biosynthesis in insects: The interplay of absence of Juvenile hormone, PTTH, and Ca(2+)-homeostasis.

    PubMed

    De Loof, Arnold; Vandersmissen, Tim; Marchal, Elisabeth; Schoofs, Liliane

    2015-06-01

    The paradigm saying that release of the brain neuropeptide big prothoracicotropic hormone (PTTH) initiates metamorphosis by activating the Torso-receptor/ERK pathway in larval prothoracic glands (PGs) is widely accepted nowadays. Upon ligand-receptor interaction Ca(2+) enters the PG cells and acts as a secondary messenger. Ecdysteroidogenesis results, later followed by apoptosis. Yet, some data do not fit in this model. In some species decapitated animals can still molt, even repeatedly, and metamorphose. PTTH does not universally occur in all insect species. PGs may also have other functions; PGs as counterpart of the vertebrate thymus? There are also small PTTHs. Finally, PTTH remains abundantly present in adults and plays a role in control of ecdysteroidogenesis (=sex steroid production) in gonads. This is currently documented only in males. This urges a rethinking of the PTTH-PG paradigm. The key question is: Why does PTTH-induced Ca(2+) entry only result in ecdysteroidogenesis and apoptosis in specific cells/tissues, namely the PGs and gonads? Indeed, numerous other neuropeptides also use Ca(2+) as secondary messenger. The recent rediscovery that in both invertebrates and vertebrates at least some isoforms of Ca(2+)-ATPase need the presence of an endogenous farnesol/juvenile hormone(JH)-like sesquiterpenoid for keeping cytosolic [Ca(2+)]i below the limit of apoptosis-induction, triggered the idea that it is not primarily PTTH, but rather the drop to zero of the JH titer that acts as the primordial initiator of metamorphosis by increasing [Ca(2+)]i. PTTH likely potentiates this effect but only in cells expressing Torso. PTTH: an evolutionarily ancient gonadotropin? PMID:25102449

  10. Factors influencing the cognitive and neural effects of hormone treatment during aging in a rodent model

    PubMed Central

    Chisholm, Nioka C.; Juraska, Janice M.

    2013-01-01

    Whether hormone treatment alters brain structure or has beneficial effects on cognition during aging has recently become a topic of debate. Although previous research has indicated that hormone treatment benefits memory in menopausal women, several newer studies have shown no effect or detrimental effects. These inconsistencies emphasize the need to evaluate the role of hormones in protecting against age-related cognitive decline in an animal model. Importantly, many studies investigating the effects of estrogen and progesterone on cognition and related brain regions have used young adult animals, which respond differently than aged animals. However, when only the studies that have examined the effects of hormone treatment in an aging model are reviewed, there are still varied behavioral and neural outcomes. This article reviews some of the important factors that can influence the behavioral and neural outcomes of hormone treatment including the type of estrogen administered, whether or not estrogen is combined with progesterone and if so, the type of progesterone used, as well as the route, mode, and length of treatment. How these factors influence cognitive outcomes highlights the importance of study design and avoiding generalizations from a small number of studies. PMID:23419893

  11. Influence of past breast feeding on pattern and severity of presentation of juvenile idiopathic arthritis.

    PubMed

    Hyrich, Kimme L; Baildam, Eileen; Pickford, Hannah; Chieng, Alice; Davidson, Joyce E; Foster, Helen; Gardner-Medwin, Janet; Wedderburn, Lucy R; Thomson, Wendy

    2016-04-01

    This analysis aimed to study the influence of breast feeding on the pattern and severity of juvenile idiopathic arthritis (JIA) at presentation. The association between ever versus never breast feeding and disease severity at onset was compared in 923 children with JIA recruited to the UK Childhood Arthritis Prospective Study at first presentation to rheumatology. Fifty six per cent of children were ever breast fed (median 3.7 months). Breastfed children reported a lower median age at onset, a lower Childhood Health Assessment Questionnaire (CHAQ), a measure of disease severity, lower parent general evaluation scores and lower pain at presentation. There was a trend towards a higher proportion of breastfed children with rheumatoid factor-negative polyarthritis, but lesser enthesitis-related and psoriatic arthritis. There was a statistically significant inverse association between breast feeding and high CHAQ, even after adjusting for differences in socioeconomic status (adjusted OR 0.61 (95% CI 0.39 to 0.95)). Further work to understand the reasons behind these associations is required. PMID:26369575

  12. A steroid receptor coactivator acts as the DNA-binding partner of the methoprene-tolerant protein in regulating juvenile hormone response genes.

    PubMed

    Li, Meng; Liu, Pengcheng; Wiley, Jessica D; Ojani, Reyhaneh; Bevan, David R; Li, Jianyong; Zhu, Jinsong

    2014-08-25

    Methoprene-tolerant (Met) protein is a juvenile hormone (JH) receptor in insects. JH-bound Met forms a complex with the βFtz-F1-interacting steroid receptor coactivator (FISC) and together they regulate JH response genes in mosquitoes. Both proteins contain basic helix-loop-helix (bHLH) and PAS motifs. Here we demonstrated that FISC is the obligatory partner of Met for binding to JH-response elements (JHREs). Met or FISC alone could not bind a previously characterized JHRE, while formation of the Met-FISC complex was necessary and sufficient to bind to the JHRE. This binding required participation of the DNA-binding domains of both Met and FISC. The optimal DNA sequence recognized by Met and FISC contained a core consensus sequence GCACGTG. While formation of the Met-FISC complex in mosquito cells was induced by JH, heterodimerization and DNA binding of bacterially expressed Met and FISC were JH-independent, implying that additional mosquito proteins were required to modulate formation of the receptor complex. PMID:25004255

  13. Juvenile Hormone Activates the Transcription of Cell-division-cycle 6 (Cdc6) for Polyploidy-dependent Insect Vitellogenesis and Oogenesis.

    PubMed

    Wu, Zhongxia; Guo, Wei; Xie, Yingtian; Zhou, Shutang

    2016-03-01

    Although juvenile hormone (JH) is known to prevent insect larval metamorphosis and stimulate adult reproduction, the molecular mechanisms of JH action in insect reproduction remain largely unknown. Earlier, we reported that the JH-receptor complex, composed of methoprene-tolerant and steroid receptor co-activator, acts on mini-chromosome maintenance (Mcm) genes Mcm4 and Mcm7 to promote DNA replication and polyploidy for the massive vitellogenin (Vg) synthesis required for egg production in the migratory locust (Guo, W., Wu, Z., Song, J., Jiang, F., Wang, Z., Deng, S., Walker, V. K., and Zhou, S. (2014) PLoS Genet. 10, e1004702). In this study we have investigated the involvement of cell-division-cycle 6 (Cdc6) in JH-dependent vitellogenesis and oogenesis, as Cdc6 is essential for the formation of prereplication complex. We demonstrate here that Cdc6 is expressed in response to JH and methoprene-tolerant, and Cdc6 transcription is directly regulated by the JH-receptor complex. Knockdown of Cdc6 inhibits polyploidization of fat body and follicle cells, resulting in the substantial reduction of Vg expression in the fat body as well as severely impaired oocyte maturation and ovarian growth. Our data indicate the involvement of Cdc6 in JH pathway and a pivotal role of Cdc6 in JH-mediated polyploidization, vitellogenesis, and oogenesis. PMID:26728459

  14. Juvenile Hormone-Receptor Complex Acts on Mcm4 and Mcm7 to Promote Polyploidy and Vitellogenesis in the Migratory Locust

    PubMed Central

    Song, Jiasheng; Jiang, Feng; Wang, Zhiming; Deng, Shun; Walker, Virginia K.; Zhou, Shutang

    2014-01-01

    Juvenile hormone (JH), a sesquiterpenoid produced by the corpora allata, coordinates insect growth, metamorphosis, and reproduction. While JH action for the repression of larval metamorphosis has been well studied, the molecular basis of JH in promoting adult reproduction has not been fully elucidated. Methoprene-tolerant (Met), the JH receptor, has been recently shown to mediate JH action during metamorphosis as well as in vitellogenesis, but again, the precise mechanism underlying the latter has been lacking. We have now demonstrated using Met RNAi to phenocopy a JH-deprived condition in migratory locusts, that JH stimulates DNA replication and increases ploidy in preparation for vitellogenesis. Mcm4 and Mcm7, two genes in the DNA replication pathway were expressed in the presence of JH and Met. Depletion of Mcm4 or Mcm7 inhibited de novo DNA synthesis and polyploidization, and resulted in the substantial reduction of vitellogenin mRNA levels as well as severely impaired oocyte maturation and ovarian growth. By using luciferase reporter and electrophoretic mobility shift assays, we have shown that Met directly regulates the transcription of Mcm4 and Mcm7 by binding to upstream consensus sequences with E-box or E-box-like motifs. Our work suggests that the JH-receptor complex acts on Mcm4 and Mcm7 to regulate DNA replication and polyploidy for vitellogenesis and oocyte maturation. PMID:25340846

  15. Proteome analysis of male accessory gland secretions in oriental fruit flies reveals juvenile hormone-binding protein, suggesting impact on female reproduction

    PubMed Central

    Wei, Dong; Li, Hui-Min; Tian, Chuan-Bei; Smagghe, Guy; Jia, Fu-Xian; Jiang, Hong-Bo; Dou, Wei; Wang, Jin-Jun

    2015-01-01

    In insects, the accessory gland proteins (Acps) secreted by male accessory glands (MAGs) account for the majority of seminal fluids proteins. Mixed with sperm, they are transferred to the female at mating and so impact reproduction. In this project, we identified 2,927 proteins in the MAG secretions of the oriental fruit fly Bactrocera dorsalis, an important agricultural pest worldwide, using LC-MS analysis, and all sequences containing open reading frames were analyzed using signalP. In total, 90 Acps were identified. About one third (26) of these 90 Acps had a specific functional description, while the other two thirds (64) had no functional description including dozens of new classes of proteins. Hence, several of these novel Acps were abundant in the MAG secretions, and we confirmed their MAG-specific expression by qPCR. Finally and interestingly, one of these novel proteins was functionally predicted as juvenile hormone-binding protein, suggesting the impact of Acps with reproductive events in the female. Our results will aid in the development of an experimental method to identify Acps in insects, and in turn this information with new Acps in B. dorsalis will pave the way of further exploration their function in reproduction and potential development as new insecticide targets. PMID:26582577

  16. Juvenile hormone enhances aversive learning performance in 2-day old worker honey bees while reducing their attraction to queen mandibular pheromone.

    PubMed

    McQuillan, H James; Nakagawa, Shinichi; Mercer, Alison R

    2014-01-01

    Previous studies have shown that exposing young worker bees (Apis mellifera) to queen mandibular pheromone (QMP) reduces their aversive learning performance, while enhancing their attraction to QMP. As QMP has been found to reduce the rate of juvenile hormone (JH) synthesis in worker bees, we examined whether aversive learning in 2-day old workers exposed to QMP from the time of adult emergence could be improved by injecting JH (10 µg in a 2 µl volume) into the haemolymph. We examined in addition, the effects of JH treatment on worker attraction to QMP, and on the levels of expression of amine receptor genes in the antennae, as well as in the mushroom bodies of the brain. We found that memory acquisition and 1-hour memory recall were enhanced by JH. In contrast, JH treatment reduced the bees' attraction towards a synthetic strip impregnated with QMP (Bee Boost). Levels of expression of the dopamine receptor gene Amdop1 were significantly lower in the mushroom bodies of JH-treated bees than in bees treated with vehicle alone (acetone diluted with bee ringer). Expression of the octopamine receptor gene, Amoa1, in this brain region was also affected by JH treatment, and in the antennae, Amoa1 transcript levels were significantly lower in JH-treated bees compared to controls. The results of this study suggest that QMP's effects on JH synthesis may contribute to reducing aversive learning performance and enhancing attraction to QMP in young worker bees. PMID:25390885

  17. Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways.

    PubMed

    Hansen, Immo A; Attardo, Geoffrey M; Rodriguez, Stacy D; Drake, Lisa L

    2014-01-01

    Anautogenous mosquito females require a meal of vertebrate blood in order to initiate the production of yolk protein precursors by the fat body. Yolk protein precursor gene expression is tightly repressed in a state-of-arrest before blood meal-related signals activate it and expression levels rise rapidly. The best understood example of yolk protein precursor gene regulation is the vitellogenin-A gene (vg) of the yellow fever mosquito Aedes aegypti. Vg-A is regulated by (1) juvenile hormone signaling, (2) the ecdysone-signaling cascade, (3) the nutrient sensitive target-of-rapamycin signaling pathway, and (4) the insulin-like peptide (ILP) signaling pathway. A plethora of new studies have refined our understanding of the regulation of yolk protein precursor genes since the last review on this topic in 2005 (Attardo et al., 2005). This review summarizes the role of these four signaling pathways in the regulation of vg-A and focuses upon new findings regarding the interplay between them on an organismal level. PMID:24688471

  18. Genome-wide comparison of genes involved in the biosynthesis, metabolism, and signaling of juvenile hormone between silkworm and other insects.

    PubMed

    Cheng, Daojun; Meng, Meng; Peng, Jian; Qian, Wenliang; Kang, Lixia; Xia, Qingyou

    2014-06-01

    Juvenile hormone (JH) contributes to the regulation of larval molting and metamorphosis in insects. Herein, we comprehensively identified 55 genes involved in JH biosynthesis, metabolism and signaling in the silkworm (Bombyx mori) as well as 35 in Drosophila melanogaster, 35 in Anopheles gambiae, 36 in Apis mellifera, 47 in Tribolium castaneum, and 44 in Danaus plexippus. Comparative analysis showed that each gene involved in the early steps of the mevalonate (MVA) pathway, in the neuropeptide regulation of JH biosynthesis, or in JH signaling is a single copy in B. mori and other surveyed insects, indicating that these JH-related pathways or steps are likely conserved in all surveyed insects. However, each gene participating in the isoprenoid branch of JH biosynthesis and JH metabolism, together with the FPPS genes for catalyzing the final step of the MVA pathway of JH biosynthesis, exhibited an obvious duplication in Lepidoptera, including B. mori and D. plexippus. Microarray and real-time RT-PCR analysis revealed that different copies of several JH-related genes presented expression changes that correlated with the dynamics of JH titer during larval growth and metamorphosis. Taken together, the findings suggest that duplication-derived copy variation of JH-related genes might be evolutionarily associated with the variation of JH types between Lepidoptera and other insect orders. In conclusion, our results provide useful clues for further functional analysis of JH-related genes in B. mori and other insects. PMID:25071411

  19. Juvenile hormone-receptor complex acts on mcm4 and mcm7 to promote polyploidy and vitellogenesis in the migratory locust.

    PubMed

    Guo, Wei; Wu, Zhongxia; Song, Jiasheng; Jiang, Feng; Wang, Zhiming; Deng, Shun; Walker, Virginia K; Zhou, Shutang

    2014-10-01

    Juvenile hormone (JH), a sesquiterpenoid produced by the corpora allata, coordinates insect growth, metamorphosis, and reproduction. While JH action for the repression of larval metamorphosis has been well studied, the molecular basis of JH in promoting adult reproduction has not been fully elucidated. Methoprene-tolerant (Met), the JH receptor, has been recently shown to mediate JH action during metamorphosis as well as in vitellogenesis, but again, the precise mechanism underlying the latter has been lacking. We have now demonstrated using Met RNAi to phenocopy a JH-deprived condition in migratory locusts, that JH stimulates DNA replication and increases ploidy in preparation for vitellogenesis. Mcm4 and Mcm7, two genes in the DNA replication pathway were expressed in the presence of JH and Met. Depletion of Mcm4 or Mcm7 inhibited de novo DNA synthesis and polyploidization, and resulted in the substantial reduction of vitellogenin mRNA levels as well as severely impaired oocyte maturation and ovarian growth. By using luciferase reporter and electrophoretic mobility shift assays, we have shown that Met directly regulates the transcription of Mcm4 and Mcm7 by binding to upstream consensus sequences with E-box or E-box-like motifs. Our work suggests that the JH-receptor complex acts on Mcm4 and Mcm7 to regulate DNA replication and polyploidy for vitellogenesis and oocyte maturation. PMID:25340846

  20. A Steroid Receptor Coactivator Acts as the DNA-binding Partner of the Methoprene-tolerant Protein in Regulating Juvenile Hormone Response Genes

    PubMed Central

    Li, Meng; Liu, Pengcheng; Wiley, Jessica D.; Ojani, Reyhaneh; Bevan, David R.; Li, Jianyong; Zhu, Jinsong

    2014-01-01

    Methoprene-tolerant (Met) protein is a juvenile hormone (JH) receptor in insects. JH-bound Met forms a complex with the βFtz-F1-interacting steroid receptor coactivator (FISC) and together they regulate JH response genes in mosquitoes. Both proteins contain basic-helix-loop-helix (bHLH) and PAS motifs. Here we demonstrated that FISC is the obligatory partner of Met for binding to JH-response elements (JHREs). Met or FISC alone could not bind a previously characterized JHRE, while formation of the Met-FISC complex was necessary and sufficient to bind to the JHRE. This binding required participation of the DNA-binding domains of both Met and FISC. The optimal DNA sequence recognized by Met and FISC contained a core consensus sequence GCACGTG. While formation of the Met-FISC complex in mosquito cells was induced by JH, heterodimerization and DNA binding of bacterially expressed Met and FISC were JH-independent, implying that additional mosquito proteins were required to modulate formation of the receptor complex. PMID:25004255

  1. Enhancing male sexual success in a lekking fly (Anastrepha suspensa Diptera: Tephritidae) through a juvenile hormone analog has no effect on adult mortality.

    PubMed

    Pereira, Rui; Sivinski, John; Teal, Peter; Brockmann, Jane

    2010-11-01

    While defending lek-territories, male Anastrepha suspensa (Loew) produce chemical, acoustic and visual courtship signals. In the laboratory and under semi-natural conditions, topical application of the juvenile hormone analog methoprene doubles pheromone production and subsequently doubles sexual success. However, sexual signals and interactions are likely to be physiologically expensive and so result in higher male mortality. Comparison of males kept in isolation for 35 days, but provided daily with a potential mate or a rival male, revealed that both male- and female-interactors shortened focal-male lifespan. In addition, focal males were either treated with methoprene or not, then either provided with protein in their sucrose-based diet or not. Protein proved to similarly double sexual success and also resulted in longer male life spans in all of the interactor-categories. However, there was no evidence that methoprene induced hypersexuality resulted in higher rates of mortality, i.e., the longevity of males treated with methoprene did not significantly differ from untreated males in the same interactor/diet categories. This apparent lack of costs to a putatively sexually selected signal is unexpected but presents an opportunity to increase the sexual competence of sterile flies with few consequences to their survival following mass-release. PMID:20470780

  2. Genome-wide comparison of genes involved in the biosynthesis, metabolism, and signaling of juvenile hormone between silkworm and other insects

    PubMed Central

    Cheng, Daojun; Meng, Meng; Peng, Jian; Qian, Wenliang; Kang, Lixia; Xia, Qingyou

    2014-01-01

    Juvenile hormone (JH) contributes to the regulation of larval molting and metamorphosis in insects. Herein, we comprehensively identified 55 genes involved in JH biosynthesis, metabolism and signaling in the silkworm (Bombyx mori) as well as 35 in Drosophila melanogaster, 35 in Anopheles gambiae, 36 in Apis mellifera, 47 in Tribolium castaneum, and 44 in Danaus plexippus. Comparative analysis showed that each gene involved in the early steps of the mevalonate (MVA) pathway, in the neuropeptide regulation of JH biosynthesis, or in JH signaling is a single copy in B. mori and other surveyed insects, indicating that these JH-related pathways or steps are likely conserved in all surveyed insects. However, each gene participating in the isoprenoid branch of JH biosynthesis and JH metabolism, together with the FPPS genes for catalyzing the final step of the MVA pathway of JH biosynthesis, exhibited an obvious duplication in Lepidoptera, including B. mori and D. plexippus. Microarray and real-time RT-PCR analysis revealed that different copies of several JH-related genes presented expression changes that correlated with the dynamics of JH titer during larval growth and metamorphosis. Taken together, the findings suggest that duplication-derived copy variation of JH-related genes might be evolutionarily associated with the variation of JH types between Lepidoptera and other insect orders. In conclusion, our results provide useful clues for further functional analysis of JH-related genes in B. mori and other insects. PMID:25071411

  3. Remating behavior in Anastrepha fraterculus (Diptera: Tephritidae) females is affected by male juvenile hormone analog treatment but not by male sterilization.

    PubMed

    Abraham, S; Liendo, M C; Devescovi, F; Peralta, P A; Yusef, V; Ruiz, J; Cladera, J L; Vera, M T; Segura, D F

    2013-06-01

    The sterile insect technique (SIT) has been proposed as an area-wide method to control the South American fruit fly, Anastrepha fraterculus (Wiedemann). This technique requires sterilization, a procedure that affects, along with other factors, the ability of males to modulate female sexual receptivity after copulation. Numerous pre-release treatments have been proposed to counteract the detrimental effects of irradiation, rearing and handling and increase SIT effectiveness. These include treating newly emerged males with a juvenile hormone mimic (methoprene) or supplying protein to the male's diet to accelerate sexual maturation prior to release. Here, we examine how male irradiation, methoprene treatment and protein intake affect remating behavior and the amount of sperm stored in inseminated females. In field cage experiments, we found that irradiated laboratory males were equally able to modulate female remating behavior as fertile wild males. However, females mated with 6-day-old, methoprene-treated males remated more and sooner than females mated with naturally matured males, either sterile or wild. Protein intake by males was not sufficient to overcome reduced ability of methoprene-treated males to induce refractory periods in females as lengthy as those induced by wild and naturally matured males. The amount of sperm stored by females was not affected by male irradiation, methoprene treatment or protein intake. This finding revealed that factors in addition to sperm volume intervene in regulating female receptivity after copulation. Implications for SIT are discussed. PMID:23340454

  4. Krüppel homolog 1 and E93 mediate Juvenile hormone regulation of metamorphosis in the common bed bug, Cimex lectularius

    PubMed Central

    Gujar, Hemant; Palli, Subba Reddy

    2016-01-01

    The common bed bug is an obligate hematophagous parasite of humans. We studied the regulation of molting and metamorphosis in bed bugs with a goal to identify key players involved. qRT-PCR studies on the expression of genes known to be involved in molting and metamorphosis showed high levels of Krüppel homolog 1 [Kr-h1, a transcription factor that plays key roles in juvenile hormone (JH) action] mRNA in the penultimate nymphal stage (N4). However, low levels of Kr-h1 mRNA were detected in the fifth and last nymphal stage (N5). Knockdown of Kr-h1 in N4 resulted in a precocious development of adult structures. Kr-h1 maintains the immature stage by suppressing E93 (early ecdysone response gene) in N4. E93 expression increases during the N5 in the absence of Kr-h1 and promotes the development of adult structures. Knockdown of E93 in N5 results in the formation of supernumerary nymphs. The role of JH in the suppression of adult structures through interaction with Kr-h1 and E93 was also studied by the topical application of JH analog, methoprene, to N5. Methoprene induced Kr-h1 and suppressed E93 and induced formation of the supernumerary nymph. These data show interactions between Kr-h1, E93 and JH in the regulation of metamorphosis in the bed bugs. PMID:27185064

  5. Krüppel homolog 1 and E93 mediate Juvenile hormone regulation of metamorphosis in the common bed bug, Cimex lectularius.

    PubMed

    Gujar, Hemant; Palli, Subba Reddy

    2016-01-01

    The common bed bug is an obligate hematophagous parasite of humans. We studied the regulation of molting and metamorphosis in bed bugs with a goal to identify key players involved. qRT-PCR studies on the expression of genes known to be involved in molting and metamorphosis showed high levels of Krüppel homolog 1 [Kr-h1, a transcription factor that plays key roles in juvenile hormone (JH) action] mRNA in the penultimate nymphal stage (N4). However, low levels of Kr-h1 mRNA were detected in the fifth and last nymphal stage (N5). Knockdown of Kr-h1 in N4 resulted in a precocious development of adult structures. Kr-h1 maintains the immature stage by suppressing E93 (early ecdysone response gene) in N4. E93 expression increases during the N5 in the absence of Kr-h1 and promotes the development of adult structures. Knockdown of E93 in N5 results in the formation of supernumerary nymphs. The role of JH in the suppression of adult structures through interaction with Kr-h1 and E93 was also studied by the topical application of JH analog, methoprene, to N5. Methoprene induced Kr-h1 and suppressed E93 and induced formation of the supernumerary nymph. These data show interactions between Kr-h1, E93 and JH in the regulation of metamorphosis in the bed bugs. PMID:27185064

  6. Influence of neurohypophyseal hormones on human cervical smooth muscle contractility in vitro.

    PubMed

    Bryman, I; Norström, A; Lindblom, B

    1990-02-01

    Cervical tissue strips from nonpregnant women and women in early and term pregnancy were used to study spontaneous contractile activity and the effects of oxytocin and vasopressin in vitro. Oxytocin stimulated contractions in strips from all groups of patients except for those from five term pregnant women, in which an inhibitory effect was observed at a high concentration. Vasopressin had a stimulatory effect in all groups of patients. These neurohypophyseal hormones may interact with the effect of other hormones in their regulatory influence on cervical contractility, and this interaction might be important in cervical dilatation during labor as well as in the pathophysiology of dysmenorrhea. PMID:2300351

  7. Juveniles in court.

    PubMed

    Soulier, Matthew F; Scott, Charles L

    2010-01-01

    Nineteenth-century American reformers were concerned about the influence of immaturity and development in juvenile offenses. They responded to their delinquent youths through the creation of juvenile courts. This early American juvenile justice system sought to treat children as different from adults and to rehabilitate wayward youths through the state's assumption of a parental role. Although these rehabilitative goals were never fully realized, the field of American child psychiatry was spawned from these efforts on behalf of delinquent youths. Early child psychiatrists began by caring for juvenile offenders. The function of a child psychiatrist with juvenile delinquents expanded beyond strictly rehabilitation, however, as juvenile courts evolved to resemble criminal adult courts-due to landmark Supreme Court decisions and also juvenile legislation between 1966 and 1975. In response to dramatically increased juvenile violence and delinquency rates in the 1980s, juvenile justice became more retributional, and society was forced to confront issues such as capital punishment for juveniles, their transfer to adult courts, and their competency to stand trial. In the modern juvenile court, child psychiatrists are often asked to participate in the consideration of such issues because of their expertise in development. In that context we review the role of psychiatrists in assisting juvenile courts. PMID:21080770

  8. Variability in Migration Routes Influences Early Marine Survival of Juvenile Salmon Smolts

    PubMed Central

    Furey, Nathan B.; Vincent, Stephen P.; Hinch, Scott G.; Welch, David W.

    2015-01-01

    Variability in animal migratory behavior is expected to influence fitness, but few empirical examples demonstrating this relationship exist. The initial marine phase in the migration of juvenile salmon smolts has been identified as a potentially critical life history stage to overall population productivity, yet how fine-scale migration routes may influence survival are unknown. Large-scale acoustic telemetry studies have estimated survival rates of outmigrant Pacific salmon smolts through the Strait of Georgia (SOG) along the British Columbian coastline to the Pacific Ocean, but these data have not been used to identify and characterize fine-scale movements. Data collected on over 850 sockeye salmon (Oncorhynchus nerka) and steelhead (Oncorhynchus mykiss) smolts detected at an array in the Strait of Georgia in 2004–2008 and 2010–2013 were analyzed to characterize migration routes and link movements to subsequent survival at an array 250 km further along the marine migration pathway. Both species exhibited disproportionate use of the most eastern route in the Strait of Georgia (Malaspina Strait). While many smolts moved across the northern Strait of Georgia acoustic array with no indication of long-term milling or large-scale east-to-west movements, large proportions (20–40% of sockeye and 30–50% of steelhead) exhibited a different behavior, apparently moving in a westward or counterclockwise pattern. Variability in migratory behavior for both species was linked to subsequent survival through the Strait of Georgia. Survival for both species was influenced by initial east-to-west location, and sockeye were further influenced by migration timing and duration of time spent near the northern Strait of Georgia array. Westward movements result in a net transport of smolts from Malaspina Strait to the Strait of Georgia, particularly for steelhead. Counterclockwise movements may be due to the currents in this area during the time of outmigration, and the higher

  9. Variability in Migration Routes Influences Early Marine Survival of Juvenile Salmon Smolts.

    PubMed

    Furey, Nathan B; Vincent, Stephen P; Hinch, Scott G; Welch, David W

    2015-01-01

    Variability in animal migratory behavior is expected to influence fitness, but few empirical examples demonstrating this relationship exist. The initial marine phase in the migration of juvenile salmon smolts has been identified as a potentially critical life history stage to overall population productivity, yet how fine-scale migration routes may influence survival are unknown. Large-scale acoustic telemetry studies have estimated survival rates of outmigrant Pacific salmon smolts through the Strait of Georgia (SOG) along the British Columbian coastline to the Pacific Ocean, but these data have not been used to identify and characterize fine-scale movements. Data collected on over 850 sockeye salmon (Oncorhynchus nerka) and steelhead (Oncorhynchus mykiss) smolts detected at an array in the Strait of Georgia in 2004-2008 and 2010-2013 were analyzed to characterize migration routes and link movements to subsequent survival at an array 250 km further along the marine migration pathway. Both species exhibited disproportionate use of the most eastern route in the Strait of Georgia (Malaspina Strait). While many smolts moved across the northern Strait of Georgia acoustic array with no indication of long-term milling or large-scale east-to-west movements, large proportions (20-40% of sockeye and 30-50% of steelhead) exhibited a different behavior, apparently moving in a westward or counterclockwise pattern. Variability in migratory behavior for both species was linked to subsequent survival through the Strait of Georgia. Survival for both species was influenced by initial east-to-west location, and sockeye were further influenced by migration timing and duration of time spent near the northern Strait of Georgia array. Westward movements result in a net transport of smolts from Malaspina Strait to the Strait of Georgia, particularly for steelhead. Counterclockwise movements may be due to the currents in this area during the time of outmigration, and the higher proportion

  10. Hormonal state influences aspects of female mate choice in the Túngara Frog (Physalaemus pustulosus).

    PubMed

    Lynch, Kathleen S; Crews, David; Ryan, Michael J; Wilczynski, Walter

    2006-04-01

    Females alter their mate choices as they transition through different reproductive stages; however, the proximal mechanisms for such behavioral fluctuation are unclear. In many taxa, as females transition through different reproductive stages, there is an associated change in hormone levels; therefore, we examined whether fluctuation in hormone levels serves as a proximal mechanism for within-individual variation in mate choice in female túngara frogs (Physalaemus pustulosus). We manipulated hormone levels of females by administering 0, 10, 100, 500 or 1,000 IU of human chorionic gonadotropin (HCG), which is a ligand for luteinizing hormone (LH) receptors and will therefore cause increased gonadal hormone production. Phonotaxis assays were conducted to measure three aspects of mate choice behavior before and after HCG administration; receptivity (response to a conspecific mate signal), permissiveness (response to a signal that is less attractive than conspecific signals) and discrimination (ability to discern signal differences). The probability of response to a conspecific and an artificial hybrid signal significantly increased at the highest HCG doses. The difference in mean response time between pre- and post-HCG tests was significantly different for both the receptivity and permissiveness tests among the five doses. Increased permissiveness, however, was not due to decreased discrimination because females could discriminate between calls even at the highest HCG doses. These hormonal manipulations caused the same behavioral pattern we reported in females as they transitioned through different reproductive stages (Lynch, K.S., Rand, A.S., Ryan, M.J., Wilczynski, W., 2005. Plasticity in female mate choice associated with changing reproductive states. Anim. Behav. 69, 689-699), suggesting that changes in hormone levels can influence the female's mate choice behavior. PMID:16277986

  11. Attitudes Toward Juvenile Sex Offender Legislation: The Influence of Case-Specific Information.

    PubMed

    Campregher, Julia; Jeglic, Elizabeth L

    2016-01-01

    This study examined attitudes toward the application of adult sex offender legislation to juvenile sex offenders. Participants were randomly assigned to one of nine conditions. In the generic condition, the participants were asked to envision a generic juvenile sex offender, whereas in the manipulated conditions, participants read a vignette with three manipulated variables: offense type, victim age, and victim gender. Afterward, all participants (n = 978) completed questionnaires assessing perceptions of juvenile sex offenders and juvenile sex offender legislation. Overall, participants in the generic juvenile sex offender condition rated the perpetrator as more dangerous and more likely to reoffend than participants in the experimental conditions. Moreover, participants in the generic juvenile sex offender condition were more likely to endorse more punitive punishments and viewed perpetrators as "superpredators." When examining differences between the experimental conditions, participants reading vignettes with younger victims and male victims as well as vignettes with contact offenses were more likely to view the perpetrator as dangerous, likely to recidivate, as a "superpredator," and deserving of more punitive punishments. Implications for public policy as well as future research directions are discussed. PMID:27266540

  12. Environmental stressors influencing hormones and systems physiology in cattle

    PubMed Central

    2014-01-01

    Environmental stressors undoubtedly influence organismal biology, specifically the endocrine system that, in turn, impact cattle at the systems physiology level. Despite the significant advances in understanding the genetic determinants of the ideal dairy or beef cow, there is a grave lack of understanding of the systems physiology and effects of the environmental stressors that interfere with the endocrine system. This is a major problem because the lack of such knowledge is preventing advances in understanding gene-environment interactions and developing science-based solutions to these challenges. In this review, we synthesize the current knowledge on the nature of the major environmental stressors, such as climate (heat, cold, wind, and humidity), nutrition (feeds, feeding systems, and endocrine disruptors) and management (housing density and conditions, transportation, weaning practices). We summarize the impact of each one of these factors on cattle at the systems level, and provide solutions for the challenges. PMID:24996419

  13. Differential impacts of juvenile hormone, soldier head extract and alternate caste phenotypes on host and symbiont transcriptome composition in the gut of the termite Reticulitermes flavipes

    PubMed Central

    2013-01-01

    Background Termites are highly eusocial insects and show a division of labor whereby morphologically distinct individuals specialize in distinct tasks. In the lower termite Reticulitermes flavipes (Rhinotermitidae), non-reproducing individuals form the worker and soldier castes, which specialize in helping (e.g., brood care, cleaning, foraging) and defense behaviors, respectively. Workers are totipotent juveniles that can either undergo status quo molts or develop into soldiers or neotenic reproductives. This caste differentiation can be regulated by juvenile hormone (JH) and primer pheromones contained in soldier head extracts (SHE). Here we offered worker termites a cellulose diet treated with JH or SHE for 24-hr, or held them with live soldiers (LS) or live neotenic reproductives (LR). We then determined gene expression profiles of the host termite gut and protozoan symbionts concurrently using custom cDNA oligo-microarrays containing 10,990 individual ESTs. Results JH was the most influential treatment (501 total ESTs affected), followed by LS (24 ESTs), LR (12 ESTs) and SHE treatments (6 ESTs). The majority of JH up- and downregulated ESTs were of host and symbiont origin, respectively; in contrast, SHE, LR and LS treatments had more uniform impacts on host and symbiont gene expression. Repeat “follow-up” bioassays investigating combined JH + SHE impacts in relation to individual JH and SHE treatments on a subset of array-positive genes revealed (i) JH and SHE treatments had opposite impacts on gene expression and (ii) JH + SHE impacts on gene expression were generally intermediate between JH and SHE. Conclusions Our results show that JH impacts hundreds of termite and symbiont genes within 24-hr, strongly suggesting a role for the termite gut in JH-dependent caste determination. Additionally, differential impacts of SHE and LS treatments were observed that are in strong agreement with previous studies that specifically investigated soldier caste

  14. Repeated, Intermittent Social Defeat across the Entire Juvenile Period Resulted in Behavioral, Physiological, Hormonal, Immunological, and Neurochemical Alterations in Young Adult Male Golden Hamsters.

    PubMed

    Yu, Wei-Chun; Liu, Ching-Yi; Lai, Wen-Sung

    2016-01-01

    The developing brain is vulnerable to social defeat during the juvenile period. As complements of human studies, animal models of social defeat provide a straightforward approach to investigating the functional and neurobiological consequences of social defeats. Taking advantage of agonist behavior and social defeat in male golden hamster, a set of 6 experiments was conducted to investigate the consequences at multiple levels in young adulthood resulting from repeated, intermittent social defeats or "social threats" across the entire juvenile period. Male hamsters at postnatal day 28 (P28) were randomly assigned to either the social defeat, "social threat", or arena control group, and they correspondingly received a series of nine social interaction trials (i.e., either social defeat, "social threat", or arena control conditions) from P33 to P66. At the behavioral level (Experiment 1), we found that repeated social defeats (but not "social threats") significantly impacted locomotor activity in the familiar context and social interaction in the familiar/unfamiliar social contexts. At the physiological and hormonal levels (Experiments 2 and 3), repeated social defeat significantly enhanced the cortisol and norepinephrine concentrations in blood. Enlargement of the spleen was also found in the social defeat and "social threat" groups. At the immunological level (Experiment 4), the social defeat group showed lower levels of pro-inflammatory cytokines in the hypothalamus and hippocampus but higher concentration of IL-6 in the striatum compared to the other two groups. At the neurochemical level (Experiment 5), the socially defeated hamsters mainly displayed reductions of dopamine, dopamine metabolites, and 5-HT levels in the striatum and decreased level of 5-HT in the hippocampus. In Experiment 6, an increase in the spine density of hippocampal CA1 pyramidal neurons was specifically observed in the "social threat" group. Collectively, our findings indicate that repeated

  15. Repeated, Intermittent Social Defeat across the Entire Juvenile Period Resulted in Behavioral, Physiological, Hormonal, Immunological, and Neurochemical Alterations in Young Adult Male Golden Hamsters

    PubMed Central

    Yu, Wei-Chun; Liu, Ching-Yi; Lai, Wen-Sung

    2016-01-01

    The developing brain is vulnerable to social defeat during the juvenile period. As complements of human studies, animal models of social defeat provide a straightforward approach to investigating the functional and neurobiological consequences of social defeats. Taking advantage of agonist behavior and social defeat in male golden hamster, a set of 6 experiments was conducted to investigate the consequences at multiple levels in young adulthood resulting from repeated, intermittent social defeats or “social threats” across the entire juvenile period. Male hamsters at postnatal day 28 (P28) were randomly assigned to either the social defeat, “social threat”, or arena control group, and they correspondingly received a series of nine social interaction trials (i.e., either social defeat, “social threat”, or arena control conditions) from P33 to P66. At the behavioral level (Experiment 1), we found that repeated social defeats (but not “social threats”) significantly impacted locomotor activity in the familiar context and social interaction in the familiar/unfamiliar social contexts. At the physiological and hormonal levels (Experiments 2 and 3), repeated social defeat significantly enhanced the cortisol and norepinephrine concentrations in blood. Enlargement of the spleen was also found in the social defeat and “social threat” groups. At the immunological level (Experiment 4), the social defeat group showed lower levels of pro-inflammatory cytokines in the hypothalamus and hippocampus but higher concentration of IL-6 in the striatum compared to the other two groups. At the neurochemical level (Experiment 5), the socially defeated hamsters mainly displayed reductions of dopamine, dopamine metabolites, and 5-HT levels in the striatum and decreased level of 5-HT in the hippocampus. In Experiment 6, an increase in the spine density of hippocampal CA1 pyramidal neurons was specifically observed in the “social threat” group. Collectively, our

  16. The Drosophila FTZ-F1 nuclear receptor mediates juvenile hormone activation of E75A gene expression through an intracellular pathway.

    PubMed

    Dubrovsky, Edward B; Dubrovskaya, Veronica A; Bernardo, Travis; Otte, Valerie; DiFilippo, Robert; Bryan, Heather

    2011-09-23

    Juvenile hormone (JH) regulates a wide variety of biological activities in holometabolous insects, ranging from vitellogenesis and caste determination in adults to the timing of metamorphosis in larvae. The mechanism of JH signaling in such a diverse array of processes remains either unknown or contentious. We previously found that the nuclear receptor gene E75A is activated in S2 cells as a primary response to JH. Here, by expressing an intracellular form of JH esterase, we demonstrate that JH must enter the cell in order to activate E75A. To find intracellular receptors involved in the JH response, we performed an RNAi screen against nuclear receptor genes expressed in this cell line and identified the orphan receptor FTZ-F1. Removal of FTZ-F1 prevents JH activation of E75A, whereas overexpression enhances activation, implicating FTZ-F1 as a critical component of the JH response. FTZ-F1 is bound in vivo to multiple enhancers upstream of E75A, suggesting that it participates in direct JH-mediated gene activation. To better define the role of FTZ-F1 in JH signaling, we investigated interactions with candidate JH receptors and found that the bHLH-PAS proteins MET and GCE both interact with FTZ-F1 and can activate transcription through the FTZ-F1 response element. Removal of endogenous GCE, but not MET, prevents JH activation of E75A. We propose that FTZ-F1 functions as a competence factor by loading JH signaling components to the promoter, thus facilitating the direct regulation of E75A gene expression by JH. PMID:21832074

  17. Juvenile hormone facilitates the antagonism between adult reproduction and diapause through the methoprene-tolerant gene in the female Colaphellus bowringi.

    PubMed

    Liu, Wen; Li, Yi; Zhu, Li; Zhu, Fen; Lei, Chao-Liang; Wang, Xiao-Ping

    2016-07-01

    In insects, the process whereby juvenile hormone (JH) regulates short-day (SD)-induced reproductive diapause has been previously investigated. However, we still do not understand the mechanism by which JH regulates long-day (LD)-induced reproductive diapause. In this study, we use a cabbage beetle, Colaphellus bowringi, which is a serious pest of cruciferous vegetables in Asia capable of entering reproductive diapause under LD conditions, as a model to test whether JH regulates female reproductive diapause similar to the mechanism of SD-induced diapause. Our results showed that the JH analog (JHA) methoprene significantly induced ovarian development but inhibited lipid accumulation of diapause-destined adults. Meanwhile, the transcripts of the vitellogenin (Vg) genes were upregulated, whereas the expression of the fat synthesis and stress tolerance genes were downregulated. RNA interference of the JH candidate receptor gene methoprene-tolerant (Met) blocked JH-induced ovarian development and Vg transcription, suggesting a positive regulatory function for JH-Met signaling in reproduction. Furthermore, under reproduction-inducing conditions, Met depletion promoted a diapause-like phenotype, including arrested ovarian development and increased lipid storage, and stimulated the expression of diapause-related genes involved in lipid synthesis and stress tolerance, suggesting JH-Met signaling plays an important role in the inhibition of diapause. Accordingly, our data indicate that JH acts through Met to facilitate development of the reproductive system by upregulating Vg expression while inhibiting diapause by suppressing lipid synthesis and stress tolerance in the cabbage beetle. Combined with previous studies in SD-induced reproductive diapause, we conclude that JH may regulate female reproductive diapause using a conserved Met-dependent pathway, regardless of the length of the photoperiod inducing diapause in insects. PMID:27180724

  18. Comparative metabolism of branched-chain amino acids to precursors of juvenile hormone biogenesis in corpora allata of lepidopterous versus nonlepidopterous insects

    SciTech Connect

    Brindle, P.A.; Schooley, D.A.; Tsai, L.W.; Baker, F.C.

    1988-08-05

    Comparative studies were performed on the role of branched-chain amino acids (BCAA) in juvenile hormone (JH) biosynthesis using several lepidopterous and nonlepidopterous insects. Corpora cardiaca-corpora allata complexes (CC-CA, the corpora allata being the organ of JH biogenesis) were maintained in culture medium containing a uniformly /sup 14/C-labeled BCAA, together with (methyl-/sup 3/H)methionine as mass marker for JH quantification. BCAA catabolism was quantified by directly analyzing the medium for the presence of /sup 14/C-labeled propionate and/or acetate, while JHs were extracted, purified by liquid chromatography, and subjected to double-label liquid scintillation counting. Our results indicate that active BCAA catabolism occurs within the CC-CA of lepidopterans, and this efficiently provides propionyl-CoA (from isoleucine or valine) for the biosynthesis of the ethyl branches of JH I and II. Acetyl-CoA, formed from isoleucine or leucine catabolism, is also utilized by lepidopteran CC-CA for biosynthesizing JH III and the acetate-derived portions of the ethyl-branched JHs. In contrast, CC-CA of nonlepidopterans fail to catabolize BCAA. Consequently, exogenous isoleucine or leucine does not serve as a carbon source for the biosynthesis of JH III by these glands, and no propionyl-CoA is produced for genesis of ethyl-branched JHs. This is the first observation of a tissue-specific metabolic difference which in part explains why these novel homosesquiterpenoids exist in lepidopterans, but not in nonlepidopterans.

