Science.gov

Sample records for kadi ilves kadri

  1. Genetic organization of the Salmonella typhimurium ilv gene cluster.

    PubMed

    Blazey, D L; Burns, R O

    1979-01-01

    A number of Salmonella typhimurium ilv::Tn10 insertion strains were used to analyze the Salmonella ilv gene cluster. Tn10 generated ilv deletion mutants were employed in mapping experiments to conclusively define the gene order as ilvG-E-D-A-C. Examination of ilv enzyme levels confirms that the direction of transcription of ilvGEDA is from ilvG to ilvA. The major control locus, designated ilvO, is located before ilvG forming an ilvOGEDA transcriptional unit that is multivalently repressed by isoleucine, valine and leucine. Two internal promoters, one before ilvE and anonother before ilvD, are identified and are shown to provide repressed levels of the ilvE, D and A gene products. Possible regulation of transcription from these promoters in response to isoleucine limitation is discussed in terms of attenuation. PMID:395408

  2. Physical identification of an internal promoter, ilvAp, in the distal portion of the ilvGMEDA operon.

    PubMed

    Lopes, J M; Lawther, R P

    1989-01-01

    It has been previously demonstrated that the ilvGMEDA operon is expressed in vivo from the promoters ilvGp2 and ilvEp. An additional internal promoter is identified and designated ilvAp. This internal promoter, which allows independent expression of ilvA, has been analyzed both in vivo and in vitro. Our results indicate that: (1) ilvAp exists in both Escherichia coli K-12 and Salmonella typhimurium, as demonstrated by fusion to the galK reporter gene; (2) ilvAp is located in the distal coding sequence of ilvD; (3) the ilvAp sequences are not identical for these two bacterial species; (4) transcription from ilvAp of E. coli K-12 was demonstrated; (5) expression from ilvAp responds to the availability of oxygen; (6) potential 3' 5'-cyclic AMP receptor protein binding sites exist adjacent to ilvAp. PMID:2473940

  3. IlvHI locus of Salmonella typhimurium.

    PubMed

    Squires, C H; De Felice, M; Lago, C T; Calvo, J M

    1983-06-01

    In Escherichia coli K-12, the ilvHI locus codes for one of two acetohydroxy acid synthase isoenzymes. A region of the Salmonella typhimurium genome adjacent to the leucine operon was cloned on plasmid pBR322, yielding plasmids pCV47 and pCV49 (a shortened version of pCV47). This region contains DNA homologous to the E. coli ilvHI locus, as judged by hybridization experiments. Plasmid pCV47 did not confer isoleucine-valine prototrophy upon either E. coli or S. typhimurium strains lacking acetohydroxy acid synthase activity, suggesting that S. typhimurium lacks a functional ilvHI locus. However, isoleucine-valine prototrophs were readily isolated from such strains after mutagenesis with nitrosoguanidine. In one case we found that the Ilv+ phenotype resulted from an alteration in bacterial DNA on the plasmid (new plasmid designated pCV50). Furthermore, a new acetohydroxy acid synthase activity was observed in Ilv+ revertants; this enzyme was similar to E. coli acetohydroxy acid synthase III in its lack of activity at low pH. This new activity was correlated with the appearance in minicells of a new polypeptide having an approximate molecular weight of 61,000. Strains carrying either pCV49 or pCV50 produced a substantial amount of ilvHI-specific mRNA. These results, together with results from other laboratories, suggest that S. typhimurium has functional ilvB and ilvG genes and a cryptic ilvHI locus. E. coli K-12, on the other hand, has functional ilvB and ilvHI genes and a cryptic ilvG locus. PMID:6189818

  4. The Aspergillus fumigatus Dihydroxyacid Dehydratase Ilv3A/IlvC Is Required for Full Virulence

    PubMed Central

    Oliver, Jason D.; Kaye, Sarah J.; Tuckwell, Danny; Johns, Anna E.; Macdonald, Darel A.; Livermore, Joanne; Warn, Peter A.; Birch, Mike; Bromley, Michael J.

    2012-01-01

    Dihydroxyacid dehydratase (DHAD) is a key enzyme in the branched-chain amino acid biosynthetic pathway that exists in a variety of organisms, including fungi, plants and bacteria, but not humans. In this study we identified four putative DHAD genes from the filamentous fungus Aspergillus fumigatus by homology to Saccharomyces cerevisiae ILV3. Two of these genes, AFUA_2G14210 and AFUA_1G03550, initially designated AfIlv3A and AfIlv3B for this study, clustered in the same group as S. cerevisiae ILV3 following phylogenetic analysis. To investigate the functions of these genes, AfIlv3A and AfIlv3B were knocked out in A. fumigatus. Deletion of AfIlv3B gave no apparent phenotype whereas the Δilv3A strain required supplementation with isoleucine and valine for growth. Thus, AfIlv3A is required for branched-chain amino acid synthesis in A. fumigatus. A recombinant AfIlv3A protein derived from AFUA_2G14210 was shown to have DHAD activity in an in vitro assay, confirming that AfIlv3A is a DHAD. In addition we show that mutants lacking AfIlv3A and ilv3B exhibit reduced levels of virulence in murine infection models, emphasising the importance of branched-chain amino acid biosynthesis in fungal infections, and hence the potential of targeting this pathway with antifungal agents. Here we propose that AfIlv3A/AFUA_2G2410 be named ilvC. PMID:23028460

  5. Regulation of Salmonella typhimurium ilvYC genes.

    PubMed

    Blazey, D L; Burns, R O

    1984-09-01

    The Salmonella typhimurium LT2 ilvYC genes were studied by fusion of each gene to the Escherichia coli K-12 galK gene. The expression of ilvY and ilvC could then be determined by measurement of the galK-encoded galactokinase enzyme. The promoter for ilvC, pC, was located by this technique to a 0.42-kilobase BglII-EcoRI fragment of the S. typhimurium ilvGEDAYC gene cluster. This sequence was completely sufficient for alpha-acetohydroxyacid-inducible galK expression. The ilvY gene was located within a 1.0-kilobase XhoI-SalI fragment. ilvY gene expression was constitutive with respect to ilv-specific control signals. The ilvY gene was transcribed in the same direction as the other two transcriptional units in the ilvGEDAYC gene cluster, ilvGEDA and ilvC. Transcription of the ilvC gene was completely dependent upon the activity of its own promoter, pC, and independent from transcription of the ilvY gene. The role of the intervening region between ilvY and ilvC in regulation of ilvC expression was explored. PMID:6090400

  6. Nucleotide sequence and in vivo expression of the ilvY and ilvC genes in Escherichia coli K12. Transcription from divergent overlapping promoters.

    PubMed

    Wek, R C; Hatfield, G W

    1986-02-15

    The ilvC gene of Escherichia coli K12 encodes acetohydroxy acid isomeroreductase, the second enzyme in the parallel isoleucine-valine biosynthetic pathway. Previous data have shown that transcription of the ilvC gene is induced by the acetohydroxy acid isomeroreductase substrates, acetohydroxybutyrate or acetolactate, and that this substrate induction of ilvC expression is mediated by a positive activator encoded by the ilvY gene. We report here the isolation and complete nucleotide sequence of the ilvY and ilvC genes. The ilvY and ilvC genes encode polypeptides of Mr 33,200 and 54,000, respectively. In vitro transcription-translation of these gene templates results in the synthesis of gene products of these identical molecular weights. The ilvC gene is transcribed in the same direction as the genes of the adjacent ilvGMEDA operon. The ilvY gene is transcribed in a direction opposite to the ilvC and ilvGMEDA genes. The in vivo transcriptional initiation sites of the ilvY and ilvC genes have been determined by S1 nuclease protection experiments. These transcriptional initiation sites are 45 nucleotides apart, and transcription of the ilvY and ilvC genes is initiated via divergent overlapping promoters. The nucleotide sequence of the ilvY and ilvC promoters and 5'-coding regions of Salmonella typhimurium LT2 have been determined. A comparison of these sequences with E. coli K12 suggests regions important in the promotion, regulation, and translation of the ilvY and ilvC genes. A model is presented in which the ilvY-encoded activator binds to an operator site in the overlapping promoter region and reciprocally regulates the transcription of the ilvY and ilvC genes. The carboxyl-terminal amino acid sequence of threonine deaminase encoded by the ilvA gene of the ilv-GMEDA operon of E. coli K12 has been identified by homology with the previously deduced threonine deaminase amino acid sequence encoded by the ilv1 gene of Saccharomyces cerevisiae. Based on the deduced

  7. Acetohydroxyacid synthase FgIlv2 and FgIlv6 are involved in BCAA biosynthesis, mycelial and conidial morphogenesis, and full virulence in Fusarium graminearum.

    PubMed

    Liu, Xin; Han, Qi; Xu, Jianhong; Wang, Jian; Shi, Jianrong

    2015-01-01

    In this study, we characterized FgIlv2 and FgIlv6, the catalytic and regulatory subunits of acetohydroxyacid synthase (AHAS) from the important wheat head scab fungus Fusarium graminearum. AHAS catalyzes the first common step in the parallel pathways toward branched-chain amino acids (BCAAs: isoleucine, leucine, valine) and is the inhibitory target of several commercialized herbicides. Both FgILV2 and FgILV6 deletion mutants were BCAA-auxotrophic and showed reduced aerial hyphal growth and red pigmentation when cultured on PDA plates. Conidial formation was completely blocked in the FgILV2 deletion mutant ΔFgIlv2-4 and significantly reduced in the FgILV6 deletion mutant ΔFgIlv6-12. The auxotrophs of ΔFgIlv2-4 and ΔFgIlv6-12 could be restored by exogenous addition of BCAAs but relied on the designated nitrogen source the medium contained. Deletion of FgILV2 or FgILV6 also leads to hypersensitivity to various cellular stresses and reduced deoxynivalenol production. ΔFgIlv2-4 lost virulence completely on flowering wheat heads, whereas ΔFgIlv6-12 could cause scab symptoms in the inoculated spikelet but lost its aggressiveness. Taken together, our study implies the potential value of antifungals targeting both FgIlv2 and FgIlv6 in F. graminearum. PMID:26552344

  8. Acetohydroxyacid synthase FgIlv2 and FgIlv6 are involved in BCAA biosynthesis, mycelial and conidial morphogenesis, and full virulence in Fusarium graminearum

    PubMed Central

    Liu, Xin; Han, Qi; Xu, Jianhong; Wang, Jian; Shi, Jianrong

    2015-01-01

    In this study, we characterized FgIlv2 and FgIlv6, the catalytic and regulatory subunits of acetohydroxyacid synthase (AHAS) from the important wheat head scab fungus Fusarium graminearum. AHAS catalyzes the first common step in the parallel pathways toward branched-chain amino acids (BCAAs: isoleucine, leucine, valine) and is the inhibitory target of several commercialized herbicides. Both FgILV2 and FgILV6 deletion mutants were BCAA-auxotrophic and showed reduced aerial hyphal growth and red pigmentation when cultured on PDA plates. Conidial formation was completely blocked in the FgILV2 deletion mutant ΔFgIlv2-4 and significantly reduced in the FgILV6 deletion mutant ΔFgIlv6-12. The auxotrophs of ΔFgIlv2-4 and ΔFgIlv6-12 could be restored by exogenous addition of BCAAs but relied on the designated nitrogen source the medium contained. Deletion of FgILV2 or FgILV6 also leads to hypersensitivity to various cellular stresses and reduced deoxynivalenol production. ΔFgIlv2-4 lost virulence completely on flowering wheat heads, whereas ΔFgIlv6-12 could cause scab symptoms in the inoculated spikelet but lost its aggressiveness. Taken together, our study implies the potential value of antifungals targeting both FgIlv2 and FgIlv6 in F. graminearum. PMID:26552344

  9. Transcriptional activity of the transposable element Tn10 in the Salmonella typhimurium ilvGEDA operon.

    PubMed

    Blazey, D L; Burns, R O

    1982-08-01

    Polarity of Tn10 insertion mutations in the Salmonella typhimurium ilvGEDA operon depends on both the location and the orientation of the Tn10 element. One orientation of Tn10 insertions in ilvG and ilvE permits low-level expression of the downstream ilvEDA and ilvDA genes, respectively. Our analysis of Salmonella ilv recombinant plasmids shows that this residual ilv expression must result from Tn10-directed transcription and does not reflect the presence of internal promoters in the ilvGEDA operon, as was previously suggested. The opposite orientation of Tn10 insertion in ilvE prevents ilvDA expression, indicating that only one end of Tn10 is normally active in transcribing adjacent genes. Both orientations of Tn10 insertion in ilvD exert absolute polarity on ilvA expression. Expression of ilvA is known to be dependent on effective translation of ilvD, perhaps reflecting the lack of a ribosome binding site proximal to the ilvA sequence. Therefore, recognition of the ability of Tn10 to promote transcription of contiguous genes in the ilvGEDA operon apparently requires the presence of associated ribosome binding sites. PMID:6289328

