Science.gov

Sample records for jyfltrap-assisted beta-decay studies

  1. Neutron Beta Decay Studies with Nab

    SciTech Connect

    Baessler, S.; Alarcon, R.; Alonzi, L. P.; Balascuta, S.; Barron-Palos, L.; Bowman, James David; Bychkov, M. A.; Byrne, J.; Calarco, J; Chupp, T.; Cianciolo, T. V.; Crawford, C.; Frlez, E.; Gericke, M. T.; Glück, F.; Greene, G. L.; Grzywacz, R. K.; Gudkov, V.; Harrison, D.; Hersman, F. W.; Ito, T.; Makela, M.; Martin, J.; McGaughey, P. L.; McGovern, S.; Page, S.; Penttila, Seppo I; Pocanic, Dinko; Salas-Bacci, A.; Tompkins, Z.; Wagner, D.; Wilburn, W. S.; Young, A. R.

    2013-01-01

    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.

  2. Study of 48Ca double beta decay by CANDLES

    NASA Astrophysics Data System (ADS)

    Ogawa, I.; Kishimoto, T.; Umehara, S.; Ito, G.; Yasuda, K.; Kakubata, H.; Miyashita, M.; Takubo, K.; Matsuoka, K.; Nomachi, M.; Saka, M.; Seki, K.; Fushimi, K.; Hazama, R.; Ohsumi, H.; Okada, K.; Tamagawa, Y.; Jinno, T.; Fujiwara, N.; Yoshida, S.; CANDLES Collaboration

    2012-07-01

    CANDLES is the project to search for double beta decay (DBD) of 48Ca by using CaF2 scintillators. The Q-value of 48Ca, which is the highest (4.27 MeV) among potential DBD nuclei, is far above energies of γ-rays from natural radioactivities (maximum 2.615 MeV from 208Tl decay), therefore we can naturally expect small backgrounds in the energy region we are interested in. We have constructed the prototype detector, CANDLES III in our laboratory (Osaka U.) at sea level and studied the basic performance of the system, including the light collection, position reconstruction and background rejection. After R&D study we moved the detector system to new experimental room at Kamioka underground laboratory. Herein the expected performances and current status of the CANDLES system are described.

  3. Beta-Decay Studies near 100Sn

    SciTech Connect

    Karny, M.; Batist, L.; Banu, A.; Becker, F.; Blazhev, A.; Burkard, K.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Janas, Z.; Jungclaus, A.; Kavatsyuk, M.; Kavatsyuk, O.; Kirchner, R.; La Commara, M.; Mandal, S.; Mazzocchi, C.; Miernik, K.; Mukha, I.; Muralithar, S.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Rykaczewski, Krzysztof Piotr; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2005-01-01

    The {beta}-decay of {sup 102}Sn was studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). A decay scheme has been constructed based on the {gamma}-{gamma} coincidence data. The total experimental Gamow-Teller strength B{sub GT}{sup exp} of {sup 102}Sn was deduced from the TAS data to be 4.2(9). A search for {beta}-delayed {gamma}-rays of {sup 100}Sn decay remained unsuccessful. However, a Gamow-Teller hindrance factor h = 2.2(3), and a cross-section of about 3nb for the production of {sup 100}Sn in fusion-evaporation reaction between {sup 58}Ni beam and {sup 50}Cr target have been estimated from the data on heavier tin isotopes. The estimated hindrance factor is similar to the values derived for lower shell nuclei.

  4. Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure

    SciTech Connect

    Algora, A.; Valencia, E.; Taín, J.L.; Jordan, M.D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner, A.; Guadilla, V.; Fallot, M.; Porta, A.; Zakari-Issoufou, A.-A.; Bui, V.M.; and others

    2014-06-15

    An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of {sup 87,88}Br using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.

  5. Nab: precise experimental study of unpolarized neutron beta decay

    NASA Astrophysics Data System (ADS)

    Pocanic, Dinko; Nab Collaboration

    2014-09-01

    Nab, a program of experimental study of unpolarized neutron decays at the Spallation Neutron Source, Oak Ridge, TN, aims to determine a, the electron-neutrino correlation with precision of δa / a =10-3 , and b, the Fierz interference term, with uncertainty δb ~= 3 ×10-3 . Neutron beta decay's simple theoretical description in the Standard Model (SM) is overconstrained by the set of available observables, providing opportunities to search for evidence of SM extensions. Planned Nab results will lead to a new precise determination of the ratio λ =GA /GV , and to significant reductions in the allowed limits for both right- and left-handed scalar and tensor currents. Alternatively, the experiment may detect a discrepancy from SM predictions consistent with certain realizations of supersymmetry. An optimized, asymmetric spectrometer has been designed to achieve the narrow proton momentum response function required to meet the physics goals of the experiment. The apparatus is to be used in a follow-up measurement (ABba) of asymmetry observables A and B in polarized neutron decay. Nab is funded, now in the construction stage, with planned beam readiness in 2016. We discuss the experiment's motivation, expected reach, design and method. Nab, a program of experimental study of unpolarized neutron decays at the Spallation Neutron Source, Oak Ridge, TN, aims to determine a, the electron-neutrino correlation with precision of δa / a =10-3 , and b, the Fierz interference term, with uncertainty δb ~= 3 ×10-3 . Neutron beta decay's simple theoretical description in the Standard Model (SM) is overconstrained by the set of available observables, providing opportunities to search for evidence of SM extensions. Planned Nab results will lead to a new precise determination of the ratio λ =GA /GV , and to significant reductions in the allowed limits for both right- and left-handed scalar and tensor currents. Alternatively, the experiment may detect a discrepancy from SM

  6. Nab: a precise study of unpolarized neutron beta decay

    NASA Astrophysics Data System (ADS)

    Pocanic, Dinko; Nab Collaboration

    2015-10-01

    Nab is a program of measurements of unpolarized neutron decays at the Spallation Neutron Source, Oak Ridge, TN. Nab aims to determine a, the e- ν correlation with precision of δa / a =10-3 , and b, the Fierz interference term, with uncertainty δb ~= 3 ×10-3 . The set of available observables overconstrains neutron beta decay in the Standard Model (SM), opening the door to searches for evidence of possible SM extensions. Projected Nab results will lead to a new precise determination of the ratio λ =GA /GV , and to significant reductions in the allowed limits for both right- and left-handed scalar and tensor currents. Alternatively, Nab may detect a discrepancy from SM predictions consistent with certain realizations of supersymmetry. A long asymmetric spectrometer, optimized to achieve the required narrow proton momentum response function, is currently under construction. The apparatus is to be used in follow-up measurements (ABba experiment) of asymmetry observables A and B in polarized neutron decay. Nab is planned for beam readiness in 2016. We discuss the experiment's motivation, expected reach, design and method, and update its status. Work supported by NSF Grants PHY-1126683, 1205833, 1307328, 1506320, and others.

  7. Study of {beta}-Decay in the Proton-Neutron Interacting Boson-Fermion Model

    SciTech Connect

    Zuffi, L.; Brant, S.; Yoshida, N.

    2006-04-26

    We study {beta}-decay in odd-A nuclei together with the energy levels and other properties in the proton-neutron interacting-boson-fermion model. We also report on the preliminary results in the odd-odd nuclei in the proton-neutron interacting boson-fermion-fermion model.

  8. SNO+ status and plans for double beta decay search and other neutrino studies

    NASA Astrophysics Data System (ADS)

    Andringa, S.; SNO+ Collaboration

    2016-01-01

    SNO+ is a multi-purpose Neutrino Physics experiment, succeeding to the Sudbury Neutrino Observatory by replacing heavy water with liquid scintillator, which can also be loaded with large quantities of double-beta decaying isotope. The scientific goals of SNO+ are the search for neutrinoless double-beta decay, the study of solar neutrinos and of anti-neutrinos from nuclear reactors and the Earth's natural radioactivity, as well as supernovae neutrinos. The installation of the detector at SNOLAB is being completed and commissioning has already started with a dry run. The detector will soon be filled with water and, later, with scintillator. Here we highlight the main detector developments and address the several Physics analysis being prepared for the several planned SNO+ runs.

  9. Beta Decay Study of Neutron-rich Magnesium

    NASA Astrophysics Data System (ADS)

    Ash, John; Rajabali, Mustafa; Griffin Collaboration

    2015-10-01

    Within the ``island of inversion'' around the N = 20 shell gap, isotopes of magnesium, and aluminum deviate from the expected closed-shell structure. Particles promoted across the N = 20 shell gap result in a lower energy deformed ground state configuration rather than the expected spherical configuration. An experiment was conducted at TRIUMF laboratory in the summer of 2015 to study the decay of ``island of inversion'' isotopes 33 , 34 , 35Mg and the structure of the respective daughter nuclei. The isotopes of interest were produced by a proton beam from TRIUMF's 500 MeV cyclotron impacting on a UCx target. The magnesium decays populated states along the decay chain in Al, Si, P, and S isotopes. The new GRIFFIN spectrometer in the ISAC-I facility was used to detect the gamma rays. Two sets of scintillators, one for detecting the beta particles (SCEPTAR) and the other for detecting beta-delayed neutrons (DESCANT), were also used in conjunction with GRIFFIN. The GRIFFIN data were energy calibrated and partially analyzed for this project. New algorithms were developed for the analysis. Preliminary results for new transitions detected in 34Mg as well as the half lives obtained will be presented in their current form. This research was supported by the Tennessee Tech research office.

  10. Beta decay study of the N=Z nucleus {sup 72}Kr

    SciTech Connect

    Piqueras, I.; Borge, M. J. G.; Dessagne, Ph.; Giovinazzo, J.; Longour, C.; Miehe, Ch.; Tengblad, O.

    1999-11-16

    Beta decay of the N=Z even-even nucleus {sup 72}Kr has been studied at the ISOLDE PSB facility at CERN. {sup 72}Kr has been produced by fragmentation of a niobium target using the 1 GeV proton beam of the PS Booster. Delayed charged particles has been search for, X-ray, {gamma} and {gamma}-{gamma} coincidences have been measured. Our results enrich the decay scheme in 15 unreported levels. Information on the Gamow-Teller strength distribution has been obtained for the region of the Q{sub EC} window accessible to us.

  11. A scintillating bolometer array for double beta decay studies: The LUCIFER experiment

    NASA Astrophysics Data System (ADS)

    Gironi, L.

    2016-07-01

    The main goal of the LUCIFER experiment is to study the neutrinoless double beta decay, a rare process allowed if neutrinos are Majorana particles. Although aiming at a discovery, in the case of insufficient sensitivity the LUCIFER technique will be the demonstrator for a higher mass experiment able to probe the entire inverted hierarchy region of the neutrino mass. In order to achieve this challenging result, high resolution detectors with active background discrimination capability are required. This very interesting possibility can be largely fulfilled by scintillating bolometers thanks to the simultaneous read-out of heat and light emitted by the interactions in the detector or by pulse shape analysis.

  12. Beta-decay study of neutron rich isotopes of Bromine and Krypton

    SciTech Connect

    Miernik, Krzysztof A; Gross, Carl J; Grzywacz, Robert Kazimierz; Madurga, M; Mendez, II, Anthony J; Miller, D.; Padgett, S; Paulauskas, Stanley V; Rykaczewski, Krzysztof Piotr; Stracener, Daniel W; Wolinska-Cichocka, Marzena; Zganjar, E. F.; Batchelder, J. C.; Brewer, N.T.; Cartegni, L.; Fijalkowska, Aleksandra G; Hamilton, J. H.; Hwang, J. K.; Ilyushkin, S.; Jost, Carola U; Karny, M.; Korgul, A.; Krolas, W.; Liu, S.H.; Ramayya, A. V.; Surman, Rebecca; Winger, J. A.; Wolinska-Cichocka, M

    2013-01-01

    Short lived neutron rich nuclei including 93 Br, 93 Kr and 94 Kr were produced in proton induced fission of 238 U at the HRIBF in Oak Ridge. Their beta decay was studied by means of a high resolution on line mass separator and beta gamma spectroscopy methods. The half life of 93Br T1/2 = 152(8) ms and delayed branching ratio of Pn = 53-8+11 may be compared to the previously reported values of T1/2 = 102(10) ms and Pn = 68(7)%. At the same time the half life of 94Kr T1/2 = 227(14) ms and B delayed branching ratio of Pn = 1.9+0.6 0.2 % of 93Kr are in very good agreement with literature values. The decay properties of 93Br include four new gamma transitions following beta delayed neutron emission.

  13. Experimental study of double-{beta} decay modes using a CdZnTe detector array

    SciTech Connect

    Dawson, J. V.; Goessling, C.; Koettig, T.; Muenstermann, D.; Rajek, S.; Schulz, O.; Janutta, B.; Zuber, K.; Junker, M.; Reeve, C.; Wilson, J. R.

    2009-08-15

    An array of sixteen 1 cm{sup 3} CdZnTe semiconductor detectors was operated at the Gran Sasso Underground Laboratory (LNGS) to further investigate the feasibility of double-{beta} decay searches with such devices. As one of the double-{beta} decay experiments with the highest granularity the 4x4 array accumulated an overall exposure of 18 kg days. The setup and performance of the array is described. Half-life limits for various double-{beta} decay modes of Cd, Zn, and Te isotopes are obtained. No signal has been found, but several limits beyond 10{sup 20} years have been performed. They are an order of magnitude better than those obtained with this technology before and comparable to most other experimental approaches for the isotopes under investigation. An improved limit for the {beta}{sup +}/EC decay of {sup 120}Te is given.

  14. Beta-Decay Study of ^{150}Er, ^{152}Yb, and ^{156}Yb: Candidates for a Monoenergetic Neutrino Beam Facility

    SciTech Connect

    Estevez Aguado, M. E.; Algora, A.; Rubio, B.; Bernabeu, J.; Nacher, E.; Tain, J. L.; Gadea, A.; Agramunt, J.; Burkard, K.; Hueller, W.; Doring, J.; Kirchner, R.; Mukha, I.; Plettner, C.; Roeckl, E.; Grawe, H.; Collatz, R.; Hellstrom, M.; Cano-Ott, D.; Karny, M.; Janas, Z.; Gierlik, M.; Plochocki, A.; Rykaczewski, Krzysztof Piotr; Batist, L.; Moroz, F.; Wittman, V.; Blazhev, A.; Valiente, J. J.; Espinoza, C.

    2011-01-01

    The beta decays of ^{150}Er, ^{152}Yb, and ^{156}Yb nuclei are investigated using the total absorption spectroscopy technique. These nuclei can be considered possible candidates for forming the beam of a monoenergetic neutrino beam facility based on the electron capture (EC) decay of radioactive nuclei. Our measurements confirm that for the cases studied, the EC decay proceeds mainly to a single state in the daughter nucleus.

  15. Studies on the double-{beta} decay nucleus {sup 64}Zn using the (d,{sup 2}He) reaction

    SciTech Connect

    Grewe, E.-W.; Baeumer, C.; Dohmann, H.; Frekers, D.; Hollstein, S.; Rakers, S.; Thies, J. H.; Harakeh, M. N.; Berg, A. M. van den; Woertche, H. J.; Johansson, H.; Martinez-Pinedo, G.; Petermann, I.; Sieja, K.; Simon, H.; Langanke, K.; Nowacki, F.; Popescu, L.; Savran, D.; Zilges, A.

    2008-06-15

    The (d,{sup 2}He) charge-exchange reaction on the double-{beta} decay ({beta}{beta}) nucleus {sup 64}Zn has been studied at an incident energy of 183 MeV. The two protons in the {sup 1}S{sub 0} state (indicated as {sup 2}He) were both momentum analyzed and detected simultaneously by the BBS magnetic spectrometer and its position-sensitive detector. {sup 2}He spectra with a resolution of about 115 keV (FWHM) have been obtained allowing identification of many levels in the residual nucleus {sup 64}Cu with high precision. {sup 64}Zn is one of the rare cases undergoing a {beta}{beta} decay in {beta}{sup +} direction. In the experiment presented here, Gamow-Teller (GT{sup +}) transition strengths have been extracted. Together with the GT{sup -} transition strengths from {sup 64}Ni({sup 3}He,t) data to the same intermediate nucleus {sup 64}Cu, the nuclear matrix elements of the {beta}{beta} decay of {sup 64}Zn have been evaluated. Finally, the GT{sup {+-}} distributions are compared with shell-model calculations and a critical assessment is given of the various residual interactions presently employed for the pf shell.

  16. Study of Double Beta Decay of {sup 48}Ca by CANDLES

    SciTech Connect

    Umehara, S.; Kishimoto, T.; Ogawa, I.; Matsuoka, K.; Ito, G.; Yasuda, K.; Kakubata, H.; Miyashita, M.; Nomachi, M.; Ajimura, S.; Tamagawa, Y.; Fushimi, K.; Hazama, R.; Ohsumi, H.; Okada, K.; Yoshida, S.; Fujii, Y.

    2010-05-12

    CANDLES is the project to search for neutrino-less double beta decay (0nubetabeta) of {sup 48}Ca. The observation of 0nubetabeta will prove existence of a massive Majorana neutrino. We have developed the new detector system CANDLES which features CaF{sub 2}(pure) scintillators. Here expected performances of the system for background rejection are presented. It is also described current status of development for the detector system.

  17. Experimental study of {sup 113}Cd {beta} decay using CdZnTe detectors

    SciTech Connect

    Goessling, C.; Kiel, H.; Muenstermann, D.; Oehl, S.; Junker, M.; Zuber, K.

    2005-12-15

    A search for the fourfold forbidden {beta} decay of {sup 113}Cd has been performed with CdZnTe semiconductors. With 0.86 kg {center_dot} d of statistics a half-life for the decay of T{sub 1/2}=[8.2{+-}0.2(stat.){sub -1.0}{sup +0.2}(sys.)]x10{sup 15} yr has been obtained. This is in good agreement with published values. A comparison of the spectral shape with the one given on the Table of Isotopes Web page shows a severe deviation.

  18. Bound-state beta decay of highly ionized atoms

    SciTech Connect

    Takahashi, K.; Boyd, R.N.; Mathews, G.J.; Yokoi, K.

    1987-10-01

    Nuclear ..beta.. decays of highly ionized atoms under laboratory conditions are studied. Theoretical predictions of ..beta..-decay rates are given for a few cases in which bound-state ..beta.. decay produces particularly interesting effects. A possible storage-ring experiment is proposed for measuring bound-state ..beta..-decay rates, which will be most easily applied to the decay of /sup 3/H/sup +/. .AE

  19. New method to study the photon strength function using the beta-decay of unstable nuclei

    NASA Astrophysics Data System (ADS)

    Liddick, Sean

    2015-10-01

    The photon strength function is a fundamental property of the atomic nucleus that can be linked with many different areas of nuclear science. In particular, a knowledge of the photon strength function can be applied in statistical-model reaction calculations to constrain neutron capture rates useful for nuclear astrophysics and other applications. A new method has been developed which takes advantage of beta-decay to populate high-energy states in a daughter nucleus. This preparation is combined with a total absorption spectrometer to record the subsequent gamma-ray cascade and the overall technique is the so-called beta-Oslo method. The technique is applicable to very low production rates (~1 pps) and, thus, can be used to look at trends across a wide range of neutron and proton numbers. A description of the technique, and preliminary results on neutron-rich nuclei near Z = 28 and N = 40 will be presented.

  20. Development of an Electrostatic Ion Beam Trap for the Study of Beta Decay Correlations

    NASA Astrophysics Data System (ADS)

    Mei, Yuan

    2014-03-01

    Precision measurements of beta decay correlation parameters, to the level of 0.1% or better, can be used to test the Standard Model and to search for possible evidence of new physics such as Supersymmetry. We are developing an Electrostatic Ion Beam Trap (EIBT) to measure the beta-neutrino correlation parameter of short lived radioactive isotopes produced by the 88-inch Cyclotron at LBNL. The EIBT uses two opposing sets of electrodes to create a parallel pair of electrostatic mirrors to confine ions. Position sensitive beta telescopes and micro-channel plates will be used to detect the beta and recoil nucleus, thus allowing the reconstruction of the momentum vectors of both beta and recoil nucleus on an event-by-event basis. I will describe the measurement technique and update on the status and progress of this program.

  1. Optimization Studies for the COBRA Neutrinoless Double-Beta Decay Experiment and Results from a Prototype

    NASA Astrophysics Data System (ADS)

    Martin, Jerrad Wayne

    The COBRA experiment uses Cadmium Zinc Telluride (CZT) room-temperature semiconductor detectors to search for the neutrinoless double-beta decay of cadmium-116. While the experiment has produced globally competitive half-life limits with data from coplanar-grid CZT detectors, a future ton-scale iteration could set limits constraining the effective Majorana neutrino mass to less than 100 meV. The aim of this work is to determine the optimal CZT detector type for such an experiment. First, an overview of the relevant neutrino physics as well as an introduction to the COBRA experiment is presented. The performance characteristics and design criteria for CZT detectors are then covered, both in general and as they relate to COBRA. Simulations and prototype experiments have been performed using two of the detector design candidates. The method and results are discussed in detail. Finally, the prototype is compared with other CZT detector designs in the context of performance and scalability for a 420 kg COBRA experiment.

  2. Status of Neutron Beta Decay Asymmetry Studies from the UCNA Experiment

    NASA Astrophysics Data System (ADS)

    Phillips, David, II

    2013-04-01

    The UCNA experiment measures the neutron β decay asymmetry parameter A(E) using bottled polarized ultracold neutrons (UCN). UCN are produced from a pulsed spallation solid deuterium source coupled to the 800 MeV proton beam at LANSCE. The UCN spin states are selected via a 7 T polarizing field and an adiabatic fast passage spin flipper. The polarized UCN are then transported to a 1 T 2x2π spectrometer where the emitted electrons are measured. In the Standard Model, the leading order value of A(E), A0, is a function of the axial-vector to vector coupling ratio λ≡gA/gV, providing complementary data to the physics probed by measurements of the neutron lifetime τn. When taken together with τn, measurements of the beta decay asymmetry permit a nuclear structure independent determination of the CKM matrix element Vud. This talk presents an overview of the UCNA experiment, the status of the analysis of our 2011 dataset, the work performed in 2012 and the path forward.

  3. Neutron capture cross-section studies of Tellurium isotopes for neutrinoless double beta decay applications

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, Werner

    2014-09-01

    The CUORE detector at Gran Sasso, aimed at searching for neutrinoless double-beta decay of 130Te, employs an array of TeO2 bolometer modules. To understand and identify the contribution of muon and (α,n) induced neutrons to the CUORE background, fast neutron cature cross-section data of the tellurium isotopes 126Te, 128Te and 130Te have been measured with the activation method at eight different energies in the neutron energy range 0.5-7.5 MeV. Plastic pill boxes of diameter 1.6 cm and width 1 cm containing Te were irradiated with mono-energetic neutrons produced via the 3H(p,n)3He and 2H(d,n)3He reactions. The cross-sections were determined relative to the 197Au(n, γ)198Au and 115In(n,n')115m In standard cross sections. The activities of the products were measured using 60% lead-shielded HPGe detectors at TUNL's low background counting facility. The present results are compared with the evaluated data from TENDL-2012, ENDF/B-VII.1, JEFF-3.2 and JENDL-4.0, as well as with literature data.

  4. Review of modern double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.

    2015-10-01

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( < 0.46 eV) and a coupling constant of Majoron to neutrino ( < 1.3 . 10-5) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to at the level of ˜ 0.01-0.1 eV are discussed.

  5. Review of modern double beta decay experiments

    SciTech Connect

    Barabash, A. S.

    2015-10-28

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T{sub 1/2}(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (〈m{sub ν}〉 < 0.46 eV) and a coupling constant of Majoron to neutrino (〈g{sub ee}〉 < 1.3 · 10{sup −5}) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to 〈m{sub ν}〉 at the level of ∼ 0.01-0.1 eV are discussed.

  6. Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Cremonesi, Oliviero

    2016-05-01

    After more than 3/4 of century from its proposal, Neutrinoless Double Beta Decay (NLDBD) is still missing observation and continues to represent the only practical method for investigating the Dirac/Majorana nature of neutrinos. In case neutrinos would be Majorana particles, NLDBD would provide unique informations on their properties (absolute mass scale and Majorana phases). Boosted by the discovery of neutrino oscillations, a number of experiments with improved sensitivity have been proposed in the past decade. Some of them have recently started operation and others are ready to start. They will push the experimental sensitivity on the decay halflife beyond 1026 year, starting to analyze the region of the inverted mass hierarchy. The status and perspectives of the ongoing experimental effort are reviewed. Uncertainties coming from the calculation othe decay nuclear matrix elements (NME) as well as the recently suggested possibility of a relevant quenching of the axial coupling constant are also discussed.

  7. Double-Beta Decay at TUNL

    NASA Astrophysics Data System (ADS)

    Kidd, Mary

    2007-10-01

    Studying double-beta decay at Triangle Universities Nuclear Laboratory (TUNL) is perhaps one of the most promising ways to pinpoint the neutrino mass. What they do not mention is that to study double-beta decay, you probably have to become a certified miner, and if you have a fear of goats, you should stay away. In this talk, I will tell you some of my experiences as a TUNL graduate student, and how I am now nearly qualified for a job in the mining industry.

  8. Sterile neutrinos in neutrinoless double beta decay

    SciTech Connect

    Benes, P.; Faessler, Amand; Simkovic, F.; Kovalenko, S.

    2005-04-01

    We study possible contribution of the Majorana neutrino mass eigenstate {nu}{sub h}, dominated by a sterile neutrino component, to neutrinoless double beta (0{nu}{beta}{beta}) decay. A special emphasis is made on accurate calculation of the corresponding nuclear matrix elements. From the current experimental lower bound on the 0{nu}{beta}{beta}-decay half-life of 76 Ge we derive stringent constraints on the {nu}{sub h}-{nu}{sub e} mixing in a wide region of the values of {nu}{sub h} mass. We discuss cosmological and astrophysical status of {nu}{sub h} in this mass region.

  9. Theoretical analysis of experimental data on {sup 160}Dy that were obtained in studying beta decay

    SciTech Connect

    Usmanov, P. N. Adam, I.; Salikhbaev, U. S.; Solnyshkin, A. A.

    2010-12-15

    Nonadiabatic effects manifesting themselves in the energies of excited states and in the probabilities for electric transitions in {sup 160}Dy are studied on the basis of a phenomenological model of the nucleus. The energies of positive-parity low-lying states and the reduced probabilities B(E2) for both intraband and interband transitions between them are calculated. A comparison with experimental data is performed.

  10. Next Generation Beta Decay Studies: Refinements in Detector System Calibration and Response Function Measurements

    NASA Astrophysics Data System (ADS)

    Jutz, Kenneth

    2013-10-01

    High precision β-decay studies provide constraints on extensions to the standard model of particle physics. In order to continue to provide competitive limits with LHC measurements for new tensor and scalar interactions, the uncertainties in neutron and nuclear β-decay studies must be pushed to the 0.1% level and below. In order to control the systematic errors in particle detection at these levels, new detector systems (highly-segmented, large area, thick Si detectors) are being implemented. In order to realize gains in detector response, new capabilities must be developed to calibrate the detectors and characterize their response function. As an alternative to conventional sources mounted on thin foils, an electron beam provides a regular grid of calibration and detector response measurements which are essentially unperturbed by scattering effects. We have developed a 1 MeV electron accelerator that will deliver electrons in a tunable range covering the energy spectrum of neutron β-decay. We present our efforts to implement this accelerator as well as our development of thin backing foils and detector systems in this poster.

  11. CANDLES project for the study of neutrino-less double beta decay of 48Ca

    NASA Astrophysics Data System (ADS)

    Yoshida, Sei

    2014-09-01

    There is, presently, strong evidence that neutrinos undergo flavor oscillations,and hence must have finite masses. Neutrino-less double beta (0 νββ) decay measurement offers a realistic opportunity to establish the Majorana nature of neutrinos and gives the absolute scale of the effective neutrino mass. CANDLES is the project to search for 0 νββ decay of 48Ca. A distinctive characteristic of 48Ca is the highest Q value (4.3 MeV) among 0 νββ isotopes. Therefore it enables us to measure 0 νββ decay signals in background free contribution. The CANDLES system consists of undoped CaF2 scintillators (CaF2),liquid scintillator (LS), and large photomultiplier tubes (PMTs). A large number of CaF2 crystals in the form of 10 cm cubes are immersed in the LS. Scintillating CaF2 crystals work as an active source detector for 0 νββ decay of 48Ca, together with LS as a multi-purpose detector component to both reject backgrounds and to propagate scintillation photons. PMTs are placed around the LS vessel to detect photons from both scintillators. The simple design concept of CANDLES enables us to increase the 48Ca source amount. 48Ca enrichment is also effective for the high sensitive measurement, because natural abundance of 48Ca is very low (0.19%). We have studied 48Ca enrichment and succeeded in obtaining enriched 48Ca although it is a small amount. Now we have developed the CANDLES III system, which contained with 300kg CaF2 crystals without enrichment, at the Kamioka underground laboratory. New light collection system was installed in 2012, and accordingly photo-coverage has been enlarged by about 80%. Further improvement will be expected in 2014 by installing a detector cooling system in order to increase light emission from CaF2 crystals. The detail of the latest CANDLES III (U.G.) system and its performance will be presented. Recently, we found that gamma rays from neutron captures on materials surrounding detector could be dominant background. These

  12. Questions Students Ask: Beta Decay.

    ERIC Educational Resources Information Center

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  13. New precision measurements of free neutron beta decay with cold neutrons

    SciTech Connect

    Baeßler, Stefan; Bowman, James David; Penttilä, Seppo I.; Počanić, Dinko

    2014-10-14

    Precision measurements in free neutron beta decay serve to determine the coupling constants of beta decay, and offer several stringent tests of the standard model. This study describes the free neutron beta decay program planned for the Fundamental Physics Beamline at the Spallation Neutron Source at Oak Ridge National Laboratory, and finally puts it into the context of other recent and planned measurements of neutron beta decay observables.

  14. Comparative study of beta-decay data for eight nuclides measured at the Physikalisch-Technische Bundesanstalt

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.; Fischbach, E.; Javorsek, D.; Jenkins, J. H.; Lee, R. H.; Nistor, J.; Scargle, J. D.

    2014-07-01

    We present the results of time-series analyses of data, kindly provided by the Physikalisch-Technische Bundesanstalt, concerning the beta-decays of Ag108, Ba133, Cs137, Eu152, Eu154, Kr85, Ra226, and Sr90. From measurements of the detector currents, we find evidence of annual oscillations (especially for Ra226), and for several solar r-mode oscillations. It is notable that the frequencies of these r-mode oscillations correspond to exactly the same sidereal rotation rate (12.08 year-1) that we have previously identified in r-mode oscillations detected in both Mt Wilson solar diameter data and Lomonosov Moscow State University Sr90 beta-decay data. Ba133 is found to be anomalous in that current measurements for this nuclide have a much larger variation (by 4 σ) than those of the other nuclides. It is interesting that analysis of variability measurements in the PTB files yields strong evidence for an oscillation for Ba133 but only weak evidence for Ra226.

  15. Double Beta Decay Measurement with COBRA

    NASA Astrophysics Data System (ADS)

    Wilson, Jeanne R.

    2011-12-01

    The COBRA experiment aims to use a large array of CdZnTe semiconductor detectors to search for neutrinoless double beta decay. Extensive simulation studies and data collected with a small proto-type experiment have been used to address the major design specifications for a large scale experiment sensitive to 116Cd half-lives in excess of 1026 years. The current and future prospects of the COBRA experiment are presented.

  16. JUNO and neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Ge, Shao-Feng; Rodejohann, Werner

    2015-11-01

    We study the impact of the precision determination of oscillation parameters in the JUNO experiment on half-life predictions for neutrinoless double beta decay. We show that the solar neutrino mixing angle can be measured by JUNO with below 1% uncertainty. This implies in particular that the minimal value of the effective mass in the inverted mass ordering will be known essentially without uncertainty. We demonstrate that this reduces the range of half-life predictions in order to test this value by a factor of 2. The remaining uncertainty is caused by nuclear matrix elements. This has important consequences for future double beta decay experiments that aim at ruling out the inverted mass ordering or the Majorana nature of neutrinos.

  17. Nuclear Structure Relevant to Double-beta Decay: Studies of 76Ge and 76Se using Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Crider, Benjamin P.

    While neutrino oscillations indicate that neutrino flavors mix and that neutrinos have mass, they do not supply information on the absolute mass scale of the three flavors of neutrinos. Currently, the only viable way to determine this mass scale is through the observation of the theoretically predicted process of neutrinoless double-beta decay (0nubetabeta). This yet-to-be-observed decay process is speculated to occur in a handful of nuclei and has predicted half-lives greater than 1025 years. Observation of 0nubetabeta is the goal of several large-scale, multinational efforts and consists of detecting a sharp peak in the summed energies at the Q-value of the reaction. An exceptional candidate for the observation of 0nubetabeta is 76Ge, which offers an excellent combination of capabilities and sensitivities, and two such collaborations, MAJORANA and GERDA, propose tonne-scale experiments that have already begun initial phases using a fraction of the material. The absolute scale of the neutrino masses hinges on a matrix element, which depends on the ground-state wave functions for both the parent (76Ge) and daughter (76Se) nuclei in the 0nubetabeta decay and can only be calculated from nuclear structure models. Efforts to provide information on the applicability of these models have been undertaken at the University of Kentucky Accelerator Laboratory using gamma-ray spectroscopy following inelastic scattering reactions with monoenergetic, accelerator-produced fast neutrons. Information on new energy levels and transitions, spin and parity assignments, lifetimes, multipole mixing ratios, and transition probabilities have been determined for 76Se, the daughter of 76Ge 0nubetabeta, up to 3.0 MeV. Additionally, inaccuracies in the accepted level schemes have been addressed. Observation of 0nubetabeta requires precise knowledge of potential contributors to background within the region of interest, i.e., approximately 2039 keV for 76Ge. In addition to backgrounds

  18. Inelastic neutron scattering studies of Ge-76 and Se-76: relevance to neutrinoless double-beta decay

    SciTech Connect

    Crider, Ben; Peters, Erin; Ross, T.J.; McEllistrem, M; Prados-Estevez, F.; Allmond, James M; Vanhoy, J.R.; Yates, S.W.

    2015-01-01

    Inelastic neutron scattering measurements were performed at the University of Kentucky Accelerator Laboratory on enriched Ge-76 and Se-76 scattering samples. From measurements at incident neutron energies from 2.0 to 4.0 MeV, many new levels were identified and characterized in each nucleus; level lifetimes, transition probabilities, multipole mixing ratios, and other properties were determined. In addition, gamma-ray cross sections for the Ge-76(n,n'gamma) reaction were measured at neutron energies up to 5.0 MeV, with the goal of determining the cross sections of gamma rays in 2040-keV region, which corresponds to the region of interest in the neutrinoless double beta decay of Ge-76. Gamma rays from the three strongest branches from the 3952-keV level were observed, but the previously reported 2041-keV gamma ray was not. Population cross sections across the range of incident neutron energies were determined for the 3952-keV level, resulting in a cross section of similar to 0.1 mb for the 2041-keV branch using the previously determined branching ratios. Beyond this, the data from these experiments indicate that previously unreported gamma rays from levels in Ge-76 can be found in the 2039-keV region.

  19. Spectrometers for Beta Decay Electrons

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Hirshfield, Jay

    2015-04-01

    Inspired by the neutrino mass direct measurement experiment Project 8, precision spectrometers are proposed to simultaneously measure energy and momentum of beta-decay electrons produced in rare nuclear events with improved energy resolution. For detecting single beta decay electrons near the end-point from a gaseous source such as tritium, one type of spectrometer is proposed to utilize stimulated cyclotron resonance interaction of microwaves with electrons in a waveguide immersed in a magnetic mirror. In the external RF fields, on-resonance electrons will satisfy both the cyclotron resonance condition and waveguide dispersion relationship. By correlating the resonances at two waveguide modes, one can associate the frequencies with both the energy and longitudinal momentum of an on-resonance electron to account for the Doppler shifts. For detecting neutrino-less double-beta decay, another spectrometer is proposed with thin foil of double-beta-allowed material immersed in a magnetic field, and RF antenna array for detection of synchrotron radiation from electrons. It utilizes the correlation between the antenna signals including higher harmonics of radiation to reconstruct the total energy distribution.

  20. Study of excited states of {sup 31}S through beta-decay of {sup 31}Cl for nucleosynthesis in ONe novae

    SciTech Connect

    Saastamoinen, A.; Jokinen, A.; Aeystoe, J.; Trache, L.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Roeder, B.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Banu, A.; Bentley, M. A.; Davinson, T.; Woods, P. J.

    2011-11-30

    We have produced an intense and pure beam of {sup 31}Cl with the MARS Separator at the Texas A and M University and studied {beta}-decay of {sup 31}Cl by implanting the beam into a novel detector setup, capable of measuring {beta}-delayed protons and {gamma}-rays simultaneously. From our data, we have established decay scheme of {sup 31}Cl, found resonance energies with 1 keV precision, have measured its half-life with under 1% accuracy, found its Isobar Analog State decay and by using the IMME obtained an improved mass excess for its ground state. In this contribution, a description of the used method along with selected preliminary experimental results are given and their relevance for novae nucleosynthesis discussed.

  1. Neutrinoless double beta decay search with SNO+

    NASA Astrophysics Data System (ADS)

    Lozza, V.

    2014-01-01

    The SNO+ experiment is the follow up of SNO. The detector is located 2 km underground in the Vale Canada Ltd.'s Creighton Mine near Sudbury, Ontario, Canada. The active volume of the detector consists of 780 tonnes of Linear Alkyl Benzene (LAB) in an acrylic vessel of 12 m diameter, surrounded by about 9500 PMTs. The main goal of the SNO+ experiment is the search for neutrinoless double beta decay of 130Te. With an initial loading of 0.3% of natural tellurium (nearly 800 kg of 130Te), it is expected to reach a sensitivity on the effective Majorana neutrino mass of about 100 meV after several years of data taking. Designed as a general purpose neutrino experiment, other exciting physical goals can be explored, like the measurement of reactor neutrino oscillations and geo-neutrinos in a geologically-interesting location, watch of supernova neutrinos and studies of solar neutrinos. A first commissioning phase with water filled detector will start at the end of 2013, while the double beta decay phase will start in 2015.

  2. Predicting neutrinoless double beta decay

    SciTech Connect

    Hirsch, M.; Villanova del Moral, A.; Valle, J.W.F.

    2005-11-01

    We give predictions for the neutrinoless double beta decay rate in a simple variant of the A{sub 4} family symmetry model. We show that there is a lower bound for the {beta}{beta}{sub 0{nu}} amplitude even in the case of normal hierarchical neutrino masses, corresponding to an effective mass parameter vertical bar m{sub ee} vertical bar {>=}0.17{radical}({delta}m{sub ATM}{sup 2}). This result holds both for the CP conserving and CP violating cases. In the latter case we show explicitly that the lower bound on vertical bar m{sub ee} vertical bar is sensitive to the value of the Majorana phase. We conclude therefore that in our scheme, {beta}{beta}{sub 0{nu}} may be accessible to the next generation of high sensitivity experiments.

  3. Experimental study of {sup 84}Ga {beta} decay: Evidence for a rapid onset of collectivity in the vicinity of {sup 78}Ni

    SciTech Connect

    Lebois, M.; Verney, D.; Ibrahim, F.; Essabaa, S.; Azaiez, F.; Mhamed, M. Cheikh; Cottereau, E.; Cuong, P. V.; Ferraton, M.; Flanagan, K.; Franchoo, S.; Guillemaud-Mueller, D.; Hammache, F.; Lau, C.; Le Blanc, F.; Le Du, J.-F.; Libert, J.; Mouginot, B.; Petrache, C.; Roussiere, B.

    2009-10-15

    {gamma}-rays following the {beta} and {beta}-n decays of the very neutron rich {sub 31}{sup 84}Ga{sub 53} produced by the photofission of {sup 238}U have been studied at the newly built ISOL facility of IPN Orsay: ALTO. Two activities were observed and assigned to two {beta}-decaying states: {sup 84}Ga{sup g}, I{sup {pi}}=(0{sup -}) and {sup 84}Ga{sup m}, I{sup {pi}}=(3{sup -},4{sup -}). Excitation energies of the 2{sub 1}{sup +} and 4{sub 1}{sup +} states of {sub 32}{sup 84}Ge{sub 52} were measured at E(2{sub 1}{sup +})=624.3 keV and E(4{sub 1}{sup +})=1670.1 keV. Comparison with HFB + GCM calculations allows to establish the collective character of this nucleus. The excitation energy of the 1/2{sub 1}{sup +} state in {sub 32}{sup 83}Ga{sub 51} known to carry a large part of the neutron 3s{sub 1/2} strength was measured at 247.8 keV. Altogether these data allow to confirm the new single particle state ordering which appears immediately after the double Z=28 and N=50 shell closure and to designate {sup 78}Ni as a fragile and easily polarized doubly-magic core.

  4. COBRA - Neutrinoless Double Beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Heidrich, Nadine

    2012-08-01

    The COBRA experiment is searching for neutrinoless double beta decay using CdZnTe semiconductor detectors. The main focus is on Cd-116, with a decay energy of 2814keV well above the highest naturally occurring gamma lines. Furthermore, Te-130, with a high natural abundance, and Cd-106, a double β+ emitter, are under investigation. Advantageous is the possibility to operate the detectors at room temperature. Besides coplanar grid detectors, pixelised detectors are considered. The latter ones would allow for particle discrimination, therefore providing efficient background reduction. The current status of the experiment is described, including the upgrade of the R&D set-up in spring 2011 at the LNGS underground laboratory, the different detector concepts and the latest half -life limits. Furthermore, studies on the use of liquid scintillator for background suppression and Monte-Carlo simulations are presented.

  5. Theoretical challenges in Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Stoica, Sabin

    2016-05-01

    The study of the double beta decay (DBD), particularly the neutrino less decay mode, is of great interest for testing the lepton number conservation (LNC) and getting information about neutrino properties, as the neutrinos character (Dirac or Majorana particles?), their absolute mass and hierarchy, etc. [1]-[2]. To make predictions of the DBD lifetimes and put constraints on the neutrino parameters, one needs accurate calculations of the nuclear matrix elements (NME) and phase space factors (PSF) entering the DBD lifetime expressions. In this paper I present recent calculations of these quantities, performed with approaches developed by our group. Then, I compare the theoretical predictions for the two-neutrino (2v) DBD lifetimes, for the most experimentally interesting nuclei, with the experimental ones, and comment on the reliability of the neutrinoless (0v) DBD calculations.

  6. Beta-decay studies of nickel-78 and other neutron-rich nuclei in the astrophysical r-process

    NASA Astrophysics Data System (ADS)

    Hosmer, Paul Thomas

    The β-decay properties of several neutron-rich nuclei including the doubly-magic 78Ni were studied. A low-energy neutron detector NERO was designed and calibrated for use in these measurements. β-decay measurements, especially those that combine both half-life and neutron-emission probability measurements, can offer first tests of nuclear theories of neutron-rich nuclei. In addition, 78Ni is an important waiting-point in the astrophysical r-process. The results of the measurements are compared to several nuclear models, and the astrophysical implications are explored.

  7. Experimental setup and commissioning baseline study in search of time-variations in beta-decay half-lives

    NASA Astrophysics Data System (ADS)

    Goddard, Braden; Hitt, George W.; Solodov, Alexander A.; Bridi, Dorian; Isakovic, A. F.; El-Khazali, Reyad; Abulail, Ayman

    2016-03-01

    Recently there have been a number of investigations into whether the decay constant of a radioactive isotope can be influenced by external factors, such as the Earth-Sun distance or Solar flare activity. Positive claims suggest that annual oscillations of ~0.1% and accelerations of ~0.4% in the relative activity of beta-emitters coincide with the Earth-Sun distance and solar flare activity, respectively. Results from replication experiments have so far been conflicting. The main criticism of the measurements used to trace and quantify these effects is that the data is of poor quality or limited in scope. Data have often been collected as part of short duration weekly calibration measurements, measured with a single type of low precision detector, only using one isotope, and having no environmental conditions information (temperature, pressure, humidity) accompanying the radiation measurements. This paper describes the setup of a series of counting experiments commissioned for addressing these criticisms. Six dedicated detector systems (four different types) measuring six different isotopes (14C, 54Mn, 60Co, 90Sr, 204Tl, and 226Ra) have been continuously collecting source activity synchronously with environmental data for a period of one month (April 2014). The results of this baseline commissioning study show that there are correlations between activity and environmental conditions for some detector types which are then quantified. The results also show that the one sigma counting uncertainties in all the detectors are less than 0.024% for a given 24 h period. After accounting for propagated uncertainties from corrections against correlations with environmental data, the ability to resolve 0.1% activity changes varies, from 8 min to 1.6 days, depending on the specific detector. All six experiments therefore, will have sufficient precision over the upcoming year to scrutinize claims of both annual activity oscillations and solar flare activity changes.

  8. Searches for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Schwingenheuer, Bernhard

    2012-07-01

    Neutrinoless double beta decay is a lepton number violating process whose observation would also establish that neutrinos are their own anti-particles. There are many experimental efforts with a variety of techniques. Some (EXO, Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has reported the first measurement of the half life for the double beta decay with two neutrinos of 136Xe. The sensitivities of the different proposals are reviewed.

  9. Exact relativistic {beta} decay endpoint spectrum

    SciTech Connect

    Masood, S. S.; Nasri, S.; Schechter, J.; Tortola, M. A.; Valle, J. W. F.

    2007-10-15

    The exact relativistic form for the {beta} decay endpoint spectrum is derived and presented in a simple factorized form. We show that our exact formula can be well approximated to yield the endpoint form used in the fit method of the KATRIN Collaboration. We also discuss the three-neutrino case and how information from neutrino oscillation experiments may be useful in analyzing future {beta} decay endpoint experiments.

  10. Beta decay and other processes in strong electromagnetic fields

    SciTech Connect

    Akhmedov, E. Kh.

    2011-09-15

    We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of nonrelativistic charged particles. Using nuclear {beta} decay as an example, we study the weak- and strong-field limits, as well as the field-induced {beta} decay of nuclei stable in the absence of the external fields, both in the tunneling and multiphoton regimes. We also consider the possibility of accelerating forbidden nuclear {beta} decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total {beta}-decay rates are unobservably small.

  11. Inverse Beta Decay Reconstruction in the Double Chooz Monte Carlo

    NASA Astrophysics Data System (ADS)

    Norrick, Anne

    2010-02-01

    The Double Chooz Experiment will search for neutrino oscillations using the ``Inverse Beta-Decay'' (IBD) interactions of electron antineutrinos from a nuclear reactor in Chooz, France. The experiment needs to isolate IBD events by detecting and reconstructing the positions and deposited energies of the outgoing positron and neutron. Methods for isolating this process will be described. In addition, results of simulation studies of two different reconstruction algorithms will be presented and their performances compared. )

  12. MeV neutrinos in double {beta} decay

    SciTech Connect

    Zuber, K.

    1997-08-01

    The effect of Majorana neutrinos in the MeV mass range on the double {beta} decay of various isotopes is studied on pure phenomenological arguments. By using only experimental half-life data, limits on the mixing parameter U{sub eh}{sup 2} of the order 10{sup {minus}7} can be derived. Also the possible achievements of upcoming experiments and some consequences are outlined. {copyright} {ital 1997} {ital The American Physical Society}

  13. {beta}-decay of {sup 23}Al and nova nucleosynthesis

    SciTech Connect

    Saastamoinen, A.; Jokinen, A.; Aeystoe, J.; Trache, L.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Roeder, B.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Banu, A.; Bentley, M. A.; Jenkins, D. G.; Davinson, T.; Woods, P. J.

    2010-11-24

    We have studied the {beta}-decay of {sup 23}Al with a novel detector setup at the focal plane of the MARS separator at the Texas A and M University to resolve existing controversies about the proton intensities of the IAS in {sup 23}Mg and to determine the absolute proton branching ratios by combining our results to the latest {gamma}-decay data. Experimental technique, results and the relevance for nova nucleosynthesis are discussed.

  14. The COBRA Double Beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Dawson, J. V.

    2007-03-01

    The progress of the COBRA neutrinoless double beta decay experiment is discussed. Potential backgrounds are described. Estimates on the contamination levels of 214Bi in the detectors have been made using previously acquired low background data. New crystals with a different passivation material show an improved background count rate of approximately one order of magnitude.

  15. The COBRA Double Beta Decay Search Experiment

    NASA Astrophysics Data System (ADS)

    Stewart, D. Y.

    2006-11-01

    The COBRA experiment aims to use a large quantity of CdZnTe semiconductor detectors to search for neutrinoless double beta decay. The current status of the experiment is discussed, and new limits on several double beta modes are presented. Future plans for a large scale experiment are also described.

  16. The COBRA double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Oldorf, C.; Cobra Collaboration

    2012-08-01

    The COBRA experiment is searching for double beta decay using CdZnTe semiconductor detectors. The main focus is on the isotope 116Cd. In addition to pure energy measurements, pixelisation allows also for tracking capabilities. This kind of semiconductor tracker is unique in the field. The current status of the experiment is shown including the latest half-life limits.

  17. The COBRA double-beta decay experiment

    NASA Astrophysics Data System (ADS)

    Stewart, D. Y.; COBRA Collaboration

    2007-09-01

    The COBRA experiment aims to use a large quantity of Cadmium-Zinc-Telluride (CdZnTe) semiconductor detectors to search for neutrinoless double-beta decay (0 υββ). The current status of the experiment is discussed, and new limits on several double-beta modes are presented. Future plans for a large-scale experiment are also described.

  18. The COBRA Double Beta Decay Experiment

    SciTech Connect

    Dawson, J. V.

    2007-03-28

    The progress of the COBRA neutrinoless double beta decay experiment is discussed. Potential backgrounds are described. Estimates on the contamination levels of 214Bi in the detectors have been made using previously acquired low background data. New crystals with a different passivation material show an improved background count rate of approximately one order of magnitude.

  19. The COBRA Double Beta Decay Search Experiment

    SciTech Connect

    Stewart, D. Y.

    2006-11-17

    The COBRA experiment aims to use a large quantity of CdZnTe semiconductor detectors to search for neutrinoless double beta decay. The current status of the experiment is discussed, and new limits on several double beta modes are presented. Future plans for a large scale experiment are also described.

  20. Maki-Nakagawa-Sakata parameters from neutrino oscillations, single beta decay, and double beta decay

    SciTech Connect

    Matsuda, K.; Takeda, N.; Fukuyama, T.; Nishiura, H.

    2001-07-01

    We examine the constraints on the Maki-Nakagawa-Sakata lepton mixing matrix from the present and future experimental data of neutrino oscillation, tritium beta decay, and neutrinoless double beta decay for the Majorana neutrinos. We show that the small mixing angle solutions for solar neutrino problem are disfavored for small averaged mass ({l_angle}m{sub {nu}}{r_angle}) of neutrinoless double beta decay ({le}0.01 eV) in the inverse neutrino mass hierarchy scenario. This is the case even in the normal mass hierarchy scenario except for a very restrictive value of the averaged neutrino mass ({ovr m{sub {nu}}}) of single beta decay. The lower mass bound for {ovr m{sub {nu}}} is given from the present neutrino oscillation data. We obtain some relations between {l_angle}m{sub {nu}}{r_angle} and {ovr m{sub {nu}}}. The constraints on the Majorana CP violating phases are also given.

  1. Neutron beta decay measurements planned for the SNS

    NASA Astrophysics Data System (ADS)

    Pocanic, Dinko

    2009-10-01

    A cold neutron beam line, dedicated to fundamental neutron physics (FnPB), is presently being completed at the Oak Ridge, TN, Spallation Neutron Source. Among other experiments, the beamline will host a comprehensive set of precise studies of the neutron beta decay. Neutron beta decay is characterised by the decay rate (or its inverse, the neutron lifetime), and a set of decay parameters describing the kinematical and spin correlations among the participating particles. Within the standard model (SM), the neutron lifetime and three decay parameters (a, A, and B) are fixed by two parameters: the Vud element of the Cabibbo-Kobayashi-Maskawa mixing matrix, and λ=GA/GV, the ratio of axial vector and vector nucleon form factors. This overdetermined system provides a unique opportunity to explore possible departures from the simple SM, as well as the nature of such departures, e.g., left-right supersymmetric extensions, leptoquarks, non-(V-A) admixtures, etc., with broad implications in subatomic physics. The FnPB neutron beta decay program will include measurements of the neutron lifetime, continuing the present NIST experiment, a measurement of a, the electron-neutrino correlation, and b, the Fierz interference term, (the ``Nab'' experiment), along with measurements of A and B, the correlations between neutron spin and electron and neutrino momenta, respectively, (the ``abBA'' experiment). Current plans for these experiments will be discussed in detail.

  2. Measuring pion beta decay with high-energy pion beams

    SciTech Connect

    McFarlane, W.K. Temple Univ., Philadelphia, PA ); Hoffman, C.M. )

    1993-01-01

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay [pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon] is predicted by the Standard Model (SM) to be R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.3999[plus minus]0.0005 s[sup [minus]1]. The best experimental number, obtained using in-flight decays, is R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.394 [plus minus] 0.015 s[sup [minus]1]. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.

  3. Measuring pion beta decay with high-energy pion beams

    SciTech Connect

    McFarlane, W.K. |; Hoffman, C.M.

    1993-02-01

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay {pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon} is predicted by the Standard Model (SM) to be R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.3999{plus_minus}0.0005 s{sup {minus}1}. The best experimental number, obtained using in-flight decays, is R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.394 {plus_minus} 0.015 s{sup {minus}1}. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.

  4. Sensitivity of CUORE to Neutrinoless Double-Beta Decay

    SciTech Connect

    CUORE; Alessandria, F.; Andreotti, E.; Ardito, R.; Arnaboldi, C.; Avignone III, F. T.; Balata, M.; Bandac, I.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Bloxham, T.; Brofferio, C.; Bryant, A.; Bucci, C.; Cai, X. Z.; Canonica, L.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chott, N.; Clemenza, M.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Biasi, A. De; Decowski, M. P.; Deninno, M. M.; Waard, A. de; Domizio, S. Di; Ejzak, L.; Faccini, R.; Fang, D. Q.; Farach, H. A.; Ferri, E.; Ferroni, F.; Fiorini, E.; Foggetta, L.; Franceschi, M. A.; Freedman, S. J.; Frossati, G.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Guardincerri, E.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Huang, H. Z.; Ichimura, K.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kogler, L.; Kolomensky, Yu. G.; Kraft, S.; Lenz, D.; Li, Y. L.; Liu, X.; Longo, E.; Ma, Y. G.; Maiano, C.; Maier, G.; Maino, M.; Mancini, C.; Martinez, C.; Martinez, M.; Maruyama, R. H.; Moggi, N.; Morganti, S.; Napolitano, T.; Newman, S.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rimondi, F.; Rosenfeld, C.; Rusconi, C.; Salvioni, C.; Sangiorgio, S.; Schaeffer, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Stivanello, F.; Taffarello, L.; Terenziani, G.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Whitten Jr., C. A.; Wise, T.; Woodcraft, A.; Xu, N.; Zanotti, L.; Zarra, C.; Zhu, B. X.; Zucchelli, S.

    2011-11-23

    In this paper, we study the sensitivity of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity are discussed and compared, and the formulas and parameters used in the sensitivity estimates are provided. Assuming a background rate of 10{sup -2} cts/(keV kg y), we find that, after 5 years of live time, CUORE will have a 1 {sigma} sensitivity to the neutrinoless double-beta decay half-life of {caret T{sup 0{nu}}{sub 1/2}}(1{sigma} ) = 1.6x 10{sup 26} y and thus a potential to probe the effective Majorana neutrino mass down to 41-95 meV; the sensitivity at 1.64{sigma} , which corresponds to 90% C.L., will be {caret T{sup 0{nu}}{sub 1/2}(1.64{sigma} }) = 9.5x10{sup 25} y. This range is compared with the claim of observation of neutrinoless double-beta decay in {sup 76}Ge and the preferred range in the neutrino mass parameter space from oscillation results.

  5. First results of neutrinoless double beta decay search with the GERmanium Detector Array "GERDA"

    NASA Astrophysics Data System (ADS)

    Janicskó Csáthy, József

    2014-06-01

    The study of neutrinoless double beta decay is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of the lepton number violating neutrinoless double beta decay would establish the Majorana nature of the neutrino. Until now neutrinoless double beta decay was not observed. The GERmanium Detector Array, GERDA is a double beta decay experiment located at the INFN Gran Sasso National Laboratory, Italy. GERDA operates bare Ge diodes enriched in 76Ge in liquid argon supplemented by a water shield. The exposure accumulated adds up to 21.6 kg· yr with a background level of 1.8 · 10-2 cts/(keV·kg·yr). The results of the Phase I of the experiment are presented and the preparation of the Phase II is briefly discussed.

  6. Future Challenges for Double Beta Decay Experiments

    NASA Astrophysics Data System (ADS)

    Elliott, Steven

    2015-10-01

    Neutrino oscillation experiments have shown that at least one neutrino has a mass greater than 50 meV. In the inverted hierarchy pattern of neutrino masses, one would expect an effective Majorana neutrino mass of 15 meV or greater. This fact has led to a strong resurgence of interest in neutrinoless double beta decay experiments that can reach this mass target. If this rare nuclear decay process exists it would demonstrate that Lepton number conservation is violated, that neutrinos are their own anti-particles and the decay rate would give an indication of the neutrino mass. This presentation will summarize the double beta decay experimental program with a focus on the technical challenges that will be faced.

  7. Search for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Ostrovskiy, Igor; O’Sullivan, Kevin

    2016-06-01

    We review current experimental efforts to search for neutrinoless double beta decay (0νββ). A description of the selected leading experiments is given and the strongest recent results are compared in terms of achieved background indexes (BI) and limits on effective Majorana mass. A combined limit is also shown. The second part of the review covers next generation experiments, highlighting the challenges and new technologies that may be necessary to achieve a justifiable discovery potential. A potential synergy with direct dark matter searches, which could be an especially prudent strategy in case the axial vector coupling constant is quenched in 0νββ decay, is emphasized.

  8. Neutrinoless double beta decay search with the NEMO 3 experiment

    SciTech Connect

    Nasteva, Irina

    2008-11-23

    The NEMO 3 experiment searches for neutrinoless double beta decay and makes precision measurements of two-neutrino double beta decay in seven isotopes. The latest two-neutrino half-life results are presented, together with the limits on neutrinoless half-lives and the corresponding effective Majorana neutrino masses. Also given are the limits obtained on neutrinoless double beta decay mediated by R{sub p}-violating SUSY, right-hand currents and different Majoron emission modes.

  9. Nuclear Data Compilation for Beta Decay Isotope

    NASA Astrophysics Data System (ADS)

    Olmsted, Susan; Kelley, John; Sheu, Grace

    2015-10-01

    The Triangle Universities Nuclear Laboratory nuclear data group works with the Nuclear Structure and Decay Data network to compile and evaluate data for use in nuclear physics research and applied technologies. Teams of data evaluators search through the literature and examine the experimental values for various nuclear structure parameters. The present activity focused on reviewing all available literature to determine the most accurate half-life values for beta unstable isotopes in the A = 3-20 range. This analysis will eventually be folded into the ENSDF (Evaluated Nuclear Structure Data File). By surveying an accumulated compilation of reference articles, we gathered all of the experimental half-life values for the beta decay nuclides. We then used the Visual Averaging Library, a data evaluation software package, to find half-life values using several different averaging techniques. Ultimately, we found recommended half-life values for most of the mentioned beta decay isotopes, and updated web pages on the TUNL webpage to reflect these evaluations. To summarize, we compiled and evaluated literature reports on experimentally determined half-lives. Our findings have been used to update information given on the TUNL Nuclear Data Evaluation group website. This was an REU project with Triangle Universities Nuclear Laboratory.

  10. Tau neutrino component to tritium beta decay

    SciTech Connect

    Snyderman, N.J.

    1995-06-01

    A framework is given for explaining anomalous results of neutrino mass experiments that measure the high energy electron spectrum of tritium {beta} decay. The experimental results have been fit to a negative neutrino mass square. We show that there is a consistent phenomenological interpretation due to a positive mass tau neutrino component of the {beta} decay spectrum, with strong near threshold final state interactions with the He nucleus. If this enhancement is due to new interactions between low energy tau neutrinos and nuclei, then the tritium 0 decay experiments could be used as detectors for cosmic background tau neutrinos. The model predicts a distinctive spectrum shape that is consistent with a recent high statistics LLNL experiment. A fit to the experiment gives a tau neutrino mass of 23 eV. Tau neutrinos of this mass would dominate the mass of the universe. Requirements for a theoretical model are given, as well as models that realize different aspects of these requirements. While qualitatively successful, the theoretical models have such severe quantitative difficulties that the accuracy of the molecular physics of the T-{sup 3}He ion, assumed in the analysis of the experimental data, is called into question.

  11. Liquid Scintillator based experiments in Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; KamLAND-Zen Collaboration

    2012-08-01

    Recent experiments have confirmed neutrino oscillations. The mass structure of neutrinos is one of the next interesting subjects in neutrino physics. Neutrinoless double beta decay has the potential to investigate the mass structure of neutrinos. Many neutrinoless double beta decay experiments are being proposed and some were introduced at this conference. Here we present neutrinoless double beta decay experiments based on liquid scintillator techniques. SNO+ plans to use 150Nd as the neutrinoless double beta decay isotope dissolved in liquid scintillator, similarly KamLAND-Zen will use 136Xe loaded liquid scintillator. The physics goals, schedule and current status of both experiments were discussed.