  19. Mosquito-specific microRNA-1890 targets the juvenile hormone-regulated serine protease JHA15 in the female mosquito gut.

    PubMed

    Lucas, Keira J; Zhao, Bo; Roy, Sourav; Gervaise, Amanda L; Raikhel, Alexander S

    2015-01-01

    Females of the hematophagous mosquito species require a vertebrate blood meal to supply amino acids and other nutrients necessary for egg development, serving as the driving force for the spread of many vector-borne diseases in humans. Blood digestion utilizes both early and late phase serine proteases (SPs) that are differentially regulated at the transcriptional and post-transcriptional level. To uncover the regulatory complexity of SPs in the female mosquito midgut, we investigated involvement of miRNAs in regulating the juvenile hormone (JH)-controlled chymotrypsin-like SP, JHA15. We identified regulatory regions complementary to the mosquito-specific miRNA, miR-1890, within the 3' UTR of JHA15 mRNA. The level of the JHA15 transcript is highest post eclosion and drastically declines post blood meal (PBM), exhibiting an opposite trend to miR-1890 that peaks at 24 h PBM. Depletion of miR-1890 results in defects in blood digestion, ovary development and egg deposition. JHA15 mRNA and protein levels are elevated in female mosquitoes with miR-1890 inhibition. JHA15 RNA interference in the miR-1890 depletion background alleviates miR-1890 depletion phenotypes. The miR-1890 gene is activated by the 20-hydroxyecdysone pathway that involves the ecdysone receptor and the early genes, E74B and Broad Z2. Our study suggests that miR-1890 controls JHA15 mRNA stability in a stage- and tissue- specific manner. PMID:26488481

  20. The Drosophila FTZ-F1 Nuclear Receptor Mediates Juvenile Hormone Activation of E75A Gene Expression through an Intracellular Pathway*

    PubMed Central

    Dubrovsky, Edward B.; Dubrovskaya, Veronica A.; Bernardo, Travis; Otte, Valerie; DiFilippo, Robert; Bryan, Heather

    2011-01-01

    Juvenile hormone (JH) regulates a wide variety of biological activities in holometabolous insects, ranging from vitellogenesis and caste determination in adults to the timing of metamorphosis in larvae. The mechanism of JH signaling in such a diverse array of processes remains either unknown or contentious. We previously found that the nuclear receptor gene E75A is activated in S2 cells as a primary response to JH. Here, by expressing an intracellular form of JH esterase, we demonstrate that JH must enter the cell in order to activate E75A. To find intracellular receptors involved in the JH response, we performed an RNAi screen against nuclear receptor genes expressed in this cell line and identified the orphan receptor FTZ-F1. Removal of FTZ-F1 prevents JH activation of E75A, whereas overexpression enhances activation, implicating FTZ-F1 as a critical component of the JH response. FTZ-F1 is bound in vivo to multiple enhancers upstream of E75A, suggesting that it participates in direct JH-mediated gene activation. To better define the role of FTZ-F1 in JH signaling, we investigated interactions with candidate JH receptors and found that the bHLH-PAS proteins MET and GCE both interact with FTZ-F1 and can activate transcription through the FTZ-F1 response element. Removal of endogenous GCE, but not MET, prevents JH activation of E75A. We propose that FTZ-F1 functions as a competence factor by loading JH signaling components to the promoter, thus facilitating the direct regulation of E75A gene expression by JH. PMID:21832074

  1. Knockdown of the juvenile hormone receptor gene inhibits soldier-specific morphogenesis in the damp-wood termite Zootermopsis nevadensis (Isoptera: Archotermopsidae).

    PubMed

    Masuoka, Yudai; Yaguchi, Hajime; Suzuki, Ryutaro; Maekawa, Kiyoto

    2015-09-01

    The Methoprene-tolerant (Met) protein has been established as a juvenile hormone (JH) receptor. Knockdown of the Met gene caused precocious metamorphosis and suppression of ovarian development. However, the function of Met in caste development of social insects is unclear. In termites, JH acts as a central factor for caste development, especially for soldier differentiation, which involves two molts from workers via a presoldier stage. Increased JH titer in workers is needed for the presoldier molt, and the high JH titer is maintained throughout the presoldier period. Although presoldiers have the fundamental morphological features of soldiers, the nature of the cuticle is completely different from that of soldiers. We expected that JH signals via Met are involved in soldier-specific morphogenesis of the head and mandibles during soldier differentiation, especially in the presoldier period, in natural conditions. To test this hypothesis, we focused on soldier differentiation in an incipient colony of the damp-wood termite Zootermopsis nevadensis. Met homolog (ZnMet) expression in heads increased just after the presoldier molt. This high expression was reduced by ZnMet double stranded (dsRNA) injection before the presoldier molt. Although this treatment did not cause any morphological changes in presoldiers, it caused strong effects on soldiers, their mandibles being significantly shorter and head capsules smaller than those of control soldiers. Injection of ZnMet dsRNA throughout the presoldier stage did not affect the formation of soldier morphology, including cuticle formation. These results suggested that the rapid increase in ZnMet expression and subsequent activation of JH signaling just after the presoldier molt are needed for the formation of soldier-specific weapons. Therefore, besides its established role in insect metamorphosis, the JH receptor signaling also underlies soldier development in termites. PMID:26188329

  2. Regulation of JH epoxide hydrolase versus JH esterase activity in the cabbage looper, Trichoplusia ni, by juvenile hormone and xenobiotics.

    PubMed

    Anspaugh, Douglas D; Roe, R Michael

    2005-05-01

    JH III esterase and JH III epoxide hydrolase (EH) in vitro activity was compared in whole body Trichoplusia ni homogenates at each stage of development (egg, larva, pupa and adult). While activity of both enzymes was detected at all ages tested, JH esterase was significantly higher than EH activity except for day three of the fifth (last) stadium (L5D3). For both enzymes, activity was highest in eggs. Adult virgin females had 4.6- and 4.0-fold higher JH esterase and EH activities, respectively, than adult virgin males. JH III metabolic activity also was measured in whole body homogenates of fifth stadium T. ni that were fed a nutritive diet (control) or starved on a non-nutritive diet of alphacel, agar and water. With larvae that were starved for 6, 28 and 52 h, EH activity per insect equivalent was 48%, 5% and 1%, respectively, of the control insects. At the same time points, JH esterase activity levels in starved T. ni were 29%, 4% and 3% of that of insects fed the nutritive diet. Selected insect hormones and xenobiotics were administered topically or orally to fifth stadium larvae for up to 52 h, and the effects on whole body EH and JH esterase activity analyzed. JH III increased the JH III esterase activity as high as 2.2-fold, but not the JH III EH activity. The JH analog, methoprene, increased both JH esterase and EH activity as high as 2.5-fold. The JH esterase inhibitor, 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP), had no impact on EH activity. The epoxides trans- and cis-stilbene oxide (TSO and CSO) in separate experiments increased the EH activity approximately 2.0-fold. TSO did not alter JH esterase levels when topically applied, but oral administration reduced activity to 70% of the control at 28 h, and then increased the activity 1.8-fold at 52 h after the beginning of treatment. CSO had no effect on JH esterase activity. Phenobarbital increased EH activity by 1.9-fold, but did not change JH esterase levels. Clofibrate and cholesterol 5alpha,6alpha

  3. Influence of hormonal status on substrate utilization at rest and during exercise in the female population.

    PubMed

    Isacco, Laurie; Duché, Pascale; Boisseau, Nathalie

    2012-04-01

    During exercise, substrate utilization plays a major role in performance and disease prevention. The contribution of fat and carbohydrates to energy expenditure during exercise is modulated by several factors, including intensity and duration of exercise, age, training and diet, but also gender. Because sex hormone levels change throughout a woman's lifetime (in connection with puberty, the menstrual cycle, use of oral contraceptives and menopause), the female population has to be considered specifically in terms of substrate utilization, and metabolic and hormonal responses to exercise. Before puberty, there is no difference between males and females when it comes to substrate oxidation during exercise. This is not the case during adulthood, since women are known to rely more on fat than men for the same relative intensity of exercise. Among adult women, the menstrual cycle and use of oral contraceptives may influence substrate oxidation. While some authors have noted that the luteal phase of the menstrual cycle is connected with greater lipid oxidation, compared with the follicular stage, other authors have found no difference. Among oral contraceptive users, fat oxidation is sometimes increased during prolonged exercise with a concomitant rise in lipolytic hormones, as well as growth hormone. If this result is not always observed, the type of oral contraceptive (monophasic vs triphasic) and hormone doses may be implicated. Menopause represents a hormonal transition in a woman's life, leading to a decline in ovarian hormone production. A decrease in fat oxidation is consequently observed, and some studies have demonstrated a similar respiratory exchange ratio during prolonged exercise in postmenopausal women and in men. As is the case during puberty, no sex difference should thus appear after menopause in the absence of hormonal replacement therapy (HRT). Results concerning women who take HRT remain conflicting. HRT may act on fat loss by increasing lipid

  4. Understanding the School Outcomes of Juvenile Offenders: An Exploration of Neighborhood Influences and Motivational Resources

    ERIC Educational Resources Information Center

    Chung, He Len; Mulvey, Edward P.; Steinberg, Laurence

    2011-01-01

    As a group, delinquent youth complete less education and show poor academic outcomes compared to their non-delinquent peers. To better understand pathways to school success, this study integrated individual- and neighborhood-level data to examine academic functioning among 833 White, Black, and Hispanic male juvenile offenders (age 14-17) living…

  5. The influence of sex hormones on seizures in dogs and humans.

    PubMed

    Van Meervenne, Sofie A E; Volk, Holger A; Matiasek, Kaspar; Van Ham, Luc M L

    2014-07-01

    Epilepsy is the most common chronic neurological disorder in both humans and dogs. The effect of sex hormones on seizures is well documented in human medicine. Catamenial epilepsy is defined as an increase in frequency and severity of seizures during certain periods of the menstrual cycle. Oestradiol increases seizure activity and progesterone is believed to exhibit a protective effect. The role of androgens is controversial and there is a lack of research focusing on androgens and epilepsy. Indeed, little is known about the influence of sex hormones on epilepsy in dogs. Sterilisation is believed to improve seizure control, but no systematic research has been conducted in this field. This review provides an overview of the current literature on the influence of sex hormones on seizures in humans. The literature on idiopathic epilepsy in dogs was assessed to identify potential risk factors related to sex and sterilisation status. In general, there appears to be an over-representation of male dogs with idiopathic epilepsy but no explanation for this difference in prevalence between sexes has been reported. In addition, no reliable conclusions can be drawn on the effect of sterilisation due to the lack of focused research and robust scientific evidence. PMID:24878266

  6. The influence of androgenic steroid hormones on female aggression in ‘atypical’ mammals

    PubMed Central

    French, Jeffrey A.; Mustoe, Aaryn C.; Cavanaugh, Jon; Birnie, Andrew K.

    2013-01-01

    Dimorphism on dominance and agonistic behaviour in mammals tends to be strongly biased toward males. In this review, we focus on a select few species of mammals in which females are as or more aggressive than males, and/or are dominant to males, and explore the role of androgenic hormones in mediating this important difference. While the data are not as clear-cut as those published on traditional laboratory mammals, our review highlights important endocrine substrates for both organizational and activational influences of steroids on female aggressive behaviour. We highlight areas in which further observations and experiments are crucial, especially the potential facilitative effects of androgens on female aggression. Finally, new and innovative techniques, including molecular genetics and receptor pharmacology, portend important insights into the ways in which androgenic hormones regulate aggressive behaviour in ‘atypical’ female mammals. PMID:24167314

  7. The influence of sex hormones on UVB induced erythema in man.

    PubMed

    Jemec, G B; Heidenheim, M

    1995-05-01

    Clinical and experimental evidence suggests that sex hormones can modify the inflammatory response in a number of diseases. In a pilot study the influence of sex hormones on UV-induced inflammation, testing was done with oestradiol-17beta, testosterone and progesterone, as a double-blind vehicle-controlled study in 47 healthy volunteers. Inflammation was graded using laser-doppler velocimetry. Oestradiol (5 mg/100 g) was found to increase the inflammatory response significantly when compared with placebo or testosterone treated areas (P < 0.03). These findings support previous experimental and epidemiological observations of an increased inflammation following oestrogenic stimulation, and suggest that non-lymphocyte-mediated mechanisms may be involved as well. PMID:8664221

  8. The influence of androgenic steroid hormones on female aggression in 'atypical' mammals.

    PubMed

    French, Jeffrey A; Mustoe, Aaryn C; Cavanaugh, Jon; Birnie, Andrew K

    2013-01-01

    Dimorphism on dominance and agonistic behaviour in mammals tends to be strongly biased toward males. In this review, we focus on a select few species of mammals in which females are as or more aggressive than males, and/or are dominant to males, and explore the role of androgenic hormones in mediating this important difference. While the data are not as clear-cut as those published on traditional laboratory mammals, our review highlights important endocrine substrates for both organizational and activational influences of steroids on female aggressive behaviour. We highlight areas in which further observations and experiments are crucial, especially the potential facilitative effects of androgens on female aggression. Finally, new and innovative techniques, including molecular genetics and receptor pharmacology, portend important insights into the ways in which androgenic hormones regulate aggressive behaviour in 'atypical' female mammals. PMID:24167314

  9. Influence of thyrotrophin-releasing hormone on thermoregulation in newborn lambs.

    PubMed

    Bird, J A; Clarke, L; Symonds, M E

    1998-01-01

    This study examined the effect of thyrotrophin-releasing hormone (TRH) administration on thermoregulation in the newborn. Twin lambs were either delivered near-term by caesarean section or born vaginally at term. Colonic temperature, O2 consumption, CO2 production, breathing and heart rates, plus plasma thyroid hormone and nonesterified fatty acid (NEFA) concentrations and thermogenic activity (i.e. GDP binding) of brown adipose tissue (BAT) were measured. In caesarean section delivered lambs colonic temperature decreased rapidly after birth, a response that was greater in the group designated for TRH treatment, in which colonic temperature fell to below 36.0 degrees C at 80 min of life, prior to TRH administration. At this age colonic temperature had been restored to a mean of 38.70 degrees C in controls. TRH had no influence on the composition or thermogenic activity of BAT. The incidence of shivering was not influenced by TRH, but treated lambs maintained a higher rate of O2 consumption and ventilation compared with controls after colonic temperature had been restored to 38.56 degrees C. TRH appeared to promote fat oxidation as O2 consumption remained unchanged and CO2 production declined by a greater rate in treated lambs, resulting in a lower respiratory quotient compared to controls. Heart rate and plasma concentrations of NEFA increased following TRH administration although this did not result in values greater than controls. Normothermic lambs born vaginally had BAT with a greater thermogenic activity, higher plasma thyroid hormone and NEFA concentrations compared with caesarean section delivered lambs, but a thermogenic response was not observed to TRH despite a rise in thyroid hormone concentrations. In conclusion, TRH can improve thermoregulation, an effect that could be linked to an increase in fat oxidation. PMID:9458943

  10. The influence of hormone therapies on type I and II endometrial cancer: A nationwide cohort study.

    PubMed

    Mørch, Lina S; Kjaer, Susanne K; Keiding, Niels; Løkkegaard, Ellen; Lidegaard, Øjvind

    2016-03-15

    The influence of hormone therapy (HT) on risk for endometrial cancer is still casting which type of HT the clinicians recommend. It is unrevealed if HT has a differential influence on Type I versus Type II endometrial tumors, and little is known about the influence of, e.g., different routes of administration and about the influence of tibolone. We followed all Danish women aged 50-79 years without previous cancer or hysterectomy (n = 914,595) during 1995-2009. From the National Prescription Register, we computed HT exposures as time-dependent covariates. Incident endometrial cancers (n = 6,202) were identified from the National Cancer Registry: 4,972 Type I tumors and 500 Type II tumors. Incidence rate ratios (RRs) and 95% confidence intervals (Cls) were estimated by Poisson regression. Compared with women never on HT, the RR of endometrial cancer was increased with conjugated estrogen: 4.27 (1.92-9.52), nonconjugated estrogen: 2.00 (1.87-2.13), long cycle combined therapy: 2.89 (2.27-3.67), cyclic combined therapy: 2.06 (1.88-2.27), tibolone 3.56 (2.94-4.32), transdermal estrogen: 2.77 (2.12-3.62) and vaginal estrogen: 1.96 (1.77-2.17), but not with continuous combined therapy: 1.02 (0.87-1.20). In contrast, the risk of Type II tumors appeared decreased with continuous combined therapy: 0.45 (0.20-1.01), and estrogen therapy implied a nonsignificantly altered risk of 1.43 (0.85-2.41). Our findings support that continuous combined therapy is risk free for Type I tumors, while all other hormone therapies increase risk. In contrast, Type II endometrial cancer was less convincingly associated with hormone use, and continuous combined therapy appeared to decrease the risk. PMID:26421912

  11. Influence of externally attached trasmitters on the swimming performance of juvenile white sturgeon

    USGS Publications Warehouse

    Counihan, T.D.; Frost, C.N.

    1999-01-01

    We measured the critical swimming speed of juvenile white sturgeons Acipenser transmontanus equipped with externally attached dummy ultrasonic transmitters and of untagged control fish in the laboratory. White sturgeons ranging from 31.9 to 37.0 cm fork length were subjected to one of three treatments: Control (handled but not tagged), tag attached below the dorsal fin, and tag attached with the anterior insertion point between the fourth and fifth dorsal scutes. Although transmitters were of recommended weight, we found that the swimming performance of tagged white sturgeons was significantly less than that of untagged control fish. Swimming performance of tagged fish was not differentially affected by tag location. Our results suggest that data from ultrasonic telemetry studies of externally tagged juvenile white sturgeons should be interpreted with caution due to the reduced swimming performance caused by external transmitters.

  12. Influence of externally attached transmitters on the swimming performance of juvenile white sturgeon

    USGS Publications Warehouse

    Counihan, T.D.; Frost, C.N.

    1999-01-01

    We measured the critical swimming speed of juvenile white sturgeons Acipenser transmontanus equipped with externally attached dummy ultrasonic transmitters and of untagged control fish in the laboratory. White sturgeons ranging from 31.9 to 37.0 cm fork length were subjected to one of three treatments: control (handled but not tagged), tag attached below the dorsal fin, and tag attached with the anterior insertion point between the fourth and fifth dorsal scutes. Although transmitters were of recommended weight, we found that the swimming performance of tagged white sturgeons was significantly less than that of untagged control fish. Swimming performance of tagged fish was not differentially affected by tag location. Our results suggest that data from ultrasonic telemetry studies of externally tagged juvenile white sturgeons should be interpreted with caution due to the reduced swimming performance caused by external transmitters.

  13. EFFECT OF ACUTE STRESS ON PLASMA CONCENTRATIONS OF SEX AND STRESS HORMONES IN JUVENILE ALLIGATORS LIVING IN CONTROL AND CONTAMINATED LAKES

    EPA Science Inventory

    Environmental contaminants can act as stressors, inducing elevated circulating concentrations of stress hormones such as corticosterone and cortisol. Development in contaminated eggs has been reported to modify circulating sex steroid hormone concentrations in alligators (Alligat...

  14. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    NASA Astrophysics Data System (ADS)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  15. In silico and bio assay of juvenile hormone analogs as an insect growth regulator against Galleria mellonella (wax moth) - Part I.

    PubMed

    Sharma, Priyanka; Thakur, Sunil; Awasthi, Pamita

    2016-05-01

    Juvenile hormone (JH) analogs are nowadays in use to control harmful pests. In order to develop new bioactive molecules as potential pesticides, we have incorporated different active structural features like sulfonamide, aromatic rings, amide group, and amino acid moiety to the base structure. We have screened a series of designed novel JH analogs against JH receptor protein (jhbpGm-2RCK) of Galleria mellonella in comparison to commercial insect growth regulators (IGRs) - Pyriproxyfen (T1) and Fenoxycarb (T2). All analogs exhibit the binding energy profile comparable to commercial IGRs. Based upon these results, a series of sulfonamide-based JHAs (T3-T8) as IGRs have been synthesized and characterized. Further, the efficacy of synthesized analogs (T3-T8) and commercial IGRs (Pyriproxyfen and Fenoxycarb) has been assessed against fourth instars larvae of G. mellonella under the laboratory conditions. LC50 values of all the analogs (T1-T8) against the fourth instars larvae were 9.99, 10.12, 24.76, 30.73, 38.45, 34.15, 34.14, 19.48 ppm and the LC90 153.27, 131.69, 112.15, 191.46, 427.02, 167.13, 217.10, 172.00 ppm, respectively. Among these analogs, N-(1-isopropyl-2-oxo-3-aza-3-N-ethyl-pentanyl)-p-toluene sulfonamide (T8) and N-(1-isopropyl-2-oxo-3-aza-3-N-ethyl-pentanyl) benzene sulfonamide (T7) exhibited the good pest larval mortality at different exposure periods (in hours) and different concentrations (in ppm) in comparison to in use IGRs- T1 and T2. Bio assay results are supported by docking at higher concentration. The present investigation clearly exhibits that analog T8 could serve as a potential IGR in comparison to in use IGRs (T1 and T2). The results are promising and provide new array of synthetic chemicals that may be utilized as IGRs. PMID:27070862

  16. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant

    PubMed Central

    Mohamed-Hussein, Zeti-Azura; Ng, Chyan Leong

    2016-01-01

    Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold) to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that’s highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate specificity

  17. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant.

    PubMed

    Seman-Kamarulzaman, Ahmad-Faris; Mohamed-Hussein, Zeti-Azura; Ng, Chyan Leong; Hassan, Maizom

    2016-01-01

    Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold) to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that's highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate specificity towards

  18. SEASONAL VARIATION IN PLASMA SEX STEROID CONCENTRATION IN JUVENILE ALLIGATORS

    EPA Science Inventory

    Seasonal variation in plasma sex steroid concentrations is common in mature vertebrates, and is occasionally seen in juvenile animals. In this study, we examine the seasonal pattern of sex hormone concentration in juvenile American alligators (Alligator mississippiensis) and make...

  19. Female hormone influences on sexual assaults in Northern Ireland from 2002 to 2009.

    PubMed

    Beirne, Patricia; Hall, Janet; Grills, Claire; Moore, Tara

    2011-10-01

    In Northern Ireland 1 in every 454 women of 13 years and over during 2008/09 reported to police that they had suffered a sexual assault. This study considered the possibility that women may be more likely to be victims of sexual assault during the fertile phase of their reproductive cycle. Evolutionary psychology suggests that women would have suffered more negative consequences if sexually assaulted when fertile and that specific psychological mechanisms may have evolved in women to combat male coercion. Female behaviours towards men vary across the reproductive cycle and men's behaviour towards women may vary also as a result of changes in female hormones. Hormones play a major role in producing the characteristic cyclical changes throughout a woman's reproductive life. This study is the first study of female hormone influences on sexual assaults. The data for the study was collated retrospectively from the records of 105 females with regular, spontaneous menstrual cycles. These females alleged recent sexual assault and were examined in Belfast during the period 2002-2009. The study concluded that young girls in the middle of their cycle, i.e. the fertile phase, were most at risk of sexual assault. It is possible that both sexes are sensitive to signs, albeit subtle behavioural signs, indicating high risk of conception. PMID:21907935

  20. Yolk hormones influence in ovo chemosensory learning, growth, and feeding behavior in domestic chicks.

    PubMed

    Bertin, Aline; Meurisse, Maryse; Arnould, Cécile; Leterrier, Christine; Constantin, Paul; Cornilleau, Fabien; Vaudin, Pascal; Burlot, Thierry; Delaveau, Joel; Rat, Christophe; Calandreau, Ludovic

    2016-03-01

    In this study, we assessed whether prenatal exposure to elevated yolk steroid hormones can influence in ovo chemosensory learning and the behavior of domestic chicks. We simulated a maternal environmental challenge by experimentally enhancing yolk progesterone, testosterone, and estradiol concentrations in hen eggs prior to incubation. The embryos from these hormones-treated eggs (HO) as well as sham embryos (O) that had received the vehicle-only were exposed to the odor of fish oil (menhaden) between embryonic Days 11 and 20. An additional group of control embryos (C) was not exposed to the odor. All chicks were tested following hatching for their feeding preferences between foods that were or were not odorized with the menhaden odor. In the 3-min choice tests, the behavior of O chicks differed significantly according to the type of food whereas C and HO chicks showed no preference between odorized and non-odorized food. Our result suggests weaker response in HO chicks. In addition, HO chicks showed impaired growth and reduced intake of an unfamiliar food on the 24-h time scale compared to controls. Our data suggest that embryonic exposure to increased yolk hormone levels can alter growth, chemosensory learning, and the development of feeding behaviors. PMID:26419601

  1. [The influence of 24-epibrassidinole on the hormone status of wheat plants under sodium chloride].

    PubMed

    Aval'baev, A M; Iuldashev, R A; Fatkhutdinova, R A; Urusov, F A; Safutdinova, Iu V; Shakirova, F M

    2010-01-01

    We studied the influence of the preconditioning of wheat germ (Triticum aestivum L.) with 0.4 microM 24-epibrassidinole (EB) on the growth and hormone status of plants under the influence of 2% NaCl. The preconditioning with EB promoted the lowering of the extent of the damaging influence of pickling on the growth of germs. The important contribution to the realization of the protective action of EB in the preconditioning of plants is probably that of its ability to lower the level of stress-induced abscisic acid accumulation and the decrease in the content of indole-acetic acid. At the same time, the cytokinin concentration in plants preconditioned with EB under pickling was practically the same as in plants without stress. This fact combined with data about the ability of EB to induce the increase in cytokinin content in wheat, obtained before, allowed us to assume that the protective action of EB on plants is connected, first of all, with the prevention of the increase in level of hormones of cytokinin nature under pickling. PMID:20198927

  2. Determine the Influence of Time Held in “Knockdown” Anesthesia on Survival and Stress of Surgically Implanted Juvenile Salmonids

    SciTech Connect

    Woodley, Christa M.; Wagner, Katie A.; Knox, Kasey M.

    2012-01-31

    The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed for the U.S. Army Corp of Engineers Portland District (USACE) to address questions related to survival and performance measures of juvenile salmonids as they pass through the Federal Columbia River Power System (FCRPS). Researchers using JSATS acoustic transmitters (ATs) were tasked with standardizing the surgical implantation procedure to ensure that the stressors of handling and surgery on salmonids were consistent and less likely to cause effects of tagging in survival studies. Researchers questioned whether the exposure time in 'knockdown' anesthesia (or induction) to prepare fish for surgery could influence the survival of study fish (CBSPSC 2011). Currently, fish are held in knockdown anesthesia after they reach Stage 4 anesthesia until the completion of the surgical implantation of a transmitter, varies from 5 to 15 minutes for studies conducted in the Columbia Basin. The Columbia Basin Surgical Protocol Steering Committee (CBSPSC ) expressed concern that its currently recommended 10-minute maximum time limit during which fish are held in anesthetic - tricaine methanesulfonate (MS-222, 80 mg L-1 water) - could increase behavioral and physiological costs, and/or decrease survival of outmigrating juvenile salmonids. In addition, the variability in the time fish are held at Stage 4 could affect the data intended for direct comparison of fish within or among survival studies. Under the current recommended protocol, if fish exceed the 10-minute time limit, they are to be released without surgical implantation, thereby increasing the number of fish handled and endangered species 'take' at the bypass systems for FCRPS survival studies.

  3. Influence of pH on the acute toxicity of ammonia to juvenile freshwater mussels (fatmucket, Lampsills siliquoidea)

    USGS Publications Warehouse

    Wang, N.; Erickson, R.J.; Ingersoll, C.G.; Ivey, C.D.; Brunson, E.L.; Augspurger, T.; Barnhart, M.C.

    2008-01-01

    The objective of the present study was to evaluate the influence of pH on the toxicity of ammonia to juvenile freshwater mussels. Acute 96-h ammonia toxicity tests were conducted with 10-d-old juvenile mussels (fatmucket, Lampsilis siliquoidea) at five pH levels ranging from 6.5 to 9.0 in flow-through diluter systems at 20??C. Acute 48-h tests with amphipods (Hyalella azteca) and 96-h tests with oligochaetes (Lumbriculus variegatus) were conducted concurrently under the same test conditions to determine the sensitivity of mussels relative to these two commonly tested benthic invertebrate species. During the exposure, pH levels were maintained within 0.1 of a pH unit and ammonia concentrations were relatively constant through time (coefficient of variation for ammonia concentrations ranged from 2 to 30% with a median value of 7.9%). The median effective concentrations (EC50s) of total ammonia nitrogen (N) for mussels were at least two to six times lower than the EC50s for amphipods and oligochaetes, and the EC50s for mussels decreased with increasing pH and ranged from 88 mg N/L at pH 6.6 to 0.96 mg N/L at pH 9.0. The EC50s for mussels were at or below the final acute values used to derive the U.S. Environmental Protection Agency's acute water quality criterion (WQC). However, the quantitative relationship between pH and ammonia toxicity to juvenile mussels was similar to the average relationship for other taxa reported in the WQC. These results indicate that including mussel toxicity data in a revision to the WQC would lower the acute criterion but not change the WQC mathematical representation of the relative effect of pH on ammonia toxicity. ?? 2008 SETAC.

  4. Hormonal effects on women's facial masculinity preferences: the influence of pregnancy, post-partum, and hormonal contraceptive use.

    PubMed

    Cobey, Kelly D; Little, Anthony C; Roberts, S Craig

    2015-01-01

    Here, we investigate changes in women's facial masculinity preferences across pregnancy and the post-partum period. The majority of previous research demonstrating changes in women's masculinity preferences has examined the impact of hormonal variation across the female menstrual cycle. Hormonal changes experienced during pregnancy and the post-partum period, critical periods in women's reproductive life histories, are considerably more extreme than the variation that occurs across the menstrual cycle, suggesting that differences in preferences may also be displayed during these times. We find that women's preference for masculinity in men's faces, but not women's faces, decreases in the post-partum period relative to pregnancy. Furthermore, when compared to a sample of nulliparous control participants, post-partum participants showed different masculinity preferences compared with women who were using hormonal contraception, with the direction of this difference dependent upon the sex of the face assessed. PMID:25460829

  5. Metabolism of testosterone by human granulosa cells in culture: influence of follicle-stimulating hormone and luteinizing hormone

    SciTech Connect

    Moon, Y.S.; Duleba, A.; Leung, P.C.; Gomel, V.

    1982-03-15

    Human granulosa cells were isolated from follicles (8 to 15 mm) and cultivated for 24 hours in the presence or absence of follicle-stimulating hormone (NIH-FSH-HS-1, 1 microgram/ml) and luteinizing hormone (NIAMDD-hLH-1, 1 microgram/ml). Testosterone -4-14C was added subsequently to all cultures for 4-, 6-, and 24-hour periods. Of the seven metabolites of testosterone studied, 17 beta-estradiol (E2) and estrone (E1) were the major products. In all patients, levels of E2 were three to ten times higher than those of E1. Production of E2, but not E1, was stimulated by either follicle-stimulating hormone (FSH) or luteinizing hormone (LH). The cells of the largest follicle (15 mm) showed greater response to LH than to FSH. Production of the other C19 and C18 metabolites was very low or negligible. These results further suggest that FSH regulates the aromatization of testosterone in human granulosa cells, and that LH may have the same effect on the matured follicle during the preovulatory period.

  6. INFLUENCES OF HORMONE REPLACEMENT THERAPY ON OLFACTORY AND COGNITIVE FUNCTION IN THE MENOPAUSE

    PubMed Central

    Doty, Richard L.; Tourbier, Isabelle; Ng, Victoria; Neff, Jessica; Armstrong, Deborah; Battistini, Michelle; Sammel, Mary D.; Gettes, David; Evans, Dwight L.; Mirza, Natasha; Moberg, Paul J.; Connolly, Tim; Sondheimer, Steven J.

    2015-01-01

    Olfactory dysfunction can be an early sign of Alzheimer’s disease (AD). Since hormone replacement therapy (HRT) may protect against developing AD in postmenopausal women, the question arises as to whether it also protects against olfactory dysfunction in such women. Three olfactory and 12 neurocognitive tests were administered to 432 healthy postmenopausal women with varied HRT histories. Serum levels of reproductive hormones were obtained for all subjects; APOE-ε4 haplotype was determined for 77. National Adult Reading Test and Odor Memory/Discrimination Test (OMT) scores were positively influenced by HRT. Odor identification and OMT test scores were lower for women who scored poorly on a delayed recall test, a surrogate for mild cognitive impairment. WAIS-R NI Spatial Span Backwards Test scores were higher in women receiving estrogen plus progestin HRT and directly correlated with serum testosterone levels, the latter implying a positive effect of testosterone on spatial memory. APOE-ε4 was associated with poorer odor threshold test scores. These data suggest that HRT positively influences a limited number of olfactory and cognitive measures in the menopause. PMID:25850354

  7. Hormones and pheromones in regulation of insect behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both pheromones and hormones are well recognized regulators of insect biology. However, the interactions between hormones and pheromones in coordinating insect biology are less well understood. We have studied the interactions between juvenile hormone, its precursor methyl farnesoate, and pheromon...

  8. Habitat selection influences sex distribution, morphology, tissue biochemistry, and parasite load of juvenile coho salmon in the West Fork Smith River, Oregon

    EPA Science Inventory

    Given the strong influence of water temperature on salmonid physiology and behavior, in the summers of 2004 and 2005 we studied juvenile male and female coho salmon Oncorhynchus kisutch in two reaches of Oregon’s West Fork Smith River with different thermal profiles. Our goals we...

  9. [Genetic-statistical analysis of environmental and genetic influences on the outcome of the juvenile and breeding performance tests for behaviour traits in Hovawart dogs].

    PubMed

    Boenigk, Katharina; Hamann, Henning; Distl, Ottmar

    2006-01-01

    The objective of the present study was to evaluate the importance of genetic and environmental sources of variation for results of behaviour tests recorded at juvenile and breeding performance tests in the Hovawart dog. For these analyses behaviour test results of 1882 (juvenile evaluation), respectively 929 dogs (breeding performance test) born in 1995 to 2000 had been used. Variance component estimation was performed for the traits appearance, play instinct, hunting affinity, group of people, shoot, acoustical and optical influences and temperament using multivariate linear animal models and Residual Maximum Likelihood (REML). The models included test-year-season, sex, litter size, age and inbreeding coefficient of the animal as fixed effects. Additive genetic effects of the animal, permanent environmental effect of the litter and the effect of the kennel were considered as random factors. The sex of the dog was significant for appearance, play instinct, hunting affinity, acoustical and optical influences of juvenile evaluation and for the traits temperament, play instinct, hunting affinity, acoustical and one of the optical influences of breeding performance test. The age of the dog at test significantly influenced the traits play instinct, hunting affinity and acoustical influences of juvenile evaluation and optical influences and hunting affinity of breeding performance test. All traits with exception of hunting affinity and group of people were significantly affected by the test-year-season. The inbreeding coefficient was significant for appearance of juvenile evaluation and play affinity of breeding performance test. The effect litter size did not influence any of the traits significantly. The estimated heritabilities for the behaviour traits of juvenile and breeding performance test ranged from h2 = 0.01 to h2 = 0.13, respectively h2 = 0.01 to h2 = 0.14, with standard errors of up to 0.03. The additive genetic correlations between most of the traits were

  10. The influence of photoperiod on gonadotrophin-releasing hormone stimulated luteinising hormone release in the anoestrous mare.

    PubMed

    Nequin, L G; King, S S; Matt, K S; Jurak, R C

    1990-09-01

    The transition from anoestrus to oestrus in mares is controlled by photoperiod. The present study examined whether additional daylength would accelerate the mares' response to gonadotrophin-releasing-hormone (GnRH). Nine anoestrous mares were placed under ambient or artificial long lighting on 7th January. The four month experimental period was divided into a three-day sequence which was repeated at 21 day intervals. Ovaries were palpated rectally on Day 1; saline was injected (1 ml intravenously [iv]) on Day 2; GnRH was administered (0.59 microgram/kg bodyweight iv) on Day 3. Blood was taken at -60, 0, 15, 30, 60 and 120 mins relative to saline or GnRH treatment. Serum luteinising hormone (LH) was determined by a homologous equine radioimmunoassay (RIA). Several criteria were employed to define a positive response to GnRH and the results were analysed by Fisher's exact probability test. Treatment with artificial light allowed a response to GnRH within six weeks whereas the mares in ambient lighting took 12 weeks to respond to GnRH. The advancement in the time of response to GnRH under the long photoperiod could be related to changes in pituitary LH content, accelerated follicular activity or alterations in other brain-pituitary hormone levels. PMID:2226401

  11. Influence of alcohol on the hydromineral hormone responses to exercise in a warm environment.

    PubMed

    Saini, J; Boisvert, P; Spiegel, K; Candas, V; Brandenberger, G

    1995-01-01

    Alcohol consumption at rest is associated with disturbed water and salt regulation reflected by changed responses in the hydromineral hormones. This study investigated the effect of alcohol on endocrine systems involved in body fluid and electrolyte regulation under conditions of physical exercise in the heat, a situation in which under normal circumstances, the hydromineral hormones are stimulated in an attempt to preserve physiological homeostasis. Eight healthy male volunteers participated in two trials, which differed only in the presence or absence of alcohol (1.2 g alcohol.kg-1 body mass) in a cocktail drink. After consuming the cocktail, the subjects exercised for 60 min on a cycle ergometer (45% maximal oxygen consumption) at 35 degrees C. Compared to the control situation alcohol consumption (maximal plasma concentrations reaching about 1.08 g.l-1) produced an increase in body fluid loss (P < 0.05), but did not induce significant differences in plasma volume changes. Plasma volume decreased in both sessions during exercise (P < 0.01) and a significant rebound (P < 0.001) occurred during recovery. Osmolality was significantly higher (P < 0.001) during rest, exercise and recovery periods compared to the placebo trials, but no effect of alcohol on plasma Na+ and K+ concentrations was observed. In the alcohol test conditions, the arginine vasopressin (AVP) response to exercise was significantly dampened (P < 0.05). In contrast, alcohol had no effect on aldosterone or atrial natriuretic peptide (ANP). These results demonstrated that alcohol ingestion augmented body fluid losses due to a suppressive effect on AVP during physical exercise conducted in a warm environment. The increase in osmolality due to alcohol did not influence the aldosterone and ANP responses, which would suggest that total osmolality does not play a major role in the regulation of these hormones. PMID:8789567

  12. Transcriptional Regulation of the Human P450 Oxidoreductase Gene: Hormonal Regulation and Influence of Promoter Polymorphisms

    PubMed Central

    Tee, Meng Kian; Huang, Ningwu; Damm, Izabella

    2011-01-01

    P450 oxidoreductase (POR) is the flavoprotein that acts as the obligatory electron donor to all microsomal P450 enzymes, including those involved in hepatic drug metabolism as well as three steroidogenic P450 enzymes. The untranslated first exon of human POR was located recently, permitting analysis of human POR transcription. Expression of deletional mutants containing up to 3193 bp of the human POR promoter in human adrenal NCI-H295A and liver Hep-G2 cells located the proximal promoter at −325/−1 bp from the untranslated exon. Common human POR polymorphisms at −208 and −173 had little influence on transcription, but the polymorphism at −152 reduced transcription significantly in both cell lines. EMSA and supershift assays identified binding of Smad3/Smad4 between −249 and −261 and binding of thyroid hormone receptor-β (TRβ) at −240/−245. Chromatin immunoprecipitation showed that Smad3, Smad4, TRα, TRβ, and estrogen receptor-α were bound between −374 and −149. Cotransfection of vectors for these transcription factors and POR promoter-reporter constructs into both cell types followed by hormonal treatment showed that T3 exerts major tropic effects via TRβ, with TRα, estrogen receptor-α, Smad3, and Smad4 exerting lesser, modulatory effects. T3 also increased POR mRNA in both cell lines. Thyroid hormone also is essential for rat liver POR expression but acts via different transcription factor complexes. These are the first data on human POR gene transcription, establishing roles for TRβ and Smad3/4 in its expression and indicating that the common polymorphism at −152 may play a role in genetic variation in steroid biosynthesis and drug metabolism. PMID:21393444

  13. Prefrontal GABA concentration changes in women-Influence of menstrual cycle phase, hormonal contraceptive use, and correlation with premenstrual symptoms.

    PubMed

    De Bondt, Timo; De Belder, Frank; Vanhevel, Floris; Jacquemyn, Yves; Parizel, Paul M

    2015-02-01

    Prefrontal regions are involved in processing emotional stimuli and are a topic of interest in clinical and neurological research. Although sex steroids are potent neuromodulators, the influence of menstrual cycle phase and hormonal contraceptive use is rarely taken into account in neuroimaging studies. Our purpose was to evaluate changes in gamma-aminobutyric acid (GABA) in women, as measured by magnetic resonance spectroscopy (MRS), with phases of the menstrual cycle and use of hormonal contraceptives, and to assess correlations with premenstrual symptoms.Three MRI sessions per cycle were obtained in the natural cycle group, and two sessions in the hormonal contraceptives group. In addition to an anatomical scan, single voxel MRS in the prefrontal area was performed. After quality control, 10 women with natural cycle and 21 women taking hormonal contraceptives were included for analysis. Peripheral blood samples were obtained to determine endogenous hormone concentrations. Subjects were asked to complete a daily rating of severity of problems questionnaire, to quantify premenstrual symptoms. In the natural cycle group, we found a significant increase in prefrontal GABA concentration at the time of ovulation. Conversely, in the hormonal contraceptives group, no differences were found between the pill phase and pill-free phase. GABA concentrations did not significantly correlate with endogenous hormone levels, nor with premenstrual symptoms. Our results indicate that spectroscopically measured GABA concentrations are higher during ovulation in women with a natural menstrual cycle. We suggest that neuroimaging studies should take into account this variability. PMID:25481417

  14. Investigating probation strategies with juvenile offenders: the influence of officers' attitudes and youth characteristics.

    PubMed

    Schwalbe, Craig S; Maschi, Tina

    2009-10-01

    Probation officers are the focal point for most interventions with delinquent youths in the juvenile justice system. The present study examines probation strategies and interventions in a sample of 308 probation officers who completed the Probation Practices Assessment Survey (PPAS) in a web-based survey. The PPAS measures six probation approaches: deterrence, restorative justice, treatment, confrontation, counseling, and behavioral tactics. Structural equation models and latent class analyses showed that probation officers use multiple approaches with delinquent youths consistent with the balanced and restorative justice movement. Younger youths, high-risk youths, and youths with prior social service involvements are likely to receive more intensive interventions. The implications of these findings for improving probation practices with delinquent youth are discussed. PMID:18839292

  15. Understanding the influence of predation by introduced fishes on juvenile salmonids in the Columbia River Basin: Closing some knowledge gaps. Interim Report of Research 2010

    USGS Publications Warehouse

    Rose, Brien P.; Hansen, Gabriel S.; Mesa, Matthew G.

    2011-01-01

    In response to these recent concerns about the potential predatory impact of non-native piscivores on salmon survival, the Bonneville Power Administration (BPA) and the Columbia Basin Fish and Wildlife Authority (CBFWA) co-hosted a workshop to address predation on juvenile salmonids in the CRB by non-native fish (Halton 2008). The purpose of the workshop was to review, evaluate, and develop strategies to reduce predation by non-native fishes on juvenile salmonids. In the end, discussion at the workshop and at subsequent meetings considered two potential ideas to reduce predation by non-native fish on juvenile salmonids; (1) understanding the role of juvenile American shad Alosa sapidissima in the diet of non-native predators in the fall; and (2) the effects of localized, intense reductions of smallmouth bass in areas of particularly high salmonid predation. In this report, we describe initial efforts to understand the influence of juvenile American shad as a prey item for introduced pred

  16. Influence of activating hormones on human platelet membrane Ca/sup 2 +/-ATPase activity

    SciTech Connect

    Resink, T.J.; Dimitrov, D.; Stucki, S.; Buehler, F.R.