  10. Internal promoter in the ilvGEDA transcription unit of Escherichia coli K-12.

    PubMed Central

    Calhoun, D H; Wallen, J W; Traub, L; Gray, J E; Kung, H F

    1985-01-01

    Segments of the ilvGEDA transcription unit have been cloned into the promoter tester plasmid pMC81. This vector contains cloning sites situated upstream of the lacZ gene coding for beta-galactosidase. Using this method we have quantitatively evaluated in vivo (i) the activity of previously described promoter, pG, preceding ilvG; (ii) the relative activity of pE promoter, previously postulated to be located between ilvG and ilvE; and (iii) the effect of the frameshift site present in the wild-type ilvG gene by comparison with mutant derivatives lacking this frameshift site. Isogenic derivatives of strain MC1000 were constructed by transduction with phage P1 grown on rho-120, delta(ilvGEDA), delta(ilvED), and ilvA538 hosts. The potential effects of these alleles that were previously postulated to affect ilvGEDA expression were assessed in vivo by monitoring beta-galactosidase production directed by ilv DNA fragments. Cloned ilv segments were also tested for activity in vitro with a DNA-directed coupled transcription and translation system. The production in vitro of ilv-directed ilv gene expression and beta-galactosidase expression with ara-ilv-lac fusions paralleled the in vivo activity. Images PMID:3917997

  11. Positive control of ilvC expression in Escherichia coli K-12; identification and mapping of regulatory gene ilvY.

    PubMed Central

    Watson, M D; Wild, J; Umbarger, H E

    1979-01-01

    The construction of a plasmid carrying the ilvC::lacZ fusion is described. This plasmid provides a convenient source of template deoxyribonucleic acid for use in an in vitro protein-synthesizing system. We screened strains deleted in regions of the ilv cluster for their ability to support ilvC-dependent beta-galactosidase synthesis. The fact that two deletions prevented beta-galactosidase production indicated that ilv-C expression is under positive control. By use of plasmids carrying the positive-control factor structural gene ilvY, we were able to restore protein-synthesizing ability to these strains. These plasmids also enabled us to map ilvY between ilvA and ilvC. Images PMID:113381

  12. Physical location of the ilvO determinant in Escherichia coli K-12 deoxyribonucleic acid.

    PubMed Central

    Subrahmanyam, C S; McCorkle, G M; Umbarger, H E

    1980-01-01

    A plasmid carrying the 4,6-kilobase (kb) HindIII-derived fragment from an ilvO mutant derivative of lambda h80dilv imparted a valine-resistant phenotype on strains it carried. This fragment carries a small amount of the promoter-proximal end of ilvE, the ilvO determinant, and apparently the entire ilvG gene, which specifies the valine-insensitive acetohydroxy acid synthase. Comparable deoxyribonucleic acid (DNA) from the original lambda h80dilv did not carry the valine resistance marker. The valine-resistant phenotype was always correlated with the formation of the resistant enzymes. The ilvO determinant was shown to be carried within an approximately 600-based-pair region lying between the SalI and KpnI sites on the HindIII fragment and perhaps within the ilvG gene itself. Ribonucleic acid that hybridizes with the DNA corresponding to the ilvG gene is formed in wild-type K-12 cells. This fact, coupled with the fact that ilvG is transcribed from the same DNA strand as the ilvE, D, and A genes, led to the idea that transcription is normally initiated upstream from ilvG in both wild-type and ilvO strains. In wild-type strains either the formation or the translation of the transcript would be terminated with the ilvG gene, thus preventing expression of that gene. PMID:6155372

  13. Organization and regulation of the ilvGEDA operon in Salmonella typhimurium LT2.

    PubMed

    Berg, C M; Shaw, K J

    1981-02-01

    A total of 102 isoleucine- and isoleucine-valine-requiring (ilv) mutants induced by insertion of the transposable element Tn10 have been classified to cistron by growth requirement, cross-feeding behavior, and enzyme assays. The mutations are in a polycistronic operon transcribed in the order ilvGEDA and in a monocistronic operon ilvC. Analysis of distal gene expression in these polar insertion mutants revealed the existence of two constitutive interval promoters, one preceding ilvE and the other preceding ilvD. PMID:7007356

  14. Molecular cloning and expression of the ilvGEDAY genes from Salmonella typhimurium.

    PubMed

    Blazey, D L; Kim, R; Burns, R O

    1981-08-01

    The ilvGEDAY genes of Salmonella typhimurium were cloned in Escherichia coli K-12 by in vitro recombination techniques. A single species of recombinant plasmid, designated pDU1, was obtained by selecting for Valr Ampr transformants of strain SK1592. pDU1 was shown to contain a 14-kilobase EcoRI partial digestion product of the S. typhimurium chromosome inserted into the EcoRI site of the pVH2124 cloning vector. The ilvGEDAY genes were found to occupy a maximum length of 7.5 kilobases. Restriction endonuclease analysis of the S. typhimurium ilv gene cluster provided another demonstration of the gene order as well as established the location of ilv Y between ilvA and ilvC. The presence of a ribosomal ribonucleic acid operon on the pDU1 insert, about 3 kilobases from the 5' end of ilvG, was shown by Southern hybridization. The expression of the ilvGEDA operon from pDU1 was found to be elevated, reflecting the increased gene dosage of the multicopy plasmid. A polarity was observed with respect to ilvEDA expression which is discussed in terms of the possible translational effects of the two internal promoter sequences, one located proximal to ilvE and the other located proximal to ilvD. PMID:6167564

  15. Regulation of Caulobacter crescentus ilvBN gene expression.

    PubMed Central

    Tarleton, J C; Malakooti, J; Ely, B

    1994-01-01

    As part of an effort to determine the mechanisms employed by Caulobacter crescentus to regulate gene expression, the ilvBN genes encoding the two subunits of an acetohydroxy acid synthase (AHAS) have been characterized. Analysis of the DNA sequences indicated that the C. crescentus AHAS was highly homologous to AHAS isozymes from other organisms. S1 nuclease and primer extension studies demonstrated that transcription initiation occurred 172 bp upstream of the AHAS coding region. The region between the AHAS coding region and the transcription initiation site was shown to have the properties of a transcription attenuator. Deletion analysis of the region containing the stem-loop structure of the proposed attenuator resulted in the derepression of ilvBN expression. Thus, it appears that C. crescentus uses attenuation to regulate the expression of the ilvBN operon. Images PMID:8206855

  16. Cloning of the ilvA538 gene coding for feedback-hypersensitive threonine deaminase from Escherichia coli K-12.

    PubMed Central

    Calhoun, D H; Gray, J E

    1982-01-01

    A variety of experimental results implicate the ilvA gene product, threonine deaminase, as an autoregulatory protein that affects the expression of its own gene and those coding for some related proteins. Some of the most direct evidence comes from the analysis of mutations in the ilvA gene with pleiotropic genetic regulatory effects. The most extensively documented mutation, ilvA538, lowers the expression of and abolishes repression control of the ilvGEDA transcription unit. A pleiotropic effect of the ilvA538 mutation, which may be either incidental or mechanistically related to the loss of repression control, renders threonine deaminase feedback hypersensitive to the inhibition of catalytic activity by the pathway end product, isoleucine. We transferred this mutation to lambda dilv phage and pBR322 derivatives. Direct enzyme assay of the plasmid- and phage-coded ilvA538 gene product in delta ilv hosts confirmed the feedback hypersensitivity of the enzyme product. In conjunction with the ilvG671 (phenotype, ILvG+ Valr; previously designated ilvO671) allele located in cis, high levels of the plasmid and lambda dilv phage-coded mutant enzyme suitable for protein purification were observed. Deletion mapping experiments with lambda dilv phage confirmed that the ilvA538 mutation, and not mutations promoter proximal to ilvD (transcription is from ilvG to ilvA), confer a loss of repression control. These genetic mapping studies indicate, however, that an additional mutation(s) may be present that contributes, at least in part, to the reduced enzyme levels in strains with the ilvA538 mutation. PMID:7045077

  17. Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing.

    PubMed

    Omura, Fumihiko

    2008-03-01

    Vicinal diketones (VDK) cause butter-like off-flavors in beer and are formed by a non-enzymatic oxidative decarboxylation of alpha-aceto-alpha-hydroxybutyrate and alpha-acetolactate, which are intermediates in isoleucine and valine biosynthesis taking place in the mitochondria. On the assumption that part of alpha-acetolactate can be formed also in the cytosol due to a mislocalization of the responsible acetohydroxyacid synthase encoded by ILV2 and ILV6, functional expression in the cytosol of acetohydroxyacid reductoisomerase (Ilv5p) was explored. Using the cytosolic Ilv5p, I aimed to metabolize the cytosolically formed alpha-aetolactate, thereby lowering the total VDK production. Among mutant Ilv5p enzymes with varying degrees of N-terminal truncation, one with a 46-residue deletion (Ilv5pDelta46) exhibited an unequivocal localization in the cytosol judged from microscopy of the Ilv5pDelta46-green fluorescent protein fusion protein and the inability of Ilv5pDelta46 to remedy the isoleucine/valine requirement of an ilv5Delta strain. When introduced into an industrial lager brewing strain, a robust expression of Ilv5pDelta46 was as effective as that of a wild-type Ilv5p in lowering the total VDK production in a 2-l scale fermentation trial. Unlike the case of the wild-type Ilv5p, an additional expression of Ilv5pDelta46 did not alter the quality of the resultant beer in terms of contents of aromatic compounds and organic acids. PMID:18193418

  18. The 1.9 A Structure of the Branched-Chain Amino-Acid Transaminase (IlvE) from Mycobacterium tuberculosis

    SciTech Connect

    Tremblay, L.; Blanchard, J

    2009-01-01

    Unlike mammals, bacteria encode enzymes that synthesize branched-chain amino acids. The pyridoxal 5'-phosphate-dependent transaminase performs the final biosynthetic step in these pathways, converting keto acid precursors into {alpha}-amino acids. The branched-chain amino-acid transaminase from Mycobacterium tuberculosis (MtIlvE) has been crystallized and its structure has been solved at 1.9 {angstrom} resolution. The MtIlvE monomer is composed of two domains that interact to form the active site. The biologically active form of IlvE is a homodimer in which each monomer contributes a substrate-specificity loop to the partner molecule. Additional substrate selectivity may be imparted by a conserved N-terminal Phe30 residue, which has previously been observed to shield the active site in the type IV fold homodimer. The active site of MtIlvE contains density corresponding to bound PMP, which is likely to be a consequence of the presence of tryptone in the crystallization medium. Additionally, two cysteine residues are positioned at the dimer interface for disulfide-bond formation under oxidative conditions. It is unknown whether they are involved in any regulatory activities analogous to those of the human mitochondrial branched-chain amino-acid transaminase.

  19. Examination of the internal promoter, PE, in the ilvGMEDA operon of E. coli K-12.

    PubMed Central

    Wek, R C; Hatfield, G W

    1986-01-01

    The ilvGMEDA operon of Escherichia coli K-12 contains an internal promoter, PE, in the distal portion of the ilvM gene immediately upstream from the ilvE gene. The location of this promoter was determined using S1 nuclease protection analyses of in vivo and in vitro transcripts. The transcriptional activity of the internal promoter was compared to the transcriptional activity of the operon-proximal promoter P1P2 using transcriptional fusion vectors and plasmid copy number determinations. These measurements showed that the P1P2 promoter is 52-fold stronger than the internal PE promoter. Estimates of the transcriptional role of the internal promoter on ilvE gene expression during growth conditions in excess and limiting branch chain amino acids is presented. Images PMID:2421252

  20. Regulation of expression of the ilvB operon in Salmonella typhimurium.

    PubMed

    Weinberg, R A; Burns, R O

    1984-12-01

    The ilvB gene of Salmonella typhimurium encodes the valine-sensitive form of acetohydroxy acid synthase, acetohydroxy acid synthase I, which catalyzes the first step in the parallel biosynthesis of isoleucine and valine. Although nearly all of the other genes involved in this pathway are clustered at minute 83, ilvB was found to lie at minute 80.5. Expression of ilvB was shown to be nearly completely repressed by the end products leucine and valine. Studies in which we used strains with mutations in cya (adenylate cyclase) and crp (cAMP receptor protein) demonstrated that synthesis of acetohydroxy acid synthase I is enhanced by the cAMP-cAMP receptor protein complex. Although no stimulation was achieved by growth on poor carbon sources, introduction of crp on a multicopy plasmid led to markedly increased expression. Strains of S. typhimurium lacking valine-resistant acetohydroxy acid synthase II (ilvG) are like Escherichia coli K-12 in that they are not able to grow in the presence of L-valine owing to a conditional isoleucine auxotrophy. The valine toxicity of these ilvG mutants of S. typhimurium was overcome by increasing the level of acetohydroxy acid synthase I. Enzyme activity could be elevated either by maximally derepressing expression with severe leucine limitation, by introduction of either ilvB or crp on a multicopy plasmid, or by the presence of the ilv-513 mutation. This mutation, which is closely linked to genes encoding the phosphoenol pyruvate:sugar phosphotransferase system (pts), causes highly elevated expression of ilvB that is refractory to repression by leucine and valine, as is the major ilv operon. The response of ilvB to the cAMP-cAMP receptor protein complex was not affected by this lesion. Data obtained by using this mutant led us to propose that the two modes of regulation act independently. We also present some evidence which suggests that ilvB expression may be affected by the phosphoenol pyruvate:sugar phosphotransferase system. PMID