  12. What can we learn from neutrinoless double beta decay experiments?

    SciTech Connect

    Bahcall, John N.; Murayama, Hitoshi; Pena-Garay, Carlos

    2004-04-08

    We assess how well next generation neutrinoless double beta decay and normal neutrino beta decay experiments can answer four fundamental questions. 1) If neutrinoless double beta decay searches do not detect a signal, and if the spectrum is known to be inverted hierarchy, can we conclude that neutrinos are Dirac particles? 2) If neutrinoless double beta decay searches are negative and a next generation ordinary beta decay experiment detects the neutrino mass scale, can we conclude that neutrinos are Dirac particles? 3) If neutrinoless double beta decay is observed with a large neutrino mass element, what is the total mass in neutrinos? 4) If neutrinoless double beta decay is observed but next generation beta decay searches for a neutrino mass only set a mass upper limit, can we establish whether the mass hierarchy is normal or inverted? We base our answers on the expected performance of next generation neutrinoless double beta decay experiments and on simulations of the accuracy of calculations of nuclear matrix elements.

  13. Nab: toward a precise experimental characterization of neutron beta decay

    NASA Astrophysics Data System (ADS)

    Pocanic, Dinko; Nab Collaboration

    2013-10-01

    Nab, a new program of measurements at the Spallation Neutron Source, Oak Ridge, TN, will study unpolarized neutron beta decays, with the goal to determine a, the electron-neutrino correlation with precision of δa / a =10-3 , and b, the Fierz interference term, with uncertainty δb ~= 3 ×10-3 . Neutron beta decay offers a means to study the weak interaction with great precision; its relatively simple theoretical description in the Standard Model (SM) is overconstrained by the set of available observables. Projected Nab results will lead to a new precise determination of the ratio λ =GA /GV , and to significant reductions in the allowed limits for both right- and left-handed scalar and tensor currents. Alternatively, the experiment may detect a discrepancy from SM predictions consistent with certain realizations of supersymmetry. An optimized, asymmetric spectrometer has been designed to achieve the narrow proton momentum response function required to meet the physics goals of the experiment. The apparatus is to be used in a follow-up measurement (abBA) of observables A and B in polarized neutron decay. Nab is fully funded, and is in the construction stage. We discuss the experiment's motivation, expected reach, and method. Work supported by NSF grants PHY-0970013, 1126683, and others.

  14. The Nuclear and Particle Physics of Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2014-03-01

    Fortuitous properties of nuclei allow us to isolate and study the rare second-order weak process of double beta decay. In particular, the decay channel in which a final state of two electrons and no neutrinos is produced - neutrinoless double beta decay - provides our best test of lepton number conservation and the Majorana mass of the electron neutrino. I will describe the connections between this process and the charge conjugation properties of the neutrino, including the possibility that the presence of both Dirac and Majorana masses accounts for the anomalous scale of neutrino masses. The extraordinary progress made over the past two decades has prepared the way for next-generation experiments that will probe Majorana masses at levels where nonzero rates may be found, given what we now know about neutrino mass splittings. I will describe some of the heroic efforts underway to develop detectors of unprecedented size, radiopurity, depth, and thus sensitivity. Work supported by the Office of Science, US DOE.

  15. Correlations and the neutrinoless double beta decay

    SciTech Connect

    Menendez, J.; Poves, A.; Caurier, E.; Nowacki, F.

    2009-11-09

    We explore the influence of the deformation on the nuclear matrix elements of the neutrinoless double beta decay (NME), concluding that the difference in deformation -or more generally on the amount of quadrupole correlations- between parent and grand daughter nuclei quenchs strongly the decay. We discuss how varies the nuclear matrix element of {sup 76}Ge decay when the wave functions of the two nuclei involved in the transition are constrained to reproduce the experimental occupancies. In the Interacting Shell Model description the value of the NME is enhanced about 15% compared to previous calculations, whereas in the QRPA the NME's are reduced by 20%-30%, thus, the discrepancies between both approaches diminish.

  16. The T{sub z} = -1{yields}T{sub z} =0 beta decays and comparison with Charge Exchange reactions

    SciTech Connect

    Molina, F.; Rubio, B.; Fujita, Y.; Gelletly, W.; Collaboration: Santiago Collaboration

    2011-11-30

    Gamow-Teller (GT) transitions can be studied in both {beta} decay and charge exchange (CE) reactions. If isospin is a good quantum number, then the Tz = -1{yields}0 and Tz = +1{yields}0GT mirror transitions, are identical. Therefore, a comparison of the results from studies of {beta} decay and CE should shed light on this assumption. Accordingly we have studied the {beta} decay of the Tz = -1 fp-shell nuclei, {sup 54}Ni, {sup 50}Fe, {sup 46}Cr, and {sup 42}Ti, produced in fragmentation and we have compared our results with the spectra from ({sup 3}He, t) measurements on the mirror Tz = +1 target nuclei studied in high resolution at RCNP, Osaka. The {beta} decay experiments were performed as part of the STOPPED beam RISING campaign at GSI.

  17. Search for double beta decay of 48Ca in the TGV experiment

    NASA Astrophysics Data System (ADS)

    Brudanin, V. B.; Rukhadze, N. I.; Briançon, C.; Egorov, V. G.; Kovalenko, V. E.; Kovalik, A.; Salamatin, A. V.; Štekl, I.; Tsoupko-Sitnikov, V. V.; Vylov, T.; Čermák, P.

    2000-12-01

    This Letter describes a collaborative TGV (Telescope Germanium Vertical) study of the double beta decay of 48Ca with a low-background and high sensitivity Ge multi-detector spectrometer. The results of T1/22νββ=(4.2+3.3- 1.3)×1019 years and T1/20νββ>1.5×1021 years (90% CL) for double beta decay of 48Ca were found after processing experimental data obtained after 8700 hours of measuring time, using approximately 1 gramme of 48Ca. The features of a TGV-2 experiment are also presented.

  18. Beta decay rates of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Huther, Lutz; Petković, Jelena; Paar, Nils; Martínez-Pinedo, Gabriel

    2016-06-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  19. Beta decay rates of neutron-rich nuclei

    SciTech Connect

    Marketin, Tomislav; Huther, Lutz; Martínez-Pinedo, Gabriel

    2015-10-15

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. Currently, a single large-scale calculation is available based on a QRPA calculation with a schematic interaction on top of the Finite Range Droplet Model. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei.

  20. Effect of cancellation in neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Mitra, Manimala; Pascoli, Silvia; Wong, Steven

    2014-11-01

    In light of recent experimental results, we carefully analyze the effects of interference in neutrinoless double beta decay, when more than one mechanism is operative. If a complete cancellation is at work, the half-life of the corresponding isotope is infinite, and any constraint on it will automatically be satisfied. We analyze this possibility in detail assuming a cancellation in Xe 136 , and find its implications on the half-life of other isotopes, such as Ge 76 . For definiteness, we consider the role of light and heavy sterile neutrinos. In this case, the effective Majorana mass parameter can be redefined to take into account all contributions, and its value gets suppressed. Hence, larger values of neutrino masses are required for the same half-life. The canonical light neutrino contribution cannot saturate the present limits of half-lives or the positive claim of observation of neutrinoless double beta decay, once the stringent bounds from cosmology are taken into account. For the case of cancellation, where all the sterile neutrinos are heavy, the tension between the results from neutrinoless double beta decay and cosmology becomes more severe. We show that the inclusion of light sterile neutrinos in this setup can resolve this issue. Using the recent results from GERDA, we derive upper limits on the active-sterile mixing angles and compare them with the case of no cancellation. The required values of the mixing angles become larger, if a cancellation is at work. A direct test of destructive interference in Xe 136 is provided by the observation of this process in other isotopes, and we study in detail the correlation between their half-lives. Finally, we discuss the model realizations which can accommodate light and heavy sterile neutrinos and the cancellation. We show that sterile neutrinos of few hundred MeV or GeV mass range, coming

  1. Precision neutron polarimetry for neutron beta decay

    SciTech Connect

    Penttila, S. I.; Bowman, J. D.

    2004-01-01

    The abBA collaboration is developing a new type of field-expansion spectrometer for measurement of the three correlation coefficients a, A, and B and shape parameter b. The measurement of A and B requires precision neutron polarimetry. We will polarize a pulsed cold neutron beam from SNS using a {sup 3}He neutron spin filter. The well-known polarizing cross section for n-{sup 3}He has 1/v dependence, which is used to determine the absolute beam polarization through a time-of-flight (TOF) measurement. We show that measuring the TOF dependence of A and B, the coefficients and the neutron polarization can be determined with small loss of statistical precision and negligible systematic error. We conclude that it is possible to determine the neutron polarization averaged over a run in the neutron beta decay experiment to better than 10{sup -3}. We discuss various sources of systematic uncertainties in the measurement of A and B and conclude that they are less than 10{sup -4}.

  2. The NEXT double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Laing, A.; NEXT Collaboration

    2016-05-01

    NEXT (Neutrino Experiment with a Xenon TPC) is a neutrinoless double-beta (ββ0v) decay experiment at Laboratorio Subterraneo de Canfranc (LSC). It is an electroluminescent Time Projection Chamber filled with high pressure 136Xe gas with separated function capabilities for calorimetry and tracking. Energy resolution and background suppression are the two key features of any neutrinoless double beta decay experiment. NEXT has both good energy resolution (< 1% FWHM) and an extra handle for background identification provided by track reconstruction. We expect a background rate of 4 × 10-4 counts keV-1 kg-1 yr-1, and a sensitivity to the Majorana neutrino mass of between 80-160 meV (depending on NME) after a run of 3 effective years of the 100 kg scale NEXT-100 detector. The initial phase of NEXT-100, called NEW, is currently being commissioned at LSC. It will validate the NEXT background rate expectations and will make first measurements of the two neutrino ββ2v mode of 136Xe. Furthermore, the NEXT technique can be extrapolated to the tonne scale, thus allowing the full exploration of the inverted hierarchy of neutrino masses. These proceedings review NEXT R&D results, the status of detector commissioning at LSC and the NEXT physics case.

  3. Precision Neutron Polarimetry for Neutron Beta Decay

    PubMed Central

    Penttila, S. I.; Bowman, J. D.

    2005-01-01

    The abBA collaboration is developing a new type of field-expansion spectrometer for a measurement of the three correlation coefficients a, A, and B and the shape parameter b. The measurement of A and B requires precision neutron polarimetry. We will polarize a pulsed cold neutron beam from the SNS using a 3He neutron spin filter. The well-known polarizing cross section for n-3He has a 1/v dependence, where v is the neutron velocity, which is used to determine the absolute beam polarization through a time-of-flight (TOF) measurement. We show that by measuring the TOF dependence of A and B, the coefficients and the neutron polarization can be determined with a small loss of the statistical precision and with negligible systematic error. We conclude that it is possible to determine the neutron polarization averaged over a long run in the neutron beta decay experiment with a statistical error less than 10−4. We discuss various sources of systematic uncertainty in the measurement of A and B and conclude that the fractional systematic errors are less than 2 × 10−4. PMID:27308142

  4. Beta Decay of 101Sn

    SciTech Connect

    Kavatsyuk, O.; Mazzocchi, C.; Janas, Z.; Banu, A.; Batist, L.; Becker, F.; Blazhev, A.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Jungclaus, A.; Karny, M.; Kavatsyuk, M.; Klepper, O.; Kirchner, R.; La Commara, M.; Miernik, K.; Mukha, I.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Rykaczewski, Krzysztof Piotr; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2007-01-01

    The {beta} decay of the very neutron-deficient isotope 101Sn was studied at the GSI on-line mass separator using silicon detectors for recording charged particles and germanium detectors for {gamma}-ray spectroscopy. Based on the {beta}-delayed proton data the production cross-section of 101Sn in the 50Cr + 58Ni fusion-evaporation reaction was determined to be about 60nb. The half-life of 101Sn was measured to be 1.9(3)s. For the first time {beta}-delayed {gamma}-rays of 101Sn were tentatively identified, yielding weak evidence for a cascade of 352 and 1065keV transitions in 101In. The results for the 101Sn decay as well as those from previous work on the 103Sn decay are discussed by comparing them to predictions obtained from shell model calculations employing a new interaction in the 88Sr to 132Sn model space.

  5. Recent results from cosmology and neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Dell’Oro, Stefano; Marcocci, Simone

    2016-05-01

    We quantify the impact of cosmological surveys on the search for neutrinoless double beta decay (0vββ) within the hypothesis that the 0vββ rate is dominated by the Majorana mass of ordinary neutrinos. In particular, we exploit the potential relevance of the work of Palanque-Delabrouille et al. [JCAP 1502, 045 (2015)], whose result seems to favor the normal hierarchy spectrum for the light neutrino masses. The impact of our analysis for the future generation of 0vββ experiments is quite dramatic and motivates further cosmological studies, both theoretically and experimentally. In fact, the allowed values for the Majorana Effective Mass turn out to be < 75meV at 3σ C.L, lowering down to less than 20 meV at 1σ C.L.

  6. Status and Perspectives of Double Beta Decay Searches

    NASA Astrophysics Data System (ADS)

    Zuber, K.

    2015-11-01

    Double beta decay is an extremely rare process and requires half-life measurements around 1020 years for the neutrino accompanied and well beyond that for the neutrinoless mode. The current status of the search will be discussed.

  7. Complementarity of Neutrinoless Double Beta Decay and Cosmology

    SciTech Connect

    Dodelson, Scott; Lykken, Joseph

    2014-03-20

    Neutrinoless double beta decay experiments constrain one combination of neutrino parameters, while cosmic surveys constrain another. This complementarity opens up an exciting range of possibilities. If neutrinos are Majorana particles, and the neutrino masses follow an inverted hierarchy, then the upcoming sets of both experiments will detect signals. The combined constraints will pin down not only the neutrino masses but also constrain one of the Majorana phases. If the hierarchy is normal, then a beta decay detection with the upcoming generation of experiments is unlikely, but cosmic surveys could constrain the sum of the masses to be relatively heavy, thereby producing a lower bound for the neutrinoless double beta decay rate, and therefore an argument for a next generation beta decay experiment. In this case as well, a combination of the phases will be constrained.

  8. Neutrino mass ordering in future neutrinoless double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jue

    2016-06-01

    Motivated by recent intensive experimental efforts on searching for neutrinoless double beta decays, we present a detailed quantitative analysis on the prospect of resolving neutrino mass ordering in the next generation 76Ge-type experiments.

  9. Two-Neutrino Double-Beta Decay.

    NASA Astrophysics Data System (ADS)

    Guerard Ortego, Carlos-Kjell

    1992-01-01

    Two previous independent reports of 2 nubetabeta-decay by the ITEP-YPI collaboration, rm T_sp{1/2} {2nu}=(9+/- 1) times 10^ {20} yr (1sigma), and PNL-USC group, rm T_sp{1/2 }{2nu}=(1.12_sp{-0.26} {+0.48}) times 10^{21} yr (2sigma), were confirmed using a 0.25 Kg Ge(Li) detector isotopically enriched to 86% in ^{76}Ge. The detector was operated in the PNL-USC ultralow background facility in the Homestake gold mine for 168 days. Following a single correction to the data, a spectrum resembling that of the earlier PNL-USC experiment, with about the same intensity per ^{76}Ge atom, per year, was observed with a measured half life of rm T_sp{1/2}{2nu}=(9.2 _sp{-0.4}{+0.7} times 10 ^{20} y (2sigma). This experiment is one of two presented in this dissertation as original work. The half-life of the 2nubeta beta-decay of ^{100} Mo to the 1130 keV level of ^{100 }Ru has been measured to be rm T_{1/2}=(1.1_sp{-0.2} {+0.3}) times 10^{21} y (90% C.L.), by observing the 590.76 and 539.53 keV gamma rays emitted in the 0_sp{1}{+ }to 2^+to 0^+ de -excitation cascade. A review of the most relevant nuclear structure calculations is given, and their predictions are compared to the measurements from our two experiments.

  10. Status of the COBRA double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Zuber, Kai

    2010-01-01

    The current status of the COBRA experiment is described. Results on the 4-fold forbidden beta decay of 113Cd and a variety of double beta decay limits of Cd, Zn and Te isotopes are presented based on 18 kg × days of exposure with an array of sixteen CdZnTe semiconductor detectors. A short description on the activities with pixelated detectors for tracking is given.

  11. The status of the COBRA double-beta-decay experiment

    NASA Astrophysics Data System (ADS)

    Zuber, K.

    2010-04-01

    The current status of the COBRA experiment is described. Results on the fourfold-forbidden beta decay of 113Cd and a variety of double-beta-decay limits for Cd, Zn and Te isotopes are presented, based on 18 kg× days of exposure with an array of sixteen CdZnTe semiconductor detectors. A short description of the activities with pixelated detectors for tracking is given.

  12. No-neutrino double beta decay: more than one neutrino

    SciTech Connect

    Rosen, S.P.

    1983-01-01

    Interference effects between light and heavy Majorana neutrinos in the amplitude for no-neutrino double beta decay are discussed. The effects include an upper bound on the heavy neutrino mass, and an A dependence for the effective mass extracted from double beta decay. Thus the search for the no-neutrino decay mode should be pursued in several nuclei, and particularly in Ca/sup 48/, where the effective mass may be quite large.

  13. Neutrinoless double-beta decay and neutrino physics

    NASA Astrophysics Data System (ADS)

    Rodejohann, Werner

    2012-12-01

    The connection of neutrino physics with the neutrinoless double-beta decay is reviewed. After presenting the current status of the Pontecorvo-Maki-Nakagawa-Sakata matrix and the theoretical background of neutrino mass and lepton mixing, we will summarize the various implications of neutrino physics for the double-beta decay. The influence of light sterile neutrinos and other exotic modifications of the three neutrino picture is also discussed.

  14. New physics effects on neutrinoless double beta decay from right-handed current

    NASA Astrophysics Data System (ADS)

    Ge, Shao-Feng; Lindner, Manfred; Patra, Sudhanwa

    2015-10-01

    We study the impact of new physics contributions to neutrinoless double beta decay arising from right-handed current in comparison with the standard mechanism. If the light neutrinos obtain their masses from Type-II seesaw within left-right symmetric model, where the Type-I contribution is suppressed to negligible extent, the right-handed PMNS matrix is the same as its left-handed counterpart, making it highly predictable and testable at next-generation experiments. It is very attractive, especially with recent cosmological constraint favoring the normal hierarchy under which the neutrinoless double beta decay is too small to be observed unless new physics appears as indicated by the recent diboson excess observed at ATLAS. The relative contributions from left- and right-handed currents can be reconstructed with the ratio between lifetimes of two different isotopes as well as the ratio of nuclear matrix elements. In this way, the theoretical uncertainties in the calculation of nuclear matrix elements can be essentially avoided. We also discuss the interplay of neutrinoless double beta decay measurements with cosmology, beta decay, and neutrino oscillation.

  15. Double Beta Decay Experiments: Present Status and Prospects for the Future

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( < 0.46 eV) and a coupling constant of Majoron to neutrino ( < 1.3 × 10-5) are obtained. In the second part of the review prospects of search for the neutrinoless double beta decay in new experiments with sensitivity to at the level of ∼ (0.01-0.1) eV are discussed. The main attention is paid to experiments of CUORE, GERDA, MAJORANA, EXO, KamLAND-Zen-2, SuperNEMO and SNO+. Possibilities of low-temperature scintillating bolometers on the basis of inorganic crystals (ZnSe, ZnMoO4, Li2MoO4, CaMoO4 and CdWO4) are considered too.

  16. Neutrinoless double beta decay in type I+II seesaw models

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Dasgupta, Arnab

    2015-11-01

    We study neutrinoless double beta decay in left-right symmetric extension of the standard model with type I and type II seesaw origin of neutrino masses. Due to the enhanced gauge symmetry as well as extended scalar sector, there are several new physics sources of neutrinoless double beta decay in this model. Ignoring the left-right gauge boson mixing and heavy-light neutrino mixing, we first compute the contributions to neutrinoless double beta decay for type I and type II dominant seesaw separately and compare with the standard light neutrino contributions. We then repeat the exercise by considering the presence of both type I and type II seesaw, having non-negligible contributions to light neutrino masses and show the difference in results from individual seesaw cases. Assuming the new gauge bosons and scalars to be around a TeV, we constrain different parameters of the model including both heavy and light neutrino masses from the requirement of keeping the new physics contribution to neutrinoless double beta decay amplitude below the upper limit set by the GERDA experiment and also satisfying bounds from lepton flavor violation, cosmology and colliders.

  17. Beta Decay Study of the Tz = - 256Zn Nucleus and the Determination of the Half-Lives of a Few fp-shell Nuclei

    NASA Astrophysics Data System (ADS)

    Rubio, B.; Orrigo, S. E. A.; Kucuk, L.; Montaner-Pizá, A.; Fujita, Y.; Fujita, H.; Blank, B.; Gelletly, W.; Adachi, T.; Agramunt, J.; Algora, A.; Ascher, P.; Bilgier, B.; Cáceres, L.; Cakirli, R. B.; de France, G.; Ganioğlu, E.; Gerbaux, M.; Giovinazzo, J.; Grevy, S.; Kamalou, O.; Kozer, H. C.; Kurtukian-Nieto, T.; Marqués, F. M.; Molina, F.; Oktem, Y.; de Oliveira Santos, F.; Perrot, L.; Popescu, L.; Raabe, R.; Rogers, A. M.; Srivastava, P. C.; Susoy, G.; Suzuki, T.; Tamii, A.; Thomas, J. C.

    2014-06-01

    This paper concerns the experimental study of the β decay properties of few proton-rich fp-shell nuclei. The nuclei were produced at GANIL in fragmentation reactions, separated with the LISE spectrometer and stopped in an implantation detector surrounded by Ge detectors. The β-delayed gammas, β-delayed protons and the exotic β-delayed gamma-proton emission have been studied. Preliminary results are presented. The decay of the Tz = - 2 nucleus 56Zn has been studied in detail. Information from the β-delayed protons and β-delayed gammas has been used to deduce the decay scheme. The exotic beta-delayed gamma-proton decay has been observed for the first time in the fp-shell. The interpretation of the data was made possible thanks to the detailed knowledge of the mirror Charge Exchange (CE) process and the gamma de-excitation of the states in 56Co, the mirror nucleus of 56Cu.

  18. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    NASA Astrophysics Data System (ADS)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for

  19. Experiments TGV I (double-beta decay of 48Ca) and TGV II (double-beta decay of 106Cd and 48Ca)

    NASA Astrophysics Data System (ADS)

    Štekl, I.; Čermák, P.; Beneš, P.; Brudanin, V. B.; Rukhadze, N. I.; Egorov, V. G.; Kovalenko, V. E.; Kovalík, A.; Salamatin, A. V.; Tsoupko-Sitnikov, V. V.; Vylov, Ts.; Briancon, Ch.; Šimkovic, F.

    2000-04-01

    Present status of experiments TGV I and TGV II is given. The TGV I collaboration has studied the double-beta decay of 48Ca with a low-background and high sensitivity Ge multi-detector spectrometer TGV (Telescope Germanium Vertical). The preliminary results of years and years (90% CL) for double-beta decay of 48 Ca has been found after the processing of experimental data obtained after 8700 hours of measuring time using approximately 1 gramme of 48Ca. The aim of the experiment TGV II is the development of the experimental methods, construction of spectrometers and measurement of the decay (++, β+/EC, EC/EC) of 106Cd particularly the 2νEC/EC mode. The theoretical description and performance of the TGV II spectrometer are also given.

  20. Comment on “Comparative study of beta-decay data for eight nuclides measured at the Physikalisch-Technische Bundesanstalt” [Astropart. Phys. 59 (2014) 47-58

    NASA Astrophysics Data System (ADS)

    Nähle, Ole; Kossert, Karsten

    2015-06-01

    We would like to comment on a recent paper by Sturrock et al. (2014) in which the authors analyze decay data acquired by an ionization chamber in our institute. They interpret the variations in the data as solar-driven changes in the decay rates of the radionuclides under study. In brief we would like to discuss and elucidate the properties and the origin of the data used by the authors and explain why these data are not a sound basis for claiming evidence for new physics.

  1. Theory of neutrinoless double-beta decay.

    PubMed

    Vergados, J D; Ejiri, H; Simkovic, F

    2012-10-01

    Neutrinoless double-beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that the lepton number is not conserved and that the neutrinos are Majorana particles. More importantly it is our best hope for determining the absolute neutrino-mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles must be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting useful information from the data. One must accurately evaluate the relevant nuclear matrix elements--a formidable task. To this end, we review the sophisticated nuclear structure approaches which have recently been developed, and which give confidence that the required nuclear matrix elements can be reliably calculated employing different methods: (a) the various versions of the quasiparticle random phase approximations, (b) the interacting boson model, (c) the energy density functional method and (d) the large basis interacting shell model. It is encouraging that, for the light neutrino-mass term at least, these vastly different approaches now give comparable results. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. One needs large isotopically enriched sources and detectors with high-energy resolution, low thresholds and very low background. If a signal is found, it will be a tremendous accomplishment. The real task then, of course, will be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute to or even dominate this process. In particular, we will consider the following processes: The neutrino induced, but neutrino-mass independent contribution. Heavy left and/or right-handed neutrino-mass contributions. Intermediate scalars (doubly charged, etc

  2. Theory of neutrinoless double-beta decay

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.; Ejiri, H.; Šimkovic, F.

    2012-10-01

    Neutrinoless double-beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that the lepton number is not conserved and that the neutrinos are Majorana particles. More importantly it is our best hope for determining the absolute neutrino-mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles must be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting useful information from the data. One must accurately evaluate the relevant nuclear matrix elements—a formidable task. To this end, we review the sophisticated nuclear structure approaches which have recently been developed, and which give confidence that the required nuclear matrix elements can be reliably calculated employing different methods: (a) the various versions of the quasiparticle random phase approximations, (b) the interacting boson model, (c) the energy density functional method and (d) the large basis interacting shell model. It is encouraging that, for the light neutrino-mass term at least, these vastly different approaches now give comparable results. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. One needs large isotopically enriched sources and detectors with high-energy resolution, low thresholds and very low background. If a signal is found, it will be a tremendous accomplishment. The real task then, of course, will be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute to or even dominate this process. In particular, we will consider the following processes: The neutrino induced, but neutrino-mass independent contribution. Heavy left and/or right-handed neutrino-mass contributions. Intermediate scalars (doubly charged, etc

  3. Heavy Neutrino Emission in Nuclear Beta Decay Spectra

    NASA Astrophysics Data System (ADS)

    Hime, Andrew

    Available from UMI in association with The British Library. Requires signed TDF. A modest spectrometer has been constructed and employed in measurements of electron energy spectra from the beta decay of ^ {35}S and ^{63} Ni. In both cases studied the data exhibit a threshold distortion 17 keV below the endpoint which is well described by the hypothesis that the electron neutrino couples to a heavy mass eigenstate. In terms of a two state mixing scheme and after radiative corrections, the ^ {35}S data indicate an M_2 = 16.95 +/- 0.35 keV component coupling with a mixing probability of sin^2 theta = 0.0078 +/- 0.0008. Data from a ^{63}Ni measurement yield a similar result with M_2 = 16.75 +/- 0.38 keV and sin ^2theta = 0.0101 +/- 0.0021. The errors quoted include both statistical and systematic contributions where systematic effects arise, predominantly, through small uncertainties in the electron response function. The electron response function has been measured from internal conversion electrons following electron capture, details of which are described. These results agree with earlier observations in the beta^ectra of ^3 H and ^{35}S as well as more recent studies of the ^{14 }C spectrum. On the other hand, experiments employing magnetic spectrometers provide no such evidence for heavy neutrino emission in nuclear beta decay. While this leaves the experimental situation unsettled some thoughts are provided on possible shortcomings of these experiments. In addition, a discussion is given on the possibility of alternative descriptions of the data providing positive evidence for the 17-keV neutrino as well as to how the experimental situation might be improved in the future. A technique is proposed which can serve to resolve the issue both with respect to experiments employing solid state detectors as well as those using magnetic spectrometers. If the interpretation of the anomalies observed in beta spectra is correct then we have our first glimpse that neutrinos

  4. First direct double-beta decay Q-value measurement of the neutrinoless double-beta decay candidate selenium-82 and development of a high-precision magnetometer

    NASA Astrophysics Data System (ADS)

    Lincoln, David Louis

    The results of recent neutrino oscillation experiments indicate that the mass of the neutrino is nonzero. The mass hierarchy and the absolute mass scale of the neutrino, however, are unknown. Furthermore, the nature of the neutrino is also unknown; is it a Dirac or Majorana particle, i.e. is the neutrino its own antiparticle? If experiments succeed in observing neutrinoless double-beta decay, there would be evidence that the neutrino is a Majorana particle and that conservation of total lepton number is violated - a situation forbidden by the Standard Model of particle physics. In support of understanding the nature of the neutrino, the first direct double-beta decay Q-value measurement of the neutrinoless double-beta decay candidate 82Se was performed [D. L. Lincoln et al., Physical Review Letters 110, 012501 (2013)]. The measurement was carried out using Penning trap mass spectrometry, which has proven to be the most precise and accurate method for determining atomic masses and therefore, Q-values. The high-precision measurement resulted in a Q-value with nearly an order of magnitude improvement in precision over the literature value. This result is important for the theoretical interpretations of the observations of current and future double-beta decay studies. It is also important for the design of future and next-generation double-beta decay experiments, such as SuperNEMO, which is planned to observe 100 - 200 kg of 82Se for five years. The high-precision measurement was performed at the Low-Energy Beam and Ion Trap (LEBIT) facility located at the National Superconducting Cyclotron Laboratory (NSCL). The LEBIT facility was the first Penning trap mass spectrometry facility to utilize rare isotope beams produced via fast fragmentation and has measured nearly 40 rare isotopes since its commissioning in 2005. To further improve the LEBIT facility's performance, technical improvements to the system are being implemented. As part of this work, to increase the

  5. Status and perspectives of the COBRA double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Kiel, Henning; COBRA Collaboration

    2006-05-01

    The COBRA experiment is going to use a large amount of CdZnTe semiconductor detectors to perform a search for various double beta decay modes. The current status of the experiment is presented, as well as first results. A half-life measurement of the 4-fold forbidden non-unique beta-decay of 113Cd has been performed. Improved half-life limits for the ground state transitions of 64Zn for 0νβ+/EC and 0νEC/EC have been obtained. A short outlook on future activities is given.

  6. New Limit on Time-Reversal Violation in Beta Decay

    SciTech Connect

    Mumm, H. P.; Chupp, T. E.; Cooper, R. L.; Coulter, K. P.; Freedman, S. J.; Fujikawa, B. K.; Garcia, A.; Jones, G. L.; Nico, J. S.; Thompson, A. K.; Trull, C. A.; Wietfeldt, F. E.; Wilkerson, J. F.

    2011-09-02

    We report the results of an improved determination of the triple correlation DP{center_dot}(p{sub e}xp{sub v}) that can be used to limit possible time-reversal invariance in the beta decay of polarized neutrons and constrain extensions to the standard model. Our result is D=[-0.96{+-}1.89(stat){+-}1.01(sys)]x10{sup -4}. The corresponding phase between g{sub A} and g{sub V} is {phi}{sub AV}=180.013 deg. {+-}0.028 deg. (68% confidence level). This result represents the most sensitive measurement of D in nuclear {beta} decay.

  7. The GERDA Neutrinoless Double Beta-Decay Experiment

    SciTech Connect

    Majorovits, Bela A.

    2007-10-12

    Neutrinoless double beta (0{nu}{beta}{beta})-decay is the key process to gain understanding of the nature of neutrinos. The GErmanium Detector Array (GERDA) is designed to search for 0{nu}{beta}{beta}-decay of the isotope {sup 76}Ge. Germanium crystals enriched in {sup 76}Ge, acting as source and detector simultaneously, will be submerged directly into an ultra pure cooling medium that also serves as a radiation shield. This concept will allow for a reduction of the background by up to two orders of magnitudes with respect to earlier experiments.

  8. Background Reduction For Germanium Double Beta Decay Experiments

    SciTech Connect

    Gomez, H.; Cebrian, S.; Morales, J.; Villar, J. A.

    2007-03-28

    The new generation experiments to search for the neutrinoless double beta decay of 76Ge (Q{beta}{beta}=2039keV) using enriched germanium detectors, need to reach a background level of {approx}10-3 c keV-1 kg-1 y-1 in the Region of Interest (RoI: 2-2.1 MeV) that would have, for 70 kg of germanium enriched to 86% in 76Ge, 3 keV of FWHM and 5 years of measuring time, a sensitivity on the effective neutrino mass of {<=} 40 meV. To reduce the background level close to the value needed, we have to combine several techniques. Three of the most important points to study are: segmentation and granularity of the crystal and spatial resolution of the detector directly correlated with an offline Pulse Shape Analysis (PSA). Preliminary studies about these strategies for background reduction were developed during last months, obtaining some promising results.

  9. Constraining neutrino mass from neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Goswami, Srubabati; Mitra, Manimala; Rodejohann, Werner

    2013-11-01

    We study the implications of the recent results on neutrinoless double beta decay (0νββ) from GERDA-I (Ge76) and KamLAND-Zen+EXO-200 (Xe136) and the upper limit on the sum of light neutrino masses from Planck. We show that the upper limits on the effective neutrino mass from Xe136 are stronger than those from Ge76 for most of the recent calculations of the nuclear matrix elements (NMEs). We also analyze the compatibility of these limits with the claimed observation in Ge76 and show that while the updated claim value is still compatible with the recent GERDA limit as well as the individual Xe136 limits for a few NME calculations, it is inconsistent with the combined Xe136 limit for all but one NME. Imposing the most stringent limit from Planck, we find that the canonical light neutrino contribution cannot saturate the current limit, irrespective of the NME uncertainties. Saturation can be reached by inclusion of the right-handed (RH) neutrino contributions in TeV-scale left-right symmetric models with type-II seesaw. This imposes a lower limit on the lightest neutrino mass. Using the 0νββ bounds, we also derive correlated constraints in the RH sector, complimentary to those from direct searches at the LHC.

  10. Simulation of double beta decay in the ''SeXe'' TPC

    NASA Astrophysics Data System (ADS)

    Mauger, F.

    2007-04-01

    In 2004, the NEMO collaboration has started some preliminary studies for a next-generation double beta decay experiment: SuperNEMO. The possibility to use a large gaseous TPC has been investigated using simulation and extrapolation of former experiments. In this talk, I report on the reasons why such techniques have not been selected in 2004 and led the NEMO collaboration to reuse the techniques implemented within the NEMO3 detector.

  11. ( sup 6 Li, sup 6 He) reaction and Gamow-Teller. beta. decay

    SciTech Connect

    Moosburger, M.; Aschenauer, E.; Dennert, H.; Eyrich, W.; Lehmann, A.; Rudeloff, R.; Schloesser, H.; Wirth, H. ); Gils, H.J.; Rebel, H.; Zagromski, S. )

    1990-06-01

    The ({sup 6}Li,{sup 6}He) reaction was studied on targets of {sup 12}C, {sup 18}O, {sup 26}Mg, and {sup 42}Ca at a beam energy of 156 MeV. Zero degree measurements of all systems are presented. The evaluated cross sections for Gamow-Teller transitions at {theta}=0{degree} and the corresponding strengths of analogous beta decays are compared.

  12. Influence of Pairing on the Nuclear Matrix Elements of the Neutrinoless {beta}{beta} Decays

    SciTech Connect

    Caurier, E.; Nowacki, F.

    2008-02-08

    We study in this Letter the neutrinoless double beta decay nuclear matrix elements (NME's) in the framework of the interacting shell model. We analyze them in terms of the total angular momentum of the decaying neutron pair and as a function of the seniority truncations in the nuclear wave functions. This point of view turns out to be very adequate to gauge the accuracy of the NME's predicted by different nuclear models. In addition, it gives back the protagonist role in this process to the pairing interaction, the one which is responsible for the very existence of double beta decay emitters. We show that low seniority approximations, comparable to those implicit in the quasiparticle RPA in a spherical basis, tend to overestimate the NME's in several decays.

  13. Investigation of double beta decay of 100Mo to excited states of 100Ru

    NASA Astrophysics Data System (ADS)

    Arnold, R.; Augier, C.; Barabash, A. S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; Caffrey, A. J.; Čermák, P.; Cerna, C.; Chapon, A.; Chauveau, E.; Dragounová, L.; Duchesneau, D.; Durand, D.; Egorov, V.; Eurin, G.; Evans, J. J.; Flack, R.; Garrido, X.; Gómez, H.; Guillon, B.; Guzowski, P.; Hodák, R.; Hubert, P.; Hugon, C.; Hůlka, J.; Jullian, S.; Klimenko, A.; Kochetov, O.; Konovalov, S. I.; Kovalenko, V.; Lalanne, D.; Lang, K.; Lemière, Y.; Liptak, Z.; Loaiza, P.; Lutter, G.; Mamedov, F.; Marquet, C.; Mauger, F.; Morgan, B.; Mott, J.; Nemchenok, I.; Nomachi, M.; Nova, F.; Nowacki, F.; Ohsumi, H.; Pahlka, R. B.; Perrot, F.; Piquemal, F.; Povinec, P.; Ramachers, Y. A.; Remoto, A.; Reyss, J. L.; Richards, B.; Riddle, C. L.; Rukhadze, E.; Rukhadze, N.; Saakyan, R.; Sarazin, X.; Shitov, Yu.; Simard, L.; Šimkovic, F.; Smetana, A.; Smolek, K.; Smolnikov, A.; Söldner-Rembold, S.; Soulé, B.; Štekl, I.; Suhonen, J.; Sutton, C. S.; Szklarz, G.; Thomas, J.; Timkin, V.; Torre, S.; Tretyak, V. I.; Tretyak, Vl. I.; Umatov, V.; Vilela, C.; Vorobel, V.; Warot, G.; Waters, D.; Žukauskas, A.

    2014-05-01

    Double beta decay of 100Mo to the excited states of daughter nuclei has been studied using a 600 cm3 low-background HPGe detector and an external source consisting of 2588 g of 97.5% enriched metallic 100Mo, which was formerly inside the NEMO-3 detector and used for the NEMO-3 measurements of 100Mo. The half-life for the two-neutrino double beta decay of 100Mo to the excited 01+ state in 100Ru is measured to be T1/2=[7.5±0.6(stat)±0.6(syst)]ṡ1020 yr. For other (0ν+2ν) transitions to the 21+, 22+, 02+, 23+ and 03+ levels in 100Ru, limits are obtained at the level of ∼(0.25-1.1)ṡ1022 yr.

  14. Pion dominance in R-parity violating supersymmetry induced neutrinoless double beta decay

    SciTech Connect

    Faessler, Amand; Gutsche, Thomas; Simkovic, Fedor; Kovalenko, Sergey

    2008-06-01

    At the quark level there are basically two types of contributions of R-parity violating supersymmetry (Re{sub p} SUSY) to neutrinoless double beta decay: the short-range contribution involving only heavy virtual superpartners and the long-range one with the virtual squark and neutrino. Hadronization of the effective operators, corresponding to these two types of contributions, may in general involve virtual pions in addition to close on-mass-shell nucleons. From the previous studies it is known that the short-range contribution is dominated by the pion exchange. In the present paper we show that this is also true for the long-range Re{sub p} SUSY contribution. Therefore, we conclude that the Re{sub p} SUSY contributes to the neutrinoless double beta decay dominantly via charged pion exchange between the decaying nucleons.

  15. First search for Lorentz and C P T violation in double beta decay with EXO-200

    NASA Astrophysics Data System (ADS)

    Albert, J. B.; Barbeau, P. S.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; DeVoe, R.; Díaz, J. S.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; Fairbank, W.; Farine, J.; Feyzbkhsh, S.; Feldmeier, W.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Homiller, S.; Hughes, M.; Jewell, M. J.; Jiang, X. S.; Johnson, A.; Johnson, T. N.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Killick, R.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Leonard, D. S.; Licciardi, C.; Lin, Y. H.; Ling, J.; MacLellan, R.; Marino, M. G.; Mong, B.; Moore, D.; Nelson, R.; Njoya, O.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Retiére, F.; Rowson, P. C.; Russell, J. J.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Twelker, K.; Vuilleumier, J.-L.; Vogel, P.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Wood, J.; Yang, L.; Yen, Y.-R.; Zeldovich, O. Ya.; EXO-200 Collaboration

    2016-04-01

    A search for Lorentz- and C P T -violating signals in the double beta decay spectrum of 136Xe has been performed using an exposure of 100 kg .yr with the EXO-200 detector. No significant evidence of the spectral modification due to isotropic Lorentz-violation was found, and a two-sided limit of -2.65 ×10-5 GeV <âof(3 )<7.60 ×10-6 GeV (90% C.L.) is placed on the relevant coefficient within the Standard-Model Extension (SME). This is the first experimental study of the effect of the SME-defined oscillation-free and momentum-independent neutrino coupling operator on the double beta decay process.

  16. Majorana neutrino masses and the neutrinoless double-beta decay

    SciTech Connect

    Faessler, A.

    2006-12-15

    Neutrinoless double-beta decay is forbidden in the Standard Model of electroweak and strong interaction but allowed in most Grand Unified Theories (GUTs). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass is neutrinoless double-beta decay allowed. Apart from one claim that the neutrinoless double-beta decay in {sup 76}Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow one to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity-violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present work, one discusses the accuracy of the present status of calculating of the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters.

  17. Neutrinoless Double Beta Decay and {nu}-Mass Determination

    SciTech Connect

    Pedretti, M.

    2005-10-12

    The search for Neutrinoless Double Beta Decay could improve our knowledge on neutrino properties. After a brief discussion on the implications of the observation of this rare process, I will introduce the experimental approaches and review the prospects of the search for this nuclear transition.

  18. Searches for massive neutrinos in nuclear beta decay

    SciTech Connect

    Jaros, J.A.

    1992-10-01

    The status of searches for massive neutrinos in nuclear beta decay is reviewed. The claim by an ITEP group that the electron antineutrino mass > 17eV has been disputed by all the subsequent experiments. Current measurements of the tritium beta spectrum limit m[sub [bar [nu

  19. Computer code for double beta decay QRPA based calculations

    SciTech Connect

    Barbero, C. A.; Mariano, A.; Krmpotić, F.; Samana, A. R.; Ferreira, V. dos Santos; Bertulani, C. A.

    2014-11-11

    The computer code developed by our group some years ago for the evaluation of nuclear matrix elements, within the QRPA and PQRPA nuclear structure models, involved in neutrino-nucleus reactions, muon capture and β{sup ±} processes, is extended to include also the nuclear double beta decay.

  20. Forbidden unique beta-decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2013-12-30

    The measurement of the electron spectrum in beta-decays provides a robust direct determination of the values of neutrino masses. The planned rhenium beta-decay experiment, called the “Microcalorimeter Arrays for a Rhenium Experiment” (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which is expected to collect data in a near future. In this contribution we discuss the spectrum of emitted electrons close to the end point in the case of the first unique forbidden beta-decay of {sup 79}Se, {sup 107}Pd and {sup 187}Re. It is found that the p{sub 3/2}-wave emission dominates over the s{sub 1/2}-wave. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed beta-decay of {sup 3}H.

  1. The Majorana Double Beta Decay Experiment: Present Status

    SciTech Connect

    Aguayo, Estanislao; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Beene, Jim; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, C. D.; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M. P.; Guiseppe, V. E.; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keller, C.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips II, D. G.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2013-06-01

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale 76Ge neutrinoless double-beta decay experiment, an R&D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator

  2. Atomic effects of beta decay in astrophysics and in elementary particle physics

    NASA Astrophysics Data System (ADS)

    Chen, Zonghua

    The bound-state beta decay of Re-187 and its application in Astrophysics is studied. There existed an uncertainty in the ratio of rhop of bound-state to continuum beta decay of Re-187 in both theory and experiment. A more definite theoretical result of rhop of approximately 1 percent is obtained by using single-configuration and multi-configuration Hartree-Fock-Dirac approximations. The results obtained are close to those obtained by Williams, Fowler, and Koonin by a modified Thomas-Fermi model. The bound-state beta decay of Re-187 at high temperatures is also studied. A generalization of the Thomas-Fermi results of various energy contributions to the ground-state energy of a neutral atom is also presented. An analytical expression for the ratio of the electron-electron to electron-nuclear interaction is obtained by the corrected Thomas-Fermi result, the ratio obtained gives a better agreement with the Hartree-Fock numerical results.

  3. First results on double {beta}-decay modes of Cd, Te, and Zn Isotopes

    SciTech Connect

    Bloxham, T.; Freer, M.; Boston, A.; Nolan, P.; Dawson, J.; Reeve, C.; Wilson, J. R.; Zuber, K.; Dobos, D.; Goessling, C.; Kiel, H.; Muenstermann, D.; Oehl, S.; Fox, S. P.; Fulton, B. R.; McGrath, J.; Wadsworth, R.; Harrison, P. F.; Morgan, B.; Ramachers, Y.

    2007-08-15

    Four 1-cm{sup 3} CdZnTe semiconductor detectors were operated in the Gran Sasso National Laboratory to explore the feasibility of such devices for double {beta}-decay searches as proposed for the COBRA experiment. The research involved background studies accompanied by measurements of energy resolution performed at the surface. Energy resolutions sufficient to reduce the contribution of two-neutrino double {beta}-decay events to a negligible level for a large-scale experiment have already been achieved and further improvements are expected. Using activity measurements of contaminants in all construction materials a background model was developed with the help of Monte Carlo simulations and major background sources were identified. A total exposure of 4.34 kg{center_dot}days of underground data have been accumulated allowing a search for neutrinoless double {beta}-decay modes of seven isotopes found in CdZnTe. Half-life limits (90% C.L.) are presented for decays to ground and excited states. Four improved lower limits have been obtained, including zero neutrino double electron capture transitions of {sup 64}Zn and {sup 120}Te to the ground state, which are 1.19x10{sup 17} years and 2.68x10{sup 15} years, respectively.

  4. Neutron induced radio-isotopes and background for Ge double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Chu, Pinghan; Majorana Collaboration

    2015-10-01

    Environmental neutrons, mostly produced by muons in the cosmic rays, might contribute backgrounds to the search for neutrinoless double beta decays. These neutrons can interact with materials and generate radio-isotopes, which can decay and produce radioactive backgrounds. Some of these neutron-induced isotopes have a signature of a time-delayed coincidence, allowing us to study these infrequent events. For example, such isotopes can decay by beta decay to metastable states and then decay by gamma decay to the ground state. Considering the time-delayed coincidence of these two processes, we can determine candidates for these neutron-induced isotopes in the data and estimate the flux of neutrons in the deep underground environment. In this report, we will list possible neutron-induced isotopes and the methodology to detect them, especially those that can affect the search for neutrinoless double beta decays in 76Ge. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  5. Cold equation of state in a strong magnetic field - Effects of inverse beta-decay

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Shapiro, Stuart L.

    1991-01-01

    The influence of a high magnetic field (B is greater than 10 exp 12 G) on the degenerate matter equation of state appropriate to a neutron star is studied. The regime dominated by relativistic electrons up to the neutron drip density is highlighted. The equilibrium matter composition and equation of state, allowing for inverse beta-decay. Two different equilibrium models are determined: an ideal neutron-proton-electron (npe) gas and the more realistic model of Baym, Pethick, and Sutherland (1971) consisting of a Coulomb lattice of heavy nuclei embedded in an electron gas. For a sufficiently high field strength, the magnetic field has an appreciable effect, changing the adiabatic index of the matter and the nuclear transition densities. The influence of a strong field on some simple nonequilibrium processes, including beta-decay and inverse beta-decay (electron capture) is also considered. The effects produced by the magnetic field are mainly due to the changes in the transverse electron quantum orbits and the allowed electron phase space induced by the field.

  6. Sense and sensitivity of double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Gómez-Cadenas, J. J.; Martín-Albo, J.; Sorel, M.; Ferrario, P.; Monrabal, F.; Muñoz, J.; Novella, P.; Poves, A.

    2011-06-01

    The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, mββ. In order to make sense of how the different experimental approaches compare, we apply this recipe to a selection of proposals, comparing the resulting sensitivities. We also propose a ``physics-motivated range'' (PMR) of the nuclear matrix elements as a unifying criterium between the different nuclear models. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and ββ isotope mass. For each proposal, both a reference and an optimistic scenario for the experimental performance are studied. In the reference scenario we find that all the proposals will be able to partially explore the degenerate spectrum, without fully covering it, although four of them (KamLAND-Zen, CUORE, NEXT and EXO) will approach the 50 meV boundary. In the optimistic scenario, we find that CUORE and the xenon-based proposals (KamLAND-Zen, EXO and NEXT) will explore a significant fraction of the inverse hierarchy, with NEXT covering it almost fully. For the long term future, we argue that 136Xe-based experiments may provide the best case for a 1-ton scale experiment, given the potentially very low backgrounds achievable and the expected scalability to large isotope masses.

  7. Sense and sensitivity of double beta decay experiments

    SciTech Connect

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Sorel, M.; Ferrario, P.; Monrabal, F.; Muñoz, J.; Novella, P.; Poves, A. E-mail: justo.martin-albo@ific.uv.es E-mail: paola.ferrario@ific.uv.es E-mail: jmunoz@ific.uv.es E-mail: alfredo.poves@uam.es

    2011-06-01

    The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, m{sub ββ}. In order to make sense of how the different experimental approaches compare, we apply this recipe to a selection of proposals, comparing the resulting sensitivities. We also propose a ''physics-motivated range'' (PMR) of the nuclear matrix elements as a unifying criterium between the different nuclear models. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and ββ isotope mass. For each proposal, both a reference and an optimistic scenario for the experimental performance are studied. In the reference scenario we find that all the proposals will be able to partially explore the degenerate spectrum, without fully covering it, although four of them (KamLAND-Zen, CUORE, NEXT and EXO) will approach the 50 meV boundary. In the optimistic scenario, we find that CUORE and the xenon-based proposals (KamLAND-Zen, EXO and NEXT) will explore a significant fraction of the inverse hierarchy, with NEXT covering it almost fully. For the long term future, we argue that {sup 136}Xe-based experiments may provide the best case for a 1-ton scale experiment, given the potentially very low backgrounds achievable and the expected scalability to large isotope masses.

  8. Searches for massive neutrinos in nuclear beta decay

    SciTech Connect

    Jaros, J.A.

    1992-10-01

    The status of searches for massive neutrinos in nuclear beta decay is reviewed. The claim by an ITEP group that the electron antineutrino mass > 17eV has been disputed by all the subsequent experiments. Current measurements of the tritium beta spectrum limit m{sub {bar {nu}}e} < 10 eV. The status of the 17 keV neutrino is reviewed. The strong null results from INS Tokyo and Argonne, and deficiencies in the experiments which reported positive effects, make it unreasonable to ascribe the spectral distortions seen by Simpson, Hime, and others to a 17keV neutrino. Several new ideas on how to search for massive neutrinos in nuclear beta decay are discussed.

  9. Results of the double beta decay experiment NEMO-3

    SciTech Connect

    Tretyak, V. I.; Collaboration: NEMO-3 Collaboration

    2013-12-30

    The double beta decay experiment NEMO-3 has taken data from February 2003 to January 2011. The two-neutrino decay half lives were measured for seven different isotopes ({sup 100}Mo, {sup 82}Se, {sup 116}Cd, {sup 150}Nd, {sup 96}Zr, {sup 48}Ca and {sup 130}Te). No evidence for neutrinoless double beta decay is observed. The 0νββ half-life limits are found to be T{sub 1/2}{sup 0ν}({sup 100}Mo)>1.0×10{sup 24}yr(90%C.L.) and T{sub 1/2}{sup 0ν}({sup 82}Se)>3.2×10{sup 23}yr(90%C.L.)

  10. Reduced Beta Decay Rates of Iron Isotopes for Supernova Physics

    SciTech Connect

    Nabi, Jameel-Un

    2009-07-07

    During the late phases of stellar evolution beta decay on iron isotopes, in the core of massive stars, plays a crucial role in the dynamics of core-collapse. The beta decay contributes in maintaining a 'respectable' lepton-to-baryon ratio (PSI{sub e}) of the core prior to collapse which results in a larger shock energy to power the explosion. It is indeed a fine tuning of the parameter PSI{sub e} at various stages of supernova physics which can lead to a successful transformation of the collapse into an explosion. The calculations presented here might help in fine-tuning of PSI{sub e} for the collapse simulators of massive stars.

  11. Extra dimensions and neutrinoless double beta decay experiments

    SciTech Connect

    Gozdz, Marek; Kaminski, Wieslaw A.; Faessler, Amand

    2005-05-01

    The neutrinoless double beta decay is one of the few phenomena, belonging to the nonstandard physics, which is extensively being sought for in experiments. In the present paper the link between the half-life of the neutrinoless double beta decay and theories with large extra dimensions is explored. The use of the sensitivities of currently planned 0{nu}2{beta} experiments: DAMA, CANDLES, COBRA, DCBA, CAMEO, GENIUS, GEM, MAJORANA, MOON, CUORE, EXO, and XMASS, gives the possibility for a nondirect 'experimental' verification of various extra dimensional scenarios. We discuss also the results of the Heidelberg-Moscow Collaboration. The calculations are based on the Majorana neutrino mass generation mechanism in the Arkani-Hamed-Dimopoulos-Dvali model.

  12. Beta Decay: A Physics Garden of Earthly Delights

    NASA Astrophysics Data System (ADS)

    Robertson, R. G. Hamish

    2014-03-01

    From the beginning, beta decay has tormented and delighted us with puzzles and enlightenment. A significant part of our present understanding of subatomic physics has emerged from the experimental and theoretical struggle with its mysteries. We reflect on several of the epic victories in this struggle, and look ahead to where ongoing research might lead us in the understanding of fundamental symmetries and neutrinos. Research supported under DOE grant DE-FG02-97ER41020.

  13. Radiative corrections to sup 10 C superallowed Fermi. beta. decay

    SciTech Connect

    Rasche, G.; Robustelli, D. ); Barker, F.C. )

    1991-07-01

    In view of new data on the {sup 10}C superallowed Fermi {beta} decay, the radiative corrections have been reevaluated. In particular we calculate and include the nuclear-structure-dependent part of the axial-vector-induced contribution to the {ital O}({alpha}) radiative correction. The resulting {ital V}{sub {ital u}{ital d}} is appreciably larger than a value recently published, which was based on the same data.

  14. The Majorana Neutrinoless Double-Beta Decay Program

    NASA Astrophysics Data System (ADS)

    Guiseppe, Vincente

    2014-09-01

    Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The Majorana Collaboration is assembling an array of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator, containing 40 kg (30 kg enriched in 76Ge) of Ge detectors, is currently being constructed and commissioned at the Sanford Underground Research Facility in Lead, South Dakota. The initial goals are to demonstrate the required background and scalability of a Ge-based, tonne-scale experiment. The status and potential physics reach of the Majorana Demonstrator experiment will be presented. Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The Majorana Collaboration is assembling an array of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator, containing 40 kg (30 kg enriched in 76Ge) of Ge detectors, is currently being constructed and commissioned at the Sanford Underground Research Facility in Lead, South Dakota. The initial goals are to demonstrate the required background and scalability of a Ge-based, tonne-scale experiment. The status and potential physics reach of the Majorana Demonstrator experiment will be presented. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle and Nuclear Astrophysics Program of the National Science Foundation and the Russian Foundation for Basic Research.

  15. MAJORANA Neutrinoless Double-Beta Decay DUSEL R&D

    SciTech Connect

    Wilkerson, John F.

    2009-09-04

    The Majorana research and development is addressing key issues and risks related to the collaboration's goal of undertaking a search for neutrinoless double-beta decay (0{nu}{beta}{beta}) in {sup 76}Ge using an array of hyper-pure Ge-diodes (HPGe). The observation of this decay would provide critical insight into our understanding of neutrinos, yielding definitive evidence that neutrinos are Majorana particles and providing information on the absolute mass of neutrinos. Achieving sensitivities to 0{nu}{beta}{beta} decay half-lives on the order of 10{sup 26} years requires ultra-low backgrounds in the 2039 keV region where a 0{nu}{beta}{beta} decay peak would be observed. The goal of our R&D program has been to demonstrate the feasibility of all components of Majorana and to provide an integrated evaluation framework, allowing for optimization of these components in terms of background, background suppression, and signal detection efficiency and acceptance. This report covers work carried out by Majorana collaboration members at the University of Washington as part of the overall Majorana collaboration activities. Specifically the Majorana group at the University of Washington was involved in moving forward on demonstrating technology for clean large-scale cryostats and mounting the HPGe crystals in low-mass holders. The UW activities included assistance in the procurement and assembly of an electroforming system for large size cryostats, and design and fabrication of prototype crystal mounting hardware.

  16. Nuclear-structure aspects of double beta decay

    SciTech Connect

    Suhonen, Jouni

    2010-11-24

    Neutrinoless double beta (0{nu}{beta}{beta}) decay of nuclei is a process that requires the neutrino to be a massive Majorana particle and thus cannot proceed in the standard model of electro-weak interactions. Recent results of the neutrino-oscillation experiments have produced accurate information on the mixing of neutrinos and their squared mass differences. The 0{nu}{beta}{beta} decay takes place in atomic nuclei where it can be observed, at least in principle, by underground neutrino experiments. The need of nuclei in observation of the 0{nu}{beta}{beta} decay bears two facets: The nucleus serves as laboratory for detection but at the same time its complicated many-nucleon structure interferes strongly with the analysis of the experimental data. The information about the weak-interaction observables, like the neutrino mass, has to be filtered from the data through the nuclear matrix elements (NMEs). Hence, exact knowledge about the NMEs is of paramount importance in the analysis of the data provided by the expensive and time-consuming underground experiments.

  17. Pattern recognition techniques to reduce backgrounds in the search for the {sup 136}Xe double beta decay with gaseous TPCs

    SciTech Connect

    Iguaz, F. J.; Cebrián, S.; Dafni, T.; Gómez, H.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Segui, L.; Tomas, A.

    2013-08-08

    The observation of the neutrinoless double beta decay may provide essential information on the nature of neutrinos. Among the current experimental approaches, a high pressure gaseous TPC is an attractive option for the search of double beta decay due to its good energy resolution and the detailed topological information of each event. We present in this talk a detailed study of the ionization topology of the {sup 136}Xe double beta decay events in a High Pressure Xenon TPC, as well as that of the typical competing backgrounds. We define some observables based on graph theory concepts to develop automated discrimination algorithms. Our criteria are able to reduce the background level by about three orders of magnitude in the region of interest of the {sup 136}Xe Q{sub ββ} for a signal acceptance of 40%. This result provides a quantitative assessment of the benefit of topological information offered by gaseous TPCs for double beta decay search, and proves that it is a promising feature in view of future experiments in the field. Possible ideas for further improvement in the discrimination algorithms and the dependency of these results with the gas diffusion and readout granularity will be also discussed.

  18. Double-beta decay: Some recent results and developments

    NASA Astrophysics Data System (ADS)

    Avignone, F. T.

    A brief review and status of theoretical issues associated with double-beta decay (ββ-decay) is given. The final results of the measurement of 2ν ββ-decay of 100Mo to the first excited 0 + state in 100Ru are presented prior to publication. Corrections to the earlier PNL/USC/ITEP/YPI measurement of 2ν ββ-decay of 76Ge are also given prior to publication. Finally, a status report and first results of the phase-I of the International Germanium Experiment (IGEX) are presented.

  19. Values of the phase space factors for double beta decay

    SciTech Connect

    Stoica, Sabin Mirea, Mihai

    2015-10-28

    We report an up-date list of the experimentally most interesting phase space factors for double beta decay (DBD). The electron/positron wave functions are obtained by solving the Dirac equations with a Coulomb potential derived from a realistic proton density distribution in nucleus and with inclusion of the finite nuclear size (FNS) and electron screening (ES) effects. We build up new numerical routines which allow us a good control of the accuracy of calculations. We found several notable differences as compared with previous results reported in literature and possible sources of these discrepancies are discussed.

  20. The CUORICINO and CUORE double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Ardito, R.; Arnaboldi, C.; Artusa, D. R.; Avignone, F. T.; Balata, M.; Bandac, I.; Barucci, M.; Beeman, J. W.; Bellini, F.; Brofferio, C.; Bucci, C.; Capelli, S.; Capozzi, F.; Carbone, L.; Cebrian, S.; Clemenza, M.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; de Waard, A.; Diemoz, M.; Dolinski, M.; Farach, H. A.; Ferroni, F.; Fiorini, E.; Freedman, S. J. F.; Frossati, G.; Gargiulo, C.; Giuliani, A.; Gorla, P.; Guardincerri, E.; Gutierrez, T. D.; Haller, E. E.; Heeger, K. M.; Irastorza, I. G.; Longo, E.; Maruyama, R.; Morganti, S.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; Xu, Nu; Olivieri, E.; Ottonello, P.; Pallavicini, M.; Palmieri, E.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Previtali, E.; Risegari, L.; Rosenfeld, C.; Sangiorgio, S.; Sisti, M.; Smith, A. R.; Torres, L.; Ventura, G.; Zanotti, L.

    2006-07-01

    After an introduction on the various experimental techniques to be adopted in searches for double beta decay, the new approach based on the use of cryogenic low temperature detectors is described. The present results are reported on the limit for neutrinoless double beta decay of 130Te obtained with the large bolometric detector CUORICINO. This setup consists of 44 cubic crystals of natural TeO 2 with 5 cm sides and 18 crystals of 3×3×6 cm 3. Four of these latter crystals are made with isotopically enriched materials: two in 128Te and two others in 130Te. With a sensitive mass of 40.7 kg, this array is by far the most massive running cryogenic detector. The array is operated at a temperature of ˜10 mK in a dilution refrigerator under a heavy shield in the Gran Sasso Underground Laboratory at a depth of about 3500 m.w.e. The counting rate in the region of neutrinoless double beta decay is 0.18±0.02 counts keV -1 kg -1 y -1, among the lowest in this type of experiment. No evidence for neutrinoless double beta decay is found. The corresponding lower limit for the lifetime of this process is 2×10 24 years at 90% C.L. The resultant upper limit on the effective neutrino mass ranges between 0.2 and 1.0 eV, depending on the theoretically calculated nuclear matrix elements. This constraint is the most restrictive one, except for those obtained with Ge diodes, and is comparable to them. The second part of this report is devoted to the present status of the construction of the larger experiment CUORE (Cryogenic Underground Observatory for Rare Events) formed from 988 bolometers with a cubic TeO 2 absorber of size 5×5×5 cm 3, with a total mass of ˜750 kg. We present technical details of the CUORE setup as well as of its location and our efforts to reduce radioactive backgrounds.