    1986-07-16

    Intact platelets were pretreated with hormones and thereafter membranes were prepared and Ca/sup 2 +/-ATPase activity determined. Thrombin decreased the V/sub max/ of Ca/sup 2 +/-ATPase after pretreatment of intact platelets. Platelet activating factor, vasopressin and ADP also decreased Ca/sup 2 +/-ATPase activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) or A23187 or ionomycin alone had no effect, while the simultaneous pretreatment with TPA and Ca/sup 2 +/-ionophore decreased Ca/sup 2 +/-ATPase activity. cAMP elevating agents prostaglandin E/sub 1/ (PGE/sub 1/) and forskolin had no influence per se on Ca/sup 2 +/-ATPase, but antagonized the inhibitory effect of thrombin. The data suggest a close connection between phosphoinositide metabolism and the Ca/sup 2 +/-ATPase system.

  17. CIRCULATING CONCENTRATIONS OF THYROID HORMONE IN BELUGA WHALES (DELPHINAPTERUS LEUCAS): INFLUENCE OF AGE, SEX, AND SEASON.

    PubMed

    Flower, Jennifer E; Allender, Matthew C; Giovanelli, Richard P; Summers, Sandra D; Spoon, Tracey R; St Leger, Judy A; Goertz, Caroline E C; Dunn, J Lawrence; Romano, Tracy A; Hobbs, Roderick C; Tuttle, Allison D

    2015-09-01

    Thyroid hormones play a critical physiologic role in regulating protein synthesis, growth, and metabolism. To date, because no published compilation of baseline values for thyroid hormones in beluga whales (Delphinapterus leucas) exists, assessment of thyroid hormone concentrations in this species has been underused in clinical settings. The purpose of this study was to document the concentrations of total thyroxine (tT4) and total triiodothyronine (tT3) in healthy aquarium-maintained and free-ranging beluga whales and to determine the influence of age, sex, and season on the thyroid hormone concentrations. Archived serum samples were collected from healthy aquarium-maintained (n=43) and free-ranging (n=39) belugas, and serum tT4 and tT3 were measured using chemiluminescence immunoassay. The mean tT4 concentration in aquarium-maintained belugas was 5.67±1.43 μg/dl and the mean tT3 concentration was 70.72±2.37 ng/dl. Sex comparisons showed that aquarium-maintained males had significantly greater tT4 and tT3 (9.70±4.48 μg/dl and 92.65±30.55 ng/dl, respectively) than females (7.18±2.82 μg/dl and 77.95±20.37 ng/dl) (P=0.004 and P=0.013). Age comparisons showed that aquarium-maintained whales aged 1-5 yr had the highest concentrations of tT4 and tT3 (8.17±0.17 μg/dl and 105.46±1.98 ng/dl, respectively) (P=0.002 and P<0.001). tT4 concentrations differed significantly between seasons, with concentrations in winter (4.59±1.09 μg/dl) being significantly decreased compared with spring (P=0.009), summer (P<0.0001), and fall (P<0.0001) concentrations. There was a significant difference in tT4 and tT3 concentrations between aquarium-maintained whales (5.67±1.43 μg/dl and 70.72±15.57 ng/dl, respectively) and free-ranging whales (11.71±3.36 μg/dl and 103.38±26.45 ng/dl) (P<0.0001 and P<0.001). Clinicians should consider biologic and environmental influences (age, sex, and season) for a more accurate interpretation of thyroid hormone concentrations in belugas

  18. [Tobacco smoking influence on the level of sex hormones--animal model].

    PubMed

    Florek, Ewa; Janicki, Rafał; Piekoszewski, Wojciech; Kulza, Maksymilian; Chuchracki, Marek; Sedziak, Anna

    2008-01-01

    Numerous studies warn that women who smoke can suffer from weakened functioning of their ovaries and disturbed synthesis and metabolism of hormones. This may cause many pregnancy complications or premature menopause and osteoporosis. Moreover, smoking disturbs the menstrual cycle, decreases the effectiveness and increases the undesirable effects of the hormone replacement therapy. Tobacco smoke disturbs gametogenesis, ovulation, Fallopian tube transport, fertilization and the implantation of a fertilized cell, which results in the reduction of fertility. The goal of the present thesis was a toxicological assessment of the influence of tobacco smoke on the level of luteinizing hormone, follicle stimulating hormone, progesterone, and estradiol in blood serum of female rats, taking into consideration the phases of their sexual cycle. The experiment utilized a cytological method of determining the phases of the sexual cycle, which enabled the researcher to divide the rats into two groups (exposed to tobacco smoke and unexposed). Each of the groups was further divided into four subgroups with six animals for each phase of the sexual cycle (Proestrus, Estrus, Metestrus, Diestrus). The rats from the first group were exposed to tobacco smoke with the concentration of 1500 mg of Carbon Monoxide (CO) per cubic meter of ambient air (per content of Carbon Monoxide) for 5 days for 6 hours a day. Every day before the exposition at the same time the phases of the sexual cycle of female rats were checked in all of the subgroups. On the last 5th day of the experiment, after the exposition to the smoke, smear tests were conducted. The unexposed group was the control group. The evaluation of the exposition of the animals to tobacco smoke was based on the determination of the level of cotinine in blood serum by ELISA method. The measurement of the concentration of hormones was conducted by means of a jurisdiction method of electrochemiluminescence. In the experiment, a statistical

  19. Influence of high ovarian hormones on QT interval duration in young African women

    PubMed Central

    Balayssac‐Siransy, Edwige; Ouattara, Soualiho; Adoubi, Anicet; Kouamé, Chantal; Hauhouot‐Attoungbré, Marie‐Laure; Dah, Cyrille; Bogui, Pascal

    2014-01-01

    Abstract The longer QT interval duration observed in women compared to men is usually attributed to sexual hormones. The aim of our study was to investigate, among black African women, the influence of hormonal variations during the menstrual cycle on the duration of the QT interval. Fourteen young black African women, healthy, sedentary, aged 24 ± 1.7 years, with a regular menstrual cycle (28 ± 1 days) were selected from 59 volunteers. At each phase of their menstrual cycle, menstrual 2.9 ± 0.6 days, follicular 13 ± 1.5 days, and luteal 23.1 ± 1.4 days, an electrocardiogram was performed in supine position after a resting period of 30 min, to measure QT interval duration. QT interval was corrected by Bazett's (QTcb) and Fridericia's (QTcf) formulae. Then, blood samples were obtained to measure estradiol, progesterone, and serum electrolytes (K+, Ca2+, Mg2+). There was no significant difference in uncorrected QT intervals between the three phases of the menstrual cycle. It was the same for QTcb and QTcf. Moreover, during the menstrual cycle, we did not observe any correlation between each QT, QTcb, QTcf, and estradiol levels which raised during the follicular phase (356.61 ± 160.77 pg/mL) and progesterone levels which raised during the luteal phase (16.38 ± 5.88 ng/mL). Finally, the method of Bland and Altman demonstrated that the corrections of QT by Bazett and Fridericia formulae were not interchangeable. The results of this study showed that high levels of estradiol and progesterone in young black African women did not influence the QT, QTcb and QTcf intervals duration during the menstrual cycle. PMID:24760517

  20. Influence of infection with Renibacterium salmoninarum on susceptibility of juvenile spring chinook salmon to gas bubble trauma

    USGS Publications Warehouse

    Weiland, L.K.; Mesa, M.G.; Maule, A.G.

    1999-01-01

    During experiments in our laboratory to assess the progression and severity of gas bubble trauma (GBT) in juvenile spring chinook salmon Oncorhynchus tshawytscha, we had the opportunity to assess the influence of Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease, on the susceptibility of salmon to GBT. We exposed fish with an established infection of Rs to 120% total dissolved gas (TDG) for 96 h and monitored severity of GBT signs in the fins and gills, Rs infection level in kidneys by using an enzyme-linked immunosorbent assay (ELISA), and mortality. Mortality occurred rapidly after exposure to 120% TDG, with a LT20 (time necessary to kill 20% of the population) of about 37 h, which is at a minimum about 16% earlier than other bioassays we have conducted using fish that had no apparent signs of disease. Fish that died early (from 31 to 36 h and from 49 to 52 h) had significantly higher infection levels (mean ?? SE ELISA absorbance = 1.532 ?? 0.108) than fish that survived for 96h (mean ?? SE ELISA absorbance = 0.828 ?? 0.137). Fish that died early also had a significantly greater number of gill filaments occluded with bubbles than those that survived 96 h. Conversely, fish that survived for 96 h had a significantly higher median fin severity ranking than those that died early. Our results indicate that fish with moderate to high levels of Rs infection are more vulnerable to the effects of dissolved gas supersaturation (DGS) and die sooner than fish with lower levels of Rs infection. However, there is a substantial amount of individual variation in susceptibility to the apparent cumulative effects of DGS and Rs infection. Collectively, our findings have important implications to programs designed to monitor the prevalence and severity of GBT in juvenile salmonids in areas like the Columbia River basin and perhaps elsewhere.

  1. Environmental Influences on the Spatial Ecology of Juvenile Smalltooth Sawfish (Pristis pectinata): Results from Acoustic Monitoring

    PubMed Central

    Simpfendorfer, Colin A.; Yeiser, Beau G.; Wiley, Tonya R.; Poulakis, Gregg R.; Stevens, Philip W.; Heupel, Michelle R.

    2011-01-01

    To aid recovery efforts of smalltooth sawfish (Pristis pectinata) populations in U.S. waters a research project was developed to assess how changes in environmental conditions within estuarine areas affected the presence, movements, and activity space of this endangered species. Forty juvenile P. pectinata were fitted with acoustic tags and monitored within the lower 27 km of the Caloosahatchee River estuary, Florida, between 2005 and 2007. Sawfish were monitored within the study site from 1 to 473 days, and the number of consecutive days present ranged from 1 to 125. Residency index values for individuals varied considerably, with annual means highest in 2005 (0.95) and lowest in 2007 (0.73) when several P. pectinata moved upriver beyond detection range during drier conditions. Mean daily activity space was 1.42 km of river distance. The distance between 30-minute centers of activity was typically <0.1 km, suggesting limited movement over short time scales. Salinity electivity analysis demonstrated an affinity for salinities between 18 and at least 24 psu, suggesting movements are likely made in part, to remain within this range. Thus, freshwater flow from Lake Okeechobee (and its effect on salinity) affects the location of individuals within the estuary, although it remains unclear whether or not these movements are threatening recovery. PMID:21347294

  2. Urinary iodine and stable isotope analysis to examine habitat influences on thyroid hormones among coastal dwelling American alligators.

    PubMed

    Boggs, Ashley S P; Hamlin, Heather J; Nifong, James C; Kassim, Brittany L; Lowers, Russell H; Galligan, Thomas M; Long, Stephen E; Guillette, Louis J

    2016-01-15

    The American alligator, generally a freshwater species, is known to forage in marine environments despite the lack of a salt secreting gland found in other crocodylids. Estuarine and marine foraging could lead to increased dietary uptake of iodine, a nutrient necessary for the production of thyroid hormones. To explore the influence of dietary iodine on thyroid hormone health of coastal dwelling alligators, we described the seasonal plasma thyroxine and triiodothyronine concentrations measured by radioimmunoassay and urinary iodine (UI) concentrations measured by inductively coupled plasma mass spectrometry. We also analyzed long-term dietary patterns through stable isotope analysis of scute tissue. Snout-to-vent length (SVL) was a significant factor among UI and stable isotope analyses. Large adult males greater than 135cm SVL had the highest UI concentrations but did not display seasonality of thyroid hormones. Alligators under 135 SVL exhibited seasonality in thyroid hormones and a positive relationship between UI and triiodothyronine concentrations. Isotopic signatures provided supporting evidence that large males predominantly feed on marine/estuarine prey whereas females showed reliance on freshwater/terrestrial prey supplemented by marine/estuarine prey. UI measurement provided immediate information that correlated to thyroid hormone concentrations whereas stable isotope analysis described long-term dietary patterns. Both techniques demonstrate that adult alligators in coastal environments are utilizing estuarine/marine habitats, which could alter thyroid hormone physiology. PMID:26684734

  3. Influence of prey type on nickel and thallium assimilation, subcellular distribution and effects in juvenile fathead minnows (Pimephales promelas).

    PubMed

    Lapointe, Dominique; Gentès, Sophie; Ponton, Dominic E; Hare, Landis; Couture, Patrice

    2009-11-15

    Because fish take up metals from prey, it is important to measure factors controlling metal transfer between these trophic levels so as to explain metal bioaccumulation and effects in fish. To achieve this, we exposed two types of invertebrates, an oligochaete (Tubifex tubifex) and a crustacean (Daphnia magna), to environmentally relevant concentrations of two important contaminants, nickel (Ni) and thallium (Tl), and fed these prey to juvenile fathead minnows (Pimephales promelas). We then measured the assimilation efficiency (AE), subcellular distribution and effects of these metals in fish. Fish assimilated dietary Tl more efficiently from D. magna than from T. tubifex, and more efficiently than Ni, regardless of prey type. However, the proportion of metal bound to prey subcellular fractions that are likely to be trophically available (TAM) had no significant influence on the efficiency with which fish assimilated Ni or Tl. In fish, the majority of their Ni and Tl was bound to subcellular fractions that are purportedly detoxified, and prey type had a significant influence on the proportion of detoxified Ni and Tl in fish. We measured higher activities of cytochrome C oxidase and glutathione S-transferase in fish fed D. magna compared to fish fed T. tubifex, regardless of the presence or absence of Ni or Tl in prey. However, we measured decreased activities of glutathione S-transferase and nucleoside diphosphate kinase in fish fed Tl-contaminated D. magna compared to fish from the three other treatment levels. PMID:20028068

  4. Short-term exposure to municipal wastewater influences energy, growth, and swimming performance in juvenile Empire Gudgeons (Hypseleotris compressa).

    PubMed

    Melvin, Steven D

    2016-01-01

    Effectively treating domestic wastewater is paramount for preserving the health of aquatic ecosystems. Various technologies exist for wastewater treatment, ranging from simple pond-based systems to advanced filtration, and it is important to evaluate the potential for these different options to produce water that is acceptable for discharge. Sub-lethal responses were therefore assessed in juvenile Empire Gudgeons (Hypseleotris compressa) exposed for a period of two weeks to control, 12.5, 25, 50, and 100% wastewater treated through a multi-stage constructed wetland (CW) treatment system. Effects on basic energy reserves (i.e., lipids and protein), growth and condition, and swimming performance were quantified following exposure. A significant increase in weight and condition was observed in fish exposed to 50 and 100% wastewater dilutions, whereas whole-body lipid content was significantly reduced in these treatments. Maximum swimming velocity increased in a dose-dependent manner amongst treatment groups (although not significantly), whereas angular velocity was significantly reduced in the 50 and 100% dilutions. Results demonstrate that treated domestic wastewater can influence the growth and swimming performance of fish, and that such effects may be related to alterations to primary energy stores. However, studies assessing complex wastewaters present difficulties when it comes to interpreting responses, as many possible factors can contribute towards the observed effects. Future research should address these uncertainties by exploring interaction between nutrients, basic water quality characteristics and relevant contaminant mixtures, for influencing the energetics, growth, and functional performance of aquatic animals. PMID:26073539

  5. Factors influencing the survival of outmigrating juvenile salmonids through multiple dam passages: an individual-based approach.

    PubMed

    Elder, Timothy; Woodley, Christa M; Weiland, Mark A; Strecker, Angela L

    2016-08-01

    Substantial declines of Pacific salmon populations have occurred over the past several decades related to large-scale anthropogenic and climatic changes in freshwater and marine environments. In the Columbia River Basin, migrating juvenile salmonids may pass as many as eight large-scale hydropower projects before reaching the ocean; however, the cumulative effects of multiple dam passages are largely unknown. Using acoustic transmitters and an extensive system of hydrophone arrays in the Lower Columbia River, we calculated the survival of yearling Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) passing one, two, or three dams. We applied a unique index of biological characteristics and environmental exposures, experienced by each fish individually as it migrated downstream, in order to examine which factors most influence salmonid survival. High outflow volumes led to involuntary spill in 2011 and created an environment of supersaturated dissolved gas concentrations. In this environment, migrating smolt survival was strongly influenced by barometric pressure, fish velocity, and water temperature. The effect of these variables on survival was compounded by multiple dam passages compared to fish passing a single dam. Despite spatial isolation between dams in the Lower Columbia River hydrosystem, migrating smolt appear to experience cumulative effects akin to a press disturbance. In general, Chinook salmon and steelhead respond similarly in terms of survival rates and responses to altered environmental conditions. Management actions that limit dissolved gas concentrations in years of high flow will benefit migrating salmonids at this life stage. PMID:27547362

  6. Early Hormonal Influences on Childhood Sex-Typed Activity and Playmate Preferences: Implications for the Development of Sexual Orientation.

    ERIC Educational Resources Information Center

    Berenbaum, Sheri A.; Snyder, Elizabeth

    1995-01-01

    Examined hormonal influences on activity and playmate preferences in children with congenital adrenal hyperplasia (CAH) age 2.5 to 12 years and their relatives. Found that girls with CAH preferred boys' toys and activities, whereas boys with CAH did not differ significantly from controls. Activity and playmate preferences were not related. (MDM)

  7. The influence of growth hormone deficiency, growth hormone replacement therapy, and other aspects of hypopituitarism on fracture rate and bone mineral density. .

    PubMed

    Wüster, C; Abs, R; Bengtsson, B A; Bennmarker, H; Feldt-Rasmussen, U; Hernberg-Ståhl, E; Monson, J P; Westberg, B; Wilton, P

    2001-02-01

    To assess the influence of factors affecting fracture risk and bone density in adult hypopituitary patients with growth hormone deficiency (GHD), data from a large-scale pharmacoepidemiological survey (the Pharmacia & Upjohn International Metabolic Database [KIMS]) were analyzed and compared with data from a control population (the European Vertebral Osteoporosis Study [EVOS]). The KIMS group consisted of 2084 patients (1112 men and 972 women) with various types of pituitary disease and EVOS consisted of 1176 individuals (581 men and 595 women). Fracture and bone mineral density (BMD) data were available from 2024 patients from the KIMS group and 392 patients from EVOS. The prevalence of fractures in patients with hypopituitarism was 2.66 times that in the non-GH-deficient EVOS population. Adult-onset hypopituitarism with GHD was associated with a higher fracture risk than childhood-onset disease, and patients with isolated GHD had a similar prevalence of fractures to those with multiple pituitary hormone deficiencies. Hormonal replacement therapy with L-thyroxine, glucocorticoids, and sex steroids did not affect the risk of fracture in KIMS patients. In addition, fracture rates in KIMS were independent of body mass index (BMI) and the country of origin. However, smoking was associated with a higher fracture rate in this group. In summary, this is the first large-scale analysis to support the hypothesis of an increased fracture risk in adult patients with hypopituitarism and GHD. This increased risk appears to be attributable to GHD alone, rather than to other pituitary hormone deficiencies or to their replacement therapy. PMID:11204440

  8. Influence of dietary carbohydrate on the metabolism of juvenile Litopenaeus stylirostris.

    PubMed

    Rosas; Cuzon; Gaxiola; Arena; Lemaire; Soyez; Van Wormhoudt A

    2000-06-28

    The effect of dietary carbohydrates (CBH) on glucose and glycogen, digestive enzymes, ammonia excretion and osmotic pressure and osmotic capacity of Litopenaeus stylirostris juveniles was studied. The increase of CBH, ranging between 1 and 33%, stimulates activities of alpha-amylase and alpha-glucosidase in the hepatopancreas. High levels of glucose in hemolymph and of glycogen in the hepatopancreas were reached at the highest level of dietary CBH; however, the kinetics of accumulation is different. Shrimps fed with low level of CBH needed 3 h to reached glucose peak, whereas only 1 h is necessary for high CBH levels. A saturation curve was observed in glycogen level and alpha-amylase activity with maximum values in shrimp-fed diets containing 21% CBH. This level could be used to be included as a maximum shrimp dietary CBH level. Pre-prandial glycogen levels were observed in shrimp fed a diet containing 1% CBH, indicating an important gluconeogenesis, which affected the protein metabolism. The present results show that a diet containing 10% CBH may not be enough to cover the CBH requirement, which could be satisfied by dietary protein content. The low osmotic capacity observed in shrimp fed on a diet containing 10% CBH coincided with a relatively low post-prandial nitrogen excretion which reflects a low concentration of amino acids circulating in hemolymph, which affected the osmotic pressure and the osmotic capacity. These results reflect the high plasticity of shrimp species to use protein to obtain metabolic energy from food and its limited capacity for processing dietary CBH. PMID:10841934

  9. Influence of swimming speed on metabolic rates of juvenile pacific bluefin tuna and yellowfin tuna.

    PubMed

    Blank, Jason M; Farwell, Charles J; Morrissette, Jeffery M; Schallert, Robert J; Block, Barbara A

    2007-01-01

    Bluefin tuna are endothermic and have higher temperatures, heart rates, and cardiac outputs than tropical tuna. We hypothesized that the increased cardiovascular capacity to deliver oxygen in bluefin may be associated with the evolution of higher metabolic rates. This study measured the oxygen consumption of juvenile Pacific bluefin Thunnus orientalis and yellowfin tuna Thunnus albacares swimming in a swim-tunnel respirometer at 20 degrees C. Oxygen consumption (Mo2) of bluefin (7.1-9.4 kg) ranged from 235+/-38 mg kg(-1) h(-1) at 0.85 body length (BL) s(-1) to 498+/-55 mg kg(-1) h(-1) at 1.80 BL s(-1). Minimal metabolic rates of swimming bluefin were 222+/-24 mg O(2) kg(-1) h(-1) at speeds of 0.75 to 1.0 BL s(-1). Mo2 of T. albacares (3.7-7.4 kg) ranged from 164+/-18 mg kg(-1) h(-1) at 0.65 BL s(-1) to 405+/-105 mg kg(-1) h(-1) at 1.8 BL s(-1). Bluefin tuna had higher metabolic rates than yellowfin tuna at all swimming speeds tested. At a given speed, bluefin had higher metabolic rates and swam with higher tailbeat frequencies and shorter stride lengths than yellowfin. The higher M dot o2 recorded in Pacific bluefin tuna is consistent with the elevated cardiac performance and enhanced capacity for excitation-contraction coupling in cardiac myocytes of these fish. These physiological traits may underlie thermal-niche expansion of bluefin tuna relative to tropical tuna species. PMID:17252513

  10. Neonatal thyroid-stimulating hormone level is influenced by neonatal, maternal, and pregnancy factors.

    PubMed

    Trumpff, Caroline; Vandevijvere, Stefanie; Moreno-Reyes, Rodrigo; Vanderpas, Jean; Tafforeau, Jean; Van Oyen, Herman; De Schepper, Jean

    2015-11-01

    The percentage of newborns with a neonatal whole blood thyroid-stimulating hormone (TSH) greater than 5 mIU/L has been used as an indicator of iodine deficiency at the population level. However, TSH levels in newborns may be influenced by many factors other than iodine status. The objective of this study was to identify neonatal, maternal, and pregnancy-related determinants of neonatal TSH levels in a retrospective cohort study. The study sample included 313 Belgian mothers and their 4- to 5-year-old children. The children had a neonatal TSH concentration between 0 and 15 mIU/L at neonatal screening, and blood samples were collected 3 to 5 days after birth. Children with suspected congenital hypothyroidism (neonatal TSH level >15 mIU/L), prematurely born (i.e., <37 weeks), or with a low birth weight (i.e., <2500 g) were excluded. Information about maternal and birth-related determinants was collected from the neonatal screening center via a self-administered questionnaire filled in by the mother together with the child's health booklet. Higher TSH levels were found in spring and winter compared to summer and autumn (P = .011). Higher TSH levels were associated with lifetime smoking behavior (up to child birth) in the mother (P = .005), lower weight gain during pregnancy (P = .014), and longer pregnancies (P = .003). This study showed that several neonatal, maternal, and pregnancy-related determinants are influencing neonatal TSH level. PMID:26428622

  11. What is the influence of hormone therapy on homocysteine and crp levels in postmenopausal women?

    PubMed Central

    Lakryc, Eli Marcelo; Machado, Rogério Bonassi; Soares, José Maria; Fernandes, César Eduardo; Baracat, Edmund Chada

    2015-01-01

    OBJECTIVE: To evaluate the influence of estrogen therapy and estrogen-progestin therapy on homocysteine and C-reactive protein levels in postmenopausal women. METHODS: In total, 99 postmenopausal women were included in this double-blind, randomized clinical trial and divided into three groups: Group A used estrogen therapy alone (2.0 mg of 17β-estradiol), Group B received estrogen-progestin therapy (2.0 mg of 17 β-estradiol +1.0 mg of norethisterone acetate) and Group C received a placebo (control). The length of treatment was six months. Serum measurements of homocysteine and C-reactive protein were carried out prior to the onset of treatment and following six months of therapy. RESULTS: After six months of treatment, there was a 20.7% reduction in homocysteine levels and a 100.5% increase in C-reactive protein levels in the group of women who used estrogen therapy. With respect to the estrogen-progestin group, there was a 12.2% decrease in homocysteine levels and a 93.5% increase in C-reactive protein levels. CONCLUSION: Our data suggested that hormone therapy (unopposed estrogen or estrogen associated with progestin) may have a positive influence on decreasing cardiovascular risk due to a significant reduction in homocysteine levels. PMID:25789519

  12. The influence of gonadal hormones on conditioned fear extinction in healthy humans.

    PubMed

    Milad, M R; Zeidan, M A; Contero, A; Pitman, R K; Klibanski, A; Rauch, S L; Goldstein, J M

    2010-07-14

    Recent rodent studies suggest that gonadal hormones influence extinction of conditioned fear. Here we investigated sex differences in, and the influence of estradiol and progesterone on, fear extinction in healthy humans. Men and women underwent a two-day paradigm in which fear conditioning and extinction learning took place on day 1 and extinction recall was tested on day 2. Visual cues were used as the conditioned stimuli and a mild electric shock was used as the unconditioned stimulus. Skin conductance was recorded throughout the experiment and used to measure conditioned responses (CRs). Blood samples were obtained from all women to measure estradiol and progesterone levels. We found that higher estradiol during extinction learning enhanced subsequent extinction recall but had no effects on fear acquisition or extinction learning itself. Sex differences were only observed during acquisition, with men exhibiting significantly higher CRs. After dividing women into low- and high-estradiol groups, men showed comparable extinction recall to high-estradiol women, and both of these groups showed higher extinction recall than low-estradiol women. Therefore, sex differences in extinction memory emerged only after taking into account women's estradiol levels. Lower estradiol may impair extinction consolidation in women. These findings could have practical applications in the treatment of anxiety disorders through cognitive and behavioral therapies. PMID:20412837

  13. The influence of gonadal hormones on conditioned fear extinction in healthy humans

    PubMed Central

    Milad, Mohammed R; Zeidan, Mohamed A.; Contero, Angelica; Pitman, Roger K.; Klibanski, Anne; Rauch, Scott L.; Goldstein, Jill M.

    2010-01-01

    Recent rodent studies suggest that gonadal hormones influence extinction of conditioned fear. Here we investigated sex differences in, and the influence of estradiol and progesterone on, fear extinction in healthy humans. Men and women underwent a two-day paradigm in which fear conditioning and extinction learning took place on day 1 and extinction recall was tested on day 2. Visual cues were used as the conditioned stimuli and a mild electric shock was used as the unconditioned stimulus. Skin conductance was recorded throughout the experiment and used to measure conditioned responses (CRs). Blood samples were obtained from all women to measure estradiol and progesterone levels. We found that higher estradiol during extinction learning enhanced subsequent extinction recall but had no effects on fear acquisition or extinction learning itself. Sex differences were only observed during acquisition, with men exhibiting significantly higher CRs. After dividing women into low- and high-estradiol groups, men showed comparable extinction recall to high-estradiol women, and both of these groups showed higher extinction recall than low-estradiol women. Therefore, sex differences in extinction memory emerged only after taking into account women's estradiol levels. Lower estradiol may impair extinction consolidation in women. These findings could have practical applications in the treatment of anxiety disorders through cognitive and behavioral therapies. PMID:20412837

  14. Influence of light and feeding conditions on swimming activity rhythms of larval and juvenile turbot. Scophthalmus maximus L.: An experimental study

    NASA Astrophysics Data System (ADS)

    Champalbert, Gisèle; Le Direach-Boursier, Laurence

    1998-12-01

    Turbot larvae are transported towards coastal nursery areas and live in very shallow waters. Food availability is assumed to be an important factor that retains them in such areas. To study the effects of a biotic factor (food) and an abiotic factor (light) that strongly influence behavioural mechanisms, experiments were carried out on laboratory-reared animals: larvae (1 cm), post-larvae (1.2 to 2.5 cm) and early juveniles (6 to 7 cm). Three kinds of apparatus and methods were used to record variations in swimming activity: (1) a phototaxis device to study orientation reactions in horizontal tanks; (2) actographs with infrared photoelectric barriers fitted around vertical cylindrical tanks; and (3) video cameras and cylindrical tanks. Observations were performed in total darkness and under dark-light regimes. Different types and quantities of food were provided to the fish. Larvae and juveniles of turbot exhibited a positive phototaxis from 1 to 1000 μW cm -2. At intensities lower than or equal to 0.1 μW cm -2, they did not exhibit clear reactions toward or away from the light. Turbot larvae and juveniles kept in total darkness did not show a clear rhythm of activity. Under natural illumination as well as in artificial LD conditions of similar periodicity, larvae swam by day and night. Live food ( Artemia nauplii or juvenile mysids) induced an immediate increase in activity or the maintenance of a high level of activity, which decreased over the following days. Recently metamorphosed turbot kept under LD conditions exhibited a clear rhythm with a nocturnal maximum. Food given at night did not induce swimming changes as long as food density remained low. At higher prey concentrations, increased activity during feeding was followed by reduced activity for more than 24 hours. A similar response pattern was noted when active food was given in large quantities during the day: juveniles displayed an immediate increase in activity, which subsequently decreased. Regular

  15. Influence of species, size and relative abundance on the outcomes of competitive interactions between brook trout and juvenile coho salmon

    USGS Publications Warehouse

    Thornton, Emily J; Duda, Jeff; Quinn, Thomas P

    2016-01-01

    Resource competition between animals is influenced by a number of factors including the species, size and relative abundance of competing individuals. Stream-dwelling animals often experience variably available food resources, and some employ territorial behaviors to increase their access to food. We investigated the factors that affect dominance between resident, non-native brook trout and recolonizing juvenile coho salmon in the Elwha River, WA, USA, to see if brook trout are likely to disrupt coho salmon recolonization via interference competition. During dyadic laboratory feeding trials, we hypothesized that fish size, not species, would determine which individuals consumed the most food items, and that species would have no effect. We found that species, not size, played a significant role in dominance; coho salmon won 95% of trials, even when only 52% the length of their brook trout competitors. As the pairs of competing fish spent more time together during a trial sequence, coho salmon began to consume more food, and brook trout began to lose more, suggesting that the results of early trials influenced fish performance later. In group trials, we hypothesized that group composition and species would not influence fish foraging success. In single species groups, coho salmon consumed more than brook trout, but the ranges overlapped. Brook trout consumption remained constant through all treatments, but coho salmon consumed more food in treatments with fewer coho salmon, suggesting that coho salmon experienced more intra- than inter-specific competition and that brook trout do not pose a substantial challenge. Based on our results, we think it is unlikely that competition from brook trout will disrupt Elwha River recolonization by coho salmon.

  16. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions.

    PubMed

    Carlos de Sá, Luís; Luís, Luís G; Guilhermino, Lúcia

    2015-01-01

    Microplastics (MP) are ubiquitous contaminants able to cause adverse effects on organisms. Three hypotheses were tested here: early Pomatoschistus microps juveniles can ingest MP; the presence of MP may reduce fish predatory performance and efficiency; developmental conditions may influence the preyselection capability of fish. Predatory bioassays were carried out with juveniles from two estuaries with differences in environmental conditions: Minho (M-est) and Lima (L-est) Rivers (NW Iberian coast). Polyethylene MP spheres (3 types) alone and in combination with Artemia nauplii were offered as prey.All the MP types were ingested, suggesting confusion with food. Under simultaneous exposure to MP and Artemia, L-est fish showed a significant reduction of the predatory performance (65%) and efficiency (upto 50%), while M-est fish did not, suggesting that developmental conditions may influence the preyselection capability of fish. The MP-induced reduction of food intake may decrease individual and population fitness. PMID:25463733

  17. Does the presence of microplastics influence the acute toxicity of chromium(VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations.

    PubMed

    Luís, Luís G; Ferreira, Pedro; Fonte, Elsa; Oliveira, Miguel; Guilhermino, Lúcia

    2015-07-01

    Toxicological interactions between microplastics (MP) and other environmental contaminants are of grave concern. Here, the potential influence of MP in the short-term toxicity of chromium to early juveniles of Pomatoschistus microps was investigated. Three null hypotheses were tested: (1) exposure to Cr(VI) concentrations in the low ppm range does not induce toxic effects on juveniles; (2) the presence of microplastics in the water does not influence the acute toxicity of Cr(VI) to juveniles; (3) the environmental conditions of the natural habitat where fish developed do not influence their sensitivity to Cr(VI)-induced acute stress. Fish were collected in the estuaries of Minho (M-est) and Lima (L-est) Rivers (NW Iberian Peninsula) that have several abiotic differences, including in the water and sediment concentrations of various environmental contaminants. After acclimatization to laboratory conditions, two 96h acute bioassays were carried out with juveniles from both estuaries to: (i) investigate the effects of Cr(VI) alone; (ii) investigate the effects of Cr(VI) in the presence of MP (polyethylene spheres 1-5μm ∅). Cr(VI) alone induced mortality (96h-LC50s: 14.4-30.5mg/l) and significantly decreased fish predatory performance (≤74%). Thus, in the range of concentrations tested (5.6-28.4mg/l) Cr(VI) was found to be toxic to P. microps early juveniles, therefore, we rejected hypothesis 1. Under simultaneous exposure to Cr(VI) and MP, a significant decrease of the predatory performance (≤67%) and a significant inhibition of AChE activity (≤31%) were found. AChE inhibition was not observed in the test with Cr(VI) alone and MP alone caused an AChE inhibition ≤21%. Mixture treatments containing Cr(VI) concentration ≥3.9mg/l significantly increased LPO levels in L-est fish, an effect that was not observed under Cr(VI) or MP single exposures. Thus, toxicological interactions between Cr(VI) and MP occurred, therefore, we rejected hypothesis 2. In the

  18. Dual-axis hormonal covariation in adolescence and the moderating influence of prior trauma and aversive maternal parenting.

    PubMed

    Simmons, Julian G; Byrne, Michelle L; Schwartz, Orli S; Whittle, Sarah L; Sheeber, Lisa; Kaess, Michael; Youssef, George J; Allen, Nicholas B

    2015-09-01

    Adversity early in life can disrupt the functioning of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes and increase risk for negative health outcomes. The interplay between these axes and the environment is complex, and understanding needs to be advanced by the investigation of the multiple hormonal relationships underlying these processes. The current study examined basal hormonal associations between morning levels of cortisol, testosterone, and dehydroepiandrosterone in a cohort of adolescents (mean age 15.56 years). The moderating influence of childhood adversity was also examined, as indexed by self-reported trauma (at mean age 14.91), and observed maternal aggressive parenting (at mean age 12.41). Between-person regressions revealed significant associations between hormones that were moderated by both measures of adversity. In females, all hormones positively covaried, but also interacted with adversity, such that positive covariation was typically only present when levels of trauma and/or aggressive parenting were low. In males, hormonal associations and interactions were less evident; however, interactions were detected for cortisol-testosterone - positively covarying at high levels of aggressive parenting but negatively covarying at low levels - and DHEA-cortisol - similarly positively covarying at high levels of parental aggression. These results demonstrate associations between adrenal and gonadal hormones and the moderating role of adversity, which is likely driven by feedback mechanisms, or cross-talk, between the axes. These findings suggest that hormonal changes may be the pathway through which early life adversity alters physiology and increases health risks, but does so differentially in the sexes; however further study is necessary to establish causation. PMID:25754696

  19. INFLUENCE OF SUMMER TEMPERATURE SPATIAL VARIABILITY ON DISTRIBUTION AND CONDITION OF JUVENILE COHO SALMON

    EPA Science Inventory

    abstract

    Temperature during the summer months can influence the distribution, abundance and physiology of stream salmonids such as coho salmon (Oncorhynchus kisutch). Effects can be direct, via physiological responses, as well as indirect, via limited food resources, alter...

  20. Diagnostic Labeling in Juvenile Court: How Do Descriptions of Psychopathy and Conduct Disorder Influence Judges?

    ERIC Educational Resources Information Center

    Murrie, Daniel C.; Boccaccini, Marcus T.; McCoy, Wendy; Cornell, Dewey G.

    2007-01-01

    This study examined the influence of diagnostic criteria and diagnostic labels for psychopathy or conduct disorder on judicial decisions. A national sample of judges (N = 326) rendered hypothetical dispositions based on 1 of 12 mock psychological evaluations. The evaluations varied the presence of 2 sets of diagnostic criteria (antisocial…

  1. Constitutional delay influences the auxological response to growth hormone treatment in children with short stature and growth hormone sufficiency.

    PubMed

    Gunn, Katherine C; Cutfield, Wayne S; Hofman, Paul L; Jefferies, Craig A; Albert, Benjamin B; Gunn, Alistair J

    2014-01-01

    In a retrospective, population based cohort study, we examined whether constitutional delay was associated with the growth response to growth hormone (GH) in children with short stature and normal GH responses. 70 patients were treated with 21 GH iu/m2/week from 1975 to 2013 throughout New Zealand. Demographic and auxological data were prospectively collected and standard deviation scores (SDS) were calculated for height (HtSDS), yearly growth velocity (GV-SDS), body mass index (BMI-SDS) and predicted adult height (PAH-SDS) at time of the last available bone age. In the first year, GH was associated with marked increase in HtSDS (+0.46 (0.19, 0.76), p < 0.001) and GV-SDS (from -1.9 (-3.6, -0.7) to +2.7 (0.45, 4.2), p < 0.001). The increase in HtSDS but not in GV-SDS was greatest with younger patients and greater bone age delay, with no effect of sex, BMI-SDS or baseline HtSDS. PAH-SDS increased with treatment (+0.94 (0.18, 1.5)); increased PAH-SDS was associated with less bone age delay and greater initial increase in HtSDS. This study shows that greater bone age delay was associated with greater initial improvement in height but less improvement in predicted adult heights, suggesting that children with very delayed bone ages may show accelerated maturation during GH treatment. PMID:25317732

  2. Influence of gonadal hormones on the behavioral effects of intermittent hypoxia in mice

    PubMed Central

    Jenkins, Richelle; Magalang, Ulysses J.; Nelson, Randy J.

    2014-01-01

    Obstructive sleep apnea (OSA) is characterized by repetitive upper airway obstruction resulting in cyclic intermittent hypoxia (IH) during sleep in affected individuals. OSA occurs more frequently in postmenopausal than premenopausal women and the severity of OSA increases after menopause. Gonadal hormones can influence brain and behavior; testosterone and estrogens in particular can enhance spatial learning and memory. We hypothesized that estrogens may protect mice from IH-induced hippocampal morphological and behavioral changes. To test this hypothesis we exposed intact or gonadectomized male and female mice to room air or IH [15 cycles/h, 8 h/day, fraction of inspired oxygen (FiO2) nadir of 5%] for a total of 30 days. During the final 4 days of IH, mice were tested for anxiety- and depressive-like behaviors. After cessation of IH exposure mice were tested on the Barnes maze and passive avoidance tests to assess learning and memory. Ovariectomy paired with IH treatment, impaired spatial learning and memory compared to all other female groups. Intact male mice receiving IH treatment also had impaired learning and memory compared with intact or castrated male mice exposed to room air. Learning and memory changes were mirrored by changes in basilar dendritic length of the CA1 region of the hippocampus. These data suggest that estrogens provide protection against IH-induced deficits, whereas androgens partially exacerbate IH-induced deficits on learning and memory. PMID:25552660

  3. Growth Hormone Influence on the Morphology and Size of the Mouse Meibomian Gland

    PubMed Central

    Liu, Yang; Knop, Erich; Knop, Nadja; Sullivan, David A.; List, Edward O.; Kopchick, John J.; Kam, Wendy R.; Ding, Juan

    2016-01-01

    Purpose. We hypothesize that growth hormone (GH) plays a significant role in the regulation of the meibomian gland. To test our hypothesis, we examined the influence of GH on mouse meibomian gland structure. Methods. We studied four groups of mice, including (1) bovine (b) GH transgenic mice with excess GH; (2) GH receptor (R) antagonist (A) transgenic mice with decreased GH; (3) GHR knockout (−/−) mice with no GH activity; and (4) wild type (WT) control mice. After mouse sacrifice, eyelids were processed for morphological and image analyses. Results. Our results show striking structural changes in the GH-deficient animals. Many of the GHR−/− and GHA meibomian glands featured hyperkeratinized and thickened ducts, acini inserting into duct walls, and poorly differentiated acini. In contrast, the morphology of WT and bGH meibomian glands appeared similar. The sizes of meibomian glands of bGH mice were significantly larger and those of GHA and GHR−/− mice were significantly smaller than glands of WT mice. Conclusions. Our findings support our hypothesis that the GH/IGF-1 axis plays a significant role in the control of the meibomian gland. In addition, our data show that GH modulates the morphology and size of this tissue. PMID:26981277

  4. Growth Hormone Influence on the Morphology and Size of the Mouse Meibomian Gland.

    PubMed

    Liu, Yang; Knop, Erich; Knop, Nadja; Sullivan, David A; List, Edward O; Kopchick, John J; Kam, Wendy R; Ding, Juan

    2016-01-01

    Purpose. We hypothesize that growth hormone (GH) plays a significant role in the regulation of the meibomian gland. To test our hypothesis, we examined the influence of GH on mouse meibomian gland structure. Methods. We studied four groups of mice, including (1) bovine (b) GH transgenic mice with excess GH; (2) GH receptor (R) antagonist (A) transgenic mice with decreased GH; (3) GHR knockout (-/-) mice with no GH activity; and (4) wild type (WT) control mice. After mouse sacrifice, eyelids were processed for morphological and image analyses. Results. Our results show striking structural changes in the GH-deficient animals. Many of the GHR-/- and GHA meibomian glands featured hyperkeratinized and thickened ducts, acini inserting into duct walls, and poorly differentiated acini. In contrast, the morphology of WT and bGH meibomian glands appeared similar. The sizes of meibomian glands of bGH mice were significantly larger and those of GHA and GHR-/- mice were significantly smaller than glands of WT mice. Conclusions. Our findings support our hypothesis that the GH/IGF-1 axis plays a significant role in the control of the meibomian gland. In addition, our data show that GH modulates the morphology and size of this tissue. PMID:26981277

  5. Influence of competition playing venue on the hormonal responses, state anxiety and perception of effort in elite basketball athletes.