  1. Transcriptional regulation of the ilv-leu operon of Bacillus subtilis.

    PubMed Central

    Grandoni, J A; Zahler, S A; Calvo, J M

    1992-01-01

    We used primer extension and mutational analysis to identify a promoter upstream of ilvB, the first gene in the ilv-leu operon of Bacillus subtilis. Between the promoter and ilvB, there is a 482-bp leader region which contains a sequence that resembles a factor-independent transcription terminator. In in vitro transcription experiments, 90% of transcripts initiated at the ilvB promoter ended at a site near this terminator. Primer extension analysis of RNA synthesized in vivo showed that the steady-state level of mRNA upstream of the terminator was twofold higher from cells limited for leucine than it was from cells grown with excess leucine. mRNA downstream of the terminator was 14-fold higher in cells limited for leucine than in cells grown with excess leucine. Measurement of mRNA degradation rates showed that the half-life of ilv-leu mRNA was the same when the cells were grown with or without leucine. These data demonstrate that the ilv-leu operon is regulated by transcription attenuation. Images PMID:1577690

  2. Regions of the Bacillus subtilis ilv-leu operon involved in regulation by leucine.

    PubMed Central

    Grandoni, J A; Fulmer, S B; Brizzio, V; Zahler, S A; Calvo, J M

    1993-01-01

    The ilv-leu operon of Bacillus subtilis is regulated in part by transcription attenuation. The cis-acting elements required for regulation by leucine lie within a 683-bp fragment of DNA from the region upstream of ilvB, the first gene of the operon. This fragment contains the ilv-leu promoter and 482 bp of the ilv-leu leader region. Spontaneous mutations that lead to increased expression of the operon were shown to lie in an imperfect inverted repeat encoding the terminator stem within the leader region. Mutations within the inverted repeat of the terminator destroyed most of the leucine-mediated repression. The remaining leucine-mediated repression probably resulted from a decrease in transcription initiation. A systematic analysis of other deletions within the ilv-leu leader region identified a 40-bp region required for the derepression that occurred during leucine limitation. This region lies within a potential RNA stem-and-loop structure that is probably required for leucine-dependent control. Deletion analysis also suggested that alternate secondary structures proximal to the terminator are involved in allowing transcription to proceed beyond the terminator. Additional experiments suggested that attenuation of the ilv-leu operon is not dependent on coupling translation to transcription of the leader region. Our data support a model proposed by Grundy and Henkin (F. J. Grundy and T. M. Henkin, Cell 74:475-482, 1993) in which uncharged tRNA acts as a positive regulatory factor to increase gene expression during amino acid limitation. Images PMID:8244927

  3. Enhanced acetohydroxy acid synthase III activity in an ilvH mutant of Escherichia coli K-12.

    PubMed Central

    Ricca, E; Limauro, D; Lago, C T; de Felice, M

    1988-01-01

    The acetohydroxy acid synthase III isozyme, which catalyzes the first common step in the biosynthesis of isoleucine, leucine, and valine in Escherichia coli K-12, is composed of two subunits, the ilvI and ilvH gene products. A missense mutation in ilvH (ilvH612), which reduced the sensitivity of the enzyme to the end product inhibition by valine, also increased its specific activity and lowered the Km for alpha-acetolactate synthesis. The mutation increased the sensitivity of acetohydroxy acid synthase III to dialysis and heat treatment and reduced the requirement for thiamine pyrophosphate addition to the assay mixture for activity. A strain carrying the ilvH612 mutation grew better than a homologous ilvH+ strain in the presence of leucine. The data indicate that this is a consequence of a more active acetohydroxy acid synthase III isozyme rather than the result of an alteration of the leucine-mediated repression of the ilvIH operon. PMID:3053650

  4. Analysis and comparison of the internal promoter, pE, of the ilvGMEDA operons from Escherichia coli K-12 and Salmonella typhimurium.

    PubMed

    Lopes, J M; Lawther, R P

    1986-03-25

    It was previously determined that the distal portion of the ilvGMEDA operon was expressed despite the insertion of transposons into ilvG and ilvE. This observation suggested the existence of internal promoters upstream of ilvE (pE) and ilvD (pD). The internal promoter pE, responsible for part of ilvEDA expression, has been analyzed both in vivo and in vitro. Our results indicate that: pE exists in both E. coli K-12 and S. typhimurium; pE is located in the distal end of the ilvM coding sequence; the pE sequence is highly conserved in the two bacteria; the amino acid sequence of the ilvM gene product is 93% homologous between the two bacteria; transcription from pE can be demonstrated both in vivo and in vitro; the efficiency of pE is essentially equivalent in the two bacteria. PMID:3008097

  5. The ilvIH operon of Escherichia coli is positively regulated.

    PubMed Central

    Platko, J V; Willins, D A; Calvo, J M

    1990-01-01

    The ilvIH operon of Escherichia coli (located near min 2) encodes acetohydroxyacid synthase III, an isozyme involved in branched-chain amino acid biosynthesis. A strain with lacZ fused to the ilvIH promoter was constructed. Transposon Tn10 was introduced into this strain, and tetracycline-resistant derivatives were screened for those in which ilvIH promoter expression was markedly reduced. In one such derivative, strain CV1008, beta-galactosidase expression was reduced more than 30-fold. The transposon giving rise to this phenotype inserted near min 20 on the E. coli chromosome. Extract from a wild-type strain contains a protein, the IHB protein, that binds to two sites upstream of the ilvIH promoter (E. Ricca, D. A. Aker, and J. M. Calvo, J. Bacteriol. 171:1658-1664, 1989). Extract from strain CV1008 lacks IHB-binding activity. These results indicate that the IHB protein is a positive regulator of ilvIH operon expression. The gene that encodes the IHB protein, ihb, was cloned by complementing the transposon-induced mutation. Definitive evidence that the cloned DNA encodes the IHB protein was provided by determining the sequence of more than 17 amino acids at the N terminus of the IHB protein and comparing it with the nucleotide sequence. A mutation that prevents repression of the ilvIH operon by leucine in vivo and that alters the DNA-binding characteristics of the IHB protein in vitro was shown to be an allele of the ihb gene. The ihb gene is identical to oppI, a gene that regulates the oppABCDF operon (E. A. Austin, J. C. Andrews, and S. A. Short, Abstr. Mol. Genet. Bacteria Phages, p. 153, 1989). Thus, oppI/ihb encodes a protein that regulates both ilvIH, an operon that is repressed by leucine, and oppABCDF, an operon involved in peptide transport that is induced by leucine. We propose that the designation lrp be used in the future instead of oppI or ihb and that Lrp (leucine-responsive regulatory protein) be used in place of IHB. Images PMID:2115869

  6. Common evolutionary origin of the ilvGMEDA attenuation locus and tRNA(1Leu) in Escherichia coli.

    PubMed

    Williamson, R M; Jackson, J H

    1987-06-01

    Published sequences of transcripts from ilvGMEDA leader regions of several enteric bacteria were compared with published sequences of the tRNAs from Escherichia coli. The analyses revealed homology between the ilvGMEDA leader peptide-coding region and tRNA(1Leu) in E. coli, Salmonella typhimurium, and Klebsiella aerogenes, whereas homology was not present in Serratia marcescens and Edwardsiella tarda. PMID:3294812

  7. Restriction endonuclease analysis of the ilvGEDA operon of members of the family Enterobacteriaceae.

    PubMed

    Driver, R P; Lawther, R P

    1985-06-01

    Four of the genes required for the biosynthesis of isoleucine and valine form the ilvGEDA operon in Escherichia coli K-12 and Salmonella typhimurium. The structural relationship of these genes was examined in eight other members of the family Enterobacteriaceae by genomic Southern blot hybridization. These genes are contiguous in all the strains examined, and specific restriction sites appear to be highly conserved, indicating the possible functional importance of the DNA sequences of which they are part. PMID:2987189

  8. Leucine regulation of the ilvGEDA operon of Serratia marcescens by attenuation is modulated by a single leucine codon.

    PubMed Central

    Hsu, J H; Harms, E; Umbarger, H E

    1985-01-01

    The effect of leucine limitation and of restricted leucine tRNA charging on the expression of the ilvGEDA operon of Serratia marcescens was examined. In this organism, the ilv leader region specifies a putative peptide containing only a single leucine codon that could be involved in leucine-mediated control by attenuation (E. Harms, J.-H. Hsu, C. S. Subrahmanyam, and H. E. Umbarger, J. Bacteriol. 164:207-216, 1985). A plasmid (pPU134) containing the DNA of the S. marcescens ilv control region and three of the associated structural genes was studied as a single chromosomal copy in an Escherichia coli strain auxotrophic for all three branched-chain amino acids. The S. marcescens ilv genes responded to a multivalent control similar to that found in other enteric organisms. Furthermore, the S. marcescens ilv genes were derepressed when the charging of leucine tRNA was restricted in a leuS derivative of E. coli that had been transformed with pPU134. It was concluded that ribosome stalling leading to deattenuation is not dependent on either tandem or a consecutive series of codons for the regulatory amino acid. However, the fact that the single leucine codon is a less frequently used codon (CUA) may be important. The procedure for obtaining the cloned ilv genes in single chromosomal copy exploited the dependence of ColE1 replicons on the polA gene. The cloning experiments also revealed a branched-chain amino acid-glutamate transaminase in S. marcescens that is different from transaminase B. PMID:3900038

  9. In vivo footprinting analysis of Lrp binding to the ilvIH promoter region of Escherichia coli.

    PubMed Central

    Marasco, R; Varcamonti, M; La Cara, F; Ricca, E; De Felice, M; Sacco, M

    1994-01-01

    An in vivo footprinting analysis of the ilvIH regulatory region of Escherichia coli showed that the transcription activator Lrp binds to six sites, scattered over 250 bp upstream of the transcriptional start point. When Lrp-mediated activation was impaired by the presence of exogenous leucine, only one promoter-distal site (site 2) was partially protected by Lrp binding. Equilibrium dialysis experiments showed the formation of an Lrp-leucine complex in vitro. These results suggest that leucine negatively affects ilvIH transcription because its interaction with Lrp reduces the efficiency of binding of the regulatory protein to the promoter region. Images PMID:8071194

  10. A CUC triplet confers leucine-dependent regulation of the Bacillus subtilis ilv-leu operon.

    PubMed Central

    Marta, P T; Ladner, R D; Grandoni, J A

    1996-01-01

    Regulation of the ilv-leu operon probably involves interaction of a tR NA(GAG) with leader region mRNA. Conversion of a CUC (Leu) triplet located within the leader region to UUC (Phe), CGC (Arg), or UAC (Tyr) converted reporter gene expression to control by corresponding amino acids. Conversion of the CUC triplet to CUU (Leu) decreased expression and disrupted regulation. The results suggested that other tRNAs can substitute for tRNA(Leu) but that interactions in addition to pairing of the anticodon with the CUC triplet are important for proper control. PMID:8606198

  11. Evidence that repression mechanisms can exert control over the thr, leu, and ilv operons of Escherichia coli K-12.

    PubMed Central

    Johnson, D I; Somerville, R L

    1983-01-01

    Mutants of Escherichia coli K-12 resistant to either the threonine analog DL-alpha-amino-beta-hydroxyvaleric acid or the leucine analog 5',5',5'-trifluoro-DL-leucine were isolated. One DL-alpha-amino-beta-hydroxyvaleric acid-resistant mutant strain, designated SP572, constitutively expressed the thr and ilv operons. The mutant allele, avr-16, was localized between trpR and the thr operon at min 0. The wildtype allele of avr-16, designated ileR, is trans dominant. One 5',5',5'-trifluoro-DL-leucine-resistant mutant strain, designated FLR9, expressed the leu and ilv operons constitutively. The mutant allele, flr-9, is linked to entA at min 13. The constitutive expression of the thr, leu, and ilv operons in mutants avr-16 and flr-9 was partly reversed in cells harboring a plasmid, which leads to elevated levels of the trpR gene product, the Trp aporepressor protein. Operator-like sequences situated upstream from the transcription startpoints of the thr, leu, and ilv operons are plausible candidates for targets of systems of repressor-operator control functioning in parallel with attenuation. PMID:6408066

  12. Variation in α-acetolactate production within the hybrid lager yeast group Saccharomyces pastorianus and affirmation of the central role of the ILV6 gene.