  1. Nuclear beta-decay, Atomic Parity Violation, and New Physics

    SciTech Connect

    Michael Ramsey-Musolf

    2000-08-01

    Determinations of vuds with super-allowed Fermi beta-decay in nuclei and of the weak charge of the cesium in atomic parity-violation deviate from the Standard Model predictions by 2 sigma or more. In both cases, the Standard Model over-predicts the magnitudes of the relevant observables. I discuss the implications of these results for R-parity violating (RPV) extensions of the minimal supersymmetric Standard Model. I also explore the possible consequences for RPV supersymmetry of prospective future low-energy electroweak measurements.

  2. beta. -Decay in the Skyrme-Witten representation of QCD

    SciTech Connect

    Snyderman, N.J.

    1991-05-01

    The renormalized coupling strength of the {beta}-decay axial vector current is related to {pi}{plus minus} p cross sections through the Adler-Weisberger sum rule, that follows from chiral symmetry. We attempt to understand the Adler-Weisberger sum rule in the 1/N{sub c} expansion in QCD, and in the Skyrme-Witten model that realizes the 1/N{sub c} expansion in the low energy limit, using it to explicitly calculate both g{sub A} and the {pi}{plus minus} p cross sections. 32 refs.

  3. Shell model nuclear matrix elements for competing mechanisms contributing to double beta decay

    SciTech Connect

    Horoi, Mihai

    2013-12-30

    Recent progress in the shell model approach to the nuclear matrix elements for the double beta decay process are presented. This includes nuclear matrix elements for competing mechanisms to neutrionless double beta decay, a comparison between closure and non-closure approximation for {sup 48}Ca, and an updated shell model analysis of nuclear matrix elements for the double beta decay of {sup 136}Xe.

  4. Beta-decay, Bremsstrahlen, and the origin of molecular chirality

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Yi, L.

    1984-01-01

    A brief review is presented of the Vester-Ulbricht beta-decay Bremsstrahlen hypothesis for the origin of optical activity, and of subsequent experiments designed to test it. Certain experiments along these lines, begun in 1974 and involving the irradiation of racemic and optically active amino acids in a 61.7 KCi Sr-90-Y-90 Bremsstrahlen source, have now been completed and are described. After 10.89 years of irradiation with a total Bremsstrahlen dose of 2.5 x 10 to the 9th rads, crystalline DL-leucine, norleucine, and norvaline suffered 47.2, 33.6, and 27.4 percent radiolysis, respectively, but showed no evidence whatsoever of asymmetric degradation. Dand L-Leucine underwent about 48 percent radiolysis and showed 2.4-2.9 percent radioracemization. Other samples in solution were too severely degraded to analyze. Probable intrinsic reasons for the failure of the Vester-Ulbricht mechanism to afford asymmetric radiolysis in the present and related experiments involving beta-decay Bremsstrahlen are enumerated.

  5. Examining Shape Co-existence in 116Sn via the Beta Decay of 116In

    NASA Astrophysics Data System (ADS)

    Pore, J.; Andreoiu, C.; Cross, D.; Ashley, R.; Chester, A.; Starosta, K.; Ball, G. C.; Bender, P.; Churchman, R.; Voss, P.; Wang, Z.; Garnsworthy, A. B.; Handinia, B.; Jigmeddorj, B.; Garrett, P. E.; Demand, G.; Laffoley, A. T.; Liblong, A.; Dunlop, R.; Svensson, C. E.; Valera, A. D.; Varela, A. D.; Kanungo, R.; Woods, J. L.; Yates, S. W.

    2012-10-01

    The stable even-even tin nuclei have a closed proton shell at Z=50 and occupy the mid-shell region of neutrons, which has led to interest in them, and they have emerged as good candidates for shape co-existence studies. The 116Sn nucleus, which sits exactly at the mid-shell (N=66), has been extensively studied in the past through fusion evaporation, coulomb excitation, neutron scattering and beta decay experiments, which has revealed an extensive level scheme and evidence for shape co-existence. However, with our advanced detection set-up and good beam intensity we are able to see additional weak transitions, some of which could yield evidence for another deformed excited state at 2545 keV. The experiment was conducted at TRIUMF, Canada's National Laboratory for Nuclear and Particle Physics. A beam of 116In was used to populate states in 116Sn via beta decay. The resulting gamma rays were observed with the 8pi array consisting of 20 high-purity germanium detectors coupled with a suite of ancillary detectors. We will present the enhanced level scheme constructed from this experiment.

  6. 31Cl beta decay and the 30P31S reaction rate in nova nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Bennett, Michael; Wrede, C.; Brown, B. A.; Liddick, S. N.; Pérez-Loureiro, D.; NSCL e12028 Collaboration

    2016-03-01

    The 30P31S reaction rate is critical for modeling the final isotopic abundances of ONe nova nucleosynthesis, identifying the origin of presolar nova grains, and calibrating proposed nova thermometers. Unfortunately, this rate is essentially experimentally unconstrained because the strengths of key 31S proton capture resonances are not known, due to uncertainties in their spins and parities. Using a 31Cl beam produced at the National Superconducting Cyclotron Laboratory, we have populated several 31S states for study via beta decay and devised a new decay scheme which includes updated beta feedings and gamma branchings as well as multiple states previously unobserved in 31Cl beta decay. Results of this study, including the unambiguous identification due to isospin mixing of a new l = 0 , Jπ = 3 /2+ 31S resonance directly in the middle of the Gamow Window, will be presented, and significance to the evaluation of the 30P31S reaction rate will be discussed. Work supported by U.S. Natl. Sci. Foundation (Grants No. PHY-1102511, PHY-1404442, PHY-1419765, and PHY-1431052); U.S. Dept. of Energy, Natl. Nucl. Security Administration (Award No. DE-NA0000979); Nat. Sci. and Eng. Research Council of Canada.

  7. Investigation of Double Beta Decay of 100Mo to Excited States of 100Ru

    SciTech Connect

    A. J. Caffrey; The NEMO-3 Collaboration

    2014-05-01

    Double beta decay of 100Mo to the excited states of daughter nuclei has been studied using a 600 cm3 low-background HPGe detector and an external source consisting of 2588 g of 97.5% enriched metallic 100Mo, which was formerly inside the NEMO-3 detector and used for the NEMO-3 measurements of 100Mo. The half-life for the two-neutrino double beta decay of 100Mo to the excited View the MathML source state in 100Ru is measured to be T1/2=[7.5±0.6(stat)±0.6(syst)]·1020 yr. For other (0?+2?) transitions to the View the MathML source, View the MathML source, View the MathML source, View the MathML source and View the MathML source levels in 100Ru, limits are obtained at the level of ~(0.25–1.1)·1022 yr.

  8. Status and future prospect of 48Ca double beta decay search in CANDLES

    NASA Astrophysics Data System (ADS)

    Iida, T.; Nakajima, K.; Ajimura, S.; Batpurev, T.; Chan, W. M.; Fushimi, K.; Hazama, R.; Kakubata, H.; Khai, B. T.; Kishimoto, T.; Li, X.; Maeda, T.; Masuda, A.; Matsuoka, K.; Morishita, K.; Nakatani, N.; Nomachi, M.; Noshiro, S.; Ogawa, I.; Ohata, T.; Osumi, H.; Suzuki, K.; Tamagawa, Y.; Tesuno, K.; Trang, V. T. T.; Uehara, T.; Umehara, S.; Yoshida, S.

    2016-05-01

    The observation of neutrino-less double beta decay (0vßß) would be the most practical way to prove the Majorana nature of the neutrino and lepton number violation. CANDLES studies 48Ca double beta decay using CaF2 scintillator. The main advantage of 48Ca is that it has the highest Q-value (4.27 MeV) among all the isotope candidates for 0vßß. The CANDLES III detector is currently operating with 300kg CaF2 crystals in the Kamioka underground observatory, Japan. In 2014, a detector cooling system and a magnetic cancellation coil was installed with the aim to increase light emission of CaF2 scintillator and photo-electron collection efficiency of the photo-multipliers. After this upgrade, light yield was increased to 1000 p.e./MeV which is 1.6 times larger than before. According to data analysis and simulation, main background source in CANDLES is turned out to be high energy external gamma-ray originating neutron capture on the surrounding materials, so called (n,γ). Upgrading the detector by installing neutron and gamma-ray shield can reduce the remaining main backgrounds by two order magnitude. In this report, we discuss the detail of (n,γ) and background reduction by additional shielding.

  9. Neutrino-less Double Beta Decay of {sup 48}Ca-CANDLES

    SciTech Connect

    Kishimoto, T.; Nomachi, M.; Yoshida, S.; Matsuoka, K.; Ichimura, K.; Ito, G.; Yasuda, K.; Kakubata, H.; Miyashita, M.; Takubo, K.; Saka, M.; Seki, K.; Ajimura, S.; Umehara, S.; Nakatani, N.; Tamagawa, Y.; Ogawa, I.; Fushimi, K.; Hazama, R.; Ohsumi, H.

    2011-10-21

    Neutrino-less double beta decay (0{nu}{beta}{beta}) is currently known to be an only experiment to verify whether lepton number is conserved or not. The lepton number non-conservation is the key to create matter dominated universe with CP violation. The so-called leptogenesys scenario presents a way to create the matter dominated universe by these violations. If neutrinos have Majorana mass, transition from a particle to an anti-particle is possible and the left-handed and right-handed neutrinos could have different masses. It is highly likely that the neutrinos are Majorana particles. We have been studying double beta decay of {sup 48}Ca. Our first stage experiment using the ELEGANT VI detector system gave the best lower limit of the half life of 0{nu}{beta}{beta} of {sup 48}Ca. We have been working on CANDLES detector system to sense much longer lifetime region. We have developed techniques to reduce backgrounds. The CADLES detector system was installed at Kamioka underground laboratory. Here I describe a schematic view of the system.

  10. Low energy photon mimic of the tritium beta decay energy spectrum

    NASA Astrophysics Data System (ADS)

    Malabre-O'Sullivan, Neville

    Tritium is a radioactive hydrogen isotope that is typically produced via neutron interaction with heavy water (D2O), producing tritiated water (DTO). As a result of this, tritium accounts for roughly a third of all occupational exposures at a CANDU type nuclear power plant. This identifies a need to study the biological effects associated with tritium (and low energy electrons in general). However, there are complications regarding the dosimetry of tritium, as well as difficulties in handling and using tritium for the purposes of biophysics experiments. To avoid these difficulties, an experiment has been proposed using photons to mimic the beta decay energy spectrum of tritium. This would allow simulation of the radiation properties of tritium, so that a surrogate photon source can be used for biophysics experiments. Through experimental and computational means, this work has explored the use of characteristic x-rays of various materials to modify the output spectrum of an x-ray source, such that it mimics the tritium beta decay spectrum. Additionally, the resultant primary electron spectrum generated in water from an x-ray source was simulated. The results from this research have indicated that the use of characteristic x-rays is not a viable method for simulating a tritium source. Also, the primary electron spectrum generated in water shows some promise for simulating tritium exposure, however further work must be done to investigate the slowing down electron spectrum. Keywords: Tritium, MCNP, low energy electrons, biophysics, characteristic x-rays.

  11. New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products.

    PubMed

    Fallot, M; Cormon, S; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Taín, J L; Yermia, F; Zakari-Issoufou, A-A

    2012-11-16

    In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the (102;104;105;106;107)Tc, (105)Mo, and (101)Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes (235,238)U and (239,241)Pu. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of (239)Pu, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of (235)U, (239,241)Pu, and, in particular, (238)U for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra. PMID:23215477

  12. New Antineutrino Energy Spectra Predictions from the Summation of Beta Decay Branches of the Fission Products

    NASA Astrophysics Data System (ADS)

    Fallot, M.; Cormon, S.; Estienne, M.; Algora, A.; Bui, V. M.; Cucoanes, A.; Elnimr, M.; Giot, L.; Jordan, D.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Remoto, A.; Taín, J. L.; Yermia, F.; Zakari-Issoufou, A.-A.

    2012-11-01

    In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the Tc102;104;105;106;107, Mo105, and Nb101 nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes U235,238 and Pu239,241. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of Pu239, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of U235, Pu239,241, and, in particular, U238 for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra.

  13. First neutrinoless double beta decay results from CUORE-0

    NASA Astrophysics Data System (ADS)

    Gironi, L.; Alduino, C.; Alfonso, K.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; Dafinei, I.; Dally, A.; Davis, C. J.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Santone, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.

    2015-10-01

    The CUORE-0 experiment, a 52 bolometer array searching for neutrinoless double beta decay from 130Te, has started taking data in spring 2013 underground at the Laboratori Nazionali del Gran Sasso (LNGS). The excellent results obtained in terms of energy resolution and background level allowed this experiment to reach the sensitivity of Cuoricino in approximately half the runtime. Combining CUORE-0 data (9.8 kg.yr exposure of 130Te) with the 19.75 kg.yr exposure of the Cuoricino experiment, we obtain the most stringent limit to date on the half-life of this isotope (T1/2 > 4.0 × 1024 yr). In this article, we review the results from CUORE-0 and discuss the status and the physics potential of CUORE, a 19 times larger bolometer array that plans to begin operations by end of this year.

  14. Beta decay and the origins of biological chirality - Experimental results

    NASA Technical Reports Server (NTRS)

    Gidley, D. W.; Rich, A.; Van House, J.; Zitzewitz, P. W.

    1982-01-01

    Preliminary experimental results are presented of an investigation of the possible role of preferential radiolysis by electrons emitted in the beta decay of radionuclides, a parity-nonconserving process, in the universal causation of the optical activity of biological compounds. Experiments were designed to measure the asymmetry in the production of triplet positronium upon the bombardment of an amino acid powder target by a collimated beam of positrons as positron helicity or target chirality is reversed. No asymmetry down to a level of 0.0007 is found in experiments on the D and L forms of cystine and tryptophan, indicating an asymmetry in positronium formation cross section of less than 0.01, while an asymmetry of 0.0031 is found for leucine, corresponding to a formation cross section asymmetry of about 0.04

  15. Radiopurity control in the NEXT-100 double beta decay experiment

    SciTech Connect

    Álvarez, V.; Cárcel, S.; Cervera, A.; Díaz, J.; Ferrario, P.; Gil, A.; Gómez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martín-Albo, J.; Martínez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodríguez, J.; Serra, L.; Simón, A.; Sofka, C.; Sorel, M.; and others

    2013-08-08

    An extensive material screening and selection process is underway in the construction of the 'Neutrino Experiment with a Xenon TPC' (NEXT), intended to investigate neutrinoless double beta decay using a high-pressure xenon gas TPC filled with 100 kg of Xe enriched in {sup 136}Xe. Determination of the radiopurity levels of the materials is based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterráneo de Canfranc (Spain) and also on Glow Discharge Mass Spectrometry. Materials to be used in the shielding, pressure vessel, electroluminescence and high voltage components and energy and tracking readout planes have been already taken into consideration. The measurements carried out are presented, describing the techniques and equipment used, and the results obtained are shown, discussing their implications for the NEXT experiment.

  16. Ground state occupation probabilities of neutrinoless double beta decay candidates

    NASA Astrophysics Data System (ADS)

    Kotila, Jenni; Barea, Jose

    2015-10-01

    A better understanding of nuclear structure can offer important constraints on the calculation of 0 νββ nuclear matrix elements. A simple way to consider differences between initial and final states of neutrinoless double beta decay candidates is to look at the ground state occupation probabilities of initial and final nuclei. As is well known, microscopic interacting boson model (IBM-2) has found to be very useful in the description of detailed aspects of nuclear structure. In this talk I will present results for ground state occupation probabilities obtained using IBM-2 for several interesting candidates of 0 νββ -decay. Comparison with recent experimental results is also made. This work was supported Academy of Finland (Project 266437) and Chilean Ministry of Education (Fondecyt Grant No. 1150564),

  17. Neutrinoless double-beta decay in covariant density functional theory

    SciTech Connect

    Ring, P.; Yao, J. M.; Song, L. S.; Hagino, K.; Meng, J.

    2015-10-15

    We use covariant density functional theory beyond mean field in order to describe neutrinoless double-beta decay in a fully relativistic way. The dynamic effects of particle-number and angular-momentum conservations as well as shape fluctuations of quadrupole character are taken into account within the generator coordinate method for both initial and final nuclei. The calculations are based on the full relativistic transition operator. The nuclear matrix elements (NME’s) for a large number of possible transitions are investigated. The results are compared with various non-relativistic calculations, in particular also with the density functional theory based on the Gogny force. We find that the non-relativistic approximation is justified and that the total NME’s can be well approximated by the pure axial-vector coupling term. This corresponds to a considerable reduction of the computational effort.

  18. Neutrinoless double-beta decay in covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Ring, P.; Yao, J. M.; Song, L. S.; Hagino, K.; Meng, J.

    2015-10-01

    We use covariant density functional theory beyond mean field in order to describe neutrinoless double-beta decay in a fully relativistic way. The dynamic effects of particle-number and angular-momentum conservations as well as shape fluctuations of quadrupole character are taken into account within the generator coordinate method for both initial and final nuclei. The calculations are based on the full relativistic transition operator. The nuclear matrix elements (NME's) for a large number of possible transitions are investigated. The results are compared with various non-relativistic calculations, in particular also with the density functional theory based on the Gogny force. We find that the non-relativistic approximation is justified and that the total NME's can be well approximated by the pure axial-vector coupling term. This corresponds to a considerable reduction of the computational effort.

  19. Project 8: Determining neutrino mass from tritium beta decay using a frequency-based method

    SciTech Connect

    Doe, Peter J.; Kofron, Jared N.; MCBride, Lisa; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Doelman, S.; Rogers, Alan E.; Formaggio, Joseph; Furse, Daniel; Oblath, Noah S.; LaRoque, Benjamin; Leber, Michelle; Monreal, Ben; Bahr, Matthew; Asner, David M.; Jones, Anthony M.; Fernandes, Justin L.; VanDevender, Brent A.; Patterson, Ryan B.; Bradley, Rich; Thummler, Thomas

    2013-10-04

    A general description is given of Project 8, a new approach to measuring the neutrino mass scale via the beta decay of tritium. In Project 8, the energy of electrons emitted in beta decay is determined from the frequency of cyclotron radiation emitted as the electrons spiral in a uniform magnetic field

  20. New techniques and results in sup 76 Ge double-beta decay

    SciTech Connect

    Miley, H.S.; Brodzinski, R.L.; Hensley, W.K.; Reeves, J.H. ); Avignone, F.T. . Dept. of Physics)

    1991-09-01

    Several methods of lowering the background in germanium double-beta decay experiments are discusses. A technique for increasing confidence in double-beta decay measurements by variation of detector enrichment is demonstrated in the case of two-neutrino decay mode of {sup 76}Ge. The impact of cosmic ray spallation in low-background isotopically enriched germanium detectors is examined.

  1. New techniques and results in {sup 76}Ge double-beta decay

    SciTech Connect

    Miley, H.S.; Brodzinski, R.L.; Hensley, W.K.; Reeves, J.H.; Avignone, F.T.

    1991-09-01

    Several methods of lowering the background in germanium double-beta decay experiments are discusses. A technique for increasing confidence in double-beta decay measurements by variation of detector enrichment is demonstrated in the case of two-neutrino decay mode of {sup 76}Ge. The impact of cosmic ray spallation in low-background isotopically enriched germanium detectors is examined.

  2. Beta decay of neutron-rich Co: Probing single-particle states at and above the N=40 subshell closure

    SciTech Connect

    Mueller, W. F.; Bruyneel, B.; Franchoo, S.; Huyse, M.; Kruglov, K.; Kudryavtsev, Y.; Raabe, R.; Reusen, I.; Duppen, P. van; Roosbroeck, J. van; Vermeeren, L.; Weissman, L.; Woehr, A.; Koester, U.; Kratz, K.-L.; Pfeiffer, B.; Thirolf, P.; Walters, W. B.

    1999-09-02

    Neutron-rich Co nuclei with A=66-70 were produced by the laser-ionization isotope-separation on-line method. The {beta} decay from these nuclei has been studied. A case example is given by reporting on the observed decay scheme of {sup 68}Co. The half life of the ground-state decay of this nucleus was measured to be 0.21(3) seconds. In addition, a new {beta} decaying isomer half life of 1.16(25) seconds was discovered. The level scheme of {sup 68}Ni has been significantly extended, and an interpretation of the observed levels is made by assuming that the N=40 gap has the characteristics of a shell closure.

  3. {beta}-decay half-lives and {beta}-delayed neutron emission probabilities of nuclei in the region A < or approx. 110, relevant for the r process

    SciTech Connect

    Pereira, J.; Galaviz, D.; Matos, M.; Montes, F.; Hennrich, S.; Kessler, R.; Schertz, F.; Aprahamian, A.; Quinn, M.; Woehr, A.; Arndt, O.; Pfeiffer, B.; Becerril, A.; Elliot, T.; Estrade, A.; Lorusso, G.; Schatz, H.; Kratz, K.-L.; Mantica, P. F.; Moeller, P.

    2009-03-15

    Measurements of {beta}-decay properties of A < or approx. 110 r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory at Michigan State University. {beta}-decay half-lives for {sup 105}Y, {sup 106,107}Zr, and {sup 111}Mo, along with {beta}-delayed neutron emission probabilities of {sup 104}Y, {sup 109,110}Mo and upper limits for {sup 105}Y, {sup 103-107}Zr, and {sup 108,111}Mo have been measured for the first time. Studies on the basis of the quasi-random-phase approximation are used to analyze the ground-state deformation of these nuclei.

  4. Beta-decay half-lives and beta-delayed neutron emisison probabilities of nuclei in the region A. 110, relevant for the r-process

    SciTech Connect

    Moller, Peter; Pereira, J; Hennrich, S; Aprahamian, A; Arndt, O; Becerril, A; Elliot, T; Estrade, A; Galaviz, D; Kessler, R; Kratz, K - L; Lorusso, G; Mantica, P F; Matos, M; Montes, F; Pfeiffer, B; Schatz, F; Schnorrenberger, L; Smith, E; Stolz, A; Quinn, M; Walters, W B; Wohr, A

    2009-01-01

    Measurements of the {beta}-decay properties of A {approx}< 110 r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory, at Michigan State University. {beta}-decay half-lives for {sup 105}Y, {sup 106,107}Zr and {sup 108,111}Mo, along with ,B-delayed neutron emission probabilities of 104Y, 109,11OMo and upper limits for 105Y, 103-107Zr and 108,111 Mo have been measured for the first time. Studies on the basis of the quasi-random phase approximation are used to analyze the ground-state deformation of these nuclei.

  5. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  6. The Gerda search for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Christopher; Gerda Collaboration

    2013-10-01

    The Germanium Detector Array (Gerda) is a search for the neutrinoless double beta decay of 76Ge. High Purity Germanium (HPGe) detectors enriched in the isotope-76 are operated bare in liquid argon (LAr). LAr is used for both cooling of the HPGe diodes to their operating temperatures and for shielding from external radiation sources. From the measurements of the first phase that began data taking on 1 Nov. 2011 it is expected to have a sensitivity on the level of T1/2>2E25 yr at a 90% CL after 15 kġyr. The goal of this phase will be to probe the claim of an observation by part of the Heidelberg-Moscow collaboration. Efforts will then focus on increasing the sensitivity of the experiment by deploying additional enriched detectors that are in an advanced stage of production and by reducing the background index further by making use of pulse shape discrimination techniques as well as an active LAr veto. While the 0νββ region of interest continues to remain blinded, here the status of Phase-I data taking is presented along with the work towards improving the experimental sensitivity.

  7. LUCIFER: Neutrinoless Double Beta decay search with scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Pattavina, Luca; LUCIFER Collaboration

    2011-12-01

    One of the fundamental open questions in elementary particle physics is the value of the neutrino mass and its nature of Dirac or Majorana particle. Neutrinoless double beta decay (DBD0ν) is a key tool for investigating these neutrino properties and for finding answers to the open questions concerning mass hierarchy and absolute scale. Experimental techniques based on the calorimetric approach with cryogenic particle detectors are proved to be suitable for the search of this rare decay, thanks to high energy resolution and large mass of the detectors. One of the main issues to access an increase of the experimental sensitivity is strictly related to background reduction, trying to perform possibly a zero background experiment. The LUCIFER (Low-background Underground Cryogenic Installation For Elusive Rates) project, funded by the European Research Council, aims at building a background-free DBD0ν experiment, with a discovery potential comparable with the present generation experiments. The idea of LUCIFER is to measure, simultaneously, heat and scintillation light with ZnSe bolometers. Detector features and operational procedures are reviewed. The expected performances and sensitivity are also discussed.

  8. LUCIFER: scintillating bolometers for neutrinoless double-beta decay searches

    NASA Astrophysics Data System (ADS)

    Pattavina, Luca

    2014-09-01

    In the field of fundamental particle physics, the nature of the neutrino, if it is a Dirac or a Majorana particle, plays a crucial role not only in neutrino physics, but also in the overall framework of fundamental particle interactions and in cosmology. Neutrinoless double-beta decay (0vDBD) is the key tool for the investigation of this nature. Experimental techniques based on the calorimetric approach with cryogenic particle detectors have demonstrated suitability for the investigation of rare nuclear processes, profiting from excellent energy resolution and scalability to large masses. Unfortunately, the most relevant issue is related to background suppression. In fact, bolometers being fully-active detectors struggle to reach extremely low background level. The LUCIFER project aims to deploy the first array of enriched scintillating bolometers. Thanks to the double read-out - heat and scintillation light produced by scintillating bolometers - a highly efficient background identification and rejection is guaranteed, leading to a background-free experiment. We show the potential of such technology in ZnMoO4 and ZnSe prototypes. We describe the current status of the project, including results of the recent R&D activity.

  9. The beta decay asymmetry parameter of /sup 35/Ar

    SciTech Connect

    Garnett, J.D.

    1987-11-01

    The beta decay asymmetry parameter for /sup 35/Ar = /sup 35/Cl + e/sup +/ + nu/sub e/ has been remeasured in order to resolve a long standing puzzle. Previous asymmetry measurements, when combined with the comparative half-life, yield a value for the vector coupling constant, G/sub v/, that is in serious disagreement with the accepted value. We produced polarized /sup 35/Ar by a (p,n) reaction on /sup 35/Cl using the polarized proton beam provided by Lawrence Berkeley Laboratory's 88-Inch Cyclotron. The polarization of the /sup 35/Ar was determined by measuring the asymmetry of the positrons produced in /sup 35/Ar decay to the first excited state in /sup 35/Cl (branching ratio = 1.3%) in coincidence with a 1219.4 keV gamma ray. Our result, A/sub 0/ = 0.49 +- 0.10, combined with the comparative half-life yields a value for G/sub v/ in agreement with the accepted value.

  10. The SuperNEMO neutrinoless double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Vilela, Cristovao; NEMO Collaboration

    2015-04-01

    SuperNEMO is an experiment currently in the construction phase with the aim of searching for neutrinoless double beta decay, a beyond the standard model lepton number violating process. It employs the same strategy as its predecessor NEMO-3, with a tracker and calorimeter surrounding a thin foil of source isotope. Twenty modules are planned, yielding 100 kg of 82Se as source, with a sensitivity to a half-life of 1026 years. The first module is intended to demonstrate the very stringent radiopurity requirements, with no background counts being expected in the region of interest of the decay for 2.5 years of data taking. It will hold 7 kg of 82Se, giving it a sensitivity to a half-life of 6.5 × 1024 years. The tracking detector is essential for background discrimination and its construction and commissioning are being undertaken in the U.K., primarily at UCL, MSSL (UCL) and The University of Manchester.

  11. Online Data Monitoring for the CUORE Neutrinoless Double-beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Feintzeig, Jacob; Cuore Collaboration

    2015-10-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming bolometric experiment that will search for neutrinoless double-beta decay at Gran Sasso, Italy. Crystals of tellurium dioxide are instrumented with neutron transmutation doped (NTD) thermistors to observe the heat pulse caused by a double beta decay event. Currently under construction, CUORE will contain 988 independent bolometers. The CUORE-0 detector, consisting of the first 52 bolometers, took data from 2013-2015. After briefly reviewing results from a neutrinoless double-beta decay search with CUORE-0, I will outline recent work to improve data analysis and online data quality monitoring for the upcoming CUORE detector.

  12. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    SciTech Connect

    Bellini, F.

    2012-11-20

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0{nu}{beta}{beta}), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0{nu}{beta}{beta} search will be given as well as an overview of present status and future perpectives of experiments.

  13. Exploration of Pixelated detectors for double beta decay searches within the COBRA experiment

    NASA Astrophysics Data System (ADS)

    Schwenke, M.; Zuber, K.; Janutta, B.; He, Z.; Zeng, F.; Anton, G.; Michel, T.; Durst, J.; Lück, F.; Gleixner, T.; Gössling, C.; Schulz, O.; Köttig, T.; Krawczynski, H.; Martin, J.; Stekl, I.; Cermak, P.

    2011-09-01

    The aim of the COBRA experiment is the search for neutrinoless double beta decay events in Cadmium Zinc Telluride (CdZnTe) room temperature semiconductor detectors. The development of pixelated detectors provides the potential for clear event identification and thus major background reduction. The tracking option of a semiconductor is a unique approach in this field. For initial studies, several possible detector systems are considered with a special regard for low background applications: the large volume system Polaris with a pixelated CdZnTe sensor, Timepix detectors with Si and enriched CdTe sensor material and a CdZnTe pixel system developed at the Washington University in St. Louis, USA. For all detector systems first experimental background measurements taken at underground laboratories (Gran Sasso Underground Laboratory in Italy, LNGS and the Niederniveau Messlabor Felsenkeller in Dresden, Germany) and additionally for the Timepix detectors simulation results are presented.

  14. Ultra-low gamma-ray measurement system for neutrinoless double beta decay.

    PubMed

    Kang, W G; Choi, J H; Jeon, E J; Lee, J I; Kim, H J; Kim, S K; Kim, Y D; Lee, J H; Ma, K J; Myung, S S; So, J H

    2013-11-01

    An experiment for the detection of 0νβ(+)/EC and 0νEC/EC in 92Mo nuclei has been carried out with a scintillating crystal, CaMoO4, in coincidence with the HPGe detector. We study the background events inside the event selection window for 0ν β(+)/EC decays of CaMoO4 detector. For 51.2 days of data taking period, we didn't observe any event in the neutrinoless EC/EC decay event window. The (92)Mo 0νβ(+)/EC decay half-life limit was set to 0.61×10(20) years with a 90% confidence by method of Feldman and Cousins. This ultra-low gamma ray measurement utilizing coincidence technique can be used for the resonant EC/EC decay process of some nuclei which is potentially important for neutrinoless double beta decay process. PMID:23726518

  15. Neutron-Induced Reactions on Copper and Zero-Neutrino Double-Beta Decay Searches

    NASA Astrophysics Data System (ADS)

    Gooden, Matthew; Kelley, John; Fallin, Brent; Finch, Sean; Howell, Calvin; Rusev, Gencho; Tonchev, Anton; Tornow, Werner

    2012-10-01

    Cross-section measurements of (n,xγ) reactions on ^natCu were carried out at TUNL using monoenergetic neutrons at six energies of En = 6, 8, 10, 12, 14, 16 MeV. These studies were performed to provide accurate cross-section data on materials abundant in experimental setups involving HPGe detectors used to search for rare events, like the neutrino-less double-beta decay of ^76Ge. Spallation and (α,n) neutrons are expected to cause the largest source of external background in the energy region of interest. At TUNL pulsed neutron beams were produced via the ^2H(d,n)^3He reaction and the deexcitation γ rays from the reaction ^natCu(n,xγ) were detected with clover HPGe detectors. Our cross-section data will be compared to theoretical calculations and to data recently obtained at LANL with a white neutron beam.

  16. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    NASA Astrophysics Data System (ADS)

    Bellini, F.

    2012-11-01

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0νββ), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0νββ search will be given as well as an overview of present status and future perpectives of experiments.

  17. Lucifer:. AN Experimental Breakthrough in the Search for Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Dafinei, I.; Ferroni, F.; Giuliani, A.; Pirro, S.; Previtali, E.

    2011-03-01

    LUCIFER (Low-background Underground Cryogenic Installation For Elusive Rates) is a new project for the study of neutrinoless Double Beta Decay, based on the technology of the scintillating bolometers. These devices promise a very efficient rejection of the a background, opening the way to a virtually background-free experiment if candidates with a transition energy higher than 2615 keV are investigated. The baseline candidate for LUCIFER is 82Se. This isotope will be embedded in ZnSe crystals grown with enriched selenium and operated as scintillating bolometers in a low-radioactivity underground dilution refrigerator. In this paper, the LUCIFER concept will be introduced and the sensitivity and the prospects related to this project will be discussed.

  18. LUCIFER, a potentially background-free approach to the search for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Nones, C.; Lucifer Group

    2011-08-01

    LUCIFER (Low-background Underground Cryogenic Installation For Elusive Rates) is a new project for the study of neutrinoless Double Beta Decay, based on the technology of scintillating bolometers. These devices promise a very efficient rejection of the alpha background, opening the way to a virtual background-free experiment if candidates with a transition energy higher than 2615 keV are investigated. The baseline candidate for LUCIFER is 82Se. This isotope will be embedded in ZnSe crystals grown with enriched selenium and operated as scintillating bolometers in a low-radioactivity underground dilution refrigerator. In this paper, the LUCIFER concept will be introduced. The sensitivity and the very promising prospects related to this project will be discussed.

  19. An experimental investigation of double beta decay of /sup 100/Mo

    SciTech Connect

    Dougherty, B.L.

    1988-11-17

    New limits on half-lives for several double beta decay modes of /sup 100/Mo were obtained with a novel experimental system which included thin source films interleaved with a coaxial array of windowless silicon detectors. Segmentation and timing information allowed backgrounds originating in the films to be studied in some detail. Dummy films containing /sup 96/Mo were used to assess remaining backgrounds. With 0.1 mole years of /sup 100/Mo data collected, the lower half-life limits at 90% confidence were 2.7 /times/ 10/sup 18/ years for decay via the two-neutrino mode, 5.2 /times/10/sup 19/ years for decay with the emission of a Majoron, and 1.6 /times/ 10/sup 20/ years and 2.2 /times/ 10/sup 21/ years for neutrinoless 0/sup +/ ..-->.. 2/sup +/ and 0/sup +/ ..-->.. 0/sup +/ transitions, respectively. 50 refs., 38 figs., 11 tabs.

  20. A Novel Approach to β-delayed Neutron Spectroscopy Using the Beta-decay Paul Trap

    SciTech Connect

    Scielzo, N.D.; Yee, R.M.; Bertone, P.F.; Buchinger, F.; Caldwell, S.A.; Clark, J.A.; Czeszumska, A.; Deibel, C.M.; Greene, J.P.; Gulick, S.; Lascar, D.; Levand, A.F.; and others

    2014-06-15

    A new approach to β-delayed neutron spectroscopy has been demonstrated that circumvents the many limitations associated with neutron detection by instead inferring the decay branching ratios and energy spectra of the emitted neutrons by studying the nuclear recoil. Using the Beta-decay Paul Trap, fission-product ions were trapped and confined to within a 1-mm{sup 3} volume under vacuum using only electric fields. Results from recent measurements of {sup 137}I{sup +} and plans for development of a dedicated ion trap for future experiments using the intense fission fragment beams from the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory are summarized. The improved nuclear data that can be collected is needed in many fields of basic and applied science such as nuclear energy, nuclear astrophysics, and stockpile stewardship.

  1. Nuclear-Structure Data Relevant to Neutinoless-Double-Beta-Decay Matrix Elements

    NASA Astrophysics Data System (ADS)

    Kay, Benjamin

    2015-10-01

    An observation of neutrinoless double beta decay is one of the most exciting prospects in contemporary physics. It follows that calculations of the nuclear matrix elements for this process are of high priority. The change in the wave functions between the initial and final states of the neutrinoless-double-beta-decay candidates 76Ge-->76Se, 100Mo-->100Ru, 130Te-->130Xe, and 136Xe-->136Ba have been studied with transfer reactions. The data are focused on the change in the occupancies of the valence orbitals in the ground states as two neutrons decay into two protons. The results set a strict constraint on any theoretical calculations describing this rearrangement and thus on the magnitude of the nuclear matrix elements for this process, which currently exhibit uncertainties at the factor of 2-4 level. Prior to these measurements there were limited experimental data were available A = 76 and 100 systems, and very limited data for the A = 130 and 136 systems, in a large part due to the gaseous Xe isotopes involved. The uncertainties on most of these data are estimated to range from 0.1-0.3 nucleons. The program started with the A = 76 system, with subsequent calculations, modified to reproduce the experimental occupancies, exhibiting a significant reduction in the discrepancy between various models. New data are available for the A = 100 , 130, and 136 systems. I review the program, making detailed comparisons between the latest theoretical calculations and the experimental data where available. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357.

  2. Absolute mass of neutrinos and the first unique forbidden {beta} decay of {sup 187}Re

    SciTech Connect

    Dvornicky, Rastislav; Simkovic, Fedor; Muto, Kazuo; Faessler, Amand

    2011-04-15

    The planned rhenium {beta}-decay experiment, called the ''Microcalorimeter Arrays for a Rhenium Experiment'' (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which will take commissioning data in 2011 and will proceed for 5 years. We present the energy distribution of emitted electrons for the first unique forbidden {beta} decay of {sup 187}Re. It is found that the p-wave emission of electron dominates over the s wave. By assuming mixing of three neutrinos, the Kurie function for the rhenium {beta} decay is derived. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed {beta} decay of {sup 3}H.

  3. A Search for Lorentz-Violation in Double Beta Decay with EXO-200

    NASA Astrophysics Data System (ADS)

    Johnson, Tessa; EXO-200 Collaboration

    2015-10-01

    The Standard-Model Extension (SME) framework assumes Lorentz-violation at the Planck scale, a result of certain theories uniting quantum mechanics to General Relativity. Lorentz-violating operators are added to the current Standard Model, potentially producing effects that could be observed on a macroscopic scale, for instance altering the standard spectrum of double beta decay. The EXO-200 experiment uses 175 kg of enriched liquid xenon to search for neutrinoless double beta decay in 136Xe, and the low background and high precision of the experiment create a good platform to search for other phenomena in double beta decay. The results of a search for deviations to the two-neutrino double beta decay spectrum of 136Xe that would indicate neutrino coupling to a Lorentz-violating operator in the SME are presented.

  4. Beta-decay spectroscopy relevant to the r-process nucleosynthesis

    SciTech Connect

    Nishimura, Shunji; Collaboration: RIBF Decay Collaboration

    2012-11-12

    A scientific program of beta-decay spectroscopy relevant to r-process nucleosynthesis has been started using high intensity U-beam at the RIBF. The first results of {beta}-decay half-lives of very neutron-rich Kr to Tc nuclides, all of which lie close to the r-process path, suggest a systematic enhancement of the the {beta}-decay rates of the Zr and Nb isotopes around A110 with respect to the predictions of the deformed quasiparticle-random-phase-approximation model (FRDM + QRPA). An impact of the results on the astrophysical r-process is discussed together with the future perspective of the {beta}-decay spectroscopy with the EURICA.

  5. Superallowed nuclear beta decay: Precision measurements for basic physics

    SciTech Connect

    Hardy, J. C.

    2012-11-20

    For 60 years, superallowed 0{sup +}{yields}0{sup +} nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision ({+-}0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ({+-}0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from {sup 10}C to {sup 74}Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, G{sub V}, has been extracted from the data and used to determine the top left element of the CKM matrix, V{sub ud}. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.

  6. Beta-decay measurements of neutron-deficient cesium isotopes

    SciTech Connect

    Parry, R.F.

    1983-03-01

    Beta decay endpoint energy measurements of the neutron deficient cesium isotopes were done using an energy spectrum shape fitting technique. This was a departure from the typical method of endpoint energy analysis, the Fermi-Kurie plot. A discussion of the shape fitting procedure and its improved features are discussed. These beta endpoint measurements have led to total decay energies (Q/sub EC/) of the neutron deficient /sup 119/ /sup 123/Cs isotopes. The total decay energies of /sup 122m/Cs (Q/sub EC/ = 6.95 +- 0.25 MeV) and /sup 119/Cs (Q/sub EC/ = 6.26 +- 0.29 MeV) were new measurements. The total decay energies of /sup 123/Cs (Q/sub EC/ = 4.05 +- 0.18 MeV), /sup 122g/Cs (Q/sub EC/ = 7.05 +- 0.18 MeV), /sup 121/Cs (Q/sub EC/ = 5.21 +- 0.22 MeV), and /sup 120/Cs (Q/sub EC/ = 7.38 +- 0.23 MeV) were measurements with significantly improved uncertainties as compared to the literature. Further, a combination of the energy levels derived from previous literature gamma-gamma coincident measurements and the experimental beta-coincident gamma decay energies has supported an improved level scheme for /sup 121/Xe and the proposal of three new energy levels in /sup 119/Xe. Comparison of the experimental cesium mass excesses (determined with our Q/sub EC/ values and known xenon mass excesses) with both the literature and theoretical predicted values showed general agreement except for /sup 120/Cs. Possible explanations for this deviation are discussed.

  7. Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of 48Ca with the NEMO-3 detector

    NASA Astrophysics Data System (ADS)

    Arnold, R.; Augier, C.; Bakalyarov, A. M.; Baker, J. D.; Barabash, A. S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; Caffrey, A. J.; Calvez, S.; Cascella, M.; Cerna, C.; Cesar, J. P.; Chapon, A.; Chauveau, E.; Chopra, A.; Duchesneau, D.; Durand, D.; Egorov, V.; Eurin, G.; Evans, J. J.; Fajt, L.; Filosofov, D.; Flack, R.; Garrido, X.; Gómez, H.; Guillon, B.; Guzowski, P.; Hodák, R.; Huber, A.; Hubert, P.; Hugon, C.; Jullian, S.; Klimenko, A.; Kochetov, O.; Konovalov, S. I.; Kovalenko, V.; Lalanne, D.; Lang, K.; Lebedev, V. I.; Lemière, Y.; Le Noblet, T.; Liptak, Z.; Liu, X. R.; Loaiza, P.; Lutter, G.; Mamedov, F.; Marquet, C.; Mauger, F.; Morgan, B.; Mott, J.; Nemchenok, I.; Nomachi, M.; Nova, F.; Nowacki, F.; Ohsumi, H.; Pahlka, R. B.; Perrot, F.; Piquemal, F.; Povinec, P.; Přidal, P.; Ramachers, Y. A.; Remoto, A.; Reyss, J. L.; Richards, B.; Riddle, C. L.; Rukhadze, E.; Rukhadze, N. I.; Saakyan, R.; Salazar, R.; Sarazin, X.; Shitov, Yu.; Simard, L.; Šimkovic, F.; Smetana, A.; Smolek, K.; Smolnikov, A.; Söldner-Rembold, S.; Soulé, B.; Štekl, I.; Suhonen, J.; Sutton, C. S.; Szklarz, G.; Thomas, J.; Timkin, V.; Torre, S.; Tretyak, Vl. I.; Tretyak, V. I.; Umatov, V. I.; Vanushin, I.; Vilela, C.; Vorobel, V.; Waters, D.; Zhukov, S. V.; Žukauskas, A.; NEMO-3 Collaboration

    2016-06-01

    The NEMO-3 experiment at the Modane Underground Laboratory investigates the double-beta decay of 48Ca. Using 5.25 yr of data recorded with a 6.99 g sample of 48Ca, approximately 150 double-beta decay candidate events are selected with a signal-to-background ratio greater than 3. The half-life for the two-neutrino double-beta decay of 48Ca is measured to be T1/2 2 ν=[6. 4-0.6+0.7(stat)-0.9 +1.2(syst ) ]×1 019 yr . A search for neutrinoless double-beta decay of 48Ca yields a null result, and a corresponding lower limit on the half-life is found to be T1/2 0 ν>2.0 ×1 022 yr at 90% confidence level, translating into an upper limit on the effective Majorana neutrino mass of ⟨mβ β⟩<6.0 - 26 eV , with the range reflecting different nuclear matrix element calculations. Limits are also set on models involving Majoron emission and right-handed currents.

  8. Neutron interactions in the CUORE neutrinoless double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Dolinski, Michelle Jean

    Neutrinoless double beta decay (0nuDBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0nuDBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0nuDBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0nuDBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0nuDBD of 130Te with a ton-scale array of unenriched TeO2 bolometers. By increasing mass and decreasing the background for 0nuDBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10-6. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0nuDBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, winch can be produced underground both by (alpha,n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE data to set an upper

  9. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    SciTech Connect

    Dolinski, Michelle Jean

    2008-10-01

    Neutrinoless double beta decay (0vDBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0vDBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0vDBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0vDBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0vDBD of 130Te with a ton-scale array of unenriched TeO2 bolometers. By increasing mass and decreasing the background for 0vDBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10-6. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0vDBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by (α,n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE

  10. Negative-parity states and {beta} decays in odd Ho and Dy nuclei with A=151,153

    SciTech Connect

    Al-Khudair, Falih H.; Long Guilu; Sun Yang

    2008-03-15

    We investigated the negative-parity states and electromagnetic transitions in {sup 151,153}Ho and {sup 151,153}Dy within the framework of the interacting boson fermion model 2 (IBFM-2). Spin assignments for some states with uncertain spin are made based on this calculation. Calculated excitation energies, electromagnetic transitions, and branching ratios are compared with available experimental data and a good agreement is obtained. The model wave functions were used to study {beta} decays from Ho to Dy isotones, and the calculated logft values are close to the experimental data.

  11. Purifications of calcium carbonate and molybdenum oxide powders for neutrinoless double beta decay experiment, AMoRE

    SciTech Connect

    Park, HyangKyu

    2015-08-17

    The AMoRE (Advanced Mo based Rare process Experiment) collaboration is going to use calcium molybdate crystals to search for neutrinoless double beta decay of {sup 100}Mo isotope. In order to make the crystal, we use calcium carbonate and molybdenum oxide powders as raw materials. Therefore it is highly necessary to reduce potential sources for radioactive backgrounds such as U and Th in the powders. In this talk, we will present our studies for purification of calcium carbonate and molybdenum oxide powders.

  12. Beta Decay Study of the T{sub z}=−2{sup 56}Zn Nucleus and the Determination of the Half-Lives of a Few fp-shell Nuclei

    SciTech Connect

    Rubio, B.; Orrigo, S.E.A.; Kucuk, L.; Montaner-Pizá, A.; Fujita, Y.; Fujita, H.; Blank, B.; Adachi, T.; Agramunt, J.; Algora, A.; Ascher, P.; Cáceres, L.; France, G. de; Gerbaux, M.; Giovinazzo, J.; Grevy, S. [CENBG, Université Bordeaux 1, UMR 5797 CNRS and others

    2014-06-15

    This paper concerns the experimental study of the β decay properties of few proton-rich fp-shell nuclei. The nuclei were produced at GANIL in fragmentation reactions, separated with the LISE spectrometer and stopped in an implantation detector surrounded by Ge detectors. The β-delayed gammas, β-delayed protons and the exotic β-delayed gamma-proton emission have been studied. Preliminary results are presented. The decay of the T{sub z}=−2 nucleus {sup 56}Zn has been studied in detail. Information from the β-delayed protons and β-delayed gammas has been used to deduce the decay scheme. The exotic beta-delayed gamma-proton decay has been observed for the first time in the fp-shell. The interpretation of the data was made possible thanks to the detailed knowledge of the mirror Charge Exchange (CE) process and the gamma de-excitation of the states in {sup 56}Co, the mirror nucleus of {sup 56}Cu.

  13. Beta decay of the fission product 125Sb and a new complete evaluation of absolute gamma ray transition intensities

    NASA Astrophysics Data System (ADS)

    Rajput, M. U.; Ali, N.; Hussain, S.; Mujahid, S. A.; MacMahon, D.

    2012-04-01

    The radionuclide 125Sb is a long-lived fission product, which decays to 125Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.

  14. Second unique forbidden {beta} decay of {sup 115}In and neutrino mass

    SciTech Connect

    Dvornicky, R.; Simkovic, F.

    2011-12-16

    The measurement of the electron spectrum in {beta} decays close to the end point provides a robust direct determination of the values of neutrino masses. The most sensitive experiments use tritium and rhenium {beta} decays because these transitions have low Q value. Recent measurement with Penning traps established that the {beta} decay of {sup 115}In(9/2{sup +}) to the first excited state of {sup 115}Sn(3/2{sup +}) is a transition with the smallest Q value among {beta} decays. The decay is associated with a change of spin and parity {Delta}J{sup {pi}} = 3{sup +} ({Delta}L = 2, {Delta}S = 1) of nucleus, i.e., classified as unique second forbidden {beta} decay. Our investigation shows that in this transition electrons are predominantly emitted in d{sub 5/2} partial waves. In addition, it is found that the Kurie function associated with this transition near the end point within a good accuracy reflects a behavior the Kurie function of superallowed {beta} transitions.

  15. Neutron inelastic scattering processes as a background for double-{beta} decay experiments

    SciTech Connect

    Mei, D.-M.; Elliott, S. R.; Hime, A.; Gehman, V.; Kazkaz, K.

    2008-05-15

    We investigate several Pb(n,n{sup '}{gamma}) and Ge(n,n{sup '}{gamma}) reactions. We measure {gamma}-ray production from Pb(n,n{sup '}{gamma}) reactions that can be a significant background for double-{beta} decay experiments which use lead as a massive inner shield. Particularly worrisome for Ge-based double-{beta} decay experiments are the 2041-keV and 3062-keV {gamma} rays produced via Pb(n,n{sup '}{gamma}). The former is very close to the {sup 76}Ge double-{beta} decay endpoint energy and the latter has a double escape peak energy near the endpoint. We discuss the implications of these {gamma} rays on past and future double-{beta} decay experiments and estimate the cross section to excite the level that produces the 3062-keV {gamma} ray. Excitation {gamma}-ray lines from Ge(n,n{sup '}{gamma}) reactions are also observed. We consider the contribution of such backgrounds and their impact on the sensitivity of next-generation searches for neutrinoless double-{beta} decay using enriched germanium detectors.

  16. Neutrinoless double {beta}-decay nuclear matrix elements within the SRQRPA with self-consistent short range correlations

    SciTech Connect

    Benes, Petr; Simkovic, Fedor

    2009-11-09

    The nuclear matrix elements M{sup 0v} of the neutrinoless double beta decay (0v{beta}{beta}-decay) are systematically evaluated using the self-consistent renormalized quasiparticle random phase approximation (SRQRPA). The residual interaction and the two-nucleon short-range correlations are derived from the charge-dependent Bonn (CD-Bonn) potential. The importance of further progress in the calculation of the 0v{beta}{beta}-decay nuclear matrix elements is stressed.

  17. Observation of the acceleration by an electromagnetic field of nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Reiss, H. R.

    2008-02-01

    Measurements are reported of the acceleration of the first-forbidden beta decay of 137Cs by exposure to intense, low-frequency electromagnetic fields. Two separate experiments were done: one in a coaxial cavity, and the other in a coaxial transmission line. The first showed an increase in the beta decay rate of (6.8±3.2)×10-4 relative to the natural rate, and the other resulted in an increase of (6.5±2.0)×10- 4. In addition, a Fourier analysis of the rate of 662 keV gamma emission following from the beta decay in the standing-wave experiment showed a clear indication of the frequency with which the external field was switched on and off. A simultaneously detected gamma emission from a placebo nucleus showed no such peak.

  18. The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    SciTech Connect

    Schubert, Alexis G.; Aguayo, Estanislao; Avignone, F. T.; Zhang, C.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Leon, Jonathan D.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, Mark; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Sobolev, V.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, Werner; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2012-09-28

    The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge neutrinoless double-beta decay Q-value of 2039 keV.

  19. Influence of a keV sterile neutrino on neutrinoless double beta decay: How things changed in recent years

    NASA Astrophysics Data System (ADS)

    Merle, Alexander; Niro, Viviana

    2013-12-01

    Earlier studies of the influence of dark matter keV sterile neutrinos on neutrinoless double beta decay concluded that there is no significant modification of the decay rate. These studies have focused only on a mass of the keV sterile neutrino above 2 and 4 keV, respectively, as motivated by certain production mechanisms. On the other hand, alternative production mechanisms have been proposed, which relax the lower limit for the mass, and new experimental data are available, too. For this reason, an updated study is timely and worthwhile. We focus on the most recent data, i.e., the newest Chandra and XMM-Newton observational bounds on the x-ray line originating from radiative keV sterile neutrino decay, as well as the new measurement of the previously unknown leptonic mixing angle θ13. While the previous works might have been a little short-sighted, the new observational bounds do indeed render any influences of keV sterile neutrinos on neutrinoless double beta decay small. This conclusion even holds in case not all the dark matter is made up of keV sterile neutrinos.

  20. Maria Goeppert Mayer's work on beta-decay and pairing, and its relevance today

    NASA Astrophysics Data System (ADS)

    Moszkowski, Steven

    2013-04-01

    Maria Goeppert Mayer's work on beta-decay and pairing is not as well known as her Nobel Prize winning work on the nuclear shell model, but it attests to her wide range of accomplishments. Her paper on double beta decay was the first one written on the subject. Later she also worked on the application of beta decay as a test of the nuclear shell model. Due to its very long half-life, double beta-decay was not found experimentally until the 1980's. This involves emission of two neutrinos along with the two electrons. However, in principle it is also possible to have double beta decay with no neutrinos, a process which was identified about 10 years ago, though this is still quite controversial. Currently, there are several groups working on this problem, which has significant implications for particle physics and for cosmology. It was known from the earliest days of nuclear physics that nuclei with even Z and even N are more stable than others due to the pairing effect. Indeed, all nuclei in which double beta-decay is looked for are even-even and this would not be possible were it not for pairing. In MGM's paper on pairing, published shortly after the ones on the magic numbers and role of spin-orbit coupling, she used a very simplified zero range nuclear interaction. There has been considerable work on pairing in the meantime. It is still an open problem how to understand the details of how pairing works in nuclei, in terms of realistic nucleon-nucleon interactions.

  1. Observation of Two-Neutrino Double-Beta Decay in Xe-136 with EXO-200

    SciTech Connect

    Ackerman, N.; Aharmim, B.; Auger, M.; Auty, D.J.; Barbeau, P.S.; Barry, K.; Bartoszek, L.; Beauchamp, E.; Belov, V.; Benitez-Medina, C.; Breidenbach, M.; Burenkov, A.; Cleveland, B.; Conley, R.; Conti, E.; Cook, J.; Cook, S.; Coppens, A.; Counts, I.; Craddock, W.; Daniels, T.; /more authors..

    2012-09-14

    We report the observation of two-neutrino double-beta decay in {sup 136}Xe with T{sub 1/2} = 2.11 {+-} 0.04(stat) {+-} 0.21(syst) x 10{sup 21} yr. This second-order process, predicted by the standard model, has been observed for several nuclei but not for {sup 136}Xe. The observed decay rate provides new input to matrix element calculations and to the search for the more interesting neutrinoless double-beta decay, the most sensitive probe for the existence of Majorana particles and the measurement of the neutrino mass scale.

  2. Optimization of the Transport Shield for Neutrinoless Double Beta-decay Enriched Germanium

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Reid, Douglas J.; Fast, James E.

    2012-04-15

    This document presents results of an investigation of the material and geometry choice for the transport shield of germanium, the active detector material used in 76Ge neutrinoless double beta decay searches. The objective of this work is to select the optimal material and geometry to minimize cosmogenic production of radioactive isotopes in the germanium material. The design of such a shield is based on the calculation of the cosmogenic production rate of isotopes that are known to cause interfering backgrounds in 76Ge neutrinoless double beta decay searches.

  3. New limit on the neutrinoless double beta decay of /sup 100/Mo

    SciTech Connect

    Krivicich, J.M.

    1988-03-01

    A search for the neutrinoless double beta decay of /sup 100/Mo was conducted using thin Mo films and solid state Si detectors. The experiment has collected 3500 hours of data operating underground in a deep silver mine (3290 M.W.E.). Only one event was found to be consistent with neutrinoless double beta decay. Using this one event, a limit of greater than or equal to 1 x 10/sup 22/ years (1 sigma) is set on the /sup 100/Mo half-life. This is approximately five times larger than the best previous /sup 100/Mo limit.

  4. The MAJORANA experiment: an ultra-low background search for neutrinoless double-beta decay

    SciTech Connect

    Phillips, D.; Aguayo Navarrete, Estanislao; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor; Giovanetti, G. K.; Green, Matthew P.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keller, C.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2012-12-01

    The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the Majorana Experiment, known as the Demonstrator, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the Demonstrator is to validate whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak.

  5. Atomic effects in tritium beta-decay. II. Muon to electron conversion in atoms

    SciTech Connect

    Wampler, K.D.

    1989-01-01

    I. The final-state, atomic effects in the low energy end of the tritium beta decay spectrum are studied in detail. The author treats the instantaneous, two-electron repulsion in the final state, effectively to all orders in perturbation theory, by solving the eigenvalue problem with a discretized and truncated form of the Hamiltonian. He finds that these effects fail to explain the distortion in the spectrum observed by Simpson (Phys. Rev. Lett. 54, 649 (1985)). Simpson attributed this distortion to the admixture of a heavy mass antineutrino in the outgoing electron antineutrino state. In fact, the final-state Coulomb effects enhance the distortion. This calculation clears up some of the ambiguities of other theoretical analyses based on considerations of screening functions and perturbation theory. II. He presents a phenomenological study of separate lepton number violating muon to electron conversion in atoms. Previous work on this process has concentrated on elastic transitions where the nucleus characteristics have the gate on the substrate and the source-drain contacts on the top of the sample. The first use as an FET dielectric is reported of hydrogenated amorphous silicon-carbon (prepared from silane and propane mixture), photo-oxidised by UV lamp or laser. These FETs have similar characteristics to those with silicon nitride gate insulator but without the difficulties of preparing good insulator/semiconductor interfaces. Using the same materials attempts have been made to produce charge coupled devices.

  6. Mesonic effects in nuclei near sup 208 Pb deduced from. beta. decay

    SciTech Connect

    Warburton, E.K.

    1990-01-01

    The mesonic enhancement of the time-like component of the weak axial current in nuclear matter is very large and is best observed via its effect on the decay rate of {Delta}J = 0 ({pi}{sub i}{pi} {sub f} = {minus}) {beta} decay. Studies in the A = 16, 40, and 90 regions yield enhancements of 40--60% over the impulse approximation. The lead region is a rich source of information on these first-forbidden decays. This study is the first to extract information on mesonic enhancement from these decays. {sup 206}Hg {yields} {sup 206}Tl {yields} {sup 206}Pb is chosen to exemplify the approach which has been applied to 10 or so first-forbidden decays in A = 205--214 nuclei. The nuclear wave functions are evaluated via large-basis shell-model calculations. The results indicate a much larger enhancement than expected and thus the possibility of some non-nucleonic effect in addition to the mesonic enhancement considered to date.

  7. Direct link between neutrinoless double beta decay and leptogenesis in a seesaw model with S{sub 4} symmetry

    SciTech Connect

    Ahn, Y. H.; Kang, Sin Kyu; Kim, C. S.; Nguyen, T. Phong

    2010-11-01

    We study how leptogenesis can be implemented in a seesaw model with S{sub 4} flavor symmetry, which leads to the neutrino tribimaximal mixing matrix and degenerate right-handed (RH) neutrino spectrum. Introducing a tiny soft S{sub 4} symmetry breaking term in the RH neutrino mass matrix, we show that the flavored resonant leptogenesis can be successfully realized, which can lower the seesaw scale much so, as to make it possible to probe in colliders. Even though such a tiny soft breaking term is essential for leptogenesis, it does not significantly affect the low-energy observables. We also investigate how the effective light neutrino mass || associated with neutrinoless double beta decay can be predicted along with the neutrino mass hierarchies by imposing experimental data of low-energy observables. We find a direct link between leptogenesis and neutrinoless double beta decay characterized by || through a high energy CP phase {phi}, which is correlated with low-energy Majorana CP phases. It is shown that our predictions of || for some fixed parameters of high energy physics can be constrained by the current observation of baryon asymmetry.

  8. The COBRA experiment - Status and prospects on the search of neutrinoless double beta-decay

    NASA Astrophysics Data System (ADS)

    Zatschler, S.

    2015-10-01

    The Cadmium-Zinc-Telluride 0-ν Double Beta Research Apparatus (COBRA) [1] is a next-generation experiment searching for the existence of neutrinoless double beta-decay (0νββ-decay). The observation of 0νββ-decay would be an unambiguous sign for physics beyond the Standard Model such as lepton number violating processes and would prove the Majorana character of neutrinos. Furthermore, the study of 0νββ-decay could probe the absolute neutrino mass and allows for the identification of the neutrino mass hierarchy realized in nature assuming light Majorana neutrino exchange. Currently a demonstrator setup at the underground facility LNGS (Italy) built of 4×4×4 coplanar grid (CPG) detectors collects high quality low background physics data with FADC pulse shape sampling. The detectors are made of natural abundant CdZnTe (CZT), which is a commercially available room temperature semiconductor. It contains several double beta isotopes, the most promising of which is 116Cd with a Q-value of 2813.5 keV - which is well above the highest naturally occurring prominent γ-lines.

  9. Search for Neutrinoless Double Beta Decay of 76Ge with the GERmanium Detector Array "gerda"

    NASA Astrophysics Data System (ADS)

    Garfagnini, Alberto

    2011-10-01

    The study of neutrinoless double beta decay (DBD) is the only presently known approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of neutrinoless DBD would not only establish the Majorana nature of the neutrino but also represent a determination of its effective mass if the nuclear matrix element is given. So far, the most sensitive results have been obtained with 76Ge, and the group of Klapdor-Kleingrothaus has made a claim of discovery. Future experiments have to reduce radioactive backgrounds to increase the sensitivity. GERDA is a new DBD experiment which is currently under construction in the INFN Gran Sasso National Laboratory, Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in 76Ge - in high purity liquid argon supplemented by a water shield. The aim of GERDA is to scrutinize the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments, increasing the sensitive mass and reaching an exposure of 100 kg yr. The paper will discuss design, physics reach, and status of construction of GERDA.