    PubMed

    Arruda, Ademir F S; Aoki, Marcelo S; Freitas, Camila G; Drago, Gustavo; Oliveira, Roney; Crewther, Blair T; Moreira, Alexandre

    2014-05-10

    This study examined the influence of competition playing venue on the hormonal responses, state anxiety and perception of effort in elite basketball players. Eighteen males from two basketball teams were monitored during two competitive matches that were played against each other on a home and away basis. Salivary testosterone (T) and cortisol (C) concentrations were measured before and after each match. The Competitive State Anxiety Inventory-2 (CSAI-2) test was also administrated prior to each match and session ratings of perceived exertion (RPE) were taken post-game. Playing at home was accompanied by elevated pre-match T concentration, as compared to playing away (p<0.05). The matches played at home were also won. Salivary T and C concentrations were similarly elevated across the matches (percent changes from pre to post) played either at home or away. No significant differences in state anxiety and perception of effort were identified between the playing venues. Pre-match T and C concentrations and the percent changes in these hormones were significantly related to somatic anxiety, especially when playing at home (p<0.05). In conclusion, the competition playing venue appeared to influence athlete salivary hormonal responses prior to elite basketball matches. These hormonal responses were associated with player's anxiety state, which might contribute to performance and the eventual match outcomes. PMID:24642001

  6. Early menopausal hormone use influences brain regions used for visual working memory

    PubMed Central

    Berent-Spillson, Alison; Persad, Carol C.; Love, Tiffany; Tkaczyk, Anne; Wang, Heng; Reame, Nancy K.; Frey, Kirk A.; Zubieta, Jon-Kar; Smith, Yolanda R.

    2010-01-01

    Objective Cognitive benefit of postmenopausal hormone use is controversial; however, timing treatment close to menopause may increase the likelihood of preserving cognitive function. We examined effects of early-initiation hormone use on visual working memory, hypothesizing that long-term hormone use is associated with greater brain activation during visual working memory. Methods This is a cross-sectional comparison of long-term early hormone users – current (n=13) and past (n=24, 2.1±1.0 years off hormones) – to never-users (n=18), using a visual memory task and functional MRI. We evaluated 55 women over age 60 at the University of Michigan’s General Clinical Research Center. Hormone users had completed at least ten continuous years of conjugated equine estrogens with or without medroxyprogesterone acetate, began within two years of menopause. Women were excluded for illness, medication, intermittent estrogen use, phytoestrogen use, recent smoking, and MRI contraindications. The primary outcome was functional MRI-detected brain activity during the visual memory task. Results Compared to never-users, both hormone-user groups had increased activation in the frontal and parietal cortices, insula, hippocampus, and cingulate; combined hormone-users also had increased activation in the putamen and raphe (corrected p<0.05 or uncorrected p<0.001 with a priori hypothesis). Across the entire sample, medial temporal cortex (p<0.000 right; p<0.018 left) and right hippocampus (p<0.000) positively correlated with task performance. Conclusions Hormone use was associated with increased brain activation during the visual memory task, in regions used for visual working memory. A positive correlation between activation and task performance suggests that early-initiated long-term postmenopausal hormone use may benefit visual working memory. PMID:20300040

  7. Juvenile Arthritis

    MedlinePlus

    Juvenile arthritis (JA) is arthritis that happens in children. It causes joint swelling, pain, stiffness, and loss of motion. It can affect any joint, but ... of JA that children get is juvenile idiopathic arthritis. There are several other forms of arthritis affecting ...

  8. Influence of temperature on thyroid hormone signaling and endocrine disruptor action in Rana (Lithobates) catesbeiana tadpoles.

    PubMed

    Hammond, S Austin; Veldhoen, Nik; Helbing, Caren C

    2015-08-01

    Thyroid hormones (THs) are essential for normal growth, development, and metabolic control in vertebrates. Their absolute requirement during amphibian metamorphosis provides a powerful means to detect and assess the impact of environmental contaminants on TH signaling in the field and laboratory. As poikilotherms, frogs can experience considerable temperature fluctuations. Previous work demonstrated that low temperature prevents precocious TH-dependent induction of metamorphosis. However, a shift to a permissive higher temperature allows resumption of the induced metamorphic program regardless of whether or not TH remains. We investigated the impact of temperature on the TH-induced gene expression programs of premetamorphic Rana (Lithobates) catesbeiana tadpoles following a single injection of 10pmol/g body wet weight 3,3',5-triiodothyronine (T3). Abundance profiles of several T3-responsive mRNAs in liver, brain, lung, back skin, and tail fin were characterized under permissive (24°C), nonpermissive (5°C), or temperature shift (5-24°C) conditions. While responsiveness to T3 was retained to varying degrees at nonpermissive temperature, T3 modulation of thibz occurred in all tissues at 5°C suggesting an important role for this transcription factor in initiation of T3-dependent gene expression programs. Low temperature immersion of tadpoles in water containing 10nM T3 and the nonsteroidal anti-inflammatory drug, ibuprofen, or the antimicrobial agent, triclosan, perturbed some aspects of the gene expression programs of tail fin and back skin that was only evident upon temperature shift. Such temporal uncoupling of chemical exposure and resultant biological effects in developing frogs necessitates a careful evaluation of environmental temperature influence in environmental monitoring programs. PMID:25583582

  9. Factors affecting attitudes toward juvenile sex offenders.

    PubMed

    Sahlstrom, Kimberly J; Jeglic, Elizabeth L

    2008-01-01

    This study investigated attitudes toward juvenile sex offenders and factors influencing those attitudes. Additionally, the influences of perpetrator characteristics such as age, gender, and ethnicity on societal attitudes towards intervention requirements were also investigated. Overall, attitudes toward juvenile sex offenders and their treatment amenability were negative. No differences in attitudes toward juvenile sex offenders were found between those who had been victims of sexual abuse and those that had not. Sex offenses committed by juvenile female sex offenders were viewed to be more serious and require more intervention than those committed by juvenile male sex offenders. PMID:19042245

  10. Juvenile Firesetting.

    PubMed

    Peters, Brittany; Freeman, Bradley

    2016-01-01

    Juvenile firesetting is a significant cause of morbidity and mortality in the United States. Male gender, substance use, history of maltreatment, interest in fire, and psychiatric illness are commonly reported risk factors. Interventions that have been shown to be effective in juveniles who set fires include cognitive behavior therapy and educational interventions, whereas satiation has not been shown to be an effective intervention. Forensic assessments can assist the legal community in adjudicating youth with effective interventions. Future studies should focus on consistent assessment and outcome measures to create more evidence for directing evaluation and treatment of juvenile firesetters. PMID:26593122

  11. Profiles of thyrotropin, thyroid hormones, follicular cells and type I deiodinase gene expression during ontogenetic development of tilapia larvae and juveniles.

    PubMed

    Hsu, Chih-Wei; Tsai, Shu-Chuan; Shen, Shu Chane; Wu, Su Mei

    2014-10-01

    The aims of the present study are to determine whether triiodothyronine (T3) and/or thyroxine (T4) in tilapia larvae is gifted through the mother, and to investigate the change profiles of thyrotropin (TSH), thyroid follicular cells and type I deiodinase (D1) gene expression following larval development. T3 and T4 contents were measured using radioimmunoassay, thyrotropin was observed using immunocytochemistry, and the D1 gene was cloned and measured using real-time PCR. Results indicated that the β-TSH-immunoreactive cells (thyrotropin ICC) signals were detected at 9 dph (i.e., 9 days of post-hatching). Thyroid follicular cells were observed first at 3 dph, while the T3 contents of the whole body gradually decreased before 11 dph. T4 contents were detected until 13 dph, with higher secretion during 19-21 dph. In addition, the T3 synthesis was not inhibited by thiourea (TU) before 13 dph, but the TU response in the larvae appeared after 13 dph. Type I deiodinase (D1: GenBank accession number KC591724) was found to contain 2444 bases and encoded 248 amino acids. The D1 mRNA expression began to increase at 13 dph, with a higher expression during 15-19 dph. These results suggested that the T3 contents were maternally derived before 13 dph. Both thyroid hormonal changes and some parameters related to thyroid hormone synthesis in ontogenetic tilapia are discussed. PMID:24894980

  12. The influence of trilostane on steroid hormone metabolism in canine adrenal glands and corpora lutea-an in vitro study.

    PubMed

    Ouschan, C; Lepschy, M; Zeugswetter, F; Möstl, E

    2012-03-01

    Trilostane is widely used to treat hyperadrenocorticism in dogs. Trilostane competitively inhibits the enzyme 3-beta hydroxysteroid dehydrogenase (3β-HSD), which converts pregnenolone (P5) to progesterone (P4) and dehydroepiandrosterone (DHEA) to androstendione (A4). Although trilostane is frequently used in dogs, the molecular mechanism underlying its effect on canine steroid hormone biosynthesis is still an enigma. Multiple enzymes of 3β-HSD have been found in humans, rats and mice and their presence might explain the contradictory results of studies on the effectiveness of trilostane. We therefore investigated the influence of trilostane on steroid hormone metabolism in dogs by means of an in vitro model. Canine adrenal glands from freshly euthanized dogs and corpora lutea (CL) were incubated with increasing doses of trilostane. Tritiated P5 or DHEA were used as substrates. The resulting radioactive metabolites were extracted, separated by thin layer chromatography and visualized by autoradiography. A wide variety of radioactive metabolites were formed in the adrenal glands and in the CL, indicating high metabolic activity in both tissues. In the adrenal cortex, trilostane influences the P5 metabolism in a dose- and time-dependent manner, while DHEA metabolism and metabolism of both hormones in the CL were unaffected. The results indicate for the first time that there might be more than one enzyme of 3β-HSD present in dogs and that trilostane selectively inhibits P5 conversion to P4 only in the adrenal gland. PMID:22113849

  13. The Drosophila juvenile hormone receptor candidates methoprene-tolerant (MET) and germ cell-expressed (GCE) utilize a conserved LIXXL motif to bind the FTZ-F1 nuclear receptor.

    PubMed

    Bernardo, Travis J; Dubrovsky, Edward B

    2012-03-01

    Juvenile hormone (JH) has been implicated in many developmental processes in holometabolous insects, but its mechanism of signaling remains controversial. We previously found that in Drosophila Schneider 2 cells, the nuclear receptor FTZ-F1 is required for activation of the E75A gene by JH. Here, we utilized insect two-hybrid assays to show that FTZ-F1 interacts with two JH receptor candidates, the bHLH-PAS paralogs MET and GCE, in a JH-dependent manner. These interactions are severely reduced when helix 12 of the FTZ-F1 activation function 2 (AF2) is removed, implicating AF2 as an interacting site. Through homology modeling, we found that MET and GCE possess a C-terminal α-helix featuring a conserved motif LIXXL that represents a novel nuclear receptor (NR) box. Docking simulations supported by two-hybrid experiments revealed that FTZ-F1·MET and FTZ-F1·GCE heterodimer formation involves a typical NR box-AF2 interaction but does not require the canonical charge clamp residues of FTZ-F1 and relies primarily on hydrophobic contacts, including a unique interaction with helix 4. Moreover, we identified paralog-specific features, including a secondary interaction site found only in MET. Our findings suggest that a novel NR box enables MET and GCE to interact JH-dependently with the AF2 of FTZ-F1. PMID:22249180

  14. Sequential oogenesis is controlled by an oviduct factor in the locusts Locusta migratoria and Schistocerca gregaria: Overcoming the doctrine that patency in follicle cells is induced by juvenile hormone.

    PubMed

    Seidelmann, Karsten; Helbing, Cornelia; Göbeler, Norman; Weinert, Heike

    2016-07-01

    In insects that lay eggs in large clutches, yolk accumulation in each of the many ovarioles is restricted to the basal (terminal) oocyte, the one closest to the lateral oviduct. All succeeding (subterminal) oocytes remain small until the terminal oocytes finished their development and were ovulated into the oviduct. The major step regulating yolk uptake by terminal oocytes is the formation of gaps between cells of the follicle layer, a process termed patency. In the migratory as well as in the desert locust, patency is induced by a Patency Inducing Factor (PIF) produced by the lateral oviducts. PIF is secreted in all regions of the lateral oviducts and interacts with the basal follicle cells via the pedicel, a fine duct that connects an ovariole with the oviduct. By this mechanism, patency is triggered in the follicle cells of the terminal oocyte only, restricting yolk accumulation to the oocytes next to ovulation. In contrast to the previous hypothesis, juvenile hormone (JH) is not necessary to induce patency, rather JH amplifies the effect of PIF. PMID:27040271

  15. Juvenile Prostitution.

    ERIC Educational Resources Information Center

    Csapo, Marg

    1986-01-01

    Recent research and Canadian government committee reports concerning juvenile prostitution are reviewed. Proposals are made in the realms of law and social policy; and existing programs are described. (DB)

  16. The Influence of Tag Presence on the Mortality of Juvenile Chinook Salmon Exposed to Simulated Hydroturbine Passage: Implications for Survival Estimates and Management of Hydroelectric Facilities

    SciTech Connect

    Carlson, Thomas J.; Brown, Richard S.; Stephenson, John R.; Pflugrath, Brett D.; Colotelo, Alison HA; Gingerich, Andrew J.; Benjamin, Piper L.; Langeslay, Mike; Ahmann, Martin L.; Johnson, Robert L.; Skalski, John R.; Seaburg, Adam; Townsend, Richard L.

    2012-05-01

    Each year, millions of fish have telemetry tags (acoustic, radio, inductive) surgically implanted to assess their passage and survival through hydropower facilities. One route of passage of particular concern is through hydro turbines, in which fish may be exposed to a range of potential injuries, including barotraumas from rapid decompression. The change in pressure from acclimation to exposure (nadir) has been found to be an important factor in predicting the likelihood of mortality and injury for juvenile Chinook salmon undergoing rapid decompression associated with simulated turbine passage. The presence of telemetry tags has also been shown to influence the likelihood of injury and mortality for juvenile Chinook salmon. This research investigated the likelihood of mortality and injury for juvenile Chinook salmon carrying telemetry tags and exposed to a range of simulated turbine passage. Several factors were examined as predictors of mortal injury for fish undergoing rapid decompression, and the ratio of pressure change and tag burden were determined to be the most predictive factors. As the ratio of pressure change and tag burden increase, the likelihood of mortal injury also increases. The results of this study suggest that previous survival estimates of juvenile Chinook salmon passing through hydro turbines may have been biased due to the presence of telemetry tags, and this has direct implications to the management of hydroelectric facilities. Realistic examples indicate how the bias in turbine passage survival estimates could be 20% or higher, depending on the mass of the implanted tags and the ratio of acclimation to exposure pressures. Bias would increase as the tag burden and pressure ratio increase, and have direct implications on survival estimates. It is recommended that future survival studies use the smallest telemetry tags possible to minimize the potential bias that may be associated with carrying the tag.

  17. Influence of sugars and hormones on the genes involved in sucrose metabolism in maize endosperms.

    PubMed

    Ren, X D; Liu, H M; Liu, Y H; Hu, Y F; Zhang, J J; Huang, Y B

    2015-01-01

    Starch is the major storage product in the endosperm of cereals. Its synthesis is closely related to sucrose metabolism. In our previous study, we found that the expression of most of the genes involved in starch synthesis might be regulated by sugars and hormones in the maize endosperm. However, little is known regarding the transcriptional regulation of genes involved in sucrose metabolism. Thus, in this study, maize endosperms were treated with different sugars and hormones and the expression of genes involved in sucrose metabolism (including synthesis, degradation, and transport) were evaluated using real-time quantitative reverse transcription-polymerase chain reaction. We found that genes affected by different sugars and hormones were primarily regulated by abscisic acid. Sucrose and abscisic acid showed an additive effect on the expression of some genes. Differences in the transcriptional regulation of genes involved in sucrose metabolism and starch biosynthesis were observed. PMID:25867309

  18. Child Welfare and Juvenile Justice: Several Factors Influence the Placement of Children Solely To Obtain Mental Health Services.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    Recent reports have documented how some parents choose to place their children in the child welfare or juvenile justice systems in order to obtain the mental health services that their children need. Senators Susan Collins and Joseph Lieberman of the Senate Committee on Governmental Affairs asked the General Accounting Office (GAO) to testify on:…

  19. Influence of Parent-Child Relationships on the Global Self-Worth and Morality of Juvenile Delinquents

    ERIC Educational Resources Information Center

    Forney, William Scott; Crutsinger, Christy; Forney, Judith Cardona

    2006-01-01

    This study explored the effects of parent-child relationships on the global self-worth and morality of juvenile delinquents. Participants were adjudicated as first-time shoplifting/theft offenders. Factor analyses of three self-esteem scales revealed two reliable parent-child relationship (conduct around parents and interactions with parents) and…

  20. Habitat Type Influences the Microhabitat Preference of Juvenile Tiger Prawns ( Penaeus esculentusHaswell and Penaeus semisulcatusDe Haan)

    NASA Astrophysics Data System (ADS)

    Kenyon, R. A.; Loneragan, N. R.; Hughes, J. M.; Staples, D. J.

    1997-09-01

    The microhabitat preferences of juvenile tiger prawns (3-10 mm carapace length),Penaeus esculentusandPenaeus semisulcatus, were tested in the field at Groote Eylandt, in the western Gulf of Carpentaria, Australia. A partitioned apparatus containing live seagrass was used. Both species of prawns selected seagrass (Syringodium isoetifolium) over bare substrate. JuvenileP. esculentus, the most abundant species in this region, were also given paired choices of seagrasses with different leaf morphologies (representing a range of structural complexity) and sediments of different particle size. They selected a seagrass with broad, long leaves (Cymodocea serrulata) over one with narrow, long leaves (S. isoetifolium), which in turn was selected over the seagrasses with narrow, short leaves (Halodule uninervisand shortenedS. isoetifolium). Predation experiments have shown that juvenileP. esculentusare detected and eaten less often in broad, long-leaved seagrass than in narrow, short-leaved seagrass or bare substrate, so their preference for the former may shelter them from predators. No habitat preference was evident forP. esculentuswhen offered a choice between sediments consisting mainly of sand (71% sand particles) and silt (60% of silt and clay). The selection by both species of tiger prawn of seagrass over bare substrate, andP. esculentus's selection of seagrass with long, broad leaves, provides an explanation for the distribution of juvenile tiger prawns in the field. Thus, in the seagrass beds around Groote Eylandt,P. esculentusis more abundant in seagrass with broad, long leaves than in seagrass with short, thin leaves. In addition, its distribution in this region is relatively independent of sediment type. Leaf surface area (or habitat structural complexity) appears to be the main determinant of distribution for juvenileP. esculentus.

  1. The Influence of Hormonal Fluctuations on Womens' Selection and Enjoyment of Television Programs.

    ERIC Educational Resources Information Center

    Meadowcroft, Jeanne; Zillmann, Dolf

    Existing theory suggests that women in the premenstrual and menstrual phases of their hormonal cycle would select and enjoy nonarousing television programs, sucy as nonhostile comedy and game shows, and would avoid action drama and hostile and arousing programs. To test this theory, female undergraduates from telecommunications and journalism…

  2. Luteinizing hormone secretion as influenced by age and estradiol in the prepubertal gilt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to determine if there is an age related reduction in the sensitivity of the negative feedback action of estradiol on luteinizing hormone (LH) secretion in the prepubertal gilt. Ovariectomized gilts at 90 (n = 12), 150 (n = 11) or 210 (n = 12) days of age received estradiol ...

  3. Ovarian hormones influence odor cues emitted by female meadow voles, Microtus pennsylvanicus.

    PubMed

    Ferkin, M H; Gorman, M R; Zucker, I

    1991-12-01

    During the spring-summer breeding season female meadow voles emit odors that are preferred by males, whereas in the autumn-winter season of reproductive quiescence females emit odors that are not preferred by males, but are attractive to females. The effects of daylength and ovarian hormones on salience of female odors were determined by assaying male responses to odors. Females housed in long and short photoperiods transmitted odors that elicited responses similar to those of spring and autumn female voles, respectively. The odor cues emitted by ovariectomized (OVX) females, irrespective of photoperiodic history, were similar to those generated by females during the nonbreeding season. In the absence of ovarian hormones, long daylengths were not sufficient to induce females to broadcast the spring odors preferred by males. Spring-type odor cues were, however, emitted by OVX voles housed in either photoperiod and treated with estradiol. Ovarian hormones appear necessary and sufficient to generate breeding season odor cues and sufficient to induce production of such cues during the nonbreeding season. We conclude that daylength affects odor cues emitted by females by altering ovarian hormone activity. PMID:1813382

  4. Hormonal regulation of lipid metabolism in developing coho salmon, Oncorhynchus kisutch

    SciTech Connect

    Sheridan, M.A.

    1985-01-01

    Lipid metabolism in juvenile coho salmon is characterized, and adaptive changes in lipid mobilization are described in relation to development and hormonal influences. The rates of lipogenesis and lipolysis were determined in selected tissues of juvenile salmon during the period of seawater preadaptive development (smoltification). Neutral lipid (sterol) and fatty acid synthesis in the liver and mesenteric fat was measured by tritium incorporation. Fatty acid synthesis in the liver and mesenteric fat decreased by 88% and 81%, respectively, between late February (parr) and early June (smolt). To assess the role of hormones in smoltification-associated lipid depletion, growth hormone, prolactin, thyroxin and cortisol were administered in vivo early in development (parr) to determine if any of these factors could initiate the metabolic responses normally seen later in development (smolt). Growth hormone stimulated lipid mobilization from coho salmon parr. Prolactin strongly stimulated lipid mobilization in coho parr. Thyroxin and cortisol also stimulated lipid mobilization for coho salmon parr. The direct effect of hormones was studied by in vitro pH-stat incubation of liver slices. These data suggest that norepinephrine stimulates fatty acid release via ..beta..-adrenergic pathways. Somatostatin and its partial analogue from the fish caudal neurosecretory system, urotensin II, also affect lipid mobilization. These results establish the presence of hormone-sensitive lipase in salmon liver and suggest that the regulation of lipid metabolism in salmon involves both long-acting and short-acting hormonal agents.

  5. Juvenile idiopathic arthritis

    MedlinePlus

    Juvenile rheumatoid arthritis (JRA); Juvenile chronic polyarthritis; Still disease; Juvenile spondyloarthritis ... The cause of juvenile idiopathic arthritis (JIA) is not known. It ... illness . This means the body attacks and destroys healthy body ...

  6. Juvenile Idiopathic Arthritis

    MedlinePlus

    ... Is Juvenile Idiopathic Arthritis the same as Juvenile Rheumatoid Arthritis? Yes, Juvenile Idiopathic Arthritis (JIA) is a new ... of chronic inflammatory diseases that affect children. Juvenile Rheumatoid Arthritis (JRA) is the older term that was used ...

  7. Influence of Ovarian Hormones on Cortical Spreading Depression and Its Suppression by L-kynurenine in Rat

    PubMed Central

    Chauvel, Virginie

    2013-01-01

    Migraine is sexually dimorphic and associated in 20–30% of patients with an aura most likely caused by cortical spreading depression (CSD). We have previously shown that systemic L-kynurenine (L-KYN), the precursor of kynurenic acid, suppresses CSD and that this effect depends on the stage of the estrous cycle in female rats. The objectives here are to determine the influence of ovarian hormones on KCl-induced CSD and its suppression after L-KYN by directly modulating estradiol or progesterone levels in ovariectomized rats. Adult female rats were ovariectomized and subcutaneously implanted with silastic capsules filled with progesterone or 17β-estradiol mixed with cholesterol, with cholesterol only or left empty. Two weeks after the ovariectomy/capsule implantation, the animals received an i.p. injection of L-KYN (300 mg/kg) or NaCl as control. Thirty minutes later CSDs were elicited by applying KCl over the occipital cortex and recorded by DC electrocorticogram for 1 hour. The results show that both estradiol and progesterone increase CSD frequency after ovariectomy. The suppressive effect of L-KYN on CSD frequency, previously reported in normal cycling females, is not found anymore after ovariectomy, but reappears after progesterone replacement therapy. Taken together, these results emphasize the complex role of sex hormones on cortical excitability. The CSD increase by estradiol and, more surprisingly, progesterone may explain why clinically migraine with aura appears or worsens during pregnancy or with combined hormonal treatments. PMID:24340013

  8. Aging influences steroid hormone release by mink ovaries and their response to leptin and IGF-I

    PubMed Central

    Sirotkin, Alexander V.; Mertin, Dušan; Süvegová, Karin; Harrath, Abdel Halim; Kotwica, Jan

    2016-01-01

    ABSTRACT The aim of our study was to understand whether ovarian steroid hormones, and their response to the metabolic hormones leptin and IGF-I leptin, could be involved in the control of mink reproductive aging via changes in basal release of ovarian progesterone and estradiol. For this purpose, we compared the release of progesterone and estradiol by ovarian fragments isolated from young (yearlings) and old (3-5 years of age) minks cultured with and without leptin and IGF-I (0, 1, 10 or 100 ng/ml). We observed that isolated ovaries of older animals produced less progesterone but not less estradiol than the ovaries of young animals. Leptin addition stimulated estradiol release by the ovarian tissue of young animals but inhibited it in older females. Leptin did not influence progesterone output by the ovaries of either young or older animals. IGF-I inhibited estradiol output in young but not old animals, whereas progesterone release was inhibited by IGF-I irrespective of the animal age. Our observations demonstrate the involvement of both leptin and IGF-I in the control of mink ovarian steroid hormones release. Furthermore, our findings suggest that reproductive aging in minks can be due to (a) reduction in basal progesterone release and (b) alterations in the response of estradiol but not of progesterone to leptin and IGF-I. PMID:26794607

  9. The influence of endogenous and exogenous sex hormones on systemic lupus erythematosus in pre- and postmenopausal women

    PubMed Central

    Puszczewicz, Mariusz Jacek

    2014-01-01

    Systemic lupus erythematosus (SLE or lupus) is a chronic inflammatory disease that occurs mainly in women. Typically, symptoms appear within the first few years of adolescence, but currently an increase can be observed in the percentage of postmenopausal women with this condition. This is possibly due to the sophisticated treatment of the disease, which significantly improves the survival curve and prognosis. Genetic and environmental factors are involved in the development of SLE. Both regulation of the immune system and the activity of this disease are influenced by a variety of hormones, including: 17β-estradiol, testosterone, prolactin, progesterone and dehydroepiandrosterone (DHEA). Early menarche, menstrual cyclicity, the total number of years characterized by ovulatory cycles and early menopause are correlated with the development of SLE. Because of the health risks, attempts are increasingly being made to evaluate the impact of exogenous hormones (especially those applied exogenously) on the course of SLE. In particular, the role of estrogens is being highlighted, either endo- or exogenous, including oral contraceptives (OC), therapy used in the treatment of infertility, and hormonal replacement therapy (HRT). The purpose of this manuscript is the revision of the literature concerning the impact of both endo- and exogenous estrogens on the development of lupus, inducement of flares and any possible complications. PMID:26327864

  10. Use of stress-hormone levels and habitat selection to assess functional connectivity of a landscape for an amphibian.

    PubMed

    Janin, Agnès; Léna, Jean-Paul; Deblois, Sandrine; Joly, Pierre

    2012-10-01

    The influence of landscape matrix on functional connectivity has been clearly established. Now methods to assess the effects of different land uses on species' movements are needed because current methods are often biased. The use of physiological parameters as indicators of the level of resistance to animal movement associated with different land uses (i.e., matrix resistance) could provide estimates of energetic costs and risks to animals migrating through the matrix. To assess whether corticosterone levels indicate matrix resistance, we conducted experiments on substrate choice and measured levels of corticosterone before and after exposure of toads (Bufo bufo) to 3 common substrates (ploughed soil, meadow, and forest litter). We expected matrix resistance and hormone levels to increase from forest litter (habitat of the toad) to meadows to ploughed soil. Adult toads had higher corticosterone levels on ploughed soil than on forest litter or meadow substrates. Hormone levels did not differ between forest litter and meadow. Toads avoided moving onto ploughed soil. Corticosterone levels in juvenile toads were not related to substrate type; however, hormone levels decreased as humidity increased. Juveniles, unlike adults, did not avoid moving over ploughed soil. The difference in responses between adult and juvenile toads may have been due to differences in experimental design (for juveniles, entire body used to measure corticosterone concentration; for adults, saliva alone); differences in the scale of sensory perception of the substrate (juveniles are much smaller than adults); or differences in cognitive processes between adult and juvenile toads. Adults probably had experience with different substrate types, whereas juveniles first emerging from the water probably did not. As a consequence, arable lands could act as ecological traps for juvenile toads. PMID:22891816

  11. Effects and mechanisms of waterborne copper exposure influencing ovary development and related hormones secretion in yellow catfish Pelteobagrus fulvidraco.

    PubMed

    Zhang, Li-Han; Luo, Zhi; Song, Yu-Feng; Shi, Xi; Pan, Ya-Xiong; Fan, Yao-Fang; Xu, Yi-Huan

    2016-09-01

    The present study was conducted to determine the effects and mechanism of waterborne copper (Cu) exposure influencing ovary development and related hormones secretion in yellow catfish Pelteobagrus fulvidraco. To this end, two experiments were conducted. In Exp. 1, the partial cDNA sequences of three steroidogenesis-related genes (androgen receptor (ar), steroidogenic factor 1 (sf-1) and steroidogenic acute regulatory protein (star)) were firstly characterized from P. fulvidraco. The predicted amino acid sequences for the P. fulvidraco ar, sf-1 and star contained the main structural features characteristic in other species. In Exp. 2, P. fulvidraco were exposed to three waterborne Cu concentrations (control, 30μg/l and 60μg/l, respectively) for 56days. Sampling occurred on day 28 and day 56, respectively. On day 28, the levels of serum sex-steroid hormones (FSH and LH) and the mRNA levels of steroidogenesis-related genes (3β-hsd, cyp11a1, cyp17, cyp19a, sf-1 and star) were significantly increased in ovary of P. fulvidraco exposed to 30μg Cu/l. The immunohistochemical analysis showed the positive reaction of ER, VTG and aromatase in low dose exposure group. These indicated that in low dose and relative short-term exposure, Cu was beneficial. In contrast, 60μg Cu/l exposure significantly reduced the levels of serum FSH, LH, E2 and P, and the mRNA levels of ovarian 20β-hsd, cyp19a and erα in P. fulvidraco. On day 56, waterborne Cu concentration exposure reduced the levels of serum gonadotropins and sex hormones, and down-regulated the mRNA levels of steroidogenesis-related genes, indicating long-term Cu exposure had toxic effect on the secretion of sex-steroid hormone in P. fulvidraco. For the first time, our study cloned cDNA sequences of ar, sf-1 and star in P. fulvidraco, and demonstrated the effects and mechanism of waterborne Cu exposure influencing hormones secretion and synthesis in dose- and time-dependent manner in P. fulvidraco, which will help to

  12. Hormone levels

    MedlinePlus

    Blood or urine tests can determine the levels of various hormones in the body. This includes reproductive hormones, thyroid hormones, adrenal hormones, pituitary hormones, and many others. For more information, see: ...

  13. Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean.

    PubMed

    Rechisky, Erin L; Welch, David W; Porter, Aswea D; Jacobs-Scott, Melinda C; Winchell, Paul M

    2013-04-23

    Multiple dam passage during seaward migration is thought to reduce the subsequent survival of Snake River Chinook salmon. This hypothesis developed because juvenile Chinook salmon from the Snake River, the Columbia River's largest tributary, migrate >700 km through eight hydropower dams and have lower adult return rates than downstream populations that migrate through only 3 or 4 dams. Using a large-scale telemetry array, we tested whether survival of hatchery-reared juvenile Snake River spring Chinook salmon is reduced in the estuary and coastal ocean relative to a downstream, hatchery-reared population from the Yakima River. During the initial 750-km, 1-mo-long migration through the estuary and coastal ocean, we found no evidence of differential survival; therefore, poorer adult returns of Snake River Chinook may develop far from the Columbia River. Thus, hydrosystem mitigation efforts may be ineffective if differential mortality rates develop in the North Pacific Ocean for reasons unrelated to dam passage. PMID:23576733

  14. Juvenile hormone biosynthesis and secretion by the female Corpora allata of the larval gypsy moth, Lymantria dispar (L. ) utilizing in vitro organ culture

    SciTech Connect

    Jones, G.L.

    1986-01-01

    Junvenile hormone synthesis and secretion in the female larval gypsy moth was investigated. In vitro culturing methods were developed including: incubating 2 pair of CC-CA gland complexes in 50 ul of osmotically balanced Grace's insect medium containing 1 uCi /sup 3/H-methyl-methionine for 6 hr. JH homologues were identified and quantified using TLC and HPLC. In vitro methods were employed to investigate trends of JH secretion in 4th and ultimate female larval instar CA. Fourth instar CA produced JH peaks of 0.15 pmole/pr/hr between days 2 and 3, but the rate declined to half by day 4. Ultimate instar larvae began secreting 0.48 pmole/pr/hr, but by day 10, had decreased JH output to negligible levels which continued until pupation. Effects upon in vitro JH secretion produced by precocene II and caffeine were examined. Feulgen staining techniques revealed an equal number of cells (30) in 4th and last instar CA. Last instar Ca were 3 times larger than 4th in volume but their actual in vitro JH secretion at peak levels was only 20% greater. In vitro methods demonstrated that JH secretory trends differ in younger versus mature larval instars. Glandular volume increased in last instars but JH secretion was only 20% greater than in 4th's when compared on the basis of volume. Precocene II elicited a negative response on in vivo JH secretion at levels 10 times less than caffeine. Caffeine was judged not to significantly alter JH secretion.

  15. Influence of sex hormones and phytoestrogens on heart disease in men and women

    PubMed Central

    Bhupathy, Poornima; Haines, Christopher Dean; Leinwand, Leslie Anne

    2010-01-01

    Cardiovascular disease (CVD) is the number one cause of morbidity and mortality in men and women worldwide. According to the WHO, by 2015, almost 20 million people will die from CVD each year. It is well established that men and women differ not only in baseline cardiac parameters, but also in the clinical presentation, diagnosis and treatment outcomes of CVD. Women tend to develop heart disease later in life than men. This difference has been attributed to the loss of estrogen during the menopausal transition; however, the biological explanations for the sexual dimorphism in CVD are more complex and seem unlikely to be due to estrogen alone. The current controversy that has arisen regarding the effects of HRT on CVD in women is a case in point. In this review, the sex-based differences in cardiac (patho-) physiology are discussed with emphasis on the impact of sex hormones, hormone receptors and diet on heart disease. PMID:20088732

  16. Specific protein synthesis in isolated rat testis leydig cells. Influence of luteinizing hormone and cycloheximide.

    PubMed Central

    Janszen, F H; Cooke, B A; van der Molen, H J

    1977-01-01

    The effect of luteinizing hormone (luteotropin) and cycloheximide on specific protein synthesis in rat testis Leydig cells has been investigated. Proteins were labelled with either I114C]leucine, [3H]leucine or [35S]methionine during incubation with Leydig-cell suspensions in vitro. Total protein was extracted from the cells and separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. No detectable increase in the synthesis of specific proteins could be observed after incubation of Leydig cells with luteinizing hormone for up to 1 h. However, after a 2h incubation period, an increase in [35S]methionine incorporation was observed in a protein with an apparent mol.wt. of 21000 (referred to as 'protein 21"). When, after labelling of this protein with [35S]-methionine, Leydig cells were incubated for another 30min with cycloheximide, no decrease in radioactivity of this protein band was observed, indicating that it does not have a short half-life. However, another protein band was detected, which after incubation with cycloheximide disappeared rapidly, the reaction following first-order kinetics, with a half-life of about 11 min. This protein, with an apparent mol.wt. of 33000 (referred to as "protein 33"), was found to be located in the particulate fraction of the Leydig cell, and could not be demonstrated in other rat testis-cell types or blood cells. No effect of luteinizing hormone on molecular weight, subcellular localization or half-life of protein 33 was observed. A possible role for protein 33 and protein 21 in the mechanism of action of luteinizing hormone on testosterone production of Leydig cells is discussed. Images PLATE 4 PLATE 1 PLATE 2 PLATE 3 PMID:849289

  17. Sex and stress hormone influences on the expression and activity of brain-derived neurotrophic factor.

    PubMed

    Carbone, D L; Handa, R J

    2013-06-01

    The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of CNS ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in CNS development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of CNS physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids (GCs), have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor Tropomyosin-Related Kinase B by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but also in mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and GCs, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the CNS. PMID:23211562

  18. Isoflavone supplementation influenced levels of triglyceride and luteunizing hormone in Korean postmenopausal women.

    PubMed

    Kim, Jinkyung; Lee, Hansongyi; Lee, Okhwa; Lee, Kyun-Hee; Lee, Yoon-Bok; Young, Kwon Dae; Jeong, Yang Hye; Choue, Ryowon

    2013-03-01

    We conducted a double-blind, randomized, placebo-controlled trial to evaluate the effects of soy-derived isoflavone on blood glucose, lipid profiles, and sex hormones related to cardiovascular disease in Korean postmenopausal women. One hundred thirteen postmenopausal women were recruited from the Seoul metropolitan area. To confirm postmenopausal and gynecologic status, the subjects were clinically examined by a gynecologist using ultra sound and X-ray. Finally, 85 postmenopausal women whose follicle-stimulating hormone (FSH) levels were higher than 40 IU/ml were enrolled. Subjects received either 70 mg isoflavone or placebo capsules daily for 12 weeks. As a result, the values of fasting glucose, insulin and HOMA-IR, as well as those of TC, LDL-C, HDL-C and FFA, were not different between the groups after supplementation. However, triglyceride (TG) levels in the treatment group decreased significantly compared with those of the placebo group (p = 0.0215). The levels of luteinizing hormone (LH) significantly decreased in the treatment group (p = 0.027); however, the levels of FSH, estrone and estradiol were not changed after intervention. In conclusion, isoflavone supplement of 70 mg/day for 12 weeks decreased blood levels of TG and LH in Korean postmenopausal women. PMID:23475289

  19. Sex and Stress Hormone Influences on the Expression and Activity of Brain-Derived Neurotrophic Factor

    PubMed Central

    Carbone, David L.; Handa, Robert J.

    2012-01-01

    The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of central nervous system ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in central nervous system development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of central nervous system physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids, have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor TrkB by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but on mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and glucocorticoids, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the central nervous system PMID:23211562

  20. Influence of gonadal hormones on odours emitted by male meadow voles (Microtus pennsylvanicus).

    PubMed

    Ferkin, M H; Gorman, M R; Zucker, I

    1992-08-01

    Free-living male meadow voles (Microtus pennsylvanicus) emit odours that are attractive to females at the beginning, but not at the end, of the breeding season. The effect of gonadal hormones on female-attractant cues was examined in males born and reared in long (14 h light day-1) and short (10 h light day-1) photoperiods that simulate daylengths in the breeding and nonbreeding seasons, respectively. Gonadectomy affected the attractant properties of odours emitted by long photoperiod, but not short photoperiod, males. Long photoperiod females preferred odours of intact rather than those of gonadectomized long photoperiod males, and odours of gonadectomized long photoperiod males rather than those of intact short photoperiod males. Females did not show a preference between the odours of intact and castrated short photoperiod males. Gonadal hormone replacement in males affected female responses to the odours emitted by long photoperiod, but not short photoperiod, gonadectomized males. Long photoperiod females did not display a preference between odours of intact long photoperiod males and gonadectomized long photoperiod males treated with testosterone or oestradiol. We conclude that in spring and summer gonadal hormones increase attractiveness of male odours; this effect may require aromatization of testosterone to oestradiol. Substrates that control attractiveness of odour cues in male voles appear to be unresponsive to androgens during the nonbreeding season. PMID:1404090

  1. Factors Affecting Attitudes toward Juvenile Sex Offenders

    ERIC Educational Resources Information Center

    Sahlstrom, Kimberly J.; Jeglic, Elizabeth L.

    2008-01-01

    This study investigated attitudes toward juvenile sex offenders and factors influencing those attitudes. Additionally, the influences of perpetrator characteristics such as age, gender, and ethnicity on societal attitudes towards intervention requirements were also investigated. Overall, attitudes toward juvenile sex offenders and their treatment…

  2. Influence of Inter-Set Stretching on Strength, Flexibility and Hormonal Adaptations

    PubMed Central

    Souza, Antônio Claudio; Bentes, Claudio Melibeu; de Salles, Belmiro Freitas; Reis, Victor Machado; Alves, José Vilaça; Miranda, Humberto; Novaes, Jefferson da Silva

    2013-01-01

    Adequate levels of strength and flexibility are important for the promotion and maintenance of health and functional autonomy as well as safe and effective sports participation. The aim of the present study was to analyze the effects of 8 weeks of strength training with or without inter-set static stretching on strength, flexibility and hormonal adaptations of trained men. Sixteen trained men were randomly divided into 2 groups: the static stretching group (SSG) and passive interval group (PIG). All participants performed 24 training sessions 3 times a week. The test and retest of 8RM, strength, flexibility, cortisol and growth hormone concentration in pre and post test conditions were also evaluated. To compare the differences between and within groups in pre- and post-training tests, ANOVA with repeated measures was performed (SSGpre x SSGpost; PIGpre x PIGpost; SSGpost x PIGpost). An alpha level of p<0.05 was considered statistically significant for all comparisons. Both groups showed significant increases in strength (SSGpre vs. SSGpost; PIGpre vs. PIGpost) in the same exercises for leg extension (LE) and Low Row (LR). Specifically, in the SSG group, the parameters for LE were (p = 0.0015 and ES = 2.28 - Large), and the parameters for LR were (p = 0.002 and ES = 1.95 - Large). Moreover, in the PIG group, the parameters for LE were (p = 0.009 and ES = 1.95 - Large), and the parameters for LR were (p = 0.0001 and ES = 2.88 - Large). No differences were found between the groups (SSGpost vs. PIGpost). Both groups showed significant increases in flexibility but in different joints (SSGpre vs. SSGpost; PIGpre vs. PIGpost). In the SSG group, only three joints showed significant increases in flexibility: shoulder extension (p = 0.004 and ES = 1.76 - Large), torso flexion (p = 0.002 and ES = 2.36 - Large), and hip flexion (p = 0.001 and ES = 1.79 -Large). In the PIG group, only three joints showed increases in flexibility: horizontal shoulder abduction (p = 0.003 and ES

  3. Short neuropeptide F (sNPF) is a stage-specific suppressor for juvenile hormone biosynthesis by corpora allata, and a critical factor for the initiation of insect metamorphosis.

    PubMed

    Kaneko, Yu; Hiruma, Kiyoshi

    2014-09-15

    Molting and metamorphosis are essential events for arthropod development, and juvenile hormone (JH) and its precursors play critical roles for these events. We examined the regulation of JH biosynthesis by the corpora allata (CA) in Bombyx mori, and found that intact brain-corpora cardiaca (CC)-CA complexes produced a smaller amount of JH than that in CC-CA complexes and CA alone throughout the 4th and 5th (last) instar stadium. The smaller amount of synthesis was due to allatostatin-C (AST-C) produced by the brain. The CC synthesized short neuropeptide F (sNPF) that also suppressed the JH synthesis, but only in day 3 4th stadium and after the last larval ecdysis. For the suppression, both peptides prevented the expression of some of the distinct JH biosynthetic enzymes in the mevalonate pathway. Allatotropin (AT) stimulated sNPF expression in the CC of day 1 5th instar stadium, not of day 3 4th; therefore the stage-specific inhibition of JH synthesis by sNPF was partly due to the stimulative action of AT on the sNPF expression besides the stage-specific expression of the sNPF receptors in the CA, the level of which was high in day 2 4th and day 0 5th instar larvae. The cessation of JH biosynthesis in the last instar larvae is a key event to initiate pupal metamorphosis, and both sNPF and AST-C are key factors in shutting down JH synthesis, along with the decline of ecdysone titer and dopamine. PMID:25072626

  4. Influences of the environment on the endocrine and paracrine fish growth hormone-insulin-like growth factor-I system.

    PubMed

    Reinecke, M

    2010-04-01

    Insulin-like growth factor-I (IGF-I) is a key component of the complex system that regulates differentiation, development, growth and reproduction of fishes. The IGF-I gene is mainly expressed in the liver that represents the principal source of endocrine IGF-I but also in numerous other organs where the hormone most probably acts in an autocrine-paracrine manner. The primary stimulus for synthesis and release of IGF-I is growth hormone (GH) from the anterior pituitary. Thus, in analogy to mammals, it is usual to speak of a fish 'GH-IGF-I axis'. The GH-IGF-I system is affected by changes in the environment and probably represents a target of endocrine disrupting compounds (EDC) that impair many physiological processes in fishes. Thus, the review deals with the influences of changes in different environmental factors, such as food availability, temperature, photoperiod, season, salinity and EDCs, on GH gene expression in pituitary, IGF-I gene expression in liver and extrahepatic sites and the physiological effects resulting from the evoked alterations in endocrine and local IGF-I. Environmental influences certainly interact with each other but for convenience of the reader they will be dealt with in separate sections. Current trends in GH-IGF-I research are analysed and future focuses are suggested at the end of the sections. PMID:20537012

  5. The Influence of a 12-Week Conditioning Program on Growth Hormone and Somatomedin C Concentrations in Moderately Overweight Males.