    PubMed

    Gibson, Brian; Krogerus, Kristoffer; Ekberg, Jukka; Monroux, Adrien; Mattinen, Laura; Rautio, Jari; Vidgren, Virve

    2015-01-01

    A screen of 14 S. pastorianus lager-brewing strains showed as much as a nine-fold difference in wort total diacetyl concentration at equivalent stages of fermentation of 15°Plato brewer's wort. Two strains (A153 and W34), with relatively low and high diacetyl production, respectively, but which did not otherwise differ in fermentation performance, growth or flavour production, were selected for further investigation. Transcriptional analysis of key genes involved in valine biosynthesis showed differences between the two strains that were consistent with the differences in wort diacetyl concentration. In particular, the ILV6 gene, encoding a regulatory subunit of acetohydroxy acid synthase, showed early transcription (only 6 h after inoculation) and up to five-fold greater expression in W34 compared to A153. This earlier transcription was observed for both orthologues of ILV6 in the S. pastorianus hybrid (S. cerevisiae × S. eubayanus), although the S. cerevisiae form of ILV6 in W34 also showed a consistently higher transcript level throughout fermentation relative to the same gene in A153. Overexpression of either form of ILV6 (by placing it under the control of the PGK1 promoter) resulted in an identical two-fold increase in wort total diacetyl concentration relative to a control. The results confirm the role of the Ilv6 subunit in controlling α-acetolactate/diacetyl concentration and indicate no functional divergence between the two forms of Ilv6. The greater contribution of the S. cerevisiae ILV6 to acetolactate production in natural brewing yeast hybrids appears rather to be due to higher levels of transcription relative to the S. eubayanus form. PMID:24965182

  13. Identification of Sc-type ILV6 as a target to reduce diacetyl formation in lager brewers' yeast.

    PubMed

    Duong, C T; Strack, L; Futschik, M; Katou, Y; Nakao, Y; Fujimura, T; Shirahige, K; Kodama, Y; Nevoigt, E

    2011-11-01

    Diacetyl causes an unwanted buttery off-flavor in lager beer. It is spontaneously generated from α-acetolactate, an intermediate of yeast's valine biosynthesis released during the main beer fermentation. Green lager beer has to undergo a maturation process lasting two to three weeks in order to reduce the diacetyl level below its taste-threshold. Therefore, a reduction of yeast's α-acetolactate/diacetyl formation without negatively affecting other brewing relevant traits has been a long-term demand of brewing industry. Previous attempts to reduce diacetyl production by either traditional approaches or rational genetic engineering had different shortcomings. Here, three lager yeast strains with marked differences in diacetyl production were studied with regard to gene copy numbers as well as mRNA abundances under conditions relevant to industrial brewing. Evaluation of data for the genes directly involved in the valine biosynthetic pathway revealed a low expression level of Sc-ILV6 as a potential molecular determinant for low diacetyl formation. This hypothesis was verified by disrupting the two copies of Sc-ILV6 in a commercially used lager brewers' yeast strain, which resulted in 65% reduction of diacetyl concentration in green beer. The Sc-ILV6 deletions did not have any perceptible impact on beer taste. To our knowledge, this has been the first study exploiting natural diversity of lager brewers' yeast strains for strain optimization. PMID:21824525

  14. Comparison of the regulatory regions of ilvGEDA operons from several enteric organisms.

    PubMed

    Harms, E; Hsu, J H; Subrahmanyam, C S; Umbarger, H E

    1985-10-01

    The nucleotide sequence preceding the ilvGEDA operon has been examined and compared in five enteric organisms. The sequence in Escherichia coli B was identical to the earlier-described strain K-12 sequence. The sequences of Salmonella typhimurium and Klebsiella aerogenes were remarkably similar to that of E. coli and identical in that part of the leader region that specified the putative 32-amino-acid peptide. Thus, identical secondary structures could be postulated for the leaders of all three organisms, and regulation of operon expression could be like that postulated earlier for E. coli. Different secondary structures had to be postulated for the leader transcripts of Edwardsiella tarda and Serratia marcescens. Control of attenuation of the operon in these organisms by the level of leucyl tRNA could be explained only if ribosome stalling occurred at a single leucine codon. In both organisms, that single leucine codon is the rarely used CUA rather than the CUG that is in E. coli, S. typhimurium, and K. aerogenes. PMID:3900037

  15. Role of codon choice in the leader region of the ilvGMEDA operon of Serratia marcescens.

    PubMed Central

    Harms, E; Umbarger, H E

    1987-01-01

    Leucine participates in multivalent repression of the Serratia marcescens ilvGMEDA operon by attenuation (J.-H. Hsu, E. Harms, and H.E. Umbarger, J. Bacteriol. 164:217-222, 1985), although there is only one single leucine codon that could be involved in this type of control. This leucine codon is the rarely used CUA. The contribution of this leucine codon to the control of transcription by attenuation was examined by replacing it with the commonly used leucine codon CUG and with a nonregulatory proline codon, CCG. These changes left intact the proposed secondary structure of the leader. The effects of the codon changes were assessed by placing the mutant leader regions upstream of the ilvGME structural genes or the cat gene and measuring acetohydroxy acid synthase II, transaminase B, or chloramphenicol acetyltransferase activities in cells grown under limiting and repressing conditions. The presence of the common leucine codon in place of the rare leucine codon reduced derepression by about 70%. Eliminating the leucine codon by converting it to proline abolished leucine control. Furthermore, a possible context effect of the adjacent upstream serine codon on leucine control was examined by changing it into a glycine codon. PMID:2824442

  16. Backbone and ILV methyl resonance assignments of E. coli thymidylate synthase bound to cofactor and a nucleotide analogue

    PubMed Central

    Sapienza, Paul J.; Lee, Andrew L.

    2013-01-01

    Thymidylate synthase (TSase) is a 62 kDa homodimeric enzyme required for de novo synthesis of thymidine monophosphate (dTMP) in most organisms. This makes the enzyme an excellent target for anticancer and microbial antibiotic drugs. In addition, TSase has been shown to exhibit negative cooperativity and half-the-sites reactivity. For these collective reasons, TSase is widely studied, and much is known about its kinetics and structure as it progresses through a multi-step catalytic cycle. Recently, nuclear magnetic resonance (NMR) spin relaxation has been instrumental in demonstrating the critical role of dynamics in enzyme function in small model systems. These studies raise questions about how dynamics affect function in larger enzymes with more complex reaction coordinates. TSase is an ideal candidate given its size, oligomeric state, cooperativity, and status as a drug target. Here, as a pre-requisite to spin relaxation studies, we present the backbone and ILV methyl resonance assignments of TSase from Escherichia coli bound to a substrate analogue and cofactor. PMID:23653343

  17. Metabolic basis for the isoleucine, pantothenate or methionine requirement of ilvG strains of Salmonella typhimurium.

    PubMed

    Primerano, D A; Burns, R O

    1982-06-01

    as well as other nonpolarigenic ilvG mutant strains. PMID:7042686

  18. CcpA-Mediated Catabolite Activation of the Bacillus subtilis ilv-leu Operon and Its Negation by Either CodY- or TnrA-Mediated Negative Regulation

    PubMed Central

    Satomura, Takenori; Tojo, Shigeo; Hirooka, Kazutake

    2014-01-01

    The Bacillus subtilis ilv-leu operon functions in the biosynthesis of branched-chain amino acids. It undergoes catabolite activation involving a promoter-proximal cre which is mediated by the complex of CcpA and P-Ser-HPr. This activation of ilv-leu expression is negatively regulated through CodY binding to a high-affinity site in the promoter region under amino acid-rich growth conditions, and it is negatively regulated through TnrA binding to the TnrA box under nitrogen-limited growth conditions. The CcpA-mediated catabolite activation of ilv-leu required a helix face-dependent interaction of the complex of CcpA and P-Ser-HPr with RNA polymerase and needed a 19-nucleotide region upstream of cre for full activation. DNase I footprinting indicated that CodY binding to the high-affinity site competitively prevented the binding of the complex of CcpA and P-Ser-HPr to cre. This CodY binding not only negated catabolite activation but also likely inhibited transcription initiation from the ilv-leu promoter. The footprinting also indicated that TnrA and the complex of CcpA and P-Ser-HPr simultaneously bound to the TnrA box and the cre site, respectively, which are 112 nucleotides apart; TnrA binding to its box was likely to induce DNA bending. This implied that interaction of TnrA bound to its box with the complex of CcpA and P-Ser-HPr bound to cre might negate catabolite activation, but TnrA bound to its box did not inhibit transcription initiation from the ilv-leu promoter. Moreover, this negation of catabolite activation by TnrA required a 26-nucleotide region downstream of the TnrA box. PMID:25157083

  19. Reduced transaminase B (IlvE) activity caused by the lack of yjgF is dependent on the status of threonine deaminase (IlvA) in Salmonella enterica serovar Typhimurium.

    PubMed

    Schmitz, George; Downs, Diana M

    2004-02-01

    The YjgF/YER057c/UK114 family is a highly conserved class of proteins that is represented in the three domains of life. Thus far, a biochemical function demonstrated for these proteins in vivo or in vitro has yet to be defined. In several organisms, strains lacking a YjgF homolog have a defect in branched-chain amino acid biosynthesis. This study probes the connection between yjgF and isoleucine biosynthesis in Salmonella enterica. In strains lacking yjgF the specific activity of transaminase B, catalyzing the last step in the synthesis of isoleucine, was reduced. In the absence of yjgF, transaminase B activity could be restored by inhibiting threonine deaminase, the first enzymatic step in isoleucine biosynthesis. Strains lacking yjgF showed an increased sensitivity to sulfometruron methyl, a potent inhibitor of acetolactate synthase. Based on work described here and structural reports in the literature, we suggest a working model in which YjgF has a role in protecting the cell from toxic effects of imbalanced ketoacid pools. PMID:14729707

  20. Evidence for isoleucine as a positive effector of the ilvBN operon in Salmonella typhimurium.

    PubMed

    Davidson, J P; Wilson, D J

    1991-08-15

    Concerted efforts were directed towards understanding the control of acetohydroxy acid synthase (AHAS) in the gyrB mutant hisU1820 of Salmonella typhimurium. A media shift from valine to valine plus isoleucine causes a dramatic 4 to 5 fold burst of AHAS valine sensitive activity which appears to be dependent on translation. DJ19, an isolated valine sensitive derivative of the gyrB mutant, maintains a dramatic increase in AHAS valine sensitive activity upon the addition of isoleucine to valine supplemented cultures, suggesting that the isoleucine effect is specific for valine sensitive AHAS. Evidence supports isoleucine as a positive effector on valine sensitive AHAS expression and that the gyrB mutation accentuates the isoleucine effect. PMID:1872874

  1. Oahu Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.

  2. Salmonella typhimurium mutants defective in acetohydroxy acid synthases I and II.

    PubMed

    Shaw, K J; Berg, C M; Sobol, T J

    1980-03-01

    An analysis of transposon-induced mutants shows that Salmonella typhimurium possesses two major isozymes of acetohydroxy acid synthase, the enzymes which mediate the first common step in isoleucine and valine biosynthesis. A third (minor) acetohydroxy acid synthase is present, but its significance in isoleucine and valine synthesis may be negligible. Mutants defective in acetohydroxy acid synthase II (ilvG::Tn10) require isoleucine, alpha-ketobutyrate, or threonine for growth, a mutant defective in acetohydroxy acid synthase I (ilvB::Tn5) is a prototroph, and a double mutant (ilvG::Tn10 ilvB::Tn5) requires isoleucine plus valine for growth. PMID:6245063

  3. Suppressors of a genetic regulatory mutation affecting isoleucine-valine biosynthesis in Escherichia coli K-12.

    PubMed Central

    Hahn, J E; Calhoun, D H

    1978-01-01

    Escherichia coli K-12 mutant PS187 carries a mutation, ilvA538, in the structural gene for the biosynthetic L-threonine deaminase that leads to a leucine-sensitive growth phenotype, an isoleucine- and leucine-hypersensitive L-threonine deaminase, and pleiotropic effects resulting in abnormally low and invariant expression of some of the isoleucine-valine biosynthetic enzymes. Fifty-eight derivatives of strain PS187 were isolated as resistant to growth inhibition by leucine, by valine, or by valine plus glycly-valine and were biochemically, genetically, and physiologically characterized. All of these derivatives produced the feedback-hypersensitive L-threonine deaminase, and thus presumably possess the ilvA538 allele of the parent strain. Elevated synthesis of L-threonine deaminase was observed in 41 of the 58 isolates. Among 18 strains analyzed genetically, only those with mutations linked to the ilv gene clusters at 83 min produced elevated levels of L-threonine deaminase. One of the strains, MSR91, isolated as resistant to valine plus glycyl-valine, was chosen for more detailed study. The locus in strain MSR91 conferring resistance was located in four factor crosses between ilvE and rbs, and is in or near the ilvO gene postulated to be a site controlling the expression of the ilvEDA genes. Synthesis of the ilvEDA gene products in strain MSR91 is constitutive and derepressed approximately 200-fold relative to the parent strain, indicating that the genetic regulatory effects of the ilvA538 allele have been suppressed. Strain MSR91 should be suitable for use in purification of the ilvA538 gene product, since enzyme synthesis is fully derepressed and the suppressor mutation is clearly not located within the ilvA gene. PMID:361682

  4. Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin

    PubMed Central

    Abrami, Laurence; Brandi, Lucia; Moayeri, Mahtab; Brown, Michael J.; Krantz, Bryan A.; Leppla, Stephen H.; van der Goot, F. G.

    2013-01-01

    SUMMARY Anthrax Lethal Toxin is a classical AB-toxin comprised of two components, Protective Antigen (PA) and Lethal Factor (LF). Here we show that following assembly and endocytosis, PA forms a channel that translocates LF, not only into the cytosol, but also into the lumen of endosomal intraluminal vesicles (ILVs). These ILVs can fuse and release LF into the cytosol, where LF can proteolyze and disable host targets. We find that LF can persist in ILVs for days, fully sheltered from proteolytic degradation, both in vitro and in vivo. During this time ILV-localized LF can be transmitted to daughter cells upon cell division. In addition, LF-containing ILVs can be delivered to the extracellular medium as exosomes. These can deliver LF to the cytosol of naïve cells in a manner that is independent of the typical anthrax toxin-receptor trafficking pathway, while being sheltered from neutralizing extracellular factors of the immune system. PMID:24239351

  5. Detection of messenger RNA from the isoleucine--valine operons of Salmonella typhimurium by heterologous DNA-RNA hybridization: involvement of transfer RNA in transcriptional repression.