  10. CANDLES - Search for Neutrino-less Double Beta Decay of 48Ca

    NASA Astrophysics Data System (ADS)

    Umehara, Saori; Candles Collaboration

    2014-09-01

    CANDLES is the project to search for neutrino-less double beta decay (0 νββ) of 48Ca. The CANDLES system aims at a high sensitive measurement by a characteristic detector system and 48Ca enrichment. The system realizes a complete 4 π active shield by immersing the CaF2 scintillators in liquid scintillator. The active shield by the liquid scintillator will effectively reject background events from external origins. On the other band, we have studied 48Ca enrichment and succeeded in obtaining enriched 48Ca although it is a small amount. Now we have developed the CANDLES III system, which contained 350 g of 48Ca without enrichment, at the Kamioka underground laboratory. Two improvements, a light-concentration system and a new DAQ system, were installed for the CANDLES III system. The light-concentration system improved a energy resolution by increasing a PMT photo-coverage by 80%. The new DAQ system, which is a dead time less system, improved a rejection efficiency for a characteristic background origin. We checked detector performance with the light-concentration system and the new DAQ system. Here we will report the detector performance for background rejection and the expected sensitivity with the two improvements.

  11. Cosmogenic Backgrounds to Neutrinoless Double-Beta Decay in EXO-200

    NASA Astrophysics Data System (ADS)

    Albert, Joshua; EXO-200 Collaboration

    2016-03-01

    As neutrinoless double-beta decay (0 νββ) experiments become more sensitive and intrinsic radioactivity in detector materials is reduced, previously minor contributions to the background must be understood and eliminated. With this in mind, cosmogenic backgrounds have been studied with the EXO-200 experiment. Simulations of muon-induced backgrounds in EXO-200 using Geant4 and FLUKA identified several potential cosmogenic radionuclides, though only 137Xe provides a significant background for the 136Xe 0 νββ search with EXO-200. The simulations were normalized based on a measurement of the muon flux underground using the EXO-200 TPC. Muon-induced neutron backgrounds were measured using γ-rays from neutron capture on the detector materials, in data coincident with veto triggers. This provided a measurement of 137Xe yield, and a test of the accuracy of the neutron production and transport simulations. Simulations agree with data to within ~40 % . The ability to identify 136 Xe (n , γ) events will allow for rejection of 137Xe backgrounds in future 0 νββ analyses.

  12. Decoding {beta}-decay systematics: A global statistical model for {beta}{sup -} half-lives

    SciTech Connect

    Costiris, N. J.; Mavrommatis, E.; Gernoth, K. A.; Clark, J. W.

    2009-10-15

    Statistical modeling of nuclear data provides a novel approach to nuclear systematics complementary to established theoretical and phenomenological approaches based on quantum theory. Continuing previous studies in which global statistical modeling is pursued within the general framework of machine learning theory, we implement advances in training algorithms designed to improve generalization, in application to the problem of reproducing and predicting the half-lives of nuclear ground states that decay 100% by the {beta}{sup -} mode. More specifically, fully connected, multilayer feed-forward artificial neural network models are developed using the Levenberg-Marquardt optimization algorithm together with Bayesian regularization and cross-validation. The predictive performance of models emerging from extensive computer experiments is compared with that of traditional microscopic and phenomenological models as well as with the performance of other learning systems, including earlier neural network models as well as the support vector machines recently applied to the same problem. In discussing the results, emphasis is placed on predictions for nuclei that are far from the stability line, and especially those involved in r-process nucleosynthesis. It is found that the new statistical models can match or even surpass the predictive performance of conventional models for {beta}-decay systematics and accordingly should provide a valuable additional tool for exploring the expanding nuclear landscape.

  13. GT neutrino-nuclear responses for double beta decays and astro neutrinos

    NASA Astrophysics Data System (ADS)

    Ejiri, H.; Suhonen, J.

    2015-05-01

    Gamow-Teller nuclear matrix elements (NMEs) for pairs of {{β }+/- } {{1}+}≤ftrightarrow {{0}+} ground-state-to-ground-state transitions, in particular their geometric mean NME {{M}m}, are studied. The observed means Mexp m in the medium-heavy mass region are compared with the corresponding single-quasiparticle (qp) NMEs and the means MQRPAm calculated by the proton neutron qp random-phase approximation (pnQRPA). The {{M}m} NMEs turn out to be insensitive to the nucleon occupancy/vacancy amplitudes and to the particle-particle interaction parameter {{g}pp} of the pnQRPA. The observed mean NMEs are found to be reduced by a coefficient k≈ 0.23 relative to the effective qp NMEs and by a coefficient {{k}NM}≈ 0.6 with respect to the pnQRPA NMEs. The reductions associated with the spin isospin correlations and nuclear medium effects, and their impact on nuclear double beta decays and astro-neutrino-nuclear interactions are discussed.

  14. Neutrino nuclear responses for double beta decays and astro neutrino interactions

    NASA Astrophysics Data System (ADS)

    Akimune, Hidetoshi; Ejiri, Hiroyasu

    2015-10-01

    Neutrino nuclear matrix elements (NMEs), are crucial to extract neutrino properties from double beta decay (DBD) experiments, and to evaluate astro-neutrino nuclear interaction and nucleosynthesis rates. NMEs are very sensitive to nucleon nucleon spin-isospin(στ) and nuclear medium effects. Theoretical calculations for NMEs are very hard. Experimental inputs from charge exchange reactions such as (3He,t) and (μ ,νμ xnγ) are very important for evaluating ν-weak NMEs for ββ and astro- ν processes. Gamow-Teller (GT) and spin dipole (SD) NMEs are studied. Note GT is major for 2 νββ , while SD is one of major components for 0 νββ . The observed NMEs for both GT and SD transitions are found to be reduced by kστ ~ 0.4-0.5 due to the nucleon στ correlation and to the one kNM ~ 0.5-0.6 due to the nuclear medium effects such as nucleon isobar (Δ) that are not explicitly included in the pnQRPA. The nuclear medium effects such as N Δ correlations are incorporated by using the effective coupling constant gAeff = (0.5-0.6) ×gA (free) for ββ and astro- ν NMEs.

  15. The COBRA experiment – Status and prospects on the search of neutrinoless double beta-decay

    SciTech Connect

    Zatschler, S.

    2015-10-28

    The Cadmium-Zinc-Telluride 0-ν Double Beta Research Apparatus (COBRA) [1] is a next-generation experiment searching for the existence of neutrinoless double beta-decay (0νββ-decay). The observation of 0νββ-decay would be an unambiguous sign for physics beyond the Standard Model such as lepton number violating processes and would prove the Majorana character of neutrinos. Furthermore, the study of 0νββ-decay could probe the absolute neutrino mass and allows for the identification of the neutrino mass hierarchy realized in nature assuming light Majorana neutrino exchange. Currently a demonstrator setup at the underground facility LNGS (Italy) built of 4×4×4 coplanar grid (CPG) detectors collects high quality low background physics data with FADC pulse shape sampling. The detectors are made of natural abundant CdZnTe (CZT), which is a commercially available room temperature semiconductor. It contains several double beta isotopes, the most promising of which is {sup 116}Cd with a Q-value of 2813.5 keV – which is well above the highest naturally occurring prominent γ-lines.

  16. Possible usage of Cherenkov photons to reduce the background in a 136Xe neutrino-less double-beta decay experiment

    NASA Astrophysics Data System (ADS)

    Signorelli, G.; Dussoni, S.

    2016-07-01

    One of the main backgrounds in the search for 136Xe nutrino-less double-beta decay (0 νββ) is the signal from Compton scattering of photons with energy around the decay endpoint at 2.458 MeV. Electrons in liquid xenon emit scintillation light at 178 nm. Liquid xenon being extremely transparent to ultra violet light it is in principle possible to discriminate one particle events (such as the Compton background) from two particle events (double-beta decay signals) by the amount of Cherenkov radiation emitted. The identification of the Cherenkov photons may be performed by looking at the different time structure of the signal with respect to the scintillation, by selecting photons with wavelengths larger than the typical Xenon scintillation light, and by the different emission topology. A proof-of-principle study of this approach is presented here together with preliminary studies on possible detectors for the two light components at different wavelengths.

  17. Running sums for 2{nu}{beta}{beta}-decay matrix elements within the quasiparticle random-phase approximation with account for deformation

    SciTech Connect

    Fang Dongliang; Faessler, Amand; Rodin, Vadim; Simkovic, Fedor; Yousef, Mohamed Saleh

    2010-03-15

    The 2{nu}{beta}{beta}-decay running sums for {sup 76}Ge and {sup 150}Nd nuclei are calculated within a QRPA approach with account for deformation. A realistic nucleon-nucleon residual interaction based on the Brueckner G matrix (for the Bonn CD force) is used. The influence of different model parameters on the functional behavior of the running sums is studied. It is found that the parameter g{sub pp} renormalizing the G matrix in the QRPA particle-particle channel is responsible for a qualitative change in behavior of the running sums at higher excitation energies. For realistic values of g{sub pp} a significant negative contribution to the total 2{nu}{beta}{beta}-decay matrix element is found to come from the energy region of the giant Gamow-Teller resonance. This behavior agrees with results of other authors.

  18. Advances in the theory of 0{nu}{beta}{beta} decay

    SciTech Connect

    Iachello, F.; Kotila, J.; Barea, J.

    2011-12-16

    Recent advances in the theory of 0{nu}{beta}{beta} decay are briefly discussed. A complete list of nuclear matrix elements within the framework of the Interacting Boson Model (IBM-2) is given. Results of a novel calculation of phase space factors with exact Dirac wave functions and electron screening are also presented.

  19. Status of double beta decay experiments using isotopes other than 136Xe

    NASA Astrophysics Data System (ADS)

    Pandola, L.

    2014-09-01

    Neutrinoless double beta decay is a lepton-number violating process predicted by many extensions of the standard model. It is actively searched for in several candidate isotopes within many experimental projects. The status of the experimental initiatives which are looking for the neutrinoless double beta decay in isotopes other than 136Xe is reviewed, with special emphasis given to the projects that passed the R&D phase. The results recently released by the experiment GERDA are also summarized and discussed. The GERDA data give no positive indication of neutrinoless double beta decay of 76Ge and disfavor in a model-independent way the long-standing observation claim on the same isotope. The lower limit reported by GERDA for the half-life of neutrinoless double beta decay of 76Ge is T1/20ν > 2.1 ṡ1025 yr (90% C.L.), or T1/20ν > 3.0 ṡ1025 yr, when combined with the results of other 76Ge predecessor experiments.

  20. Experiment TGV-2 - Search for double beta decay of 106Cd

    NASA Astrophysics Data System (ADS)

    Rukhadze, N. I.; Briançon, Ch.; Brudanin, V. B.; Čermák, P.; Egorov, V. G.; Klimenko, A. A.; Kovalík, A.; Rukhadze, E. N.; Shitov, Yu. A.; Šimkovic, F.; Štekl, I.; Timkin, V. V.

    2012-08-01

    New limits (at 90% C.L.) on double beta decay of Cd106-T(0νEC/EC)>1.7×1020 yr and T(2νEC/EC)>4.2×1020 yr were obtained in a preliminary calculation of data accumulated for 12900 h on the TGV-2 spectrometer.

  1. Present status and future of the experiment TGV (measurement of double beta decay of48Ca)

    NASA Astrophysics Data System (ADS)

    Brudanin, V. B.; Egorov, V. G.; Kovalík, A.; Kovalenko, V. E.; Rukhadze, N. I.; Salamatin, A. V.; Sandukovsky, V. G.; Timkin, V. V.; Vylov, Ts.; Zaparov, Ch.; Briancon, Ch.; Janout, Z.; Koníček, J.; Kubašta, J.; Pospíšil, S.; Štekl, I.; Vorobel, V.

    1998-02-01

    A short description of experiment TGV (double beta decay of48Ca) is given. The measurement started in the Modane underground laboratory in August 1996. The first result of T {1/2/0 ν } ≥ 4.6 × 1020 years [90% CL] after 2545 hours is presented.

  2. Alpha Backgrounds for HPGe Detectors in Neutrinoless Double-Beta Decay Experiments

    SciTech Connect

    Johnson, R. A.; Burritt, T. H.; Elliott, S. R.; Gehman, V. M.; Guiseppe, V.E.; Wilkerson, J. F.

    2012-01-01

    The Majorana Experiment will use arrays of enriched HPGe detectors to search for the neutrinoless double-beta decay of 76Ge. Such a decay, if found, would show lepton-number violation and confirm the Majorana nature of the neutrino. Searches for such rare events are hindered by obscuring backgrounds which must be understood and mitigated as much as possible. A potentially important background contribution to this and other double-beta decay experiments could come from decays of alpha-emitting isotopes in the 232Th and 238U decay chains on or near the surfaces of the detectors. An alpha particle emitted external to an HPGe crystal can lose energy before entering the active region of the detector, either in some external-bulk material or within the dead region of the crystal. The measured energy of the event will only correspond to a partial amount of the total kinetic energy of the alpha and might obscure the signal from neutrinoless double-beta decay. A test stand was built and measurements were performed to quantitatively assess this background. We present results from these measurements and compare them to simulations using Geant4. These results are then used to measure the alpha backgrounds in an underground detector in situ. We also make estimates of surface contamination tolerances for double-beta decay experiments using solid-state detectors.

  3. Nuclear structure relevant to neutrinoless double beta decay candidate {sup 130}Te and other recent results

    SciTech Connect

    Kay, B. P.

    2013-12-30

    We have undertaken a series of single-nucleon and pair transfer reaction measurements to help constrain calculations of the nuclear matrix elements for neutrinoless double beta decay. In this talk, a short overview of measurements relevant to the {sup 130}Te→{sup 130}Xe system is given. Brief mention is made of other recent and forthcoming results.

  4. Solving the Neutrino Mass Mystery using Double Beta Decay. An Examination of the Feasibility of Xennoon Purification and Ion Capture and Release using an Electrostatic Probe

    SciTech Connect

    Outschoorn, Verena M

    2003-09-05

    Double beta decay has long been recognized as a useful avenue for the study of electron neutrinos, especially the neutrino mass and its fundamental nature (Majorana or Dirac). Recent neutrino oscillation experiments have provided compelling evidence that the neutrino has mass. The detection of the neutrinoless mode of double beta decay would finally set a lower limit on the mass of the electron neutrino, as well as prove that the neutrino is a Majorana particle (with opposite spin, it is its own anti-particle). The Enriched Xenon Observatory (EXO) project attempts to detect neutrinoless double beta decay using {sup 136}Xe that decays by this process to {sup 136}Ba{sup 2} + e{sup -} + e{sup -}. Perhaps one of the most significant characteristics of this project is the reduction of the background through the identification of the Barium ions for each individual event using laser fluorescence techniques. This project also proposes to collect scintillation light in addition to the ionization electrons in order to further improve energy resolution. Current work at SLAC includes the development of a purification system for xenon, as well as tests for the capture and release of single ions using an electrostatic probe.

  5. {beta} decay of proton-rich nucleus {sup 23}Al and astrophysical consequences

    SciTech Connect

    Iacob, V. E.; Zhai, Y.; Al-Abdullah, T.; Fu, C.; Hardy, J. C.; Nica, N.; Park, H. I.; Tabacaru, G.; Trache, L.; Tribble, R. E.

    2006-10-15

    We present the first study of the {beta} decay of {sup 23}Al undertaken with pure samples. The study was motivated by nuclear astrophysics questions. Pure samples of {sup 23}Al were obtained from the momentum achromat recoil separator (MARS) of Texas A and M University, collected on a fast tape-transport system, and moved to a shielded location where {beta} and {beta}-{gamma} coincidence measurements were made. We deduced {beta} branching ratios and log ft values for transitions to states in {sup 23}Mg, and from them determined unambiguously the spin and parity of the {sup 23}Al ground state to be J{sup {pi}}=5/2{sup +}. We discuss how this excludes the large increases in the radiative proton capture cross section for the reaction {sup 22}Mg(p,{gamma}){sup 23}Al at astrophysical energies, which were implied by claims that the spin and parity is J{sup {pi}}=1/2{sup +}. The log ft for the Fermi transition to its isobaric analog state (IAS) in {sup 23}Mg is also determined for the first time. This IAS and a state 16 keV below it are observed, well separated in the same experiment for the first time. We can now solve a number of inconsistencies in the literature, exclude strong isospin mixing claimed before, and obtain a new determination of the resonance strength. Both states are resonances in the {sup 22}Na(p,{gamma}){sup 23}Mg reaction at energies important in novae. The reactions {sup 22}Mg(p,{gamma}){sup 23}Al and {sup 22}Na(p,{gamma}){sup 23}Mg have both been suggested as possible candidates for diverting some of the flux in oxygen-neon novae explosions from the A=22 into the A=23 mass 0011cha.

  6. Precise test of the unitarity of the CKM matrix via superallowed nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Park, Hyo-In

    2016-03-01

    Superallowed 0+ --> 0+ nuclear beta decay between isospin T = 1 analogue states is a sensitive probe for studying the fundamental properties of the weak interaction. Today, the most precise measurements of the decay strengths (or ft values) of fourteen superallowed transitions, ranging from 10C to 74Rb, provide a direct determination of the vector coupling constant GV, and lead to the most precise value of Vud, the up-down quark-mixing element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. When Vud is combined with the other top-row elements, Vus and Vub, the sum of squares of the top-row elements of the CKM matrix satisfies the unitarity condition at the level of +/-0.06%. The impact of this result on searches for new physics beyond the Standard Model motivates further work to improve even further the precision of the CKM-matrix unitarity sum. Our current focus is on measurements to constrain the uncertainty in calculations of the isospin-symmetry-breaking corrections needed to determine Vud from the experimental data. This can be achieved with high-precision comparisons of the ft values from four pairs of accessible mirror superallowed decays with A <= 42 . This presentation reports our results for the mass-38 pair, 38Ca --> 38mK and 38mK --> 38Ar, and our progress on measuring 42Ti decay. The measured ratio of the mirror ft values for A = 38 agrees well with the corrections currently used, and points the way to even tighter constraints on the unitarity of the CKM matrix. If the three mirror pairs, with A = 26 , A = 34 and A = 42 confirm and strengthen our present conclusion, it will become possible to shrink the systematic uncertainty on Vud, reduce the uncertainty on the CKM-matrix unitarity sum, and further constrain the scope for possible extensions to the Standard Model.

  7. The MAJORANA DEMONSTRATOR: An R and D project towards a tonne-scale germanium neutrinoless double-beta decay search

    SciTech Connect

    Aalseth, C. E.; Ely, J.; Fast, J. E.; Fuller, E.; Hoppe, E. W.; Keillor, M.; Kouzes, R. T.; Miley, H. S.; Orrell, J. L.; Thompson, R.; Warner, R.; Amman, M.; Bergevin, M.; Chan, Y.-D.; Detwiler, J. A.; Fujikawa, B.; Loach, J. C.; Luke, P. N.; Poon, A. W. P; Prior, G.

    2009-12-17

    The MAJORANA collaboration is pursuing the development of the so-called MAJORANA DEMONSTRATOR. The DEMONSTRATOR is intended to perform research and development towards a tonne-scale germanium-based experiment to search for the neutrinoless double-beta decay of {sup 76}Ge. The DEMONSTRATOR can also perform a competitive direct dark matter search for light WIMPs in the 1-10 GeV/c{sup 2} mass range. It will consist of approximately 60 kg of germanium detectors in an ultra-low background shield located deep underground at the Sanford Underground Laboratory in Lead, SD. The DEMONSTRATOR will also perform background and technology studies, and half of the detector mass will be enriched germanium. This talk will review the motivation, design, technology and status of the Demonstrator.

  8. The MAJORANA DEMONSTRATOR: An R&D project towards a tonne-scale germanium neutrinoless double-beta decay search

    SciTech Connect

    Aalseth, Craig E; Amman, M; Amsbaugh, John F; Avignone, F. T.; Back, Henning O; Barabash, A; Barbeau, Phil; Beene, Jim; Bergevin, M; Bertrand, F; Boswell, M; Brudanin, V; Bugg, William; Burritt, Tom H; Chan, Yuen-Dat; Collar, J I; Cooper, R J; Creswick, R; Detwiler, Jason A; Doe, P J; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H; Elliott, Steven R; Ely, James H; Esterline, James H; Farach, H A; Fast, James E; Fields, N; Finnerty, P; Fujikawa, Brian; Fuller, Erin S; Gehman, Victor; Giovanetti, G K; Guiseppe, Vincente; Gusey, K; Hallin, A L; Hazama, R; Henning, Reyco; Hime, Andrew; Hoppe, Eric W; Hossbach, Todd W; Howe, M A; Johnson, R A; Keeter, K; Keillor, Martin E; Keller, C; Kephart, Jeremy D; Kidd, Mary; Kochetov, Oleg; Konovalov, S; Kouzes, Richard T; Lesko, Kevin; Leviner, L; Loach, J C; Luke, P; MacMullin, S; Marino, Michael G; Mei, Dong-Ming; Miley, Harry S; Miller, M; Mizouni, Leila K; Montoya, A; Myers, A W; Nomachi, Masaharu; Odom, Brian; Orrell, John L; Phillips, D; Poon, Alan; Prior, Gersende; Qian, J; Radford, D C; Rielage, Keith; Robertson, R G. H.; Rodriguez, Larry; Rykaczewski, Krzysztof P; Schubert, Alexis G; Shima, T; Shirchenko, M; Strain, J; Thomas, K; Thompson, Robert C; Timkin, V; Tornow, W; Van Wechel, T D; Vanyushin, I; Vetter, Kai; Warner, Ray A; Wilkerson, J; Wouters, Jan; Yakushev, E; Young, A; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C L; Zimmerman, S

    2009-12-17

    The MAJORANA collaboration is pursuing the development of the so-called MAJORANA DEMONSTRATOR. The DEMONSTRATOR is intended to perform research and development towards a tonne-scale germanium-based experiment to search for the neutrinoless double-beta decay of 76Ge. The DEMONSTRATOR can also perform a competitive direct dark matter search for light WIMPs in the 1-10GeV/c2 mass range. It will consist of approximately 60 kg. of germanium detectors in an ultra-low background shield located deep underground at the Sanford Underground Laboratory in Lead, SD. The DEMONSTRATOR will also perform background and technology studies, and half of the detector mass will be enriched germanium. This talk will review the motivation, design, technology and status of the Demonstrator.

  9. Mixed symmetry states and {beta} decays of odd-A Xe to I isotopes

    SciTech Connect

    Al-Khudair, Falih H.

    2009-07-15

    The energy spectra of the parent and daughter nuclei in the {beta} decays ({sup 121-127}Xe,{beta}{sup +121-127}I) are considered in the interacting boson fermion model (IBFM-2) with the g{sub 7/2},d{sub 5/2},d{sub 3/2},s{sub 1/2}, and h{sub 11/2} single-particle orbitals. Electromagnetic transition probabilities and branching ratios in odd {sup 121-127}I isotopes are investigated. Special attention is given to the occurrence of mixed symmetry states, and the F-spin structures of the wave functions are analyzed. The log{sub 10}ft values of the allowed {beta} decay transitions are calculated. It is found that the IBFM-2 results agree with the experimental data quite well.

  10. Disentangling effects of mechanisms that could contribute to the neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Horoi, Mihai; Neacsu, Andrei

    2015-10-01

    Neutrinoless double-beta decay, if observed, would signal physics beyond the Standard Model that could be discovered at energies significantly lower than those at which the relevant degrees of freedom could be excited. Therefore, it could be challenging to further use the neutrinoless double-beta decay observations to distinguish between many beyond Standard Model competing mechanisms to this process. Accurate nuclear structure calculation of the nuclear matrix elements necessary to analyze the decay rates could be helpful to narrow down the list of competing mechanisms, and to better identify the more exotic properties of the neutrinos. We will present information that one can get from the angular and energy distribution of the emitted electron assuming that the right-handed currents exist. Support from U.S. NSF Grant PHY-1404442 and DOE Grant DE-SC0008529 is acknowledged.

  11. Disentangling the various Mechanisms of neutrinoless double beta decay to extract the neutrino mass

    SciTech Connect

    Vergados, J. D.

    2011-12-16

    It is well known that there exist many mechanisms that may contribute to neutrinoless double beta decay. By exploiting the fact that the associated nuclear matrix elements are target dependent we show that, given definite experimental results on a sufficient number of targets, one can determine or sufficiently constrain all lepton violating parameters including the mass term. As a specific example we show that, given the observation of the 0{nu}{beta}{beta}-decay in three different nuclei, e.g. {sup 76}Ge, {sup 100}Mo and {sup 130}Te, and assuming just three active lepton number violating parameters, e.g. light and heavy neutrino mass mechanisms in left handed currents as well as R-parity breaking SUSY mechanism, one may determine all lepton violating parameters, provided that they are relatively real.

  12. Correlation measurements in nuclear {beta}-decay using traps and polarized low energy beams

    SciTech Connect

    Naviliat-Cuncic, Oscar

    2013-05-06

    Precision measurements in nuclear {beta}-decay provide sensitive means to test discrete symmetries in the weak interaction and to determine some of the fundamental constants in semi-leptonic decays, like the coupling of the lightest quarks to charged weak bosons. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. In this contribution I will focus on two topics related to precision measurements in nuclear {beta}-decay: i) the determination of the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and ii) the search for exotic scalar or tensor contributions from {beta}{nu} angular correlations. The purpose is to underline the role being played by experimental techniques based on the confinement of radioactive species with atom and ion traps as well as the plans to use low energy polarized beams.

  13. Neutrinoless Double Beta Decay with CUORE-0: Physics Results and Detector Performance

    NASA Astrophysics Data System (ADS)

    Canonica, L.

    2016-08-01

    The CUORE-0 experiment searches for neutrinoless double beta decay in ^{130}Te. It consists of an array of 52 tellurium dioxide crystals, operated as bolometers at a temperature of 10 mK, with a total mass of about 39 kg of TeO_2. CUORE-0 has been built to test the performance of the upcoming CUORE experiment and represents the largest ^{130}Te bolometric setup currently in operation. This experiment has been running in the Gran Sasso National Laboratory, Italy, since March 2013. We report the results of a search for neutrinoless double beta decay in 9.8 kg years ^{130}Te exposure, which allowed us to set the most stringent limit to date on this half-life. The performance of the detector in terms of background rate and energy resolution are also reported.

  14. Analysis of mechanisms that could contribute to neutrinoless double-beta decay

    NASA Astrophysics Data System (ADS)

    Horoi, Mihai; Neacsu, Andrei

    2016-06-01

    Neutrinoless double-beta decay is a beyond the Standard Model process that would indicate that neutrinos are Majorana fermions, and the lepton number is not conserved. It could be interesting to use the neutrinoless double-beta decay observations to distinguish between several beyond Standard Model mechanisms that could contribute to this process. Accurate nuclear structure calculations of the nuclear matrix elements necessary to analyze the decay rates could be helpful to narrow down the list of contributing mechanisms. We investigate the information one can get from the angular and energy distribution of the emitted electrons and from the half-lives of several isotopes, assuming that the right-handed currents exist. For the analysis of these distributions, we calculate the necessary nuclear matrix elements using shell model techniques, and we explicitly consider interference terms.

  15. Beta-decay half-lives for the r-process nuclei

    NASA Astrophysics Data System (ADS)

    Panov, I. V.; Lutostansky, Yu. S.; Thielemann, F.-K.

    2016-03-01

    For nucleosynthesis calculations of the r-process it is important to know beta-decay half-lives of short-lived neutron-rich nuclei. In the present paper these characteristics are calculated for an extended number of neutron-rich nuclei, important for the r-process. In our calculations the model description of beta-strength functions based on Finite Fermi-Systems Theory is used. The comparison with other predictions and experimental data is done. It is shown that the accuracy of beta-decay half-lives of short-lived neutron-rich nuclei is increasing with increasing neutron excess and can be used for modeling of nucleosynthesis of heavy nuclei in the r-process. For nuclei heavier than lead the half-lives of neutron-rich nuclei are on average 10 times smaller, than proposed of other predictions.

  16. Neutrinoless Double Beta Decay with CUORE-0: Physics Results and Detector Performance

    NASA Astrophysics Data System (ADS)

    Canonica, L.

    2016-01-01

    The CUORE-0 experiment searches for neutrinoless double beta decay in ^{130} Te. It consists of an array of 52 tellurium dioxide crystals, operated as bolometers at a temperature of 10 mK, with a total mass of about 39 kg of TeO_2 . CUORE-0 has been built to test the performance of the upcoming CUORE experiment and represents the largest ^{130} Te bolometric setup currently in operation. This experiment has been running in the Gran Sasso National Laboratory, Italy, since March 2013. We report the results of a search for neutrinoless double beta decay in 9.8 kg years ^{130} Te exposure, which allowed us to set the most stringent limit to date on this half-life. The performance of the detector in terms of background rate and energy resolution are also reported.

  17. Effect of complex configurations on the description of properties of {sup 132}Sn beta decay

    SciTech Connect

    Severyukhin, A. P. Sushenok, E. O.

    2015-07-15

    Gamow–Teller transitions in the beta decay of the {sup 132}Sn neutron-rich nucleus was described microscopically. The coupling of one- and two-phonon components of the wave functions was taken into account on the basis of Skyrme interactions featuring various contributions of the tensor component. A separable approximation of the particle—hole interaction made it possible tohole interaction perform calculations in a large configuration space. It was shown that an increase in the strength of the neutron—proton tensor interaction led to an increase in the energy of Gamow—Teller transitions. In addition, a decrease in the {sup 132}Sn half-life with respect to beta decay was obtained.

  18. CALDER: neutrinoless double-beta decay identification in TeO bolometers with kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Battistelli, E. S.; Bellini, F.; Bucci, C.; Calvo, M.; Cardani, L.; Casali, N.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; de Bernardis, P.; Di Domizio, S.; D'Addabbo, A.; Martinez, M.; Masi, S.; Pagnanini, L.; Tomei, C.; Vignati, M.

    2015-08-01

    Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10. CUORE , an array of 988 TeO bolometers being commissioned at Laboratori Nazionali del Gran Sasso, features an expected sensitivity of 50-130 at 90 % C.L. The background is expected to be dominated by radioactivity, and can be in principle removed by detecting the small amount of Cherenkov light emitted by the signal. The Cryogenic wide-Area Light Detectors with Excellent Resolution project aims at developing a small prototype experiment consisting of TeO bolometers coupled to high-sensitivity light detectors based on kinetic inductance detectors. The R&D is focused on the light detectors in view of the implementation in a next-generation neutrinoless double-beta decay experiment.

  19. Status and perspective of the GERDA neutrinoless double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Knöpfle, K. T.; Gerda Collaboration

    2012-09-01

    Gerda, the GERManium Detector Array [1], is a new double beta decay experiment which is currently under commissioning in the Infn National Gran Sasso Laboratory (Lngs), Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in 76Ge - in high purity liquid argon supplemented by a water shield. The paper presents the status of the experiment, results from the commissioning, and a summary of planned future activities.

  20. The low background spectrometer TGV II for double beta decay measurements

    NASA Astrophysics Data System (ADS)

    Beneš, P.; Čermák, P.; Gusev, K. N.; Klimenko, A. A.; Kovalenko, V. E.; Kovalík, A.; Rukhadze, N. I.; Salamatin, A. V.; Šimkovic, F.; Štekl, I.; Timkin, V. V.; Vylov, Ts.

    2006-12-01

    The low-background multi-HPGe spectrometer TGV II installed in the Modane Underground Laboratory (France) is described in detail and the results of the background measurements are reported. The spectrometer is focused on the double beta decay measurements with two isotopes— 106Cd ( 2νEC/EC mode) and 48Ca ( ββ mode). A basic summary of the physics of ββ decay (especially EC/EC mode) is also given.

  1. Are massive Majorana neutrinos canceling each other in neutrinoless double-. beta. decay

    SciTech Connect

    Vergados, J.D.

    1983-12-01

    The possibility of various massive Majorana neutrinos canceling each other in neutrinoless double-..beta.. decay is examined. It is shown that if all neutrino eigenmasses are less than 10 MeV such a cancellation persists in the hadronic medium if initially present at the elementary (gauge) level. The same is true for neutrino mass greater than 10 GeV. In all other cases, such a cancellation will require a conspiracy between particle and nuclear physics.

  2. Solar neutrino interactions with liquid scintillators used for double beta-decay experiments

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu; Zuber, Kai

    2016-08-01

    Solar neutrinos interact within double-beta-decay (DBD) detectors and hence will contribute to backgrounds (BGs) for DBD experiments. Background contributions due to solar neutrinos are evaluated for their interactions with atomic electrons and nuclei in liquid scintillation detectors used for DBD experiments. They are shown to be serious BGs for high-sensitivity DBD experiments to search for the Majorana neutrino masses in the inverted and normal hierarchy regions.

  3. Capturing relic neutrinos with {beta}- and double {beta}-decaying nuclei

    SciTech Connect

    Hodak, Rastislav; Kovalenko, Sergey; Simkovic, Fedor

    2009-11-09

    Neutrinos are probably one of the most important structural constituents of the Universe. The Big Bang Theory predicts that the significant component of them is formed by the cosmic neutrino background, an analogues of the big bang relic photons comprising the cosmic microwave background radiation, which has been measured with amazing accuracy. Properties of the relic neutrino background are closely related to the ones of the cosmic microwave radiation. Relic neutrinos pervade space, but their temperature is extremely small, being of the order of 0.1 meV. Although belonging to the most abundant particles of the Universe, the relic neutrinos evade direct detection so far. This is because the low-energy neutrinos interact only very weakly with matter. In this contribution, we explore the feasibility to detect the cosmic neutrino background by means of {beta}-decaying ({sup 3}H and {sup 187}Re) and double beta decaying ({sup 100}Mo) nuclei. In addition, we address the question whether double relic neutrino capture on nuclei can be an obstacle for observation of neutrinoless double {beta}-decay.

  4. Results from the Cuoricino (Zero-Neutrino Double Beta) Decay Experiment

    SciTech Connect

    Arnaboldi, C; Artusa, D R; Avignone, F T; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Bellini, F; Brofferio, C; Bucci, C; Capelli, S; Carbone, L; Cebrian, S; Clemenza, M; Cremonesi, O; Creswick, R J; de Ward, A; Didomizio, S D; Dolinski, M J; Farach, H A; Fiorini, E; Frossati, G; Giachero, A; Giuliani, A; Gorla, P; Guardincerri, E; Gutierrez, T D; Haller, E E; Maruyama, R H; McDonald, R J; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Olivieri, E; Pallavicini, M; Palmieri, E; Pasca, E; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; Sangiorgio, S; Sisti, M; Smith, A R; Torres, L; Ventura, G; Vignati, M

    2007-12-20

    Recent results from the CUORICINO {sup 130}Te zero-neutrino double-beta (0v{beta}{beta}) decay experiment are reported. CUORICINO is an array of 62 tellurium oxide (TeO{sub 2}) bolometers with an active mass of 40.7 kg. It is cooled to {approx}8 mK by a dilution refrigerator shielded from environmental radioactivity and energetic neutrons. It is running in the Laboratori Nazionali del Gran Sasso (LNGS) in Assergi, Italy. These data represent 11.83 kg y or 90.77 mole-years of {sup 130}Te. No evidence for 0v{beta}{beta}-decay was observed and a limit of T{sub 1/2}{sup 0v} ({sup 130}Te) {ge} 3.0 x 10{sup 24} y (90% C.L.) is set. This corresponds to upper limits on the effective mass, , between 0.19 and 0.68eV when analyzed with the many published nuclear structure calculations. In the context of these nuclear models, the values fall within the range corresponding to the claim of evidence of 0v{beta}{beta}-decay by H.V. Klapdor-Kleingrothaus and his co-workers. The experiment continues to acquire data.

  5. Double-beta decay investigation with highly pure enriched ^{82}Se for the LUCIFER experiment

    NASA Astrophysics Data System (ADS)

    Beeman, J. W.; Bellini, F.; Benetti, P.; Cardani, L.; Casali, N.; Chiesa, D.; Clemenza, M.; Dafinei, I.; Domizio, S. Di; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Laubenstein, M.; Maino, M.; Nagorny, S.; Nisi, S.; Nones, C.; Orio, F.; Pagnanini, L.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.

    2015-12-01

    The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of ^{82}Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched ^{82}Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3 % enriched ^{82}Se metal, measured with a high-purity germanium detector at the Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of ^{232}Th, ^{238}U and ^{235}U are respectively: <61, <110 and <74 μ Bq/kg at 90 % C.L. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the ^{82}Se allowed us to establish the most stringent lower limits on the half-lives of the double-beta decay of ^{82}Se to 0^+_1, 2^+_2 and 2^+_1 excited states of ^{82}Kr of 3.4\\cdot 10^{22}, 1.3\\cdot 10^{22} and 1.0\\cdot 10^{22} y, respectively, with a 90 % C.L.

  6. UCNtau: A Precision Measurement of the Neutron Beta-Decay Lifetime

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Yu

    2015-10-01

    Eighty years after Chadwick discovered the neutron, physicists today still debate over how long the neutron lives. Measurements of the neutron lifetime have achieved the 0.1% level of precision (~1 s), however, experiments using the bottle technique yield lifetime results systematically lower than those using the beam technique. Measuring the neutron lifetime is difficult due to several limitations: the low energy of the decay products, the inability to track slow neutrons, and the fact that the neutron lifetime is long (880 . 3 +/- 1 . 1 s, PDG2014). In particular, slow neutrons are susceptible to many loss mechanisms other than beta-decay, such as upscattering and absorption on material surfaces; they act on time scales comparable to the neutron beta-decay and thus make the extraction of the beta-decay lifetime very challenging. In the UCN τ experiment, we trap ultracold neutrons (UCN) in a magnetic-gravitational trap. The apparatus, installed at the Los Alamos UCN source, has been used to develop new techniques-using field confinements with attentions to the phase space evolution of trapped neutrons-with an aim to reduce the uncertainty to 1 s (and better). I will report first competitive results and discuss plans to quantify systematic effects. The work was supported by the NSF (Grant-1306942 to IU) and the LANL LDRD program.

  7. [sup 223]Ra levels fed in the [sup 223]Fr [beta] decay

    SciTech Connect

    Abdul-Hadi, A.; Barci, V.; Weiss, B.; Maria, H.; Ardisson, G. ); Hussonnois, M.; Constantinescu, O. )

    1993-01-01

    The [sup 223]Fr [beta] decay was reinvestigated using high-resolution single [gamma] spectrometry as well as [gamma]-[gamma] coincidence techniques. For single [gamma]-spectra measurements, radiochemically pure [sup 223]Fr sources were obtained by chromatographic separation from a 75 MBq activity [sup 227]Ac parent source and continuously purified of [sup 223]Ra and daughters. The analysis of the [gamma] spectra of 30 sources showed the existence of 131 [gamma] lines, of which 87 are reported for the first time in the [sup 223]Fr [beta] decay although many of them are observed following the [sup 227]Th [alpha] decay. The [sup 223]Fr half-life was remeasured and found to be [ital T][sub 1/2]=22.00[plus minus]0.07 min. [gamma]-[gamma]-[ital t] coincidence measurements were also carried out with [sup 223]Fr purified sources. The [sup 223]Ra level scheme was built on the basis of our [gamma] data, as well as [sup 227]Th [alpha]-decay data. Among the 32 excited [sup 223]Ra levels, of which 22 were also known from [sup 227]Th [alpha] decay, 13 are newly reported from [sup 223]Fr [beta] decay. Low energy levels ([ital E][lt]400 keV) may be classified as parity doublet bands according to the predictions of the reflection asymmetric rotor model. Above a 700 keV gap, a coexistence of symmetric and asymmetric shapes including both static and dynamic octupole correlations is suggested.

  8. Weak-interaction strength from charge-exchange reactions versus {beta} decay in the A=40 isoquintet

    SciTech Connect

    Bhattacharya, M.; Goodman, C. D.; Garcia, A.

    2009-11-15

    We report a measurement of the Gamow-Teller (GT) strength distribution for {sup 40}Ar{yields}{sup 40}K using the 0 deg. (p,n) reaction. The measurement extends observed GT strength distribution in the A=40 system up to an excitation energy of {approx}8 MeV. In comparing our results with those from the {beta} decay of the isospin mirror nucleus {sup 40}Ti, we find that, within the excitation energy region probed by the {beta}-decay experiment, we observe a total GT strength that is in fair agreement with the {beta}-decay measurement. However, we find that the relative strength of the two strongest transitions differs by a factor of {approx}1.8 in comparing our results from (p,n) reactions with the {beta} decay of {sup 40}Ti. Using our results we present the neutrino-capture cross section for {sup 40}Ar.

  9. A Possible Role of Neutrinos in Stimulating Beta Decays and its Significance for Solar Physics

    NASA Astrophysics Data System (ADS)

    Sturrock, Peter A.; Fischbach, Ephraim; Jenkins, Jere

    2014-06-01

    We find evidence from measurements of Ag108, Ba133, Eu152, Eu154, Ra226 and Sr90 (Physikalisch-Technische Bundesanstalt, Germany), Rn222 (Geological Survey of Israel), Co60, Pu239, and Sr90 (Lomonosov Moscow State University, Russia), Cl36 and Si32 (Brookhaven National Laboratory, USA) and Mn54 (Purdue University, USA) that beta-decay rates tend to be variable, and that the Sun is responsible for some - perhaps all - of the variability. One variation is an annual oscillation with amplitude about 0.1% and maximum in January or February, presumably related to the annually varying Sun-Earth distance. We also find evidence for two rotational modulations, one with a measured (synodic) frequency of about 12.5 year-1 (an absolute, sidereal frequency of 13.5 year-1), due perhaps to processes in the radiative zone, and another with a synodic frequency of about 11 year-1 (12 year-1 sidereal), due perhaps to processes in an inner tachocline between the core and the radiative zone. A steep gradient in angular velocity (as in a tachocline) is known to be unstable and generate r-mode oscillations. These may be detectable as Rieger-type oscillations in the outer tachocline, and to similar oscillations (with correspondingly lower frequencies, in proportion to the sidereal rotation frequencies) in the inner tachocline. We find evidence for such r-mode oscillations not only in beta-decay data, but also in solar diameter data. A possible explanation of the apparent beta-decay variability is that decays may be stimulated by neutrinos. Since the flavor composition of the neutrino flux can be modified by the Sun’s internal magnetic field (via Resonant Spin Flavor Precession), magnetohydrodynamic processes in the deep solar interior may be detectable on Earth as neutrino-stimulated beta-decay fluctuations. Experiments suggest that a nuclide such as 32Si has a beta-decay-equivalent-cross-section of order 10-25 cm2, larger than the neutrino-equivalent-cross-section of an electron or

  10. Active and sterile neutrino mass effects on beta decay spectra

    SciTech Connect

    Boillos, Juan Manuel; Moya de Guerra, Elvira

    2013-06-10

    We study the spectra of the emitted charged leptons in charge current weak nuclear processes to analyze the effect of neutrino masses. Standard active neutrinos are studied here, with masses of the order of 1 eV or lower, as well as sterile neutrinos with masses of a few keV. The latter are warm dark matter (WDM) candidates hypothetically produced or captured as small mixtures with the active neutrinos. We compute differential decay or capture rates spectra in weak charged processes of different nuclei ({sup 3}H, {sup 187}Re, {sup 107}Pd, {sup 163}Ho, etc) using different masses of both active and sterile neutrinos and different values of the mixing parameter.

  11. {beta}-Decay probing the electron bulk correlations

    SciTech Connect

    Kondratyev, V.N.; Ayik, S.

    1994-12-31

    The theoretical approach based on the Boltzman-Langevin model is applied to study the thermal properties of the excitation phenomena in condensed matter. This approach making use of the advantages of the thermodynamic Green`s function method provides a tool for the self-consistent description of the many-body correlations. It is demonstrated that such a correlation modifies significantly the excitation strength properties of the electron gas. The resonant thermal effects in electron bulk excitation accompanying a radioactive decay in solids are discussed.

  12. Semiconductor-based experiments for neutrinoless double beta decay search

    NASA Astrophysics Data System (ADS)

    Barnabé Heider, Marik; Gerda Collaboration

    2012-08-01

    Three experiments are employing semiconductor detectors in the search for neutrinoless double beta (0νββ) decay: COBRA, Majorana and GERDA. COBRA is studying the prospects of using CdZnTe detectors in terms of achievable energy resolution and background suppression. These detectors contain several ββ emitters and the most promising for 0νββ-decay search is 116Cd. Majorana and GERDA will use isotopically enriched high purity Ge detectors to search for 0νββ-decay of 76Ge. Their aim is to achieve a background ⩽10-3 counts/(kgṡyṡkeV) at the Q improvement compared to the present state-of-art. Majorana will operate Ge detectors in electroformed-Cu vacuum cryostats. A first cryostat housing a natural-Ge detector array is currently under preparation. In contrast, GERDA is operating bare Ge detectors submerged in liquid argon. The construction of the GERDA experiment is completed and a commissioning run started in June 2010. A string of natural-Ge detectors is operated to test the complete experimental setup and to determine the background before submerging the detectors enriched in 76Ge. An overview and a comparison of these three experiments will be presented together with the latest results and developments.

  13. Long-range contributions to double beta decay revisited

    NASA Astrophysics Data System (ADS)

    Helo, J. C.; Hirsch, M.; Ota, T.

    2016-06-01

    We discuss the systematic decomposition of all dimension-7 ( d = 7) lepton number violating operators. These d = 7 operators produce momentum enhanced contributions to the long-range part of the 0νββ decay amplitude and thus are severely constrained by existing half-live limits. In our list of possible models one can find contributions to the long-range amplitude discussed previously in the literature, such as the left-right symmetric model or scalar leptoquarks, as well as some new models not considered before. The d = 7 operators generate Majorana neutrino mass terms either at tree-level, 1-loop or 2-loop level. We systematically compare constraints derived from the mass mechanism to those derived from the long-range 0 νββ decay amplitude and classify our list of models accordingly. We also study one particular example decomposition, which produces neutrino masses at 2-loop level, can fit oscillation data and yields a large contribution to the long-range 0 νββ decay amplitude, in some detail.

  14. Charged-particle channels in the {beta}-decay of {sup 11}Li

    SciTech Connect

    Raabe, R.; Ponsaers, J.; Duppen, P. van; Andreyev, A.; Buchmann, L.; Capel, P.; Kanungo, R.; Kirchner, T.; Morton, A. C.; Pearson, J.; Ruprecht, G.; Walden, P.; Borge, M. J. G.; Tengblad, O.; Fynbo, H. O. U.; Riisager, K.; Huyse, M.; Mattoon, C.; Sarazin, F.; Mukha, I.

    2007-11-30

    We measured the {beta}-decay of the halo-nucleus {sup 11}Li, with particular attention to the deuteron- and triton-emission channels. We employed a post-accelerated beam of {sup 11}Li ions, and the implantation technique in a finely-segmented silicon detector. The channels of interest were identified through the time and space correlations between the implantation events and the parent and daughter decays. We obtained the branching ratios, as well as the spectra of the emitted ions.

  15. Status and perspectives of the COBRA double-beta decay experiment

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Cobra Collaboration

    2006-05-01

    The COBRA experiment is going to use a large amount of CdZnTe semiconductor detectors to perform a search for various double-beta-decay modes. The current status of the experiment is presented, as well as first results. Improved half-life limits for the ground-state transitions of 64Zn and 120Te for 0νβ +/EC and 0νECEC have been obtained and the rate of the 4-fold forbidden 113Cd decays has been measured. A short outlook on future activities is also given.

  16. Towards a Precise Energy Calibration of the CUORE Double Beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Dally, Adam G.

    The mass of the neutrino may hold the key to many problems in cosmology and astrophysics. The observation of neutrino oscillations shows that neutrinos have mass, which was something that was not accounted for in the Standard Model of particle physics. This thesis covers topics relating to measuring the value of neutrino mass directly using bolometers. The first section will discuss the neutrino mass and different experiments for measuring the mass using bolometers. The mass of the neutrino can be measured directly from beta-decay or inferred from observation of neutrinoless double beta decay (0nubetabeta). In this work I present Monte Carlo and analytic simulation of the MARE experiment including, pile-up and energy resolution effects. The mass measurement limits of a micro-calorimeter experiments as it relates to the quantity of decays measured is provided. A similar simulation is preformed for the HolMES experiment. The motivation is to determine the sensitivity of such experiments and the detector requirements to reach the goal sensitivity. Another possible method for determining the neutrino mass is to use neutrinoless double beta decay. The second section will cover the Cryogenic Underground Observatory for Rare Events (CUORE) detector calibration system (DCS). CUORE is a neutrinoless double beta decay (0nubetabeta) experiment with an active mass of 206 kg of 130Te. The detector consists of 988 TeO2 bolometers operating at 10 mK. The signature of 0 nubetabeta decay is an excess of events at the Q-value of 2528 keV. Understanding the energy response is critical for event identification, but this presents many challenges. Calibration is necessary to associate a known energy from a gamma with a voltage pulse from the detector. The DCS must overcome many design challenges. The calibration source must be placed safely and reliable within the detector. The temperature of the detector region of the cryostat must not be changed during calibration. To achieve this

  17. Limit on majoron emission in beta-beta decay of Mo-100

    NASA Astrophysics Data System (ADS)

    Alston-Garnjost, M.; Dougherty, B.; Kenney, R.; Krivicich, J.; Tripp, R.

    1988-05-01

    Results are reported from an experimental search for double-beta decay of Mo-100, conducted in a disused silver mine in northern Idaho at a depth of 4000 ft below the surface to eliminate cosmic-ray background. No evidence is found for the decay mode with majoron emission, yielding a half-life limit of 3.3 x 10 to the 20th yr with 90-percent confidence. The lower limit for the two-neutrino mode is found to be 3.8 x 10 to the 18th yr.

  18. Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments

    NASA Astrophysics Data System (ADS)

    Moggi, N.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; Dafinei, I.; Dally, A.; Datskov, V.; Dell'oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Morganti, S.; Napolitano, T.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Santone, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zucchelli, S.

    2015-03-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for the neutrinoless double-beta decays. Observation of the process would unambiguously establish that neutrinos are Majorana particles and provide information on their absolute mass scale hierarchy. CUORE is now under construction and will consist of an array of 988 TeO2 crystal bolometers operated at 10 mK, but the first tower (CUORE-0) is already taking data. The experimental techniques used will be presented as well as the preliminary CUORE-0 results. The current status of the full-mass experiment and its expected sensitivity will then be discussed.

  19. Limit on Neutrinoless Double Beta Decay of 76Ge by GERDA

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Heider, M. Barabè; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Machado, A. A.; Macolino, C.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; Shaughnessy, C. O.'.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    The Gerda experiment at the Laboratori Nazionali del Gran Sasso in Italy uses germanium detectors made from material with an enriched 76Ge isotope fraction to search for neutrinoless double beta decay of this nucleus. Applying a blind analysis we find no signal after an exposure of 21.6 kg·yr and a background of about 0.01 cts/(keV·kg·yr). A half-life limit of Tov1/2> 2.1 · 1025 yr (90% C.L.) is extracted. The previous claim of a signal for 76Ge is excluded with 99% probability in a model independent way.

  20. The Milano-Gran Sasso double beta decay experiment: toward a 20-crystal array

    NASA Astrophysics Data System (ADS)

    Alessandrello, A.; Brofferio, C.; Bucci, C.; Camin, D. V.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Previtali, E.; Zanotti, L.

    1996-02-01

    TeO 2 thermal detectors are being used by the Milano group to search for neutrinoless double beta decay of 130Te. An upper limit for neutrinoless decay half life of 2.1 × 10 22 yr at 90% CL obtained with a 334 g TeO 2 detector has been previously reported. To improve the sensitivity of the experiment an array of twenty 340 g TeO 2 crystals will be realised in the next future. As a first step toward the realisation of that experiment a 4 crystal detector has been tested in the Gran Sasso refrigerator. Detector performances, data acquisition and analysis are discussed.

  1. Experiments on the origin of molecular chirality by parity non-conservation during beta-decay

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.

    1974-01-01

    Experiments are described to test a theory for the origin of optical activity wherein the longitudinally polarized electrons resulting from parity violation during radioactive beta-decay, and their resulting circularly polarized bremsstrahlung, might interact asymmetrically with organic matter to yield optically active products. The historical background to this subject is briefly reviewed. Our experiments involve subjecting a number of racemic and optically active amino acid samples to a beta-radiation source for a period of 1.34 years (total dose: 411 Mrads), then examining them for any asymmetric effects by means of optical rotatory dispersion and analytical gas chromatography.

  2. AXEL: High pressure xenon gas Time Projection Chamber for neutrinoless double beta decay search

    NASA Astrophysics Data System (ADS)

    Pan, Sheng

    2016-05-01

    AXEL is a high pressure xenon gas TPC detector being developed for neutrinoless double-beta decay search. We use proportional scintillation mode with a new electroluminescence light detection scheme to achieve very high energy resolution with a large detector. The detector has a capability of tracking which can be used reduce background. The project is in a R&D phase, and we report current status of our prototype chamber with 10 L and 8 bar Xe gas. We also present the results of the photon detection efficiency measurement and the linearity test of silicon photomultiplier(SiPM).

  3. Many-body correlations of QRPA in nuclear matrix elements of double-beta decay

    SciTech Connect

    Terasaki, J.

    2015-10-28

    We present two new ideas on the quasiparticle random-phase approximation (QRPA) approach for calculating nuclear matrix elements of double-beta decay. First, it is necessary to calculate overlaps of the QRPA states obtained on the basis of the ground states of different nuclei. We calculate this overlap using quasiboson vacua as the QRPA ground states. Second, we show that two-particle transfer paths are possible to use for the calculation under the closure approximation. A calculation is shown for {sup 150}Nd→{sup 150}Sm using these two new ideas, and their implication is discussed.

  4. Mass and Double-Beta-Decay Q Value of {sup 136}Xe

    SciTech Connect

    Redshaw, Matthew; Wingfield, Elizabeth; McDaniel, Joseph; Myers, Edmund G.

    2007-02-02

    The atomic mass of {sup 136}Xe has been measured by comparing cyclotron frequencies of single ions in a Penning trap. The result, with 1 standard deviation uncertainty, is M({sup 136}Xe)=135.907 214 484 (11) u. Combined with previous results for the mass of {sup 136}Ba [Audi, Wapstra, and Thibault, Nucl. Phys. A 729, 337 (2003)], this gives a Q value (M[{sup 136}Xe]-M[{sup 136}Ba])c{sup 2}=2457.83(37) keV, sufficiently precise for ongoing searches for the neutrinoless double-beta decay of {sup 136}Xe.

  5. Mass and Double-Beta-Decay Q Value of Xe136

    NASA Astrophysics Data System (ADS)

    Redshaw, Matthew; Wingfield, Elizabeth; McDaniel, Joseph; Myers, Edmund G.

    2007-02-01

    The atomic mass of Xe136 has been measured by comparing cyclotron frequencies of single ions in a Penning trap. The result, with 1 standard deviation uncertainty, is M(Xe136)=135.907 214 484 (11) u. Combined with previous results for the mass of Ba136 [Audi, Wapstra, and Thibault, Nucl. Phys. A 729, 337 (2003)NUPABL0375-947410.1016/j.nuclphysa.2003.11.003], this gives a Q value (M[Xe136]-M[Ba136])c2=2457.83(37)keV, sufficiently precise for ongoing searches for the neutrinoless double-beta decay of Xe136.

  6. Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments

    DOE PAGESBeta

    Moggi, N.; Artusa, D. R.; F. T. Avignone; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; et al

    2015-03-24

    The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for the neutrinoless double-beta decays. Observation of the process would unambiguously establish that neutrinos are Majorana particles and provide information on their absolute mass scale hierarchy. CUORE is now under construction and will consist of an array of 988 TeO2 crystal bolometers operated at 10 mK, but the first tower (CUORE-0) is already taking data. The experimental techniques used will be presented as well as the preliminary CUORE-0 results. The current status of the full-mass experiment and its expected sensitivity will then be discussed.

  7. Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments

    SciTech Connect

    Moggi, N.; Artusa, D. R.; F. T. Avignone; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; Dafinei, I.; Dally, A.; Datskov, V.; Dell’oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Morganti, S.; Napolitano, T.; Nisi, S.; C. Nones; Norman, E. B.; Nucciotti, A.; O’Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Santone, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zucchelli, S.; Fabbri, F.; Giacomelli, P.

    2015-03-24

    The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for the neutrinoless double-beta decays. Observation of the process would unambiguously establish that neutrinos are Majorana particles and provide information on their absolute mass scale hierarchy. CUORE is now under construction and will consist of an array of 988 TeO2 crystal bolometers operated at 10 mK, but the first tower (CUORE-0) is already taking data. The experimental techniques used will be presented as well as the preliminary CUORE-0 results. The current status of the full-mass experiment and its expected sensitivity will then be discussed.

  8. Majorana phases, CP violation, sterile neutrinos and neutrinoless double-beta decay

    SciTech Connect

    Babič, Andrej; Šimkovic, Fedor

    2013-12-30

    CP violation plays a crucial role in the generation of the baryon asymmetry in the Universe. Within this context we investigate the possibility of CP violation in the lepton sector caused by Majorana neutrino mixing. Focus is put on the model including 1 sterile neutrino. Both cases of normal and inverted neutrino mass spectrum are considered. We address the question whether the Majorana phases can be measured in the neutrinoless double-beta decay experiments with sensitivity to the effective Majorana neutrino mass of the order of 10{sup −2} eV.

  9. Interacting boson fermion model description for the levels of sup 71 Ge sub 39 populated in the beta decay of 65. 30-h sup 71 As

    SciTech Connect

    Meyer, R.A. Nuclear Chemistry Division, Lawrence Livermore National Laboratory, Livermore, California 94550 ) Nagle, R.J. ) Brant, S. ) Frlez, E. ) Paar, V. ) ) Hopke, P.K. )

    1990-02-01

    We have studied the level properties of the {ital N}=39 nucleus {sup 71}Ge by gamma-ray spectroscopy following the beta decay of {sup 71}As, for which we measure a half-life of 65.30{plus minus}0.07 h. When we calculated the level structure of {sup 71}Ge within the framework of the interacting boson fermion model, we found good agreement with the experimentally determined level properties. Some evidence was found for the occurrence of levels built on the coexisting {sup 70}Ge-core intruder state.

  10. Search for double beta decay of 116Cd with enriched 116CdWO4 crystal scintillators (Aurora experiment)

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Barabash, A. S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D. M.; d’Angelo, S.; Incicchitti, A.; Kobychev, V. V.; Konovalov, S. I.; Laubenstein, M.; Mokina, V. M.; Poda, D. V.; Polischuk, O. G.; Shlegel, V. N.; Tretyak, V. I.; Umatov, V. I.

    2016-05-01

    The Aurora experiment to investigate double beta decay of 116 Cd with the help of 1.162 kg cadmium tungstate crystal scintillators enriched in 116 Cd to 82% is in progress at the Gran Sasso Underground Laboratory. The half-life of 116 Cd relatively to the two neutrino double beta decay is measured with the highest up-to-date accuracy T1/2 = (2.62 ± 0.14) × 1019 yr. The sensitivity of the experiment to the neutrinoless double beta decay of 116 Cd to the ground state of 116 Sn is estimated as T1/2 ≥ 1.9 × 1023 yr at 90% CL, which corresponds to the effective Majorana neutrino mass limit (mv) ≤ (1.2 — 1.8) eV. New limits are obtained for the double beta decay of 116 Cd to the excited levels of 116 Sn, and for the neutrinoless double beta decay with emission of majorons.

  11. {beta} decay of the 21/2{sup +} isomer in {sup 93}Mo and level structure of {sup 93}Nb

    SciTech Connect

    Hori, T.; Masue, T.; Odahara, A.; Kura, K.; Tajiri, K.; Shimoda, T.; Fukuchi, T.; Suzuki, T.; Wakabayashi, Y.; Gono, Y.; Ogawa, K.

    2009-09-15

    The {gamma} rays associated with {beta} decay of the 21/2{sup +} isomer in {sup 93}Mo (E{sub x}=2.425 MeV, T{sub 1/2}=6.85 h) were measured with a selective sensitivity to long-lived isomer decays. A new 1262-keV transition was found in the {gamma}-{gamma} coincidence measurement, and it was attributed to a transition in {sup 93}Nb, which is the daughter nucleus of the {beta} decay of the {sup 93}Mo isomer, from the 2.753- to the 1.491-MeV levels. Accurate {gamma}-ray intensity balances have determined the {beta}-decay intensity from the {sup 93}Mo isomer to the 2.753-MeV level in {sup 93}Nb and placed no appreciable intensity for the previously reported {beta}-decay branching to the 2.180-MeV level, for which a recent in-beam {gamma}-ray experiment assigned to be I{sup {pi}} = 17/2{sup -}. Based on the {gamma}-ray intensities from the 2.753-MeV level, spin-parity assignment of this level was revised from 21/2{sup +} to 19/2{sup +}. The observed {beta}-decay intensity and the spin-parity assignment were explained by the jj-coupling shell model calculations.