    ERIC Educational Resources Information Center

    Kinard, James D.; Bazzarre, Terry L.

    The growth hormone is a lipolytic hormone and somatomedin C mediates the metabolic effects of the growth hormone in many tissues. Growth hormone plasma levels are often depressed in obese individuals, and this low plasma level has been postulated as a reason for perpetuation of excess weight. Substantial weight loss in obese subjects improves…

  6. Influence of triiodothyronine (T(3)) on secretion of steroids and thyroid hormone receptor expression in chicken ovarian follicles.

    PubMed

    Sechman, A; Pawlowska, K; Rzasa, J

    2009-08-01

    The present study was designed to (1) assess the role of triiodothyronine (T(3)) with regard to in vitro steroid hormone secretion by chicken ovarian follicles; (2) determine whether T(3) influences the in vivo function of the pituitary-ovarian axis in the hen; and (3) detect expression of thyroid hormone receptor (TR) mRNA in chicken ovarian follicles. In the first experiment, laying hens were decapitated 22.5h before ovulation. White prehierarchical follicles (1-8mm) and fragments of theca and granulosa layers of the 3 largest yellow preovulatory follicles F3-F1 (22-35mm) were incubated in a medium supplemented with T(3) (0, 0.1, 1, 10, 100, or 1000ng/mL) or ovine luteinizing hormone (LH) (10ng/mL) in combination with doses of T(3) (1, 10, and 100ng/mL). Triiodothyronine decreased basal and LH-stimulated estradiol secretion by white follicles and the theca layer of all preovulatory follicles. On the other hand, it increased progesterone secretion by F2 and F1 follicles. In the second experiment, hens were injected 1h after ovulation with saline (control) or T(3) (10microg/100g body weight, intraperitoneally). Results indicated that exogenous T(3) decreased plasma concentrations of LH and estradiol and increased plasma concentrations of progesterone. In the third experiment, using reverse transcription polymerase chain reaction (RT-PCR) analysis, expression of thyroid hormone receptor (TRalpha and TRbeta0), mRNA was detected in all of the ovarian compartments. The expression of TRalpha mRNA was relatively greater in comparison with TRbeta0. There were no differences between white ovarian follicles in the expression of TRalpha and TRbeta0 mRNA. A considerably higher TRalpha and lower TRbeta0 expression was detected in the granulosa layer of preovulatory follicles in comparison with the theca layer. In conclusion, the data indicate that thyroid hormones acting via nuclear receptors are involved in regulation of the pituitary-ovarian axis and processes associated

  7. Methoprene influences reproduction and flight capacity in adults of the rice leaf roller, Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juvenile hormone (JH) influences many aspects of insect biology, including oogenesis-flight syndrome tradeoffs between migration and reproduction. Drawing on studies of many migratory insects, we posed the hypothesis that JH influences migratory capacity and oogenesis in the rice leaf roller, Cnapha...

  8. Juvenile Spondyloarthritis

    PubMed Central

    Gmuca, Sabrina; Weiss, Pamela F.

    2015-01-01

    Purpose of review To provide a comprehensive update of the pathogenesis, diagnostic imaging, treatments, and disease activity measurements of juvenile spondyloarthritis (JSpA). Recent findings Genetic and microbiome studies have provided new information regarding possible pathogenesis of JSpA. Recent work suggests that children with JSpA have decreased thresholds for pain in comparison to healthy children. Additionally, pain on physical examination and abnormalities on ultrasound of the entheses are not well correlated. Treatment guidelines for juvenile arthritis, including JSpA, were published by the American College of Rheumatology and are based on active joint count and presence of sacroiliitis. Recent studies have established the efficacy of tumor necrosis factor inhibitors in the symptomatic treatment of axial disease, though their efficacy for halting progression of structural damage is less clear. Newly developed disease activity measures for JSpA include the Juvenile Arthritis Disease Activity Score and the JSpA Disease Activity index. In comparison to other categories of juvenile arthritis, children with JSpA are less likely to attain and sustain inactive disease. Summary Further microbiome and genetic research may help elucidate JSpA pathogenesis. More randomized therapeutic trials are needed and the advent of new composite disease activity measurement tools will hopefully allow for the design of these greatly needed trials. PMID:26002028

  9. Influence of acute or chronic administration of ovarian hormones on the effects of desipramine in the forced swim test in female rats

    PubMed Central

    Shah, Aparna; Frazer, Alan

    2014-01-01

    Rationale Gender may influence antidepressant (AD) treatment outcome. In order to address this pre-clinically, the potential effects of ovarian hormones on AD treatment in ovariectomized female rats were investigated. Objectives In the first study, the effect of acute administration of estrogen and progesterone on the antidepressant-like effects of desipramine (DMI), a selective norepinephrine reuptake inhibitor (SNRI), was investigated in the forced swimming test (FST). In the second study, the effect of chronic administration of these hormones on the effects of chronically administered DMI was investigated. Results In the acute study, the hormones blocked the effects of DMI in the FST as demonstrated by the absence of either a reduction in immobility or an increase in climbing behavior in animals treated with DMI in combination with the hormones. Concentration-response experiments on hippocampal synaptosomes revealed no changes in the Km or Bmax for uptake of 3H-NE in hormone-treated rats. In the chronic study, the antidepressant-like effects of DMI in the FST were not blocked by chronic administration of hormones. Interestingly, the hormones affected the serum concentrations of DMI. These levels were significantly higher in animals receiving 10 or 15 mg/kg/day in hormone-treated rats as compared to those with placebo. Conclusions Acute administration of hormones blocked the effects of DMI (given three times over 24 h) in the FST. However, chronic administration of these hormones failed to block the effects of chronically administered DMI (at a dose that produces clinically relevant serum concentrations). PMID:24590054

  10. Influence of Continuous Physiologic Hyperinsulinemia on Glucose Kinetics and Counterregulatory Hormones in Normal and Diabetic Humans

    PubMed Central

    Saccà, Luigi; Sherwin, Robert; Hendler, Rosa; Felig, Philip

    1979-01-01

    The effects of continuous infusions of insulin in physiologic doses on glucose kinetics and circulating counterregulatory hormones (epinephrine, norepinephrine, glucagon, cortisol, and growth hormone) were determined in normal subjects and diabetics. The normals received insulin at two dose levels (0.4 and 0.25 mU/kg per min) and the diabetics received the higher dose (0.4 mU/kg per min) only. In all three groups of studies, continuous infusion of insulin resulted in an initial decline in plasma glucose followed by stabilization after 60-180 min. In the normal subjects, with the higher insulin dose there was a fivefold rise in plasma insulin. Plasma glucose fell at a rate of 0.73±0.12 mg/min for 45 min and then stabilized at 55±3 mg/dl after 60 min. The initial decline in plasma glucose was a result of a rapid, 27% fall in glucose output and a 33% rise in glucose uptake. Subsequent stabilization was a result of a return of glucose output and uptake to basal levels. The rebound increment in glucose output was significant (P < 0.05) by 30 min after initiation of the insulin infusion and preceded, by 30-45 min, a significant rise in circulating counterregulatory hormones. With the lower insulin infusion dose, plasma insulin rose two- to threefold, plasma glucose initially fell at a rate of 0.37±0.04 mg/min for 75 min and stabilized at 67±3 mg/dl after 75 min. The changes in plasma glucose were entirely a result of a fall in glucose output and subsequent return to base line, whereas glucose uptake remained unchanged. Plasma levels of counterregulatory hormones showed no change from basal throughout the insulin infusion. In the diabetic group (plasma glucose levels 227±7 mg/dl in the basal state), the initial rate of decline in plasma glucose (1.01±0.15 mg/dl) and the plateau concentration of plasma glucose (59±5 mg/dl) were comparable to controls receiving the same insulin dose. However, the initial fall in plasma glucose was almost entirely a result of

  11. Influence of male gonadal hormones and familiarity on pregnancy interruption in prairie voles.

    PubMed

    Smale, L

    1988-08-01

    Pregnancy interruption (PI) was examined in female prairie voles, Microtus ochrogaster, exposed to stimuli from males 7 to 12 days after pairing. Urine from unfamiliar males interrupted pregnancy when placed directly on the external nares of newly mated females, but urine from familiar stud males was without effect. Castration of males did not reduce the efficacy of unfamiliar male urine in interrupting pregnancy. The neuroendocrine system of female prairie voles responded selectively to male urine as a function of its familiarity; the efficacy of male stimuli leading to PI was not dependent on gonadal hormones. PMID:3061485

  12. Does macroalgal vegetation cover influence post-settlement survival and recruitment potential of juvenile black rockfish Sebastes cheni?

    NASA Astrophysics Data System (ADS)

    Kamimura, Yasuhiro; Shoji, Jun

    2013-09-01

    Seasonal change in vegetation coverage affected cohort-specific mortality of post-settlement juvenile black rockfish Sebastes cheni in a temperate macroalgal bed. A total of 14 fish and environmental surveys were conducted at an interval of one to two weeks from February to May, 2008 in the central Seto Inland Sea, southwestern Japan. The birth date of S. cheni was estimated by use of the otolith daily rings and then fish were divided into 7 cohorts (A to F), each covering a 7-day birth date period. Cohort-specific growth coefficient (G, d-1) of juvenile S. cheni from 20 to 60 mm in total length (TL) ranged between 0.031 and 0.048 and mortality coefficient (M, d-1) between 0.038 and 0.081, with significant increases in both values as the season progressed. The ratio of G:M, which is a proxy of the recruitment potential, ranged between 0.59 and 0.99 and was lower in later cohorts. Water temperature increased from 10.9 °C in March to 18.2 °C in May and vegetation coverage (bulk volume of Sargassum spp., %: as an index of the function for predation refuge) decreased from 60% in March to 2% in May. The later cohorts of juvenile S. cheni had high growth and mortality rates related to high temperature and low vegetation coverage. Since the seasonal increase in M was greater than that of G, the recruitment potential of the later cohorts was lower than that of the earlier cohorts.

  13. The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska

    USGS Publications Warehouse

    Lang, D.W.; Reeves, G.H.; Hall, J.D.; Wipfli, M.S.

    2006-01-01

    This study examined the influence of fall-spawning coho salmon (Oncorhynchus kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from ponds that did not receive spawners and also with fish from ponds that were artificially enriched with salmon carcasses and eggs. The response to spawning salmon was variable. In some ponds, fall-spawning salmon increased growth rates and improved the condition of juvenile coho salmon. The enrichment with salmon carcasses and eggs significantly increased growth rates of fish in nonspawning ponds. However, there was little evidence that the short-term growth benefits observed in the fall led to greater overwinter growth or survival to outmigration when compared with fish from the nonspawning ponds. One potential reason for this result may be that nutrients from spawning salmon are widely distributed across the delta because of hydrologic connectivity and hyporheic flows. The relationship among spawning salmon, overwinter growth, and smolt production on the Copper River Delta does not appear to be limited entirely to a simple positive feedback loop. ?? 2006 NRC.

  14. Thyroid hormone balance in beluga whales, Delphinapterus leucas: dynamics after capture and influence of thyrotropin.

    PubMed Central

    St Aubin, D J; Geraci, J R

    1992-01-01

    Ten beluga whales, Delphinapterus leucas, were captured in the Churchill River, Manitoba, held for up to five days, and then released. Blood samples were obtained immediately after capture and at 6-7 h intervals thereafter to monitor changes in circulating levels of thyroid hormones (TH). In six of the whales, total and free thyroxine (T4) and triiodothyronine (T3) declined steadily, whereas reverse-T3 (rT3) showed a transient increase during the first 24-36 h, followed by a decrease to below initial values. The changes in TH may have been due to glucocorticoid-mediated reduction in endogenous thyroid stimulating hormone (TSH), and inhibition of 5'-monodeiodinase in peripheral tissue. Two whales were given 10 IU of bovine TSH immediately after capture, and again one and two days later, resulting in successive increases in all TH, which remained elevated for at least 24 h after the last injection. Thereafter, circulating levels declined as in the untreated whales. Two whales receiving a single TSH injection on the fourth day responded with an increase in plasma TH comparable to that observed following the first TSH injection in the other two animals. Average (+/- SD) circulating level of rT3 at capture was 6.3 +/- 3.1 nmol/L, which is higher than reported for any other mammal and was significantly correlated with the naturally elevated levels of T4 that occur in belugas occupying estuaries during the summer. PMID:1586888

  15. Under a neighbour's influence: public information affects stress hormones and behaviour of a songbird

    PubMed Central

    Cornelius, Jamie M.; Breuner, Creagh W.; Hahn, Thomas P.

    2010-01-01

    Socially acquired information improves the accuracy and efficiency of environmental assessments and can increase fitness. Public information may be especially useful during unpredictable food conditions, or for species that depend on resources made less predictable by human disturbance. However, the physiological mechanisms by which direct foraging assessments and public information are integrated to affect behaviour remain largely unknown. We tested for potential effects of public information on the behavioural and hormonal response to food reduction by manipulating the social environment of captive red crossbills (Loxia curvirostra). Red crossbills are irruptive migrants that are considered sensitive to changes in food availability and use public information in decision making. Here, we show that public information can attenuate or intensify the release of glucocorticoids (i.e. stress hormones) during food shortage in red crossbills. The observed modulation of corticosterone may therefore be a physiological mechanism linking public information, direct environmental assessments and behavioural change. This mechanism would not only allow for public information to affect individual behaviour, but might also facilitate group decision making by bringing group members into more similar physiological states. The results further suggest that stressors affecting entire populations may be magnified in individual physiology through social interactions. PMID:20356895

  16. Juvenile morphology in baleen whale phylogeny

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Hsiu; Fordyce, R. Ewan

    2014-09-01

    Phylogenetic reconstructions are sensitive to the influence of ontogeny on morphology. Here, we use foetal/neonatal specimens of known species of living baleen whales (Cetacea: Mysticeti) to show how juvenile morphology of extant species affects phylogenetic placement of the species. In one clade (sei whale, Balaenopteridae), the juvenile is distant from the usual phylogenetic position of adults, but in the other clade (pygmy right whale, Cetotheriidae), the juvenile is close to the adult. Different heterochronic processes at work in the studied species have different influences on juvenile morphology and on phylogenetic placement. This study helps to understand the relationship between evolutionary processes and phylogenetic patterns in baleen whale evolution and, more in general, between phylogeny and ontogeny; likewise, this study provides a proxy how to interpret the phylogeny when fossils that are immature individuals are included. Juvenile individuals in the peramorphic acceleration clades would produce misleading phylogenies, whereas juvenile individuals in the paedomorphic neoteny clades should still provide reliable phylogenetic signals.

  17. Juvenile morphology in baleen whale phylogeny

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Hsiu; Fordyce, R. Ewan

    2014-08-01

    Phylogenetic reconstructions are sensitive to the influence of ontogeny on morphology. Here, we use foetal/neonatal specimens of known species of living baleen whales (Cetacea: Mysticeti) to show how juvenile morphology of extant species affects phylogenetic placement of the species. In one clade (sei whale, Balaenopteridae), the juvenile is distant from the usual phylogenetic position of adults, but in the other clade (pygmy right whale, Cetotheriidae), the juvenile is close to the adult. Different heterochronic processes at work in the studied species have different influences on juvenile morphology and on phylogenetic placement. This study helps to understand the relationship between evolutionary processes and phylogenetic patterns in baleen whale evolution and, more in general, between phylogeny and ontogeny; likewise, this study provides a proxy how to interpret the phylogeny when fossils that are immature individuals are included. Juvenile individuals in the peramorphic acceleration clades would produce misleading phylogenies, whereas juvenile individuals in the paedomorphic neoteny clades should still provide reliable phylogenetic signals.

  18. Gonadotrophin-inhibitory hormone receptor expression in the chicken pituitary gland: potential influence of sexual maturation and ovarian steroids.

    PubMed

    Maddineni, S; Ocón-Grove, O M; Krzysik-Walker, S M; Hendricks, G L; Proudman, J A; Ramachandran, R

    2008-09-01

    Gonadotrophin-inhibitory hormone (GnIH), a hypothalamic RFamide, has been found to inhibit gonadotrophin secretion from the anterior pituitary gland originally in birds and, subsequently, in mammalian species. The gene encoding a transmembrane receptor for GnIH (GnIHR) was recently identified in the brain, pituitary gland and gonads of song bird, chicken and Japanese quail. The objectives of the present study are to characterise the expression of GnIHR mRNA and protein in the chicken pituitary gland, and to determine whether sexual maturation and gonadal steroids influence pituitary GnIHR mRNA abundance. GnIHR mRNA quantity was found to be significantly higher in diencephalon compared to either anterior pituitary gland or ovaries. GnIHR mRNA quantity was significantly higher in the pituitaries of sexually immature chickens relative to sexually mature chickens. Oestradiol or a combination of oestradiol and progesterone treatment caused a significant decrease in pituitary GnIHR mRNA quantity relative to vehicle controls. GnIHR-immunoreactive (ir) cells were identified in the chicken pituitary gland cephalic and caudal lobes. Furthermore, GnIHR-ir cells were found to be colocalised with luteinising hormone (LH)beta mRNA-, or follicle-stimulating hormone (FSH)beta mRNA-containing cells. GnIH treatment significantly decreased LH release from anterior pituitary gland slices collected from sexually immature, but not from sexually mature chickens. Taken together, GnIHR gene expression is possibly down regulated in response to a surge in circulating oestradiol and progesterone levels as the chicken undergoes sexual maturation to allow gonadotrophin secretion. Furthermore, GnIHR protein expressed in FSHbeta or LHbeta mRNA-containing cells is likely to mediate the inhibitory effect of GnIH on LH and FSH secretion. PMID:18638025

  19. The influence of intrauterine exposure to immunosuppressive treatment on changes in the immune system in juvenile Wistar rats

    PubMed Central

    Kabat-Koperska, Joanna; Kolasa-Wołosiuk, Agnieszka; Wojciuk, Bartosz; Wojciechowska-Koszko, Iwona; Roszkowska, Paulina; Krasnodębska-Szponder, Barbara; Paczkowska, Edyta; Safranow, Krzysztof; Gołembiewska, Edyta; Machaliński, Bogusław; Ciechanowski, Kazimierz

    2016-01-01

    Background In our study, we assessed the impact of immunosuppressive drug combinations on changes in the immune system of juvenile Wistar rats exposed to these drugs during pregnancy. We primarily concentrated on changes in two organs of the immune system – the thymus and the spleen. Methods The study was conducted on 40 (32+8) female Wistar rats administered full and half dose of drugs, respectively, subjected to regimens commonly used in therapy of human kidney transplant recipients ([1] cyclosporine A, mycophenolate mofetil, and prednisone; [2] tacrolimus, mycophenolate mofetil, and prednisone; [3] cyclosporine A, everolimus, and prednisone). The animals received drugs by oral gavage 2 weeks before pregnancy and during 3 weeks of pregnancy. Results There were no statistically significant differences in the weight of the thymus and spleen, but changes were found in the results of blood hematology, cytometry from the spleen, and a histologic examination of the examined immune organs of juvenile Wistar rats. In the cytokine assay, changes in the level of interleukine 17 (IL-17) after increasing amounts of concanavaline A were dose-dependent; the increase of IL-17 was blocked after administration of higher doses of immunosuppressive drugs. However, after a reduction of doses, its increase resumed. Conclusion Qualitative, quantitative, and morphological changes in the immune system of infant rats born to pharmacologically immunosuppressed females were observed. Thymus structure, spleen composition, and splenocyte IL-17 production were mostly affected in a drug regimen–dependent manner. PMID:27471376

  20. Influence of Incision Location on Transmitter Loss, Healing, Incision Lengths, Suture Retention, and Growth of Juvenile Chinook Salmon

    SciTech Connect

    Panther, Jennifer L.; Brown, Richard S.; Gaulke, Greggory L.; Woodley, Christa M.; Deters, Katherine A.

    2010-05-11

    In this study, conducted by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District, we measured differences in survival and growth, incision openness, transmitter loss, wound healing, and erythema among abdominal incisions on the linea alba, lateral and parallel to the linea alba (muscle-cutting), and following the underlying muscle fibers (muscle-sparing). A total of 936 juvenile Chinook salmon were implanted with both Juvenile Salmon Acoustic Tracking System transmitters (0.43 g dry) and passive integrated transponder tags. Fish were held at 12°C (n = 468) or 20°C (n = 468) and examined once weekly over 98 days. We found survival and growth did not differ among incision groups or between temperature treatment groups. Incisions on the linea alba had less openness than muscle-cutting and muscle-sparing incisions during the first 14 days when fish were held at 12°C or 20°C. Transmitter loss was not different among incision locations by day 28 when fish were held at 12°C or 20°C. However, incisions on the linea alba had greater transmitter loss than muscle-cutting and muscle-sparing incisions by day 98 at 12°C. Results for wound closure and erythema differed among temperature groups. Results from our study will be used to improve fish-tagging procedures for future studies using acoustic or radio transmitters.

  1. Influence of Incision Location on Transmitter Loss, Healing, Survival, Growth, and Suture Retention of Juvenile Chinook Salmon

    SciTech Connect

    Panther, Jennifer L.; Brown, Richard S.; Gaulke, Greg L.; Deters, Katherine A.; Woodley, Christa M.; Eppard, M. Brad

    2011-11-01

    Fisheries research involving surgical implantation of transmitters necessitates the use of methods that minimize transmitter loss and fish mortality and optimize healing of the incision. We evaluated the effects of three incision locations on transmitter loss, healing, survival, growth, and suture retention in juvenile Chinook salmon Oncorhynchus tshawytscha. The three incision locations were (1) on the linea alba (LA incision), (2) adjacent and parallel to the LA (muscle-cutting [MC] incision), and (3) extending from the LA towards the dorsum at a 45° angle, between the parallel lines of myomeres (muscle-sparing [MS] incision). A Juvenile Salmon Acoustic Telemetry System acoustic transmitter (0.44 g in air) and a passive integrated transponder tag (0.10 g in air) were implanted into each fish (total N = 936 fish). The fish were held at 12°C or 20°C and were examined weekly for 98 d. The progression of healing among incision locations and the variability in transmitter loss made it difficult to identify one incision location as the best choice. The LA incisions had a much smaller wound extent (area of visible subepidermal tissue) than MC and MS incisions during the first 28 d of the study. In both temperature treatments, apposition of incisions through day 14 was better for LA incisions than for MC and MS incisions. However, MC and MS incisions were less likely than LA incisions to reopen over time and thus were less likely to allow transmitter loss through the incision.

  2. Influence of chronic dopamine transporter inhibition by RTI-336 on motor behavior, sleep, and hormone levels in rhesus monkeys.

    PubMed

    Andersen, Monica L; Sawyer, Eileen K; Carroll, F Ivy; Howell, Leonard L

    2012-04-01

    Dopamine transporter (DAT) inhibitors have been developed as a promising treatment approach for cocaine dependence. However, the stimulant effects of DAT inhibitors have the potential to disrupt sleep patterns, and the influence of long-term treatment on dopamine neurochemistry is still unknown. The objectives of this study were to (1) explore the stimulant-related effects of chronic DAT inhibitor (RTI-336) treatment on motor activity and sleep-like measures in male rhesus monkeys (Macaca mulatta; n = 4) and (2) to determine the effect of drug treatment on prolactin and cortisol levels. Subjects were fitted with a collar-mounted activity monitor to evaluate their motor activity, with 4 days of baseline recording preceding 21 days of daily saline or RTI-336 (1 mg/kg/day; intramuscular) injections. Blood samples were collected immediately prior to and following chronic treatment to assess hormone levels. RTI-336 produced a significant increase in locomotor activity at the end of the daytime period compared to saline administration. During the 3-week treatment period, sleep efficiency was decreased and the fragmentation index and latency to sleep onset were significantly increased. Hormone levels were not changed throughout the study. Chronic treatment with RTI-336 has a mild but significant stimulant effect, as evidenced by the significant increase in activity during the evening period which may cause minor disruptions in sleep measures. PMID:22023668

  3. The influence of lactation, occupational exposures and postmenopausal hormone use on the incidence of breast cancer

    SciTech Connect

    Yang, C.P.

    1992-01-01

    A self-administered questionnaire was completely by 1,018 women diagnosed with breast cancer during 1988-1989 identified through the British Columbia Cancer Registry and by 1,025 controls selected at random from the Provincial Voters List. Data were collected on demographic characteristics, lifestyle factors, occupational and reproductive history as well as hormone use. Premenopausal women who ceased lactation within the first month had a relative risk of 3.0, adjusted for age and parity (95% C.I. = 1.6-5.4), compared to women who had breast fed two months or longer. Among women who nursed for at least two months, there was an indication of decreasing risk with increasing duration of nursing. Among post-menopausal women, no relation between lactation history and breast cancer risk was evident. Premenopausal women who reported ever having been a data processing operator (OR = 3.8), hairdresser (OR = 5.5), janitor/housekeeper (OR = 2.1), or having worked in the food processing (OR = 2.7) were found to have an excess risk of breast cancer. Among postmenopausal women, an excess risk was seen for nursing or medical workers (OR = 1.4) whereas a reduced risk was observed among waitresses/bartenders (OR = 0.5), textile workers (OR = 0.5) or defense industry personnel (OR = 0.4). The effect of menopausal hormone use was evaluated among 699 cases and 685 controls who were postmenopausal due to natural causes or to a hysterectomy. There was no overall increase in risk of breast cancer associated with ever use of unopposed estrogen (OR = 1.0, 95% CI = 0.8-1.3). For estrogen use of ten years or longer, the relative risk was 1.6 (95% CI = 1.1-2.5). The risk estimate for current users was somewhat elevated (OR = 1.4, 95% CI = 1.0-2.0). Compared to women who never used hormone preparations, women who had used estrogen plus progestogen had a relative risk of 1.2 (95% CI = 0.6-2.2).

  4. Influence of thyroid hormone and thyroid hormone receptors in the generation of cerebellar gamma-aminobutyric acid-ergic interneurons from precursor cells.

    PubMed

    Manzano, Jimena; Cuadrado, Maria; Morte, Beatriz; Bernal, Juan

    2007-12-01

    Thyroid hormones have important actions in the developing central nervous system. We describe here a novel action of thyroid hormone and its nuclear receptors on maturation of cerebellar gamma-aminobutyric acid (GABA)-ergic interneurons from their precursor cells. In rats, the density of GABAergic terminals in the cerebellum was decreased by hypothyroidism, as shown by immunohistochemistry for the GABA transporter GAT-1. This was due, at least partially, to a decreased number of GABAergic cells, because the number of Golgi II cells in the internal granular layer was decreased. GABAergic interneurons in the cerebellum differentiate from precursors expressing the Pax-2 transcription factor, generated in the subventricular zone of the embryonic fourth ventricle from where they migrate to the cerebellum. Hypothyroidism caused both decreased proliferation and delayed differentiation of precursors, with the net effect being an accumulation of immature cells during the neonatal period. The contribution of thyroid hormone receptors was studied by treating hypothyroid rats with T(3) or with the thyroid hormone receptor (TR) beta-selective agonist GC-1. Whereas treatment with T(3) reduced the number of precursors to control levels, GC-1 had only a partial effect, indicating that both TRalpha1 and TRbeta mediate the actions of T(3). Deletion of TRalpha1 in mice decreased cerebellar GAT-1 expression and Pax-2 precursor cell proliferation. It is concluded that thyroid hormone, acting through the nuclear receptors, has a major role in the proliferation and further differentiation of the Pax-2 precursors of cerebellar GABAergic cells. PMID:17761765

  5. Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste.

    PubMed

    Ravindran, Balasubramani; Wong, Jonathan W C; Selvam, Ammaiyappan; Sekaran, Ganesan

    2016-10-01

    This study focuses on the effect of the epigeic earthworm Eudrilus eugeniae (with and without addition) to transform solid state fermented (SSF) and submerged (SmF) state fermented TFL mixed with cow dung and leaf litter into value added products in compost and vermicompost bioreactors respectively. The significant role of microbes was identified during compost and vermicompost process. In addition, three important phytohormones (Indole 3-acetic acid, Gibberellic acid, Kinetin) were also detected in the compost and vermicompost products. The results revealed that the maximum amount of plant hormones were available in the vermicompost products which may be due to the joint action of earthworm and microorganisms. The overall results confirmed that the vermicomposting process produced a greater value added product. PMID:27013190

  6. Do analogues of gonadotrophin releasing hormone influence follicular fluid steroid levels, oocyte maturity and fertilization rates?

    PubMed

    Tavmergen, E; Tavmergen, E N; Capanoğlu, R

    1992-04-01

    One-hundred-and-twelve samples of follicular fluid from 32 patients undergoing in-vitro fertilization and embryo transfer were analysed in this study. The follicular fluids were analysed for any relationships between oestradiol, progesterone and 17 alpha-hydroxyprogesterone levels, the progesterone/oestradiol and 17 alpha-hydroxyprogesterone/oestradiol ratios and oocyte maturity and fertilization rates. In Group A, consisting of women who used analogues of gonadotrophin-releasing hormone during ovarian stimulation with human menopausal gonadotrophin, the progesterone/oestradiol ratio rose in parallel with the fertilization rate (P less than 0.05). Group B comprised patients treated with human menopausal gonadotrophin alone. No significant relationship was found between the other parameters, oocyte maturation and fertilization rates in either group. PMID:1387881

  7. Photoperiod and gonadal hormones influence odor preferences of the male meadow vole, Microtus pennsylvanicus.

    PubMed

    Ferkin, M H; Gorman, M R

    1992-05-01

    Male meadow voles housed in a long photoperiod (14 h light/day, LP) preferred female to male odors, whereas males maintained in a short photoperiod (10 h light/day, SP) did not display preferences for odors of either sex. These odor-preference patterns matched those of free-living males during spring and autumn, respectively. The preference of LP male voles for female over male odors was eliminated by gonadectomy and reinstated by treatment with testosterone. In SP males, although gonadectomy did not affect odor choices, a preference for female odors was induced by testosterone treatment. Treatment with estradiol did not alter odor preferences of LP or SP males. In conjunction with previous result, the present findings suggest that hormonal responsiveness of neural substrates that control odor preferences are sexually dimorphic and may reflect sex differences in reproductive strategies. PMID:1615048

  8. Influence of exogenous gonadotropin-releasing hormone on seasonal reproductive behavior of the coyote (Canis latrans).

    PubMed

    Carlson, D A; Gese, E M

    2009-10-01

    Wild Canis species such as the coyote (C. latrans) express a suite of reproductive traits unusual among mammals, including perennial pair-bonds and paternal care of the young. Coyotes also are monestrous, and both sexes are fertile only in winter; thus, they depend upon social and physiologic synchrony for successful reproduction. To investigate the mutability of seasonal reproduction in coyotes, we attempted to evoke an out-of-season estrus in October using one of two short-acting gonadotropin-releasing hormone (GnRH) agents: (1) a GnRH analogue, deslorelin (6-D-tryptophan-9-(N-ethyl-L-prolinamide)-10-deglycinamide), 2.1mg pellet sc; or (2) gonadorelin, a GnRH (5-oxoPro-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-GlyNH(2)) porcine hypothalamic extract, 2.0 microg/kg im once daily for 3 consecutive days. A transient increase in serum concentrations of estradiol and progesterone (1 and 2 wk, respectively) was detected after treatment with deslorelin but not gonadorelin. Also, socio-sexual behaviors reminiscent of winter mating (including courtship, mate-guarding, precoital mounts, and copulatory ties) were observed among the deslorelin group. During the subsequent breeding season (January and February), however, preovulatory courtship behavior and olfactory sampling appeared suppressed; emergence of mounts and copulations were delayed in both deslorelin and gonadorelin treatment groups. Furthermore, whereas 8 of 12 females treated in October ovulated and produced healthy litters in the spring, 4 naïve coyotes failed to copulate or become pregnant. Thus, perturbation of hormones prior to ovulation in species with complex mating behaviors may disrupt critical intrapair relationships, even if fertility is not impaired physiologically. PMID:19631975

  9. Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke.

    PubMed

    Shao, Tianyun; Li, Lingling; Wu, Yawen; Chen, Manxia; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2016-10-15

    Salinity is one of the most serious environmental stresses limiting agricultural production. Production of Jerusalem artichoke on saline land is strategically important for using saline land resources. The interaction between plant hormones and salinity stress in governing Jerusalem artichoke (Helianthus tuberosus) growth is unclear. Jerusalem artichoke (variety Nanyu-1) was grown under variable salinity stress in the field, and a role of endogenous hormones [zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA)] in regulating sugar and dry matter accumulation in tubers was characterized. Under mild salt stress (≤2.2gNaClkg(-1) soil), Nanyu-1 grew well with no significant alteration of dry matter distribution to stems and tubers. In contrast, under moderate salt stress (2.7gNaClkg(-1) soil), the distribution to stem decreased and to tubers decreased significantly. Mild salt stress induced sugar accumulation in tubers at the beginning of the tuber-expansion period, but significantly inhibited (i) transfer of non-reducing sugars to tubers, and (ii) polymerization and accumulation of fructan during the tuber-expansion stage. Under different salinity stress, before the stolon growth, the ratio of IAA/ABA in leaves increased significantly and that of GA3/ABA increased slightly; during tuber development, these ratios continued to decrease and reached the minimum late in the tuber-expansion period. While, salt stress inhibited (i) underground dry matter accumulation, (ii) tuber dry matter accumulation efficiency, (iii) transport of non-reducing sugars to tubers, and (iv) fructan accumulation efficiency during the tuber-expansion period; these effects were accompanied by significantly decreased tuber yield with an increase in salinity. With soil salinity increasing, the synthesis of IAA and GA3 was inhibited in leaves and tubers, while ABA synthesis was stimulated. In brief, tuber yield would significantly decreased with the increase of salinity. PMID

  10. Influence of diet and stress on reproductive hormones in Nigerian olive baboons.

    PubMed

    Lodge, E; Ross, C; Ortmann, S; MacLarnon, A M

    2013-09-15

    A female mammal's reproductive function and output are limited by the energy she is able to extract from her environment. Previous studies of the interrelationships between energetic circumstances and reproductive function in a variety of mammal species have produced varied results, which do not all support the common assumption that higher female reproductive hormone levels, specifically progesterone, indicate better ovarian function and greater reproductive potential, and are associated with lower energetic stress. In the present study faecal progesterone and glucocorticoid levels were assessed in two troops of olive baboons (Papio anubis) in the same population. They face similar ecological challenges, except that one troop crop-raids, potentially affecting its energetic intake and stress levels. The energy intake of individual females was assessed by combining detailed feeding observations with nutritional analysis of food samples. The crop-raiding troop experienced 50% higher energy intake rates and 50% lower glucocorticoid levels compared to the non-crop-raiding troop alongside substantially lower progesterone levels. This suggests that energetic stress is associated with elevated progesterone levels and may be the cause of the non-crop-raiding troop's lower reproductive output. By comparing groups which differ little, except in terms of food access, and also by directly assessing energy intake, our study addresses some of the design limitations of previous research investigating variation in progesterone levels and energetic stress. It therefore has the potential to contribute to greater understanding of the factors affecting differences in reproductive and stress hormone levels and reproductive function in mammals experiencing different energetic circumstances. PMID:23800561

  11. The influence of nursery ground processes in the determination of year-class strength in juvenile plaice Pleuronectes platessa L. in Port Erin Bay, Irish Sea

    NASA Astrophysics Data System (ADS)

    Nash, R. D. M.; Geffen, A. J.

    2000-10-01

    The interannual variability in settlement and mortality of juvenile plaice Pleuronectes platessa L. was investigated between 1992 and 1998 on Port Erin Bay, west side of the Isle of Man, Irish Sea. The dampening influence of factors operating on the nursery grounds was especially obvious in 1992 and 1996. In these years extremely high numbers of individuals settled, yet the population sizes in July were similar to other years. Thus the nursery ground processes were likely to be density dependent. Shrimp and crab densities were low in Port Erin Bay and probably had little predatory impact on young plaice. Crustacean densities were not significantly related to winter temperatures. In the Irish Sea, year-class strength is determined during the nursery ground phase, in contrast to the North Sea where determination of year-class strength occurs prior to the nursery ground phase.

  12. An evaluation of the influence of substrate on the response of juvenile freshwater mussels (fatmucket, Lampsilis siliquoidea) in acute water exposures to ammonia

    USGS Publications Warehouse

    Miao, J.; Barnhart, M.C.; Brunson, E.L.; Hardesty, D.K.; Ingersoll, C.G.; Wang, N.

    2010-01-01

    Acute 96-h ammonia toxicity to three-month-old juvenile mussels (Lampsilis siliquoidea) was evaluated in four treatments (water-only, water-only with feeding, water and soil, and water and sand) using an exposure unit designed to maintain consistent pH and ammonia concentrations in overlying water and in pore water surrounding the substrates. Median effect concentrations (EC50s) for total ammonia nitrogen in the four treatments ranged from 5.6 to 7.7mg/L and median lethal concentrations (LC50s) ranged from 7.0 to 11mg/L at a mean pH of 8.4. Similar EC50s or LC50s with overlapping 95% confidence intervals among treatments indicated no influence of substrate on the response of mussels in acute exposures to ammonia. ?? 2010 SETAC.

  13. Juvenile Spondyloarthropathies.

    PubMed

    Adrovic, Amra; Barut, Kenan; Sahin, Sezgin; Kasapcopur, Ozgur

    2016-08-01

    Juvenile spondyloarthropathies represent a clinical entity separate from the adult disease. Initial clinical signs of juvenile spondyloarthropathies often include lower extremity arthritis and enthesopathy, without axial involvement at the disease onset. Asymmetrical oligoarthritis of lower extremities is typically seen in this type of arthritis. Enthesopathy, which is the hallmark of the disease, is most commonly seen in the Achilles tendon, being manifested by heel pain. Anterior uveitis and HLA-B27 positivity are seen in a proportion of cases. Sacroiliitis is generally asymptomatic in the pediatric population. Ineffective treatment of childhood disease results in disease progression to typical adult form of ankylosing spondylitis. Therefore, early diagnosis and classification remains one of the most relevant questions in pediatric rheumatology. It should be kept in mind that the disease could be misdiagnosed as FMF or Behçet's syndrome in countries with a high incidence of those conditions. This review revises available classification criteria, clinical manifestations and therapeutic options for patients with juvenile spondyloarthropathies. PMID:27402112

  14. Blood supply to the brain and. beta. -endorphin and acth levels under the influence of thyrotrophin releasing hormone

    SciTech Connect

    Mirzoyan, R.S.; Ganshina, T.S.; Mirzoyan, R.A.; Ragimov, K.S.

    1985-08-01

    The authors studied beta-endorphin because of its possible mediator role in terms of the cerebrovascular effects of thyrotrophin releasing hormone (TRH), and also because of data in the literature on antagonistic relations between TRH and the endogenous opioid system of the brain. Beta-endorphin was determined by radioimmunoassay; its level was determined after its separation from the beta-lipotrophin fraction. The investigation showed that TRH has a marked depressant effect on cerebrovascular vasoconstrictor refleces. Elevation of the blood ACTH level causes an increase in BP and in the tone of the cerebral vessels. An absence of correlation between the beta-endorphin and ACTH levels in the blood and CSF under the influence of TRH is shown.

  15. Does the number of veins ligated during varicococele surgery influence post-operative semen and hormone results?

    PubMed

    Majzoub, A; Elbardisi, H; Arafa, M; Agarwal, A; Al Said, S; Al Rumaihi, K

    2016-09-01

    Varicocele is a well-established cause of male subfertility, which is directly proportional to its clinical grade. Although newer ultrasonic grading systems have taken into account the existence of pampiniform venous plexi, little is known about the clinical significance of the number of veins ligated during surgery. Very few undersized studies reported an influence which triggered the need to evaluate such association. This is a retrospective study of 378 patients who underwent left microsurgical subinguinal varicocoelectomy. Semen analyses and blood hormone studies performed pre-operatively were compared to those executed 6 months after surgery. Patients were divided into abnormal semen and normal semen groups based on their initial semen results. They were also subdivided according to the number of veins ligated intraoperatively into three groups: <5, 5-10, and >10 veins. Sperm count, total motility, and progressive motility were significantly increased in 62, 60.3, and 53.3% of patients post-operatively (p = 0.001), respectively. No significant differences in hormone levels were detected overall. Of the 378 patients, 332 had an abnormal semen analysis, while the remaining 46 patients had a normal result. Sperm count, total motility, and progressive motility significantly increased after varicocoelectomy in patients with an abnormal initial semen analysis (p = 0.001). In 48.7% of patients, 5-10 veins were ligated during surgery, whereas 28.3% had >10 and 23% had <5 ligated veins. No statistically significant differences were noted in the initial or the follow-up results among the number of vein subgroups. Varicocele ligation improves patients' fertility potential. This improvement, however, is not influenced by the number of veins ligated intraoperatively. Clinical grading maintains its superiority in the evaluation of varicocele patients. PMID:27317389

  16. Tagging Juvenile Pacific Lamprey with Passive Integrated Transponders: Methodology, Short-Term Mortality, and Influence on Swimming Performance

    SciTech Connect

    Mueller, Robert P.; Moursund, Russell A.; Bleich, Matthew D.

    2006-05-01

    This study was conducted to determine the feasibility (i.e., efficiency and onintrusiveness) of tagging juvenile Pacific lampreys Lampetra tridentata with passive integrated transponder (PIT) tags and to determine any associated impacts on survivorship and swimming ability. Juvenile Pacific lampreys were obtained from the John Day Dam fish collection facility and tests were conducted at the Pacific Northwest National Laboratory in 2001 and 2002. A new PIT-tagging procedure was used to inject 12-mm tags 5 mm posterior to the gill openings. ampreys were allowed to recover for 3–4 d following surgery before postmortality and swimming tests were conducted. The PIT tagging procedure during 2001 did not include a suture, and 2.6% of the tags were shed after 40 d. During 2002 a single suture was used to close the opening after inserting a tag, and no tag shedding was observed. Overall short-term mortality rates for lampreys 120–155 mm (total length) held for 40 d at 88C was 2.2% for tagged and 2.7% for untagged fish. Mortality increased significantly when tagged and untagged groups were held in warmer (19–238C) river water: 50% for tagged and 60% for untagged animals. Lengths did not significantly affect survival for either the tagged or untagged group held in warm water. A fungal infection was observed to be the cause of death when water temperature increased. Swimming tests to determine any adverse effects due to tag insertion showed no significant difference (P ¼ 0.12) between tagged and untagged lampreys for mean burst speed; however, maximum burst speeds were significantly lower for the PIT-tagged group.

  17. Tagging Juvenile Pacific Lamprey with Passive Integrated Transponders: Methodology, Short-Term Mortality, and Influence on Swimming Performance

    SciTech Connect

    Mueller, Robert P.; Moursund, Russell A.; Bleich, Matthew D.

    2006-05-31

    Populations of Pacific lamprey (Lampetra tridentata) in the Columbia River basin have declined drastically over the past 20 years. Possible causes include habitat degradation and instream flow obstacles, such as the mainstem hydroelectric dams on the Columbia River. To determine why lamprey populations have declined a monitoring system to track their movements was needed to determine possible impacts. Juvenile lamprey were implanted with passive integrated transponder (PIT) tags and their detection rates determined while migrating through fish bypass facilities at McNary in 2001 and 2005 and John Day Dam in 2002. Juvenile Pacific lamprey (115–178 mm) were obtained from the John Day Dam fish collection facility, transported to Pacific Northwest National Laboratory, and surgically PIT-tagged. Lamprey were allowed to recover for 3 to 4 days following PIT tag implantation and subsequently were released upstream of the PIT tag detectors at both dams. Primary detector efficiency was 98% at McNary Dam and 97% at John Day Dam. Average in-river travel time for fish released at McNary Dam and detected at John Day Dam was 16.1 d in 2001 and 10 d in 2005. Mean detection rates at McNary Dam varied from 74% for gatewell releases to 69% for the collection channel. Follow up tests in 2005 at McNary Dam showed detections rates near 100% from collection channel releases. Detection rates from forebay releases at McNary Dam were lower, ranging from 0% to 38% (mean = 21%). Mean travel times from release point to the primary detectors at McNary Dam were; forebay (492 min), gatewell (323 min), and collection channel (245 min). The detection efficiency at the primary detectors was similar to that of PIT-tagged smolts and travel time within the bypass system showed that lamprey can hold in the bypass system for prolonged periods.