    PubMed

    Childs, G; Sonnenberg, F; Freundlich, M

    1977-03-01

    A hybridization assay using Escherichia coli K-12 DNA isolated from the specialized transducing bacteriophage gammaCI857St68h80 dilv was used to examine the rate of synthesis of the messenger RNA's (mRNA) derived from the isoleucine-valine (ilv) gene cluster of Salmonella typhimurium. In all cases examined, changes in ilv enzyme levels could be correlated with changes in the rate of synthesis of ilv mRNA. Several well characterized regulatory mutants of S. typhimurium had rates of synthesis of ilv mRNA 3 to 8-fold higher than the repressed wild-type strain. The increased rates of ilv mRNA synthesis found in a hisT strain as well as in isoleucyl-and leucyl-tRNA SYNTHETASE MUTANTS, STRONGLY SUGGESTS A ROLE FOR BRANCHED-CHAIN AMINOACYL-TRNA's in transcriptional control. PMID:327261

  6. Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes.

    PubMed

    Vogt, Michael; Haas, Sabine; Polen, Tino; van Ooyen, Jan; Bott, Michael

    2015-03-01

    2-Ketoisocaproate (KIC), the last intermediate in l-leucine biosynthesis, has various medical and industrial applications. After deletion of the ilvE gene for transaminase B in l-leucine production strains of Corynebacterium glutamicum, KIC became the major product, however, the strains were auxotrophic for l-isoleucine. To avoid auxotrophy, reduction of IlvE activity by exchanging the ATG start codon of ilvE by GTG was tested instead of an ilvE deletion. The resulting strains were indeed able to grow in glucose minimal medium without amino acid supplementation, but at the cost of lowered growth rates and KIC production parameters. The best production performance was obtained with strain MV-KICF1, which carried besides the ilvE start codon exchange three copies of a gene for a feedback-resistant 2-isopropylmalate synthase, one copy of a gene for a feedback-resistant acetohydroxyacid synthase and deletions of ltbR and iolR encoding transcriptional regulators. In the presence of 1 mM l-isoleucine, MV-KICF1 accumulated 47 mM KIC (6.1 g l(-1)) with a yield of 0.20 mol/mol glucose and a volumetric productivity of 1.41 mmol KIC l(-1)  h(-1). Since MV-KICF1 is plasmid free and lacks heterologous genes, it is an interesting strain for industrial application and as platform for the production of KIC-derived compounds, such as 3-methyl-1-butanol. PMID:25488800

  7. MRA_1571 is required for isoleucine biosynthesis and improves Mycobacterium tuberculosis H37Ra survival under stress

    PubMed Central

    Sharma, Rishabh; Keshari, Deepa; Singh, Kumar Sachin; Yadav, Shailendra; Singh, Sudheer Kumar

    2016-01-01

    Threonine dehydratase is a pyridoxal 5-phosphate dependent enzyme required for isoleucine biosynthesis. Threonine dehydratase (IlvA) participates in conversion of threonine to 2-oxobutanoate and ammonia is released as a by-product. MRA_1571 is annotated to be coding for IlvA in Mycobacterium tuberculosis H37Ra (Mtb-Ra). We developed a recombinant (KD) Mtb-Ra strain by down-regulating IlvA. The growth studies on different carbon sources suggested reduced growth of KD compared to wild-type (WT), also, isoleucine concentration dependent KD growth restoration was observed. The expression profiling of IlvA suggested increased expression of IlvA during oxygen, acid and oxidative stress. In addition, KD showed reduced survival under pH, starvation, nitric oxide and peroxide stresses. KD was more susceptible to antimycobacterial agents such as streptomycin (STR), rifampicin (RIF) and levofloxacin (LVF), while, no such effect was noticeable when exposed to isoniazid. Also, an increase in expression of IlvA was observed when exposed to STR, RIF and LVF. The dye accumulation studies suggested increased permeability of KD to ethidium bromide and Nile Red as compared to WT. TLC and Mass studies confirmed altered lipid profile of KD. In summary down-regulation of IlvA affects Mtb growth, increases its susceptibility to stress and leads to altered cell wall lipid profile. PMID:27353854

  8. Synthesis and activities of branched-chain aminoacyl-tRNA synthetases in threonine deaminase mutants of Escherichia coli.

    PubMed Central

    Williams, A L; Whitfield, S M; Williams, L S

    1978-01-01

    Valyl-, isoleucyl-, and leucyl-tRNA synthetase activities were examined in an Escherichia coli K-12 strain that possessed a deletion of three genes of the ilv gene cluster, ilvD, A, and C, and in a strain with the same deletion that also carried the lambdadilvCB bacteriophage. It was observed that the branched-chain tRNA synthetase activities of both strains were considerably less than those of the normal strain during growth in unrestricted medium. Furthermore, during an isoleucine limitation, there was a further reduction in isoleucyl-tRNA synthetase activity and an absence of the isoleucine-mediated derepression of valyl-tRNA synthetase formation in both of these mutants, as compared with the normal strain. In addition, it was observed that these branched-chain synthetase activities were reduced in steady-state cultures of several ilvA point mutants. However, upon the introduction of the ilv operon to these ilvA mutants by use of lambda bacteriophage, there was a specific increase in the branched-chain synthetase activities to levels comparable to those of the normal strain. These results support our previous findings that the stability and repression control of synthesis of these synthetases require some product(s) missing in the ilvDAC deletion strain and strongly suggest this component is some form of the ilvA gene product, threonine deaminase. PMID:348689

  9. West Maui Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  10. Kauai Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  11. Hawaii Island Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Hawaii Island. Data is from the following sources: Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume II – Island of Hawaii Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008; and Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.

  12. East Maui Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for East Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  13. Identification of a mutation affecting an alanine-alpha-ketoisovalerate transaminase activity in Escherichia coli K-12.

    PubMed

    Falkinham, J O

    1979-10-01

    A mutation affecting alanine-alpha-ketoisovalerate transaminase activity has been shown to be cotransducible with ilv gene cluster. The transaminase deficiency results in conditional isoleucine auxotrophy in the presence of alanine. PMID:396446

  14. Isla Vista virus: a genetically novel hantavirus of the California vole Microtus californicus.

    PubMed

    Song, W; Torrez-Martinez, N; Irwin, W; Harrison, F J; Davis, R; Ascher, M; Jay, M; Hjelle, B

    1995-12-01

    Prospect Hill virus (PH) was isolated from a meadow vole (Microtus pennsylvanicus) in 1982, and much of its genome has been sequenced. Hantaviruses of other New World microtine rodents have not been genetically characterized. We show that another Microtus species (the California vole M. californicus) from the United States is host to a genetically distinct PH-like hantavirus, Isla Vista virus (ILV). The nucleocapsid protein of ILV differs from that of PH by 11.1% and a portion of the G2 glycoprotein differs from that of PH by 19.6%. ILV antibodies were identified in five of 33 specimens of M. californicus collected in 1975 and 1994-1995. Enzymatic amplification studies showed that 1975 and 1994-1995 ILV genomes were highly similar. Secondary infection of Peromyscus californicus was identified in Santa Barbara County, California. A long-standing enzootic of a genetically distinct hantavirus lineage is present in California voles. PMID:8847529

  15. Regulation of transaminase C synthesis in Escherichia coli: conditional leucine auxotrophy.

    PubMed

    McGilvray, D; Umbarger, H E

    1974-11-01

    The regulation of synthesis of the valine-alanine-alpha-aminobutyrate transaminase (transaminase C) was studied in Escherichia coli mutants lacking the branched-chain amino acid transaminase (transaminase B). An investigation was made of two strains, CU2 and CU2002, each carrying the same transaminase B lesion but exhibiting different growth responses on a medium supplemented with branched-chain amino acids. Both had the absolute isoleucine requirement characteristic of ilvE auxotrophs, but growth of strain CU2 was stimulated by valine, whereas that of strain CU2002 was markedly inhibited by valine. Strain CU2002 behaved like a conditional leucine auxotroph in that the inhibition by valine was reversed by leucine. Results of enzymatic studies showed that synthesis of transaminase C was repressed by valine in strain CU2002 but not in strain CU2. Inhibition by valine in strain CU2002 appears to be the combined effect of repression on transaminase C synthesis and valine-dependent feedback inhibition of alpha-acetohydroxy acid synthase activity, causing alpha-ketoisovalerate (and hence leucine) limitation. The ilvE markers of strains CU2 and CU2002 were each transferred by transduction to a wild-type genetical background. All ilvE recombinants from both crosses resembled strain CU2002 and were inhibited by valine in the presence of isoleucine. Thus, strain CU2 carries an additional lesion that allows it to grow on a medium containing isoleucine plus valine. It is concluded that conditional leucine auxotrophy is characteristic of mutants carrying an ilvE lesion alone. PMID:4616947

  16. Dissecting Complex Metabolic Integration Provides Direct Genetic Evidence for CodY Activation by Guanine Nucleotides▿

    PubMed Central

    Brinsmade, Shaun R.; Sonenshein, Abraham L.

    2011-01-01

    The global regulator CodY controls the expression of dozens of metabolic genes and genes mediating adaptation to nutrient availability in many low-G+C Gram-positive bacteria. Branched-chain amino acids l-isoleucine, l-leucine, and l-valine (ILV) activate CodY both in vivo and in vitro, and genes that direct their synthesis (ilv, ybgE, and ywaA) are highly repressed by CodY, creating a potential negative feedback loop. The nucleoside triphosphate GTP also activates CodY in vitro, but the evidence for activation by GTP in vivo is limited and indirect. We constructed a Bacillus subtilis strain (ybgE bcd ywaA) that is unable to convert branched-chain α-keto acids to ILV or to use ILV as a precursor for branched-chain fatty acid synthesis. Unexpectedly, the strain was not viable on rich medium. Supplementing rich medium with short, branched-chain fatty acids or derepressing expression of genes for de novo ILV synthesis bypassed the original lethality, restoring growth and showing that the lack of viability was due to insufficient intracellular production of the precursors of branched-chain fatty acids. Spontaneous extragenic suppressor mutants that arose in the triple mutant population proved to have additional mutations in guaA or guaB or codY. Expression of ILV biosynthetic genes in codY mutants was increased. The gua mutations caused guanine/guanosine auxotrophy and led to partial derepression of direct CodY-repressed targets, including ILV biosynthetic genes, under conditions similar to those that caused the original lethality. We conclude that a guanine derivative, most likely GTP, controls CodY activity in vivo. PMID:21856856

  17. Special Analysis: Atmospheric Dose Resulting from the Release of C14 from Reactor Moderator Deionizers in a Disposal Environment

    SciTech Connect

    Hiergesell, Robert A.; Swingle, Robert F.

    2005-08-18

    The proposed action of disposing of 52 moderator deionizer vessels within the ILV was evaluated in this SA. In particular, a detailed analysis of the release of {sup 14}C via the atmospheric pathway was conducted for these vessels since the major concern has been the nearly 20 Ci of {sup 14}C that is associated with each vessel. The more rigorous evaluation of the atmospheric pathway for {sup 14}C included incorporation of new information about the chemical availability of {sup 14}C when disposed in a grout/cement encapsulation environment, as will be the case in the ILV. This information was utilized to establish the source term for a 1-D numerical model to simulate the diffusion of {sup 14}CO{sub 2} from the ILV Waste Zone to the land surface. The results indicate a peak surface emanation rate from the entire ILV of 1.42E-08 Ci/yr with an associated dose of only 3.83E-05 mrem/yr to the Maximally Exposed Individual (MEI) at 100m. The fact that the atmospheric pathway exposure for {sup 14}C is controlled by chemical solubility limits for {sup 14}C between the solid waste, pore water and pore vapor within the disposal environment rather than the absolute inventory suggests that the establishment of specific facility limits is inappropriate. With the relaxation of the atmospheric pathway restriction, the groundwater pathway becomes the more restrictive in terms of disposing {sup 14}C or {sup 14}C{sub KB} within the ILV. Since the resin-based {sup 14}C of the 52 moderator deionizer vessels is highly similar to the {sup 14}C{sub KB} waste form, the inventory from the 52 deionizer vessels is compared against the groundwater limits for that waste form. The small groundwater pathway fraction (1.14E-05) calculated for the proposed inventory of the 52 moderator deionizer vessels indicates that the proposed action will have an insignificant impact with respect to possible exposures via the groundwater pathway. This investigation recommends that there be no ILV Atmospheric

  18. Combination of intralesional verapamil and oral antioxidants for Peyronie's disease: a prospective, randomised controlled study.