  12. The AMoRE: Search for neutrinoless double beta decay of {sup 100}Mo

    SciTech Connect

    Park, HyangKyu

    2015-10-28

    The AMoRE (Advanced Mo-based Rare process Experiment) collaboration is using calcium molybdate ({sup dep48}Ca {sup 100}MoO{sub 4}) crystals enriched in {sup 100}Mo and depleted in {sup 48}Ca to search for neutrinoless double-beta decay (DBD) of {sup 100}Mo using at the underground laboratory in Korea. Metallic magnetic calorimeters operating a milliKelvin temperatures are used as temperature sensors to measure heat and light signals from the crystals. The simultaneous and fast detection capabilities for both phonons and photons, and their excellent energy resolution provide powerful methods for identifying DBD signals and rejecting background events, which are mainly due to random coincidences between two uncorrelated two-neutrino-double-beta decays of {sup 100}Mo. The AMoRE-Pilot experiment that is currently underway uses a 1.5 kg, five-element array of {sup dep48}Ca {sup 100}MoO{sub 4} crystals. The ultimate goal is a ∼200 kg array of crystals and a half-life sensitivity of order 10{sup 26} years, which will access the inverted hierarchy region for effective Majorana neutrino masses, i.e., 0.02 to 0.05 eV. In this talk, we present recent progress on the development of low-background calcium molybdate detectors and results from room- and milli-Kelvin temperatures. Sensitivities based on GEANT4 simulations that incorporate measured background are reported.

  13. Search for Neutrinoless Double-Beta Decay of with CUORE-0

    DOE PAGESBeta

    Alfonso, K.; Artusa, D.  R.; F. T. Avignone; Azzolini, O.; Balata, M.; Banks, T.  I.; Bari, G.; Beeman, J.  W.; Bellini, F.; Bersani, A.; et al

    2015-09-03

    We report the results of a search for neutrinoless double-beta decay in a 9.8 kg yr exposure of 130Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5.1 ± 0.3 keV FWHM and 0.058 ± 0.004 (stat.) ± 0:002 (syst.) counts/(keV kg yr), respectively. The median 90% C.L. lower-limit sensitivity of the experiment is 2.9 x 1024 yr and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of 130Te and place a Bayesian lower bound on the decay half-life, T0$_1$1/2 > 2.7more » x 1024 yr at 90% C.L. Combining CUORE-0 data with the 19.75 kg yr exposure of 130Te from the Cuoricino experiment we obtain T0$_1$1/2 > 4.0 x 1024 yr at 90% C.L. (Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, mββ < 270 - 760 meV.« less

  14. Search for Neutrinoless Double-Beta Decay of Te130 with CUORE-0

    DOE PAGESBeta

    Alfonso, K.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Bersani, A.; et al

    2015-09-03

    We report the results of a search for neutrinoless double-beta decay in a 9.8 kg yr exposure of 130Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5:1± 0:3 keV FWHM and 0:058 ± 0:004 (stat) ± 0:002 (syst) counts / (keV kg yr), respectively. The median 90% C.L. lower-limit half-life sensitivity of the experiment is 2:9x1024 yr and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of 130Te and place a Bayesian lower bound on the decay half-life, T0ν1/2 > 2.7more » x 1024 yr at 90% C.L. Combining CUORE-0 data with the 19.75 kg yr exposure of 130Te from the Cuoricino experiment we obtain T0ν1/2 > 4.0 x 1024 yr at 90% C.L. (Bayesian), the most stringent limit to date on this half-life. Lastly, using a range of nuclear matrix element estimates we interpret this as a limit on the e ective Majorana neutrino mass, mββ < 270 -760 meV.« less

  15. Failure of the gross theory of beta decay in neutron deficient nuclei

    SciTech Connect

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Beta Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values.

  16. The MAJORANA DEMONSTRATOR: A search for neutrinoless double-beta decay of ⁷⁶Ge

    SciTech Connect

    Xu, W.; Abgrall, N.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W.P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Yakushev, E.; Yu, C. -H.; Yumatov, V.

    2015-05-01

    Neutrinoless double-beta (0νββ) decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the MAJORANA DEMONSTRATOR, with a total of 40-kg Germanium detectors, to search for the 0νββ decay of ⁷⁶Ge and to demonstrate a background rate at or below 3 counts/(ROI•t•y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for ⁷⁶Ge 0νββ decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the MAJORANA DEMONSTRATOR, including its design and approach to achieve ultra-low backgrounds and the status of the experiment.

  17. Status Update of the Majorana Demonstrator Neutrinoless Double Beta Decay Experiment

    SciTech Connect

    Gruzko, Julieta; Rielage, Keith Robert; Xu, Wenqin; Elliott, Steven Ray; Massarczyk, Ralph; Goett, John Jerome III; Chu, Pinghan

    2015-11-10

    Neutrinoless double beta decay searches play a major role in determining neutrino properties, in particular the Majorana or Dirac nature of the neutrino and the absolute scale of the neutrino mass. The consequences of these searches go beyond neutrino physics, with implications for Grand Unification and leptogenesis. The Majorana Collaboration is assembling a low-background array of high purity Germanium (HPGe) detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator, which is currently being constructed and commissioned at the Sanford Underground Research Facility in Lead, South Dakota, will contain 44 kg (30 kg enriched in 76Ge) of HPGe detectors. Its primary goal is to demonstrate the scalability and background required for a tonne-scale Ge experiment. This is accomplished via a modular design and projected background of less than 3 cnts/tonne-yr in the region of interest. The experiment is currently taking data with the first of its enriched detectors.

  18. The MAJORANA DEMONSTRATOR: A search for neutrinoless double-beta decay of ⁷⁶Ge

    DOE PAGESBeta

    Xu, W.; Abgrall, N.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; et al

    2015-05-01

    Neutrinoless double-beta (0νββ) decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the MAJORANA DEMONSTRATOR, with a total of 40-kg Germanium detectors,more » to search for the 0νββ decay of ⁷⁶Ge and to demonstrate a background rate at or below 3 counts/(ROI•t•y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for ⁷⁶Ge 0νββ decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the MAJORANA DEMONSTRATOR, including its design and approach to achieve ultra-low backgrounds and the status of the experiment.« less

  19. The Majorana Demonstrator: A Search for Neutrinoless Double-beta Decay of 76Ge

    NASA Astrophysics Data System (ADS)

    Xu, W.; Abgrall, N.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Majorana Collaboration

    2015-05-01

    Neutrinoless double-beta (0νββ) decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the MAJORANA DEMONSTRATOR, with a total of 40-kg Germanium detectors, to search for the 0νββ decay of 76Ge and to demonstrate a background rate at or below 3 counts/(ROI·t·y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for 76Ge 0νββ decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the MAJORANA DEMONSTRATOR, including its design and approach to achieve ultra-low backgrounds and the status of the experiment.

  20. The AMoRE: Search for neutrinoless double beta decay of 100Mo

    NASA Astrophysics Data System (ADS)

    Park, HyangKyu

    2015-10-01

    The AMoRE (Advanced Mo-based Rare process Experiment) collaboration is using calcium molybdate (dep48Ca 100MoO4) crystals enriched in 100Mo and depleted in 48Ca to search for neutrinoless double-beta decay (DBD) of 100Mo using at the underground laboratory in Korea. Metallic magnetic calorimeters operating a milliKelvin temperatures are used as temperature sensors to measure heat and light signals from the crystals. The simultaneous and fast detection capabilities for both phonons and photons, and their excellent energy resolution provide powerful methods for identifying DBD signals and rejecting background events, which are mainly due to random coincidences between two uncorrelated two-neutrino-double-beta decays of 100Mo. The AMoRE-Pilot experiment that is currently underway uses a 1.5 kg, five-element array of dep48Ca 100MoO4 crystals. The ultimate goal is a ˜200 kg array of crystals and a half-life sensitivity of order 1026 years, which will access the inverted hierarchy region for effective Majorana neutrino masses, i.e., 0.02 to 0.05 eV. In this talk, we present recent progress on the development of low-background calcium molybdate detectors and results from room- and milli-Kelvin temperatures. Sensitivities based on GEANT4 simulations that incorporate measured background are reported.

  1. The Physics of Ultracold Neutrons and Fierz Interference in Beta Decay

    NASA Astrophysics Data System (ADS)

    Hickerson, Kevin Peter

    In the first component of this thesis, we investigate the physics of ultacold neutrons (UCN). UCN are neutrons so cold they can be stored inside of material, magnetic and gravitational bottles. Using this property we use UCN nonimaging optics to design a type of reflector that directs UCN upward in to vertical paths. Next we examine UCN passing through thin, multilayered foils. In the remaining sections we investigate the so-called Fierz interference term of free neutron beta decay, denoted bn. It is theorized that contributions to scalar and tensor interactions from physics beyond the Standard Model could be detectable in the spectrum of neutron beta decay, manifest as a nonzero value for bn. We investigate three techniques for measuring bn. The first is to use the primordial helium abundance fraction and compare that to predictive Big Bang nucleosynthesis calculations. Second we extract bn from the spectral shape generated by the 2010 data set of the UCNA experiment. Third, we discuss progress toward constructing the UCNb experimental prototype. We present the design of this new experiment that uses the UCN source at LANSCE for measuring bn, in which UCN are guided into a shielded 4π calorimeter where they are stored and decay. From Big Bang nucleosynthesis we can place the limit 0.021 < bn < 0.277 (90% C.L.) on the neutron Fierz term and from the UCNA 2010 data we set -0.044 < bn < 0.218 (90% C.L.).

  2. Search for Neutrinoless Double-Beta Decay of 130Te with CUORE-0

    NASA Astrophysics Data System (ADS)

    Alfonso, K.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; Dafinei, I.; Dally, A.; Dell'Oro, S.; Deninno, M. M.; di Domizio, S.; di Vacri, M. L.; Drobizhev, A.; Ejzak, L.; Fang, D. Q.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Santone, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zucchelli, S.; Cuore Collaboration

    2015-09-01

    We report the results of a search for neutrinoless double-beta decay in a 9.8 kg yr exposure of 130Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5.1 ±0.3 keV FWHM and 0.058 ±0.004 (stat)±0.002 (syst)counts /(keV kg yr ) , respectively. The median 90% C.L. lower-limit half-life sensitivity of the experiment is 2.9 ×1024 yr and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of 130Te and place a Bayesian lower bound on the decay half-life, T1/2 0 ν>2.7 ×1024 yr at 90% C.L. Combining CUORE-0 data with the 19.75 kg yr exposure of 130Te from the Cuoricino experiment we obtain T1/2 0 ν>4.0 ×1024 yr at 90% C.L. (Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, mβ β<270 - 760 meV .

  3. The Current Status of Precision Superallowed Fermi {beta}-Decay Measurements at TRIUMF-ISAC

    SciTech Connect

    Leach, K. G.

    2011-06-28

    Recent experimental work at the TRIUMF-ISAC radioactive ion-beam facility in Vancouver Canada, has produced several new results related to precise experimental tests of fundamental symmetries. The nature of these programs range from campaigns using existing setups, to the development of new apparats to further the experimental reach. One of the primary goals has been the investigation of superallowed Fermi {beta}-decay, and its relation to Standard Model tests of CVC and CKM unitarity The extraction of experimental {beta}-decay ft values requires the measurement of three quantities: the half-life, the superallowed branching ratio, and the parent-daughter mass difference. TRIUMF-ISAC has the ability to measure each of these values with very high precision, using a gas-proportional-counter, the 8{pi}{gamma}-ray spectrometer, and TITAN, respectively. This report focuses on the recent experimental progress of the superallowed program, as well as highlighting some results from the successful halo-nucleus mass-measurement program at TITAN.

  4. The {beta}-Decay Properties of Scissors Mode 1{sup +} States in {sup 164}Er

    SciTech Connect

    Yildirim, Z.; Kuliev, A.; Ozkan, S.; Guliyev, E.

    2008-11-11

    The beta decay properties of collective I{sup {pi}}K = 1{sup +}1 states in doubly even deformed {sup 164}Er nuclei are investigated in the framework of the rotational invariant random-phase approximation. It is shown that an essential decrease of the rate of the allowed {beta}-decay to the excited 1{sup +}-states as compared with that to the ground state may be due to the orbital nature of the states. The model Hamiltonian includes restoring rotational invariance of the deformed single particle Hamiltonian forces and the spin-spin interactions. The analytical expressions for the Gamov-Teller (G-T) and Fermi (F) decay matrix elements are derived. The single-particle energies were obtained from the Warsaw deformed Woods-Saxon potential with deformation parameter {delta}{sub 2} = 0.24. The numerical results for {beta}{sup +} transition from {sup 164}Tm to {sup 164}Er indicate the importance of using rotational invariant Hamiltonian to explain experimental data.

  5. The Majorana Demonstrator: A search for neutrinoless double-beta decay of germanium-76

    SciTech Connect

    Elliott, S. R.; Boswell, M.; Goett, J.; Rielage, K.; Ronquest, M. C.; Xu, W.; Abgrall, N.; Chan, Y-D.; Hegai, A.; Martin, R. D.; Mertens, S.; Poon, A. W. P.; Aguayo, E.; Fast, J. E.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.; Overman, N. R.; Soin, A.; and others

    2013-12-30

    The MAJORANA collaboration is searching for neutrinoless double beta decay using {sup 76}Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, 15 - 50 meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of ∼1 count/t-y or lower in the region of the signal. The MAJORANA collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the DEMONSTRATOR, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which ∼30 kg will be enriched to 87% in {sup 76}Ge. The DEMONSTRATOR is being constructed in a clean room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the DEMONSTRATOR is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.

  6. {beta} decay of the even-even {sup 124}Ba nucleus: A test for the interacting boson-fermion-fermion model

    SciTech Connect

    Brant, S.; Yoshida, N.; Zuffi, L.

    2006-08-15

    The interacting boson-fermion-fermion model approach to {beta} decay is applied to the decay from the even-even {sup 124}Ba to the odd-odd {sup 124}Cs nucleus. The theoretical results for energy levels, electromagnetic properties and {beta} decay rates are compared with experimental data for {sup 124}Cs. The calculated {beta}-decay rates demonstrate that the interacting boson approximation can be applied in the description of {beta} decays from even-even to odd-odd nuclei.

  7. Gaseous time projection chambers for rare event detection: results from the T-REX project. I. Double beta decay

    NASA Astrophysics Data System (ADS)

    Irastorza, I. G.; Aznar, F.; Castel, J.; Cebrián, S.; Dafni, T.; Galán, J.; Garcia, J. A.; Garza, J. G.; Gómez, H.; Herrera, D. C.; Iguaz, F. J.; Luzon, G.; Mirallas, H.; Ruiz, E.; Seguí, L.; Tomás, A.

    2016-01-01

    As part of the T-REX project, a number of R&D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches like double beta decay, axion research and low-mass WIMP searches. In both this and its companion paper, we compile the main results of the project and give an outlook of application prospects for this detection technique. While in the companion paper we focus on axions and WIMPs, in this paper we focus on the results regarding the measurement of the double beta decay (DBD) of 136Xe in a high pressure Xe (HPXe) TPC. Micromegas of the microbulk type have been extensively studied in high pressure Xe and Xe mixtures. Particularly relevant are the results obtained in Xe + trimethylamine (TMA) mixtures, showing very promising results in terms of gain, stability of operation, and energy resolution at high pressures up to 10 bar. The addition of TMA at levels of ~ 1% reduces electron diffusion by up to a factor of 10 with respect to pure Xe, improving the quality of the topological pattern, with a positive impact on the discrimination capability. Operation with a medium size prototype of 30 cm diameter and 38 cm of drift (holding about 1 kg of Xe at 10 bar in the fiducial volume, enough to contain high energy electron tracks in the detector volume) has allowed to test the detection concept in realistic experimental conditions. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ~ 3% FWHM @ Qββ. This value was experimentally demonstrated for high-energy extended tracks at 10 bar, and is probably improvable down to the ~ 1% FWHM levels as extrapolated from low energy events. In addition, first results on the topological signature information (one straggling track ending in two blobs) show promising

  8. Measurement of the Double-Beta Decay Half-life of {sup 136}Xe in KamLAND-Zen

    SciTech Connect

    KamLAND-Zen Collaboration; Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Kato, R.; Koga, M.; Matsuda, S.; Mitsui, T.; Nakada, T.; Nakamura, K.; Obata, A.; Oki, A.; Ono, Y.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yoshida, H.; Kozlov, A.; Yoshida, S.; Banks, T. I.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; O'Donnell, T.; Berger, B. E.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Enomoto, S.; Decowski, M. P.

    2012-01-23

    We present results from the KamLAND-Zen double-beta decay experiment based on an exposure of 77.6 days with 129 kg of {sup 136}Xe. The measured two-neutrino double-beta decay half-life of {sup 136}Xe is T{sup 2{nu}}{sub 1/2} = 2:38 {+-} 0:02(stat) {+-}0.14(syst) x10{sup 21} yr, consistent with a recent measurement by EXO-200. We also obtain a lower limit for the neutrinoless double-beta decay half-life, T{sup 0{nu}}{sub 1/2} > 5.7 x 10{sup 24} yr at 90% C.L.

  9. Background Suppression Using Pulse Shape Analysis with a BEGe Detector for Neutrinoless Double Beta Decay Search with GERDA

    SciTech Connect

    Budjas, Dusan; Schoenert, Stefan; Chkvorets, Oleg

    2009-12-17

    A pulse shape analysis for distinguishing between double beta decay-like interactions and multiple-scattered photons was performed for the first time using a BEGe-type detector. This discrimination method is included in the research and development for the second phase of the GERDA experiment, since active background suppression techniques are necessary to reach sensitivity for the {sup 76}Ge neutrinoless double beta decay half life of >10{sup 26} years. A suppression of backgrounds in the energy region of interest around the {sup 76}Ge Q{sub {beta}}{sub {beta}} = 2039 keV is demonstrated, with (0.93{+-}0.08)% survival probability for events from {sup 60}Co, (21{+-}3)% for {sup 226}Ra, and (40{+-}2)% for {sup 228}Th. This performance is achieved with (89{+-}1)% acceptance of {sup 228}Th double escape events, which are analogous to double beta decay.

  10. Realistic fission models, new beta-decay half-lives and the r-process in neutron star mergers

    SciTech Connect

    Shibagaki, S.; Kajino, T.; Chiba, S.; Lorusso, G.; Nishimura, S.; Mathews, G. J.

    2014-05-02

    Almost half of heavy nuclei beyond iron are considered to be produced by rapid neutron capture process (r-process). This process occurs in the neutron-rich environment such as core-collapse supernovae or neutron star mergers, but the main production site is still unknown. In the r-process of neutron star mergers, nuclear fission reactions play an important role. Also beta-decay half-lives of magic nuclei are crucial for the r-process. We have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions and new beta-decay half-lives for N=82 nuclei measured at RIBF-RIKEN. We investigate the effect of nuclear fission on abundance patterns in the matter ejected from neutron star mergers with two different fission fragment mass distributions. We also discuss how the new experimental beta-decay half-lives affect the r-process.

  11. Gamow-Teller Transitions and beta-decay Half-life in Proton Rich pf-shell Nuclei

    SciTech Connect

    Fujita, Y.; Adachi, T.; Fujita, H.; Shimbara, Y.; Blank, B.; Brentano, P. von; Zell, K. O.; Berg, G. P. A.; Fujita, K.; Hatanaka, K.; Nakanishi, K.; Shimizu, Y.; Tameshige, Y.; Tamii, A.; Yosoi, M.; Negret, A.; Popescu, L.; Rubio, B.

    2010-06-01

    In violent neutrino-induced reactions at the core-collapse stage of type II supernovae, Gamow-Teller (GT) transitions starting from stable as well as unstable pf-shell nuclei play important roles. In the beta-decay study of these unstable pf-shell nuclei, half-lives can be measured rather accurately. On the other hand, in high-resolution ({sup 3}He,t) charge-exchange reactions at 0 deg., individual GT transitions up to high excitations can be studied. Assuming the isospin symmetry for the strengths of T{sub z} = +-2->+-1 analogous GT transitions, we present a 'merged analysis' for the determination of GT transition strengths starting from proton-rich T{sub z} = -2 nuclei. We applied this analysis to the A = 52, T = 2 system, and it was found that the GT transitions and the properties of the {sup 52}Nibeta decay can be understood better by combining the mirror GT strength distribution obtained from the {sup 52}Cr({sup 3}He,t) reaction.

  12. Production and {beta} Decay of rp-Process Nuclei {sup 96}Cd, {sup 98}In, and {sup 100}Sn

    SciTech Connect

    Bazin, D.; Baumann, T.; Ginter, T.; Hausmann, M.; Minamisono, K.; Pereira, J.; Portillo, M.; Stolz, A.; Montes, F.; Matos, M.; Perdikakis, G.; Schatz, H.; Smith, K.; Becerril, A.; Lorusso, G.; Amthor, A.; Estrade, A.; Gade, A.; Crawford, H.; Mantica, P.

    2008-12-19

    The {beta}-decay properties of the N=Z nuclei {sup 96}Cd, {sup 98}In, and {sup 100}Sn have been studied. These nuclei were produced at the National Superconducting Cyclotron Laboratory by fragmenting a 120 MeV/nucleon {sup 112}Sn primary beam on a Be target. The resulting radioactive beam was filtered in the A1900 and the newly commissioned Radio Frequency Fragment Separator to achieve a purity level suitable for decay studies. The observed production cross sections of these nuclei are lower than predicted by factors of 10-30. The half-life of {sup 96}Cd, which was the last experimentally unknown waiting point half-life of the astrophysical rp process, is 1.03{sub -0.21}{sup +0.24} s. The implications of the experimental T{sub 1/2} value of {sup 96}Cd on the abundances predicted by rp process calculations and the origin of A=96 isobars such as {sup 96}Ru are explored.

  13. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of {sup 21}Na with improved laser trapping techniques

    SciTech Connect

    Rowe, Mary A.

    1999-05-24

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive {sup 21}Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88in cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of {sup 21}Na to the experiment. Efficient manipulation of the {sup 21}Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of {sup 21}Na. She measured the 3S{sub 1/2}(F=1,m=0)-3S{sub 1/2}(F=2,m=0) atomic level splitting of {sup 21}Na to be 1,906,471,870{+-}200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  14. The scalar triplet contribution to lepton flavour violation and neutrinoless double beta decay in Left-Right Symmetric Model

    NASA Astrophysics Data System (ADS)

    Bambhaniya, Gulab; Dev, P. S. Bhupal; Goswami, Srubabati; Mitra, Manimala

    2016-04-01

    We analyse in detail the scalar triplet contribution to the low-energy lepton flavour violating (LFV) and lepton number violating (LNV) processes within a TeV-scale left-right symmetric framework. We show that in both type-I and type-II seesaw dominance for the light neutrino masses, the triplet of mass comparable to or smaller than the largest right-handed neutrino mass scale can give sizeable contribution to the LFV processes, except in the quasi-degenerate limit of light neutrino masses, where a suppression can occur due to cancellations. In particular, a moderate value of the heaviest neutrino to scalar triplet mass ratio r≲ O(1) is still experimentally allowed and can be explored in the future LFV experiments. Similarly, the contribution of a relatively light triplet to the LNV process of neutrinoless double beta decay could be significant, disfavouring a part of the model parameter space otherwise allowed by LFV constraints. Nevertheless, we find regions of parameter space consistent with both LFV and LNV searches, for which the values of the total effective neutrino mass can be accessible to the next generation ton-scale experiments. Such light triplets can also be directly searched for at the LHC, thus providing a complementary probe of this scenario. Finally, we also study the implications of the triplet contribution for the left-right symmetric model interpretation of the recent diboson anomaly at the LHC.

  15. Beta Decay of the Proton-Rich Nuclei 102Sn and 104Sn

    SciTech Connect

    Karny, M.; Batist, L.; Banu, A.; Becker, F.; Blazhev, A.; Brown, B. A.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Janas, Z.; Jungclaus, A.; Kavatsyuk, M.; Kavatsyuk, O.; Kirchner, R.; La Commara, M.; Mandal, S.; Mazzocchi, C.; Miernik, K.; Mukha, I.; Muralithar, S.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Rykaczewski, Krzysztof Piotr; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2006-01-01

    The {beta} decays of {sup 102}Sn and {sup 104}Sn were studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). For {sup 104}Sn, with three new {beta}-delayed {gamma}-rays identified, the total Gamow-Teller strength (BGT) value of 2.7(3) was obtained. For {sup 102}Sn, the {gamma}-{gamma} coincidence data were collected for the first time, allowing us to considerably extend the decay scheme. This scheme was used to unfold the TAS data and to deduce a BGT value of 4.2(8) for this decay. This result is compared to shell model predictions, yielding a hindrance factor of 3.6(7) in agreement with those obtained previously for {sup 98}Cd and {sup 100}In. Together with the latter two, {sup 102}Sn completes the triplet of Z {le} 50, N {ge} 50 nuclei with two proton holes, one proton hole and one neutron particle, and two neutron particles with respect to the doubly magic {sup 100}Sn core.

  16. Beta-Decay Spectroscopy of Neutron-Rich Isotopes Utilizing a Planar Ge Double-Sided Strip Detector

    NASA Astrophysics Data System (ADS)

    Larson, N.; Liddick, S. N.; Prokop, C. J.; Kondev, F. G.; Kumar, S.; Crider, B. P.; Paulauskas, S. V.; Suchyta, S.

    2015-10-01

    In nuclear science, rapid changes in the structure of the atomic nucleus have been inferred with small changes in the neutron and proton numbers. These changes are manifested in variations of the low-energy level schemes of exotic isotopes. One region of the nuclear chart where rapid changes in deformation have been suggested based on the behavior of the first excited 2 + states is in neutron-rich nuclei near A = 110. Beta-decay spectroscopy is a sensitive and selective technique that can be used to investigate the low-energy level schemes exotic nuclei at low production rates. At the National Superconducting Cyclotron Laboratory (NSCL), a recently commissioned planar Ge double-sided strip detector (GeDSSD) is used in a novel application for these studies. Preliminary results from the decay of Tc isotopes in an experiment aimed at nuclei near A = 110 will be presented. This work was supported by the DOE NNSA DE-NA0000979 and the NSF Grant PHY1102511.

  17. The neutrinoless double beta decay experiment COBRA: Status and future plans

    NASA Astrophysics Data System (ADS)

    Martin, Jerrad

    2009-10-01

    The COBRA experiment uses Cadmium Zinc Telluride (CZT) room-temperature solid-state detectors to search for neutrinoless double beta decays of the isotope ^116Cd as well as for rare decays from several other Cd and Te isotopes. A prototype experiment is currently taking data in the Gran Sasso underground laboratory. In this contribution, recent results from the prototype will be presented. Furthermore, the on-going detector R&D will be described and two detector options for a large-scale experiment made of 420 kg of CZT detectors will be discussed. The first option uses ``calorimetric coplanar grid detector units". Alternatively, finely pixelated detectors may be used with pixel pitches of between 200 and 350 microns. The pixelated detectors would afford the possibility of tracking beta particles inside the detector and distinguishing them from background events.

  18. Research and Development Supporting a Next Generation Germanium Double Beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Rielage, Keith; Elliott, Steve; Chu, Pinghan; Goett, Johnny; Massarczyk, Ralph; Xu, Wenqin

    2015-10-01

    To improve the search for neutrinoless double beta decay, the next-generation experiments will increase in source mass and continue to reduce backgrounds in the region of interest. A promising technology for the next generation experiment is large arrays of Germanium p-type point contact detectors enriched in 76-Ge. The experience, expertise and lessons learned from the MAJORANA DEMONSTRATOR and GERDA experiments naturally lead to a number of research and development activities that will be useful in guiding a future experiment utilizing Germanium. We will discuss some R&D activities including a hybrid cryostat design, background reduction in cabling, connectors and electronics, and modifications to reduce assembly time. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  19. Phase II Upgrade of the GERDA Experiment for the Search of Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Majorovits, B.

    Observation of neutrinoless double beta decay could answer the question regarding the Majorana or Dirac nature of neutrinos. The GERDA experiment utilizes HPGe detectors enriched with the isotope 76Ge to search for this process. Recently the GERDA collaboration has unblinded data of Phase I of the experiment. In order to further improve the sensitivity of the experiment, additionally to the coaxial detectors used, 30 BEGe detectors made from germanium enriched in 76Ge will be deployed in GERDA Phase II. BEGe detectors have superior PSD capability, thus the background can be further reduced. The liquid argon surrounding the detector array will be instrumented in order to reject background by detecting scintillation light induced in the liquid argon by radiation. After a short introduction the hardware preparations for GERDA Phase II as well as the processing and characterization of the 30 BEGe detectors are discussed.

  20. Tensor interaction constraints from {beta}-decay recoil spin asymmetry of trapped atoms

    SciTech Connect

    Pitcairn, J. R. A.; Roberge, D.; Gorelov, A.; Ashery, D.; Aviv, O.; Behr, J. A.; Bricault, P. G.; Dombsky, M.; Holt, J. D.; Jackson, K. P.; Lee, B.; Pearson, M. R.; Gaudin, A.; Dej, B.; Hoehr, C.; Gwinner, G.; Melconian, D.

    2009-01-15

    We have measured the angular distribution of recoiling daughter nuclei emitted from the Gamow-Teller {beta} decay of spin-polarized {sup 80}Rb. The asymmetry of this distribution vanishes to lowest order in the standard model (SM) in pure Gamow-Teller decays, producing an observable very sensitive to new interactions. We measure the non-SM contribution to the asymmetry to be A{sub T}=0.015{+-}0.029 (stat) {+-}0.019 (syst), consistent with the SM prediction. We constrain higher-order SM corrections using the measured momentum dependence of the asymmetry, and their remaining uncertainty dominates the systematic error. Future progress in determining the weak magnetism term theoretically or experimentally would reduce the final errors. We describe the resulting constraints on fundamental four-Fermi tensor interactions.

  1. Search for β+/EC double beta decay of 120Te

    NASA Astrophysics Data System (ADS)

    Tomei, C.

    2011-12-01

    We present a search for β+/EC double beta decay of 120Te performed with the CUORICINO experiment, an array of TeO2 cryogenic bolometers. After collecting 0.0573 kgṡy of 120Te, we see no evidence of a signal and therefore set the following limits on the half-life: T1/20ν>1.9ṡ1021 y at 90% C.L. for the 0ν mode and T1/22ν>7.6ṡ1019 y at 90% C.L. for the 2ν mode. These results improve the existing limits by almost three orders of magnitude (four in the case of 0ν mode).

  2. Experimental evidence for beta-decay as a source of chirality by enantiomer analysis

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.

    1984-01-01

    Earlier experiments testing the Vester-Ulbricht beta-decay hypothesis for the origin of molecular chirality are reviewed, followed by descriptions of experiments involving attempted asymmetric radiolysis of DL-amino acids using quantitative gas chromotography as a probe for optical activity. The radiation sources included Sr-90-Y-90, C-14, and P-32 Bremsstrahlen, longitudinally polarized electrons from a linear accelerator and longitudinally polarized protons from a cyclotron. With the possible exception of the linear accelerator irradiations, these experiments failed to produce g.c.-detectable enantiomeric excesses, even at 50-70 percent gross radiolysis. Thus no unambiguous support for the Vester-Ulbricht hypothesis is found in any of the attempted asymmetric radiolyses performed to date. Radioracemization, a possible reason for these failures, is discussed.

  3. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    SciTech Connect

    Dorofeev, O.F.; Lobanov, A.E.

    2005-06-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.

  4. Experiment TGV-2. Search for double beta decay of 106Cd

    NASA Astrophysics Data System (ADS)

    Rukhadze, N. I.; Bakalyarov, A. M.; Briançon, Ch; Brudanin, V. B.; Čermák, P.; Egorov, V. G.; Klimenko, A. A.; Kovalik, A.; Lebedev, V. I.; Rukhadze, E. N.; Mamedov, F.; Shitov, Yu A.; Šimkovic, F.; Štekl, I.; Timkin, V. V.; Zhukov, S. V.

    2012-07-01

    The search for double beta decay of 106Cd was performed at the Modane underground laboratory (France, 4800 m.w.e.) using the multi-detector spectrometer TGV-2. 16 samples (~13.6 g) of 106Cd with an enrichment of 75% were installed between neighbouring HPGe detectors and measured during 12900 h. New half-life limits (at 90% CL) were obtained for 2νEC/EC decay of 106Cd to the ground state of 106Pd - T1/2 > 4.2 × 1020 y, and for OνEC/EC resonant decay of 106Cd to 2741 keV and 2718 keV excited states of 106Pd - T1/2 > 1.8 × 1020y and T1/2 > 1.6 × 1020y respectively.

  5. A Precision Measurement of Neutron Beta Decay Angular Correlations with Polarized Pulsed Cold Neutrons

    NASA Astrophysics Data System (ADS)

    Seo, Pil-Neyo

    2004-05-01

    The abBA collaboration is developing an experiment to measure the neutron beta decay angular correlations, a, b, B, A, to 0.1the very high pulsed cold neutron intensities in a new nuclear physics beam line that is under construction at SNS. The design of the experiment is based on three important technical advances: the pulsed cold neutron beam, a polarized ^3He neutron spin filter, and large-area thin-dead layer silicon detectors. Both electrons and protons resulting from the decay will be guided in the spectrometer by electric and magnetic fields and then detected in coincidence with two 2π large-segmented silicon detectors. Measuring the correlations in the same apparatus provides a redundant measurement of λ=G_A/G_V. I will describe the experiment and report the status of the development.

  6. First array of enriched Zn^{82}Se bolometers to search for double beta decay

    NASA Astrophysics Data System (ADS)

    Artusa, D. R.; Balzoni, A.; Beeman, J. W.; Bellini, F.; Biassoni, M.; Brofferio, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Cruciani, A.; D'Addabbo, A.; Dafinei, I.; Di Domizio, S.; di Vacri, M. L.; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Keppel, G.; Maino, M.; Mancuso, M.; Martinez, M.; Morganti, S.; Nagorny, S.; Nastasi, M.; Nisi, S.; Nones, C.; Orio, F.; Orlandi, D.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Pirro, S.; Pozzi, S.; Previtali, E.; Puiu, A.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.; Zolotarova, A.

    2016-07-01

    The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in ^{82}Se, the Zn^{82}Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn^{82}Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution, background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-0.

  7. The Majorana Zero-Neutrino Double-Beta Decay Experiment White Paper

    SciTech Connect

    Gaitskell, R.; Barabash, A.; Konovalov, S.; Stekhanov, V.; Umatov,, V.; Brudanin, V.; Egorov, S.; Webb, J.; Miley, Harry S.; Aalseth, Craig E.; Anderson, Dale N.; Bowyer, Ted W.; Brodzinski, Ronald L.; Jordan, David B.; Kouzes, Richard T.; Smith, Leon E.; Thompson, Robert C.; Warner, Ray A.; Tornow, W.; Young, A.; Collar, J. I.; Avignone, Frank T.; Palms, John M.; Doe, P. J.; Elliott, Steven R.; Kazkaz, K.; Robertson, Hamish; Wilkerson, John

    2002-03-07

    The goal of the Majorana Experiment is to determine the effective Majorana masss of the eletron neutrino. Detection of the neutrino mass implied by oscillation results in within our grasp. This exciting physics goal is best pursued using double-beta decay of germanium because of the historical and emerging advances in eliminating competing signals from radioactive backgrounds. The Majorana Experiment will consist of a large mass of 76Ge in the form of high-resolution detectors deep underground, searching for a sharp peak at the BB endpoint. We present here an overview of the entire project in order to help put in perspective the scope, the level and technial risk, and the readiness of the Collaboration to begin the undertaking.

  8. On the origin of biological chirality via natural beta-decay

    NASA Technical Reports Server (NTRS)

    Noyes, H. P.; Bonner, W. A.; Tomlin, J. A.

    1977-01-01

    An hypothesis to account for the chirality (handedness) of some biological molecules is given. Experimental evidence suggests that longitudinally polarized electrons having the chirality of terrestrial beta-decay electrons remove dextro-leucine from a racemic mixture. If, by a similar mechanism, the terrestrial environment provided more levo- than dextro-amino acids, that would account for the chirality now observed in organic molecules. An isotope of potassium has been proposed as the natural beta-emitter responsible for biomolecular chirality; however, Carbon 14 may be an even more plausible candidate. Ready availability of the carbon isotope in the terrestrial environment of 4.5 aeons ago, and the role of leucine in protein synthesis indicate that these two agents may have been chief factors in the evolution of biomolecular chirality. Suggestions for further research in this area are made.

  9. Upgrading KamLAND-Zen for improved sensitivity to neutrinoless double-beta decay

    NASA Astrophysics Data System (ADS)

    Krupczak, Emmett; KamLAND-Zen Collaboration

    2015-10-01

    KamLAND is a 1 kton liquid scintillator antineutrino detector located underground in Kamioka, Japan. The KamLAND-Zen experiment began in 2011, using KamLAND to search for neutrinoless double-beta decay (0 νββ). This process, if observed, would indicate that neutrinos are their own antiparticle and thus are Majorana fermions, a discovery that could help explain the matter-antimatter discrepancy in our universe. Currently, KamLAND-Zen is one of the most sensitive experiments to 0 νββ . In order to improve upon the present limits for 0 νββ , KamLAND is undergoing a series of upgrades to reduce background. This includes the construction of a new inner nylon chamber (``mini-balloon''). The current results and design considerations for the mini-balloon will be discussed.

  10. Shell-Model Calculations of Two-Nucleon Tansfer Related to Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Brown, Alex

    2013-10-01

    I will discuss theoretical results for two-nucleon transfer cross sections for nuclei in the regions of 48Ca, 76Ge and 136Xe of interest for testing the wavefuntions used for the nuclear matrix elements in double-beta decay. Various reaction models are used. A simple cluster transfer model gives relative cross sections. Thompson's code Fresco with direct and sequential transfer is used for absolute cross sections. Wavefunctions are obtained in large-basis proton-neutron coupled model spaces with the code NuShellX with realistic effecive Hamiltonians such as those used for the recent results for 136Xe [M. Horoi and B. A. Brown, Phys. Rev. Lett. 110, 222502 (2013)]. I acknowledge support from NSF grant PHY-1068217.

  11. Searching for neutrinoless double beta decay of Te-130 with CUORE bolometers

    NASA Astrophysics Data System (ADS)

    Han, Ke; Cuore Collaboration

    2015-10-01

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of Te-130. CUORE large-mass bolometer array will consist of 988 tellurium oxide bolometer modules and a total of 206 kg of Te-130 in one single cryostat at 10 mK. It will be sensitive to an effective Majorana neutrino mass of 50-130 meV and is one of the most sensitive experiments under construction. The detector and the cryostat are in an advanced stage of installation and is expected to start operation by the end of 2015. Recents results from CUORE-0, a prototype experiment to CUORE, have validated the performance and background predictions of TeO2 bolometer arrays. In this talk, we will present the latest results from CUORE-0, the construction status, as well as sensitivity projection of CUORE. On behalf of the CUORE Collaboration.

  12. Pixel detectors in double beta decay experiments, a new approach for background reduction

    NASA Astrophysics Data System (ADS)

    Jose, J. M.; Čermák, P.; Štekl, I.; Shitov, Yu. A.; Rukhadze, E. N.; Rukhadze, N. I.; Brudanin, V. B.; Fiederle, M.; Fauler, A.; Loaiza, P.

    2013-08-01

    Double beta decay (ββ) experiments are challenging frontiers in contemporary physics. These experiments have the potential to investigate more about neutrinos (eg. nature and mass). The main challenge for these experiments is the reduction of background. The group at IEAP, CTU in Prague is investigating a new approach using pixel detectors Timepix. Pixel detector offer background reduction capabilities with its ability to identify the particle interaction (from the 2D signature it generates). However, use of pixel detectors has some challenges such as the presence of readout electronics near the sensing medium and heat dissipation. Different aspects of pixel setup (identification of radio-impurities, selection of radio-pure materials) and proposed experimental setup are presented. Also, results of preliminary background measurements (performed on the surface and in the underground laboratories) using the prototype setups are presented.

  13. A Segmented, Enriched N-type Germanium Detector for Neutrinoless Double Beta-Decay Experiments

    SciTech Connect

    Leviner, L.; Aalseth, Craig E.; Ahmed, M. W.; Avignone, F. T.; Back, Henning O.; Barabash, Alexander S.; Boswell, M.; De Braeckeleer, L.; Brudanin, V.; Chan, Yuen-Dat; Egorov, Viatcheslav; Elliott, Steven R.; Gehman, Victor M.; Hossbach, Todd W.; Kephart, Jeremy; Kidd, M. F.; Konovalov, S.; Lesko, Kevin; Li, Jingyi; Mei, Dongming; Mikhailov, S.; Miley, Harry S.; Radford, D. C.; Reeves, James H.; Sandukovsky, Viatcheslav; Umatov, Valdimir; Underwood, T. A.; Tornow, W.; Wu, Y. K.; Young, A.

    2014-01-21

    We present data characterizing the performance of the _rst segmented, N- type Ge detector, isotopically enriched to 85% 76Ge. This detector, based on the Ortec PT6x2 design and referred to as SEGA (Segmented, Enriched Germanium Assembly), was developed as a possible prototype for neutrinoless double beta-decay measurements by the Majorana collaboration. We present some of the general characteristics (including bias potential, efficiency, leakage current, and integral cross-talk) for this detector in its temporary cryostat. We also present an analysis of the resolution of the detector, and demonstrate that for all but two segments there is at least one channel that reaches the Majorana resolution goal below 4 keV FWHM at 2039 keV, and all channels are below 4.5 keV FWHM.

  14. Bounds for Neutrinoless Double Beta Decay in SO(10) Inspired Seesaw Models

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Falcone, D.

    By requiring the lower limit for the lightest right-handed neutrino mass, obtained in the baryogenesis from leptogenesis scenario, and a Dirac neutrino mass matrix similar to the up-quark mass matrix, we predict small values for the νe mass and for the matrix element mee responsible of the neutrinoless double beta decay, mνe around 5×10-3 eV and mee smaller than 10-3 eV, respectively. The allowed range for the mass of the heaviest right-handed neutrino is centered around the value of the scale of B-L breaking in the SO(10) gauge theory with Pati-Salam intermediate symmetry.

  15. Average and recommended half-life values for two neutrino double beta decay: Upgrade-2013

    SciTech Connect

    Barabash, A. S.

    2013-12-30

    All existing positive results on two neutrino double beta decay in different nuclei were analyzed. Using the procedure recommended by the Particle Data Group, weighted average values for half-lives of {sup 48}Ca, {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 100}Mo−{sup 100}Ru (0{sub 1}{sup +}), {sup 116}Cd, {sup 130}Te, {sup 136}Xe, {sup 150}Nd, {sup 150}Nd−{sup 150}Sm (0{sub 1}{sup +}) and {sup 238}U were obtained. Existing geochemical data were analyzed and recommended values for half-lives of {sup 128}Te and {sup 130}Ba are proposed. I recommend the use of these results as the most currently reliable values for half-lives.

  16. Mass and beta decay of the N = Z isotope {sup 68}Se

    SciTech Connect

    Blumenthal, D.J.; Davids, C.N.; Lister, C.J.

    1995-08-01

    An experiment to measure the mass and beta decay of the N = Z nuclide {sup 68}Se was performed. The properties of {sup 68}Se are important for determining the abundance of proton-rich nuclei such as {sup 60}Ni and {sup 64}Zn, which are thought to be formed in the alpha-rich freezeout stage of a giant star. The abundances of the even-even N = Z nuclei such as {sup 60}Zn, {sup 64}Ge, and {sup 68}Se depend on the competition between ({alpha},{gamma}) and ({gamma},{alpha}) reactions, whose rates depend sensitively on the reaction Q-values. In addition, the half-life of {sup 68}Se is important in determining the path of the explosive rp-process, since reactions such as (p,{gamma}) must compete with beta decay in order to push the rp path to heavier nuclei. Using the moving tape collector system and the {sup 12}C({sup 58}Ni,2n){sup 68}Se reaction at 200 MeV, recoils were mass-selected by a slit at the FMA focal plane and implanted into the tape. After a 50-second collection period, the accumulated activity was moved to the counting position between two Ge gamma-ray detectors or a plastic scintillator beta detector and a Ge detector. The half-life of {sup 68}Se was determined to be 37 {plus_minus} 5 s, in agreement with other measurements. Gamma-gamma and beta-gamma coincidence data are under analysis, to produce the decay scheme and the electron capture decay energy.

  17. Hot Dark Matter and Neutrinoless Double Beta Decay:. World Status of the Field

    NASA Astrophysics Data System (ADS)

    Klapdor-Kleingrothaus, Hans V.

    2008-04-01

    A final independent analysis of the data of the 76Ge experiment in Gran Sasso (HEIDELBERG-MOSCOW experiment) which is since 15 years the worldwide by far most sensitive double beta experiment, is presented for the main set of data taken in the period Nov. 1995 - May 2003.4,5 In this period the time structure of all events have been registered. Two different methods of pulse shape analysis4,5,7-9,15,17-19 lead to selection of potential 0νββ events at Qββ with almost no γ-background in a wide range around Qββ. The background achieved in the energy region of the Qββ value for double beta decay is 5.10-3 events kg-1yr-1keV-1. A line at Qββ is observed at a confidence level of more than 6σ. The identification of this line as signal of neutrinoless double beta decay is the most reasonable explanation. This means total lepton number violation and a Majorana nature of the neutrino as fundamental consequences for particle physics. The half-life for this process is determined to be <=ft(2.23+0.44-0.31(stat); ) × 1025 y. Assuming vanishing right-handed weak currents or other more exotic contributions to the 0νββ decay amplitude, a value of < m > = <=ft (0.32+0.03-0.03 ; ) eV is derived. Normalizing the nuclear matrix element for 2νββ decay to the experimental value, the lower limit for could be lower, down to 0.22 eV. With this value neutrinos contribute at least 4.7% to the dark matter in the Universe.

  18. TPC Detectors for Neutrino-less Double-Beta Decay and Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Goldschmidt, Azriel

    2012-10-01

    Time Projection Chambers (TPCs) are increasingly becoming the particle detector technology of choice for rare event searches such as neutrino-less double beta decays and direct WIMP dark matter interactions. At present time, experiments using xenon-filled TPCs are producing some of the best limits for both of these searches. TPCs offer 3D ionization-track imaging as well as calorimetric energy measurements both of which are important handles for the identification of the rare sought-after events while discarding background events due to cosmic rays or due to radioactive decays in the detector or surrounding materials. Particle identification, beyond that provided by the particle range and dE/dx information, is also available from the relative amount of ionization and excitation losses and is essential for the WIMP searches. The contiguous gas or liquid volume at the heart of a TPC is continuously purified to remove contaminants that would otherwise deteriorate the detector performance or produce backgrounds. The fiducial volume for the event searches can be defined after the fact and is typically chosen to be well separated from the physical boundaries of the working gas or liquid to avoid surface events that often are problematic and much harder to reject in solid state detectors. The scalability of the TPC is one of its most important advantages in a field where ever increasing detector masses are required to achieve the required sensitivities. Detectors of O(100) kg scale are in operation and construction and ton to multi-ton detectors are being planned and expected to come on-line in the next years. In this talk I will describe the various types of TPCs in use or planned and will discuss their potential for achieving the exciting goals of discovering the dark matter particle and observing neutrino-less double beta decays.

  19. First results on neutrinoless double beta decay of 130Te with the calorimetric CUORICINO experiment

    NASA Astrophysics Data System (ADS)

    Arnaboldi, C.; Artusa, D. R.; Avignone, F. T.; Balata, M.; Bandac, I.; Barucci, M.; Beeman, J. W.; Brofferio, C.; Bucci, C.; Capelli, S.; Capozzi, F.; Carbone, L.; Cebrian, S.; Cremonesi, O.; Creswick, R. J.; de Waard, A.; Farach, H. A.; Fascilla, A.; Fiorini, E.; Frossati, G.; Giuliani, A.; Gorla, P.; Haller, E. E.; McDonald, R. J.; Morales, A.; Norman, E. B.; Nucciotti, A.; Olivieri, E.; Palmieri, E.; Pasca, E.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Pobes, C.; Previtali, E.; Pyle, M.; Risegari, L.; Rosenfeld, C.; Sangiorgio, S.; Sisti, M.; Smith, A. R.; Torres, L.; Ventura, G.

    2004-04-01

    The first results are reported on the limit for neutrinoless double decay of 130Te obtained with the new bolometric experiment CUORICINO. The set-up consists of 44 cubic crystals of natural TeO2, 5 cm on the side and 18 crystals of 3×3×6 cm3. Four of these latter crystals are made with isotopically enriched materials: two in 128Te and two others in 130Te. With a sensitive mass of ∼40 kg, our array is by far the most massive running cryogenic detector to search for rare events. The array is operated at a temperature of ∼10 mK in a dilution refrigerator under a heavy shield in the Gran Sasso Underground Laboratory at a depth of about 3500 m.w.e. The counting rate in the region of neutrinoless double beta decay is ∼0.2 counts keV-1 kg-1 y-1, among the lowest in this type of experiment. No evidence for neutrinoless double beta decay is found with the present statistics obtained in about three months with a live time of 72%. The corresponding lower limit for the lifetime of this process is of 5.5×1023 years at 90% C.L. The corresponding limit for the effective neutrino mass ranges between 0.37 to 1.9 eV depending on the theoretically calculated nuclear matrix elements used. This constraint is the most restrictive one except those obtained with Ge diodes, and is comparable to them.

  20. Search for Neutrinoless Double-Beta Decay of with CUORE-0

    SciTech Connect

    Alfonso, K.; Artusa, D.  R.; F. T. Avignone; Azzolini, O.; Balata, M.; Banks, T.  I.; Bari, G.; Beeman, J.  W.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Caminata, A.; Canonica, L.; Cao, X.  G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R.  J.; Cushman, J.  S.; Dafinei, I.; Dally, A.; Dell’Oro, S.; Deninno, M.  M.; Di Domizio, S.; Di Vacri, M.  L.; Drobizhev, A.; Ejzak, L.; Fang, D.  Q.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Freedman, S.  J.; Fujikawa, B.  K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T.  D.; Haller, E.  E.; Han, K.; Hansen, E.; Heeger, K.  M.; Hennings-Yeomans, R.; Hickerson, K.  P.; Huang, H.  Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu.  G.; Lim, K.  E.; Liu, X.; Ma, Y.  G.; Maino, M.; Martinez, M.; Maruyama, R.  H.; Mei, Y.; Moggi, N.; Morganti, S.; Nisi, S.; C. Nones; Norman, E.  B.; Nucciotti, A.; O’Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J.  L.; Pagliarone, C.  E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Santone, D.; Scielzo, N.  D.; Sisti, M.; Smith, A.  R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wagaarachchi, S.  L.; Wang, B.  S.; Wang, H.  W.; Wielgus, L.; Wilson, J.; Winslow, L.  A.; Wise, T.; Zanotti, L.; Zarra, C.; Zhang, G.  Q.; Zhu, B.  X.; Zucchelli, S.

    2015-09-03

    We report the results of a search for neutrinoless double-beta decay in a 9.8 kg yr exposure of 130Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5.1 ± 0.3 keV FWHM and 0.058 ± 0.004 (stat.) ± 0:002 (syst.) counts/(keV kg yr), respectively. The median 90% C.L. lower-limit sensitivity of the experiment is 2.9 x 1024 yr and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of 130Te and place a Bayesian lower bound on the decay half-life, T0$_1$1/2 > 2.7 x 1024 yr at 90% C.L. Combining CUORE-0 data with the 19.75 kg yr exposure of 130Te from the Cuoricino experiment we obtain T0$_1$1/2 > 4.0 x 1024 yr at 90% C.L. (Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, mββ < 270 - 760 meV.

  1. Search for Neutrinoless Double-Beta Decay of Te130 with CUORE-0

    SciTech Connect

    Alfonso, K.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; Dafinei, I.; Dally, A.; Dell’Oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Ejzak, L.; Fang, D. Q.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O’Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Santone, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zucchelli, S.

    2015-09-03

    We report the results of a search for neutrinoless double-beta decay in a 9.8 kg yr exposure of 130Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5:1± 0:3 keV FWHM and 0:058 ± 0:004 (stat) ± 0:002 (syst) counts / (keV kg yr), respectively. The median 90% C.L. lower-limit half-life sensitivity of the experiment is 2:9x1024 yr and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of 130Te and place a Bayesian lower bound on the decay half-life, T1/2 > 2.7 x 1024 yr at 90% C.L. Combining CUORE-0 data with the 19.75 kg yr exposure of 130Te from the Cuoricino experiment we obtain T1/2 > 4.0 x 1024 yr at 90% C.L. (Bayesian), the most stringent limit to date on this half-life. Lastly, using a range of nuclear matrix element estimates we interpret this as a limit on the e ective Majorana neutrino mass, mββ < 270 -760 meV.

  2. First results on neutrinoless double beta decay of Te-130 with the calorimetric cuoricino experiment

    SciTech Connect

    Arnaboldi, C.; Artusa, D.R.; Avignone, F.T.; Balata, M.; Bandac, I.; Barucci, M.; Beeman, J.W.; Brofferio, C.; Bucci, C.; Capelli, S.; Capozzi, F.; Carbone, L.; Cebrian, S.; Cremonesi, O.; Creswick, R.J.; de Waard, A.; Farach, H.A.; Fascilla, A.; Fiorini, E.; Frossati, G.; Giuliani, A.; Gorla, P.; Haller, E.E.; McDonald, R.J.; Morales, A.; Norman, E.B.; Nucciotti, A.; Olivieri, E.; Palmieri, E.; Pasca, E.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Pobes, C.; Previtali, E.; Pyle, M.; Risegari, L.; Rosenfeld, C.; Sangiorgio, S.; Sisti, M.; Smith, A.R.; Torres, L.; Ventura, G.

    2003-12-04

    The first results are reported on the limit for neutrinoless double decay of {sup 130}Te obtained with the new bolometric experiment CUORICINO. The set-up consists of 44 cubic crystals of natural TeO{sub 2}, 5 cm on the side and 18 crystals of 3 x 3 x 6 cm{sup 3}. Four of these latter crystals are made with isotopically enriched materials: two in {sup 128}Te and two others in {sup 130}Te . With a sensitive mass of {approx}40 kg, our array is by far the most massive running cryogenic detector to search for rare events. The array is operated at a temperature of {approx}10 mK in a dilution refrigerator under a heavy shield in the Gran Sasso Underground Laboratory at a depth of about 3500 m.w.e. The counting rate in the region of neutrinoless double beta decay is {approx}0.2 counts keV{sup -1} kg{sup -1} year{sup -1}, among the lowest in this type of experiment. No evidence for neutrinoless double beta decay is found with the present statistics obtained in about three months with a live time of 72%. The corresponding lower limit for the lifetime of this process is of 5.5 x 10{sup 23} years at 90% C.L. The corresponding limit for the effective neutrino mass ranges between 0.37 to 1.9 eV depending on the theoretically calculated nuclear matrix elements used. This constraint is the most restrictive one except those obtained with Ge diodes, and is comparable to them.

  3. Double Beta Decay in Xenon-136. Measuring the Neutrino-Emitting Mode and Searching for Majoron-Emitting Modes

    SciTech Connect

    Herrin, Steven

    2013-06-01

    Observations of neutrino flavor oscillations have demonstrated that neutrinos have mass. Since the discovery of these oscillations, much progress has been made at mea- suring the neutrino mass-squared differences and lepton mixing angles that character- ize them. However, the origin and absolute scale of neutrino masses remain unknown. Unique among fermions, neutrinos can be Majorana particles, which could provide an explanation for neutrino masses. Discovery of a hypothetical process known as neutrinoless double beta decay would show that neutrinos are Majorana particles and determine the mass scale for neutrinos. The Enriched Xenon Observatory (EXO) is a series of experiments searching for the neutrinoless double beta decay of 136Xe. The first experiment, EXO-200, began operation in 2011 and makes use of 200 kg of xenon enriched to 80.6% in 136Xe. The analysis presented here makes use of data from EXO-200 to obtain a more precise measurement of the half-life for the two-neutrino-emitting mode of double beta decay than previously reported. The analysis also sets limits on the half-lives for exotic, Majoron-emitting modes of neutrinoless double beta decay. Data from EXO-200 is also used to produce a measurement of the cosmic muon flux at the WIPP under- ground site where EXO-200 is located.

  4. Influence of super-strong magnetic fields on beta decay of nuclide ^{59}Co in magnetar surface

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Jing; Liu, Dong-Mei

    2016-08-01

    Based on the relativistic theory in super-strong magnetic fields (SMFs), we investigate the influence of SMFs on beta decay and the change rates of electron fraction (CREF) of nuclei ^{59}Co in magnetars. Firstly, we find the magnetic fields have a slight influence on the beta decay rates for a given temperature when ρ7<1. However, the beta decay rates decrease greatly by more than five orders of magnitude when ρ7>1. Secondly, our results show that this effect of SMFs can increase beta reaction rates by two orders magnitude when 10 ≤ B_{12} ≤ 104 G. For instance, the beta decay rate for ^{56}Co increases from 4.797×10^{-3} to 3.284×10^{-1} at ρ7=4.32. Finally, we find that the CREF increases about by two orders of magnitude in SMFs and the enhancement factor will be high as 95.95 for ρ7=4.32.

  5. MOON for a next-generation neutrino-less double-beta decay experiment: Present status and perspective

    SciTech Connect

    Shima, T.; Doe, P.J.; Ejiri, H.; Elliot, S.R.; Engel, J.; Finger, M.; Finger, M.; Fushimi, K.; Gehman, V.M.; Greenfield, M.B.; Hazama, R.; /Hiroshima U. /NIRS, Chiba

    2008-01-01

    The performance of the MOON detector for a next-generation neutrino-less double-beta decay experiment was evaluated by means of the Monte Carlo method. The MOON detector was found to be a feasible solution for the future experiment to search for the Majorana neutrino mass in the range of 100-30 meV.

  6. Double-Beta Decay of 96Zr and Double-Electron Capture of 156Dy to Excited Final States

    NASA Astrophysics Data System (ADS)

    Finch, Sean W.

    Two separate experimental searches for second-order weak nuclear decays to excited final states were conducted. Both experiments were carried out at the Kimballton Underground Research Facility to provide shielding from cosmic rays. The first search is for the two-neutrino double-beta decay of 96Zr to excited final states of the daughter nucleus, 96Mo. As a by product of this experiment, the beta decay of 96Zr was also investigated. Two coaxial high-purity germanium detectors were used in coincidence to detect gamma rays produced by the daughter nucleus as it de-excited to the ground state. After collecting 1.92 years of data with 17.91 g of enriched 96Zr, half-life limits at the level of 10 20 yr were produced. Measurements of this decay are important to test neutrinoless double-beta decay nuclear matrix element calculations, which are necessary to extract the neutrino mass from a measurement of the neutrinoless double-beta decay half-life. The second experiment is a search for the resonantly-enhanced neutrinoless double-electron capture decay of 156Dy to excited states in 156Gd. Double-electron capture is a possible experimental alternative to neutrinoless-double beta decay, which could distinguish the Dirac or Majorana nature of the neutrino. Two clover high-purity germanium detectors were used in coincidence to investigate the decay. A 213.5 mg enriched 156Dy sample was observed for 0.635 year, producing half-life limits of 10 17 yr. The limits produced by both of these experiments are currently the most stringent limits available for these decays.

  7. (Beta)-decay experiments and the unitarity of the CKM matrix

    SciTech Connect

    Garrett, P E

    2005-12-01

    The goal of this project was to perform very precise measurements of super-allowed Fermi {beta} decay in order to investigate a possible non-unitarity in the CKM matrix of the Standard Model of particle physics. Current data from 9 precisely measured {beta} decays indicated that the sum-of-squares of the first row of the CKM matrix differs from 1.0 at the 2.2{sigma} (or 98% confidence) level. If true, it would be the first firm indication of physics beyond the Standard Model--the model that has been the backbone of the worldwide physics community for more than 30 years. The physics goal of the project was to test and constrain the calculated correction factors that must be applied to the experimental data by performing measurements at the TRIUMF radioactive ion beam facility ISAC. Accurate and precise (precision goal >99.9%) half lives and decay branching ratios were measured for nuclei where different sets of calculated corrections give divergent results thereby allowing us to determine which theory, if any, gives the correct result. The LLNL contribution was to design and build the data acquisition system that will enable the experiments, and to provide theoretical calculations necessary for the interpretation of the results. The first planned measurement was {sup 34}Ar, to be followed by {sup 62}Ga and {sup 74}Rb. However, there were major problems in creating a suitable, intense beam of radioactive {sup 34}Ar. The collaboration decided to proceed with measurements on {sup 62}Ga and {sup 18}Ne. These experiments were performed in a series of measurements in the summer and fall of 2004. The LLNL team also is leading the effort to perform measurements on {sup 66}As and {sup 70}Br that are expected during 2006-2008. While the definitive experiments to meet the goals of the LDRD were not conducted during the funding period, the involvement in the radioactive program at TRIUMF has lead to a number of new initiatives, and has attracted new staff to LLNL. This LDRD has

  8. Radon and material radiopurity assessment for the NEXT double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Cebrián, S.; Pérez, J.; Bandac, I.; Labarga, L.; Álvarez, V.; Barrado, A. I.; Bettini, A.; Borges, F. I. G. M.; Camargo, M.; Cárcel, S.; Cervera, A.; Conde, C. A. N.; Conde, E.; Dafni, T.; Díaz, J.; Esteve, R.; Fernandes, L. M. P.; Fernández, M.; Ferrario, P.; Freitas, E. D. C.; Fernandes, L. M. P.; Gehman, V. M.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Morata, J. A. Hernando; Herrera, D. C.; Irastorza, I. G.; Laing, A.; Liubarsky, I.; López-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Martínez-Lema, G.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Vidal, J. Muñoz; Nebot-Guinot, M.; Nygren, D.; Oliveira, C. A. B.; de Solórzano, A. Ortiz; Aparicio, J. L. Pérez; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J. T.; Yahlali, N.

    2015-08-01

    The "Neutrino Experiment with a Xenon TPC" (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.