  18. Efficacy of treatment of cattle for liver fluke at housing: influence of differences in flukicidal activity against juvenile Fasciola hepatica.

    PubMed

    Forbes, A B; Reddick, D; Stear, M J

    2015-03-28

    Flukicides are commonly administered at housing to cattle that have grazed fluke-infected pastures or that have been purchased from endemic areas. The choice of product is determined by numerous factors, one of which is the stages of Fasciola hepatica that are killed. Flukicides can be categorised into three main groups: (A) those that kill all juvenile stages and adults; (B) those that kill juveniles from six to eight weeks of age and adults and (C) those that kill adults only. This study was conducted on a commercial beef farm in Scotland and was designed to compare the efficacy of flukicides from each of these three classes in terms of their effects on faecal egg output, coproantigen and liveweight gain. The majority of animals in the untreated control group were positive for coproantigen, fluke eggs or both throughout the study duration of 16 weeks. Egg reappearance interval following housing treatment was eight weeks for clorsulon and 13 weeks for nitroxynil, though patent infections in both groups developed in only a small minority of animals; no fluke eggs were recovered from cattle treated with triclabendazole. Coproantigen was detected four weeks before the reappearance of fluke eggs in the dung. Animals treated with flukicides had significantly fewer faecal samples positive for eggs (P<0.006) and coproantigen (P<0.05) following treatment compared with the controls. Despite differences in the efficacy profiles among the flukicide-treated groups, there were no significant differences (P>0.05) in growth rates among any of the four treatment groups. There was, however, a significant negative association (P<0.001) between fluke positivity at housing and subsequent growth performance, irrespective of treatment group. PMID:25549916

  19. Juvenile rheumatoid arthritis

    MedlinePlus

    ... joints. This form of JIA may turn into rheumatoid arthritis. It may involve five or more large and ... no known prevention for JIA. Alternative Names Juvenile rheumatoid arthritis (JRA); Juvenile chronic polyarthritis; Still disease; Juvenile spondyloarthritis ...

  20. Water stress, CO2 and photoperiod influence hormone levels in wheat

    NASA Technical Reports Server (NTRS)

    Nan, Rubin; Carman, John G.; Salisbury, Frank B.; Campbell, W. F. (Principal Investigator)

    2002-01-01

    'Super Dwarf' wheat (Triticum aestivum L.) plants have been grown from seed to maturity in the Mir space station where they were periodically exposed, because of microgravity and other constraints, to water deficit, waterlogging, high CO2 levels, and low light intensities. The plants produced many tillers, but none of them produced viable seed. Studies have been initiated to determine why the plants responded in these ways. In the present study, effects of the listed stresses on abscisic acid (ABA), indole-3-acetic acid (IAA) and isopentenyl adenosine ([9R]iP) levels in roots and leaves of plants grown under otherwise near optimal conditions on earth were measured. Hormones were extracted, purified by HPLC, and quantified by noncompetitive indirect ELISA. In response to water deficit, ABA levels increased in roots and leaves, IAA levels decreased in roots and leaves, and [9R]iP levels increased in leaves but decreased in roots. In response to waterlogging, ABA, IAA and [9R]iP levels briefly increased in roots and leaves and then decreased. When portions of the root system were exposed to waterlogging and/or water deficit, ABA levels in leaves increased while [9R]iP and IAA levels decreased. These responses were correlated with the percentage of the root system stressed. At a low photosynthetic photon flux (100 micromoles m-2 s-1), plants grown in continuous light had higher leaf ABA levels than plants grown using an 18 or 21 h photoperiod.

  1. Influence of Parathyroid Hormone-Loaded PLGA Nanoparticles in Porous Scaffolds for Bone Regeneration

    PubMed Central

    Gentile, Piergiorgio; Nandagiri, Vijay Kumar; Pabari, Ritesh; Daly, Jacqueline; Tonda-Turo, Chiara; Ciardelli, Gianluca; Ramtoola, Zebunnissa

    2015-01-01

    Biodegradable poly(lactide-co-glycolide) (PLGA) nanoparticles, containing human parathyroid hormone (PTH (1–34)), prepared by a modified double emulsion-solvent diffusion-evaporation method, were incorporated in porous freeze-dried chitosan-gelatin (CH-G) scaffolds. The PTH-loaded nanoparticles (NPTH) were characterised in terms of morphology, size, protein loading, release kinetics and in vitro assessment of biological activity of released PTH and cytocompatibility studies against clonal human osteoblast (hFOB) cells. Structural integrity of incorporated and released PTH from nanoparticles was found to be intact by using Tris-tricine SDS-PAGE. In vitro PTH release kinetics from PLGA nanoparticles were characterised by a burst release followed by a slow release phase for 3–4 weeks. The released PTH was biologically active as evidenced by the stimulated release of cyclic AMP from hFOB cells as well as increased mineralisation studies. Both in vitro and cell studies demonstrated that the PTH bioactivity was maintained during the fabrication of PLGA nanoparticles and upon release. Finally, a content of 33.3% w/w NPTHs was incorporated in CH-G scaffolds, showing an intermittent release during the first 10 days and, followed by a controlled release over 28 days of observation time. The increased expression of Alkaline Phosphatase levels on hFOB cells further confirmed the activity of intermittently released PTH from scaffolds. PMID:26343649

  2. Active vs. passive recovery during high-intensity training influences hormonal response.

    PubMed

    Wahl, P; Mathes, S; Achtzehn, S; Bloch, W; Mester, J

    2014-06-01

    The aim of the present study was to compare the effects of active (A) vs. passive (P) recovery during high-intensity interval training on the acute hormonal and metabolic response. Twelve triathletes/cyclists performed four 4 min intervals on a cycle ergometer, either with A- or P-recovery between each bout. Testosterone, hGH, cortisol, VEGF, HGF and MIF were determined pre, 0', 30', 60' and 180' after both interventions. Metabolic perturbations were characterized by lactate, blood gas and spirometric analysis. A-recovery caused significant increases in circulating levels of cortisol, testosterone, T/C ratio, hGH, VEGF and HGF. Transient higher levels were found for cortisol, testosterone, hGH, VEGF, HGF and MIF after A-recovery compared to P-recovery, despite no differences in metabolic perturbations. A-recovery was more demanding from an athlete's point of view. Based on the data of testosterone, hGH and the T/C-ratio, as well as on the data of VEGF and HGF it appears that this kind of exercise protocol with A-recovery phases between the intervals may promote anabolic processes and may lead to pro-angiogenic conditions more than with P-recovery. These data support the findings that also the long term effects of both recovery modes seem to differ, and that both can induce specific adaptations. PMID:24258473

  3. Influence of Parathyroid Hormone-Loaded PLGA Nanoparticles in Porous Scaffolds for Bone Regeneration.

    PubMed

    Gentile, Piergiorgio; Nandagiri, Vijay Kumar; Pabari, Ritesh; Daly, Jacqueline; Tonda-Turo, Chiara; Ciardelli, Gianluca; Ramtoola, Zebunnissa

    2015-01-01

    Biodegradable poly(lactide-co-glycolide) (PLGA) nanoparticles, containing human parathyroid hormone (PTH (1-34)), prepared by a modified double emulsion-solvent diffusion-evaporation method, were incorporated in porous freeze-dried chitosan-gelatin (CH-G) scaffolds. The PTH-loaded nanoparticles (NPTH) were characterised in terms of morphology, size, protein loading, release kinetics and in vitro assessment of biological activity of released PTH and cytocompatibility studies against clonal human osteoblast (hFOB) cells. Structural integrity of incorporated and released PTH from nanoparticles was found to be intact by using Tris-tricine SDS-PAGE. In vitro PTH release kinetics from PLGA nanoparticles were characterised by a burst release followed by a slow release phase for 3-4 weeks. The released PTH was biologically active as evidenced by the stimulated release of cyclic AMP from hFOB cells as well as increased mineralisation studies. in vitro and cell studies demonstrated that the PTH bioactivity was maintained during the fabrication of PLGA nanoparticles and upon release. Finally, a content of 33.3% w/w NPTHs was incorporated in CH-G scaffolds, showing an intermittent release during the first 10 days and, followed by a controlled release over 28 days of observation time. The increased expression of Alkaline Phosphatase levels on hFOB cells further confirmed the activity of intermittently released PTH from scaffolds. PMID:26343649

  4. Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases.

    PubMed

    Carter, Laura J; Williams, Mike; Böttcher, Christine; Kookana, Rai S

    2015-10-20

    The detection of a range of active pharmaceutical ingredients (APIs) in the soil environment has led to a number of publications demonstrating uptake by crops, however very few studies have explored the potential for impacts on plant development as a result of API uptake. This study investigated the effect of carbamazepine and verapamil (0.005-10 mg/kg) on a range of plant responses in zucchini (Cucurbita pepo). Uptake increased in a dose-dependent manner, with maximum leaf concentrations of 821.9 and 2.2 mg/kg for carbamazepine and verapamil, respectively. Increased carbamazepine uptake by zucchini resulted in a decrease in above (<60%) and below (<30%) ground biomass compared to the controls (p < 0.05). At soil concentrations >4 mg/kg the mature leaves suffered from burnt edges and white spots as well as a reduction in photosynthetic pigments but no such effects were seen for verapamil. For both APIs, further investigations revealed significant differences in the concentrations of selected plant hormones (auxins, cytokinins, abscisic acid and jasmonates), and in the nutrient composition of the leaves in comparison to the controls (p < 0.05). This is some of the first research to demonstrate that the exposure of plants to APIs is likely to cause impacts on plant development with unknown implications. PMID:26418514

  5. Influence of the thyroid hormone status on tyrosine hydroxylase in central and peripheral catecholaminergic structures.

    PubMed

    Claustre, J; Balende, C; Pujol, J F

    1996-03-01

    We investigated the effect of hyper- and hypothyroidism on tyrosine hydroxylase protein concentration in the locus coeruleus (divided into anterior and posterior parts), the substantia nigra and the adrenals of adult rats. Rats were made hypothyroid with propylthiouracile (PTU, 0.02% in drinking water for 21 days) or hyperthyroid by thyroxine injection (100 or 250 micrograms/kg/day), for 3 or 17 days. PTU treatment resulted in statistically significant decrease of tyrosine hydroxylase in the anterior locus coeruleus (-13%) and the adrenals (-14%). After thyroxine treatment, in the anterior locus coeruleus, tyrosine hydroxylase was significantly higher (2 way ANOVA) after the 3 day treatment than after the 17 day treatment: tyrosine hydroxylase showed a trend to increase the 3 day treatment (+20% with the 250 micrograms/kg dose) and to decrease after the 17 day treatment (-15% with the 250 micrograms/kg dose). In the adrenals, tyrosine hydroxylase was increased by the 3 day treatment (+42% after the 250 micrograms/kg dose), but this increase was not observed after 17 days of treatment. Tyrosine hydroxylase was not altered in the posterior locus coeruleus and the substantia nigra, whatever the treatment. Together, our results support the hypothesis that in the anterior locus coeruleus and in the adrenals tyrosine hydroxylase level is positively modulated by thyroid hormones. After long-term treatment (17 days) this effect is not observed. PMID:8813245

  6. Influence of menstrual cycle, parity and oral contraceptive use on steroid hormone receptors in normal breast.

    PubMed Central

    Battersby, S.; Robertson, B. J.; Anderson, T. J.; King, R. J.; McPherson, K.

    1992-01-01

    Steroid receptor was assessed immunohistochemically in 158 samples of normal breast for variation through the menstrual cycle. Patterns and intensity of reaction were used in a semi-quantitative scoring system to examine the influence of cycle phase, cycle type, parity and age. The changes in oestrogen receptor for natural cycle and oral contraceptive (OC) cycles indicated down-regulation by progestins. Progesterone receptor did not vary significantly in natural cycles, but increased steadily through OC cycles. This study provides strong evidence that both oestrogen and progesterone influence breast epithelium, but dissimilarities from the endometrium are apparent. The interval since pregnancy had a significant negative effect on frequency and score of oestrogen receptor and score of progesterone receptor. Multivariate analysis established the phase of cycle and OC use as independent significant influences on oestrogen receptor. The interval since pregnancy was an independent significant factor for both oestrogen and progesterone receptor presence. Images Figure 1 Figure 2 PMID:1562470

  7. Hormonal therapies in acne.

    PubMed

    Shaw, James C

    2002-07-01

    Hormones, in particular androgen hormones, are the main cause of acne in men, women, children and adults, in both normal states and endocrine disorders. Therefore, the use of hormonal therapies in acne is rational in concept and gratifying in practice. Although non-hormonal therapies enjoy wide usage and continue to be developed, there is a solid place for hormonal approaches in women with acne, especially adult women with persistent acne. This review covers the physiological basis for hormonal influence in acne, the treatments that are in use today and those that show promise for the future. The main treatments to be discussed are oral contraceptives androgen receptor blockers like spironolactone and flutamide, inhibitors of the enzyme 5 alpha-reductase and topical hormonal treatments. PMID:12083987

  8. Race, Legal Representation, and Juvenile Justice: Issues and Concerns

    ERIC Educational Resources Information Center

    Guevara, Lori; Spohn, Cassia; Herz, Denise

    2004-01-01

    The objective of this study was to examine the influence of type of counsel across race on juvenile court outcomes. Using data from a sample of juvenile court referrals from two midwestern juvenile courts, this study examined the interaction of race and type of counsel on disposition outcome. The results indicated that youth without an attorney…

  9. The Influence of Sex Steroid Hormones in the Immunopathology of Experimental Pulmonary Tuberculosis

    PubMed Central

    Bini, Estela Isabel; Mata Espinosa, Dulce; Marquina Castillo, Brenda; Barrios Payán, Jorge; Colucci, Darío; Cruz, Alejandro Francisco; Zatarain, Zyanya Lucía; Alfonseca, Edgar; Pardo, Marta Romano; Bottasso, Oscar; Pando, Rogelio Hernández

    2014-01-01

    The relation between men and women suffering pulmonary tuberculosis is 7/3 in favor to males. Sex hormones could be a significant factor for this difference, considering that testosterone impairs macrophage activation and pro-inflammatory cytokines production, while estrogens are proinflammatory mediator’s inducer. The aim of this work was to compare the evolution of tuberculosis in male and female mice using a model of progressive disease. BALB/c mice, male and female were randomized into two groups: castrated or sham-operated, and infected by the intratracheal route with a high dose of Mycobacterium tuberculosis strain H37Rv. Mice were euthanized at different time points and in their lungs were determined bacilli loads, inflammation, cytokines expression, survival and testosterone levels in serum. Non-castrated male mice showed significant higher mortality and bacilli burdens during late disease than female and castrated male animals. Compared to males, females and castrated males exhibited significant higher inflammation in all lung compartments, earlier formation of granulomas and pneumonia, while between castrated and non-castrated females there were not significant differences. Females and castrated males expressed significant higher TNF-α, IFN γ, IL12, iNOS and IL17 than non-castrated males during the first month of infection. Serum Testosterone of males showed higher concentration during late infection. Orchidectomy at day 60 post-infection produced a significant decrease of bacilli burdens in coexistence with higher expression of TNFα, IL-12 and IFNγ. Thus, male mice are more susceptible to tuberculosis than females and this was prevented by castration suggesting that testosterone could be a tuberculosis susceptibility factor. PMID:24722144

  10. [The influence of hormonal contraceptives in the spectrum of free plasma amino acids].

    PubMed

    Klinger, G; Gruhn, K

    1978-01-01

    The plasma concentrations (p.c.'s) of various amino acids were measured in 10 women, 18-28 years of age, 5 of whom used the combination preparation Gravistat and 5 of whom used the depot preparation Deposiston for 2 cycles. Blood samples were taken during a control cycle immediately proceeding and during the 2 cycles of contraceptive use. Diet and other factors were controlled as carefully as possible. No effect on plasma lysin levels was observed. Statistically significant increases for histidin levels were observed in the 1st cycle of contraceptive use, and for arginin in the 2nd cycle. The p.c. of cystin decreased significantly during Gravistat use. Deposiston use caused a continual increase in the p.c.'s of threonin and serin. Gravistat use caused a decrease in the p.c. of threonin during the first cycle of use, followed by a marked increase during the 2nd cycle of use. A marked increase in the p.c. of serin was observed after the first cycle of Gravistat use. Valin, leucin, and isoleucin levels decreased during the use of both preparations (with the exception of isoleucin levels during Gravistat use), but all remained within normal levels. The p.c.'s of tyrosin and glutamic acid decreased during contraceptive use, while the phenylalamine concentration increased. The p.c.'s of prolin and glycin decreased during contraceptive use, while the concentration of alanin increased. These findings indicate a highly selective effect of hormonal contraceptive use on the p.c.'s of amino acids. PMID:729470

  11. Vitamin D status and parathyroid hormone concentrations influence the skeletal response to zoledronate and denosumab.

    PubMed

    Mosali, P; Bernard, L; Wajed, J; Mohamed, Z; Ewang, M; Moore, A; Fogelman, I; Hampson, G

    2014-05-01

    Studies suggest that optimal vitamin D status is required for the maximal effect of antiresorptive agents. We investigated the relationship between vitamin D status, serum parathyroid hormone (PTH) concentrations, and change in bone mineral density (BMD) following iv zoledronate and denosumab. We carried out a retrospective analysis of 111 patients, mean age 70 (SD 13) years, 89 women and 22 men, prescribed zoledronate and 43 postmenopausal women treated with denosumab for osteoporosis. We measured BMD at the lumbar spine (LS) and total hip (TH), serum 25 (OH) vitamin D, PTH, and bone turnover markers (plasma CTX, P1NP) at 1 year. In patients on zoledronate, BMD increased at the LS and TH (mean LS change [SEM] = 2.6 % [0.5 %], mean TH change = 1.05 % [0.5 %], p < 0.05). A significant increase in BMD was seen at the LS only in the denosumab group (p = 0.001). Significant decreases in CTX and P1NP were observed at 12 months in both treatment groups. At baseline and at 12 months, 34 % and 23 % of the patients on zoledronate had a serum vitamin D of <50 nmol/L, respectively. The mean PTH concentration in patients with 25 (OH) vitamin D <50 nmol/L was 44 ng/L (SEM 16.6). Patients with PTH concentration <44 ng/L had significantly higher increases in TH BMD compared to those with PTH >44 ng/L (zoledronate 1.9 [0.83] vs. -0.43 [0.81], p = 0.04; denosumab 4.1 [0.054] vs. -1.7 [0.04], p = 0.004). Optimal vitamin D status and PTH concentrations improve the skeletal response to zoledronate and denosumab. PMID:24509506

  12. Influence of the mother's reproductive state on the hormonal status of daughters in marmosets (Callithrix kuhlii).

    PubMed

    Puffer, Alyssa M; Fite, Jeffrey E; French, Jeffrey A; Rukstalis, Michael; Hopkins, Elizabeth C; Patera, Kimberly J

    2004-09-01

    Behavioral and endocrine suppression of reproduction in subordinate females produces the high reproductive skew that characterizes callitrichid primate mating systems. Snowdon et al. [American Journal of Primatology 31:11-21, 1993] reported that the eldest daughters in tamarin families exhibit further endocrinological suppression immediately following the birth of siblings, and suggested that dominant females exert greater control over subordinate endocrinology during this energetically challenging phase of reproduction. We monitored the endocrine status of five Wied's black tufted-ear marmoset daughters before and after their mother delivered infants by measuring concentrations of urinary estradiol (E(2)), pregnanediol glucuronide (PdG), testosterone (T), and cortisol (CORT). Samples were collected from marmoset daughters 4 weeks prior to and 9 weeks following three consecutive sibling-litter births when the daughters were prepubertal (M=6.1 months of age), peripubertal (M=11.9 months), and postpubertal (M=17.6 months). The birth of infants was associated with reduced ovarian steroid excretion only in the prepubertal daughters. In contrast, ovarian steroid levels tended to increase in the postpubertal daughters. Urinary E(2) and T levels in the postpubertal daughters were 73.8% and 37.6% higher, respectively, in the 3 weeks following the birth of infants, relative to prepartum levels. In addition, peak urinary PdG concentrations in peri- and postpubertal daughters were equivalent to luteal phase concentrations in nonpregnant, breeding adult females, and all of the peri- and postpubertal daughters showed clear ovulatory cycles. Cortisol excretion did not change in response to the reproductive status of the mother, nor did the concentrations change across age. Our data suggest that marmoset daughters of potential breeding age are not hormonally suppressed during the mother's peripartum period or her return to fertility. These findings provide an additional example

  13. Influence of thyrotropin-releasing hormone and catecholaminergic interactions on CNS ethanol sensitivity.

    PubMed

    French, T A; Masserano, J M; Weiner, N

    1993-02-01

    The role of catecholamine neuronal systems in mediating the analeptic and thermogenic effects of thyrotropin-releasing hormone (TRH) was examined in long-sleep (LS) and short-sleep (SS) mice. TRH [0.1 to 40 micrograms, intracerebroventricularly (icv)] was associated with a reduction in the sleep times of LS mice, but no dose of TRH had any effect on sleep times of SS mice. However, TRH (20 micrograms, icv) produced a 1.0 degree to 1.5 degrees C attenuation of the ethanol-induced hypothermia in both LS and SS mice. TRH did not change the rate of ethanol elimination in either line of mice, suggesting that the reduction in LS sleep times and attenuation of LS and SS hypothermia were due to decreased CNS ethanol sensitivity rather than an increase in the rate of ethanol metabolism. TRH (20 micrograms, icv) given alone produced an activation of central and peripheral catecholamine systems in LS, but not SS mice, as reflected by an increase in the in vivo tyrosine hydroxylase (TH) activity in the brain and adrenal gland. TRH, given with ethanol, prevented or attenuated ethanol-induced decreases in the brain and adrenal gland in vivo TH activity in LS mice but not SS mice. Thus, there was an association between the ability of TRH to produce an activation of catecholamine neuronal systems (increased rate of catecholamine biosynthesis) and the analeptic action of TRH to reduce the CNS depressant effects of ethanol (decreased sleep times).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8095774

  14. The influence of medical conditions associated with hormones on the risk of breast cancer.

    PubMed

    Moseson, M; Koenig, K L; Shore, R E; Pasternack, B S

    1993-12-01

    Medical conditions related to hormonal abnormalities were investigated in a case-control study of breast cancer among women who attended a screening centre. Information was obtained by telephone interview regarding physician-diagnosed medical conditions such as thyroid or liver diseases, diabetes, and hypertension, as well as hirsutism, acne, galactorrhoea, and reproductive, menstrual, and gynaecological factors. Results are presented for 354 cases and 747 controls. Women with fertility problems who never succeeded in becoming pregnant were at significantly increased breast cancer risk (adjusted odds ratio [OR] = 3.5; 95% confidence interval [CI]:1.1-10.9). An elevated cancer risk was also associated with having excess body hair (OR = 1.5; 95% CI:1.0-2.3), or having excess body hair in addition to persistent adult acne (OR = 6.8; 95% CI:1.7-27.1). Recurrent amenorrhea (OR = 3.5; 95% CI:1.1-11.5), and a treated hyperthyroid condition (OR = 2.2; 95% CI:1.1-4.4) were significantly associated with risk. A non-significant elevation of risk was present for endometrial hyperplasia (OR = 1.8; 95% CI: 0.8-4.0). There was a suggestion of an association between a history of galactorrhoea and breast cancer risk (OR = 2.0; 95% CI:0.8-4.9) among premenopausal women. No associations were found with other medical or gynaecological factors. The possibility that some of these findings are due to chance cannot be excluded because of the problem of multiple comparisons. PMID:8144280

  15. The influence of bovine temperament on rectal temperature and stress hormones in response to transportation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the influence of bovine temperament on rectal temperature (RT), cortisol (CS), and epinephrine (EPI) secretion in response to transportation. Brahman bulls (10 months of age) were selected from the spring 2007 calf crop based on temperament score which was an ave...

  16. HORMONAL PROCESSES IN DECAPOD CRUSTACEAN LARVAE AS BIOMARKERS OF ENDOCRINE DISRUPTING CHEMICALS IN THE MARINE ENVIRONMENT

    EPA Science Inventory

    Knowledge of endocrine control of the complex larval developmental processes in insects (metamorphosis) has led to the introduction of insect hormones and their analogues as insecticides known as insect growth regulators (IGRs) with the largest group being juvenile hormone analog...

  17. Gender Development in 46,XY DSD: Influences of Chromosomes, Hormones, and Interactions with Parents and Healthcare Professionals

    PubMed Central

    Wisniewski, Amy B.

    2012-01-01

    Variables that impact gender development in humans are difficult to evaluate. This difficulty exists because it is not usually possible to tease apart biological influences on gender from social variables. People with disorders of sex development, or DSD, provide important opportunities to study gender within individuals for whom biologic components of sex can be discordant with social components of gender. While most studies of gender development in people with 46,XY DSD have historically emphasized the importance of genes and hormones on gender identity and gender role, more recent evidence for a significant role for socialization exists and is considered here. For example, the influence of parents' perceptions of, and reactions to, DSD are considered. Additionally, the impact of treatments for DSD such as receiving gonadal surgeries or genitoplasty to reduce genital ambiguity on the psychological development of people with 46,XY DSD is presented. Finally, the role of multi-disciplinary care including access to peer support for advancing medical, surgical and psychosexual outcomes of children and adults with 46,XY DSD, regardless of sex of rearing, is discussed. PMID:24278745

  18. Fighting Juvenile Gun Violence. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Sheppard, David; Grant, Heath; Rowe, Wendy; Jacobs, Nancy

    This bulletin describes the Office of Juvenile Justice and Delinquency Prevention's efforts to fight juvenile gun violence. The Office awarded four community demonstration grants to implement "Partnerships To Reduce Juvenile Gun Violence." Partnership goals include increasing the effectiveness of existing strategies by enhancing and coordinating…

  19. Influence of nutritional stress on digestive enzyme activities in juveniles of two marine clam species, Ruditapes decussatus and Venerupis pullastra

    NASA Astrophysics Data System (ADS)

    Albentosa, Marina; Moyano, Francisco J.

    2008-08-01

    The potential use of digestive activities as indicators of the nutritional status in bivalves is discussed in relation to the results obtained in two clam species exposed to starvation and refeeding. Activities of some digestive enzymes (amylase, laminarinase, cellulase, and protease) were measured in juveniles of two commercially interesting species of clams, Ruditapes decussatus and Venerupis pullastra. The specimens were fed normally, being after subjected to a 15-days starvation and a further refeeding period. Samples were obtained at different moments of such feeding schedule to evaluate enzymes as well as weight (live, dry and organic) and length, in order to calculate growth rates and feeding efficiencies. Starvation led to a major decrease in clam growth as measured by dry weight and a negative growth as measured by organic weight, this coinciding with a certain degree of growth of the shell and a consumption of soft tissue. This response occurred more rapidly in R. decussatus but was of a lower magnitude than in V. pullastra. Activity of carbohydrases decreased rapidly in both species with starvation, although protease activity was maintained in R. decussatus. Recovery after the end of starvation was not similar in both species; while R. decussatus attained similar growth rates and enzyme activities to those measured prior to nutritional stress, V. pullastra only recovered 50% of its initial values. For both species of bivalves it can be concluded that digestive enzymes, and more specifically amylase, could be used as indicative of their nutritional condition.

  20. Influence of CIDR treatment during superovulation on embryo production and hormonal patterns in cattle.

    PubMed

    Lafri, M; Ponsart, C; Nibart, M; Durand, M; Morel, A; Jeanguyot, N; Badinand, F; De Mari, K; Humblot, P

    2002-10-01

    One of the major sources of success in embryo transfer is timing of AI relative to the LH surge and ovulation. The aim of this study was to compare the embryo production following superovulation during a PGF2alpha (control cycle) or a CIDR-B synchronized cycle (CIDR-B cycle). CIDR-B (CIDR-B ND, Virbac, Carros, France) was inserted on Day 11 of a previously synchronized cycle and left for 5 days. A total dose of 350 microg FSH was administered (eight injections i.m. for 4 days; first on Day 13, decreasing doses) and PGFalpha analog (750 microg i.m.: Uniandine ND, Schering-Plough, Levallois-Perret, France) injected at the time of third FSH injection. Artificial inseminations were performed 12 and 24 h after standing estrus (Day 0). Embryos were collected on Day 7. Luteinizing hormone was measured by EIA (Reprokit Sanofi, Libourne, France) from blood samples collected every 3 h for 36 h, starting 24 h after PGF2alpha (control cycle) or 12 h after CIDR-B removal (CIDR-B cycle). The effects of treatment group and interval between the LH peak and AI (two classes, < 10 and > or = 10 h) on embryo production and quality were analyzed by ANOVA. No effect of treatment was observed on embryo production variables. The intervals between the end of treatment and onset of estrus and between end of treatment and LH surge were greater in heifers treated during a control than a CIDR-B cycle, respectively (45.5 +/- 1.4 versus 31.9 +/- 0.7; 42.0 +/- 1.6 versus 31.0 +/- 1.5; P < 0.05), but maximal LH and estradiol concentrations, at the preovulatory surge were similar in control and CIDR-B synchronized heifers. The numbers of viable and Grade I embryos were significantly increased (P < 0.01) when animals had an interval from LH peak to first AI > or = 10 h (7.2 +/- 0.9 and 3.5 +/- 0.6) when compared to shorter intervals (4.2 +/- 1.1 and 2.0 +/- 0.7) whereas total number of embryos was unchanged (11.8 +/- 1.4 versus 10.3 +/- 1.8). It is concluded that late occurrence of LH peaks in

  1. [Phytoecdysteroids influence on the hormonal status and apoptosis in growing rats].

    PubMed

    Sidorova, Iu S; Seliaskin, K E; Zorin, S N; Vasilevskaia, L S; Bogachuk, M N; Volodin, V V; Mazo, V K

    2014-01-01

    The impact of the 15-day consumption of Serratula coronata extract containing phytoecdysteroids on some indicators of hormonal status and activity of apoptosis in various organs of growing male Wistar rats (initial body weight 127.8 +/-2.5 sigma) has been studied. The extract from the leaves of Serratula coronata was added to the water of animals of experimental groups 2 and 3 (n = 8 in each group) daily at the dose of 5 and 15 mg phytoecdysteroids per kg of body weight respectively. Animals of the control group 1 (n = 8) received water alone throughout the experiment. Daily volume of drunk fluid was recorded. At the 15th day of the experiment animals were taken out using the decapitation under the light ether anesthesia. The content of corticosterone, prostaglandin E2 and beta-endorphin in rat blood plasma were determined by ELISA test. Plasma level of noradrenaline was determined by HPLC. DNA damage and percentage of apoptotic cells (apoptotic index) were measured in isolated cells of the thymus, heart and brain by single-cell gel electrophoresis (the comet assay). Significantly lower concentration of norepinephrine was detected in plasma of experimental animals from groups 2 and 3 (10.3 +/- 1.1 and 7.2 +/- 0.8 ng/ml, respectively) compared to the same index in the control group (20.4 +/- 3.4 ng/ml). Significant differences of other biochemical parameters for all groups of animals have not been identified. Statistical significant difference in the ratio of corticosterone/norepinephrine compared with control animals was detected for a group of rats consumed the highest dose of phytoecdysteroids. There was no statistically significant difference in DNA fragmentation and apoptosis index in animals consumed phytoecdysteroids in compare with the control group of animals. The absence of the activity of apoptosis in cells of the heart, brain and thymus of rats treated with phytoecdysteroid extract may indicate the safety of its use in the diet of the animals. PMID

  2. Juvenile Justice & Youth Violence.

    ERIC Educational Resources Information Center

    Howell, James C.

    Youth violence and the juvenile justice system in the United States are explored. Part 1 takes stock of the situation. The first chapter discusses the origins and evaluation of the juvenile justice system, and the second considers the contributions of the Federal Juvenile Justice and Delinquency Prevention Act to the existing juvenile justice…

  3. Calcinosis in juvenile dermatomyositis is influenced by both anti-NXP2 autoantibody status and age at disease onset

    PubMed Central

    Tansley, Sarah L.; Betteridge, Zoe E.; Shaddick, Gavin; Gunawardena, Harsha; Arnold, Katie; Wedderburn, Lucy R.

    2014-01-01

    Objective. Calcinosis is a major cause of morbidity in JDM and has previously been linked to anti-NXP2 autoantibodies, younger age at disease onset and more persistent disease activity. This study aimed to investigate the clinical associations of anti-NXP2 autoantibodies in patients with JDM stratified by age at disease onset. Methods. A total of 285 patients with samples and clinical data were recruited via the UK Juvenile Dermatomyositis Cohort and Biomarker Study. The presence of anti-NXP2 was determined by both immunoprecipitation and ELISA. Logistic regression analysis was performed to assess the age-dependent relationship between anti-NXP2 and the development of calcinosis and disease activity measures. Results. We identified anti-NXP2 autoantibodies in 56 patients (20%). While in all patients younger age at disease onset was associated with an increased risk of calcinosis and this relationship was nearly linear, anti-NXP2 autoantibodies substantially increased the risk of calcinosis across all ages (P = 0.025) and were detectable prior to calcinosis development. Children with anti-NXP2 autoantibodies had a greater degree of weakness (median lowest ever Childhood Myositis Assessment Score 29.6 vs 42) and were less likely to be in remission at 2 years post-diagnosis. No difference in disease activity was seen 4 years post-diagnosis. Conclusion. Children diagnosed at a young age have a high risk of calcinosis regardless of autoantibody status. However, the presence of anti-NXP2 autoantibodies substantially increases the risk of calcinosis across all ages and is associated with disease severity. PMID:24987158

  4. INFLUENCE OF LARVAL EXPOSURE TO SALINITY AND CADMIUM STRESS ON JUVENILE PERFORMANCE OF TWO MARINE INVERTEBRATES, CAPITELLA SP I AND CREPIDULA FORNICATA

    EPA Science Inventory

    Delayed metamorphosis and short-term food limitation reduce juvenile or adult fitness in a number of marine invertebrate species. In this study, we tested the ability of pollutant and salinity stress to bring about similar effects on juvenile or adult performance. Larvae of the p...

  5. [Juvenile arthritides].

    PubMed

    Horneff, G

    2010-10-01

    Arthritis in children represents a diagnostic and therapeutic challenge. The diagnostic spectrum is broad and a very precise indication for diagnostic and therapeutic procedures, especially in small children, is important. In addition to acute arthritides - viral arthritis, reactive arthritis, Lyme arthritis and septic arthritis - secondary chronic arthritis related to an underlying disease as well as juvenile idiopathic arthritis (JIA), the most common chronic inflammatory systemic disease in children, need to be considered. This overview is a guide to the diagnosis of arthritis in childhood and to evidence-based therapy of JIA in particular. This consists of a combination of nonsteroidal anti-inflammatory drugs, systemic and intraarticular corticosteroids, traditional DMARDs such as sulfasalazine, methotrexate and leflunomide, the TNF inhibitors etanercept, adalimumab and, with restrictions, infliximab, other biopharmaceuticals such as anakinra, canakinumab and rilonacept, and tocilizumab and finally, abatacept. PMID:20798949

  6. EVALUATION OF THYROID HORMONES AND AS INFLUENCED BY TREATMENT WITH DESLORELIN IN PALLAS' CATS (OTOCOLOBUS (FELIS) MANUL).

    PubMed

    Delaski, Kristina M; Gamble, Kathryn C

    2015-12-01

    Thyroid hormones regulate a variety of physiologic functions including metabolism, growth, and reproductive cycling, and these other hormones can impact the thyroid function via the hypothalamic-pituitary axis. For instance, the gonadotropin-releasing hormone agonist, deslorelin, used in nondomestic carnivores for contraception and behavioral control, down-regulates reproductive hormones through this mechanism and so may impact thyroid function. Due to clinical concerns of hypothyroidism in a bachelor group of adult male Pallas' cats (Otocolobus (Felis) manul) which also had deslorelin implants, serum samples from treated captive (n = 8) individuals, untreated captive (n = 25), and free-ranging (n = 9) individuals were analyzed for thyroid hormone concentrations. Total and free thyroxine (TT4 and FT4), total and free tri-iodothyronine (TT3 and FT3), and thyroid stimulating hormone (TSH) were measured although, due to sample volume limitations, not every hormone could be analyzed for every sample. Of these hormones, only FT4 was found statistically different between the deslorelin-treated and untreated groups. As samples were unevenly distributed across season, true comparison between seasons could not be made. The values reported for the untreated captive and free-ranging group, while representing a small sample size, can serve as a baseline assessment when evaluating the thyroid status of captive Pallas' cats. PMID:26667522

  7. Hormone response to bidirectional selection on social behavior

    PubMed Central

    Amdam, Gro V.; Page, Robert E.; Fondrk, M. Kim; Brent, Colin S.

    2010-01-01

    Behavior is a quantitative trait determined by multiple genes. Some of these genes may have effects from early development and onward by influencing hormonal systems that are active during different life-stages — leading to complex associations, or suites, of traits. Honey bees (Apis mellifera) have been used extensively in experiments on the genetic and hormonal control of complex social behavior, but the relationships between their early developmental processes and adult behavioral variation are not well understood. Bidirectional selective breeding on social food-storage behavior produced two honey bee strains, each with several sub-lines, that differ in an associated suite of anatomical, physiological, and behavioral traits found in unselected wild type bees. Using these genotypes, we document strain-specific changes during larval, pupal, and early adult life-stages for the central insect hormones juvenile hormone (JH) and ecdysteroids. Strain differences correlate with variation in female reproductive anatomy (ovary size), which can be influenced by JH during development, and with secretion rates of ecdysteroid from the ovaries of adults. Ovary size was previously assigned to the suite of traits of honey bee food-storage behavior. Our findings support that bidirectional selection on honey bee social behavior acted on pleiotropic gene networks. These networks may bias a bee’s adult phenotype by endocrine effects on early developmental processes that regulate variation in reproductive traits. PMID:20883212

  8. Hormone response to bidirectional selection on social behavior.

    PubMed

    Amdam, Gro V; Page, Robert E; Fondrk, M Kim; Brent, Colin S

    2010-01-01

    Behavior is a quantitative trait determined by multiple genes. Some of these genes may have effects from early development and onward by influencing hormonal systems that are active during different life-stages leading to complex associations, or suites, of traits. Honey bees (Apis mellifera) have been used extensively in experiments on the genetic and hormonal control of complex social behavior, but the relationships between their early developmental processes and adult behavioral variation are not well understood. Bidirectional selective breeding on social food-storage behavior produced two honey bee strains, each with several sublines, that differ in an associated suite of anatomical, physiological, and behavioral traits found in unselected wild type bees. Using these genotypes, we document strain-specific changes during larval, pupal, and early adult life-stages for the central insect hormones juvenile hormone (JH) and ecdysteroids. Strain differences correlate with variation in female reproductive anatomy (ovary size), which can be influenced by JH during development, and with secretion rates of ecdysteroid from the ovaries of adults. Ovary size was previously assigned to the suite of traits of honey bee food-storage behavior. Our findings support that bidirectional selection on honey bee social behavior acted on pleiotropic gene networks. These networks may bias a bee's adult phenotype by endocrine effects on early developmental processes that regulate variation in reproductive traits. PMID:20883212

  9. Ovarian Hormone Influences on Dysregulated Eating: A Comparison of Associations in Women with versus without Binge Episodes

    PubMed Central

    Klump, Kelly L.; Racine, Sarah E.; Hildebrandt, Britny; Burt, S. Alexandra; Neale, Michael; Sisk, Cheryl L.; Boker, Steven; Keel, Pamela K.

    2014-01-01

    Changes in ovarian hormones predict changes in emotional eating across the menstrual cycle. However, prior studies have not examined whether the nature of associations varies across dysregulated eating severity. The current study determined whether the strength and/or nature of hormone/dysregulated eating associations differ based on the presence of clinically diagnosed binge episodes (BEs). Participants included 28 women with BEs and 417 women without BEs who provided salivary hormone samples, ratings of emotional eating, and BE frequency for 45 days. Results revealed stronger associations between dysregulated eating and ovarian hormones in women with BEs as compared to women without BEs. The nature of associations also differed, as progesterone moderated the effects of lower estradiol levels on dysregulated eating in women with BEs only. Although hormone/dysregulated eating associations are present across the spectrum of pathology, the nature of associations may vary in ways that have implications for etiological models and treatment. PMID:25343062

  10. Ovarian Hormone Influences on Dysregulated Eating: A Comparison of Associations in Women with versus without Binge Episodes.

    PubMed

    Klump, Kelly L; Racine, Sarah E; Hildebrandt, Britny; Burt, S Alexandra; Neale, Michael; Sisk, Cheryl L; Boker, Steven; Keel, Pamela K

    2014-09-01

    Changes in ovarian hormones predict changes in emotional eating across the menstrual cycle. However, prior studies have not examined whether the nature of associations varies across dysregulated eating severity. The current study determined whether the strength and/or nature of hormone/dysregulated eating associations differ based on the presence of clinically diagnosed binge episodes (BEs). Participants included 28 women with BEs and 417 women without BEs who provided salivary hormone samples, ratings of emotional eating, and BE frequency for 45 days. Results revealed stronger associations between dysregulated eating and ovarian hormones in women with BEs as compared to women without BEs. The nature of associations also differed, as progesterone moderated the effects of lower estradiol levels on dysregulated eating in women with BEs only. Although hormone/dysregulated eating associations are present across the spectrum of pathology, the nature of associations may vary in ways that have implications for etiological models and treatment. PMID:25343062

  11. Recurrence and metastasis of breast cancer is influenced by ovarian hormone's effect on breast cancer stem cells.

    PubMed

    Nandy, Sushmita Bose; Gangwani, Laxman; Nahleh, Zeina; Subramani, Ramadevi; Arumugam, Arunkumar; de la Rosa, Jose Manuel; Lakshmanaswamy, Rajkumar

    2015-01-01

    Cancer stem cells (CSCs) have recently attracted great interest because of their emerging role in initiation, progression and metastasis, combined with their intrinsic resistance to chemotherapy and radiation therapy. CSCs and its interaction with hormones in breast cancer are currently being investigated with the aim of uncovering the molecular mechanisms by which they evade conventional treatment regimens. In this review, we discuss recent experimental data and new perspectives in the area of steroid hormones and their cross-talk with breast CSCs. We have covered literature associated with biomarkers, hormone receptors and hormone responsive signaling pathways in breast CSC. In addition, we also discuss the role of miRNAs in hormone mediated regulation of breast CSCs. PMID:25760978

  12. Hormones and endometrial carcinogenesis.

    PubMed

    Kamal, Areege; Tempest, Nicola; Parkes, Christina; Alnafakh, Rafah; Makrydima, Sofia; Adishesh, Meera; Hapangama, Dharani K

    2016-02-01

    Endometrial cancer (EC) is the commonest gynaecological cancer in the Western World with an alarmingly increasing incidence related to longevity and obesity. Ovarian hormones regulate normal human endometrial cell proliferation, regeneration and function therefore are implicated in endometrial carcinogenesis directly or via influencing other hormones and metabolic pathways. Although the role of unopposed oestrogen in the pathogenesis of EC has received considerable attention, the emerging role of other hormones in this process, such as androgens and gonadotropin-releasing hormones (GnRH) is less well recognised. This review aims to consolidate the current knowledge of the involvement of the three main endogenous ovarian hormones (oestrogens, progesterone and androgens) as well as the other hormones in endometrial carcinogenesis, to identify important avenues for future research. PMID:26966933

  13. Influence of the route of exposure on the accumulation and subcellular distribution of nickel and thallium in juvenile fathead minnows (Pimephales promelas).