    PubMed

    Favilla, V; Russo, G I; Privitera, S; Castelli, T; Madonia, M; La Vignera, S; Condorelli, R; Calogero, A E; Farina, F P; Cimino, S; Morgia, G

    2014-10-01

    The aim of this study was to evaluate the efficacy of the association of intralesional verapamil (ILV) injection with oral antioxidants compared with ILV monotherapy in patients with early onset of Peyronie's disease (PD) at 12-week follow-up. Group A (n = 52) received ILV 10 mg weekly for 12 weeks, while group B (n = 53) received ILV 10 mg weekly for 12 weeks + antioxidants orally one tablet once a day for 3 months. The main efficacy outcomes were the change in plaque size (PS), penile curvature (PC), visual analogue score (VAS), IIEF-15 and IIEF-15 subdomains. Both groups showed significant improvement from baseline to week 12 relative to PS and PC, while group B also in IIEF-15 score (mean difference: 5.51, P < 0.01) and VAS (mean difference: -2.71, P < 0.01). No significant differences were observed between both groups in PS and PC. Finally, both groups showed significant increase in orgasmic function (IIEF-OF) and overall satisfaction (IIEF-OS), while group B showed significant improvement also in intercourse satisfaction (IIEF-IS). Significant differences were found relative to IIEF-OF, IIEF-IS, IIEF-OS and VAS scores in the group B compared with group A. Patients affected by PD may benefit from combination treatment with ILV and oral antioxidants thanks to the improvement in IIEF-OF, IIEF-IS and IIEF-OS at 12 weeks. PMID:24124921

  19. Molecular annotation of ketol-acid reductoisomerases from Streptomyces reveals a novel amino acid biosynthesis interlock mediated by enzyme promiscuity.

    PubMed

    Verdel-Aranda, Karina; López-Cortina, Susana T; Hodgson, David A; Barona-Gómez, Francisco

    2015-03-01

    The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications. PMID:25296650

  20. Molecular annotation of ketol-acid reductoisomerases from Streptomyces reveals a novel amino acid biosynthesis interlock mediated by enzyme promiscuity

    PubMed Central

    Verdel-Aranda, Karina; López-Cortina, Susana T; Hodgson, David A; Barona-Gómez, Francisco

    2015-01-01

    The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications. PMID:25296650

  1. Role of mitochondrial processing peptidase and AAA proteases in processing of the yeast acetohydroxyacid synthase precursor.

    PubMed

    Dasari, Suvarna; Kölling, Ralf

    2016-07-01

    We studied presequence processing of the mitochondrial-matrix targeted acetohydroxyacid synthase (Ilv2). C-terminal 3HA-tagging altered the cleavage pattern from a single step to sequential two-step cleavage, giving rise to two Ilv2-3HA forms (A and B). Both cleavage events were dependent on the mitochondrial processing peptidase (MPP). We present evidence for the involvement of three AAA ATPases, m- and i-AAA proteases, and Mcx1, in Ilv2-3HA processing. Both, precursor to A-form and A-form to B-form cleavage were strongly affected in a ∆yme1 mutant. These defects could be suppressed by overexpression of MPP, suggesting that MPP activity is limiting in the ∆yme1 mutant. Our data suggest that for some substrates AAA ATPases could play an active role in the translocation of matrix-targeted proteins. PMID:27398316

  2. YjgF is required for isoleucine biosynthesis when Salmonella enterica is grown on pyruvate medium.

    PubMed

    Christopherson, Melissa R; Schmitz, G E; Downs, Diana M

    2008-04-01

    The YjgF/YER057c/UK114 family of proteins is conserved across the three domains of life, yet no biochemical function has been clearly defined for any member of this family. In Salmonella enterica, a deletion of yjgF results in a requirement for isoleucine when the mutant strain is grown in glucose-serine or pyruvate medium. Feedback inhibition of IlvA is required for the curative effect of isoleucine on glucose-serine medium. On pyruvate medium, yjgF mutants are unable to synthesize enough isoleucine for growth. From this study, we conclude that the isoleucine requirement of a yjgF mutant on pyruvate is a consequence of the decreased transaminase B (IlvE) activity that has previously been characterized in these mutants. PMID:18296521

  3. Transformation analysis of three linkage groups in Staphylococcus aureus.

    PubMed Central

    Pattee, P A; Neveln, D S

    1975-01-01

    While studying a set of multiply marked mutants of Staphylococcus aureus strain 8325 by transformation, several instances of apparent genetic linkage were encountered. After showing that these linked transformations were readily inactivated by shearing of the deoxyribonucleic acid (DNA) but were resistant to dilution of the DNA, and showing that mixtures of DNA failed to form double transformants, it was concluded that the linkages were legitimate rather than the result of congression. Three linkage groups were defined: thy-101-lys-115-trp-103-thr-106, pyr-141-hisGb15-nov-pur-102, and pur-110-ilv-129. The positions of the previously studied trp and his operons corresponded to the trp-103 and hisGb15 loci. The ilv-129 position adjacent to pur-110 probably corresponds to the ilv-leu gene cluster. The distance over which linkage was detected was greater by transformation than by generalized transduction. PMID:1176430

  4. Comparative Genomics of Regulation of Fatty Acid and Branched-chain Amino Acid Utilization in Proteobacteria

    SciTech Connect

    Kazakov, Alexey E.; Rodionov, Dmitry A.; Arkin, Adam Paul; Dubchak, Inna; Gelfand, Mikhail S.; Alm, Eric

    2008-10-31

    Bacteria can use branched-chain amino acids (ILV, i.e. isoleucine, leucine, valine) and fatty acids (FA) as sole carbon and energy sources convering ILV into acetyl-CoA, propanoyl-CoA and propionyl-CoA, respectively. In this work, we used the comparative genomic approach to identify candidate transcriptional factors and DNA motifs that control ILV and FA utilization pathways in proteobacteria. The metabolic regulons were characterized based on the identification and comparison of candidate transcription factor binding sites in groups of phylogenetically related genomes. The reconstructed ILV/FA regulatory network demonstrates considerable variability and involves six transcriptional factors from the MerR, TetR and GntR families binding to eleven distinct DNA motifs. The ILV degradation genes in gamma- and beta-proteobacteria are mainly regulated by anovel regulator from the MerR family (e.g., LiuR in Pseudomonas aeruginosa) (40 species), in addition, the TetR-type regulator LiuQ was identified in some beta-proteobacteria (8 species). Besides the core set of ILV utilization genes, the LiuR regulon in some lineages is expanded to include genes from other metabolic pathways, such as the glyoxylate shunt and glutamate synthase in the Shewanella species. The FA degradation genes are controlled by four regulators including FadR in gamma-proteobacteria (34 species), PsrA in gamma- and beta-proteobacteria (45 species), FadP in beta-proteobacteria (14 species), and LiuR orthologs in alpha-proteobacteria (22 species). The remarkable variability of the regulatory systems associated with the FA degradation pathway is discussed from the functional and evolutionary points of view.

  5. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. Results Isobutanol production could be improved by re-locating the valine biosynthesis enzymes Ilv2, Ilv5 and Ilv3 from the mitochondrial matrix into the cytosol. To prevent the import of the three enzymes into yeast mitochondria, N-terminally shortened Ilv2, Ilv5 and Ilv3 versions were constructed lacking their mitochondrial targeting sequences. SDS-PAGE and immunofluorescence analyses confirmed expression and re-localization of the truncated enzymes. Growth tests or enzyme assays confirmed enzymatic activities. Isobutanol production was only increased in the absence of valine and the simultaneous blockage of the mitochondrial valine synthesis pathway. Isobutanol production could be even more enhanced after adapting the codon usage of the truncated valine biosynthesis genes to the codon usage of highly expressed glycolytic genes. Finally, a suitable ketoisovalerate decarboxylase, Aro10, and alcohol dehydrogenase, Adh2, were selected and overexpressed. The highest isobutanol titer was 0.63 g/L at a yield of nearly 15 mg per g glucose. Conclusion A cytosolic isobutanol production pathway was successfully established in yeast by re-localization and optimization of mitochondrial valine synthesis enzymes together with overexpression of Aro10 decarboxylase and Adh2 alcohol dehydrogenase. Driving forces were generated by blocking competition with the mitochondrial valine pathway and by omitting valine from the fermentation medium. Additional deletion of pyruvate decarboxylase genes

  6. Production of α-ketobutyrate using engineered Escherichia coli via temperature shift.

    PubMed

    Zhang, Chenglin; Qi, Junsheng; Li, Yanjun; Fan, Xiaoguang; Xu, Qingyang; Chen, Ning; Xie, Xixian

    2016-09-01

    Alpha-ketobutyrate has been widely used in medicine and food additive industry. Because chemical and enzymatic methods are associated with many deficiencies, the recent focus shifted to fermentation for the production of α-ketobutyrate. In this study, a genetically engineered strain THRDΔrhtAΔilvIH/pWSK29-ilvA was constructed, starting from an L-threonine-producing strain, by overexpressing threonine dehydratase (TD), reducing α-ketobutyrate catabolism and L-threonine export. The shake flask cultivation of THRDΔrhtAΔilvIH/pWSK29-ilvA allowed the production of 16.2 g/L α-ketobutyrate. Accumulation of α-ketobutyrate severely inhibited the cell growth. To develop a better TD expression system and avoid the usage of the expensive inducer IPTG, a temperature-induced plasmid pBV220-ilvA was selected to transform the strain THRDΔrhtAΔilvIH for α-ketobutyrate production. The initial temperature was maintained at 35°C to guarantee normal cell growth, and then elevated to 40°C to induce the expression of TD. Under optimized conditions, the α-ketobutyrate titer reached 40.8 g/L after 28 h of fermentation, with a productivity of 1.46 g/L/h and a yield of 0.19 g/g glucose, suggesting large-scale production potential. Biotechnol. Bioeng. 2016;113: 2054-2059. © 2016 Wiley Periodicals, Inc. PMID:26917255

  7. Acetohydroxy acid synthase I is required for isoleucine and valine biosynthesis by Salmonella typhimurium LT2 during growth on acetate or long-chain fatty acids.

    PubMed

    Dailey, F E; Cronan, J E; Maloy, S R

    1987-02-01

    Salmonella typhimurium LT2 normally expresses two acetohydroxy acid synthases (AHAS I and AHAS II). The function of AHAS I in this organism was unclear, since AHAS I-deficient (ilvBN) mutants of LT2 grew well on glucose or succinate minimal media, whereas AHAS II-deficient (ilvGM) mutants requried isoleucine for normal growth on glucose minimal media. We report that AHAS I-deficient mutants of S. typhimurium required isoleucine and valine for growth on acetate or oleate minimal media, whereas AHAS II-deficient mutants were able to grow on these media without isoleucine supplementation. PMID:3542980

  8. The tetraspanin CD63 regulates ESCRT-independent and dependent endosomal sorting during melanogenesis

    PubMed Central

    van Niel, Guillaume; Charrin, Stéphanie; Simoes, Sabrina; Romao, Maryse; Rochin, Leila; Saftig, Paul; Marks, Michael S.; Rubinstein, Eric; Raposo, Graça

    2011-01-01

    Summary Cargo sorting to intraluminal vesicles (ILVs) of multivesicular endosomes is required for numerous physiological processes including lysosome-related organelle (LRO) biogenesis. PMEL – a component of melanocyte LROs (melanosomes) – is sorted to ILVs in an ESCRT-independent manner, where it is proteolytically processed and assembled into functional amyloid fibrils during melanosome maturation. Here we show that the tetraspanin CD63 directly participates in ESCRT-independent sorting of the PMEL luminal domain, but not of traditional ESCRT-dependent cargoes, to ILVs. Inactivating CD63 in cell culture or in mice impairs amyloidogenesis and downstream melanosome morphogenesis. Whereas CD63 is required for normal PMEL luminal domain sorting, the disposal of the remaining PMEL transmembrane fragment requires functional ESCRTs but not CD63. In the absence of CD63, the PMEL luminal domain follows this fragment and is targeted for ESCRT-dependent degradation. Our data thus reveal a tight interplay regulated by CD63 between two distinct endosomal ILV sorting processes for a single cargo during LRO biogenesis. PMID:21962903

  9. Human heart rate variability relation is unchanged during motion sickness

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Berger, R. D.; Oman, C. M.; Cohen, R. J.

    1998-01-01

    In a study of 18 human subjects, we applied a new technique, estimation of the transfer function between instantaneous lung volume (ILV) and instantaneous heart rate (HR), to assess autonomic activity during motion sickness. Two control recordings of ILV and electrocardiogram (ECG) were made prior to the development of motion sickness. During the first, subjects were seated motionless, and during the second they were seated rotating sinusoidally about an earth vertical axis. Subjects then wore prism goggles that reverse the left-right visual field and performed manual tasks until they developed moderate motion sickness. Finally, ILV and ECG were recorded while subjects maintained a relatively constant level of sickness by intermittent eye closure during rotation with the goggles. Based on analyses of ILV to HR transfer functions from the three conditions, we were unable to demonstrate a change in autonomic control of heart rate due to rotation alone or due to motion sickness. These findings do not support the notion that moderate motion sickness is manifested as a generalized autonomic response.

  10. Identification and Evaluation of Novel Acetolactate Synthase Inhibitors as Antifungal Agents

    PubMed Central

    Richie, Daryl L.; Thompson, Katherine V.; Studer, Christian; Prindle, Vivian C.; Aust, Thomas; Riedl, Ralph; Estoppey, David; Tao, Jianshi; Sexton, Jessica A.; Zabawa, Thomas; Drumm, Joseph; Cotesta, Simona; Eichenberger, Jürg; Schuierer, Sven; Hartmann, Nicole; Movva, N. Rao; Tallarico, John A.