  9. Minimally allowed neutrinoless double beta decay rates within an anarchical framework

    NASA Astrophysics Data System (ADS)

    Jenkins, James

    2009-06-01

    Neutrinoless double beta decay (ββ0ν) is the only realistic probe of the Majorana nature of the neutrino. In the standard picture, its rate is proportional to mee, the e-e element of the Majorana neutrino mass matrix in the flavor basis. I explore minimally allowed mee values within the framework of mass matrix anarchy where neutrino parameters are defined statistically at low energies. Distributions of mixing angles are well defined by the Haar integration measure, but masses are dependent on arbitrary weighting functions and boundary conditions. I survey the integration measure parameter space and find that for sufficiently convergent weightings, mee is constrained between (0.01-0.4) eV at 90% confidence. Constraints from neutrino mixing data lower these bounds. Singular integration measures allow for arbitrarily small mee values with the remaining elements ill-defined, but this condition constrains the flavor structure of the model’s ultraviolet completion. ββ0ν bounds below mee˜5×10-3eV should indicate symmetry in the lepton sector, new light degrees of freedom, or the Dirac nature of the neutrino.

  10. Minimally allowed neutrinoless double beta decay rates within an anarchical framework

    SciTech Connect

    Jenkins, James

    2009-06-01

    Neutrinoless double beta decay ({beta}{beta}0{nu}) is the only realistic probe of the Majorana nature of the neutrino. In the standard picture, its rate is proportional to m{sub ee}, the e-e element of the Majorana neutrino mass matrix in the flavor basis. I explore minimally allowed m{sub ee} values within the framework of mass matrix anarchy where neutrino parameters are defined statistically at low energies. Distributions of mixing angles are well defined by the Haar integration measure, but masses are dependent on arbitrary weighting functions and boundary conditions. I survey the integration measure parameter space and find that for sufficiently convergent weightings, m{sub ee} is constrained between (0.01-0.4) eV at 90% confidence. Constraints from neutrino mixing data lower these bounds. Singular integration measures allow for arbitrarily small m{sub ee} values with the remaining elements ill-defined, but this condition constrains the flavor structure of the model's ultraviolet completion. {beta}{beta}0{nu} bounds below m{sub ee}{approx}5x10{sup -3} eV should indicate symmetry in the lepton sector, new light degrees of freedom, or the Dirac nature of the neutrino.

  11. The Search For Neutrinoless Double Beta Decay With The Majorana Demonstrator

    NASA Astrophysics Data System (ADS)

    Ronquest, Michael

    2012-10-01

    The neutrino sector is currently among the most dynamic topics of particle physics. The past two decades have revealed non-zero neutrino masses, large mixing of mass eigenstates compared to the quark sector and ``large'' values of θ13, with the latter permitting observation of possible CP violation in the neutrino sector. If current theoretical prejudges are confirmed by the identification of neutrinos as Majorana fermions, and thus are their own anti-particles, neutrino CP violation also permits leptogenesis and would thus advance our understanding of the generation mechanism of the matter/anti-matter asymmetry in the current universe. This talk will briefly outline the physics and signatures of neutrinoless double beta decay, which would serve as proof of the Majorana nature of the neutrino. The global program of searches for this process will be reviewed, with emphasis given to the MAJORANA DEMONSTRATOR, an experiment featuring arrays of enriched HPGe detectors serving as both source and detector. The DEMONSTRATOR's design, rich physics reach, and schedule will be detailed. Finally, plans for a ton-scale HPGe experiment to be jointly developed by the MAJORANA and GERDA collaborations will be introduced.

  12. Neutrinoless double beta decay in Gerda

    NASA Astrophysics Data System (ADS)

    Grabmayr, Peter; Gerda Collaboration

    2015-10-01

    The Germanium Detector Array (Gerda) experiment searches for the neutrinoless double beta decay in 76Ge. This lepton number violating process is predicted by extensions of the standard model. Gerda follows a staged approach by increasing mass and lowering the background level from phase to phase. Gerda is setup at the Gran Sasso underground laboratory of INFN, Italy. An array of high-purity germanium detectors is lowered directly in liquid argon for shielding and cooling. Further background reduction is achieved by an instrumented water buffer. In Phase I an exposure of 21.6 kg yr was collected at a background level of 10-2 cts/(keV kg yr). The lower limit on the half-life of 76Ge > 2 . 1 .1025 yr (90% C.L.) has been published. Further analyses search for decay into excited states or the accompanied Majoron decay. Presently, Phase II is in preparation which intends to reach a background level of 10-3 cts/(keV kg yr) and to increase the exposure to 100 kg yr. About 20 kg of novel thick-window BEGe (Broad Energy Germanium) detectors will be added and the liquid argon will be instrumented. The status of Phase II preparation and results from the commissioning runs will be presented as well as some further results from Phase I.

  13. Double-beta decay with majoron emission in GERDA Phase I

    NASA Astrophysics Data System (ADS)

    Hemmer, Sabine

    2015-07-01

    Neutrinoless double-beta decay with emission of one or two majorons (0 νββχ( χ)) is predicted by several beyond-Standard-Model theories. This article reviews the results of a search for 0 νββχ( χ) of 76Ge using data from the Germanium Detector Array (GERDA) experiment, located underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The analysis comprised data with an exposure of 20.3 kg·yr from the first phase of the experiment. No indication of contributions to the observed energy spectra was detected for any of the majoron models. The lower limit on the half-life for the ordinary majoron model (spectral index n = 1 was determined to be T {1/2/0 νβ } > 4.2 · 1023 yr (90% quantile). This limit and the limits derived for the other majoron modes constitute the most stringent limits on 0 νββχ( χ) decay of 76Ge measured to date.

  14. The MGDO software library for data analysis in Ge neutrinoless double-beta decay experiments

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Detwiler, J. A.; Finnerty, P.; Kröninger, K.; Lenz, D.; Liu, J.; Marino, M. G.; Martin, R.; Nguyen, K. D.; Pandola, L.; Schubert, A. G.; Volynets, O.; Zavarise, P.

    2012-07-01

    The Gerda and Majorana experiments will search for neutrinoless double-beta decay of 76Ge using isotopically enriched high-purity germanium detectors. Although the experiments differ in conceptual design, they share many aspects in common, and in particular will employ similar data analysis techniques. The collaborations are jointly developing a C++ software library, MGDO, which contains a set of data objects and interfaces to encapsulate, store and manage physical quantities of interest, such as waveforms and high-purity germanium detector geometries. These data objects define a common format for persistent data, whether it is generated by Monte Carlo simulations or an experimental apparatus, to reduce code duplication and to ease the exchange of information between detector systems. MGDO also includes general-purpose analysis tools that can be used for the processing of measured or simulated digital signals. The MGDO design is based on the Object-Oriented programming paradigm and is very flexible, allowing for easy extension and customization of the components. The tools provided by the MGDO libraries are used by both Gerda and Majorana.

  15. Experiments on the origin of molecular chirality by parity non-conservation during beta-decay

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.

    1973-01-01

    Experiments are described to test a theory for the origin of optical activity wherein the longitudinally polarized electrons resulting from parity violation during radioactive beta decay, and their resulting circularly polarized Bremsstrahlung, might interact asymmetrically with organic matter to yield optically active products. Experiments involve subjecting a number of racemic and optically active amino acid samples to irradiation in a 61700 Ci90SR-90Y beta radiation source for a period of 1.34 years, then examining them for any asymmetric effects by means of optical rotatory dispersion and analytical gas chromatography. In the cases of D,L-leucine, norleucine, norvaline and proline as solids, of D,L-leucine in solution and of D,L-tyrosine in alkaline solution no optical rotation was observed during CRD measurements in the 250-630 nm spectral region. While slight differences were noted in the percent radiolysis of solid D- (12.7%) and L-leucine (16.2%) as determined by GC, no enrichment of either enantiomer was found.

  16. Failure of the gross theory of beta decay in neutron deficient nuclei

    DOE PAGESBeta

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Betamore » Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values.« less

  17. GraXe, graphene and xenon for neutrinoless double beta decay searches

    NASA Astrophysics Data System (ADS)

    Gómez-Cadenas, J. J.; Guinea, F.; Fogler, M. M.; Katsnelson, M. I.; Martín-Albo, J.; Monrabal, F.; Muñoz Vidal, J.

    2012-02-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in 136XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the 136XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope 136XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.

  18. ZICOS - New project for neutrinoless double beta decay experiment using zirconium complex in liquid scintillator

    NASA Astrophysics Data System (ADS)

    Fukuda, Yoshiyuki

    2016-05-01

    A liquid scintillator containing a tetrakis (isopropyl acetoacetato) zirconium has been developed for new project of neutrinoless double beta decay experiment (ZICOS experiment). We have synthesized a tetrakis (isopropyl acetoacetato) zirconium, which have high solubility (over 31.2 wt.%) in anisole. We measured the performance of liquid scintillator containing 10 wt.% concentration of a tetrakis (isopropyl acetoacetato) zirconium, and obtained 48.7 ± 7.1% of the light yield of BC505 and the energy resolution of 4.1 ± 0.6% at 3.35 MeV assuming 40% photo coverage of the photomultiplier, respectively. We also estimated that ZICOS experiment should be sensitive to (mν) < 0.1 eV assuming gA = 1.25, gpp = 1.11 and QRPA model, if a radius of the inner detector is 1.5 m and the detector is filled with this liquid scintillator with an enriched 96Zr nucleus and we can reduce 208 Tl backgrounds to be one tenth order of magnitude of KamLAND-Zen using Cherenkov lights.

  19. Search for double beta decay of 106Cd in TGV-2 experiment

    NASA Astrophysics Data System (ADS)

    Rukhadze, N. I.; Briançon, Ch; Brudanin, V. B.; Čermák, P.; Egorov, V. G.; Klimenko, A. A.; Kovalik, A.; Shitov, Yu A.; Štekl, I.; Timkin, V. V.; Vylov, Ts

    2010-01-01

    Search for double beta decay (β+β+, β+/EC, EC/EC) of 106Cd was performed at the Modane underground laboratory (4800 m w.e.) using a spectrometer TGV-2 with 32 HPGe detectors. New limits on the half-lives of 0vEC/EC resonant decay - T1/2 >= 1.6 × 1020 y, and on 2vEC/EC decay of 106Cd - T1/2 >= 4.1 × 1020 y (at 90% CL) were obtained from preliminary calculations of experimental data accumulated for 12900 h of measurement of ~13.6 g of 106Cd with enrichment of 75%. The limits on 2vEC/EC decay of 106Cd to the 2+,512 keV and 0+1,1334 keV excited states of 106Pd and on 2vβ+β+ and 2vβ+/EC decay of 106Cd were improved

  20. LUCIFER: Scintillating bolometers for the search of Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Vignati, M.

    2012-08-01

    The nature of neutrino mass is one of the frontier problems of particle physics. Neutrinoless Double Beta Decay (0νDBD) is a powerful tool to measure the neutrino mass and to test possible extensions of the Standard Model. Bolometers are excellent detectors to search for this rare decay, thanks to their good energy resolution and to the low background conditions in which they can operate. The current challenge consists in the reduction of the background, represented by environmental γ's and α's, in view of a zero background experiment. We present the LUCIFER R&D, funded by an European grant, in which the background can be reduced by an order of magnitude with respect to the present generation experiments. The technique is based on the simultaneous bolometric measurement of the heat and of the scintillation light produced by a particle, that allows to discriminate between β and α particles. The γ background is reduced by choosing 0νDBD candidate isotopes with transition energy above the environmental γ's spectrum. The prospect of this R&D are discussed.

  1. Status Update of the MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Vorren, Kristopher; Majorana Collaboration

    2015-04-01

    The MAJORANA collaboration has made significant progress over the past year on the MAJORANA DEMONSTRATOR. The goal of the DEMONSTRATOR is to demonstrate backgrounds low enough to justify building a tonne-scale experiment, establish the feasibility to construct and field modular arrays of Ge detectors, and perform searches for additional physics beyond the standard model. The DEMONSTRATOR is currently being built at the 4850 ft level of the Sanford Underground Research Facility (SURF) in Lead, SD. The first of three custom cryostats, the prototype module, is currently taking data, while assembly and commissioning of the second cryostat, module 1, is ongoing. Hardware fabrication for the third cryostat, module 2, is nearing completion. Combined, module 1 and module 2 will contain 40 kg of Ge detectors with 30 kg enriched to 87 % 76 Ge, the double-beta decaying isotope. An active simulation and analysis campaign is underway for the prototype and module 1 cryostats. This talk will provide an overview and status update on the DEMONSTRATOR. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.

  2. The Majorana Demonstrator Neutrinoless Double Beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Massarczyk, Ralph; Majorana Collaboration

    2016-03-01

    Neutrinoless double beta decay searches play a major role in determining neutrino properties. The Majorana Collaboration is constructing an ultra-low background, modular high-purity Ge detector array to search for this decay in 76Ge. Located at the 4850-ft level of the Sanford Underground Research Facility, the Demonstrator detector assembly has the goal to show that it is possible to achieve background rates necessary for future ton-scale experiments. The talk will give a short introduction to the experiment, an overview of the achievements made in detector construction, data analysis and simulation. After the first commissioning phase last year with more than half of the detectors in their final configuration, the current status of the Demonstrator will be presented in this talk as well as plans for the future. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  3. New generation of double beta decay experiments: are there any limitations?

    SciTech Connect

    Barabash, A. S.

    2011-12-16

    New generation of experiments to search for neutrinoless double beta decay with sensitivity to effective Majorana neutrino mass on the level of {approx}3-5 meV is discussed. Possible restrictions in achievement of this sensitivity such as: possibility to produce large amount of enriched isotopes, possibility to reach of a very low level of background, energy resolution and possible cost of experiments are considered. It is shown that for realization of so ambitious project 10 tons (or more) of enriched isotope is required. Background index should be on the level {<=}10{sup -5}-10{sup -6} c/kg{center_dot}keV{center_dot}y. In addition, the energy resolution of the detector should be no worse than 1-2%. It is shown that {sup 130}TeO{sub 2} low temperature bolometer could be the most realistic candidate for such an experiment. Under certain conditions experiments with {sup 76}Ge, {sup 100}Mo and {sup 136}Xe can be realized too.

  4. GraXe, graphene and xenon for neutrinoless double beta decay searches

    SciTech Connect

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Monrabal, F.; Vidal, J. Muñoz; Guinea, F.; Fogler, M.M.; Katsnelson, M.I. E-mail: paco.guinea@icmm.csic.es E-mail: katsnel@sci.kun.nl E-mail: francesc.monrabal@ific.uv.es

    2012-02-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in {sup 136}XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the {sup 136}XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope {sup 136}XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.

  5. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    SciTech Connect

    Artusa, D. R.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chiesa, D.; Chott, N.; Clemenza, M.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Datskov, V.; Biasi, A. De; Deninno, M. M.; Domizio, S. Di; Vacri, M. L. di; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Goett, J.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Huang, H. Z.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nisi, S.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhu, B. X.

    2014-10-15

    Neutrinoless double beta decay (0νββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0νββ decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric0νββ experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. In conclusion, we highlight the main challenges and identify priorities for an R&D program addressing them.

  6. Characterization of a ZnSe scintillating bolometer prototype for neutrinoless double beta decay search

    NASA Astrophysics Data System (ADS)

    Tenconi, M.; Giuliani, A.; Nones, C.; Pessina, G.; Plantevin, O.; Rusconi, C.

    2014-01-01

    As proposed in the LUCIFER project, ZnSe crystals are attractive materials to realize scintillating bolometers aiming at the search for neutrinoless double beta decay of the promising isotope 82Se. However, the optimization of the ZnSe-based detectors is rather complex and requires a wide-range investigation of the crystal features: optical properties, crystalline quality, scintillation yields and bolometric behaviour. Samples tested up to now show problems in the reproducibility of crucial aspects of the detector performance. In this work, we present the results obtained with a scintillating bolometer operated aboveground at about 25 mK. The detector energy absorber was a single 1 cm3 ZnSe crystal. The good energy resolution of the heat channel (about 14 keV at 1460 keV) and the excellent alpha/beta discrimination capability are very encouraging for a successful realization of the LUCIFER program. The bolometric measurements were completed by optical tests on the crystal (optical transmission and luminescence measurements down to 10 K) and investigation of the crystalline structure. The work here described provides a set of parameters and procedures useful for a complete pre-characterization of ZnSe crystals in view of the realization of highly performing scintillating bolometers.

  7. The contribution of light Majorana neutrinos to neutrinoless double beta decay and cosmology

    NASA Astrophysics Data System (ADS)

    Dell'Oro, S.; Marcocci, S.; Viel, M.; Vissani, F.

    2015-12-01

    Cosmology is making impressive progress and it is producing stringent bounds on the sum of the neutrino masses Σ, a parameter of great importance for the current laboratory experiments. In this letter, we exploit the potential relevance of the analysis of Palanque-Delabrouille et al. [JCAP 02 (2015) 045] to the neutrinoless double beta decay (0ν β β) search. This analysis indicates small values for the lightest neutrino mass, since the authors find Σ < 84 meV at 1σ C.L., and provides a 1σ preference for the normal hierarchy. The allowed values for the Majorana effective mass, probed by 0ν β β, turn out to be < 75 meV at 3σ C.L. and lower down to less than 02 meV at 1σ C.L. . If this indication is confirmed, the impact on the 0ν β β experiments will be tremendous since the possibility of detecting a signal will be out of the reach of the next generation of experiments.

  8. The contribution of light Majorana neutrinos to neutrinoless double beta decay and cosmology

    SciTech Connect

    Dell’Oro, S.; Marcocci, S.; Viel, M.; Vissani, F.

    2015-12-11

    Cosmology is making impressive progress and it is producing stringent bounds on the sum of the neutrino masses Σ, a parameter of great importance for the current laboratory experiments. In this letter, we exploit the potential relevance of the analysis of Palanque-Delabrouille et al. to the neutrinoless double beta decay (0νββ) search. This analysis indicates small values for the lightest neutrino mass, since the authors find Σ<84 meV at 1σ C.L., and provides a 1σ preference for the normal hierarchy. The allowed values for the Majorana effective mass, probed by 0νββ, turn out to be <75 meV at 3σ C.L. and lower down to less than 20 meV at 1σ C.L. . If this indication is confirmed, the impact on the 0νββ experiments will be tremendous since the possibility of detecting a signal will be out of the reach of the next generation of experiments.

  9. Beta decay properties of the collective scissors mode 1+-states in 50Cr

    NASA Astrophysics Data System (ADS)

    Zenginerler, Zemine; Yakut, Hakan; Kuliev, Ali Akbar; Guliyev, Ekber

    2014-03-01

    The beta decay properties of collective IπK = 1+1 states in doubly even deformed 50Cr nucleus are investigated in the framework of the random-phase approximation (RPA). The model Hamiltonian includes restoring rotational invariance of the deformed single particle Hamiltonian forces and the spin-spin interactions. The present investigation demonstrates an advantage the rotational invariant model (R-QRPA) over the rotational non-invariant model (RN-QRPA). For a more complete comparison with the experimental data, we calculate to the log ft values as well as the energies and B(M1) value of the excited 1+-states. The calculated energy spectrum of 50Cr nucleus demonstrates a very rich ft strength structure in accordance to experiment. The agreement between the calculated energy spectrum and the logft values of the scissors mode excitations with the available experimental data is quite good. One of the authors (Z.Z) would like to acknowledge that this work is performed of the Fellowship No:2219 under the TUBITAK-TURKEY.

  10. Search for double beta decay of 106Cd in the TGV-2 experiment

    NASA Astrophysics Data System (ADS)

    Rukhadze, N. I.; Brudanin, V. B.; Egorov, V. G.; Klimenko, A. A.; Kovalik, A.; Kouba, P.; Piquemal, F.; Rozov, S. V.; Rukhadze, E.; Salamatin, A. V.; Šimkovic, F.; Shitov, Yu A.; Štekl, I.; Timkin, V. V.; Yakushev, E. A.

    2016-05-01

    A new experimental run of searching for double beta decay of 106Cd was performed at the Modane underground laboratory (LSM, France, 4800 m w.e.) using the TGV-2 spectrometer, consisting of 32 planar type HPGe detectors with a total sensitive volume of ~400 cm3. 16 foils of 106Cd with an enrichment of 99.57% and a total mass of ~ 23.2 g were inserted between the entrance windows of face-to-face detectors. The limit on 2vEC/EC decay of 106Cd - T1/2 > 3.7 × 1020 y at 90% C.F was obtained from the preliminary calculation of experimental data accumulated for 8198 h of measurement. The limits on the resonance OvEC/EC decay of 106Cd were obtained from the measurement of ~23.2 g of 106Cd with the low-background HPGe spectrometer Obelix lasted 395 h -T1/2 (KF, 2741 keV) > 0.9 × 1020 y and T1/2 (KK, 2718 keV) > 1.4 × 1020 y at 90% C.L.

  11. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    DOE PAGESBeta

    Artusa, D. R.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; et al

    2014-10-15

    Neutrinoless double beta decay (0νββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0νββ decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric0νββ experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capablemore » of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. In conclusion, we highlight the main challenges and identify priorities for an R&D program addressing them.« less

  12. Deformed shell model results for neutrinoless double beta decay of nuclei in A = 60 - 90 region

    NASA Astrophysics Data System (ADS)

    Sahu, R.; Kota, V. K. B.

    2015-03-01

    Nuclear transition matrix elements (NTME) for the neutrinoless double beta decay (Oνββ or OνDBD) of 70Zn, 80Se and 82Se nuclei are calculated within the framework of the deformed shell model (DSM) based on Hartree-Fock (HF) states. For 70Zn, jj44b interaction in 2p3/2, 1f5/2, 2p1/2 and 1g9/2 space with 56Ni as the core is employed. However, for 80Se and 82Se nuclei, a modified Kuo interaction with the above core and model space are employed. Most of our calculations in this region were performed with this effective interaction. However, jj44b interaction has been found to be better for 70Zn. The above model space was used in many recent shell model (SM) and interacting boson model (IBM) calculations for nuclei in this region. After ensuring that DSM gives good description of the spectroscopic properties of low-lying levels in these three nuclei considered, the NTME are calculated. The deduced half-lives with these NTME, assuming neutrino mass is 1 eV, are 1.1 × 1026, 2.3 × 1027 and 2.2 × 1024 yr for 70Zn, 80Se and 82Se, respectively.

  13. Radon and material radiopurity assessment for the NEXT double beta decay experiment

    SciTech Connect

    Cebrián, S.; Dafni, T.; González-Díaz, D.; Herrera, D. C.; Irastorza, I. G.; Luzón, G.; Ortiz de Solórzano, A.; Villar, J. A.; Álvarez, V.; Cárcel, S.; Cervera, A.; Díaz, J.; Ferrario, P.; Gómez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; López-March, N. [Instituto de Física Corpuscular, CSIC & Universitat de València, C and others

    2015-08-17

    The ”Neutrino Experiment with a Xenon TPC” (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in {sup 136}Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.

  14. Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Cebrián, S.; Pérez, J.; Bandac, I.; Labarga, L.; Álvarez, V.; Barrado, A. I.; Bettini, A.; Borges, F. I. G. M.; Camargo, M.; Cárcel, S.; Cervera, A.; Conde, C. A. N.; Conde, E.; Dafni, T.; Díaz, J.; Esteve, R.; Fernandes, L. M. P.; Fernández, M.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gehman, V. M.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Irastorza, I. G.; Laing, A.; Liubarsky, I.; López-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Martínez-Lema, G.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Nygren, D.; Oliveira, C. A. B.; Ortiz de Solórzano, A.; Pérez Aparicio, J. L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J. T.; Yahlali, N.

    2015-05-01

    The ``Neutrino Experiment with a Xenon Time-Projection Chamber'' (NEXT) is intended to investigate the neutrinoless double beta decay of 136Xe, which requires a severe suppression of potential backgrounds; therefore, an extensive screening and selection process is underway to control the radiopurity levels of the materials to be used in the experimental set-up of NEXT. The detector design combines the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. Separate energy and tracking readout planes are based on different sensors: photomultiplier tubes for calorimetry and silicon multi-pixel photon counters for tracking. The design of a radiopure tracking plane, in direct contact with the gas detector medium, was specially challenging since the needed components like printed circuit boards, connectors, sensors or capacitors have typically, according to available information in databases and in the literature, activities too large for experiments requiring ultra-low background conditions. Here, the radiopurity assessment of tracking readout components based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterr&aposaneo de Canfranc (Spain) is described. According to the obtained results, radiopure enough printed circuit boards made of kapton and copper, silicon photomultipliers and other required components, fulfilling the requirement of an overall background level in the region of interest of at most 8×10-4 counts keV-1 kg-1 y-1, have been identified.

  15. Neutrinoless double beta decay. Annual progress report, January 1, 1984-December 31, 1984

    SciTech Connect

    Nicholson, H.W.

    1984-08-01

    Work is continuing on a collaborative experiment with experimenters from the Lawrence Berkeley Laboratory to search for neutrinoless double beta decay in Mo/sup 100/. We have developed a hybrid, lithium drifted, silicon surface barrier detector 1.5 mm thick and 7.1 cm in diameter which, operating at LN/sub 2/ temperature and in conjunction with an Amptek A225 low noise preamplifier and amplifier chip, gives an electronic resolution of 18 keV FWHM. At present, we have 8 working detectors of this type and another 8 currently being fabricated, and we expect to have between 50 and 70 of these detectors working by January 1985. We have also fabricated 5 grams of isotopically pure Mo/sup 100/ into 7 micron thick circular foils 7.1 cm in diameter and have constructed a titanium cryostat with an oxygen-free, high conductivity electrolytic (OFHC) copper dipstick which currently contains a stack of 6 detectors and is being used to evaluate backgrounds from the residual natural radioactivity remaining in the detector system. We hope to begin taking data with 5 to 10% of the full array by early 1985.

  16. Testing Left-Right extensions of the standard model of electroweak interactions with double-beta decay and LHC measurements

    NASA Astrophysics Data System (ADS)

    Civitarese, O.; Suhonen, J.; Zuber, K.

    2015-07-01

    The minimal extension of the standard model of electroweak interactions allows for massive neutrinos, a massive right-handed boson WR, and a left-right mixing angle ζ. While an estimate of the light (electron) neutrino can be extracted from the non-observation of the neutrinoless double beta decay, the limits on the mixing angle and the mass of the righthanded (RH) boson may be extracted from a combined analysis of the double beta decay measurements (GERDA, EXO-200 and KamLAND-Zen collaborations) and ATLAS data on the two-jets two-leptons signals following the excitation of a virtual RH boson mediated by a heavy-mass neutrino. In this work we shall compare results of both types of experiments, and show that the estimates are not in tension.

  17. Measurement of the p to s Wave Branching Ratio of {sup 187}Re {beta} Decay from Beta Environmental Fine Structure

    SciTech Connect

    Arnaboldi, C.; Brofferio, C.; Capelli, S.; Capozzi, F.; Cremonesi, O.; Fiorini, E.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Sisti, M.; Benedek, G.; Filipponi, A.; Giuliani, A.; Pedretti, M.; Monfardini, A.

    2006-02-03

    The mixed occurrence of s-wave and p-wave contributions in a first forbidden unique Gamow-Teller {beta} decay has been investigated for the first time by measuring the beta environmental fine structure (BEFS) in a {sup 187}Re crystalline compound. The experiment has been carried out with an array of eight AgReO{sub 4} thermal detectors operating at a temperature of {approx}100 mK. A fit of the observed BEFS spectrum indicates the p-wave electron emission as the dominant channel. The complete understanding of the BEFS distortion of the {sup 187}Re {beta} decay spectrum is crucial for future experiments aiming at the precise calorimetric measurement of the antineutrino mass.

  18. Precise Branching Ratios to Unbound 12C States from 12N and 12B (beta)-Decays

    SciTech Connect

    Hyldegaard, S; Forssen, C; Alcorta, M; Barker, F C; Bastin, B; Borge, M G; Boutami, R; Brandenburg, S; Buscher, J; Dendooven, P; Diget, C A; Van Duppen, P; Eronen, T; Fox, S; Fulton, B R; Fynbo, H U; Huikari, J; Huyse, M; Jeppesen, H B; Jokinen, A; Jonson, B; Jungmann, K; Kankainen, A; Kirsebom, O; Madurga, M; Moore, I; Navratil, P; Nilsson, T; Nyman, G; Onderwater, G G; Penttila, H; Perajarvi, K; Raabe, R; Riisager, K; Rinta-Antila, S; Rogachevskiy, A; Saastamoinen, A; Sohani, M; Tengblad, O; Traykov, E; Vary, J P; Wang, Y; Wilhelmsen, K; Wilschut, H W; Aysto, J

    2008-08-20

    Two complementary experimental techniques have been used to extract precise branching ratios to unbound states in {sup 12}C from {sup 12}N and {sup 12}B {beta}-decays. In the first the three {alpha}-particles emitted after {beta}-decay are measured in coincidence in separate detectors, while in the second method {sup 12}N and {sup 12}B are implanted in a detector and the summed energy of the three {alpha}-particles is measured directly. For the narrow states at 7.654 MeV (0{sup +}) and 12.71 MeV (1{sup +}) the resulting branching ratios are both smaller than previous measurements by a factor of {approx_equal} 2. The experimental results are compared to no-core shell model calculations with realistic interactions from chiral perturbation theory, and inclusion of three-nucleon forces is found to give improved agreement.

  19. A combined limit on the neutrino mass from neutrinoless double-beta decay searches in multiple isotopes

    NASA Astrophysics Data System (ADS)

    Guzowski, P.

    2016-05-01

    We set a combined limit on the effective Majorana neutrino mass mββ from experimental searches for neutrinoless double-beta decay of multiple isotopes. The limits on mββ range between 130-310 meV, depending on the choice of nuclear matrix element calculation. The limits on mββ can also be translated into a limit on the neutrino mass and mixing parameters of a fourth sterile neutrino.

  20. 0{nu}{beta}{beta}-decay nuclear matrix elements with self-consistent short-range correlations

    SciTech Connect

    Simkovic, Fedor; Faessler, Amand; Muether, Herbert; Rodin, Vadim; Stauf, Markus

    2009-05-15

    A self-consistent calculation of nuclear matrix elements of the neutrinoless double-beta decays (0{nu}{beta}{beta}) of {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 116}Cd, {sup 128}Te, {sup 130}Te, and {sup 136}Xe is presented in the framework of the renormalized quasiparticle random phase approximation (RQRPA) and the standard QRPA. The pairing and residual interactions as well as the two-nucleon short-range correlations are for the first time derived from the same modern realistic nucleon-nucleon potentials, namely, from the charge-dependent Bonn potential (CD-Bonn) and the Argonne V18 potential. In a comparison with the traditional approach of using the Miller-Spencer Jastrow correlations, matrix elements for the 0{nu}{beta}{beta} decay are obtained that are larger in magnitude. We analyze the differences among various two-nucleon correlations including those of the unitary correlation operator method (UCOM) and quantify the uncertainties in the calculated 0{nu}{beta}{beta}-decay matrix elements.

  1. Nuclear and particle physics aspects of the 2{nu}{beta}{beta}-decay of {sup 150}Nd

    SciTech Connect

    Dvornicky, R.; Simkovic, F.; Faessler, A.

    2007-10-12

    A discussion is given on possible realization of the Single State Dominance (SSD) hypothesis in the case of the two-neutrino double beta decay (2{nu}{beta}{beta}-decay) of {sup l50}Nd with 1{sup -} ground state of the intermediate nucleus. We conclude that the SSD hypothesis is expected to be ruled out by precision measurement of differential characteristics of this process in running NEMO 3 or planed SuperNEMO experiments unlike some unknown low-lying 1{sup +} state of {sup 150}Pm does exist. This problem can be solved via (d,{sup 2}He) charge-exchange experiment on {sup l50}Sm. Further, we address the question about possible violation of the Pauli exclusion principle for neutrinos and its consequences for the energy distributions of the 2{nu}{beta}{beta}-decay of {sup l50}Nd. This phenomenon might be a subject of interest of NEMO 3 and SuperNEMO experiments as well.

  2. On the Measurement of the Electron-Neutrino Correlation in Neutron Beta Decay

    PubMed Central

    Bowman, J. David

    2005-01-01

    I present a new approach to the measurement of a, the electron-neutrino correlation, in neutron beta decay. A precise measurement of a can lead to a precise determination of ratio of the axial vector and vector coupling constants, Ga/Gv. Coincidences between electrons and protons are detected in a field-expansion spectrometer. The field-expansion spectrometer is designed to make 1/TOF ≈ | pp|. TOF and pp are the proton time of flight and momentum. Two segmented Si detectors view both electrons and protons in 4π geometry. The time of flight between the electron and proton are accurately measured in a long, ≈ 1 m, drift distance. The electron energy is accurately measured in the Si detectors. The proton momentum and electron energy determine the electron-neutrino opening angle. I have shown that by sorting the data on proton time of flight and electron energy, a can be determined with a statistical relative standard uncertainty of ≈2.4/n, where n is the number of decays observed. The approach has a number of advantages. The acceptance of the spectrometer is 4π for both particles. Thin-dead-layer segmented Si detectors as well as all other components in the apparatus, are commercially available. There are no material apertures to determine the acceptance of the apparatus. The charged particles interact only with electric and magnetic fields before striking the detectors. Coincident detection of electrons and protons reduces backgrounds, and allows the in situ determination of backgrounds. In the analysis, it is not necessary to sort on the relative electron and proton direction and hence electron back scattering does not cause systematic uncertainties. A time of flight spectrum is obtained for each electron energy. Different parts of the spectra have different sensitivities to a. The medium time of flight parts of the spectra that are insensitive to a can be used to verify the accuracy of the electric and magnetic field determinations. PMID:27308158

  3. Search for double beta decay with HPGe detectors at the Gran Sasso underground laboratory

    NASA Astrophysics Data System (ADS)

    Chkvorets, Oleg

    2008-12-01

    Neutrinoless double-beta decay is practically the only way to establish the Majorana nature of the neutrino mass and its decay rate provides a probe of an effective neutrino mass. Double beta experiments are long-running underground experiments with specific challenges concerning the background reduction and the long term stability. These problems are addressed in this work for the Heidelberg-Moscow (HdM), GENIUS Test Facility (TF) and GERDA experiments. The HdM experiment collected data with enriched 76Ge high purity (HPGe) detectors from 1990 to 2003. An improved analysis of HdM data is presented, exploiting new calibration and spectral shape measurements with the HdM detectors. GENIUS-TF was a test-facility that verified the feasibility of using bare germanium detectors in liquid nitrogen. The first year results of this experiment are discussed. The GERDA experiment has been designed to further increase the sensitivity by operating bare germanium detectors in a high purity cryogenic liquid, which simultaneously serves as a shielding against background and as a cooling media. In the preparatory stage of GERDA, an external background gamma flux measurement was done at the experimental site in the Hall A of the Gran Sasso laboratory. The characterization of the enriched detectors from the HdM and IGEX experiments was performed in the underground detector laboratory for the GERDA collaboration. Long term stability measurements of a bare HPGe detector in liquid argon were carried out. Based on these measurements, the first lower limit on the half-life of neutrinoless double electron capture of 36Ar was established to be 1.85*10^18 years at 68% C.L.

  4. Fermi to Gamow-Teller Mixing Ratios in the Nuclear Beta Decays of COBALT-58 and COBALT-56.

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Piao

    1981-06-01

    The Fermi to Gamow-Teller mixing ratios, y = C(,V)M(,F)/C(,A)M(,GT), in the isospin-hindered beta decays ((DELTA)J=0, T=('(+OR -))1) of ('58)Co and ('56)Co have been accurately determined from extensive and detailed studies of the directional distributions of beta rays and gamma rays emitted from oriented ('58)Co and ('56)Co nuclei. The cobalt nuclei were oriented in a thin foil of permendur (49%Co, 49%Fe, and 2%V) magnetically saturated at ultralow temperatures (10('-2o)K). The nuclear orientation system employed has the distinguished features of excellent long-term temperature stability and of allowing beta rays be measured at almost any desired angle with respect to the nuclear orientation axis with very little deflections from their original trajectories by the applied magnetizing fields. Beta-ray and gamma-ray spectra were measured, with a Si(Li) detector and a Ge(Li) detector respectively, at four different angles with respect to the nuclear orientation axis. The gamma-ray background in the beta-ray spectra is removed by means of a mechanical shutter. The beta -ray asymmetries and the gamma-ray anisotropies were determined independently at each angle by normalizing the cold ((TURNEQ)10(' -2o)K) spectra by the corresponding warm (4.2(DEGREES)K) spectra taken at the same angle. Necessary corrections made on the beta-ray spectra due to the various experimental effects are described in detail. The experimental beta -ray asymmetries after the proper corrections were found to be in very good agreement with the theoretical expectations over a wide energy region. Including all estimated systematic errors, the beta-ray asymmetry parameters, A(,(beta)), were determined to be A(,(beta))('58) = 0.341 (+OR-) 0.020 for ('58)Co and A('56) = 0.352 (+OR-) 0.015 for ('56)Co. The Fermi to Gamov-Teller mixing ratios y corresponding to these A(,(beta))'s are y('58) = -0.005 (+OR-) 0.012 for ('58)Co and y('56) = -0.086 (+OR-) 0.008 for ('56)Co. The obtained result of y('56) is in

  5. Fermi to Gamow-Teller mixing ratios in the nuclear beta decays of /sup 58/Co and /sup 56/Co

    SciTech Connect

    Lee, W.P.

    1981-01-01

    The Fermi to Gamow-Teller mixing ratios, y = C/sub v/M/sub f//Ca/sub A/M/sub GT/, in the isospin-hindered beta decays (..delta..J = 0, T = /sup + -/1) of /sup 58/Co and /sup 56/Co have been accurately determined from extensive and detailed studies of the directional distributions of beta rays and gamma rays emitted from oriented /sup 58/Co and /sup 56/Co nuclei. The cobalt nuclei were oriented in a thin foil of permendur (49% Co, 49% Fe, and 2% V) magnetically saturated at ultralow temperatures (10/sup -20/K). Beta-ray and gamma-ray spectra were measured, with a Si(Li) detector and a Ge(Li) detector respectively, at four different angles with respect to the nuclear orientation axis. The gamma-ray background in the beta-ray spectra is removed by means of a mechanical shutter. The beta-ray asymmetries and the gamma-ray anisotropies were determined independently at each angle by normalizing the cold (approx. = 10/sup -20/K) spectra by the corresponding warm (4.2/sup 0/K) spectra taken at the same angle. Necessary corrections made on the beta-ray spectra due to the various experimental effects are described in detail. The experimental beta-ray asymmetries after the proper corrections were found to be in very good agreement with the theoretical expectations over a wide energy region. Including all estimated systematic errors, the beta-ray asymmetry parameters, A/sub ..beta../, were determined to be A/sub ..beta..//sup 58/ = 0.341 +- 0.020 for /sup 58/Co and A/sup 56/ = 0.352 +- 0.015 for /sup 56/Co. The Fermi to Gamow-Teller mixing ratios y corresponding to these A/sub ..beta../'s are y/sup 58/ = -0.005 +- 0.012 for /sup 58/Co and y/sup 56/ = -0.086 +- 0.008 for /sup 56/Co. The obtained result of y/sup 56/ is in very serious disagreement with the latest measurement.

  6. {beta} decay of odd-A As to Ge isotopes in the interacting boson-fermion model

    SciTech Connect

    Brant, S.; Yoshida, N.; Zuffi, L.

    2004-11-01

    The structure of odd-mass isotopes of As and Ge is described in the framework of the proton-neutron interacting boson-fermion model. The energy levels and the electromagnetic properties of {sup 69,71,73}As and {sup 69,71,73}Ge are calculated and compared with the experiment. The {beta}-decay rates from the As isotopes to the Ge isotopes are calculated. The calculated decays tend to be stronger than the observed ones. This may indicate a mixture of components outside the model space in the wave functions of actual nuclei. The effect of the higher-order terms in the decay operators seems small.

  7. Electron-capture branch of {sup 100}Tc and tests of nuclear wave functions for double-{beta} decays.

    SciTech Connect

    Sjue, S. K. L.; Melconian, D.; Garcia, A.; Ahmad, I.; Algora, A.; Aysto, J.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Hoedl, S.; Kankainen, A.; Kessler, T.; Moore, I. D.; Naabe, F.; Penttila, H.; Rahaman, S.; Saastamoinen, A.; Swanson, H. E.; Weber, C.; Triambak, S.; Deryckx, K.; Physics; Univ. of Washington; Texas A&M Univ.; Univ. of Valencia; Hungarian Academy of Sciences; Univ. of Jyvaskyla; Univ. of Michigan

    2008-12-30

    We present a measurement of the electron-capture branch of {sup 100}Tc. Our value, B(EC) = (2.6 {+-} 0.4) x 10{sup -5}, implies that the {sup 100}Mo neutrino absorption cross section to the ground state of {sup 100}Tc is roughly 50% larger than previously thought. Disagreement between the experimental value and QRPA calculations relevant to double-{beta} decay matrix elements persists. We find agreement with previous measurements of the 539.5- and 590.8-keV {gamma}-ray intensities.

  8. The double beta decay spectrum of sup 100 Mo as measured with a TPC (time projection chamber)

    SciTech Connect

    Elliott, S.R. ); Moe, M.K.; Nelson, M.A.; Vient, M.A. )

    1990-01-01

    A time projection chamber with 8.3 grams of enriched {sup 100}MoO{sub 3} as the central electrode has been operating approximately five months in an underground laboratory. A preliminary analysis of the two-electron sum energy spectrum, the spectrum of those same electrons taken singly, and the opening angle distribution yields a half life of 1.16{sub -0.08}{sup +0.34} {times} 10{sup 19} y at the 68% confidence level for two-neutrino double beta decay of {sup 100}Mo. 9 refs., 8 figs.

  9. Critical view to ``IGEX 76Ge neutrinoless double-beta decay experiment: Prospects for next generation experiments''

    NASA Astrophysics Data System (ADS)

    Klapdor-Kleingrothaus, H. V.; Dietz, A.; Krivosheina, I. V.

    2004-10-01

    Recently, a paper entitled “The IGEX 76Ge neutrinoless double-beta decay experiment: Prospects for next generation experiments” has been published [

    Phys. Rev. D 65, 092007 (2002)PRVDAQ0556-282110.1103/PhysRevD.65.092007
    ]. In view of the recently reported evidence for neutrinoless double-beta decay [
    Mod. Phys. Lett. A 16, 2409 (2001).MPLAEQ0217-732310.1142/S0217732301005825
    ;
    Found. Phys.FNDPA40015-9018 31, 1181 (2002)
    ;
    Phys. Lett. BPYLBAJ0370-2693 586, 198 (2004).10.1016/j.physletb.2004.02.025
    ], it is particularly unfortunate that the IGEX paper is rather incomplete in its presentation. We would like to point out in this Comment that and why it would be highly desirable to make more details about the experimental conditions and the analysis of IGEX available. We list some of the main points, which require further explanation. We also point to an arithmetic mistake in the analysis of the IGEX data, the consequence of which are too high half-life limits given in that paper.

  10. The Majorana Demonstrator: Progress towards showing the feasibility of a 76Ge neutrinoless double-beta decay experiment

    SciTech Connect

    Finnerty, P.; Aguayo, Estanislao; Amman, M.; Avignone, Frank T.; Barabash, Alexander S.; Barton, P. J.; Beene, Jim; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, P. J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Fraenkle, Florian; Galindo-Uribarri, A.; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Looker, Q.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Perumpilly, Gopakumar; Phillips, David; Poon, Alan; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-03-24

    The Majorana Demonstrator will search for the neutrinoless double-beta decay (0*) of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The Demonstrator is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a lowbackground environment and surrounded by passive and active shielding. The goals for the Demonstrator are: demonstrating a background rate less than 3 counts tonne -1 year-1 in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of 0; and performing a direct search for lightWIMPs (3-10 GeV/c2).

  11. Measurement of the half-life of the two-neutrino double beta decay of 76Ge with the GERDA experiment

    NASA Astrophysics Data System (ADS)

    The GERDA Collaboration; Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barnabé Heider, M.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Denisov, A.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A. D.; Freund, K.; Froborg, F.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gazzana, S.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kianovsky, S.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Liu, X.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Machado, A. A.; Majorovits, B.; Maneschg, W.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Pandola, L.; Pelczar, K.; Peraro, L.; Pullia, A.; Riboldi, S.; Ritter, F.; Sada, C.; Salathe, M.; Schmitt, C.; Schönert, S.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Walter, M.; Wegmann, A.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2013-03-01

    The primary goal of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN is the search for the neutrinoless double beta decay of 76Ge. High-purity germanium detectors made from material enriched in 76Ge are operated directly immersed in liquid argon, allowing for a substantial reduction of the background with respect to predecessor experiments. The first 5.04 kg yr of data collected in Phase I of the experiment have been analyzed to measure the half-life of the neutrino-accompanied double beta decay of 76Ge. The observed spectrum in the energy range between 600 and 1800 keV is dominated by the double beta decay of 76Ge. The half-life extracted from GERDA data is T2ν1/2 = (1.84+0.14-0.10) × 1021 yr.

  12. A Diffusion Cloud Chamber Study of Very Slow Mesons. II. Beta Decay of the Muon

    DOE R&D Accomplishments Database

    Lederman, L. M.; Sargent, C. P.; Rinehart, M.; Rogers, K.

    1955-03-01

    The spectrum of electrons arising from the decay of the negative mu meson has been determined. The muons are arrested in the gas of a high pressure hydrogen filled diffusion cloud chamber. The momenta of the decay electrons are determined from their curvature in a magnetic field of 7750 gauss. The spectrum of 415 electrons has been analyzed according to the theory of Michel.

  13. Shape coexistence in {sup 180}Hg studied through the {beta} decay of {sup 180}Tl

    SciTech Connect

    Elseviers, J.; Bree, N.; Diriken, J.; Huyse, M.; Ivanov, O.; Van den Bergh, P.; Van Duppen, P.; Andreyev, A. N.; Antalic, S.; Barzakh, A.; Fedorov, D.; Cocolios, T. E.; Seliverstov, M.; Comas, V. F.; Heredia, J. A.; Fedosseyev, V. N.; Marsh, B. A.; Franchoo, S.; Page, R. D.

    2011-09-15

    The {beta}{sup +}/EC decay of {sup 180}Tl and excited states in the daughter nucleus {sup 180}Hg have been investigated at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. Many new low-lying energy levels were observed in {sup 180}Hg, of which the most significant are the 0{sub 2}{sup +} at 419.6 keV and the 2{sub 2}{sup +} at 601.3 keV. The former is the bandhead of an excited band in {sup 180}Hg assumed originally to be of prolate nature. From the {beta} feeding to the different states in {sup 180}Hg, the ground-state spin of {sup 180}Tl was deduced to be (4{sup -},5{sup -}).

  14. Superconducting Aluminum Layers as Pulse Shape Modifiers: An Innovative Solution to Fight Against Surface Background in Neutrinoless Double Beta Decay Experiments

    NASA Astrophysics Data System (ADS)

    Nones, C.; Bergé, L.; Dumoulin, L.; Marnieros, S.; Olivieri, E.

    2012-06-01

    The most limiting factor for experiments looking for rare events, such as neutrinoless double beta decay, is the radioactive background. We will describe an innovative technique for the discrimination of the surface background which combine the use of thin layers of superconducting aluminum, deposited on a crystal operated as a macro-bolometer and with a fast thermistor, such as a NbSi thin film acting as out-of-equilibrium phonon sensor. The working principle is based on the fact that particles which transfer energy into the Al film create quasi-particles that release heat to the crystal with a considerable delay, that may be in the millisecond range. It is thus clear that pulses acquired from a fast thermistor in the case of surface and bulk events should have different shapes, depending on the place of the initial energy release. Here we present preliminary results on a small TeO2 crystal equipped with NbSi films and an Al film with a thickness of 10 μm. We prove that we are able to identify alpha surface events by pulse shape analysis with a good separation between bulk and surface events. The possibility to extend this rejection technique to bolometers equipped with slow temperature sensors as neutron transmutation doped Ge thermistors is under study.

  15. The (d,{sup 2}He) reaction on {sup 76}Se and the double-{beta}-decay matrix elements for A=76

    SciTech Connect

    Grewe, E.-W.; Baeumer, C.; Dohmann, H.; Frekers, D.; Hollstein, S.; Rakers, S.; Thies, J. H.; Harakeh, M. N.; Berg, A. M. van den; Woertche, H. J.; Johansson, H.; Simon, H.; Popescu, L.; Savran, D.; Zilges, A.

    2008-10-15

    The (d,{sup 2}He) charge-exchange reaction on {sup 76}Se was studied at an incident energy of 183 MeV. The outgoing two protons in the {sup 1}S{sub 0} state, referred to as {sup 2}He, were both momentum analyzed and detected by the same spectrometer and detector. The experiment was performed at KVI, Groningen, using the magnetic spectrometer BBS at three angular positions: 0 deg., 2.5 deg., and 5 deg. Excitation-energy spectra of the residual nucleus {sup 76}As were obtained with an energy resolution of about 120 keV (FWHM). Gamow-Teller (GT{sup +}) transition strengths were extracted up to 5 MeV and compared with those from an (n,p) experiment at low resolution. Together with the GT{sup -} transition strengths from the {sup 76}Ge(p,n) experiment leading to the same intermediate nucleus, the nuclear matrix element of the two-neutrino double-{beta} decay of {sup 76}Ge was evaluated.

  16. Shape coexistence, shape evolution and Gamow-Teller {beta}-decay of neutron-rich A Asymptotically-Equal-To 100 nuclei

    SciTech Connect

    Petrovici, A.; Schmid, K. W.; Faessler, A.

    2012-11-20

    The structure of neutron-rich nuclei in the A Asymptotically-Equal-To 100 mass region relevant for the astrophysical r process manifests drastic changes in some isotopic chains and often sudden variations of particular nuclear properties have been identified. For a realistic description of the evolution in structure with increasing energy, spin, and isospin determined by shape coexistence and mixing beyond-mean-field approaches are required. Our recent studies represent an attempt to the self-consistent description of the shape coexistence phenomena in neutron-rich A Asymptotically-Equal-To 100 nuclei within the complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction based on the Bonn A potential in a large model space. Results concerning the triple shape coexistence and the shape evolution in the N=58 Sr and Zr isotopes, the shape evolution in a chain of Zr nuclei, as well as the Gamow-Teller {beta}-decay properties of neutron-rich Zr and Tc nuclei are presented.

  17. Electron emission and recoil effects following the beta decay of He6

    NASA Astrophysics Data System (ADS)

    Schulhoff, Eva E.; Drake, G. W. F.

    2015-11-01

    Probabilities for atomic electron excitation (shake-up) and ionization (shake-off) are studied following the beta-decay process →Li+6He6+e-+ν¯e , and in particular, recoil-induced contributions to the shake-off probability are calculated within the nonrelativistic sudden approximation. A pseudostate expansion method together with Stieltjes imaging is used to represent the complete two-electron spectrum of final Li+6 ,Li26+, and Li36+ states. Results for the recoil correction show a 7 σ disagreement with the experiment of Carlson et al. [Phys. Rev. 129, 2220 (1963), 10.1103/PhysRev.129.2220]. A variety of sum rules, including a newly derived Thomas-Reich-Kuhn oscillator strength sum rule for dipole recoil terms, provides tight constraints on the accuracy of the results. Calculations are performed for the helium 1 s 2 s 3S metastable state, as well as for the 1 s21S ground state. Our results would reduce the recoil-induced correction to the measured electroneutrino coupling constant ae μ from the apparent 0.6% used in the experiments to 0.09%.

  18. Occupancies of individual orbits, and the nuclear matrix element of the {sup 76}Ge neutrinoless {beta}{beta} decay

    SciTech Connect

    Menendez, J.; Poves, A.

    2009-10-15

    We discuss the variation of the nuclear matrix element (NME) for the neutrinoless double beta (0{nu}{beta}{beta}) decay of {sup 76}Ge when the wave functions are constrained to reproduce the experimental occupancies of the two nuclei involved in the transition. In the interacting shell model description the value of the NME is enhanced about 15% compared to previous calculations, whereas in the QRPA the NME's are reduced by 20%-30%. This diminishes the discrepancies between both approaches. In addition, we discuss the effect of the short-range correlations on the NME in light of the recently proposed parametrizations based on a consistent renormalization of the 0{nu}{beta}{beta} transition operator.

  19. Explaining a CMS e e j j excess with R -parity violating supersymmetry and implications for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Allanach, Ben; Biswas, Sanjoy; Mondal, Subhadeep; Mitra, Manimala

    2015-01-01

    A recent CMS search for the right-handed gauge boson WR reports an interesting deviation from the Standard Model. The search has been conducted in the e e j j channel and has shown a 2.8 σ excess around me e j j˜2 TeV . In this work, we explain the reported CMS excess with R -parity violating supersymmetry. We consider resonant selectron and sneutrino production, followed by the three body decays of the neutralino and chargino via an R -parity violating coupling. We fit the excess for slepton masses around 2 TeV. The scenario can further be tested in neutrinoless double beta decay (0 ν β β ) experiments. GERDA Phase-II will probe a significant portion of the good-fit parameter space.

  20. Quasiparticle random-phase approximation and {beta}-decay physics: Higher-order approximations in a boson formalism

    SciTech Connect

    Sambataro, M.; Suhonen, J.

    1997-08-01

    The quasiparticle random-phase approximation (QRPA) is reviewed and higher-order approximations are discussed with reference to {beta}-decay physics. The approach is fully developed in a boson formalism. Working within a schematic model, we first illustrate a fermion-boson mapping procedure and apply it to construct boson images of the fermion Hamiltonian at different levels of approximation. The quality of these images is tested through a comparison between approximate and exact spectra. Standard QRPA equations are derived in correspondence with the quasi-boson limit of the first-order boson Hamiltonian. The use of higher-order Hamiltonians is seen to improve considerably the stability of the approximate solutions. The mapping procedure is also applied to Fermi {beta} operators: exact and approximate transition amplitudes are discussed together with the Ikeda sum rule. The range of applicabilty of the QRPA formalism is analyzed. {copyright} {ital 1997} {ital The American Physical Society}

  1. Masses of {sup 130}Te and {sup 130}Xe and Double-{beta}-Decay Q Value of {sup 130}Te

    SciTech Connect

    Redshaw, Matthew; Mount, Brianna J.; Myers, Edmund G.; Avignone, Frank T. III

    2009-05-29

    The atomic masses of {sup 130}Te and {sup 130}Xe have been obtained by measuring cyclotron frequency ratios of pairs of triply charged ions simultaneously trapped in a Penning trap. The results, with 1 standard deviation uncertainty, are M({sup 130}Te)=129.906 222 744(16) u and M({sup 130}Xe)=129.903 509 351(15) u. From the mass difference the double-{beta}-decay Q value of {sup 130}Te is determined to be Q{sub {beta}}{sub {beta}}({sup 130}Te)=2527.518(13) keV. This is a factor of 150 more precise than the result of the AME2003 [G. Audi et al., Nucl. Phys. A729, 337 (2003)].

  2. A measurement of the 2 neutrino double beta decay rate of Te-130 in the CUORICINO experiment

    SciTech Connect

    Kogler, Laura K.

    2011-11-30

    CUORICINO was a cryogenic bolometer experiment designed to search for neutrinoless double beta decay and other rare processes, including double beta decay with two neutrinos (2vββ). The experiment was located at Laboratori Nazionali del Gran Sasso and ran for a period of about 5 years, from 2003 to 2008. The detector consisted of an array of 62 TeO2 crystals arranged in a tower and operated at a temperature of 10 mK. Events depositing energy in the detectors, such as radioactive decays or impinging particles, produced thermal pulses in the crystals which were read out using sensitive thermistors. The experiment included 4 enriched crystals, 2 enriched with 130Te and 2 with 128Te, in order to aid in the measurement of the 2vββ rate. The enriched crystals contained a total of 350 g 130Te. The 128-enriched (130-depleted) crystals were used as background monitors, so that the shared backgrounds could be subtracted from the energy spectrum of the 130- enriched crystals. Residual backgrounds in the subtracted spectrum were fit using spectra generated by Monte-Carlo simulations of natural radioactive contaminants located in and on the crystals. The 2vββ half-life was measured to be T2v1/2 = [9.81± 0.96(stat)± 0.49(syst)] x1020 y.

  3. Charged lepton flavour violcxmation and neutrinoless double beta decay in left-right symmetric models with type I+II seesaw

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Dasgupta, Arnab

    2016-07-01

    We study the new physics contributions to neutrinoless double beta decay (0 νββ) half-life and lepton flavour violation (LFV) amplitude within the framework of the minimal left-right symmetric model (MLRSM). Considering all possible new physics contributions to 0 νββ and charged lepton flavour violation μ → eγ , μ → 3 e in MLRSM, we constrain the parameter space of the model from the requirement of satisfying existing experimental bounds. Assuming the breaking scale of the left-right symmetry to be O (1) TeV accessible at ongoing and near future collider experiments, we consider the most general type I+II seesaw mechanism for the origin of tiny neutrino masses. Choosing the relative contribution of the type II seesaw term allows us to calculate the right handed neutrino mass matrix as well as Dirac neutrino mass matrix as a function of the model parameters, required for the calculation of 0νββ and LFV amplitudes. We show that such a general type I+II seesaw structure results in more allowed parameter space compared to individual type I or type II seesaw cases considered in earlier works. In particular, we show that the doubly charged scalar masses M Δ are allowed to be smaller than the heaviest right handed neutrino mass M N from the present experimental bounds in these scenarios which is in contrast to earlier results with individual type I or type II seesaw showing M Δ > M N .

  4. Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay (0νββ) search

    NASA Astrophysics Data System (ADS)

    Freitas, E. D. C.; Monteiro, C. M. B.; Ball, M.; Gómez-Cadenas, J. J.; Lopes, J. A. M.; Lux, T.; Sánchez, F.; dos Santos, J. M. F.

    2010-02-01

    The search for neutrinoless double beta decay (0νββ) is an important topic in contemporary physics with many active experiments. New projects are planning to use high-pressure xenon gas as both source and detection medium. The secondary scintillation processes available in noble gases permit large amplification with negligible statistical fluctuations, offering the prospect of energy resolution approaching the Fano factor limit. This Letter reports results for xenon secondary scintillation yield, at room temperature, as a function of electric field in the gas scintillation gap for pressures ranging from 2 to 10 bar. A Large Area Avalanche Photodiode (LAAPD) collected the VUV secondary scintillation produced in the gas. X-rays directly absorbed in the LAAPD are used as a reference for determining the number of charge carriers produced by the scintillation pulse and, hence, the number of photons impinging the LAAPD. The number of photons produced per drifting electron and per kilovolt, the so-called scintillation amplification parameter, displays a small increase with pressure, ranging from 141±6 at 2 bar to 170±10 at 8 bar. In our setup, this parameter does not increase above 8 bar due to non-negligible electron attachment. The results are in good agreement with those presented in the literature in the 1 to 3 bar range. The increase of the scintillation amplification parameter with pressure for high gas densities has been also observed in former work at cryogenic temperatures.

  5. LUMINEU: a search for neutrinoless double beta decay based on ZnMoO4 scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Benoît, A.; Boiko, L. Bergé S.; Bergmann, T.; Blümer, J.; Broniatowski, A.; Brudanin, V.; Camus, P.; Cazes, A.; Chapellier, M.; Charlieux, F.; Chernyak, D. M.; Coron, N.; Coulter, P.; Danevich, F. A.; de Boissiére, T.; Decourt, R.; De Jesus, M.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Eitel, K.; Enss, C.; Filosofov, D.; Fleischmann, A.; Foerster, N.; Fourches, N.; Gascon, J.; Gastaldo, L.; Gerbier, G.; Giuliani, A.; Gray, D.; Gros, M.; Hehn, L.; Henry, S.; Hervé, S.; Heuermann, G.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kéfélian, C.; Kleifges, M.; Kluck, H.; Kobychev, V. V.; Koskas, F.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le Sueur, H.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Menshikov, A.; Nasonov, S. G.; Navick, X.-F.; Nones, C.; Olivieri, E.; Pari, P.; Paul, B.; Penichot, Y.; Pessina, G.; Piro, M. C.; Plantevin, O.; Poda, D. V.; Redon, T.; Robinson, M.; Rodrigues, M.; Rozov, S.; Sanglard, V.; Schmidt, B.; Scorza, S.; Shlegel, V. N.; Siebenborn, B.; Strazzer, O.; Tcherniakhovski, D.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vagneron, L.; Vasiliev, Ya V.; Velazquez, M.; Viraphong, O.; Walker, R. J.; Weber, M.; Yakushev, E.; Zhang, X.; Zhdankov, V. N.

    2016-05-01

    The LUMINEU is designed to investigate the possibility to search for neutrinoless double beta decay in 100 Mo by means of a large array of scintillating bolometers based on ZnMoO4 crystals enriched in 100 Mo. High energy resolution and relatively fast detectors, which are able to measure both the light and the heat generated upon the interaction of a particle in a crystal, are very promising for the recognition and rejection of background events. We present the LUMINEU concepts and the experimental results achieved aboveground and underground with large-mass natural and enriched crystals. The measured energy resolution, the α/β discrimination power and the radioactive internal contamination are all within the specifications for the projected final LUMINEU sensitivity. Simulations and preliminary results confirm that the LUMINEU technology can reach zero background in the region of interest (around 3 MeV) with exposures of the order of hundreds kgxyears, setting the bases for a next generation 0v2β decay experiment capable to explore the inverted hierarchy region of the neutrino mass pattern.

  6. CALDER - Neutrinoless double-beta decay identification in TeO2 bolometers with kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Vignati, M.; Bellini, F.; Cardani, L.; Casali, N.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D’Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.

    2016-05-01

    Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of 988 TeO2 bolometers being commissioned at Laboratori Nazionali del Gran Sasso in Italy, features an expected sensitivity of 50-130 meV at 90% C.L, that can be improved by removing the background from α radioactivity. This is possible if, in coincidence with the heat release in a bolometer, the Cherenkov light emitted by the β signal is detected. The amount of light detected is so far limited to only 100 eV, requiring low-noise cryogenic light detectors. The CALDER project (Cryogenic wide-Area Light Detectors with Excellent Resolution) aims at developing a small prototype experiment consisting of TeO2 bolometers coupled to new light detectors based on kinetic inductance detectors. The present R&D is focused on the light detectors. We present the latest results and the perspectives of the project.