    PubMed

    Lapointe, Dominique; Couture, Patrice

    2009-10-01

    In this study, we examine the relative contribution of water and live prey (Tubifex tubifex) as sources of nickel (Ni) and thallium (Tl) in juvenile fathead minnows (Pimephales promelas). Overall, both water and prey were important sources of metals for our fish, although only approximately 35% of the metal estimated available for trophic transfer in the prey was assimilated. We also investigated the influence of exposure route on the subcellular distribution of these two metals. Once assimilated, most of the Ni was found in the granules, debris, and heat-stable protein (HSP), regardless of the route of exposure. Thallium was also mostly located in granules, debris, and HSP, and fish exposed from both water and prey had a higher proportion of Tl bound to the HSP compartment compared to control fish. Our results, obtained using environmentally relevant concentrations, suggest the presence of regulation mechanisms for both metals. Nevertheless, we measured increased metal concentrations in potentially metal-sensitive subcellular fractions when fish were exposed from water and diet simultaneously compared to a single route of exposure, suggesting that exposure to Ni and Tl from both routes could represent a risk of toxicity. PMID:19253010

  14. [Hormonal contraception in autoimmpne diseases].

    PubMed

    Matyszkiewicz, Anna; Jach, Robert; Rajtar-Ciosek, Agnieszka; Basta, Tomasz

    2016-01-01

    The onset and the course of autoimmune diseases is influenced among other factors by the sex hormones. Hormonal contraception might affect the course of the autoimmune disease. The paper summarises the manner of save application of hormonal contraception in patients with autoimmune disease. PMID:27526427

  15. STAT4 rs7574865 G/T and PTPN22 rs2488457 G/C Polymorphisms Influence the Risk of Developing Juvenile Idiopathic Arthritis in Han Chinese Patients

    PubMed Central

    Fan, Zhi-Dan; Wang, Fei-Fei; Huang, Hui; Huang, Na; Ma, Hui-Hui; Guo, Yi-Hong; Zhang, Ya-Yuan; Qian, Xiao-Qing; Yu, Hai-Guo

    2015-01-01

    Juvenile idiopathic arthritis (JIA) is a common autoimmune disease characterized by environmental influences along with several predisposing genes in the pathogenesis. The protein tyrosine phosphatase nonreceptor 22 (PTPN22) and signal transducer and activator of transcription factor 4 (STAT4) have been recognized as susceptibility genes for numerous autoimmune diseases. Associations of STAT4 rs7574865 G/T and PTPN22 (rs2488457 G/C and rs2476601 C/T) polymorphisms with JIA have repeatedly been replicated in several Caucasian populations. The aim of this study was to investigate the influence of three polymorphisms mentioned above on the risk of developing JIA in Han Chinese patients. Genotyping was performed on a total of 137 Chinese patients with JIA (JIA group) and 150 sex and age frequency-matched healthy volunteers (Control group). The single-nucleotide polymorphisms (SNP) were determined by using direct sequencing of PCR-amplified products. There were significant differences of PTPN22 rs2488457 G/C and STAT4 rs7574865 G/T polymorphisms between both groups. However, no significant difference was observed in distribution frequencies of PTPN22 rs2476601 polymorphism. The association with the PTPN22 rs2488457 G/C polymorphism remained significant in the stratifications by age at onset, ANA status, splenomegaly, lymphadenectasis and involvement joints. As with the STAT4 rs7574865 G/T polymorphisms, the enthesitis-related arthritis and presence of hepatomegaly had strong effect on the association. Our data strengthen STAT4 rs7574865 G/T and PTPN22 rs2488457 G/C polymorphisms as susceptibility factors for JIA. PMID:25781893

  16. RESTORATION OF STREAM PHYSICAL HABITAT AND FOOD RESOURCES: INFLUENCE ON JUVENILE COHO GROWTH AND SALMON DERIVED NUTRIENT INCORPORATION IN COASTAL OREGON STREAMS

    EPA Science Inventory

    ABSTRACT - Stream restoration in Western Oregon and Washington includes physical habitat improvement and salmon carcass additions. However, few studies examine the effects of carcass placement on juvenile fish in western Oregon, and in particular the interaction with physical hab...

  17. The orexigenic effect of melanin-concentrating hormone (MCH) is influenced by sex and stage of the estrous cycle.

    PubMed

    Santollo, Jessica; Eckel, Lisa A

    2008-03-18

    Recently, it was shown that the orexigenic effect of melanin-concentrating hormone (MCH) is attenuated by estradiol treatment in ovariectomized (OVX) rats. This suggests that female rats may be less responsive than male rats to the behavioral effects of MCH. To investigate this hypothesis, the effects of lateral ventricular infusions of MCH on food intake, water intake, meal patterns, and running wheel activity were examined in male and female rats. To further characterize the impact of estradiol on MCH-induced food intake, female rats were OVX and tested with and without 17-beta-estradiol benzoate (EB) replacement. In support of our hypothesis, food and water intakes following MCH treatment were greater in male rats, relative to female rats. Specifically, the orexigenic effect of MCH was maximal in male rats and minimal in EB-treated OVX rats. In both sexes, the orexigenic effect of MCH was mediated by a selective increase in meal size, which was attenuated in EB-treated OVX rats. MCH-induced a short-term (2 h) decrease in wheel running that, unlike its effects on ingestive behavior, was similar in males and females. Thus, estradiol decreases some, but not all, of the behavioral effects of MCH. To examine the influence of endogenous estradiol, food intake was monitored following MCH treatment in ovarian-intact, cycling rats. As predicted by our findings in OVX rats, the orexigenic effect of MCH was attenuated in estrous rats, relative to diestrous rats. We conclude that the female rat's reduced sensitivity to the orexigenic effect of MCH may contribute to sex- and estrous cycle-related differences in food intake. PMID:18191424

  18. Hormonal relationships to bone mass in elderly Spanish men as influenced by dietary calcium and vitamin D.

    PubMed

    Moran, Jose M; Lopez-Arza, Luis Gonzalez; Lavado-Garcia, Jesus M; Pedrera-Canal, Maria; Rey-Sanchez, Purificacion; Rodriguez-Velasco, Francisco J; Fernandez, Pilar; Pedrera-Zamorano, Juan D

    2013-12-01

    We aim to evaluate whether calcium and vitamin D intake is associated with 25-hydroxyvitamin D (25-OH-Vitamin D3) and parathyroid hormone (PTH) serum concentrations or is associated with either the phalangeal dual energy X-ray absorptiometry (pDXA) or the quantitative bone ultrasound (QUS) in independent elderly men. Serum PTH and 25-OH-Vitamin D3 were measured in 195 healthy elderly men (mean age: 73.31 ± 5.10 year). Food intake was quantified using a dietetic scale. Participants with 25-OH-Vitamin D3 levels ≥ 30 ng/mL (75 nmol/L) and a calcium intake of 800-1200 mg/day exhibited the lowest PTH levels (41.49 ± 16.72 ng/mL). The highest PTH levels (75.60 ± 14.16 ng/mL) were observed in the <30 ng/mL group 25-OH-Vitamin D3 with a calcium intake >1200 mg/day. No significant differences in the serum PTH levels based on the serum 25-OH-Vitamin D3 levels were observed among participants with a calcium intake of 800-1200 mg/day. Serum PTH was inversely correlated with serum 25-OH-Vitamin D3 in the entire patient sample (r = -0.288, p = 0.019). No differences in any of the three densitometry techniques were observed between any of the age groups in the 800-1200 mg/day and >1200 mg/day calcium intake groups. PTH levels correlate negatively with serum 25-OH-Vitamin D3 levels, and neither calcium nor vitamin D intake exert a strong influence on either of the two parameters. PMID:24304609

  19. Aldosterone, corticosterone, and thyroid hormone and their influence on respiratory control development in Lithobates catesbeianus: An in vitro study.

    PubMed

    Rousseau, Jean-Philippe; Bairam, Aida; Kinkead, Richard

    2016-04-01

    The emergence of air breathing during Lithobates catesbeianus development requires significant changes to the brainstem circuits that generate and regulate breathing; however, the mechanisms responsible for initiating this transformation remain largely unknown. Because amphibian metamorphosis is regulated by hormones such as aldosterone, corticosterone, and thyroid hormone (T3), we tested the hypothesis that exposing the brainstem to these hormones augments the fictive air breathing frequency in pre-metamorphic tadpoles. Brainstems were isolated and were placed either in the recording chamber (acute; 1h+1h recovery) or in a bottle (chronic exposure; 24h) for treatment. Brainstems were exposed to artificial cerebrospinal fluid (aCSF; sham treatment) or one of the following hormones: aldosterone (100nM), corticosterone (100nM), or T3 (100nM). While acute exposure had limited effects on respiratory motor output, chronic incubation with any hormone significantly increased fictive air breathing; the burst frequencies observed following treatment were similar to those observed in adult bullfrogs. We conclude that through their long term effects, hormones regulating metamorphosis can initiate the maturation of the neural circuits that generate and regulate breathing in this species. PMID:25476838

  20. Naloxone does not Affect the Luteinizing Hormone-Releasing Hormone-Induced Inhibition of Luteinizing Hormone Secretion in Sheep.

    PubMed

    Naylor, A M; Porter, D W; Lincoln, D W

    1989-06-01

    Abstract Injection of luteinizing hormone-releasing hormone (21 pmol) into the third cerebral ventricle of long-term ovariectomized ewes caused a marked inhibition of luteinizing hormone secretion. Mean luteinizing hormone levels and luteinizing hormone pulse frequency were reduced significantly when compared with the control responses to saline (50 mul). A notable characteristic of the response was the delayed and sustained nature of the luteinizing hormone-releasing hormone-induced inhibition. In the presence of the opioid antagonist naloxone (4 +/- 25 mg iv), the central administration of luteinizing hormone-releasing hormone still produced a marked inhibition of luteinizing hormone secretion. Again, mean luteinizing hormone levels and luteinizing hormone pulse frequency were reduced significantly. When naloxone was injected iv, there was a significant rise in mean luteinizing hormone levels as a consequence of an increase in pulse frequency (in four out of five ewes) and a significant increase in luteinizing hormone pulse amplitude. In conclusion, these data suggest that central opioid pathways sensitive to blockade by naloxone are not involved in the luteinizing hormone-releasing hormone-induced inhibition of luteinizing hormone release. Furthermore, in the long-term ovariectomized ewe, endogenous opioid peptides exert a tonic inhibitory influence on luteinizing hormone-releasing hormone/luteinizing hormone secretion. PMID:19210459

  1. Juvenile Delinquency: An Introduction

    ERIC Educational Resources Information Center

    Smith, Carolyn A.

    2008-01-01

    Juvenile Delinquency is a term which is often inaccurately used. This article clarifies definitions, looks at prevalence, and explores the relationship between juvenile delinquency and mental health. Throughout, differences between males and females are explored. (Contains 1 table.)

  2. Juvenile Arrests 1996. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Snyder, Howard N.

    In 1996, law enforcement agencies in the United States made an estimated 2.9 million arrests of persons under the age of 18. According to Federal Bureau of Investigation (FBI) figures, juveniles accounted for 19% of all arrests and 19% of all violent crime in 1996. The substantial growth in juvenile crime that began in the late 1980s peaked in…

  3. Juvenile Arrests, 1999. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Snyder, Howard N.

    This bulletin presents a summary and analysis of national and state juvenile arrest data for 1999. Data come from the FBI's annual "Crime in the United States" report, which offers the estimated number of crimes reported to law enforcement agencies. The 1999 murder rate was the lowest since 1966. Of the nearly 1,800 juveniles murdered in 1999, 33…

  4. Juvenile Arrests, 2007. Juvenile Justice Bulletin

    ERIC Educational Resources Information Center

    Puzzanchera, Charles

    2009-01-01

    This Bulletin summarizes 2007 juvenile crime and arrest data reported by local law enforcement agencies across the country and cited in the FBI report, "Crime in the United States 2007." The Bulletin describes the extent and nature of juvenile crime that comes to the attention of the justice system. It serves as a baseline for comparison for…

  5. Juvenile Arrests, 2000. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Snyder, Howard N.

    This bulletin examines the national and state juvenile arrest rate in 2000 using data reported annually by local law enforcement agencies nationwide to the FBI's Uniform Crime Reporting program. Results indicate that the murder rate in 2000 was the lowest since 1965; juvenile arrests for violence in 2000 were the lowest since 1988; few juveniles…

  6. Juvenile Arrests, 1998. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Snyder, Howard N.

    This report provides a summary and analysis of national and state juvenile arrest data in the United States. In 1998, law enforcement agencies made an estimated 2.6 million arrests of persons under age 18. Federal Bureau of Investigations statistics indicate that juveniles account for 18% of all arrests, and 17% of all violent crime arrests in…

  7. Concepts Shaping Juvenile Justice

    ERIC Educational Resources Information Center

    White, Rob

    2008-01-01

    Rob White's paper explores ways in which community building can be integrated into the practices of juvenile justice work. He provides a model of what can be called "restorative social justice", one that builds upon the juvenile conferencing model by attempting to fuse social justice concerns with progressive juvenile justice practices.

  8. Juvenile Court Statistics - 1972.

    ERIC Educational Resources Information Center

    Office of Youth Development (DHEW), Washington, DC.

    This report is a statistical study of juvenile court cases in 1972. The data demonstrates how the court is frequently utilized in dealing with juvenile delinquency by the police as well as by other community agencies and parents. Excluded from this report are the ordinary traffic cases handled by juvenile court. The data indicate that: (1) in…

  9. The Influence of Alcohol Consumption in Conjunction with Sex Hormone Deficiency on Ca/P Ratio in Rats

    PubMed Central

    Lodi, Karina Bortolin; Marchini, Adriana Mathias Pereira da Silva; Santo, Ana Maria do Espírito; Rode, Sigmar de Mello; Marchini, Leonardo; da Rocha, Rosilene Fernandes

    2016-01-01

    Deficiency of sex hormones and excessive alcohol consumption are factors that have been related to alterations in the pattern of bone mineralization and osteoporosis. The aim of this study was to evaluate possible alterations in the calcium/phosphorus (Ca/P) ratio in the femur of rats subjected to sex hormone deficiency and/or alcohol consumption. Methods. Female and male Wistar rats (n = 108) were divided into ovariectomized (Ovx), orchiectomized (Orx), or sham-operated groups and subdivided according to diet: alcoholic diet (20% alcohol solution), isocaloric diet, and ad libitum diet. The diets were administered for 8 weeks. The Ca/P ratio in the femur was analyzed by energy dispersive micro-X-ray spectrometer (μEDX). Results. Consumption of alcohol reduced the Ca/P ratio in both females and males. The isocaloric diet reduced the Ca/P ratio in females. In groups with the ad libitum diet, the deficiency of sex hormones did not change the Ca/P ratio in females or males. However, the combination of sex hormone deficiency and alcoholic diet presented the lowest values for the Ca/P ratio in both females and males. Conclusions. There was a reduced Ca/P ratio in the femur of rats that consumed alcohol, which was exacerbated when combined with a deficiency of sex hormones. PMID:27073396

  10. ALTERED HISTOLOGY OF THE THYMUS AND SPLEEN IN CONTAMINANT-EXPOSED JUVENILE AMERICAN ALLIGATORS

    EPA Science Inventory

    Morphological difference in spleen and thymus are closely related to functional immune differences. Hormonal regulation of the immune system has been demonstrated in reptilian splenic and thymic tissue. Spleens and thymus were obtained from juvenile alligators at two reference si...

  11. Soldier caste influences on candidate primer pheromone levels and juvenile hormone-dependent caste differentiation in workers of the termite Reticulitermes flavipes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caste systems and the division of labor they make possible are common underlying features of all social insects. Multiple extrinsic factors have been shown to impact caste differentiation; for example, primer pheromones are chemical signaling molecules produced by certain castes that impact developm...

  12. Influence of dioxin exposure upon levels of prostate-specific antigen and steroid hormones in Vietnamese men.

    PubMed

    Sun, Xian Liang; Kido, Teruhiko; Honma, Seijiro; Okamoto, Rie; Manh, Ho Dung; Maruzeni, Shoko; Nishijo, Muneko; Nakagawa, Hideaki; Nakano, Takeshi; Koh, Eitetsu; Takasuga, Takumi; Nhu, Dang Duc; Hung, Nguyen Ngoc; Son, Le Ke

    2016-04-01

    Most studies on the relationship between Agent Orange and prostate cancer have focused on US veterans of the Vietnam War. There have been few studies focusing on the relationship between levels of prostate-specific antigen (PSA) and dioxins or steroid hormones in Vietnamese men. In 2009-2011, we collected blood samples from 97 men who had resided in a "dioxin hotspot" and 85 men from a non-sprayed region in Vietnam. Then levels of PSA, dioxins, and steroid hormones were analyzed. Levels of most dioxins, furans, and non-ortho polychlorinated biphenyls were higher in the hotspot than those in the non-sprayed region. Levels of testosterone, dehydroepiandrosterone, and estradiol differed significantly between the hotspot and the non-sprayed region, but there were no correlations between levels of PSA and steroid hormones and dioxins in either of the two regions. Our findings suggest that PSA levels in Vietnamese men are not associated with levels of dioxin or steroid hormones in these two regions. PMID:26758301

  13. Performance and physiology of steers grazing toxic tall fescue as influenced by feeding soybean hulls and implanting with steroid hormones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A grazing experiment with steers grazing toxic tall fescue indicated that feeding pelleted soybean hulls in conjunction with steroid hormone implants can increase steer weight gain, and feeding soyben hulls can reduce the severity of fescue toxicosis Ergot alkaloids produced by a fungal endophyte...

  14. Influences of early thyroid hormone manipulations: delays in pup motor and exploratory behavior are evident in adult operant performance.

    PubMed

    Brosvic, Gary M; Taylor, Jodi N; Dihoff, Roberta E

    2002-04-15

    The effects of thyroid hormone depletion and enhancement on litter size, survival, body mass, ambulation, quadrant crossing, home orientation, day of eye opening, and free serum T3 and T4 levels were examined in Study 1. In Study 2, the effects of the timing of prenatal insult and the level of thyroid hormone depletion on litter size, survival, body mass, and free serum T3 and T4 levels were examined. Upon the completion of Study 1, randomly selected pups were maintained on ad-libitum water and food for 2 years, and performance was evaluated on fixed and variable ratio schedules, fixed and variable interval schedules, and probability and reversal learning tasks (Study 3). In Study 4, human subjects diagnosed with and treated for either congenital hypothyroidism or congenital hyperthyroidism were tested on the operant procedures used in Study 3, as well as on a series of simple reaction time, serial timing, and conjunctive and disjunctive search tasks. Dose-dependent decreases in survival and delays in the presentation of early motor and exploratory skills were observed following thyroid hormone depletion; dose-dependent accelerations in the presentation of early motor and exploratory skills were observed following thyroid hormone enhancement. Pups that had been prenatally exposed to propylthiouracil (PTU) 1-2 years after the return of thyroid hormones to baseline levels were significantly less accurate at timing on fixed and variable interval schedules, demonstrated an inability to allocate responding on probability tasks, and committed more errors during original learning (OL) and on each reversal problem. Similar deficits were observed in follow-up tests with humans diagnosed with congenital hypothyroidism, as were deficits in serial timing and visual searching. Collectively, the present results demonstrate that the pervasive and negative effects of prenatal thyroid deficiency on early behavior are also expressed during adult operant performance. PMID:12020735

  15. An Analysis of the Influence of Selected Genetic and Hormonal Factors on the Occurrence of Depressive Symptoms in Late-Reproductive-Age Women

    PubMed Central

    Jurczak, Anna; Szkup, Małgorzata; Samochowiec, Agnieszka; Grzywacz, Anna; Samochowiec, Jerzy; Karakiewicz, Beata; Dołęgowska, Barbara; Grochans, Elżbieta

    2015-01-01

    Background: The aim of this study was to analyze the influence of genetic and hormonal factors on incidences of depressive symptoms in late-reproductive-age women. Methods: The study was performed using the Beck Depression Inventory, the PCR, and genetic tests of 347 healthy late-reproductive-age Polish women. Results: The relationship between the level of anti-Müllerian hormone (AMH) and depressive symptoms was not statistically significant (p > 0.05). Increases in age and FSH levels were accompanied by a decrease in AMH level in a significant way (p < 0.05). There were no statistically significant relationships between the distribution of genotypes and the frequency of alleles of the investigated polymorphisms and depressive symptoms according to the Beck Depression Inventory. Conclusions: (1) The presence of the s/s genotype of the 5-HTTLPR polymorphism in the serotonin transporter promoter region and the 3/3 genotype of the 30-bp VNTR polymorphism in the monoamine oxidase A promoter region does not contribute to the development of depressive symptoms in late-reproductive-age women. (2) A relationship between the level of anti-Müllerian hormone and depressive symptoms was not confirmed in the group of healthy late-reproductive-age women. (3) AMH level correlates negatively with FSH level and age, which confirms that AMH can be regarded as a factor reflecting the ovarian reserve. PMID:25826396

  16. Juveniles exposed to embryonic corticosterone have enhanced flight performance

    PubMed Central

    Chin, Eunice H.; Love, Oliver P.; Verspoor, Jan J.; Williams, Tony D.; Rowley, Kyle; Burness, Gary

    2008-01-01

    Exposure to maternally derived glucocorticoids during embryonic development impacts offspring phenotype. Although many of these effects appear to be transiently ‘negative’, embryonic exposure to maternally derived stress hormones is hypothesized to induce preparative responses that increase survival prospects for offspring in low-quality environments; however, little is known about how maternal stress influences longer-term survival-related performance traits in free-living individuals. Using an experimental elevation of yolk corticosterone (embryonic signal of low maternal quality), we examined potential impacts of embryonic exposure to maternally derived stress on flight performance, wing loading, muscle morphology and muscle physiology in juvenile European starlings (Sturnus vulgaris). Here we report that fledglings exposed to experimentally increased corticosterone in ovo performed better during flight performance trials than control fledglings. Consistent with differences in performance, individuals exposed to elevated embryonic corticosterone fledged with lower wing loading and had heavier and more functionally mature flight muscles compared with control fledglings. Our results indicate that the positive effects on a survival-related trait in response to embryonic exposure to maternally derived stress hormones may balance some of the associated negative developmental costs that have recently been reported. Moreover, if embryonic experience is a good predictor of the quality or risk of future environments, a preparative phenotype associated with exposure to apparently negative stimuli during development may be adaptive. PMID:18842541

  17. Influence of perinatal stress on the hormone content in immune cells of adult rats: dominance of ACTH.

    PubMed

    Csaba, G; Tekes, K; Pállinger, E

    2009-08-01

    Rat dams were stressed by total deprivation of food and water for 48 h just before or directly after delivery and the offspring were studied when adult. The immune cells' hormone content (ACTH, histamine, serotonin, and T(3)) was measured by immunocytochemical flow cytometry. The elevation of ACTH content in males was convincing in each cell type (lymphocytes, monocytes and granulocytes, and mast cells). The change in histamine and T(3) content was inconsistent, while serotonin level did not change at all. As ACTH is the key hormone in the General Adaptation Syndrome, it seems likely that the perinatal stress primarily caused elevation in ACTH level and it was provoking the life-long hormonal imprinting. There was a difference between the reaction of males and females (with males' advance), which points to the gender dependence of the phenomenon. It is important that the effect of stress on the offspring was similar in case of direct (prenatal, in the mother) and indirect (postnatal, transmitted by milk) stress treatment, which calls attention to the danger of stress during this latter period. PMID:19384819

  18. Neural Activation During Mental Rotation in Complete Androgen Insensitivity Syndrome: The Influence of Sex Hormones and Sex Chromosomes.

    PubMed

    van Hemmen, Judy; Veltman, Dick J; Hoekzema, Elseline; Cohen-Kettenis, Peggy T; Dessens, Arianne B; Bakker, Julie

    2016-03-01

    Sex hormones, androgens in particular, are hypothesized to play a key role in the sexual differentiation of the human brain. However, possible direct effects of the sex chromosomes, that is, XX or XY, have not been well studied in humans. Individuals with complete androgen insensitivity syndrome (CAIS), who have a 46,XY karyotype but a female phenotype due to a complete androgen resistance, enable us to study the separate effects of gonadal hormones versus sex chromosomes on neural sex differences. Therefore, in the present study, we compared 46,XY men (n = 30) and 46,XX women (n = 29) to 46,XY individuals with CAIS (n = 21) on a mental rotation task using functional magnetic resonance imaging. Previously reported sex differences in neural activation during mental rotation were replicated in the control groups, with control men showing more activation in the inferior parietal lobe than control women. Individuals with CAIS showed a female-like neural activation pattern in the parietal lobe, indicating feminization of the brain in CAIS. Furthermore, this first neuroimaging study in individuals with CAIS provides evidence that sex differences in regional brain function during mental rotation are most likely not directly driven by genetic sex, but rather reflect gonadal hormone exposure. PMID:25452569

  19. Daily rhythms of the expression of genes from the somatotropic axis: The influence on tilapia (Oreochromis niloticus) of feeding and growth hormone administration at different times.

    PubMed

    Costa, Leandro S; Rosa, Priscila V; Fortes-Silva, Rodrigo; Sánchez-Vázquez, F Javier; López-Olmeda, Jose F

    2016-01-01

    The aim of this research was to investigate the presence of daily rhythms in the somatotropic axis of tilapia fed at two times (mid-light, ML or mid-dark, MD) and the influence of the time of day of growth hormone (GH) administration on the response of this axis. Two different GH injection times were tested: ZT 3 (3h after lights on) and ZT 15 (3h after lights off). In both experiments, the mRNA expression levels of hypothalamic pituitary adenylate cyclase-activating polypeptide (pacap), pituitary growth hormone (gh), liver insulin-like growth factors (igf1 and igf2a), and liver and muscle growth hormone receptors (ghr1 and ghr2) and IGF receptors (igf1ra and igf2r) were evaluated by means of qPCR. Daily rhythms were observed in the liver for ghr1, ghr2 and igf2r but only in fish fed at ML, with the acrophases located in the light phase (ZT 3:30, 3:31 and 7:38 h, respectively). In the muscle, ghr1 displayed a significant rhythm in both groups and ghr2 in ML fed fish (acrophases at ZT 5:29, 7:14 and 9:23h). The time of both GH administration and feeding influenced the response to GH injection: ML fed fish injected with GH at ZT 15 h showed a significant increase in liver igf1, igf2a and ghr2; and muscle ghr2 expression. This is the first report that describes the existence of daily rhythms in the somatotropic axis of tilapia and its time-dependent responses of GH administration. Our results should be considered when investigating the elements of the somatotropic axis in tilapia and GH administration. PMID:26743958

  20. Detection of long-term influence of prenatal temperature stimulation on hypothalamic type-II iodothyronine deiodinase in juvenile female broiler chickens using a novel immunohistochemical amplification protocol.

    PubMed

    Nassar, Maaly; Halle, Ingrid; Plagemann, Andreas; Tzschentke, Barbara

    2015-01-01

    It has been clearly shown that early environmental stimulation may have long-lasting influence on body functions. Because of the strong relationship between thermoregulation and other homeostatic linked physiological parameters, perinatal thermal manipulation will also have an impact on other body functions like reproduction. As a maturation stimulant for later reproductive performance, hypothalamic type-2 iodothyronine deiodinase (Dio2) expression was investigated in 35day old immature female broilers with and without embryonic temperature stimulation. For the first time, human-specific Dio2 primary antibodies combined with additional amplification enabled the immunohistochemical detection of hypothalamic Dio2 protein in birds. The novel protocol includes an additional amplification step involving swine-anti-rabbit/mouse/goat antibodies against both goat anti-Dio2 primary and rabbit anti-goat biotinylated secondary commercial antibodies in the standard diaminobenzidine protocol. However, significant Dio2 expression was exclusively found in perinatally short-term temperature stimulated hens. Caudal but not rostral hypothalamic slices revealed that elevating incubation temperature by 1°C for 2h daily, from day 18 of embryonic development until hatching, induced a statistical significant expression of Dio2 within the subcommisural organ and the median eminence. This ample expression of Dio2 protein within caudal but not rostral hypothalamic slices of embryonic temperature stimulated chickens, leads to the assumption of a novel physiological prospective for embryonic thermal manipulation involving the suppression of thyroid hormone and the boosting of hypothalamic Dio2-induced FSH secretion to considerably advance the age of photoinduced egg production. It could be also of practicable relevance for broiler breeder females, and needs further investigations. PMID:25289994

  1. Influences of peripheral adrenocorticotropin 1-39 (ACTH) and human corticotropin releasing hormone (h-CRH) on human auditory evoked potentials (AEP).

    PubMed

    Born, J; Bathelt, B; Pietrowsky, R; Pauschinger, P; Fehm, H L

    1990-01-01

    Hormones of the hypothalamus-pituitary-adrenal (HPA) axis have been considered to form part of an efferent humoral system modulating central nervous stimulus processing. The present experiments were designed to compare the effects of iv bolus administrations of placebo, porcine ACTH 1-39 (1.5 U) and h-CRH (25 micrograms) on auditory evoked potentials (AEPs) in healthy men. Also, cardiovascular parameters, cortisol and self-reported mood were assessed. ACTH significantly reduced the amplitude of the N1 component of the AEP; P1 and P2 remained unchanged. The selective reduction of N1 amplitude defies an interpretation of the changes in terms of a reduced stimulus-induced cortical arousal following ACTH; the ACTH-induced changes may rather indicate an influence on frontocortical functions of directing attention. The effect of ACTH on N1 cannot be attributed to its adrenocorticotropic action or to cardiovascular changes, but appears to represent an intrinsic extraadrenal influence of the hormone. The data do not provide evidence for effects of h-CRH on central nervous stimulus processing in humans, after peripheral administration. PMID:2160665

  2. Protein Hormones and Immunity‡

    PubMed Central

    Kelley, Keith W.; Weigent, Douglas A.; Kooijman, Ron

    2007-01-01

    A number of observations and discoveries over the past 20 years support the concept of important physiological interactions between the endocrine and immune systems. The best known pathway for transmission of information from the immune system to the neuroendocrine system is humoral in the form of cytokines, although neural transmission via the afferent vagus is well documented also. In the other direction, efferent signals from the nervous system to the immune system are conveyed by both the neuroendocrine and autonomic nervous systems. Communication is possible because the nervous and immune systems share a common biochemical language involving shared ligands and receptors, including neurotransmitters, neuropeptides, growth factors, neuroendocrine hormones and cytokines. This means that the brain functions as an immune-regulating organ participating in immune responses. A great deal of evidence has accumulated and confirmed that hormones secreted by the neuroendocrine system play an important role in communication and regulation of the cells of the immune system. Among protein hormones, this has been most clearly documented for prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-I), but significant influences on immunity by thyroid stimulating hormone (TSH) have also been demonstrated. Here we review evidence obtained during the past 20 years to clearly demonstrate that neuroendocrine protein hormones influence immunity and that immune processes affect the neuroendocrine system. New findings highlight a previously undiscovered route of communication between the immune and endocrine systems that is now known to occur at the cellular level. This communication system is activated when inflammatory processes induced by proinflammatory cytokines antagonize the function of a variety of hormones, which then causes endocrine resistance in both the periphery and brain. Homeostasis during inflammation is achieved by a balance between cytokines and

  3. The Moral Judgment of Juvenile Delinquents: A Meta-Analysis

    ERIC Educational Resources Information Center

    Stams, Geert Jan; Brugman, Daniel; Dekovic, Maja; van Rosmalen, Lenny; van der Laan, Peter; Gibbs, John C.

    2006-01-01

    A meta-analysis of 50 studies was conducted to investigate whether juvenile delinquents use lower levels of moral judgment than their nondelinquent age-mates and, if so, what factors may influence or moderate the developmental delay. The results show a lower stage of moral judgment for juvenile delinquents (d = 0.76). Effect sizes were large for…

  4. Influence of Dietary Copper on Serum Growth-Related Hormone Levels and Growth Performance of Weanling Pigs.

    PubMed

    Wang, Jianguo; Zhu, Xiaoyan; Guo, Yazhou; Wang, Zhe; Zhao, Baoyu; Yin, Yunhou; Liu, Guowen

    2016-07-01

    To investigate the effect of dietary copper on serum growth-related hormones levels and growth performance, a total of 60 weanling pigs were randomly assigned to six groups each containing 10 pigs, fed on basal diets supplemented with 0 (control), 100, 150, 200, 250, and 300 mg/kg copper sulfate for 80 days, respectively. The average daily gain (ADG), feed to gain ratio (F/G), feed intake and serum growth hormone (GH), insulin (INS), insulin-like growth factor 1 (IGF-1), and insulin-like growth factor-binding protein 3 (IGFBP-3) levels were detected at interval of 20 days. The results revealed that ADG, and serum GH, INS, IGF-1, and IGFBP-3 concentrations were increased significantly in the pigs fed on diets added with 100, 150, 200, 250, and 300 mg/kg copper sulfate. Meanwhile, in the pigs supplemented with 250 mg/kg copper sulfate, ADG was increased significantly from the 40th to the 60th day of the experiment (P < 0.01), and the levels of GH, INS, IGF-1, and IGFBP-3 in serum were elevated significantly from the 20th to the 40th day of the experiment (P < 0.01). It is concluded that effects of copper supplemented in the diet on the growth of pigs were related to the increasing levels of GH, INS, IGF-1, and IGFBP-3 in serum which were induced by copper. High dietary copper increase the concentrations of growth-related hormones in serum, resulting in improving the growth performance of weanling pigs. PMID:26631054

  5. Influence of Spinal and General Anesthesia on the Metabolic, Hormonal, and Hemodynamic Response in Elective Surgical Patients

    PubMed Central

    Milosavljevic, Snezana B.; Pavlovic, Aleksandar P.; Trpkovic, Sladjana V.; Ilić, Aleksandra N.; Sekulic, Ana D.

    2014-01-01

    Background The aim of the study was to determine the significance of spinal anesthesia in the suppression of the metabolic, hormonal, and hemodynamic response to surgical stress in elective surgical patients compared to general anesthesia. Material/Methods The study was clinical, prospective, and controlled and it involved 2 groups of patients (the spinal and the general anesthesia group) who underwent the same surgery. We monitored the metabolic and hormonal response to perioperative stress based on serum cortisol level and glycemia. We also examined how the different techniques of anesthesia affect these hemodynamic parameters: systolic arterial pressure (AP), diastolic AP, heart rate (HR), and arterial oxygen saturation (SpO2). These parameters were measured before induction on anesthesia (T1), 30 min after the surgical incisions (T2), 1 h postoperatively (T3) and 24 h after surgery (T4). Results Serum cortisol levels were significantly higher in the general anesthesia group compared to the spinal anesthesia group (p<0.01). Glycemia was significantly higher in the general anesthesia group (p<0.05). There was a statistically significant, positive correlation between serum cortisol levels and glycemia at all times observed (p<0.01). Systolic and diastolic AP did not differ significantly between the groups (p=0.191, p=0.101). The HR was significantly higher in the general anesthesia group (p<0.01). SpO2 values did not differ significantly between the groups (p=0.081). Conclusions Based on metabolic, hormonal, and hemodynamic responses, spinal anesthesia proved more effective than general anesthesia in suppressing stress response in elective surgical patients. PMID:25284266

  6. Influence of music on steroid hormones and the relationship between receptor polymorphisms and musical ability: a pilot study

    PubMed Central

    Fukui, Hajime; Toyoshima, Kumiko

    2013-01-01

    Studies have shown that music confers plasticity to the brain. In a preliminary pilot study, we examined the effect of music listening on steroid hormones and the relationship between steroid hormone receptor polymorphisms and musical ability. Twenty-one subjects (10 males and 11 females) were recruited and divided into musically talented and control groups. The subjects selected (1) music they preferred (chill-inducing music) and (2) music they did not like. Before and after the experiments, saliva was collected to measure the levels of steroid hormones such as testosterone, estradiol, and cortisol. DNA was also isolated from the saliva samples to determine the androgen receptor (AR) and arginine vasopressin receptor 1A genotypes. Advanced Measures of Music Audiation (AMMA) was used to determine the musical ability of the subjects. With both types of music, the cortisol levels decreased significantly in both sexes. The testosterone (T) levels declined in males when they listened to both types of music. In females, the T levels increased in those listening to chill-inducing music but declined when they listened to music they disliked. However, these differences were not significant. The 17-beta estradiol levels increased in males with both types of music, whereas the levels increased with chill-inducing music but declined with disliked music in females. The AMMA scores were higher for the short repeat length-type AR than for the long repeat length-type. Comparisons of AR polymorphisms and T levels before the experiments showed that the T levels were within the low range in the short repeat length-type group and there was a positive relationship with the repeat length, although it was not significant. This is the first study conducted in humans to analyze the relationships between the AR gene, T levels, and musical ability. PMID:24348454

  7. Juvenile Confinement in Context

    ERIC Educational Resources Information Center

    Mendel, Richard A.

    2012-01-01

    For more than a century, the predominant strategy for the treatment and punishment of serious and sometimes not-so-serious juvenile offenders in the United States has been placement into large juvenile corrections institutions, alternatively known as training schools, reformatories, or youth corrections centers. America's heavy reliance on…

  8. Helpful Juvenile Detention.

    ERIC Educational Resources Information Center

    Roush, David W.

    1999-01-01

    Presents a comprehensive, research-based rationale for rejecting "get-tough," punitive approaches to juvenile detention and implementing "helpful programs" in detention settings instead. Offers a review of the information that explains why and how juvenile detention should be a first step in the treatment of young offenders, rather than simply a…

  9. Standards for Juvenile Justice

    ERIC Educational Resources Information Center

    Flicker, Barbara

    1977-01-01

    The Juvenile Justice Standards Project at New York University has proposed a plan to restructure family court procedure. These standards, outlined here by a former project director, cover significant aspects of the relationship of juveniles to social institutions. (Editor/RK)

  10. Juvenile giant fibroadenoma

    PubMed Central

    Yagnik, Vipul D.

    2011-01-01

    Fibroadenomas are benign solid tumor associated with aberration of normal lobular development. Juvenile giant fibroadenoma is usually single and >5 cm in size /or >500 gms in weight. Important differential diagnoses are: phyllodes tumor and juvenile gigantomastia. Simple excision is the treatment of choice. PMID:24765310

  11. Guide to Juvenile Restitution.

    ERIC Educational Resources Information Center

    Schneider, Anne L., Ed.

    This guide is designed to assist programs in developing, expanding, or improving restitution activities for juvenile offenders. The guide is divided into five major sections. Part I focuses on the most fundamental decisions for restitution programs: program philosophy and goals, organizational structure, location within the juvenile justice…

  12. Juvenile Firesetter Intervention Handbook.

    ERIC Educational Resources Information Center

    Gaynor, Jessica

    This handbook is designed to teach communities how to develop an effective juvenile firesetter intervention program. The six chapters of this handbook can be viewed as the six building blocks essential to construct a successful program. The cornerstone of the blueprint is understanding the personality profiles of juvenile firesetters and their…

  13. Juvenile Delinquency in China.

    ERIC Educational Resources Information Center

    Epstein, Irving, Ed.

    1986-01-01

    Contains nine articles which describe the causes and treatment of juvenile delinquency in China. Focuses on the social causes of delinquency, family factors shaping juvenile crimes and mistakes, criminal peer groups, psychological factors related to delinquency, and the role of education in prevention of delinquency. (JDH)

  14. Renewing Juvenile Justice

    ERIC Educational Resources Information Center

    Macallair, Daniel; Males, Mike; Enty, Dinky Manek; Vinakor, Natasha

    2011-01-01

    The Center on Juvenile and Criminal Justice (CJCJ) was commissioned by Sierra Health Foundation to critically examine California's juvenile justice system and consider the potential role of foundations in promoting systemic reform. The information gathered by CJCJ researchers for this report suggests that foundations can perform a key leadership…

  15. Influence of head-down bed rest on the circadian rhythms of hormones and electrolytes involved in hydroelectrolytic regulation

    NASA Technical Reports Server (NTRS)

    Millet, C.; Custaud, M. A.; Allevard, A. M.; Zaouali-Ajina, M.; Monk, T. H.; Arnaud, S. B.; Claustrat, B.; Gharib, C.; Gauquelin-Koch, G.

    2001-01-01

    We investigated in six men the impact of a 17-day head-down bed rest (HDBR) on the circadian rhythms of the hormones and electrolytes involved in hydroelectrolytic regulation. This HDBR study was designed to mimic an actual spaceflight. Urine samples were collected at each voiding before, during and after HDBR. Urinary excretion of aldosterone, arginine vasopressin (AVP), cyclic guanosine monophosphate (cGMP), cortisol, electrolytes (Na+ and K+) and creatinine were determined. HDBR resulted in a significant reduction of body mass (P < 0.01) and of caloric intake [mean (SEM) 2,778 (37) kcal.24 h(-1) to 2,450 (36) kcal.24 h(-1), where 1 kcal.h(-1) = 1.163 J.s(-1); P< 0.01]. There was a significant increase in diastolic blood pressure [71.8 (0.7) mmHg vs 75.6 (0.91) mmHg], with no significant changes in either systolic blood pressure or heart rate. The nocturnal hormonal decrease of aldosterone was clearly evident only before and after HDBR, but the day/night difference did not appear during HDBR. The rhythm of K+ excretion was unchanged during HDBR, whereas for Na+ excretion, a large decrease was shown during the night as compared to the day. The circadian rhythm of cortisol persisted. These data suggest that exposure to a 17-day HDBR could induce an exaggeration of the amplitude of the Na+ rhythm and abolition of the aldosterone rhythm.

  16. The influence of natural short photoperiodic and temperature conditions on plasma thyroid hormones and cholesterol in male Syrian hamsters

    NASA Astrophysics Data System (ADS)

    Vaughan, M. K.; Brainard, G. C.; Reiter, R. J.

    1984-09-01

    Adult male Syrian hamsters were subjected to 1, 3, 5, 7 or 11 weeks of either natural winter conditions or rigorously controlled laboratory conditions (LD 10∶14; 22 ± 2‡C). Although both groups of hamsters gained weight over the course of the experiment, hamsters housed indoors were significantly heavier after 5 weeks of treatment compared to their outdoors counterparts. Animals housed under natural conditions exhibited a significant decrease in circulating levels of thyroxine (T4) and a rapid rise in triiodothyronine (T3) levels; the free T4 and free T3 index (FT4I and FT3I) mirrored the changes in circulating levels of the respective hormones. Laboratory-housed animals had a slight rise in T4 and FT4I at 3 weeks followed by a slow steady decline in these values; T3 and FT3I values did not change remarkably in these animals. Plasma cholesterol declined steadily over the course of the experiment in laboratory-maintained animals but increased slightly during the first 5 weeks in animals under natural conditions. Since the photoperiodic conditions were approximately of the same duration in these 2 groups, it is concluded that the major differences in body weight, thyroid hormone values and plasma cholesterol are due to some component (possibly temperature) in the natural environment.

  17. Relationships between concentrations of selected organohalogen contaminants and thyroid hormones and vitamins A, E and D in Faroese pilot whales.

    PubMed

    Hoydal, Katrin S; Ciesielski, Tomasz M; Borrell, Asunción; Wasik, Andrzej; Letcher, Robert J; Dam, Maria; Jenssen, Bjørn M

    2016-07-01

    Pilot whales (Globicephala melas) from the Faroe Islands, North-East Atlantic, have high body concentrations of organohalogenated compounds (OHCs), such as polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs) and brominated flame retardants (BFRs). The aim of the present study was to examine if and to what extent blood plasma and liver concentrations of several groups of these OHCs are related to concentrations of relevant nutritional and hormonal biomarkers in pilot whales. Thyroid hormones (THs: total and free thyroxine and total and free triiodothyronine) and vitamin A (retinol), D (25-hydroxyvitamin D3) and E (α-tocopherol) were analysed in plasma (n=27) and vitamin A (total vitamin A, retinol and retinyl palmitate) and E (α- and γ-tocopherol) were analysed in liver (n=37) of Faroe Island pilot whales. Correlative relationships between the biomarkers and OHC concentrations previously analysed in the same tissues in these individuals were studied. The TH concentrations in plasma were significantly higher in juveniles than in adults. Vitamin D concentrations in plasma and α- and γ-tocopherol in liver were higher in adults than in juveniles. Multivariate statistical modelling showed that the age and sex influenced the relationship between biomarkers and OHCs. Some significant positive relationships were found between OHCs and thyroid hormone concentrations in the youngest juveniles (p<0.05). In plasma of juvenile whales α-tocopherol was also positively correlated with all the OHCs (p<0.05). Only few significant correlations were found between single OHCs and retinol and vitamin D in plasma within the age groups. There were significant negative relationships between hepatic PBDE concentrations and retinol (BDE-47) and γ-tocopherol (BDE-49, -47, -100, -99, -153) in liver. The relationships between OHCs and THs or vitamins suggest that in pilot whales OHCs seem to have minor effects on TH and vitamin concentrations. PMID:27131793

  18. Influence of Occupational and Environmental Exposure to Low Concentrations of Polychlorobiphenyls and a Smoking Habit on the Urinary Excretion of Corticosteroid Hormones.