    2013-01-01

    High-throughput phenotypic screening against the yeast Saccharomyces cerevisiae revealed a series of triazolopyrimidine-sulfonamide compounds with broad-spectrum antifungal activity, no significant cytotoxicity, and low protein binding. To elucidate the target of this series, we have applied a chemogenomic profiling approach using the S. cerevisiae deletion collection. All compounds of the series yielded highly similar profiles that suggested acetolactate synthase (Ilv2p, which catalyzes the first common step in branched-chain amino acid biosynthesis) as a possible target. The high correlation with profiles of known Ilv2p inhibitors like chlorimuron-ethyl provided further evidence for a similar mechanism of action. Genome-wide mutagenesis in S. cerevisiae identified 13 resistant clones with 3 different mutations in the catalytic subunit of acetolactate synthase that also conferred cross-resistance to established Ilv2p inhibitors. Mapping of the mutations into the published Ilv2p crystal structure outlined the chlorimuron-ethyl binding cavity, and it was possible to dock the triazolopyrimidine-sulfonamide compound into this pocket in silico. However, fungal growth inhibition could be bypassed through supplementation with exogenous branched-chain amino acids or by the addition of serum to the medium in all of the fungal organisms tested except for Aspergillus fumigatus. Thus, these data support the identification of the triazolopyrimidine-sulfonamide compounds as inhibitors of acetolactate synthase but suggest that targeting may be compromised due to the possibility of nutrient bypass in vivo. PMID:23478965

  11. DISPOSAL OF REACTOR DEIONIZER VESSELS HIGHLY CONTAMINATED WITH 14 CARBON IN THE INTERMEDIATE LEVEL VAULT FACILITY AT SRS

    SciTech Connect

    Hiergesell, R; Daniel Kaplan, D

    2007-05-21

    At the Savannah River Site (SRS), nuclear production reactors used deionizers to control the chemistry of the reactor moderator during their operation to produce nuclear materials primarily for the weapons program. These deionizers were removed from the reactors and stored as a legacy waste with no path to disposal due to the relatively high {sup 14}C contamination (i.e., on the order of 20 curies per deionizer for 48-50 deionizers) and the low disposal limit of 4.2 Ci previously established for the Intermediate Level Vault (ILV). The ILV is considered most appropriate facility within which to dispose these items due to the method of solidifying waste items with cementitious material inside concrete vaults. In previous analyses the {sup 14}C ILV disposal limit was established at 4.2 Ci resulting from the use of a very conservative method to analyze the dose received from atmospheric releases of gaseous {sup 14}C. This investigation implemented a more rigorous evaluation of the physical and chemical processes influencing the release and migration of gaseous {sup 14}C (as CO{sub 2}) to obtain a more realistic estimate of atmospheric dose and to determine new ILV disposal limits.

  12. A dual-input nonlinear system analysis of autonomic modulation of heart rate

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Mullen, T. J.; Cohen, R. J.

    1996-01-01

    Linear analyses of fluctuations in heart rate and other hemodynamic variables have been used to elucidate cardiovascular regulatory mechanisms. The role of nonlinear contributions to fluctuations in hemodynamic variables has not been fully explored. This paper presents a nonlinear system analysis of the effect of fluctuations in instantaneous lung volume (ILV) and arterial blood pressure (ABP) on heart rate (HR) fluctuations. To successfully employ a nonlinear analysis based on the Laguerre expansion technique (LET), we introduce an efficient procedure for broadening the spectral content of the ILV and ABP inputs to the model by adding white noise. Results from computer simulations demonstrate the effectiveness of broadening the spectral band of input signals to obtain consistent and stable kernel estimates with the use of the LET. Without broadening the band of the ILV and ABP inputs, the LET did not provide stable kernel estimates. Moreover, we extend the LET to the case of multiple inputs in order to accommodate the analysis of the combined effect of ILV and ABP effect on heart rate. Analyzes of data based on the second-order Volterra-Wiener model reveal an important contribution of the second-order kernels to the description of the effect of lung volume and arterial blood pressure on heart rate. Furthermore, physiological effects of the autonomic blocking agents propranolol and atropine on changes in the first- and second-order kernels are also discussed.

  13. Disposal Analysis of I-129 Bearing Waste Streams at the Intermediate Level Vault

    SciTech Connect

    Collard, L.B.

    2001-01-25

    This report examines the effects of new waste-specific sorption characteristics reported for I-129 bearing wastes on inventory limits in the Intermediate Level Vault (ILV). Inventory limits are described based on the revised performance assessment model using the waste-specific Kd's. Results are compared with inventory projections of waste streams for the next ten years.

  14. Analysis of the functional domains of biosynthetic threonine deaminase by comparison of the amino acid sequences of three wild-type alleles to the amino acid sequence of biodegradative threonine deaminase.

    PubMed

    Taillon, B E; Little, R; Lawther, R P

    1988-03-31

    The nucleotide sequence of the gene, ilvA, for biosynthetic threonine deaminase (Tda) from Salmonella typhimurium was determined. The deduced amino acid sequence was compared with the deduced amino acid sequences of the biosynthetic Tda from Escherichia coli K-12 (ilvA) and Saccharomyces cerevisiae (ILV1) and the biodegradative Tda from E. coli K-12 (tdc). The comparison indicated the presence of two types of blocks of homologous amino acids. The first type of homology is in the N-terminal portion of all four isozymes of Tda and probably indicates amino acids involved in catalysis. The second type of homology is found in the C-terminal portion of the three biosynthetic isozymes and presumably is involved in either (i) the binding or interaction of the allosteric effector isoleucine with the enzyme, or (ii) subunit interactions. The sites of amino acid changes of two E. coli K-12 ilvA alleles with altered response to isoleucine are consistent with the conclusion that the C-terminal portion of biosynthetic Tda is involved in allosteric regulation. PMID:3290055

  15. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.

    PubMed

    Buchholz, Jens; Schwentner, Andreas; Brunnenkan, Britta; Gabris, Christina; Grimm, Simon; Gerstmeir, Robert; Takors, Ralf; Eikmanns, Bernhard J; Blombach, Bastian

    2013-09-01

    Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products. PMID:23835179

  16. Altered regulation of isoleucine-valine biosynthesis in a hisW mutant of Salmonella typhimurium.

    PubMed

    Davis, L; Williams, L S

    1982-08-01

    Control of isoleucine-valine biosynthesis was examined in the cold-sensitive hisW3333 mutant strain of Salmonella typhimurium. During growth at the permissive temperature (37 degrees C), the isoleucine-valine (ilv) biosynthetic enzyme levels of the hisW mutant were two- to fourfold below these levels in an isogenic hisW+ strain. Upon a reduction in growth temperature to partially permissive (30 degrees C), the synthesis of these enzymes in the hisW mutant was further reduced. However, synthesis of the ilv enzymes was responsive to the repression signal(s) caused by the addition of excess amounts of isoleucine, valine, and leucine to the hisW mutants. Such a "super-repressed" phenotype as that observed in this hisW mutant is similar to that previously shown for the hisU1820 mutant, but was different from the regulatory response of the hisT1504 mutant strain. Moreover, by the use of growth-rate-limiting amounts of the branched-chain amino acids, it was shown that this hisW mutant generally did not increase the synthesis of the ilv enzymes as did the hisW+ strain. Overall, these results are in agreement with the hypothesis that the hisW mutant is less responsive to ilv specific attenuation control than is the hisW+ strain and suggest that this limited regulatory response is due to an alteration in the amount or structure of an element essential to attenuation control of the ilv operons. PMID:7047499

  17. Interaction of acoustic-gravity waves with an elastic shelf-break

    NASA Astrophysics Data System (ADS)

    Tian, Miao; Kadri, Usama

    2016-04-01

    In contrast to surface gravity waves that induce flow field which decays exponentially with depth, acoustic-gravity waves oscillate throughout the water column. Their oscillatory profile exerts stresses to the ground which provides a natural explanation for the earth's microseism (Longuet-Higgins, 1950). This work is an extension of the shelf-break problem by Kadri and Stiassnie (2012) who considered the sea floor and the shelf-break to be rigid, and the elastic problem by Eyov et al. (2013) who illustrated the importance of the sea-floor elasticity. In this study we formulate and solve the two-dimensional problem of an incident acoustic-gravity wave mode propagating over an elastic wall and interacting with a shelf-break in a weakly compressible fluid. As the modes approach the shelf-break, part of the energy is reflected whereas the other part is transmitted. A mathematical model is formulated by matching particular solutions for each subregion of constant depth along vertical boundaries; the resulting matrix equation is then solved numerically. The physical properties of these waves are studied, and compared with those for waves over a rigid bottom. The present work broadens our knowledge of acoustic-gravity-waves propagation in realistic environment and can potentially benefit the early detection of tsunami, generated from landslides or submarine earthquakes. References Eyov E., Klar A., Kadri U. , Stiassnie M. 2013 Progressive waves in a compressible-ocean with an elastic bottom. Wave Motion 50, 929-939. Kadri, U., and M. Stiassnie, 2012 Acoustic-Gravity waves interacting with the shelf break. J. Geophys. Res. 117, C03035. Longuet-Higgins, M.S. 1950 A theory of the origin of microseisms. Philos. Trans. R. Soc. Lond. A 243, 1-35.

  18. Role of acetohydroxy acid isomeroreductase in biosynthesis of pantothenic acid in Salmonella typhimurium.

    PubMed

    Primerano, D A; Burns, R O

    1983-01-01

    Structural genes have been identified for all of the enzymes involved in the biosynthesis of pantothenic acid in Salmonella typhimurium and Escherichia coli K-12, with the exception of ketopantoic acid reductase, which catalyzes the conversion of alpha-ketopantoate to pantoate. The acetohydroxy acid isomeroreductase from S. typhimurium efficiently bound alpha-ketopantoate (K(m) = 0.25 mM) and catalyzed its reduction at 1/20 the rate at which alpha-acetolactate was reduced. Since two enzymes could apparently participate in the synthesis of pantoate, a S. typhimurium ilvC8 strain was mutagenized to derive strains completely blocked in the conversion of alpha-ketopantoate to pantoate. Several isolates were obtained that grew in isoleucine-valine medium supplemented with either pantoate or pantothenate, but not in the same medium supplemented with alpha-ketopantoate or beta-alanine. The mutations that conferred pantoate auxotrophy (designated panE) to these isolates appeared to be clustered, but were not linked to panB or panC. All panE strains tested had greatly reduced levels of ketopantoic acid reductase (3 to 12% of the activity present in DU201). The capacity of the isomeroreductase to synthesize pantoate in vivo was assessed by determining the growth requirements of ilvC(+) derivatives of panE ilvC8 strains. These strains required either alpha-ketopantoate, pantoate, or pantothenate when the isomeroreductase was present at low levels; when the synthesis of isomeroreductase was induced, panE ilvC(+) strains grew in unsupplemented medium. These phenotypes indicate that a high level of isomeroreductase is sufficient for the synthesis of pantoate. panE ilvC(+) strains also grew in medium supplemented with lysine and methionine. This phenotype resembles that of some S. typhimurium ilvG mutants (e.g., DU501) which are partially blocked in the biosynthesis of coenzyme A and are limited for succinyl coenzyme A. panE ilvC(+) strains which lack the acetohydroxy acid

  19. Wavemaker theories for acoustic-gravity waves over a finite depth

    NASA Astrophysics Data System (ADS)

    Tian, Miao; Kadri, Usama

    2016-04-01

    Acoustic-gravity waves (hereafter AGWs) in ocean have received much interest recently, mainly with respect to early detection of tsunamis as they travel at near the speed of sound in water which makes them ideal candidates for early detection of tsunamis. While the generation mechanisms of AGWs have been studied from the perspective of vertical oscillations of seafloor (Yamamoto, 1982; Stiassnie, 2010) and triad wave-wave interaction (Longuet-Higgins 1950; Kadri and Stiassnie 2013; Kadri and Akylas 2016), in the current study we are interested in their generation by wave-structure interaction with possible application to the energy sector. Here, we develop two wavemaker theories to analyze different wave modes generated by impermeable (the classic Havelock's theory) and porous (porous wavemaker theory) plates in weakly compressible fluids. Slight modification has been made to the porous theory so that, unlike the previous theory (Chwang, 1983), the new solution depends on the geometry of the plate. The expressions for three different types of plates (piston, flap, delta-function) are introduced. Analytical solutions are also derived for the potential amplitude of the gravity, evanescent, and acoustic-gravity waves, as well as the surface elevation, velocity distribution, and pressure for AGWs. Both theories reduce to previous results for incompressible flow when the compressibility is negligible. We also show numerical examples for AGW generated in a wave flume as well as in deep ocean. Our current study sets the theoretical background towards remote sensing by AGWs, for optimized deep ocean wave-power harnessing, among others. References Chwang, A.T. 1983 A porous-wavemaker theory. Journal of Fluid Mechanics, 132, 395- 406. Kadri, U., Stiassnie, M. 2013 Generation of an acoustic-gravity wave by two gravity waves, and their subsequent mutual interaction. J. Fluid Mech. 735, R6. Kadri U., Akylas T.R. 2016 On resonant triad interactions of acoustic-gravity waves. J

  20. Recharge Data for Hawaii Island

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Recharge data for Hawaii Island in shapefile format. The data are from the following sources: Whittier, R.B and A.I. El-Kadi. 2014. Human Health and Environmental Risk Ranking of On-Site Sewage Disposal systems for the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final, Prepared for Hawaii Dept. of Health, Safe Drinking Water Branch by the University of Hawaii, Dept. of Geology and Geophysics. Oki, D. S. 1999. Geohydrology and Numerical Simulation of the Ground-Water Flow System of Kona, Island of Hawaii. U.S. Water-Resources Investigation Report: 99-4073. Oki, D. S. 2002. Reassessment of Ground-water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii. U.S. Geological Survey Water-Resources Investigation report 02-4006.