  7. Energy Calibration for a Sensitive Search for Neutrinoless Double-Beta Decay: Using the Cuoricino Experience to Prepare for CUORE

    NASA Astrophysics Data System (ADS)

    Ejzak, Larissa M.

    Neutrinos, which were long believed to be massless particles, are now known to have a tiny finite mass. A thorough understanding of the properties of their masses may provide vital clues to the history of the development of the universe as we know it. An intensive experimental search is underway for evidence of a Majorana mass component to the neutrino via many current and upcoming detectors seeking to observe the rare nuclear process neutrinoless double-beta decay (0nubetabeta). These detectors must be able to achieve very low backgrounds and a precise understanding of their energy scales. This paper presents the experimental approach of one of these 0nubetabeta experiments, the Cryogenic Underground Observatory for Rare Events (CUORE), and the attendant challenges of achieving excellent energy calibration performance in the detector from the perspectives of both hardware design and analysis. Experience and data from Cuoricino, the predecessor of CUORE, have been extensively leveraged to prepare optimized operational procedures for CUORE. The expected sensitivity profile of CUORE as a function of time is also presented and compared with those of other leading 0nubetabeta experiments.

  8. A Precision Measurement of Neutron {beta}-Decay Angular Correlations with Pulsed Cold Neutrons -- The abBA Experiment

    SciTech Connect

    Seo, P.-N.; Bowman, J.D.; O'Donnell, J.M.; Mitchell, G.S.; Penttilae, S.I.; Wilburn, W.S.; Calarco, J.R.; Hersman, F.W.; Chupp, T.E.; Cianciolo, T.V.; Rykaczewski, K.P.; Young, G.R.; Desai, D.; Grzywacz, R.K.; Souza, R.T. de; Snow, W.M.; Frlez, E.; Pocanic, D.; Gentile, T.; Greene, G.L.

    2005-05-24

    The abBA collaboration is developing a new type of field-expansion spectrometer to measure neutron beta decay angular parameters, a, b, B, and A, to the 0.1% precision level. This precision will be achieved by combining three new technical approaches; a pulsed cold neutron beam, a 3He neutron spin filter, and segmented large-area thin-dead layer silicon detectors. Both the electron and proton resulting from the decay will be guided by electric and magnetic fields and detected in coincidence by two 2{pi} solid-angle silicon detectors. For the neutron polarization-dependent observables A and B, a novel precision neutron polarimetry technique has been developed. The parameters a and b will be obtained from the proton time-of-flight and the measured electron energy spectrum. Measurement of the four parameters in the same apparatus provides a redundant determination of parameter {lambda}=gA/gV, providing a test of the standard electroweak interaction.

  9. Deformed shell model results for neutrinoless positron double beta decay of nuclei in the A = 60-90 region

    NASA Astrophysics Data System (ADS)

    Sahu, R.; Srivastava, P. C.; Kota, V. K. B.

    2013-09-01

    Nuclear transition matrix elements (NTME) for neutrinoless positron double beta decay (0νβ+β+ and 0νβ+EC) of 64Zn, 74Se, 78Kr and 84Sr nuclei, which are in the A = 60-90 region, are calculated within the framework of the deformed shell model (DSM) based on Hartree-Fock states. For 64Zn, GXPF1A interaction in 1f7/2, 2p3/2, 1f5/2 and 2p1/2 space with 40Ca as the core is employed. Similarly for 74Se, 78Kr and 84Sr nuclei, 56Ni is taken as the inert core employing a modified Kuo interaction in 2p3/2, 1f5/2, 2p1/2 and 1g9/2 space. After ensuring that the DSM gives a good description of the spectroscopic properties of low-lying levels in the four nuclei considered, the NTME are calculated. The half-lives deduced with these NTME, assuming the neutrino mass is 1 eV, are smallest for 78Kr with the half-life for β+EC decay being ˜1027 yr. For all others, the half-lives are in the range of ˜1028-1029 yr.

  10. TeV-scale left-right symmetry and large mixing effects in neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Bhupal Dev, P. S.; Goswami, Srubabati; Mitra, Manimala

    2015-06-01

    We revisit various contributions to neutrinoless double beta decay (0 ν β β ) in a TeV-scale left-right symmetric model (LRSM) for type-I seesaw dominance. We show that the momentum-dependent effects due to WL-WR exchange (λ diagram) and WL-WR mixing (η diagram) could give dominant contributions to the 0 ν β β amplitude in a wide range of the LRSM parameter space with large left-right neutrino mixing. In particular, for a relatively large WL-WR mixing, the η contribution by itself could saturate the current experimental limit on the 0 ν β β half-life, thereby providing stringent constraints on the relevant LRSM parameters, complementary to the indirect constraints derived from lepton-flavor-violating observables. In a simplified scenario parametrized by a single light-heavy neutrino mixing, the inclusion of the λ and η contributions leads to significantly improved 0 ν β β constraints on the light-heavy neutrino mixing as well as on the WL-WR mixing parameters. We also present a concrete TeV-scale LRSM setup, where the mixing effects are manifestly enhanced, and discuss the interplay between 0 ν β β , lepton flavor violation, and electric dipole moment constraints.

  11. Evaluation of radioactive background rejection in 76Ge neutrino-lessdouble-beta decay experiments using a highly segmented HPGe detector

    SciTech Connect

    Chan, Yuen-Dat; Campbell, D.B.; Vetter, K.; Henning, R.; Lesko, K.; Chan, Y.D.; Poon, A.W.P.; Perry, M.; Hurley, D.; Smith, A.R.

    2007-02-05

    A highly segmented coaxial HPGe detector was operated in a low background counting facility for over 1 year to experimentally evaluate possible segmentation strategies for the proposed Majorana neutrino-less double-beta decay experiment. Segmentation schemes were evaluated on their ability to reject multi-segment events while retaining single-segment events. To quantify a segmentation scheme's acceptance efficiency the percentage of peak area due to single segment events was calculated for peaks located in the energy region 911-2614 keV. Single interaction site events were represented by the double-escape peak from the 2614 keV decay in {sup 208}Tl located at 1592 keV. In spite of its prototypical nature, the detector performed well under realistic operating conditions and required only minimal human interaction. Though the energy resolution for events with interactions in multiple segments was impacted by inter-segment cross-talk, the implementation of a cross-talk correlation matrix restored acceptable resolution. Additionally, simulations utilizing the MaGe simulation package were performed and found to be in good agreement with experimental observations verifying the external nature of the background radiation.

  12. AMoRE: Collaboration for searches for the neutrinoless double-beta decay of the isotope of {sup 100}Mo with the aid of {sup 40}Ca{sup 100}MoO{sub 4} as a cryogenic scintillation detector

    SciTech Connect

    Khanbekov, N. D.

    2013-09-15

    The AMoRE (Advanced Mo based Rare process Experiment) Collaboration is planning to employ {sup 40}Ca{sup 100}MoO{sub 4} single crystals as a cryogenic Scintillation detector for studying the neutrinoless double-beta decay of the isotope {sup 100}Mo. A simultaneous readout of phonon and scintillation signals is performed in order to suppress the intrinsic background. The planned sensitivity of the experiment that would employ 100 kg of {sup 40}Ca{sup 100}MoO{sub 4} over five years of data accumulation would be T{sub 1/2}{sup 0{nu}} = 3 Multiplication-Sign 10{sup 26} yr, which corresponds to values of the effective Majorana neutrino mass in the range of Left-Pointing-Angle-Bracket m{sub {nu}} Right-Pointing-Angle-Bracket {approx} 0.02-0.06 eV.

  13. Simultaneous analysis of neutrinoless double beta decay and LHC pp-cross sections: limits on the left-right mixing angle

    NASA Astrophysics Data System (ADS)

    Civitarese, O.; Suhonen, J.; Zuber, K.

    2015-09-01

    The extension of the Standard Model of electroweak interactions, to accommodate massive neutrinos and/or right-handed currents, is one of the fundamental questions to answer in the cross-field of particle and nuclear physics. The consequences of such extensions would reflect upon nuclear decays, like the very exotic nuclear double-beta-decay, as well as upon high-energy proton-proton reactions of the type performed at the LHC accelerator. In this talk we shall address this question by looking at the results reported by the ATLAS and CMS collaborations, where the excitation and decay of a heavy-mass boson may be mediated by a heavy-mass neutrino in proton-proton reactions leading to two jets and two leptons, and by extracting limits on the left-right mixing, from the latest measurements of nuclear-double-beta decays reported by the GERDA and EXO collaborations.

  14. The (d,{sup 2}He) reaction on {sup 96}Mo and the double-{beta} decay matrix elements for {sup 96}Zr

    SciTech Connect

    Dohmann, H.; Baeumer, C.; Frekers, D.; Grewe, E.-W.; Hollstein, S.; Rakers, S.; Thies, J. H.; Harakeh, M. N.; Berg, A. M. van den; Woertche, H. J.; Johansson, H.; Simon, H.; Popescu, L.; Savran, D.; Zilges, A.

    2008-10-15

    The {sup 96}Mo(d,{sup 2}He){sup 96}Nb charge-exchange reaction was investigated at an incident energy of E{sub d}=183.5 MeV. An excitation-energy resolution of 110 keV was achieved. The experiment was performed at KVI, Groningen, using the magnetic spectrometer BBS at three angular positions: 0 deg., 2.5 deg., and 6 deg. We found that below 6 MeV almost the entire Gamow-Teller (GT{sup +}) strength is concentrated in a single state at 0.69 MeV excitation energy. As {sup 96}Mo is the daughter of the {beta}{beta} decay nucleus {sup 96}Zr, the present result provides information about the nuclear matrix elements active in the 2{nu}{beta}{beta} decay of {sup 96}Zr.

  15. Neganov-Luke amplified cryogenic light detectors for the background discrimination in neutrinoless double beta decay search with TeO2 bolometers

    NASA Astrophysics Data System (ADS)

    Willers, M.; Feilitzsch, F. v.; Gütlein, A.; Münster, A.; Lanfranchi, J.-C.; Oberauer, L.; Potzel, W.; Roth, S.; Schönert, S.; Sivers, M. v.; Wawoczny, S.; Zöller, A.; Giuliani, A.

    2015-03-01

    We demonstrate that Neganov-Luke amplified cryogenic light detectors with Transition Edge Sensor read-out can be applied for the background suppression in cryogenic experiments searching for the neutrinoless double beta decay of 130Te with TeO2 based bolometers. Electron and gamma induced events can be discriminated from α events by detecting the Cherenkov light produced by the β particles emitted in the decay. We use the Cherenkov light produced by events in the full energy peak of 208Tl and by events from a 147Sm source to show that at the Q-value of the neutrinoless double beta decay of 130Te (Qβ β = 2.53 MeV), a separation of e-/γ events from α events can be achieved on an event-by-event basis with practically no reduction in signal acceptance.

  16. ({sup 3}He,t) reaction on the double {beta} decay nucleus {sup 48}Ca and the importance of nuclear matrix elements

    SciTech Connect

    Grewe, E.-W.; Frekers, D.; Rakers, S.; Baeumer, C.; Dohmann, H.; Thies, J.; Adachi, T.; Fujita, Y.; Shimbara, Y.; Botha, N. T.; Fujita, H.; Hatanaka, K.; Nakanishi, K.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Tamii, A.; Negret, A.; Popescu, L.; Neveling, R.

    2007-11-15

    High-resolution ({sup 3}He,t) measurements on the double {beta}-decay ({beta}{beta}) nucleus {sup 48}Ca have been performed at RCNP (Osaka, Japan) to determine Gamow-Teller (GT{sup -}) transitions to the nucleus {sup 48}Sc, which represents the intermediate nucleus in the second-order perturbative description of the {beta}{beta} decay. At a bombarding energy of E{sub {sup 3}He}=420 MeV an excitation energy resolution of 40 keV was achieved. The measurements were performed at two angle positions of the Grand Raiden Spectrometer (GRS): 0 deg. and 2.5 deg. The results of both settings were combined to achieve angular distributions, by which the character of single transitions could be determined. To characterize the different multipoles, theoretical angular distributions for states with J{sup {pi}}=1{sup +},2{sup +},2{sup -}, and 3{sup +} were calculated using the distorted-wave Born approximation (DWBA) Code DW81. The GT{sup -} strength was extracted up to E{sub x}=7 MeV and combined with corresponding GT{sup +} strength deduced from the {sup 48}Ti(d,{sup 2}He){sup 48}Sc data to calculate the low-energy part of the {beta}{beta}-decay matrix element for the {sup 48}Ca 2{nu}{beta}{beta} decay. We show that after applying trivial momentum corrections to the ({sup 3}He,t) spectrum, the two reaction probes (p,n) and ({sup 3}He,t) reveal a spectral response to an impressively high degree of similarity in the region of low momentum transfer.

  17. Meson-exchange enhancement of the first-forbidden sup 96 Y sup g (0 sup minus ) r arrow sup 96 Zr sup g (0 sup + ). beta. transition:. beta. decay of the low-spin isomer of sup 96 Y

    SciTech Connect

    Mach, H. ); Warburton, E.K. Max-Planck-Institut fuer Kernphysik, Heidelberg ); Gill, R.L.; Casten, R.F. ); Becker, J.A. ); Brown, B.A. Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824); Winger, J.A. )

    1990-01-01

    We have investigated the 0{sup {minus}} {sup 96}Y{sup {ital g}} {beta} decay to the levels of {sup 96}Zr. A detailed decay scheme comprised of 63 {gamma} rays and 44 energy levels has been obtained from {gamma} singles, {gamma} multispectral scaling, and {gamma}-{gamma} and {ital E}0-{gamma} coincidences. {ital Q}{sub {beta}} was measured using the {beta}-{gamma} coincidence technique, while absolute {ital E}0 and {gamma}-ray intensities were obtained from singles conversion electron and {gamma}-ray spectra measured at beam saturation. The high sensitivity of the study was aimed at investigating the {beta} feeding of levels with excitation enegy above 4 MeV. Although most of the new levels were found in this region, their total {beta} feeding was found to be below 0.6%. The first-forbidden {beta}-decay rate for 0{sup {minus}} {sup 96}Y{sup {ital g}}{r arrow}0{sup +} {sup 96}Zr{sup {ital g}} has been calculated within the framework of the spherical shell model using a model space of {pi}(0{ital f}{sub 7/2},0{ital f}{sub 5/2},1{ital p}{sub 3/2},1{ital p}{sub 1/2},0{ital g}{sub 9/2},1{ital p}{sub 1/2},0{ital g}{sub 9/2}){nu} (0g{sub 7/2},1{ital d}{sub 5/2},1{ital d}{sub 3/2},2{ital s}{sub 1/2}) with limitations on the orbit occupancies. Additional evidence for meson enhancement of the timelike component of the axial current is obtained; the meson-exchange enhancement factor was found to be 1.75{plus minus}0.30, where the uncertainty arises from the calculation.

  18. The {sup 150}Nd({sup 3}He,t) and {sup 150}Sm(t,{sup 3}He) reactions with applications to {beta}{beta} decay of {sup 150}Nd

    SciTech Connect

    Guess, C. J.; Brown, B. A.; Deaven, J. M.; Hitt, G. W.; Meharchand, R.; Zegers, R. G. T.; Adachi, T.; Fujita, H.; Hatanaka, K.; Hirota, K.; Ishikawa, D.; Matsubara, H.; Okamura, H.; Ong, H. J.; Suzuki, T.; Tamii, A.; Yosoi, M.; Zenihiro, J.; Akimune, H.; Algora, A.

    2011-06-15

    The {sup 150}Nd({sup 3}He,t) reaction at 140 MeV/u and {sup 150}Sm(t,{sup 3}He) reaction at 115 MeV/u were measured, populating excited states in {sup 150}Pm. The transitions studied populate intermediate states of importance for the (neutrinoless) {beta}{beta} decay of {sup 150}Nd to {sup 150}Sm. Monopole and dipole contributions to the measured excitation-energy spectra were extracted by using multipole decomposition analyses. The experimental results were compared with theoretical calculations obtained within the framework of the quasiparticle random-phase approximation, which is one of the main methods employed for estimating the half-life of the neutrinoless {beta}{beta} decay (0{nu}{beta}{beta}) of {sup 150}Nd. The present results thus provide useful information on the neutrino responses for evaluating the 0{nu}{beta}{beta} and 2{nu}{beta}{beta} matrix elements. The 2{nu}{beta}{beta} matrix element calculated from the Gamow-Teller transitions through the lowest 1{sup +} state in the intermediate nucleus is maximally about half that deduced from the half-life measured in 2{nu}{beta}{beta} direct counting experiments, and at least several transitions through 1{sup +} intermediate states in {sup 150}Pm are required to explain the 2{nu}{beta}{beta} half-life. Because Gamow-Teller transitions in the {sup 150}Sm(t,{sup 3}He) experiment are strongly Pauli blocked, the extraction of Gamow-Teller strengths was complicated by the excitation of the 2({h_bar}/2{pi}){omega}, {Delta}L=0, {Delta}S=1 isovector spin-flip giant monopole resonance (IVSGMR). However, the near absence of Gamow-Teller transition strength made it possible to cleanly identify this resonance, and the strength observed is consistent with the full exhaustion of the non-energy-weighted sum rule for the IVSGMR.

  19. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Nygren, D.; Oliveira, C.; Renner, J.

    2015-11-01

    Liquid Xe TPCs are among the most popular choices for double beta decay and WIMP dark matter searches. Gaseous Xe has intrinsic advantages when compared to Liquid Xe, specifically, tracking capability and better energy resolution for double beta decay searches. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which are expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). These features may provide better tracking and energy resolution for double-beta decay searches. They are also expected to enhance columnar recombination for nuclear recoils, which can be used for searches for WIMP dark matter with directional sensitivity. We constructed a test ionization chamber and successfully measured scintillation and ionization yields at high precision with various Xe and TMA mixtures and pressures. We observed the Penning effect and an increase in recombination with the addition of TMA. However, many undesired features for dark matter searches, such as strong suppression of the scintillation light and no sign of recombination light, were also found. This work has been carried out within the context of the NEXT collaboration.

  20. Precision electron-gamma spectroscopic data from the beta decay of 153Sm

    NASA Astrophysics Data System (ADS)

    Deepa, S.; Rani Rao, Dwaraka; Venkataramaniah, K.

    2016-02-01

    The decay of 153Sm was studied with a HPGe detector and a Si(Li) detector based electron transporter. Forty four gamma transitions belonging to sixteen excited levels in the daughter nucleus 153Eu were analyzed for their energies, emission intensities, conversion electron intensities and conversion coefficients. These values have resulted in the determination of precise beta emission intensities to the levels in 153Eu and in the construction of an internally consistent decay scheme. The present study will add to the decay data available on this radionuclide for reliable dose estimations for medical applications.

  1. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

    SciTech Connect

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Vidal, J. Muñoz; Peña-Garay, C. E-mail: jmalbos@ific.uv.es E-mail: penya@ific.uv.es

    2013-03-01

    The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Σm{sub ν} = (0.32±0.11) eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m{sub ββ} involved in neutrinoless double beta decay (ββ0ν) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based ββ0ν experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg·year, could already have a sizeable opportunity to observe ββ0ν events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton·year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.

  2. Neutron inelastic scattering and reactions in natural Pb as a background in neutrinoless double-{beta}-decay experiments

    SciTech Connect

    Guiseppe, V. E.; Devlin, M.; Elliott, S. R.; Fotiades, N.; Hime, A.; Nelson, R. O.; Perepelitsa, D. V.; Mei, D.-M.

    2009-05-15

    Inelastic neutron scattering and reactions on Pb isotopes can result in {gamma} rays near the signature end-point energy in a number of {beta}{beta} isotopes. In particular, there are {gamma}-ray transitions in {sup 206,207,208}Pb that might produce energy deposits at the {sup 76}GeQ{sub {beta}}{sub {beta}} in Ge detectors used for 0{nu}{beta}{beta} searches. The levels that produce these {gamma} rays can be excited by (n,n{sup '}{gamma}) or (n,xn{gamma}) reactions, but the cross sections are small and previously unmeasured. This work uses the pulsed neutron beam at the Los Alamos Neutron Science Center to directly measure reactions of interest to {beta}{beta}-decay experiments. The cross section on {sup nat}Pb to produce the 2041-keV {gamma} ray from {sup 206}Pb is measured to be 3.6 {+-} 0.7 (stat.) {+-} 0.3 (syst.) mb at {approx_equal}9.6 MeV. The cross section on {sup nat}Pb to produce the 3061,3062-keV {gamma} rays from {sup 207}Pb and {sup 208}Pb is measured to be 3.9 {+-} 0.8 (stat.) {+-} 0.4 (syst.) mb at the same energy. We report cross sections or place upper limits on the cross sections for exciting some other levels in Pb that have transition energies corresponding to Q{sub {beta}}{sub {beta}} in other {beta}{beta} isotopes.

  3. Measurement of the electron antineutrino mass in tritium beta decay in the Troitsk nu-mass experiment

    SciTech Connect

    Aseev, V. N.; Belesev, A. I.; Berlev, A. I.; Geraskin, E. V.; Golubev, A. A.; Lihovid, N. A.; Lobashev, V. M.; Nozik, A. A.; Pantuev, V. S.; Parfenov, V. I.; Skasyrskaya, A. K.; Tkachov, F. V.; Zadorozhny, S. V.

    2012-04-15

    The results obtained in the Troitsk nu-mass experiment by measuring the electron-antineutrino mass in tritium beta decay are presented. The facility used consists of a gaseous windowless tritium source and an electrostatic electron spectrometer involving an adiabatic magnetic collimation. Runs in which measurement conditions were reliably established were thoroughly selected in analyzing data obtained from 1994 to 2004. All known systematic effects were taken into account. For the square of the electron-antineutrino mass, the treatment of measured spectra yielded the following result: m{sub {nu}}{sup 2} = -0.67 {+-} 1.89{sub stat.} {+-} 1.68{sub syst.} eV{sup 2}. The use of the Bayesian method and the Feldman-Cousins unified approach made it possible to obtain the following upper limits on the mass: m{sub {nu}} < 2.12 eV (at a 95% C.L.; Bayesian method) and m{sub {nu}} < 2.05 eV (at a 95% C.L., Feldman-Cousins method). At the same time, an estimation of the sensitivity limit without allowance for negative values of the square of the mass leads to m{sub {nu}} < 2.2 eV (at a 95% C.L.). Measured spectra were analyzed for the possible existence of an additional structure (step) in the electron spectrum near the boundary energy. The conclusion drawn from this analysis was that, within the existing statistical errors, there are no reasons for introducing such a feature.

  4. Theoretical investigation of the dependence of double beta decay tracks in a Ge detector on particle and nuclear physics parameters and separation from gamma ray events

    SciTech Connect

    Klapdor-Kleingrothaus, H.V.; Krivosheina, I.V.; Titkova, I.V.

    2006-01-01

    The sizes of tracks of events of neutrinoless double-beta decay in a Germanium detector depend on particle physics and nuclear physics parameters such as neutrino mass, right-handed current parameters, etc., and nuclear matrix elements. In this paper for the first time Monte Carlo simulations of neutrino-accompanied (2{nu}{beta}{beta}) and neutrinoless double-beta decay (0{nu}{beta}{beta}) events, and of various kinds of background processes such as multiple and other {gamma} interactions are reported for a Ge detector. The time history of the evolution of the individual events is followed and the sizes of the events (partial volumes in the detector inside which the energy of the event is released) are investigated. Effects of the angular correlations of the two electrons in {beta}{beta} decay, which again depend on the above nuclear and (for 0{nu}{beta}{beta} decay) on particle physics parameters, are taken into account and have been calculated for this purpose for the first time on basis of the experimental half-life of {sup 76}Ge and of realistic nuclear matrix elements. The sizes determine, together with the location of the events in the detector, the pulse shapes to be observed. It is shown for {beta}{beta} decay of {sup 76}Ge, that {beta}{beta} events should be selectable with high efficiency by rejecting large size (high multiplicity) {gamma} events. Double-escape peaks of similar energy of {gamma} lines show concerning their sizes similar behavior as 0{nu}{beta}{beta} events, and in that sense can be of some use for corresponding 'calibration' of pulse shapes of the detector. The possibility to distinguish {beta}{beta} events from {gamma} events is found to be essentially independent of the particle physics parameters of the 0{nu}{beta}{beta} process. A brief outlook is given on the potential of future experiments with respect to determination of the particle physics parameters ,<{lambda}>,<{eta}>.

  5. {beta}-decay in neutron-deficient Hg, Pb, and Po isotopes

    SciTech Connect

    Moreno, O.; Sarriguren, P.; Alvarez-Rodriguez, R.; Guerra, E. Moya de

    2006-05-15

    The effect of nuclear deformation on the energy distributions of the Gamow-Teller strength is studied in neutron-deficient Hg, Pb, and Po even isotopes. The theoretical framework is based on a self-consistent deformed Skyrme Hartree-Fock mean field with pairing correlations between like nucleons in BCS approximation and residual spin-isospin interactions treated in the proton-neutron quasiparticle random-phase approximation. After a systematic study of the Gamow-Teller strength distributions in the low-excitation-energy region, relevant for {beta}{sup +} decay, we have identified the best candidates to look for deformation signatures in their {beta}{sup +}-decay patterns. {beta}{sup +} half-lives and total Gamow-Teller strengths B(GT{sup {+-}}) are analyzed as well.

  6. Probing new physics models of neutrinoless double beta decay with SuperNEMO

    NASA Astrophysics Data System (ADS)

    Arnold, R.; Augier, C.; Baker, J.; Barabash, A. S.; Basharina-Freshville, A.; Bongrand, M.; Brudanin, V.; Caffrey, A. J.; Cebrián, S.; Chapon, A.; Chauveau, E.; Dafni, T.; Deppisch, F. F.; Diaz, J.; Durand, D.; Egorov, V.; Evans, J. J.; Flack, R.; Fushima, K.-I.; Irastorza, I. García; Garrido, X.; Gómez, H.; Guillon, B.; Holin, A.; Holy, K.; Horkley, J. J.; Hubert, P.; Hugon, C.; Iguaz, F. J.; Ishihara, N.; Jackson, C. M.; Jullian, S.; Kauer, M.; Kochetov, O.; Konovalov, S. I.; Kovalenko, V.; Lamhamdi, T.; Lang, K.; Lutter, G.; Luzón, G.; Mamedov, F.; Marquet, C.; Mauger, F.; Monrabal, F.; Nachab, A.; Nasteva, I.; Nemchenok, I.; Nguyen, C. H.; Nomachi, M.; Nova, F.; Ohsumi, H.; Pahlka, R. B.; Perrot, F.; Piquemal, F.; Povinec, P. P.; Richards, B.; Ricol, J. S.; Riddle, C. L.; Rodríguez, A.; Saakyan, R.; Sarazin, X.; Sedgbeer, J. K.; Serra, L.; Shitov, Y.; Simard, L.; Šimkovic, F.; Söldner-Rembold, S.; Štekl, I.; Sutton, C. S.; Tamagawa, Y.; Thomas, J.; Timkin, V.; Tretyak, V.; Tretyak, V. I.; Umatov, V. I.; Vanyushin, I. A.; Vasiliev, R.; Vasiliev, V.; Vorobel, V.; Waters, D.; Yahlali, N.; Žukauskas, A.

    2010-12-01

    The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double β decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double β decay by measuring the decay half-life and the electron angular and energy distributions.

  7. Recoil effects due to electron shake-off following the beta decay of 6 He

    NASA Astrophysics Data System (ADS)

    Drake, Gordon W. F.; Schulhoff, Eva

    2016-05-01

    There are currently several experiments in progress to search for new physics beyond the Standard Model by high precision studies of angular correlations in the β decay of the helium isotope 6He to form 6Li +e- +νe. After the β decay process, the atomic electrons of 6 Li+ adjust to the sudden change of nuclear charge from 2 to 3. We calculate the probabilities for electron shake-up and shake-off, including recoil effects, by the use of a Stieltjes imaging representation of the final states. A variety of sum rules provides tight consistency checks on the accuracy of the results. Results obtained previously indicate that there is a 7 σ disagreement between theory and experiment for the additional nuclear recoil induced by the emission of atomic shake-off electrons. This disagreement will be further studied, and the results extended to the 1 s 2 p3 P and metastable 1 s 2 s3 S states as initial states of 6 He before β-decay. Research supported by the Natural Sciences and Engineering Research Council of Canada.

  8. Beta-decay spectroscopy of r-process nuclei around N = 126

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Miyatake, H.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Jung, H. S.; Oyaizu, M.; Mukai, M.; Kimura, S.; Sonoda, T.; Wada, M.; Kim, Y. H.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2016-02-01

    KEK Isotope Separation System (KISS) has been developed at RIKEN to study the β-decay properties of neutron-rich isotopes with neutron numbers around N = 126 to understand the astrophysical site of r-process. These nuclei will be produced by multi-nucleon transfer reactions in neutron-rich heavy ion collisions between 136Xe beam and 198Pt target. The KISS consists of an argon gas cell combined with a laser resonance ionization technique for atomic number selection, of an ISOL mass-separation system and of a detector system for the β-decay spectroscopy of nuclei around N = 126. The argon gas cell of KISS is a key component for thermalizing (stopping and neutralizing) and accumulating the unstable nuclei, and selectively ionizing them by using laser. We have performed off-and on-line experiments to study the basic properties of the gas cell as well as KISS. We successfully extracted the laser-ionized stable 198Pt atoms from the KISS at the commissioning on-line experiments. We furthermore extracted laser-ionized unstable 199Pt atoms and confirmed that the measured half-life was in good agreement with the reported value. Now KISS is ready for lifetime measurements of Pt, Ir, and Os isotopes around N = 126.

  9. LUCIFER: A Scintillating Bolometer Array for the Search of Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Cardani, L.; Lucifer Collaboration

    2012-07-01

    One of the main limitations in the study of 0vDBD is the presence of a radioactive background in the energy region of interest. This limit can be overcome by the technological approach of the LUCIFER project, which is based the double read-out of the heat and scintillation light produced by ZnSe scintillating bolometers. This experiment aims at a background lower than 10-3counts/keV/kg/y in the energy region of the 0νDBD of 82Se. Such a low background level will provide a sensitivity on the effective neutrino mass of the order of 100 meV. In the following, the results of the recent R&D activity are discussed, the single module for the LUCIFER detector is described, and the process for the production of 82Se-enriched ZnSe crystals is presented.

  10. Beta-decay properties of neutron-rich medium-mass nuclei

    NASA Astrophysics Data System (ADS)

    Sarriguren, Pedro

    2016-06-01

    β-decay properties of even-even and odd-A neutron-rich Ge, Se, Kr, Sr, Zr, Mo, Ru, and Pd isotopes involved in the astrophysical rapid neutron capture process are studied within a microscopic proton-neutron quasiparticle random-phase approximation. The underlying mean field is based on a self-consistent Skyrme Hartree-Fock + BCS calculation that includes deformation as a key ingredient. The isotopic evolution of the various nuclear equilibrium shapes and the corresponding charge radii are investigated in all the isotopic chains. The energy distributions of the Gamow-Teller strength, as well as the β-decay half-lives are discussed and compared with the available experimental information. It is shown that nuclear deformation plays a significant role in the description of the decay properties in this mass region. Reliable predictions of the strength distributions are essential to evaluate decay rates in astrophysical scenarios.

  11. {beta} decay of 129Cd and excited states in 129In

    SciTech Connect

    Taprogge, J.; Jungclaus, A.; Grawe, H.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Simpson, G. S.; Soderstrom, P. A.; Sumikama, T.; Xu, Z. Y.; Kondev, F. G.

    2015-05-26

    The β decay of Cd 129 , produced in the relativistic fission of a U 238 beam, was experimentally studied at the RIBF facility at the RIKEN Nishina Center. From the γ radiation emitted after the β decays, a level scheme of In 129 was established comprising 31 excited states and 69 γ -ray transitions. The experimentally determined level energies are compared to state-of-the-art shell-model calculations. The half-lives of the two β -decaying states in Cd 129 were deduced and the β feeding to excited states in In 129 were analyzed. It is found that, as in most cases in the Z<50 , N≤82 region, both decays are dominated by the ν0g 7/2 →π0g 9/2 Gamow–Teller transition, although the contribution of first-forbidden transitions cannot be neglected.

  12. Double-Beta Decay of ^150Nd to Excited Final States

    NASA Astrophysics Data System (ADS)

    Kidd, M. F.; Esterline, J. H.; Tornow, W.

    2010-11-01

    An experimental study of the two-neutrino double-beta (2νββ) decay of ^150Nd to various excited final states of ^150Sm was performed at Triangle Universities Nuclear Laboratory (TUNL). Such data provide important checks for theoretical models used to predict 0νββ decay half lives. The measurement was performed at the recently established Kimballton Underground Research Facility (KURF) using the TUNL-ITEP ββ decay setup. In this setup, two high-purity germanium detectors were operated in coincidence to detect the deexcitation gamma rays of the daughter nucleus. This coincidence technique, along with the location underground, provides a considerable reduction in background in the regions of interest. This study yields the first results from KURF and the first detection of the coincidence gamma rays from the 0^+1 excited state of ^150Sm. These gamma rays have energies of 334.0 keV and 406.5 keV, and are emitted in coincidence through a 0^+1->2^+1->0^+gs transition. An enriched Nd2O3 sample obtained from Oak Ridge National Laboratory was used. After counting for 391 days, 29 raw events in the region of interest were observed. This count rate gives a half life of T1/2=(0.72^+0.36-0.18±0.04(syst.))x10^20 years, which agrees within error with another recent measurement, in which no coincidence was employed. An updated result will be given.

  13. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    DOE PAGESBeta

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at themore » 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.« less

  14. Microscopic calculations of signals of double beta decay in a 76Ge detector and first application to the Heidelberg Moscow experiment

    NASA Astrophysics Data System (ADS)

    Klapdor-Kleingrothaus, H. V.; Krivosheina, I. V.; Mironov, V.; Titkova, I. V.

    2006-05-01

    The identification of signals of neutrinoless double beta decay is a question of extreme interest. Starting from the Monte Carlo calculated time history and spatial energy distribution of neutrinoless double beta events, for the first time the expected pulse shapes to be observed in a big 76Ge detector have been calculated 'microscopically', by using the Poisson Superfish code for determination of the field distribution in the detector. It is shown, that for the majority of 0 νββ events it is not possible to differentiate between the contributions of different particle physics parameters entering into the 0 νββ decay process-in the mass mechanism the effective neutrino mass and the right-handed weak current parameters < λ >, < η >. It is shown, that on the other hand it is possible in a 76Ge double beta decay experiment to reject a background of larger sizes (high multiplicity) gamma events by selecting low size (low multiplicity) events. First application of the theoretical ββ pulses to events from the line observed at Qββ [H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz, et al., Phys. Lett. B 586 (2004) 198; H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. Krivosheina, et al., Nucl. Instrum. Methods A 522 (2004) 371] shows very good agreement. It is shown further, and confirmed by measurements with a collimated source, that a rather good radial position determination of ββ events in the detector is possible. By the same type of calculation it is shown that use of the pulse shapes of the 1592 keV double escape line of the 2614 keV γ-transition from 228Th for calibrating a neuronal net for search of events of neutrinoless double beta decay can be helpful.

  15. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A. B.; Nygren, D.

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase o_ers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  16. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    SciTech Connect

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  17. Calculation of two-neutrino double beta decay half-lives of 76Ge, 82Se, 96Zr and 100Mo nuclei for the 0+ → 0+ transition

    NASA Astrophysics Data System (ADS)

    Aytekin, Hüseyin; Yılmaz, Alaaddin

    2015-06-01

    We calculated the half-lives of two-neutrino double beta decay (2ν β β ) of 76Ge, 82Se, 96Zr and 100Mo nuclei for the 0+ ↦ 0+ transition. Quasiparticle random phase approximation (QRPA) was used by considering the charge-exchange spin-spin interactions among the nucleons by considering both particle-hole (p-h) and particle-particle (p-p) channels in the separable form. Calculations were performed for the spherical form of the nuclei.

  18. Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils

    NASA Astrophysics Data System (ADS)

    Argyriades, J.; Arnold, R.; Augier, C.; Baker, J.; Barabash, A. S.; Basharina-Freshville, A.; Bongrand, M.; Bourgeois, C.; Breton, D.; Brière, M.; Broudin-Bay, G.; Brudanin, V. B.; Caffrey, A. J.; Carcel, S.; Cebrián, S.; Chapon, A.; Chauveau, E.; Dafni, Th.; Díaz, J.; Durand, D.; Egorov, V. G.; Evans, J. J.; Flack, R.; Fushima, K.-I.; Irastorza, I. G.; Garrido, X.; Gómez, H.; Guillon, B.; Holin, A.; Hommet, J.; Holy, K.; Horkey, J. J.; Hubert, P.; Hugon, C.; Iguaz, F. J.; Ishihara, N.; Jackson, C. M.; Jenzer, S.; Jullian, S.; Kauer, M.; Kochetov, O. I.; Konovalov, S. I.; Kovalenko, V.; Lamhamdi, T.; Lang, K.; Lemière, Y.; Lutter, G.; Luzón, G.; Mamedov, F.; Marquet, Ch.; Mauger, F.; Monrabal, F.; Nachab, A.; Nasteva, I.; Nemchenok, I. B.; Nguyen, C. H.; Nomachi, M.; Nova, F.; Ohsumi, H.; Pahlka, R. B.; Perrot, F.; Piquemal, F.; Povinec, P. P.; Richards, B.; Ricol, J. S.; Riddle, C. L.; Rodríguez, A.; Saakyan, R.; Sarazin, X.; Sedgbeer, J. K.; Serra, L.; Shitov, Yu. A.; Simard, L.; Šimkovic, F.; Söldner-Rembold, S.; Štekl, I.; Sutton, C. S.; Tamagawa, Y.; Szklarz, G.; Thomas, J.; Thompson, R.; Timkin, V.; Tretyak, V.; Tretyak, Vl. I.; Umatov, V. I.; Vála, L.; Vanyushin, I. A.; Vasiliev, R.; Vasiliev, V. A.; Vorobel, V.; Waters, D.; Yahlali, N.; Žukauskas, A.; SuperNEMO Collaboration

    2010-10-01

    The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in 208Tl and 214Bi for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 m2 of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in 208Tl. After more than one year of background measurement, a surface activity of the scintillators of A(Tl208)=1.5 μBq/m2 is reported here. Given this level of background, a larger BiPo detector having 12 m2 of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A(Tl208)<2 μBq/kg (90% C.L.) with a six month measurement.

  19. The 76Ge(n,p)76Ga reaction and its relevance to searches for the neutrino-less double-beta decay of 76Ge

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Bhike, Megha; Fallin, B.; Krishichayan, Fnu

    2015-10-01

    The 76Ge(n,p)76Ga reaction and the subsequent β decay of 76Ga to 76Ge has been used to excite the 3951.9 keV state of 76Ge, which decays by emission of a 2040.7 keV γ ray. Using HPGe detectors, the associated pulse-height signal may be undistinguishable from the potential signal produced in neutrino-less double-beta decay of 76Ge with its Q-value of 2039.0 keV. In the neutron energy range between 10 and 20 MeV the production cross section of the 2040.7 keV γ ray is approximately 0.1 mb. In the same experiment γ rays of energy 2037.9 keV resulting from the 76Ge(n, γ)77Ge reaction were clearly observed. Adding the 76Ge(n,n' γ)76Ge reaction, which also produces the 2040.7 keV γ ray with a cross section value of the order of 0.1 mb clearly shows that great care has to be taken to eliminate neutron-induced backgrounds in searches for neutrino-less double-beta decay of 76Ge. This work was supported by the U.S. DOE under Grant NO. DE-FG02-97ER41033.

  20. The Majorana Demonstrator: Progress towards showing the feasibility of a tonne-scale 76Ge neutrinoless double-beta decay experiment

    NASA Astrophysics Data System (ADS)

    Finnerty, P.; Aguayo, E.; Amman, M.; Avignone, F. T., Iii; Barabash, A. S.; Barton, P. J.; Beene, J. R.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Chan, Y.-D.; Christofferson, C. D.; Collar, J. I.; Combs, D. C.; Cooper, R. J.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Fields, N.; Fraenkle, F. M.; Galindo-Uribarri, A.; Gehman, V. M.; Giovanetti, G. K.; Green, M. P.; Guiseppe, V. E.; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, R.; Hoppe, E. W.; Horton, M.; Howard, S.; Howe, M. A.; Johnson, R. A.; Keeter, K. J.; Kidd, M. F.; Knecht, A.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; Luke, P. N.; MacMullin, S.; Marino, M. G.; Martin, R. D.; Merriman, J. H.; Miller, M. L.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; Overman, N. R.; Perumpilly, G.; Phillips, D. G., Ii; Poon, A. W. P.; Radford, D. C.; Rielage, K.; Robertson, R. G. H.; Ronquest, M. C.; Schubert, A. G.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Steele, D.; Strain, J.; Timkin, V.; Tornow, W.; Varner, R. L.; Vetter, K.; Vorren, K.; Wilkerson, J. F.; Yakushev, E.; Yaver, H.; Young, A. R.; Yu, C.-H.; Yumatov, V.; Majorana Collaboration

    2014-03-01

    The Majorana Demonstrator will search for the neutrinoless double-beta decay (0vββ) of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The Demonstrator is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a low-background environment and surrounded by passive and active shielding. The goals for the Demonstrator are: demonstrating a background rate less than 3 t-1 y-1 in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of 0vββ [1]; and performing a direct search for light WIMPs (3-10 GeV/c2).

  1. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nygren, D. R.; Oliveira, C. A. B.; Renner, J.

    2016-03-01

    The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibility of the performance improvements with TMA, we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light with Xe and TMA mixture can be well characterized by ~3% fluorescence transfer from Xe to TMA, with further suppression due to TMA self-quenching. No evidence of the scintillation light produced by recombination of TMA ions was found. This strong suppression of scintillation light makes dark matter searches quite challenging, while the possibility of improved neutrinoless double beta decay searches remains open. This work has been carried out within the context of the NEXT collaboration.

  2. Search for 2{nu}{beta}{beta} Decay of {sup 130}Te to the First Excited State of {sup 130}Xe with an Ultra-Low-Background Germanium Crystal Array

    SciTech Connect

    Mizouni, L. K.; Aalseth, C. E.; Erikson, L. E.; Hossbach, T. W.; Keillor, M. E.; Orrell, J. L.; Avignone, F. T. III

    2011-12-13

    The goal of searching for zero-neutrino double-beta (0{nu}{beta}{beta}) decay is to probe an absolute neutrino mass scale suggested by the mass-splitting parameters observed by neutrino oscillation experiments. Furthermore, observation of 0{nu}{beta}{beta} decay is an explicit instance of Lepton-number non-conservation. A sensitive measurement of two-neutrino double-beta (2{nu}{beta}{beta}) decay can provide critical input to Quasiparticle Random Phase Approximation (QRPA) calculations of the nuclear matrix elements in models similar to those used to extract the absolute neutrino mass from (0{nu}{beta}{beta}) decay experiments. Tellurium-130, an even-even nucleus, can undergo 2{nu}{beta}{beta} decay to the first 0+ excited state of {sup 130}Xe producing three possible {gamma}-ray cascades as it transitions to the ground state. The Cascades detector is a high purity germanium (HPGe) crystal array consisting of two ultra-low-background copper cryostats each housing a hexagonal array of seven crystals. The project is currently being developed at Pacific Northwest National Laboratory in Richland, WA (USA), and aims to obtain very high {gamma}-ray detection efficiency while utilizing highly effective and low-background shielding. GEANT4 simulations of the detector are performed for a {sup 130}Te sample in order to determine the optimum size and geometry of the source for maximum detection efficiency and predict its sensitivity for measuring 2{nu}{beta}{beta} decay to the first 0+ excited state of {sup 130}Xe. These simulations are validated with calibration sources and presented.

  3. Herman Feshbach Prize in Theoretical Nuclear Physics Xiangdong Ji, University of Maryland PandaX-III: high-pressure gas TPC for Xe136 neutrinoless double beta decay at CJPL

    NASA Astrophysics Data System (ADS)

    Ji, Xiangdong; PandaX-III Collaboration

    2016-03-01

    The PandaX-III in China's Jinping Underground Lab is a new neutrinoless double beta decay experiment using Xe136 high-pressure gas TPC. The first phase of the experiment uses a 4 m3 gas detector with symmetric Micromegas charge readout planes. The gas TPC allows full reconstruction of the event topology, capable of distinguishing the two electron events from gamma background with high confidence level. The energy resolution can reach about 3% FWHM at the beta decay Q-value. The detector construction and the experimental lab is currently under active development. In this talk, the current status and future plan are reported.

  4. Elastic and Inelastic Scattering of Neutrons from Neon and Argon: Impact on Neutrinoless Double-Beta Decay and Dark Matter Experimental Programs

    NASA Astrophysics Data System (ADS)

    MacMullin, Sean Patrick

    In underground physics experiments, such as neutrinoless double-beta decay and dark matter searches, fast neutrons may be the dominant and potentially irreducible source of background. Experimental data for the elastic and inelastic scattering cross sections of neutrons from argon and neon, which are target and shielding materials of interest to the dark matter and neutrinoless double-beta decay communities, were previously unavailable. Unmeasured neutron scattering cross sections are often accounted for incorrectly in Monte-Carlo simulations. Elastic scattering cross sections were measured at the Triangle Universities Nuclear Laboratory (TUNL) using the neutron time-of-flight technique. Angular distributions for neon were measured at 5.0 and 8.0 MeV. One full angular distribution was measured for argon at 6.0 MeV. The cross-section data were compared to calculations using a global optical model. Data were also fit using the spherical optical model. These model fits were used to predict the elastic scattering cross section at unmeasured energies and also provide a benchmark where the global optical models are not well constrained. Partial gamma-ray production cross sections for (n,xngamma ) reactions in natural argon and neon were measured using the broad spectrum neutron beam at the Los Alamos Neutron Science Center (LANSCE). Neutron energies were determined using time of flight and resulting gamma rays from neutron-induced reactions were detected using the GErmanium Array for Neutron Induced Excitations (GEANIE). Partial gamma-ray production cross sections for six transitions in 40Ar, two transitions in 39Ar and the first excited state transitions is 20Ne and 22Ne were measured from threshold to a neutron energy where the gamma-ray yield dropped below the detection sensitivity. Measured (n,xngamma) cross sections were compared with calculations using the TALYS and CoH3 nuclear reaction codes. These new measurements will help to identify potential backgrounds in

  5. Thick-target yields of iodine isotopes from proton interactions in Te, and the double-{beta} decay of {sup 128,130}Te

    SciTech Connect

    da Cruz, M.T.F.; Chan, Y.D.; Garcia, A.; Larimer, R.M.; Lesko, K.T.; Norman, E.B.; Rossi, D.F.; Stokstad, R.G.; Zlimen, I.; Wietfeldt, F.E. |; Bardayan, D.W.; Hindi, M.M.

    1993-03-29

    We report thick-target yields of {sup 126,128,130}I from the bombardment of natural Te targets with 15-, 30-, 45- and 50-MeV protons, together with the iodine production cross sections for 1.85- and 5.0-GeV protons. With these data, we have estimated the relative cosmic-ray induced production of {sup 126}Xe, {sup 128}Xe and {sup 13O}Xe in Te ores. These quantities affect the ratio of double-{beta} decay half-lives of {sup 13O}Te and {sup 128}Te. A revised correction of cosmic-ray induced xenon can change the half-life ratio by as much as 10%, from (3.52{plus_minus}0.11) {times} 10{sup {minus}4} to (3.88{plus_minus}0.14) {times} 10{sup {minus}4}.

  6. Thick-target yields of iodine isotopes from proton interactions in Te, and the double-[beta] decay of [sup 128,130]Te

    SciTech Connect

    da Cruz, M.T.F.; Chan, Y.D.; Garcia, A.; Larimer, R.M.; Lesko, K.T.; Norman, E.B.; Rossi, D.F.; Stokstad, R.G.; Zlimen, I. ); Wietfeldt, F.E. California Univ., Berkeley, CA . Dept. of Physics); Bardayan, D.W.; Hindi, M.M. . Dept. of Physics)

    1993-03-29

    We report thick-target yields of [sup 126,128,130]I from the bombardment of natural Te targets with 15-, 30-, 45- and 50-MeV protons, together with the iodine production cross sections for 1.85- and 5.0-GeV protons. With these data, we have estimated the relative cosmic-ray induced production of [sup 126]Xe, [sup 128]Xe and [sup 13O]Xe in Te ores. These quantities affect the ratio of double-[beta] decay half-lives of [sup 13O]Te and [sup 128]Te. A revised correction of cosmic-ray induced xenon can change the half-life ratio by as much as 10%, from (3.52[plus minus]0.11) [times] 10[sup [minus]4] to (3.88[plus minus]0.14) [times] 10[sup [minus]4].

  7. Aboveground test of an advanced Li2MoO4 scintillating bolometer to search for neutrinoless double beta decay of 100Mo

    NASA Astrophysics Data System (ADS)

    Bekker, T. B.; Coron, N.; Danevich, F. A.; Degoda, V. Ya.; Giuliani, A.; Grigorieva, V. D.; Ivannikova, N. V.; Mancuso, M.; de Marcillac, P.; Moroz, I. M.; Nones, C.; Olivieri, E.; Pessina, G.; Poda, D. V.; Shlegel, V. N.; Tretyak, V. I.; Velazquez, M.

    2016-01-01

    Large lithium molybdate (Li2MoO4) crystal boules were produced by using the low thermal gradient Czochralski growth technique from deeply purified molybdenum. A small sample from one of the boules was preliminary characterized in terms of X-ray-induced and thermally-excited luminescence. A large cylindrical crystalline element (with a size of ⊘40 × 40 mm) was used to fabricate a scintillating bolometer, which was operated aboveground at ˜15 mK by using a pulse-tube cryostat housing a high-power dilution refrigerator. The excellent detector performance in terms of energy resolution and α background suppression along with preliminary positive indications on the radiopurity of this material show the potentiality of Li2MoO4 scintillating bolometers for low-counting experiment to search for neutrinoless double beta decay of 100Mo.

  8. Properties of low-lying intruder states in {sup 34}Al and {sup 34}Si populated in the beta-decay of {sup 34}Mg

    SciTech Connect

    Lică, R.; Grévy, S. [CENBG, Université de Bordeaux, CNRS Desagne, Ph. [IPHC, Université de Strasbourg, IN2P3 and others

    2015-02-24

    The results of the IS530 experiment at ISOLDE revealed new information concerning several nuclei close to the N ≈ 20 'Island of Inversion' - {sup 34}Mg, {sup 34}Al, {sup 34}Si. The half-life of {sup 34}Mg was found to be three times larger than the adopted value (63(1) ms instead of 20(10) ms). The beta-gamma spectroscopy of {sup 34}Mg performed for the first time in this experiment, led to the first experimental level scheme for {sup 34}Al, also showing that the full beta strength goes through the predicted 1{sup +} isomer in {sup 34}Al [1] and/or excited states that deexcite to it. The subsequent beta-decay of the 1{sup +} isomer in {sup 34}Al allowed the observation of new gamma lines in {sup 34}Si, (tentatively) associated with low-spin high-energy excited states previously unobserved.

  9. Implications of the diboson excess for neutrinoless double beta decay and lepton flavor violation in TeV scale left-right symmetric model

    NASA Astrophysics Data System (ADS)

    Awasthi, Ram Lal; Dev, P. S. Bhupal; Mitra, Manimala

    2016-01-01

    Inspired by the recent diboson excess observed at the LHC and possible interpretation within a TeV-scale left-right symmetric framework, we explore its implications for low-energy experiments searching for lepton number and flavor violation. Assuming a simple type-II seesaw mechanism for neutrino masses, we show that for the right-handed (RH) gauge boson mass and coupling values required to explain the LHC anomalies, the RH contribution to the lepton number violating process of neutrinoless double beta decay (0 ν β β ) is already constrained by current experiments for relatively low-mass (MeV-GeV) RH neutrinos. The future ton-scale 0 ν β β experiments could probe most of the remaining parameter space, irrespective of the neutrino mass hierarchy and uncertainties in the oscillation parameters and nuclear matrix elements. On the other hand, the RH contribution to the lepton flavor violating process of μ →e γ is constrained for relatively heavier (TeV) RH neutrinos, thus providing a complementary probe of the model. Finally, a measurement of the absolute light neutrino mass scale from future precision cosmology could make this scenario completely testable.

  10. Search for double-beta decay of 136Xe to excited states of 136Ba with the KamLAND-Zen experiment

    NASA Astrophysics Data System (ADS)

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Otani, M.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Banks, T. I.; Berger, B. E.; Fujikawa, B. K.; O'Donnell, T.; Winslow, L. A.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2016-02-01

    A search for double-beta decays of 136Xe to excited states of 136Ba has been performed with the first phase data set of the KamLAND-Zen experiment. The 01+, 21+ and 22+ transitions of 0 νββ decay were evaluated in an exposure of 89.5 kg ṡyr of 136Xe, while the same transitions of 2 νββ decay were evaluated in an exposure of 61.8 kg ṡyr. No excess over background was found for all decay modes. The lower half-life limits of the 21+ state transitions of 0 νββ and 2 νββ decay were improved to T1/20ν (0+ → 21+) > 2.6 ×1025 yr and T1/22ν (0+ → 21+) > 4.6 ×1023 yr (90% C.L.), respectively. We report on the first experimental lower half-life limits for the transitions to the 01+ state of 136Xe for 0 νββ and 2 νββ decay. They are T1/20ν (0+ → 01+) > 2.4 ×1025 yr and T1/22ν (0+ → 01+) > 8.3 ×1023 yr (90% C.L.). The transitions to the 22+ states are also evaluated for the first time to be T1/20ν (0+ → 22+) > 2.6 ×1025 yr and T1/22ν (0+ → 22+) > 9.0 ×1023 yr (90% C.L.). These results are compared to recent theoretical predictions.

  11. Developments for a measurement of the beta -- nu correlation and determination of the recoil charge-state distribution in 6He beta decay

    NASA Astrophysics Data System (ADS)

    Hong, Ran

    The beta-nu of a pure Gamow-Teller beta decay such as the 6He decay is sensitive to tensor-type weak currents predicted by theories beyond the Standard Model. An experiment is developed at University of Washington aiming at measuring the coefficient a_{beta-nu} of 6He decays to the 0.1% level and looking for its deviation from the Standard-Model prediction -1/3 using laser-trapped 6He atoms. The beta particle is detected by a scintillator and a multi-wire proportional chamber, and the recoil ion is detected by a microchannel plate with delay-line anodes for position readouts. a_{beta-nu} is extracted by fitting the measured time-of-flight spectrum of the recoil ions to templates generated by Monte Carlo simulations. This dissertation describes the developments of this experiment for the intermediate goal of a 1% level a_{beta-nu} measurement, such as the detector design, Monte Carlo simulation software, and data analysis frame work. Particularly, detector calibrations are described in detail. The analysis of a 2% level proof-of-principle run in October 2015 is presented as well. Shake-off probabilities for decays of trapped 6He atoms matter for the high-precision a_{beta-nu} measurement. The charge state distribution of recoil ions is obtained by analyzing their time-of-flight distribution using the same experimental setups for the a_{beta-nu} measurement. An analysis approach that is independent of the beta-nu correlation is developed. The measured upper limit of the double shake-off probability is 2x10. {-4} at 90% confidence level. This result is 100 times lower than the most recent calculation by Schulhoff and Drake. This disagreement is significant for the a_{beta-nu} measurement and needs to be addressed by improved atomic theory calculations.

  12. Investigating shape evolution and the emergence of collectivity through the synergy of Coulomb excitation and beta decay

    SciTech Connect

    Allmond, James M

    2016-01-01

    The synthesis of Coulomb excitation and decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., I2 ||M(E2)||I1 matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural inter- pretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the E 5 attenuation factor. These weak decay branches can often be determined with high precision from -decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and decay. Preliminary results of new weak decay branches following decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.

  13. Gamow-Teller strength and beta-decay rate within the self-consistent deformed pnQRPA

    NASA Astrophysics Data System (ADS)

    Martini, M.; Goriely, S.; Péru, S.

    2016-01-01

    In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the 238U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Gamow-Teller (GT) excitations which are known to play a crucial role in several fields of physics, in particular in nuclear astrophysics (stellar evolution and nucleosynthesis). A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay halflives calculations for which experimental data exist and for specific isotonic chains of relevance for the r-process nucleosynthesis.

  14. Nuclear Structure Between N = 20 and N = 28: Beta-Decay in the Neutron-Rich Mg and Al Isotopes

    NASA Astrophysics Data System (ADS)

    Crawford, Heather; NSCL Experiment E14063 Team

    2015-10-01

    The structure of nuclei in the vicinity of expected nuclear shell closures away from stability has been, and continues to be, a cornerstone for nuclear structure study. The confirmation of certain ``magic numbers'' in exotic nuclei provides insight into the evolution of nucleon configurations with isospin, but perhaps even more light is shed into the structure of the atomic nucleus when expected shell closures are found to be weakened, or entirely disappear. Two instances where this has been the case are the N = 20 and N = 28 neutron shell closures in the neutron-rich Mg, Si and S nuclei. However, a question which is only beginning to be answered is the nature of the transitional nuclei between N = 20 and 28. Recent experimental work in the Mg isotopes has suggested a chain of prolate-deformed nuclei at Z = 12, but the nature of the Al and Si isotopes just above remains a question. An experiment was conducted at NSCL to study the β-decay of neutron-rich Na, Mg, Al and Si isotopes to provide additional, and in some cases, first information on the level structures of the daughter isotopes in the region between N = 20 and N = 28. First results from this work will be presented, and the implications for nuclear structural evolution in this region discussed. This work was supported by the NSF under Grant No. PHY-1068217 (NSCL) and by the U. S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 (LBNL).

  15. Beta-Decay Spectroscopy of r-Process Nuclei with N = 126 at KEK Isotope Separation System

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Oyaizu, M.; Mukai, M.; Kimura, S.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    The β-decay properties of nuclei with N = 126, which are believed to act as progenitors in the rapid neutron capture (r-) process path forming the third peak (A ˜ 195) in the observed r-abundance element distribution, are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We have constructed the KEK Isotope Separation System (KISS), which consists of a gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 and to study their β-decay properties, which are also of interest for astrophysics. We successfully extracted the stable 56Fe and 198Pt beam from KISS at the commissioning on-line experiments. The extraction efficiency was 0.25 and 0.15% for 56Fe and 198Pt, respectively. We can access the nuclei with N = 126 and measure their half-lives using the KISS in the case of the extraction efficiency of 0.1%.

  16. Quantifying the impact of various radioactive background sources on germanium-76 zero-neutrino-double-beta-decay experiments

    NASA Astrophysics Data System (ADS)

    Mizouni, Katarina Leila

    The goal of searching for 0nubetabeta-decay is to probe an absolute neutrino mass scale suggested by the mass-splitting parameters observed by neutrino oscillation experiments. Furthermore, observation of 0nubetabeta-decay is an explicit instance of lepton-number non-conservation. To detect the rare events such as 0nubetabeta-decay, half-lives of the order of 10 25-1027 years have to be probed. Using an active detector with a large volume, such as hundreds of kilograms of HPGe in the case of MAJORANA, and taking efficient measures to mitigate background of cosmic and primordial origins are necessary for the success of a sensitive 0nubetabeta-decay experiment. One focus of the present research is the analysis of data from Cascades, a HPGe crystal array developed at Pacific Northwest National Laboratory in Richland, WA, to determine an upper bound on primordial radiation levels in the cryostat constructed with electroformed copper similar to that electroformed for MAJORANA. It will be shown, however, that there are sources of background much more serious than cryostats in 76Ge experiments. Additionally, experimental applications of the Cascades detector were studied by predicting the sensitivity for a 0nuBB-decay experiment using GEANT4 simulations. Tellurium-130, an even-even nucleus that can undergo 0nubetabeta-decay to either the ground state or first 01+ excited state of 130Xe, was used as an example. The present work developed techniques that will be used for a number of measurements of betabeta-decay half-lives for decays to excited states of the daughter isotopes.

  17. Two experiments in neutrino physics: Double beta decay of cadmium-116 and the efficiency of an argon-40 neutrino detector

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Manojeet

    1999-03-01

    This thesis contains work concerning two experiments related to searches for neutrino masses. 1. QRPA calculations of double-β-decays have not been able to reproduce data in the A = 100 system. We propose the A = 116 system-because of its smaller deformation-as a simpler system to test QRPA calculations. We performed two experiments that determine the previously unknown electron capture (EC) decay branch of 116In to be (2.27 ± 0.63) × 10- 2%, from which we deduce logft = 4.39- 0.15+0.10. We then used this EC logft value along with the well known βsp- logft values to predict the 2ν double-β decay rate of 116Cd to the g.s. and the first excited 0+ state of 116Sn. The prediction shows that the contribution to the double-β decay rate from the g.s could exceed the total decay rate indicating a cancellation of contributions from the excited states of 116In. 2. We studied β-delayed proton and γ emission from 40Ti decay. We found t1/over 2 = 53.6 ± 0.6 ms and observed 28 proton groups that we organized into a 40Ti decay with 21 branches. The reduced transition strengths of these decay branches were then used to compute the neutrino detection efficiency of the ICARUS liquid argon time-projection chamber. Our integrated GT strength is about 20% larger than the theoretical prediction. We found 40Ar(/nu,e) cross-sections (for an electron energy threshold W = 5 MeV) of (13.8 ± 0.3) × 10-43cm2, (74.0 ± 1.6) × 10- 43cm2 and (3.2 ± 0.1) × 10- 41cm2 for 8B neutrinos, hep neutrinos and supernova neutrinos characterized by a temperature of 4.5 MeV.

  18. Fundamental Symmetries and Interactions Studied with Radioactive Isotopes in Atom Traps

    SciTech Connect

    Wilschut, H.W.

    2005-11-21

    The structure of certain nuclei and atoms allow one to study fundamental symmetries and interactions. In this review we consider the search for Time-Reversal invariance Violation (TRV). We consider two options: TRV in {beta} decay or the search for the forbidden Electric Dipole Moment (EDM). In both cases atomic trapping can be an appropriate tool. For {beta} decay radioactive isotopes are necessary, but also for EDM searches they appear to be useful.