    PubMed

    D'Errico, Maria Nicolà; Lovreglio, Piero; Drago, Ignazio; Apostoli, Pietro; Soleo, Leonardo

    2016-04-01

    The effects of occupational exposure to low concentrations of polychlorobiphenyls (PCBs) on the urinary excretion of corticosteroid hormones were evaluated, taking into account the influence of cigarette smoking. The study included 26 males working as electrical maintenance staff in a steel factory, previously exposed to a mixture of PCBs (exposed workers), and 30 male workers with no occupational exposure to PCBs (controls). Serum PCBs (33 congeners), urinary 17-hydroxycorticosteroids, 17-ketosteroids (KS) and pregnanes, and their respective glucuronidated and sulfonated compounds, were determined for each subject. PCBs were significantly higher in the exposed workers than controls, and were correlated with age. Both the urinary concentrations of the total 17-KS and pregnanes, and those of some single steroids and their glucuronidated compounds, were significantly lower in the exposed workers than controls, but higher in smokers than the non-smokers + ex-smokers. Two-way analysis of variance showed a negative association between serum PCBs and both total glucuronidated 17-KS and total and glucuronidated pregnanes, and a positive association between cigarette smoking and both total and glucuronidated 17-KS. PCBs seem to act as endocrine disruptors by reducing the urinary excretion of corticosteroid hormones, particularly of the glucuronidated fraction. Cigarette smoking could boost these effects of PCBs in smokers. PMID:27023579

  19. Influence of Occupational and Environmental Exposure to Low Concentrations of Polychlorobiphenyls and a Smoking Habit on the Urinary Excretion of Corticosteroid Hormones

    PubMed Central

    D’Errico, Maria Nicolà; Lovreglio, Piero; Drago, Ignazio; Apostoli, Pietro; Soleo, Leonardo

    2016-01-01

    The effects of occupational exposure to low concentrations of polychlorobiphenyls (PCBs) on the urinary excretion of corticosteroid hormones were evaluated, taking into account the influence of cigarette smoking. The study included 26 males working as electrical maintenance staff in a steel factory, previously exposed to a mixture of PCBs (exposed workers), and 30 male workers with no occupational exposure to PCBs (controls). Serum PCBs (33 congeners), urinary 17-hydroxycorticosteroids, 17-ketosteroids (KS) and pregnanes, and their respective glucuronidated and sulfonated compounds, were determined for each subject. PCBs were significantly higher in the exposed workers than controls, and were correlated with age. Both the urinary concentrations of the total 17-KS and pregnanes, and those of some single steroids and their glucuronidated compounds, were significantly lower in the exposed workers than controls, but higher in smokers than the non-smokers + ex-smokers. Two-way analysis of variance showed a negative association between serum PCBs and both total glucuronidated 17-KS and total and glucuronidated pregnanes, and a positive association between cigarette smoking and both total and glucuronidated 17-KS. PCBs seem to act as endocrine disruptors by reducing the urinary excretion of corticosteroid hormones, particularly of the glucuronidated fraction. Cigarette smoking could boost these effects of PCBs in smokers. PMID:27023579

  20. Influence of a cap site element on tissue-restricted expression of the glycoprotein hormone alpha-subunit gene.

    PubMed

    Cox, G S; Xiong, W

    1999-07-14

    Little is known of the transcriptional regulators important for expression of the glycoprotein hormone alpha-subunit (GPHalpha) gene in nonendocrine tumors, which secrete free alpha-subunit at an incidence of 25-80%. Consequently, attempts were made to define cis-regulatory elements and their cognate trans-acting factors that modulate promoter activity in epithelial cell types that do not normally express the glycoprotein hormones. DNA-mediated transient expression of promoter-reporter constructs was used to identify a novel negative regulatory element located at the GPHalpha gene transcription start site. Mutagenesis of this element produced a 2- to 10-fold increase in promoter activity, depending on the particular mutation and the transfected tumor cell line. Electrophoretic mobility shift analysis detected a protein that binds specifically to a DNA motif encompassing the cap site. It was present at different levels in a variety of cell types. Significantly, the degree to which activity of the wild-type promoter was suppressed relative to that of the mutant promoter was proportional to the level of cap site binding protein in the collection of cell lines examined. These results indicate that a negative regulatory element centered at the GPHalpha gene cap site and its cognate DNA-binding protein make a significant contribution to the production of alpha-subunit in a variety of tumor tissues. A detailed understanding of this cis/trans pair may further suggest a mechanism to explain, at least in part, how this gene becomes activated in nonendocrine tumors. PMID:10403838

  1. Juvenile Justice in California, 1983.

    ERIC Educational Resources Information Center

    California State Dept. of Justice, Sacramento. Bureau of Criminal Statistics and Special Services.

    This publication provides an overview of the processing of juvenile delinquency cases through the California juvenile justice system; provides information to aid administrators, planners, and researchers in the administration of juvenile justice; and maintains baseline data for further studies of the system. Information on juvenile arrests and…

  2. Proline with or without hydroxyproline influences collagen concentration and regulates prolyl 4-hydroxylase α (I) gene expression in juvenile turbo ( Scophthalmus maximus L.)

    NASA Astrophysics Data System (ADS)

    Zhang, Kaikai; Mai, Kangsen; Xu, Wei; Zhou, Huihui; Liufu, Zhiguo; Zhang, Yanjiao; Peng, Mo; Ai, Qinghui

    2015-06-01

    This study was conducted to investigate the effect of dietary proline (Pro), and Pro and hydroxyproline (Hyp) in combination on the growth performance, total Hyp and collagen concentrations of tissues, and prolyl 4-hydroxylase α(I) (P4H α(I)) gene expression in juvenile turbot feeding high plant protein diets. A diet containing 50% crude protein and 12% crude lipid was formulated as the basal and control, on which other two protein and lipid contents identical experimental diets were formulated by supplementing the basal with either 0.75% Pro (Pro-0.75) or 0.75% Pro and 0.75% Hyp (Pro+Hyp). Four groups of fish in indoor seawater recirculating systems, 35 individuals each, were fed twice a day to apparent satiation for 10 weeks. The results showed that dietary Pro and Hyp supplementation had no significant effect on growth performance and feed utilization of juvenile turbot (P > 0.05). Total Hyp and collagen concentrations in muscle were significantly increased when dietary Pro and Hyp increased (P <0.05), and fish fed diet Pro+Hyp showed significantly higher free Hyp content in plasma than those fed other diets (P <0.05). The expression of P4H a(I) gene in liver and muscle was significantly up regulated in fish fed diet Pro-0.75 in comparison with control (P <0.05); however the gene was significantly down regulated in fish fed diet Pro+Hyp in muscle in comparison with fish fed diet Pro-0.75 (P <0.05). It can be concluded that supplement of crystal L-Pro and L-Hyp to high plant protein diets did not show positive effects on growth performance of juvenile turbot, but enhanced total collagen concentrations in muscle.

  3. Estuarine Habitats for Juvenile Salmon in the Tidally-Influenced Lower Columbia River and Estuary : Reporting Period September 15, 2008 through May 31, 2009.

    SciTech Connect

    Baptista, António M.

    2009-08-02

    This work focuses on the numerical modeling of Columbia River estuarine circulation and associated modeling-supported analyses conducted as an integral part of a multi-disciplinary and multi-institutional effort led by NOAA's Northwest Fisheries Science Center. The overall effort is aimed at: (1) retrospective analyses to reconstruct historic bathymetric features and assess effects of climate and river flow on the extent and distribution of shallow water, wetland and tidal-floodplain habitats; (2) computer simulations using a 3-dimensional numerical model to evaluate the sensitivity of salmon rearing opportunities to various historical modifications affecting the estuary (including channel changes, flow regulation, and diking of tidal wetlands and floodplains); (3) observational studies of present and historic food web sources supporting selected life histories of juvenile salmon as determined by stable isotope, microchemistry, and parasitology techniques; and (4) experimental studies in Grays River in collaboration with Columbia River Estuary Study Taskforce (CREST) and the Columbia Land Trust (CLT) to assess effects of multiple tidal wetland restoration projects on various life histories of juvenile salmon and to compare responses to observed habitat-use patterns in the mainstem estuary. From the above observations, experiments, and additional modeling simulations, the effort will also (5) examine effects of alternative flow-management and habitat-restoration scenarios on habitat opportunity and the estuary's productive capacity for juvenile salmon. The underlying modeling system is part of the SATURN1coastal-margin observatory [1]. SATURN relies on 3D numerical models [2, 3] to systematically simulate and understand baroclinic circulation in the Columbia River estuary-plume-shelf system [4-7] (Fig. 1). Multi-year simulation databases of circulation are produced as an integral part of SATURN, and have multiple applications in understanding estuary

  4. Growth Hormone

    MedlinePlus

    ... the dose of glucose. Growth hormone stimulates the production of insulin-like growth factor-1 (IGF-1) . ... regular intervals for years afterward to monitor GH production and to detect tumor recurrence. Other blood tests ...

  5. Hormone Therapy

    MedlinePlus

    ... based lubricants include petroleum jelly, baby oil, or mineral oil. Oil-based types should not be used ... caused by low levels of these hormones. Hysterectomy: Removal of the uterus. Menopause: The time in a ...

  6. Semiquantitative hormone receptor level influences response to trastuzumab-containing neoadjuvant chemotherapy in HER2-positive breast cancer.

    PubMed

    Bhargava, Rohit; Dabbs, David J; Beriwal, Sushil; Yildiz, Isil A; Badve, Preeti; Soran, Atilla; Johnson, Ronald R; Brufsky, Adam M; Lembersky, Barry C; McGuire, Kandace P; Ahrendt, Gretchen M

    2011-03-01

    Pathologic complete response to neoadjuvant chemotherapy without trastuzumab in hormone receptor-negative/HER2+ tumors is seen in 27-45% of cases. In contrast, estrogen receptor (ER)+/HER2+ tumors demonstrate pathologic complete response in ∼ 8% of cases and is generally limited to weak-to-moderate ER+/HER2+ tumors. It is speculated that addition of trastuzumab to neoadjuvant chemotherapy regimen will increase the pathologic complete response rates in all HER2+ tumors. A list of HER2+ patients who received neoadjuvant chemotherapy (with trastuzumab) in the years 2007-2010 was obtained from our hospital database. The 104 HER2+ tumors were classified into three groups based on semiquantitative hormone receptor and HER2 results as follows: ERBB2 (ER-/PR-[H-score ≤10]/HER2+), Luminal B-HER2 Hybrid (LBHH; weak to moderate ER+ [H-score 11-199]/HER2+), and Luminal A-HER2 Hybrid (LAHH; strong ER+[H-score ≥200]/HER2+). Pathologic complete response was defined as absence of invasive carcinoma in the resection specimen and in the lymph nodes. Percentage tumor volume reduction was also calculated based on pretherapy size and detailed evaluation of the resection specimen. In all, 52% (25 of 48 cases) of ERBB2 tumors showed pathologic complete response, which was significantly higher than the pathologic complete response rate in LBHH (33%; 10 of 30) and LAHH (8%; 2 of 26) tumors. Average percentage tumor volume reduction was also highest in ERBB2 tumors (86%), followed by LBHH (74%) and LAHH (64%) tumors. We conclude that addition of trastuzumab to neoadjuvant chemotherapy regimen significantly increases the pathologic complete response rates in all HER2+ tumors. However, the benefit of trastuzumab is highest in ER-negative tumors and progressively decreases with increase in tumor ER expression. This information can be utilized to counsel patients considered for neoadjuvant chemotherapy and the same principle could be applied in the adjuvant setting. PMID:21102420

  7. Juvenile Sex Offenders.

    PubMed

    Ryan, Eileen P; Otonichar, Joseph M

    2016-07-01

    Sexual offending by juveniles accounts for a sizable percentage of sexual offenses, especially against young children. In this article, recent research on female juvenile sex offenders (JSOs), risk factors for offending in juveniles, treatment, and the ways in which these youth may differ from general delinquents will be reviewed. Most JSOs do not go on to develop paraphilic disorders or to commit sex offenses during adulthood, and as a group, they are more similar to nonsexual offending juvenile delinquents than to adult sex offenders. Recent research has elucidated some differences between youth who commit sex offenses and general delinquents in the areas of atypical sexual interests, the use of pornography, and early sexual victimization during childhood. PMID:27222141

  8. Polyneuropathy in juvenile dermatomyositis.

    PubMed

    Vogelgesang, S A; Gutierrez, J; Klipple, G L; Katona, I M

    1995-07-01

    We describe 2 patients in whom juvenile dermatomyositis (DM) was associated with well defined clinical polyneuropathies, and review the clinical and serological data. Light and electron microscopy were used to study muscle and nerve tissues from one patient. Neuropathy in our patients was associated with ulcerative skin lesions and elevated serum levels of factor VIII related antigen. Light microscopic studies of muscle revealed perifascicular atrophy and microinfarcts consistent with juvenile DM. Light microscopy of the affected sural nerve showed axonal degeneration. Electron microscopy of the same nerve demonstrated capillary endothelial inclusions characteristic of those observed as manifestations of early endothelial injury in juvenile DM muscle tissue. Polyneuropathy in patients with juvenile DM is a rare complication and is likely due to ischemia secondary to endothelial damage. PMID:7562774

  9. Gastrointestinal hormones regulating appetite.

    PubMed

    Chaudhri, Owais; Small, Caroline; Bloom, Steve

    2006-07-29

    The role of gastrointestinal hormones in the regulation of appetite is reviewed. The gastrointestinal tract is the largest endocrine organ in the body. Gut hormones function to optimize the process of digestion and absorption of nutrients by the gut. In this capacity, their local effects on gastrointestinal motility and secretion have been well characterized. By altering the rate at which nutrients are delivered to compartments of the alimentary canal, the control of food intake arguably constitutes another point at which intervention may promote efficient digestion and nutrient uptake. In recent decades, gut hormones have come to occupy a central place in the complex neuroendocrine interactions that underlie the regulation of energy balance. Many gut peptides have been shown to influence energy intake. The most well studied in this regard are cholecystokinin (CCK), pancreatic polypeptide, peptide YY, glucagon-like peptide-1 (GLP-1), oxyntomodulin and ghrelin. With the exception of ghrelin, these hormones act to increase satiety and decrease food intake. The mechanisms by which gut hormones modify feeding are the subject of ongoing investigation. Local effects such as the inhibition of gastric emptying might contribute to the decrease in energy intake. Activation of mechanoreceptors as a result of gastric distension may inhibit further food intake via neural reflex arcs. Circulating gut hormones have also been shown to act directly on neurons in hypothalamic and brainstem centres of appetite control. The median eminence and area postrema are characterized by a deficiency of the blood-brain barrier. Some investigators argue that this renders neighbouring structures, such as the arcuate nucleus of the hypothalamus and the nucleus of the tractus solitarius in the brainstem, susceptible to influence by circulating factors. Extensive reciprocal connections exist between these areas and the hypothalamic paraventricular nucleus and other energy-regulating centres of the

  10. Influence of iodothyronine conjugates of bovine serum albumin and horseradish peroxidase on enzyme immunosorbent assay of thyroid hormones.

    PubMed

    Kumari, G Lakshmi; Kumar, Sachin; Gupta, Satish; Saini, Anuradha; Sharma, Sudesh K; Kaur, Navneet

    2014-01-01

    Enzyme-linked immunosorbent assays (ELISA's) reported for thyroxine (T₄) and 3,5,3'-triiodothyronine (T₃), involved coupling of the haptens through (i) carboxylic group to carrier protein for producing antibodies and (ii) amino group to detection labels. To improve the titer and specificity of antibodies, immunogens were prepared by coupling of carboxyl group to bovine serum albumin (BSA) either directly or through adipic acid dihydrazide (ADH), after protecting amino group through acetylation of T₄ and T₃. Direct coupling resulted in the incorporation of 40-50 moles of T₄ and T₃ per BSA molecule and helped in improving immunogenic response and specificity, especially of T₄. High epitope density of immunogens evoked better antibody response, since attachement of ADH as spacer, introduced 18-27 moles of haptens into carrier protein and had less effect on antibody development, with T₃ being exception. Detection labels were prepared by coupling horseradish peroxidase (HRP) to amino group of thyroid hormones directly and after preparing their methyl esters, which provided sensitive displacement curves in combination with the antibodies developed against N-acetylated-T₄ and T₃. Unlike methyl esters, T₄-HRP and T₃-HRP showed higher sensitivity and seemed to be related to the affinity of the labels for binding the antibody. PMID:24295178

  11. Hormonal control of inflammatory responses

    PubMed Central

    Farsky, Sandra P.

    1993-01-01

    Almost any stage of inflammatory and immunological responses is affected by hormone actions. This provides the basis for the suggestion that hormones act as modulators of the host reaction against trauma and infection. Specific hormone receptors are detected in the reactive structures in inflamed areas and binding of hormone molecules to such receptors results in the generation of signals that influence cell functions relevant for the development of inflammatory responses. Diversity of hormonal functions accounts for recognized pro- and anti-inflammatory effects exerted by these substances. Most hormone systems are capable of influencing inflammatory events. Insulin and glucocorticoids, however, exert direct regulatory effects at concentrations usually found in plasma. Insulin is endowed with facilitatory actions on vascular reactivity to inflammatory mediators and inflammatory cell functions. Increased concentrations of circulating glucocorticoids at the early stages of inflammation results in downregulation of inflammatory responses. Oestrogens markedly reduce the response to injury in a variety of experimental models. Glucagon and thyroid hormones exert indirect anti-inflammatory effects mediated by the activity of the adrenal cortex. Accordingly, inflammation is not only merely a local response, but a hormone-controlled process. PMID:18475521

  12. Influence of breed and diet on growth, nutrient digestibility, body composition and plasma hormones of Brangus and Angus steers.

    PubMed

    Beaver, E E; Williams, J E; Miller, S J; Hancock, D L; Hannah, S M; O'Connor, D L

    1989-09-01

    Two split-plot designed experiments were conducted to determine the effects of breed (Angus, A, or Brangus, B) and diet (fescue hay, FH; corn silage, CS; or concentrate) on composition and rate of growth, diet digestibility and plasma hormones of steers. In Exp. 1, 10 steers (five of each breed) were fed a CS-based diet followed by a FH-based diet for two consecutive 60-d periods. Both breeds had lower (P less than .01) DM intake and digestibility when fed FH than when fed CS diets. The B steers had higher (P less than .01) plasma insulin concentrations than A steers when fed the CS diet. In Exp. 2, during two consecutive years, 10 steers previously fed CS- and FH-based diets were finished with a corn silage-whole shelled corn-based diet. During yr 1, A steers had higher (P less than .01) DM intake and plasma triiodothyronine (T3) and thyroxine (T4) concentrations (P less than .05) than B steers did. Although final weights were similar (P greater than .10), A steers had heavier (P less than .05) carcass weights than B steers did. During yr 2, A steers had higher (P less than .07) DM and starch digestibilities and higher (P less than .01) plasma T4 concentrations than B steers did. The greater (P less than .01) energetic efficiency of A steers was attributed to the greater rates of fat deposition during yr 2. Regardless of type of diet fed, A steers were more efficient at depositing energy. Higher circulating T4 concentrations of A than B steers may explain some of the physiological differences between these breeds. PMID:2689419

  13. Analysis of risk factors influencing outcomes after cord blood transplantation in children with juvenile myelomonocytic leukemia: a EUROCORD, EBMT, EWOG-MDS, CIBMTR study

    PubMed Central

    Crotta, Alessandro; Ruggeri, Annalisa; Eapen, Mary; Wagner, John E.; MacMillan, Margaret L.; Zecca, Marco; Kurtzberg, Joanne; Bonfim, Carmem; Vora, Ajay; Díaz de Heredia, Cristina; Teague, Lochie; Stein, Jerry; O’Brien, Tracey A.; Bittencourt, Henrique; Madureira, Adrienne; Strahm, Brigitte; Peters, Christina; Niemeyer, Charlotte; Gluckman, Eliane; Rocha, Vanderson

    2013-01-01

    We retrospectively analyzed 110 patients with juvenile myelomonocytic leukemia, given single-unit, unrelated donor umbilical cord blood transplantation. Median age at diagnosis and at transplantation was 1.4 years (age range, 0.1-6.4 years) and 2.2 years (age range, 0.5-7.4 years), respectively. Before transplantation, 88 patients received chemotherapy; splenectomy was performed in 24 patients. Monosomy of chromosome 7 was the most frequent cytogenetic abnormality, found in 24% of patients. All but 8 patients received myeloablative conditioning; cyclosporine plus steroids was the most common graft-versus-host disease prophylaxis. Sixteen percent of units were HLA-matched with the recipient, whereas 43% and 35% had either 1 or 2 to 3 HLA disparities, respectively. The median number of nucleated cells infused was 7.1 × 107/kg (range, 1.7-27.6 × 107/kg). With a median follow-up of 64 months (range, 14-174 months), the 5-year cumulative incidences of transplantation-related mortality and relapse were 22% and 33%, respectively. The 5-year disease-free survival rate was 44%. In multivariate analysis, factors predicting better disease-free survival were age younger than 1.4 years at diagnosis (hazard ratio [HR], 0.42; P = .005), 0 to 1 HLA disparities in the donor/recipient pair (HR, 0.4; P = .009), and karyotype other than monosomy 7 (HR, 0.5; P = .02). Umbilical cord blood transplantation may cure a relevant proportion of children with juvenile myelomonocytic leukemia. Because disease recurrence remains the major cause of treatment failure, strategies to reduce incidence of relapse are warranted. PMID:23926304

  14. The influence of time in captivity, food intake and acute trauma on blood analytes of juvenile Steller sea lions, Eumetopias jubatus.

    PubMed

    Skinner, John P; Tuomi, Pam A; Mellish, Jo-Ann E

    2015-01-01

    The Steller sea lion, Eumetopias jubatus, has experienced regionally divergent population trends over recent decades. One potential mechanism for this disparity is that local factors cause reduced health and, therefore, reduced survival of individuals. The use of blood parameters to assess sea lion health may help to identify whether malnutrition, disease and stress are important drivers of current trends, but such assessments require species-specific knowledge of how parameters respond to various health challenges. We used principal components analysis to identify which key blood parameters (principal analytes) best described changes in health for temporarily captive juvenile Steller sea lions in known conditions. Generalized additive mixed models were used to estimate the changes in principal analytes with food intake, time in captivity and acute trauma associated with hot-iron branding and transmitter implant surgery. Of the 17 blood parameters examined, physiological changes for juvenile sea lions were best described using the following six principal analytes: red blood cell counts, white blood cell counts, globulin, platelets, glucose and total bilirubin. The white blood cell counts and total bilirubin declined over time in captivity, whereas globulin increased. Elevated red blood cell counts, white blood cell counts and total bilirubin and reduced globulin values were associated with lower food intake. After branding, white blood cell counts were elevated for the first 30 days, while globulin and platelets were elevated for the first 15 days only. After implant surgery, red blood cell counts and globulin remained elevated for 30 days, while white blood cell counts remained elevated during the first 15 days only. Glucose was unassociated with the factors we studied. These results were used to provide expected ranges for principal analytes at different levels of food intake and in response to the physical challenges of branding and implant surgery

  15. The influence of time in captivity, food intake and acute trauma on blood analytes of juvenile Steller sea lions, Eumetopias jubatus

    PubMed Central

    Skinner, John P.; Tuomi, Pam A.; Mellish, Jo-Ann E.

    2015-01-01

    The Steller sea lion, Eumetopias jubatus, has experienced regionally divergent population trends over recent decades. One potential mechanism for this disparity is that local factors cause reduced health and, therefore, reduced survival of individuals. The use of blood parameters to assess sea lion health may help to identify whether malnutrition, disease and stress are important drivers of current trends, but such assessments require species-specific knowledge of how parameters respond to various health challenges. We used principal components analysis to identify which key blood parameters (principal analytes) best described changes in health for temporarily captive juvenile Steller sea lions in known conditions. Generalized additive mixed models were used to estimate the changes in principal analytes with food intake, time in captivity and acute trauma associated with hot-iron branding and transmitter implant surgery. Of the 17 blood parameters examined, physiological changes for juvenile sea lions were best described using the following six principal analytes: red blood cell counts, white blood cell counts, globulin, platelets, glucose and total bilirubin. The white blood cell counts and total bilirubin declined over time in captivity, whereas globulin increased. Elevated red blood cell counts, white blood cell counts and total bilirubin and reduced globulin values were associated with lower food intake. After branding, white blood cell counts were elevated for the first 30 days, while globulin and platelets were elevated for the first 15 days only. After implant surgery, red blood cell counts and globulin remained elevated for 30 days, while white blood cell counts remained elevated during the first 15 days only. Glucose was unassociated with the factors we studied. These results were used to provide expected ranges for principal analytes at different levels of food intake and in response to the physical challenges of branding and implant surgery

  16. INFLUENCE OF CHLORDIMEFORM ON ALPHA-ADRENERGIC RECEPTOR-ASSOCIATED MECHANISMS OF HORMONAL REGULATIONS: PITUITARY AND ADRENOCORTICAL SECRETION

    EPA Science Inventory

    The acaricide chlordimeform (CDF) has been reported to have effects on the central nervous system that appear to involve an interaction with adrenergic receptor mediated mechanisms of neurotransmission. The present study examined the influence of CDF on pituitary-adrenocortical h...

  17. Genetics Home Reference: juvenile polyposis syndrome

    MedlinePlus

    ... In the third type, known as juvenile polyposis coli, affected individuals develop polyps only in their colon. People with generalized juvenile polyposis and juvenile polyposis coli typically develop polyps during childhood. Most juvenile polyps ...

  18. Influence of Vitamin D and Parathyroid Hormone on Bone and Metabolic Risk in Women with Previous Gestational Diabetes

    PubMed Central

    Serra, Monica C.; Ryan, Alice S.

    2016-01-01

    The purpose of this study was to compare plasma 25-hydroxy vitamin D (25(OH)D) and parathyroid hormone (PTH), VO2max, bone (by DXA), and metabolic outcomes across age and race-matched postmenopausal women (54±1 years; mean±SEM): 1) with previous gestational diabetes (GDM) (32±1 kg/m2; N=17), 2) without previous GDM, but with a similar BMI to GDM (32±1 kg/m2; N=17), and 3) without previous GDM, but with a higher BMI than GDM (36±1 kg/m2; N=17; P<0.01). The prevalence of 25(OH)D insufficiency and deficiency was high (~80%), but not different across groups, while PTH tended to be ~30% lower in women with a history of GDM (P=0.09). Women with a history of GDM had lower HDL cholesterol and higher diastolic blood pressure and fasting and 2-hr glucose levels (by oral glucose tolerance test) (vs. groups 2 and 3; P’s<0.05). Bone mineral density (BMD) tended to be slightly higher in women with prior GDM than the BMI matched women with no prior GDM (P=0.09). Overall, higher PTH was associated with lower femoral neck (r=−0.33) and (r=−0.38) (P’s<0.05), while lower 25(OH)D was associated with lower VO2max (r=0.25, P=0.05) and higher fasting glucose (r=−0.14) and insulin (r=−0.29 (P’s<0.05). We observe that the poor metabolic profiles of postmenopausal women with a history of GDM are independent of 25(OH)D and PTH. However, due to associations between 25(OH)D and PTH with bone and metabolic outcomes, maintaining recommended 25(OH)D and PTH concentrations is important regardless of a previous history of GDM. PMID:26882050

  19. Influence of Exercise on Bone Remodeling-Related Hormones and Cytokines in Ovariectomized Rats: A Model of Postmenopausal Osteoporosis

    PubMed Central

    Li, Lihui; Chen, Xi; Lv, Shuang; Dong, Miaomiao; Zhang, Li; Tu, Jiaheng; Yang, Jie; Zhang, Lingli; Song, Yinan; Xu, Leiting; Zou, Jun

    2014-01-01

    This study aims to explore the effects of exercise on postmenopausal osteoporosis and the mechanisms by which exercise affects bone remodeling. Sixty-three Wistar female rats were randomly divided into five groups: (1) control group, (2) sham-operated group, (3) OVX (Ovariectomy) group, (4) DES-OVX (Diethylstilbestrol-OVX) group, and (5) Ex-OVX (Exercise-OVX) group. The rat osteoporosis model was established through ovariectomy. The Ex-OVX rats were made to run 251.2 meters every day, 6 d/wk for 3 months in a running wheel. Trabecular bone volume (TBV%), total resorption surface (TRS%), trabecular formation surface (TFS%), mineralization rate (MAR), bone cortex mineralization rate (mAR), and osteoid seam width (OSW) were determined by bone histomorphometry. The mRNA and protein levels of interleukin-1β (IL-1β2), interleukin-6 (IL-6), and cyclooxygenase-2 (Cox-2) were determined by in situ hybridization and immunohistochemistry, respectively. Serum levels of estrogen estradiol (E2), calcitonin (CT), osteocalcin (BGP), and parathyroid hormone (PTH) were determined by ELISA assays. The investigation revealed that compared to the control and the sham-operated groups, the OVX group showed significantly lower levels of TBV%, E2, and CT, but much higher levels of TRS%, TFS%, MAR, OSW, BGP, and PTH. The Ex-OVX group showed increased TBV% and serum levels of E2 and CT compared to the OVX group. Ovariectomy also led to a significant increase in IL-1β mRNA and protein levels in the bone marrow and IL-6 and Cox-2 protein levels in tibias. In addition, the Ex-OVX group showed lower levels of IL-1 mRNA and protein, IL-6 mRNA, and Cox-2 mRNA and protein than those in the OVX group. The upshot of the study suggests that exercise can significantly increase bone mass in postmenopausal osteoporosis rat models by inhibiting bone resorption and increasing bone formation, especially in trabecular bones. PMID:25393283

  20. Juvenile Incarceration and Health.

    PubMed

    Barnert, Elizabeth S; Perry, Raymond; Morris, Robert E

    2016-03-01

    Addressing the health status and needs of incarcerated youth represents an issue at the nexus of juvenile justice reform and health care reform. Incarcerated youth face disproportionately higher morbidity and higher mortality compared to the general adolescent population. Dental health, reproductive health, and mental health needs are particularly high, likely as a result of lower access to care, engagement in high-risk behaviors, and underlying health disparities. Violence exposure and injury also contribute to the health disparities seen in this population. Further, juvenile incarceration itself is an important determinant of health. Juvenile incarceration likely correlates with worse health and social functioning across the life course. Correctional health care facilities allow time for providers to address the unmet physical and mental health needs seen in this population. Yet substantial challenges to care delivery in detention facilities exist and quality of care in detention facilities varies widely. Community-based pediatricians can serve a vital role in ensuring continuity of care in the postdetention period and linking youth to services that can potentially prevent juvenile offending. Pediatricians who succeed in understanding and addressing the underlying social contexts of their patients' lives can have tremendous impact in improving the life trajectories of these vulnerable youth. Opportunities exist in clinical care, research, medical education, policy, and advocacy for pediatricians to lead change and improve the health status of youth involved in the juvenile justice system. PMID:26548359

  1. Hormonal influence on the secretory immune system of the eye: androgen control of secretory component production by the rat exorbital gland.

    PubMed Central

    Sullivan, D A; Bloch, K J; Allansmith, M R

    1984-01-01

    Androgens are known to regulate the level of secretory component (SC) in tears of male rats. The purpose of the present study was to explore the underlying mechanism of this hormone action by (i) identifying the ocular tissue(s) involved in SC production; and (ii) determining whether androgens increase SC production by this tissue. We also examined whether androgen administration influenced the concentration of SC in tears of female rats. Ocular tissues from adult Sprague-Dawley rats were cultured in the presence or absence of cycloheximide in the incubation medium. Secretory component in the culture media was measured by an RIA which detects primarily free SC. Analysis of media obtained after incubation of exorbital (lacrimal) glands, 'lid' tissues, globes, and Harderian glands revealed that only exorbital glands released substantial amounts of SC. This exorbital gland production of SC, which was significantly greater in tissues from male rats, as compared to those of female rats, was reduced by approximately 50% when cycloheximide was present in the culture medium. To determine whether SC production by exorbital glands was influenced by androgens, orchiectomized glands was influenced by androgens, orchiectomized rats were administered either saline or testosterone (2.0 mg/day for 4 days), and exorbital glands were cultured 24 hr after the last injection. Testosterone treatment in vivo induced a significant, cycloheximide-sensitive increase in SC production in vitro, compared to the glandular SC output of saline-injected controls. It is interesting that similar androgen treatment of ovariectomized females also resulted in elevated tear SC concentrations and enhanced output of SC by their exorbital glands in vitro. These findings indicate that the exorbital gland is primarily responsible for SC production in the rat eye and that androgens may modulate the synthesis of SC in this gland. PMID:6735436

  2. Hormone impostors

    SciTech Connect

    Colborn, T.; Dumanoski, D.; Myers, J.P.

    1997-01-01

    This article discusses the accumulating evidence that some synthetic chemicals disrupt hormones in one way or another. Some mimic estrogen and others interfere with other parts of the body`s control or endocrine system such as testosterone and thyroid metabolism. Included are PCBs, dioxins, furans, atrazine, DDT. Several short sidebars highlight areas where there are or have been particular problems.

  3. Hormone Health Network

    MedlinePlus

    International Resource Center Online Store Pacientes y Cuidadores Hormones and Health Journey Through the Endocrine System Endocrine Disrupting Chemicals (EDCs) Endocrine Glands and Types of Hormones Brainy Hormones What Do Hormones Do? Healthy Living ...

  4. Epidemiology of juvenile violence.

    PubMed

    Farrington, D P; Loeber, R

    2000-10-01

    It is difficult to review the epidemiology of juvenile violence because few studies focus specifically on this topic as opposed to childhood aggression or delinquency in general. More research is needed specifically on juvenile violence, which is generally measured using official records or self-reports. Self-report research shows that a substantial fraction of the male juvenile population commits violence, and that very few violent acts are followed by arrests or convictions. Racial differences in violence may be explainable by reference to racial differences in community contexts. There is a great deal of versatility in juvenile violence. Juveniles who commit one type of violent offense also tend to commit other types and nonviolent offenses. Violent offenders tend to be persistent or frequent offenders, and there is little difference between violent offenders and nonviolent but equally frequent offenders. Nevertheless, there is some degree of specialization in violence. More research is needed to investigate whether risk factors exist for violence that are not risk factors for serious nonviolent delinquency (e.g., biologic factors). Violent juveniles tend to have co-occurring problems such as victimization, substance abuse, and school failure. Often, they might be described as multiple-problem youth. There is considerable continuity from childhood aggression to juvenile violence. An early age of onset of violence predicts a large number of violent offenses. The major long-term risk factors for juvenile violence are individual (high impulsiveness and low intelligence, possibly linked to the executive functions of the brain), family (poor supervision, harsh discipline, child physical abuse, a violent parent, large family size, poverty, a broken family), peer delinquency, gang membership, urban residence, and living in a high-crime neighborhood (characterized by gangs, guns, and drugs in the United States). More research is needed on interactions among risk factors

  5. Homeostasis, thymic hormones and aging.

    PubMed

    Goya, R G; Bolognani, F

    1999-01-01

    The thymic-pituitary axis constitutes a bidirectional circuit where the ascending feedback loop is effected by thymic factors of epithelial origin. The aim of the present article is, first, to introduce the idea of an immune-neuroendocrine homeostatic network in higher animals. Next, the relevance of the thymus in this network and the possible role of this gland in the neuroendocrine imbalances associated with aging are discussed. A number of studies are next reviewed which show that the endocrine thymus produces several bioactive molecules, generally called thymic hormones, which in addition to possessing immunoregulatory properties are also active on nervous and endocrine circuits. In particular, the reported activities of thymosin fraction five, thymosin alpha 1 and thymosin beta 4 on beta-endorphin, adrenocorticotropic hormone, glucocorticoids, luteinizing hormone-releasing hormone and luteinizing hormone secretion in different animal and cell models are reviewed. The known hypophysiotropic actions of other thymic hormones like thymulin, homeostatic thymus hormone and thymus factor are also summarized, and the impact of aging on pituitary responsiveness to thymic hormones is discussed. As a conclusion, it is proposed that in addition to its central role in the regulation of the immune function, the thymus gland may extend its influence to nonimmunologic components of the body, including the neuroendocrine system. The early onset of thymus involution might, therefore, act as a triggering event which would initiate the gradual decline in homeostatic potential that characterizes the aging process. PMID:10202264

  6. Community-Based Juvenile Reentry Services: The Effects of Service Dosage on Juvenile and Adult Recidivism

    ERIC Educational Resources Information Center

    Abrams, Laura S.; Terry, Diane; Franke, Todd M.

    2011-01-01

    In this study the authors examined the influence of length of participation in a community-based reentry program on the odds of reconviction in the juvenile and adult criminal justice systems. A structured telephone survey of reentry program alumni was conducted with 75 transition-age (18-25 year-old) young men. Binary logistic regression analysis…

  7. Family transitions and juvenile delinquency.

    PubMed

    Schroeder, Ryan D; Osgood, Aurea K; Oghia, Michael J

    2010-01-01

    There is a large body of research that shows children from non-intact homes show higher rates of juvenile delinquency than children from intact homes, partially due to weaker parental control and supervision in non-intact homes. What has not been adequately addressed in the research is the influence of changes in family structure among individual adolescents over time on delinquent offending. Using the first and third waves of the National Youth Study, we assess the effect of family structure changes on changes in delinquent offending between waves through the intermediate process of changes in family time and parental attachment. Although prior research has documented adolescents in broken homes are more delinquent than youth in intact homes, the process of family dissolution is not associated with concurrent increases in offending. In contrast, family formation through marriage or cohabitation is associated with simultaneous increases in offending. Changes in family time and parental attachment account for a portion of the family formation effect on delinquency, and prior parental attachment and juvenile offending significantly condition the effect of family formation on offending. PMID:20879178

  8. Juvenile Sex Offenders.

    PubMed

    Ryan, Eileen P

    2016-01-01

    Public policy has tended to treat juvenile sex offenders (JSOs) as adult sex offenders in waiting, despite research that contradicts this notion. Although as a group, JSOs are more similar to general delinquents than to adult sex offenders, atypical sexual interests and sexual victimization during childhood may be a pathway for sexual offending that differentiates some JSOs from their nonsexually delinquent peers. Developmental considerations must be considered in risk assessment evaluations of these youth. This article reviews theories of sexual offending in youth, risk factors for juvenile offending and reoffending, psychopathology in JSOs, risk assessment, and treatment. PMID:26593121

  9. Activation of Strychnine-Sensitive Glycine Receptors by Shilajit on Preoptic Hypothalamic Neurons of Juvenile Mice.

    PubMed

    Bhattarai, Janardhan Prasad; Cho, Dong Hyu; Han, Seong Kyu

    2016-02-29

    Shilajit, a mineral pitch, has been used in Ayurveda and Siddha system of medicine to treat many human ailments, and is reported to contain at least 85 minerals in ionic form. This study examined the possible mechanism of Shilajit action on preoptic hypothalamic neurons using juvenile mice. The hypothalamic neurons are the key regulator of many hormonal systems. In voltage clamp mode at a holding potential of -60 mV, and under a high chloride pipette solution, Shilajit induced dose-dependent inward current. Shilajit-induced inward currents were reproducible and persisted in the presence of 0.5 μM tetrodotoxin (TTX) suggesting a postsynaptic action of Shilajit on hypothalamic neurons. The currents induced by Shilajit were almost completely blocked by 2 μM strychnine (Stry), a glycine receptor antagonist. In addition, Shilajit-induced inward currents were partially blocked by bicuculline. Under a gramicidin-perforated patch clamp mode, Shilajit induced membrane depolarization on juvenile neurons. These results show that Shilajit affects hypothalamic neuronal activities by activating the Stry-sensitive glycine receptor with α₂/α₂β subunit. Taken together, these results suggest that Shilajit contains some ingredients with possible glycine mimetic activities and might influence hypothalamic neurophysiology through activation of Stry-sensitive glycine receptor-mediated responses on hypothalamic neurons postsynaptically. PMID:26875561

  10. Molecular expression of opsin gene in growing juvenile mackerel ( Scomber japonicus Houttuyn)

    NASA Astrophysics Data System (ADS)

    Kim, Eung-Oh; Yoon, Seong-Jong; Park, Kyoung-Hyun; Kim, Dae-Hyun; Do, Jeung-Wan; Cho, Eun-Seob

    2009-12-01

    Fish have developed color vision that is closely adapted to their photic environments, where both spectral sensitivity and the number of visual opsins are influenced. The mackerel used in this study is one of the most important fishery stocks in Korea. The opsin gene of the mackerel juveniles after 20 days in hatching was isolated and characterized based on the molecular study of visual photoreceptor. The full-length mackerel opsin gene was obtained by PCR amplification of genomic DNA, as well as cDNA synthesis. Sequence analysis of the opsin gene showed that it contained a 1,080 bp open reading frame encoding 360 amino acids. Based on Schiff’s base formation (S114, K119), glycosylation (E3, F37) and palmitoylation (S281, 282), the deduced amino acid sequence had a typical rod opsin. The mackerel and Gempylus serpens showed 73.7% DNA homology on opsin gene, which was higher than any other of investigated species. In the analysis of phylogenetic relationship, the genetic placement of the mackerel is closer to that of Scombroidei than Labroidei, with supporting somewhat strong bootstrap value. In the analysis of Northern and RT-PCR, the probed products were observed only in rapidly growing juveniles. These findings indicate that in mackerel opsin mRNA expression can be detected in day-20 hatching larvae. It may play an important role in stimulating growth hormone.

  11. EFFECTS OF INSECT HORMONE ACTIONS, 20E AND JH, ON MIDGUT STEM CELLS OF LEPIDOPTERA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Addition of the two principal insect hormones, 20-hydroxyecdysone (20E) and juvenile hormone (JH3) to the medium containing midgut stem cells cultured in vitro, induced stimulation of stem cell proliferation in a concentration-dependent manner. Stem cells were obtained from larvae of an economically...

  12. Sexual differentiation of behaviour in monkeys: role of prenatal hormones.

    PubMed

    Wallen, K; Hassett, J M

    2009-03-01

    The theoretical debate over the relative contributions of nature and nurture to the sexual differentiation of behaviour has increasingly moved towards an interactionist explanation that requires both influences. In practice, however, nature and nurture have often been seen as separable, influencing human clinical sex assignment decisions, sometimes with disastrous consequences. Decisions about the sex assignment of children born with intersex conditions have been based almost exclusively on the appearance of the genitals and how other's reactions to the gender role of the assigned sex affect individual gender socialisation. Effects of the social environment and gender expectations in human cultures are ubiquitous, overshadowing the potential underlying biological contributions in favour of the more observable social influences. Recent work in nonhuman primates showing behavioural sex differences paralleling human sex differences, including toy preferences, suggests that less easily observed biological factors also influence behavioural sexual differentiation in both monkeys and humans. We review research, including Robert W. Goy's pioneering work with rhesus monkeys, which manipulated prenatal hormones at different gestation times and demonstrated that genital anatomy and specific behaviours are independently sexually differentiated. Such studies demonstrate that, for a variety of behaviours, including juvenile mounting and rough play, individuals can have the