  19. Results of experiments devoted to searches for 2K capture on {sup 78}Kr and for the double-beta decay of {sup 136}Xe with the aid of proportional counters

    SciTech Connect

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Zhantudueva, Dj. A.; Kazalov, V. V.; Kuz'minov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Efendiev, K. V.; Yakimenko, S. P.

    2013-09-15

    A brief description of two low-background setups deployed at the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences) and intended for searches for two types of double-beta decay of inert-gas isotopes-2K capture on {sup 78}Kr and the double-beta decay of {sup 136}Xe-is given. The two setups in question have similar structures and employ identical large high-pressure copper proportional counters as detectors. Upon a treatment of data from measurements with krypton samples differing in the content of the isotope {sup 78}Kr, the spectrum for an enriched sample revealed an excess of events at a statistical-significance level of about two standard deviations (2{sigma}). If one attributes this excess to 2K(2{nu}) capture on {sup 78}Kr, the respective half-life is T{sub 1/2} = 1.4{sub -0.7}{sup +2.3} Multiplication-Sign 10{sup 22} yr at a 90% C.L. A treatment of data from measurements with xenon samples differing in content of the isotope {sup 136}Xe led to the appearance of an excess of events in the spectrum for an enriched sample at a statistical-significance level of about 2.2{sigma}. If one assumes that this excess is due to the two-neutrino double-beta decay of {sup 136}Xe, then the respective half-life is T{sub 1/2} = 5.8{sub -1.8}{sup +4.7} Multiplication-Sign 10{sup 21} yr.

  20. Analysis of beta-decay rates for Ag 108, Ba 133, Eu 152, Eu 154, Kr 85, Ra 226, and Sr 90, measured at the Physikalisch-Technische Bundesanstalt from 1990 to 1996

    SciTech Connect

    Sturrock, P. A.; Fischbach, E.; Jenkins, J.

    2014-10-10

    We present the results of an analysis of measurements of the beta-decay rates of Ag 108, Ba 133, Eu 152, Eu 154, Kr 85, Ra 226, and Sr 90 acquired at the Physikalisch-Technische Bundesanstalt from 1990 through 1995. Although the decay rates vary over a range of 165 to 1 and the measured detector current varies over a range of 19 to 1, the detrended and normalized count rate measurements exhibit a sinusoidal annual variation with amplitude in the small range 0.068%-0.088% (mean 0.081%, standard deviation 0.0072%, a rejection of the zero-amplitude hypothesis) and phase-of-maximum in the small range 0.062-0.083 (January 23 to January 30). In comparing these results with those of other related experiments that yield different results, it may be significant that this experiment, at a standards laboratory, seems to be unique in using a 4π detector. These results are compatible with a solar influence, and do not appear to be compatible with an experimental or environmental influence. It is possible that Ba 133 measurements are also subject to a non-solar (possibly cosmic) influence.

  1. Beta-decay of 31Cl: an indirect probe of the 30P(p,γ)31S reaction. Present status and future perspectives

    NASA Astrophysics Data System (ADS)

    Saastamoinen, Antti; Kankainen, Anu; Trache, Livius

    2016-08-01

    β-decay of 31Cl can be used as a selective tool for studying astrophysically relevant states in 31S. In this article we review the present status of the decay data. The implications for the 30P(p,γ)31S reaction rate at novae temperatures, and future experimental ideas are discussed.

  2. Characterization of the energy resolution and the tracking capabilities of a hybrid pixel detector with CdTe-sensor layer for a possible use in a neutrinoless double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Filipenko, Mykhaylo; Gleixner, Thomas; Anton, Gisela; Durst, Jürgen; Michel, Thilo

    2013-04-01

    Many different experiments are being developed to explore the existence of the neutrinoless double beta decay (0 νββ) since it would imply fundamental consequences for particle physics. In this work we present results on the evaluation of Timepix detectors with cadmium-telluride sensor material to search for 0 νββ in 116Cd. This work was carried out with the COBRA collaboration and the Medipix collaboration. Due to the relatively small pixel dimension of 110×110×1000 μm3 the energy deposited by particles typically extends over several detector pixels leading to a track in the pixel matrix. We investigated the separation power regarding different event-types like α-particles, atmospheric muons, single electrons and electron-positron pairs produced at a single vertex. We achieved excellent classification power for α-particles and muons. In addition, we achieved good separation power between single electron and electron-positron pair production events. These separation abilities indicate a very good background reduction for the 0 νββ search. Further, in order to distinguish between 2 νββ and 0 νββ, the energy resolution is of particular importance. We carried out simulations which demonstrate that an energy resolution of 0.43 % is achievable at the Q-value for 0 νββ of 116Cd at 2.814 MeV. We measured an energy resolution of 1.6 % at a nominal energy of 1589 keV for electron-positron tracks which is about two times worse that predicted by our simulations. This deviation is probably due to the problem of detector calibration at energies above 122 keV which is discussed in this paper as well.

  3. Background-free beta-decay half-life measurements by in-trap decay and high-resolution MR-ToF mass analysis

    NASA Astrophysics Data System (ADS)

    Wolf, R. N.; Atanasov, D.; Blaum, K.; Kreim, S.; Lunney, D.; Manea, V.; Rosenbusch, M.; Schweikhard, L.; Welker, A.; Wienholtz, F.; Zuber, K.

    2016-06-01

    In-trap decay in ISOLTRAP's radiofrequency quadrupole (RFQ) ion beam cooler and buncher was used to determine the lifetime of short-lived nuclides. After various storage times, the remaining mother nuclides were mass separated from accompanying isobaric contaminations by the multi-reflection time-of-flight mass separator (MR-ToF MS), allowing for a background-free ion counting. A feasibility study with several online measurements shows that the applications of the ISOLTRAP setup can be further extended by exploiting the high resolving power of the MR-ToF MS in combination with in-trap decay and single-ion counting.

  4. The First Tests of a Large-Area Light Detector Equipped with Metallic Magnetic Calorimeters for Scintillating Bolometers for the LUMINEU Neutrinoless Double Beta Decay Search

    NASA Astrophysics Data System (ADS)

    Gray, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Hassel, C.; Hengstler, D.; Kempf, S.; Loidl, M.; Navick, X. F.; Rodrigues, M.

    2016-02-01

    Future rare-event searches using scintillating crystals need very low background levels for high sensitivity; however, unresolved pile-up can limit this. We present the design and fabrication of large-area photon detectors based on metallic magnetic calorimeters (MMCs), optimized for fast rise times to resolve close pile-up. The first prototypes have been characterized using Fe-55 X-rays and ZnMoO4 crystal scintillation light. A fast intrinsic rise time of 25-30 \\upmu s has been measured and has been compared to the 250 \\upmu s scintillation light pulse rise time constant. The difference indicates that the scintillation process limits the light pulse rise time. The fast rise time allows for a reduction of background due to close pile-up events as well as the study of the inherent crystal scintillation process. MMC-based photon detectors are shown to be a promising tool for scintillating crystal based rare event searches.

  5. The First Tests of a Large-Area Light Detector Equipped with Metallic Magnetic Calorimeters for Scintillating Bolometers for the LUMINEU Neutrinoless Double Beta Decay Search

    NASA Astrophysics Data System (ADS)

    Gray, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Hassel, C.; Hengstler, D.; Kempf, S.; Loidl, M.; Navick, X. F.; Rodrigues, M.

    2016-08-01

    Future rare-event searches using scintillating crystals need very low background levels for high sensitivity; however, unresolved pile-up can limit this. We present the design and fabrication of large-area photon detectors based on metallic magnetic calorimeters (MMCs), optimized for fast rise times to resolve close pile-up. The first prototypes have been characterized using Fe-55 X-rays and ZnMoO4 crystal scintillation light. A fast intrinsic rise time of 25-30 \\upmu s has been measured and has been compared to the 250 \\upmu s scintillation light pulse rise time constant. The difference indicates that the scintillation process limits the light pulse rise time. The fast rise time allows for a reduction of background due to close pile-up events as well as the study of the inherent crystal scintillation process. MMC-based photon detectors are shown to be a promising tool for scintillating crystal based rare event searches.

  6. Project of Neutron Beta-Decay A-Asymmetry Measurement With Relative Accuracy of (1–2)×10−3

    PubMed Central

    Serebrov, A.; Rudnev, Yu.; Murashkin, A.; Zherebtsov, O.; Kharitonov, A.; Korolev, V.; Morozov, T.; Fomin, A.; Pusenkov, V.; Schebetov, A.; Varlamov, V.

    2005-01-01

    We are going to use a polarized cold neutron beam and an axial magnetic field in the shape of a bottle formed by a superconducting magnetic system. Such a configuration of magnetic fields allows us to extract the decay electrons inside a well-defined solid angle with high accuracy. An electrostatic cylinder with a potential of 25 kV defines the detected region of neutron decays. The protons, which come from this region will be accelerated and registered by a proton detector. The use of coincidences between electron and proton signals will allow us to considerably suppress the background. The final accuracy of the A-asymmetry will be determined by the uncertainty of the neutron beam polarization measurement which is at the level of (1–2) × 10−3, as shown in previous studies. PMID:27308154

  7. {beta}-decay half-lives of new neutron-rich rare-earth isotopes {sup 159}Pm,{sup 162}Sm, and {sup 166}Gd

    SciTech Connect

    Ichikawa, S.; Asai, M.; Tsukada, K.; Nagame, Y.; Haba, H.; Shibata, M.; Sakama, M.; Kojima, Y.

    2005-06-01

    The new neutron-rich rare-earth isotopes {sup 159}Pm, {sup 162}Sm, and {sup 166}Gd produced in the proton-induced fission of {sup 238}U were identified using the JAERI on-line isotope separator (JAERI-ISOL) coupled to a gas-jet transport system. The half-lives of {sup 159}Pm, {sup 162}Sm, and {sup 166}Gd were determined to be 1.5 {+-} 0.2, 2.4 {+-} 0.5, and 4.8 {+-} 1.0 s respectively. The partial decay scheme of {sup 166}Gd was constructed from {gamma}{gamma}-coincidence data. A more accurate half-life value of 25.6 {+-} 2.2 s was obtained for the previously identified isotope {sup 166}Tb. The half-lives measured in the present study are in good agreement with the theoretical predictions calculated by the second generation of the gross theory with the atomic masses evaluated by Audi and Wapstra.

  8. A search for the double-beta decay of Xenon-136 to an excited state of Barium-136 with exo-200

    NASA Astrophysics Data System (ADS)

    Yee, Shannon Koa

    While greater than 80% of all electricity continues to be generated by heat engines, methods of directly converting heat into electricity will remain appealing. Thermoelectric generators are one technology that is capable of doing this but the low efficiency and high cost has limited their terrestrial deployment. Thermoelectrics are compact, solid state devices, without moving parts that directly convert a temperature difference into a voltage. Developing better thermoelectric materials is challenging and requires that materials be engineered with new transport physics. The interface between organic and inorganic materials is one example where new transport physics manifests. Therefore, it is possible that improvements in thermoelectrics can be made by engineering organic-inorganic hybrid thermoelectric materials. Composite materials exhibit characteristics of their constituents where hybrid materials possess new properties that are distinctly different from their constituents. At the interface between organic and inorganic materials, hybrid properties manifest. One ideal system to understand this interface is in a metal-molecule-metal junction commonly referred to as a molecular junction. This is often a result of the discrete electronic energy levels of the organic hybridizing with the continuum of electronic states in the inorganic. Herein, new transport phenomenon is observed in molecular junctions, which have great promise for thermoelectrics. It is observed that the transport property are positively correlated breaking the historic trends to improving thermoelectric efficiency. Towards the goal of higher efficiency thermoelectrics, the fundamental science of interfaces is first investigated in molecular junctions. Guiding principles from these fundamental studies are then applied to engineer a bulk, polymer-based, thermoelectric materials with high efficiency. These improvements are encouraging and motivated a cost analysis to evaluate their current market

  9. Time-reversal violation in beta decay

    SciTech Connect

    Herczeg, P.

    2003-01-01

    At present there is no unambigous direct evidence for time-reversal (T) violation in the fundamental interactions. But T-violation is intimately connected with CP-violation by the CPT theorem. A stringent bound on possible violation of CPT invariance comes from the properties of K{sup 0} - {bar K}{sup 0} mixing [I]. In the following we shall assume that CPT violating interactions, if present, can be neglected, and use the terms 'T-violation' and 'CP-violation' interchangably.

  10. Unique forbidden beta decays and neutrino mass

    NASA Astrophysics Data System (ADS)

    Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-01

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  11. Beta decay of 187Re and cosmochronology

    NASA Astrophysics Data System (ADS)

    Ashktorab, K.; Jänecke, J. W.; Becchetti, F. D.

    1993-06-01

    Uncertainties which limit the use of the 187-187Os isobaric pair as a cosmochronometer for the age of the galaxy and the universe include those of the partial half-lives of the continuum and bound-state decays of 187Re. While the total half-life of the decay is well established, the partial half-life for the continuum decay is uncertain, and several previous measurements are not compatible with each other. A high-temperature quartz proportional counter has been used in this work to remeasure the continuum decay of 187Re by introducing a metallo-organic rhenium compound into the counting gas. The measured beta end-point energy for the continuum decay of neutral 187Re to singly ionized 187Os of 2.70+/-0.09 keV agrees with earlier results. However, the present half-life measurement of (45+/-3) Gyr agrees within the quoted uncertainties only with the earlier measurement of Payne [Ph.D. thesis, University of Glasgow, 1965 (unpublished)] and Drever (private communication). The new half-life for the continuum decay and the total half-life of (43.5+/-1.3) Gyr, as reported by Linder et al. [Nature (London) 320, 246 (1986)] yield a branching ratio for the bound-state decay into discrete atomic states of (3+/-6)%. This is in agreement with the most recent calculated theoretical branching ratio of approximately 1%.

  12. Unique forbidden beta decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-28

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  13. Toward precise Q{sub EC} values for the superallowed 0{sup +}->0{sup +} beta decays of T=2 nuclides: The masses of {sup 20}Na, {sup 24}Al, {sup 28}P, and {sup 32}Cl

    SciTech Connect

    Wrede, C.; Clark, J. A.; Deibel, C. M.; Faestermann, T.; Parikh, A.; Bishop, S.; Eppinger, K.; Kruecken, R.; Lepyoshkina, O.; Rugel, G.; Hertenberger, R.; Wirth, H.-F.; Chen, A. A.; Garcia, A.; Setoodehnia, K.

    2010-05-15

    High-precision measurements of superallowed 0{sup +}->0{sup +} beta decays of T=2 nuclides such as {sup 20}Mg, {sup 24}Si, {sup 28}S, and {sup 32}Ar can contribute to searches for physics beyond the standard model of particle physics if the Q{sub EC} values are accurate to a few keV or better. As a step toward providing precise Q{sub EC} values for these decays, the ground-state masses of the respective daughter nuclei {sup 20}Na, {sup 24}Al, {sup 28}P, and {sup 32}Cl have been determined by measuring the ({sup 3}He,t) reactions leading to them with the {sup 36}Ar({sup 3}He,t){sup 36}K reaction as a calibration. A quadrupole-dipole-dipole-dipole (Q3D) magnetic spectrograph was used together with thin ion-implanted carbon-foil targets of {sup 20}Ne, {sup 24}Mg, {sup 28}Si, {sup 32}S, and {sup 36}Ar. The masses of {sup 20}Na and {sup 32}Cl are found to be in good agreement with the values from the 2003 Atomic Mass Evaluation (AME03) [G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003)], and the precision has been improved by a factor of 6 in both cases. The masses of {sup 24}Al and {sup 28}P are found to be higher than the values from AME03 by 9.5 keV (3.2sigma) and 11.5 keV (3.6sigma), respectively, and the precision has been improved by a factor of 2.5 in both cases. The new {sup 32}Cl mass is used together with the excitation energy of its lowest T=2 level and the mass of {sup 32}Ar to derive an improved superallowed Q{sub EC} value of 6087.3(22) keV for this case. The effects on quantities related to standard-model tests including the beta-nu correlation coefficient a and the isospin-symmetry-breaking correction delta{sub C} are examined for the A=32 case.

  14. Transitional nuclei in the rare-earth region: Energy levels and structure of sup 130,132 Ce, sup 132,134 Nd, and sup 134 Pm, via. beta. decay of sup 130,132 Pr, sup 132,134 Pm, and sup 134 Sm

    SciTech Connect

    Kortelahti, M.O. ); Kern, B.D. ); Braga, R.A.; Fink, R.W. ); Girit, I.C. Vanderbilt University, Nashville, TN ); Mlekodaj, R.L. )

    1990-10-01

    An investigation of low-lying energy levels of {sup 130,132}Ce, {sup 132,134}Nd, and {sup 134}Pm has been made via {beta} decay, especially of those levels in the {ital K}{sup {pi}}=2{sup +} gamma band in the even-even nuclei. The radioactive parent nuclei were produced by the {sup 92}Mo({sup 46}Ti,{ital xpyn}) and {sup 112}Sn({sup 28}Si,{ital xpyn}) reactions with bombarding energies of 170 to 240 MeV. An isotope separator enabled {ital A}=134 mass identification. Level schemes of these five nuclei were constructed from {gamma}-{gamma}-{ital t} coincidence data. The {beta}-decay half-lives of the parent nuclei, {sup 130}Pr, {sup 132}Pr, {sup 132}Pm, {sup 134}Pm, and {sup 134}Sm, were determined to be 40{plus minus}4, 96{plus minus}18, 8.8{plus minus}0.8, 23{plus minus}2, and 9.3{plus minus}0.8 s, respectively. The suitability of the proton-neutron interaction boson model in describing {sup 130}Ce, {sup 132}Ce, {sup 132}Nd, and {sup 134}Nd is supported by the comparison of experimental relative {ital E}2 transition probabilities with proton-neutron interaction boson model predictions.

  15. Studies of Charged Particle Emission in the Decay of 45Fe

    SciTech Connect

    Miernik, K.; Dominik, W.; Janas, Z.; Pfutzner, M.; Grigorenko, L.; Bingham, C. R.; Czyrkowski, H.; Cwiok, Mikolaj; Darby, Iain; Dabrowski, Ryszard; Ginter, T. N.; Grzywacz, Robert; Karny, M.; Korgul, A.; Kusmierz, W.; Liddick, Sean; Rajabali, Mustafa; Rykaczewski, Krzysztof Piotr; Stolz, A.

    2008-01-01

    The decay of extremely neutron-deficient isotope 45Fe has been studied by using a new type of gaseous detector in which a technique of optical imaging is used to record tracks of charged particles. The two-proton radioactivity and the beta-decay channels accompanied by proton(s) emission were clearly identified. For the first time, the angular and energy correlations between two protons emitted from the 45Fe ground-state were measured. The obtained distributions were confronted with predictions of a three-body model. Studies of beta-decay channels of 45Fe provided first unambiguous evidence for the beta-delayed three proton emission.

  16. Systematic Study of Trace Radioactive Impurities in Candidate Construction Materials for EXO-200

    SciTech Connect

    Leonard, D.S.; Grinberg, P.; Weber, P.; Baussan, E.; Djurcic, Z.; Keefer, G.; Piepke, A.; Pocar, A.; Vuilleumier, J.-L.; Vuilleumier, J.-M.; Akimov, D.; Bellerive, A.; Bowcock, M.; Breidenbach, M.; Burenkov, A.; Conley, R.; Craddock, W.; Danilov, M.; DeVoe, R.; Dixit, M.; Dolgolenko, A.; /Alabama U. /NRC-INMS /Neuchatel U. /Stanford U., Phys. Dept. /SLAC /Colorado State U. /Laurentian U. /Maryland U. /UC, Irvine

    2007-10-24

    The Enriched Xenon Observatory (EXO) will search for double beta decays of 136Xe. We report the results of a systematic study of trace concentrations of radioactive impurities in a wide range of raw materials and finished parts considered for use in the construction of EXO-200, the first stage of the EXO experimental program. Analysis techniques employed, and described here, include direct gamma counting, alpha counting, neutron activation analysis, and high-sensitivity mass spectrometry.

  17. Study of 14O as a test of the unitarity of the CKM matrix and the CVC hypothesis

    SciTech Connect

    Burke, Jason Timothy

    2004-06-01

    The study of superallowed beta decay in nuclei, in conjunction with other experiments, provide a test of the unitarity of the quark mixing matrix or CKM matrix. Nonunitarity of the CKM matrix could imply the existence of a fourth generation of quarks, right handed currents in the weak interaction, and/or new exotic fermions. Advances in radioactive beam techniques allow the creation of nearly pure samples of nuclei for beta decay studies. The subject of this thesis is the development of a radioactive beam of 14O and the study of the 14O halflife and branching ratio. The radioactive beam is produced by ionizing 12C14O radioactive gas and then accelerating with an ECR ion source. The 14O nucleus decays via superallowed beta decay with a branching ratio > 99 percent. The low Z of 14O is important for calculating reliable corrections to the beta decay that generally increase in with Z. The > 99 percent branching ratio can be established with modest precision on the complementary branching ratio.When this work began the experimentally determined CKM matrix was nonunitary by 2.5 standard deviations. Recent studies of Kaon, Hyperon, and B meson decays have been used to determine Vus and Vub matrix elements. In this work the halflife and branching ratio of 14O are measured and used to establish Vud. The unitarity of the CKM matrix is then assessed. The halflife of 14O was determined to be 70.683 +- 0.015 s and the GamowTeller branching ratio was found to be 0.643 +- 0.020 percent. Using these results the value of Vud is 0.9738 +- 0.0005. Incorporating the new values for Vus of 0.2272 +- 0.0030 and Vub of 0.0035 +- 0.0015 the squared sum of the first row of the CKM matrix is 0.9999 +- 0.0017 which is consistent with unitarity.

  18. Status of the COBRA double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Janutta, B.; Cobra Collaboration

    2011-08-01

    COBRA is an R&D project, using CdZnTe (CZT) semiconductor detectors to search for the 0νββ decay. CZT is a room temperature semiconductor detector with good energy resolution. The experiment is located at the Laboratori Nazionali del Gran Sasso (LNGS). In addition to pure energy measurements, pixelated detectors allow for tracking, further reducing the background significantly. The current status of the experiment is presented, including the latest analysis results.

  19. Beta Decay Half-Life of 84Mo

    NASA Astrophysics Data System (ADS)

    Stoker, J. B.; Mantica, P. F.; Bazin, D.; Bickley, A.; Becerril, A.; Crawford, H.; Cruse, K.; Estrade, A.; Mosby, M.; Guess, C. J.; Hitt, G. W.; Lorusso, G.; Matos, M.; Meharchand, R.; Minamisono, K.; Montes, F.; Pereira, J.; Perdikakis, G.; Pinter, J. S.; Schatz, H.; Vredevoogd, J.; Zegers, R. G. T.

    2008-10-01

    The β-decay half-life ^84Mo governs leakage out of the Zr-Nb cycle, a high temperature rp-process endpoint in x-ray binaries [1]. Treatment of the background and the poor statistics accumulated during the previous half-life measurement leave questions about statistical and systematic errors. We have remeasured the half-life of ^84Mo using a concerted setup of the NSCL β-Counting System [3] and 16 detectors from the Segmented Germanium Array [4]. We will report the half-life for ^84Mo, deduced using 40 times the previous sample size. The application of the NSCL RF Fragment Separator to remove unwanted isotopes, and hence reduce background for the half-life measurement, will also be discussed. [1] H. Schatz et al., Phys. Rep. 294, 167 1998 [2] P. Kienle et al., Prog. Part. Nuc. Phys. 46, 73 2001 [3] J. Prisciandaro et al., NIM A 505, 140 2003 [4] W. Mueller et al., NIM A 466, 492 2001 [5] D. Gorelov et al. PAC 2005, Knoxville, TN, May 16-20

  20. A search for neutrinoless double beta decay of tellurium-130

    NASA Astrophysics Data System (ADS)

    Bryant, Adam Douglas

    This dissertation describes an experimental search for neutrinoless double beta (0nubetabeta) decay of 130Te. An observation of 0nubetabeta decay would establish that neutrinos are Majorana fermions and would constrain the neutrino mass scale. The data analyzed were collected by two bolometric experiments: CUORICINO and an R&D experiment for CUORE known as the Three Towers Test. Both experiments utilized arrays of TeO 2 crystals operated as bolometers at ˜10 mK in a dilution refrigerator. The bolometers measured the energy deposited by particle interactions in the crystals by recording the induced change in crystal temperature. Between the two experiments, there were 81 TeO2 bolometers used in the analysis, each of which was an independent detector of nuclear decays as well as a source of 130Te. The experiments were conducted underground at a depth of about 3300 meters water equivalent in Hall A of the Laboratori Nazionali del Gran Sasso in Assergi, Italy, in order to shield the detectors from cosmic rays. The data analyzed represent an exposure of 19.9 kg · y of 130Te (18.6 kg · y from CUORICINO and 1.3 kg · y from the Three Towers Test). In addition to the combined analysis of the two experiments, an analysis of CUORICINO data alone is presented in order to compare with an independent analysis being carried out by collaborators at the University of Milano-Bicocca. No signal due to 0nubetabeta decay is observed, and therefore a limit on the partial half-life for the decay is set. From a simultaneous fit to the 81 independent detectors, the rate of 0nubetabeta decay of 130Te is measured to be Gamma0nubetabeta( 130Te) = (-0.6+/-1.4 (stat.) +/- 0.4 (syst.)) x 10-25 y-1, which corresponds to a lower limit on the partial half-life for 0nubetabeta decay of 130Te of T0nbb1/2 (130Te) > 3.0x1024 y (90% C.L.). Converting the half-life limit to an upper limit on the effective Majorana neutrino mass, mbetabeta, using a set of recent nuclear matrix element calculations results in mbetabeta < 0.25--0.68 eV (90% C.L.), where the range reflects the spread of calculated nuclear matrix element values. These results disagree by at least 1.2sigma, depending on the nuclear matrix element calculation, with a claim of observation of 0nubetabeta decay of 76Ge, assuming that the dominant mechanism driving 0nubetabeta decay is the exchange of light Majorana neutrinos.

  1. Double Beta Decay of Tellurium-130: Current Status

    NASA Technical Reports Server (NTRS)

    Meshik, A. P.; Hohenberg, C. M.; Pravdivtseva, O. V.; Bernatowicz, T. J.

    2002-01-01

    Geochemically measured values of Te-130 half-life form two distinct clusters. Two different experiments were performed to check two proposed explanations: Xe loss and Xe inheritance. Neither is observed. Additional information is contained in the original extended abstract.

  2. Imperfect World of beta beta-decay Nuclear Data Sets

    SciTech Connect

    Pritychenko, B.

    2015-01-03

    The precision of double-beta ββ-decay experimental half lives and their uncertainties is reanalyzed. The method of Benford's distributions has been applied to nuclear reaction, structure and decay data sets. First-digit distribution trend for ββ-decay T2v1/2 is consistent with large nuclear reaction and structure data sets and provides validation of experimental half-lives. A complementary analysis of the decay uncertainties indicates deficiencies due to small size of statistical samples, and incomplete collection of experimental information. Further experimental and theoretical efforts would lead toward more precise values of-decay half-lives and nuclear matrix elements.

  3. Transfer standard for beta decay radionuclides in radiotherapy.

    PubMed

    Thieme, Klaus; Beinlich, Uwe; Fritz, Eberhard

    2004-01-01

    The measurement of the activity of therapeutic radiopharmaceuticals prior to the administration to patients is normally achieved via the use of radionuclide calibrators. An accurate measurement of the activity of pure beta-emitters is complex. Calibration problems can be solved by combining a primary calibration with a 90Y reference solution and a 90Sr/90Y transfer standard with a solid source, simulating geometric effects caused by high energetic beta radiation. The recent development of a 90Sr/90Y transfer standard for this purpose is reported. PMID:14987695

  4. Direct and indirect searches for anomalous beta decay

    NASA Astrophysics Data System (ADS)

    Nistor, Jonathan M.

    We present a treatment of time-varying nuclear transition rates intended to guide future experimental searches, focusing primarily on the concept of "self-induce decay.'' This investigation stems from a series of recent reports that suggest that the decay rates of several isotopes may have been influenced by solar activity (perhaps by solar neutrinos). A mechanism in which (anti)neutrinos can influence the decay process suggests that a sample of decaying nuclei emitting neutrinos could affect its own rate of decay. Past experiments have searched for this "self-induced decay" (SID) effect by measuring deviations from the expected decay rate for highly active samples of varying geometries. Here, we further develop a SID formalism which takes into account the activation process. In the course of the treatment, the observation is made that the SID behavior closely resembles the behavior of rate-related losses due to dead-time, and hence that standard dead-time corrections can result in the removal of possible SID-related behavior. Additionally, we discuss a long-running dark matter (DM) experiment which observes an annual signal predicted by standard DM models. Here, we consider the possibility that the annual signal seen by the DAMA collaboration, and interpreted by them as evidence for dark matter, may in fact be due to the radioactive contaminant 40K, which is known to be present in their detector. We also consider the possibility that part of the DAMA signal may arise from relic big-bang neutrinos.

  5. New limits on double beta decay of 106Cd

    NASA Astrophysics Data System (ADS)

    Rukhadze, N. I.; Bakalyarov, A. M.; Briançon, Ch.; Brudanin, V. B.; Čermák, P.; Egorov, V. G.; Klimenko, A. A.; Kovalík, A.; Lebedev, V. I.; Mamedov, F.; Shitov, Yu. A.; Šimkovic, F.; Štekl, I.; Timkin, V. V.; Zhukov, S. V.

    2011-02-01

    Investigation of double electron capture in 106Cd was performed at the Modane underground laboratory (4800 m.w.e.) using the multi-detector spectrometer TGV-2. In Phase I of the experiment, ˜10 g of 106Cd with an enrichment of 75% was measured during 8687 hours. In Phase II, the TGV-2 background was significantly suppressed in comparison with Phase I and the 106Cd mass was increased to ˜13.6 g. New half-life limits (at 90% CL) were obtained for 2νEC/EC decay of 106Cd to the ground state of Pd106 - T1/2>3.0×10 y (Phase I) and T1/2>3.6×10 y (Phase II, 9000 hours), and for 0νEC/EC decay of 106Cd to the 2741 keV excited state of Pd106 - T1/2>1.1×10 y (Phase II).

  6. On Double-Beta Decay Half-Life Time Systematics

    SciTech Connect

    Pritychenko, B.

    2010-04-14

    Recommended 2{beta}(2{nu}) half-life values and their systematics were analyzed in the framework of a simple empirical approach. T{sub 1/2}{sup 2{nu}} {approx} 1/E{sup 8} trend has been observed for {sup 128,130}Te recommended values. This trend was used to predict T{sub 1/2}{sup 2{nu}} for all isotopes of interest. Current results were compared with other theoretical and experimental works.

  7. The Majorana Search for Neutrinoless Double-Beta Decay

    NASA Astrophysics Data System (ADS)

    Kazkaz, K.; Majorana Collaboration

    2005-06-01

    The Majorana experiment[ nucl-ex/0311013] is a proposed 76Ge-based search for neutrinoless double-beta (0 νββ) decay and dark matter (DM). It will use segmented, enriched germanium detectors in a close-pack configuration. With 500 kg of germanium, Majorana would be expected to reach a sensitivity to the 0 νββ decay half-life of 10 27 years, corresponding to a neutrino mass near the atmospheric mass scale. Current development efforts are presented, along with performance expectations and background reduction methods. Additionally, the status of the related detectors SEGA (Segmented Enriched Germanium Assembly) and MEGA[Kazkaz, K., Aalseth, C.E., Hossbach, T.W., Gehman, V.M., Kephart, J.D., Miley, H.S., IEEE Trans. Nuc. Sci. 51 (2004) 1029] (Multi-Element Gamma Assay) are presented. Current simulation efforts will be presented in a parallel poster by Reyco Henning.

  8. Purification of lanthanides for double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Polischuk, O. G.; Barabash, A. S.; Belli, P.; Bernabei, R.; Boiko, R. S.; Cappella, F.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Nisi, S.; Poda, D. V.; Tretyak, V. I.

    2013-08-01

    There are several potentially double beta active isotopes among the lanthanide elements. However, even high purity grade lanthanide compounds contain 238U, 226Ra and 232,228Th typically on the level of ˜ (0.1 - 1) Bq/kg. The liquid-liquid extraction technique was used to remove traces of U, Ra and Th from CeO2, Nd2O3 and Gd2O3. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe γ spectrometry at the underground Gran Sasso National Laboratories of the INFN (Italy). After the purification the radioactive contamination of gadolinium oxide by Ra and Th was decreased at least one order of magnitude. The efficiency of the approach to purify cerium oxide from Ra was on same level, while the radioactive contamination of neodymium sample before and after the purification is below the sensitivity of analytical methods. The purification method is much less efficient for chemically very similar radioactive elements like lanthanum, lutetium and actinium. R&D of the methods to remove the pollutions with improved efficiency is in progress.

  9. Sensitivity of NEXT-100 to neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Martín-Albo, J.; Muñoz Vidal, J.; Ferrario, P.; Nebot-Guinot, M.; Gómez-Cadenas, J. J.; Álvarez, V.; Azevedo, C. D. R.; Borges, F. I. G.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Esteve, R.; Fernandes, L. M. P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Henriques, C. A. O.; Hernando Morata, J. A.; Herrero, V.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Lorca, D.; Losada, M.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Novella, P.; Nygren, D.; Palmeiro, B.; Para, A.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; Yepes-Ramírez, H.

    2016-05-01

    NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta (0 νββ) decay of 136Xe. The detector possesses two features of great value for 0 νββ searches: energy resolution better than 1% FWHM at the Q value of 136Xe and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most 4 × 10-4 counts keV-1 kg-1 yr-1. Accordingly, the detector will reach a sensitivity to the 0 νββ-decay half-life of 2.8 × 1025 years (90% CL) for an exposure of 100 kg·year, or 6.0 × 1025 years after a run of 3 effective years. [Figure not available: see fulltext.

  10. Exchange effects in. beta. decays of many-electron atoms

    SciTech Connect

    Harston, M.R. University Chemical Laboratory, Lensfield Road, Cambridge CB21EW ); Pyper, N.C. )

    1992-05-01

    The effect on the {beta} spectrum of exchange between bound and continuum electrons is discussed for decay of a many-electron atom. Results of calculations of the exchange distortion of the {beta} spectrum are presented using both a screened hydrogenic and a Hartree-Fock approximation for the electron wave functions. The results of the two approaches agree well and show that the inclusion of exchange leads to an enhancement of the {beta} spectrum, particularly at low electron energy. This corrects an error in a previous calculation that found that exchange decreased the {beta} intensity. For the low-energy {beta}{sup {minus}} emitters {sup 106}Ru and {sup 241}Pu, the present calculation indicates that the enhancement due to exchange is of the order of several percent over much of the spectrum, becoming larger at very low electron energy. Exchange with 1{ital s} electrons dominates in the high-energy part of the spectrum, but exchange with {ital ns} ({ital n}{ge}2) electrons becomes significant in the low-energy region. The inclusion of exchange leads to an increase in the phase-space integral by 6.4% for {sup 106}Ru and 7.5% for {sup 241}Pu. Results are presented for exchange effects in other {beta} spectra, including those of {sup 14}C and {sup 35}S, in which experimentally measured distortions have been interpreted as evidence for a heavy antineutrino of mass 17 keV. The distortions due to exchange are found to be significantly smaller than the measured distortions.

  11. Searches for exotic interactions in nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Naviliat-Cuncic, O.

    2016-07-01

    This contribution presents current efforts in the search for exotic interactions in nuclear β decay using a calorimetric technique for the measurement of the β energy spectrum shape. We describe the criteria for the choice of sensitive candidates in Gamow-Teller transitions and present the status of measurements performed in 6He and 20F decay.

  12. The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

    DOE PAGESBeta

    Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Caldwell, A. S.; Chan, Y. -D.; et al

    2014-01-01

    Tmore » he M ajorana D emonstrator will search for the neutrinoless double-beta ( β β 0 ν ) decay of the isotope Ge with a mixed array of enriched and natural germanium detectors.he observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino.he D emonstrator is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota.he array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the D emonstrator and the details of its design. « less

  13. Purification of lanthanides for double beta decay experiments

    SciTech Connect

    Polischuk, O. G.; Barabash, A. S.; Belli, P.; Bernabei, R.; Boiko, R. S.; Danevich, F. A.; Mokina, V. M.; Poda, D. V.; Tretyak, V. I.; Cappella, F.; Incicchitti, A.; Cerulli, R.; Laubenstein, M.; Nisi, S.

    2013-08-08

    There are several potentially double beta active isotopes among the lanthanide elements. However, even high purity grade lanthanide compounds contain {sup 238}U, {sup 226}Ra and {sup 232,228}Th typically on the level of ∼ (0.1 - 1) Bq/kg. The liquid-liquid extraction technique was used to remove traces of U, Ra and Th from CeO{sub 2}, Nd{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe γ spectrometry at the underground Gran Sasso National Laboratories of the INFN (Italy). After the purification the radioactive contamination of gadolinium oxide by Ra and Th was decreased at least one order of magnitude. The efficiency of the approach to purify cerium oxide from Ra was on same level, while the radioactive contamination of neodymium sample before and after the purification is below the sensitivity of analytical methods. The purification method is much less efficient for chemically very similar radioactive elements like lanthanum, lutetium and actinium. R and D of the methods to remove the pollutions with improved efficiency is in progress.

  14. Data Evaluation for 56Co epsilon + beta+ Decay

    SciTech Connect

    Baglin, Coral M.; MacMahon, T. Desmond

    2005-02-28

    Recommended values for nuclear and atomic data pertaining to the {var_epsilon} + {beta}{sup +} decay of {sup 56}Co are provided here, followed by comments on evaluation procedures and a summary of all available experimental data. {sup 56}Co is a radionuclide which is potentially very useful for Ge detector efficiency calibration because it is readily produced via the {sup 56}Fe(p,n) reaction, its half-life of 77.24 days is conveniently long, and it provides a number of relatively strong {gamma} rays with energies up to {approx}3500 keV. The transition intensities recommended here for the strongest lines will be included in the forthcoming International Atomic Energy Agency Coordinated Research Programme document ''Update of X- and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications'', and the analysis for all transitions along with relevant atomic data have been provided to the Decay Data Evaluation Project.

  15. Recent developments in the theory of double beta decay

    SciTech Connect

    Iachello, F.; Kotila, J.; Barea, J.

    2013-12-30

    We report results of a novel calculation of phase space factors for 2νβ{sup +}β{sup +}, 2νβ{sup +}EC, 2νECEC, 0νβ{sup +}β{sup +}, and 0νβ{sup +}EC using exact Dirac wave functions, and finite nuclear size and electron screening corrections. We present results of expected half-lives for 0νβ{sup +}β{sup +} and 0νβ{sup +}EC decays obtained by combining the calculation of phase space factors with IBM-2 nuclear matrix elements.

  16. Bonner Prize Talk -- First Laboratory Observation of Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Moe, Michael

    2013-04-01

    Although we are awash in neutrinos, we remain ignorant of some of their fundamental properties. We don't know their masses. We don't know whether ``anti-neutrinos'' are really distinct particles. Double beta (ββ) decay offers a handle on these questions if we can observe the energy spectrum of the two emitted electrons, and determine whether or not they share their energy with two neutrinos. Seeing neutrinoless (0ν) decay would solve some enduring puzzles. The power of the process to elucidate the neutrino was recognized in the 1930's, but ββ decay would be exceedingly rare and difficult to detect. Unsuccessful laboratory searches had been going on for 25 years when the UC Irvine group began its first experiment with a cloud chamber in 1972. After some background for the non-expert, and a snapshot of the theoretical and experimental milieu at the time, the talk will begin with the reasons for choosing a cloud chamber, and the taming of its balky and idiosyncratic behavior. The talk will end with the first definitive observation of two-neutrino (2ν)ββ decay of ^82Se in the vastly superior time projection chamber (TPC) in 1987. Discouragement through the tortuous 15-year interval was relieved by occasional victories. Some I will illustrate with revealing cloud-chamber photographs. We learned many things from this primitive device, and after seven years we isolated an apparent ββ decay signal. But the efficiency of the trigger was small, and difficult to pin down. Estimating 2.2%, we were way low. The resulting ``short'' ^82Se half-life of 1 x 10^19 years was suspect. New technology came to the rescue with the invention of the TPC. Experience with the cloud chamber guided our design of a TPC specifically for ββ decay. The TPC was built from scratch. Its long, steep learning curve was also punctuated with little triumphs. A memorable moment was the first turn-on of a portion of the chamber. So long ago, this all seems rather quaint, but through ample use of photographs and anecdotes it makes and interesting story. As a digital device, the TPC made data acquisition and analysis orders of magnitude simpler and faster. After seven years of massage, the TPC yielded good evidence for 2ν decay of ^82Se with a half-life near 10^20 years. While the 0ν mode was not in evidence, finally seeing ββ decay in the laboratory created optimism about an eventual 0ν discovery.

  17. Characterization of segmented Silicon detectors for neutron beta decay experiments

    NASA Astrophysics Data System (ADS)

    Salas, Americo; McGaughey, Patrick

    2012-03-01

    The ``Nab'', and ``UCNB'' collaborations will measure the correlation parameters ``a'', ``b'', and ``B'' that are found in the triple differential rate equation from neutron β-decay ( n ->p + e + νe). These parameters that offer an atractive platform for searches of signals of new physics beyond standard model will be measured using unpolarized cold neutrons (Nab) at SNS, ORNL,and polarized ultracold neutrons (UCNB) at LANL. Following a neutron β-decay the electron and proton, will be accelerated in a 4π-field spectrometer, and detected by a novel detector design consisting of two opposite large area and thick silicon detectors segmented in 127 pixels per detector, and operated at ˜ 100 Kelvin. We have successfully completed the first phase of detector characterization, operating 0.5, 1.0, and 1.5 mm thick Silicon detectors of 11 cm in diameter for neutron β-decay experiments at Los Alamos National Laboratory, and detected ˜ 300 Hz protons from 15 to 35 keV at NCSU with a FWHM resolution of ˜ 3.2 keV with a potential of another factor of two improvement. Custom amplifiers based on FETs mounted directly on the detector reduced the noise and made possible the proton detection.

  18. Limits on sterile neutrino contributions to neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Barea, J.; Kotila, J.; Iachello, F.

    2015-11-01

    Nuclear matrix elements (NME) for exchange of arbitrary mass neutrinos are calculated in the interacting boson model (IBM-2). By combining the NME with the phase space factors (PSF), expected half-lives for neutrinos of mass mN and coupling Ue N are estimated. Limits on sterile neutrinos with masses in the eV, keV, MeV-GeV, and TeV range are given.

  19. The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

    SciTech Connect

    Abgrall, N.; Aguayo, Estanislao; Avignone, III, F. T.; Barabash, A.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O'Shaughnessy, Mark D.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Steele, David; Strain, J.; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Williams, T.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-01-01

    The Majorana Demonstrator will search for the neutrinoless double-beta (ββ (0ν)) decay of the isotope 76Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. TheDemonstrator is being assembled at the 4850-foot level of the SanfordUnderground Research Facility in Lead, SouthDakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the Demonstrator and the details of its design.

  20. The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

    SciTech Connect

    Abgrall, N.; Aguayo, Estanislao; Avignone, Frank T.; Barabash, Alexander S.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O'Shaughnessy, C.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Steele, David; Strain, J.; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Williams, T.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-06-01

    The MAJORANA DEMONSTRATOR will search for the neutrinoless double-beta (ββ(0ν)) decay of the isotope 76Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The DEMONSTRATOR is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the DEMONSTRATOR and the details of its design.

  1. The Path to Large-Mass Double Beta Decay Experiments

    SciTech Connect

    Elliott, Steven R.

    2012-08-08

    The technology is ready for atmospheric scale sensitivity and we can at least discuss it for the solar scale. Even null results will be interesting. Supporting measurements are important and have an impact. Need several mesurements with a total uncertainty (experiment and theory) of {approx} 50% or less, and eventually even better. If we see {beta}{beta} the qualitative physics results are profound, but next we'll want to quantify the underlying physics.

  2. Beta Decay Spectroscopy of Neutron-Rich Nuclei at RIBF

    NASA Astrophysics Data System (ADS)

    Lorusso, G.; Nishimura, S.; Baba, H.; Doornenbal, P.; Isobe, T.; Söderström, P.-A.; Browne, F.; Daido, R.; Yifan, F.; Nishibata, H.; Yagi, A.; Gey, G.; Li, Z.; Wu, J.; Lubos, D.; Moschner, K.; Patel, Z.; Rice, S.; Sinclair, L.; Sumikama, T.; Taprogge, J.; Vajta, Zs.; Watanabe, H.; Xu, Z. Y.; Yoshinaga, K.

    2015-11-01

    The development of a high intensity 238U beam at the Radioactive Isotope Beam Factory (RIBF) has opened a new opportunity to explore exotic regions of the nuclear chart that were not accessible before. Along with beam development, the installation of the high efficiency γ-detector EURICA has made β-decay spectroscopy measurements of these regions possible, and a large international effort named the EURICA project has been launched to take advantage of this new opportunity.

  3. Alpha-induced reaction studies using low-energy RI beams at CRIB

    SciTech Connect

    Yamaguchi, H.; Kahl, D.; Hu, J.; Kubono, S.; Hayakawa, S.; Hashimoto, T.

    2012-11-12

    CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo. Studies on proton and alpha resonance scatterings, ({alpha}, p) reactions, and other types of measurements ({beta}-decay lifetimes etc.) have been performed using RI beams at CRIB, motivated by interests on astrophysical reactions and exotic nuclear structure. Among the studies at CRIB, the measurement of {sup 7}Li+{alpha}/{sup 7}Be+{alpha} resonant scatterings are presented.

  4. Feasibility study for production of I-131 radioisotope using MNSR research reactor.

    PubMed

    Elom Achoribo, A S; Akaho, Edward H K; Nyarko, Benjamin J B; Osae Shiloh, K D; Odame Duodu, Godfred; Gibrilla, Abass

    2012-01-01

    A feasibility study for (131)I production using a Low Power Research Reactor was conducted to predict the yield of (131)I by cyclic activation technique. A maximum activity of 5.1GBq was achieved through simulation using FORTRAN 90, for an irradiation of 6h. But experimentally only 4h irradiation could be done, which resulted in an activity of 4.0×10(5)Bq. The discrepancy in the activities was due to the fact that beta decays released during the process could not be considered. PMID:21900016

  5. Electrical Signal Path Study and Component Assay for the MAJORANA N-Type Segmented Contact Detector

    SciTech Connect

    Amman, Mark; Bergevin, Marc; Chan, Yuen-Dat; Detwiler, Jason A.; Fujikawa, Brian .; Lesko, Kevin T.; Luke, Paul N.; Prior, Gersende; Poon, Alan W.; Smith, Alan R.; Vetter, Kai; Yaver, Harold; Zimmermann, Sergio

    2009-02-24

    The purpose of the present electrical signal path study is to explore the various issues related to the deployment of highly-segmented low-background Ge detectors for the MAJORANA double-beta decay experiment. A significant challenge is to simultaneously satisfy competing requirements for the mechanical design, electrical readout performance, and radiopurity specifications from the MAJORANA project. Common to all rare search experiments, there is a very stringent limit on the acceptable radioactivity level of all the electronics components involved. Some of the findings are summarized in this report.

  6. Nuclear Decay Data: On-going Studies to Address and Improve Radionuclide Decay Characteristics

    NASA Astrophysics Data System (ADS)

    Nichols, Alan L.

    2005-05-01

    Representative decay data studies are described and reviewed, ranging from various measurement programmes to the maintenance of evaluated decay-data libraries. Gross beta-decay measurements are essential to address the decay-data requirements for short-lived fission products, well-defined half-lives are required in assessments of the storage of long-lived radionuclides in waste depositories, and improved decay data continue to be demanded in safeguards, to improve detector-calibration standards, and for medical and analytical applications. Such needs require the measurement of good quality decay data, along with multinational evaluations of decay schemes by means of agreed procedures.

  7. Neutrino properties deduced from the study of lepton number violating processes at low and high energies

    SciTech Connect

    Stoica, Sabin

    2012-11-20

    There is nowadays a significant progress in understanding the neutrino properties. The results of the neutrino oscillation experiments have convincingly showed that neutrinos have mass and oscillate, in contradiction with the Standard Model (SM) assumptions, and these are the first evidences of beyond SM physics. However, fundamental properties of the neutrinos like their absolute mass, their character (are they Dirac or Majorana particles?), their mass hierarchy, the number of neutrino flavors, etc., still remain unknown. In this context there is an increased interest in the study of the lepton number violating (LNV) processes, since they could complete our understanding on the neutrino properties. Since recently, the neutrinoless double beta decay was considered the only process able to distinguish between Dirac or Majorana neutrinos and to give a hint on the absolute mass of the electron neutrino. At present, the increased luminosity of the LHC experiments makes feasible the search of LNV processes at high energy as well. In this lecture I will make a brief review on our present knowledge of the neutrino properties, on the present status of the double-beta decay studies and on the first attempts to search LNV processes at LHC.

  8. Decay heat studies for nuclear energy

    NASA Astrophysics Data System (ADS)

    Algora, A.; Jordan, D.; Taín, J. L.; Rubio, B.; Agramunt, J.; Caballero, L.; Nácher, E.; Perez-Cerdan, A. B.; Molina, F.; Estevez, E.; Valencia, E.; Krasznahorkay, A.; Hunyadi, M. D.; Gulyás, J.; Vitéz, A.; Csatlós, M.; Csige, L.; Eronen, T.; Rissanen, J.; Saastamoinen, A.; Moore, I. D.; Penttilä, H.; Kolhinen, V. S.; Burkard, K.; Hüller, W.; Batist, L.; Gelletly, W.; Nichols, A. L.; Yoshida, T.; Sonzogni, A. A.; Peräjärvi, K.

    2014-01-01

    The energy associated with the decay of fission products plays an important role in the estimation of the amount of heat released by nuclear fuel in reactors. In this article we present results of the study of the beta decay of some refractory isotopes that were considered important contributors to the decay heat in reactors. The measurements were performed at the IGISOL facility of the University of Jyväskylä, Finland. In these studies we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat summation calculations are discussed.

  9. ISOLTRAP Mass Measurements for Weak-Interaction Studies

    SciTech Connect

    Kellerbauer, A.; Delahaye, P.; Herlert, A.; Audi, G.; Guenaut, C.; Lunney, D.; Beck, D.; Herfurth, F.; Kluge, H.-J.; Mukherjee, M.; Rodriguez, D.; Weber, C.; Yazidjian, C.; Blaum, K.; Bollen, G.; Schwarz, S.; George, S.; Schweikhard, L.

    2006-04-26

    The conserved-vector-current (CVC) hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix are two fundamental postulates of the Standard Model. While existing data on CVC supports vector current conservation, the unitarity test of the CKM matrix currently fails by more than two standard deviations. High-precision mass measurements performed with the ISOLTRAP experiment at ISOLDE/CERN provide crucial input for these fundamental studies by greatly improving our knowledge of the decay energy of super-allowed {beta} decays. Recent results of mass measurements on the {beta} emitters 18Ne, 22Mg, 34Ar, and 74Rb as pertaining to weak-interaction studies are presented.

  10. Double beta decay daughter ion detection in a solid xenon matrix for EXO

    NASA Astrophysics Data System (ADS)

    Mong, Brian; Cook, Shon; Fairbank, William

    2009-10-01

    0 νββ experiments are the possibly the most sensitive means available to measure the absolute mass of the neutrino as long as backgrounds can be sufficiently suppressed. The Enriched Xenon Observatory (EXO) experiment may be able to eliminate all backgrounds by detecting the daughter of the 0 νββ ( ^136Xe ->^136Ba +2e^- ) through optical fluorescence. We propose to grab the ion in the detector by freezing it in xenon ice on a cold probe, possibly an optical fiber, and then detecting it in the ice. We present progress in the detection of barium ions generated by an ion beam, and detected in a solid xenon matrix using CW laser excitation and efficient fluorescence detection.

  11. Branching ratio for the superallowed beta-decay of 10C

    NASA Astrophysics Data System (ADS)

    Eronen, Tommi; Bencomo, M.; Chen, L.; Hardy, J. C.; Horvat, V.; Iacob, V.; Nica, N.; Park, H. I.; Roeder, B.; Saastamoinen, A.

    2016-03-01

    Superallowed β decays play a key role in testing the Standard Model of Particle Physics. These decays occur between nuclear analog states having spin-parity of 0+ and isospin T = 1 . Currently, and in the foreseeable future, they offer the most accurate value for the Vud matrix element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. Each superallowed transition is characterized with an Ft value combining both experimental and theoretical quantities. We have just made a preliminary new measurement of the 10C branching ratio, which currently is the least precisely known quantity for any of the ``traditional nine'' superallowed transitions. Furthermore, 10C is the only case that appears to have its corrected Ft value outside the world average value, which could be explained with the existence of a scalar current. We performed the branching-ratio measurement with a β- γ coincidence setup using a scintillator for β and an HPGe with +/-0.15% calibrated relative efficiency for γ detection. Since the branching ratio is obtained from the ratio of intensities of 718 keV and 1022 keV γ lines, most systematic uncertainties cancel out. I will show an overview of the experiment and preliminary results.

  12. Using MASHA+TIMEPIX Setup for Registration Beta Decay Isotopes Produced in Heavy Ion Induced Reactions

    NASA Astrophysics Data System (ADS)

    Rodin, A. M.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Novoselov, A. S.; Oganessian, Yu. Ts.; Salamatin, V. S.; Stepantsov, S. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Krupa, L.; Granja, C.; Pospisil, S.; Kliman, J.; Motycak, S.; Sivacek, I.

    2015-06-01

    Radon and mercury isotopes were produced in multi nucleon transfer (48Ca + 232Th) and complete fusion (48Ca + naturalNd) reactions, respectively. The isotopes with given masses were detected using two detectors: a multi-strip detector of the well-type (made in CANBERRA) and a position-sensitive quantum counting hybrid pixel detector of the TIMEPIX type. The isotopes implanted into the detectors then emit alpha- and betaparticles until reaching the long lived isotopes. The position of the isotopes, the tracks, the time and energy of beta-particles were measured and analyzed. A new software for the particle recognition and data analysis of experimental results was developed and used. It was shown that MASHA+ TIMEPIX setup is a powerful instrument for investigation of neutron-rich isotopes far from stability limits.

  13. An update on the neutrinoless double beta decay search at Cuoricino

    NASA Astrophysics Data System (ADS)

    Gutierrez, Thomas D.

    2004-10-01

    We present a status report on the neutrinoless double beta (0ν2β) decay search efforts at Cuoricino, a bolometric experiment located at the Gran Sasso Laboratory in Italy. In particular, we provide an update on the ongoing hardware development and parallel analysis efforts at LBNL. Cuoricino consists of a single tower of 62 TeO2 crystals ( ˜ 40 kg), which serve as both the source and detector for the 0ν2β decays. We also discuss the proposed CUORE (Cryogenic Underground Observatory for Rare Events) experiment. Similar in concept to Cuoricino, CUORE will consist of 1000 TeO2 crystals having a total mass of approximately 760 kg. CUORE will provide more statistics and, along with various anticipated technical improvements, higher sensitivity to 0ν2β decays than Cuoricino. This work is supported by the US Department of Energy.

  14. Final report: Accelerated beta decay for disposal of fission fragment wastes

    SciTech Connect

    Reiss, Howard R.

    2000-03-06

    The fundamental theory of the interaction of intense, low-frequency electromagnetic fields with certain radioactive nuclei has been fully formulated. The nuclei are of the type that exists in high-level radioactive wastes that are end products of the production of energy from nuclear fission. The basic physical mechanisms that underlie the coupling of the applied field to the nucleus have been identified. Both the basic theory and numerical predictions that stem from it support the conclusion that high-level radioactive wastes can be disposed of by substantially accelerating the rate of radioactive decay. Some old experiments on the acceleration of this type of radioactivity, with results that were not understood at the time, have been re-examined. Their interpretation is now clear, and the experiments are found to be in agreement with the theory.

  15. Search for neutrinoless double-beta decay of Mo100 with the NEMO-3 detector

    NASA Astrophysics Data System (ADS)

    Arnold, R.; Augier, C.; Baker, J. D.; Barabash, A. S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; Caffrey, A. J.; Cerna, C.; Chapon, A.; Chauveau, E.; Duchesneau, D.; Durand, D.; Egorov, V.; Eurin, G.; Evans, J. J.; Flack, R.; Garrido, X.; Gómez, H.; Guillon, B.; Guzowski, P.; Hodák, R.; Hubert, P.; Hugon, C.; Jullian, S.; Klimenko, A.; Kochetov, O.; Konovalov, S. I.; Kovalenko, V.; Lalanne, D.; Lang, K.; Lemière, Y.; Liptak, Z.; Loaiza, P.; Lutter, G.; Mamedov, F.; Marquet, C.; Mauger, F.; Morgan, B.; Mott, J.; Nemchenok, I.; Nomachi, M.; Nova, F.; Nowacki, F.; Ohsumi, H.; Pahlka, R. B.; Perrot, F.; Piquemal, F.; Povinec, P.; Ramachers, Y. A.; Remoto, A.; Reyss, J. L.; Richards, B.; Riddle, C. L.; Rukhadze, E.; Saakyan, R.; Sarazin, X.; Shitov, Yu.; Simard, L.; Šimkovic, F.; Smetana, A.; Smolek, K.; Smolnikov, A.; Söldner-Rembold, S.; Soulé, B.; Štekl, I.; Suhonen, J.; Sutton, C. S.; Szklarz, G.; Thomas, J.; Timkin, V.; Torre, S.; Tretyak, Vl. I.; Tretyak, V. I.; Umatov, V. I.; Vanushin, I.; Vilela, C.; Vorobel, V.; Waters, D.; Žukauskas, A.; NEMO-3 Collaboration

    2014-06-01

    We report the results of a search for the neutrinoless double-β decay (0νββ) of Mo100, using the NEMO-3 detector to reconstruct the full topology of the final state events. With an exposure of 34.7 kg .y, no evidence for the 0νββ signal has been found, yielding a limit for the light Majorana neutrino mass mechanism of T1/2(0νββ)>1.1×1024 years (90% C.L.) once both statistical and systematic uncertainties are taken into account. Depending on the nuclear matrix elements this corresponds to an upper limit on the Majorana effective neutrino mass of ⟨mν⟩<0.3-0.9 eV (90% C.L.). Constraints on other lepton number violating mechanisms of 0νββ decays are also given. Searching for high-energy double electron events in all suitable sources of the detector, no event in the energy region [3.2-10] MeV is observed for an exposure of 47 kg .y.

  16. Results on neutrinoless double beta decay of 76Ge from the GERDA experiment

    NASA Astrophysics Data System (ADS)

    Palioselitis, Dimitrios

    2015-05-01

    The Germanium Detector Array (GERDA) experiment is searching for neutrinoless double beta (0νββ) decay of 76Ge, a lepton number violating nuclear process predicted by extensions of the Standard Model. GERDA is an array of bare germanium diodes immersed in liquid argon located at the Gran Sasso National Laboratory (LNGS) in Italy. The results of the GERDA Phase I data taking with a total exposure of 21.6 kg yr and a background index of 0.01 cts/(keV kg yr) are presented in this paper. No signal was observed and a lower limit of T1/20ν > 2.1×1025 yr (90% C.L.) was derived for the half-life of the 0νββ decay of 76Ge. Phase II of the experiment aims to reduce the background around the region of interest by a factor of ten.

  17. Results on Neutrinoless Double-Beta Decay from Gerda Phase I

    NASA Astrophysics Data System (ADS)

    Macolino, Carla

    2014-12-01

    The GERmanium Detector Array, GERDA, is designed to search for neutrinoless double-beta (0νββ) decay of 76Ge and it is installed in the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, Italy. In this review, the detection principle and detector setup of GERDA are described. Also, the main physics results by GERDA Phase I, are discussed. They include the measurement of the half-life of 2νββ decay, the background decomposition of the energy spectrum and the techniques for the discrimination of the background, based on the pulse shape of the signal. In the last part of this review, the estimation of a limit on the half-life of 0νββ (T0ν 1/2>2.1ḑot 1025 yr at 90% C.L.) and the comparison with previous results are discussed. GERDA data from Phase I strongly disfavor the recent claim of 0νββ discovery, based on data from the Heidelberg-Moscow experiment.

  18. Results on neutrinoless double beta decay of 76Ge from GERDA Phase I

    NASA Astrophysics Data System (ADS)

    Palioselitis, Dimitrios; GERDA Collaboration

    2015-05-01

    The Germanium Detector Array (GERDA) experiment is searching for the neutrinoless double beta (0νββ) decay of 76Ge by operating bare germanium diodes in liquid argon. GERDA is located at the Gran Sasso National Laboratory (LNGS) in Italy. During Phase I, a total exposure of 21.6 kg yrand a background index of 0.01 cts/(keVkg yr) were reached. No signal was observed and a lower limit of T0ν1/2 > 2.1 · 1025 yr(90% C.L.) is derived for the half life of the 0νββ decay of 76Ge.

  19. Measurement of the Moments of the Hadronic Invariant Mass Distribution in Semileptonic Beta Decays

    SciTech Connect

    Acosta, D.; The CDF Collaboration TITLE=Measuremen

    2005-03-13

    Using 180 pb{sup -1} of data collected with the CDF II detector at the Tevatron, we measure the first two moments of the hadronic invariant mass-squared distribution in charmed semileptonic B decays. From these we determine the non-perturbative Heavy Quark Effective Theory parameters {Lambda} and {lambda}{sub 1} used to relate the B meson semileptonic branching ratio to the CKM matrix element |V{sub cb}|.

  20. Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei

    DOE R&D Accomplishments Database

    Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.

    1951-05-01

    In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.