  1. Selective Methyl Labeling of Eukaryotic Membrane Proteins Using Cell-Free Expression

    PubMed Central

    2015-01-01

    Structural characterization of membrane proteins and other large proteins with NMR relies increasingly on perdeuteration combined with incorporation of specifically protonated amino acid moieties, such as methyl groups of isoleucines, valines, or leucines. The resulting proton dilution reduces dipolar broadening producing sharper resonance lines, ameliorates spectral crowding, and enables measuring of crucial distances between and to methyl groups. While incorporation of specific methyl labeling is now well established for bacterial expression using suitable precursors, corresponding methods are still lacking for cell-free expression, which is often the only choice for producing labeled eukaryotic membrane proteins in mg quantities. Here we show that we can express methyl-labeled human integral membrane proteins cost-effectively by cell-free expression based of crude hydrolyzed ILV-labeled OmpX inclusion bodies. These are obtained in Escherichia coli with very high quantity and represent an optimal intermediate to channel ILV precursors into the eukaryotic proteins. PMID:24937763

  2. Selective methyl labeling of eukaryotic membrane proteins using cell-free expression.

    PubMed

    Linser, Rasmus; Gelev, Vladimir; Hagn, Franz; Arthanari, Haribabu; Hyberts, Sven G; Wagner, Gerhard

    2014-08-13

    Structural characterization of membrane proteins and other large proteins with NMR relies increasingly on perdeuteration combined with incorporation of specifically protonated amino acid moieties, such as methyl groups of isoleucines, valines, or leucines. The resulting proton dilution reduces dipolar broadening producing sharper resonance lines, ameliorates spectral crowding, and enables measuring of crucial distances between and to methyl groups. While incorporation of specific methyl labeling is now well established for bacterial expression using suitable precursors, corresponding methods are still lacking for cell-free expression, which is often the only choice for producing labeled eukaryotic membrane proteins in mg quantities. Here we show that we can express methyl-labeled human integral membrane proteins cost-effectively by cell-free expression based of crude hydrolyzed ILV-labeled OmpX inclusion bodies. These are obtained in Escherichia coli with very high quantity and represent an optimal intermediate to channel ILV precursors into the eukaryotic proteins. PMID:24937763

  3. RBANS Memory Indices Are Related to Medial Temporal Lobe Volumetrics in Healthy Older Adults and Those with Mild Cognitive Impairment

    PubMed Central

    England, Heather B.; Gillis, M. Meredith; Hampstead, Benjamin M.

    2014-01-01

    The current study (i) determined whether NeuroQuant® volumetrics are reflective of differences in medial temporal lobe (MTL) volumes between healthy older adults and those with mild cognitive impairment (MCI) and (ii) examined the relationship between RBANS indices and MTL volumes. Forty-three healthy older adults and 57 MCI patients completed the RBANS and underwent structural MRI. Hippocampal and inferior lateral ventricle (ILV) volumes were obtained using NeuroQuant®. Results revealed significantly smaller hippocampal and larger ILV volumes in MCI patients. MTL volumes were significantly related to the RBANS Immediate and Delayed Memory and Language indices but not the Attention or Visuoconstruction indices; findings that demonstrate anatomical specificity. Following discriminant function analysis, we calculated a cutpoint that may prove clinically useful for integrating MTL volumes into the diagnosis of MCI. These findings demonstrate the potential clinical utility of NeuroQuant® and are the first to document the relationship between RBANS indices and MTL volumes. PMID:24709384

  4. RBANS memory indices are related to medial temporal lobe volumetrics in healthy older adults and those with mild cognitive impairment.

    PubMed

    England, Heather B; Gillis, M Meredith; Hampstead, Benjamin M

    2014-06-01

    The current study (i) determined whether NeuroQuant(®) volumetrics are reflective of differences in medial temporal lobe (MTL) volumes between healthy older adults and those with mild cognitive impairment (MCI) and (ii) examined the relationship between RBANS indices and MTL volumes. Forty-three healthy older adults and 57 MCI patients completed the RBANS and underwent structural MRI. Hippocampal and inferior lateral ventricle (ILV) volumes were obtained using NeuroQuant(®). Results revealed significantly smaller hippocampal and larger ILV volumes in MCI patients. MTL volumes were significantly related to the RBANS Immediate and Delayed Memory and Language indices but not the Attention or Visuoconstruction indices; findings that demonstrate anatomical specificity. Following discriminant function analysis, we calculated a cutpoint that may prove clinically useful for integrating MTL volumes into the diagnosis of MCI. These findings demonstrate the potential clinical utility of NeuroQuant(®) and are the first to document the relationship between RBANS indices and MTL volumes. PMID:24709384

  5. Genome-based analysis and gene dosage studies provide new insight into 3-hydroxy-4-methylvalerate biosynthesis in Ralstonia eutropha.

    PubMed

    Saika, Azusa; Ushimaru, Kazunori; Mizuno, Shoji; Tsuge, Takeharu

    2015-04-01

    Recombinant Ralstonia eutropha strain PHB(-)4 expressing the broad-substrate-specificity polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. strain 61-3 (PhaC1Ps) synthesizes a PHA copolymer containing the branched side-chain unit 3-hydroxy-4-methylvalerate (3H4MV), which has a carbon backbone identical to that of leucine. Mutant strain 1F2 was derived from R. eutropha strain PHB(-)4 by chemical mutagenesis and shows higher levels of 3H4MV production than does the parent strain. In this study, to understand the mechanisms underlying the enhanced production of 3H4MV, whole-genome sequencing of strain 1F2 was performed, and the draft genome sequence was compared to that of parent strain PHB(-)4. This analysis uncovered four point mutations in the 1F2 genome. One point mutation was found in the ilvH gene at amino acid position 36 (A36T) of IlvH. ilvH encodes a subunit protein that regulates acetohydroxy acid synthase III (AHAS III). AHAS catalyzes the conversion of pyruvate to 2-acetolactate, which is the first reaction in the biosynthesis of branched amino acids such as leucine and valine. Thus, the A36T IlvH mutation may show AHAS tolerance to feedback inhibition by branched amino acids, thereby increasing carbon flux toward branched amino acid and 3H4MV biosynthesis. Furthermore, a gene dosage study and an isotope tracer study were conducted to investigate the 3H4MV biosynthesis pathway. Based on the observations in these studies, we propose a 3H4MV biosynthesis pathway in R. eutropha that involves a condensation reaction between isobutyryl coenzyme A (isobutyryl-CoA) and acetyl-CoA to form the 3H4MV carbon backbone. PMID:25645560

  6. Genome-Based Analysis and Gene Dosage Studies Provide New Insight into 3-Hydroxy-4-Methylvalerate Biosynthesis in Ralstonia eutropha

    PubMed Central

    Ushimaru, Kazunori; Mizuno, Shoji

    2015-01-01

    Recombinant Ralstonia eutropha strain PHB−4 expressing the broad-substrate-specificity polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. strain 61-3 (PhaC1Ps) synthesizes a PHA copolymer containing the branched side-chain unit 3-hydroxy-4-methylvalerate (3H4MV), which has a carbon backbone identical to that of leucine. Mutant strain 1F2 was derived from R. eutropha strain PHB−4 by chemical mutagenesis and shows higher levels of 3H4MV production than does the parent strain. In this study, to understand the mechanisms underlying the enhanced production of 3H4MV, whole-genome sequencing of strain 1F2 was performed, and the draft genome sequence was compared to that of parent strain PHB−4. This analysis uncovered four point mutations in the 1F2 genome. One point mutation was found in the ilvH gene at amino acid position 36 (A36T) of IlvH. ilvH encodes a subunit protein that regulates acetohydroxy acid synthase III (AHAS III). AHAS catalyzes the conversion of pyruvate to 2-acetolactate, which is the first reaction in the biosynthesis of branched amino acids such as leucine and valine. Thus, the A36T IlvH mutation may show AHAS tolerance to feedback inhibition by branched amino acids, thereby increasing carbon flux toward branched amino acid and 3H4MV biosynthesis. Furthermore, a gene dosage study and an isotope tracer study were conducted to investigate the 3H4MV biosynthesis pathway. Based on the observations in these studies, we propose a 3H4MV biosynthesis pathway in R. eutropha that involves a condensation reaction between isobutyryl coenzyme A (isobutyryl-CoA) and acetyl-CoA to form the 3H4MV carbon backbone. PMID:25645560

  7. Enhanced production of branched-chain amino acids by Gluconacetobacter europaeus with a specific regional deletion in a leucine responsive regulator.

    PubMed

    Akasaka, Naoki; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2014-12-01

    Vinegar with increased amounts of branched-chain amino acids (BCAAs; valine, leucine and isoleucine) is favorable for human health as BCAAs decrease diet-induced obesity and hyperglycemia. To construct Gluconacetobacter europaeus which produces BCAAs, leucine responsive regulator (GeLrp) is focused and two Gelrp mutants were constructed. Wild-type KGMA0119 didn't produce significant amount of valine (0.13 mM) and leucine (0 mM) and strain KGMA7110 which lacks complete Gelrp accumulated valine (0.48 mM) and leucine (0.11 mM) but showed impaired growth, and it was fully restored in the presence of essential amino acids. Strain KGMA7203 was then constructed with a nonsense mutation at codon Trp132 in the Gelrp, which leads a specific deletion at an estimated ligand-sensing region in the C-terminal domain. KGMA7203 produced greater quantities of valine (0.80 mM) and leucine (0.26 mM) and showed the same growth characteristics as KGMA0119. mRNA levels of BCAAs biosynthesis genes (ilvI and ilvC) and probable BCAAs efflux pump (leuE) were determined by quantitative reverse-transcription PCR. Expression rates of ilvI and ilvC in the two Gelrp disruptants were greater than those in KGMA0119. leuE was highly expressed in KGMA7110 only, suggesting that the accumulation in KGMA7110 culture was caused by increased expression of the biosynthesis genes and abnormal enhanced export of amino acids resulting in impaired cell growth. In contrast, KGMA7203 would achieve the high level production through enhanced expression of the biosynthesis genes without enhancing that for the efflux pump. KGMA7203 was considered advantageous for production of vinegar with higher amounts of valine and leucine. PMID:24985571

  8. Genetic interactions within inositol-related pathways are associated with longitudinal changes in ventricle size

    PubMed Central

    Koran, Mary Ellen I.; Hohman, Timothy J.; Meda, Shashwath A.; Thornton-Wells, Tricia A.

    2013-01-01

    The genetic etiology of late onset Alzheimer disease (LOAD) has proven complex, involving clinical and genetic heterogeneity and gene-gene interactions. Recent genome wide association studies (GWAS) in LOAD have led to the discovery of novel genetic risk factors; however, the investigation of gene-gene interactions has been limited. Conventional genetic studies often use binary disease status as the primary phenotype, but for complex brain-based diseases, neuroimaging data can serve as quantitative endophenotypes that correlate with disease status and closely reflect pathological changes. In the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, we tested for association of genetic interactions with longitudinal MRI measurements of the inferior lateral ventricles (ILVs), which have repeatedly shown a relationship to LOAD status and progression. We performed linear regression to evaluate the ability of pathway-derived SNP-SNP pairs to predict the slope of change in volume of the ILVs. After Bonferroni correction, we identified four significant interactions in the right ILV (RILV) corresponding to gene-gene pairs SYNJ2-PI4KA, PARD3-MYH2, PDE3A-ABHD12B and OR2L13-PRKG1 and one significant interaction in the left ILV (LILV) corresponding to SYNJ2-PI4KA. The SNP-SNP interaction corresponding to SYNJ2-PI4KA was identical in the RILV and LILV and was the most significant interaction in each (RILV: p=9.10×10−12; LILV: p=8.20×10−13). Both genes belong to the inositol phosphate signaling pathway which has been previously associated with neurodegeneration in AD and we discuss the possibility that perturbation of this pathway results in a down-regulation of the Akt cell survival pathway and, thereby, decreased neuronal survival, as reflected by increased volume of the ventricles. PMID:24077433

  9. Isolation and mapping of a uracil-sensitive mutant of Salmonella typhimurium.

    PubMed

    Bussey, L B; Ingraham, J L

    1982-01-01

    A uracil-sensitive mutant of Salmonella typhimurium was isolated by diethyl sulfate mutagenesis and penicillin counterselection. This mutation identifies a new Salmonella gene that is well separated from the structural genes for arginine and pyrimidine biosynthesis. The use-1 mutation was located between the ilv gene cluster (isoleucine-valine operon) and hisR (structural gene for histidine tRNA) at 83 map units. PMID:7048028

  10. Transaminase B from Escherichia coli: quaternary structure, amino-terminal sequence, substrate specificity, and absence of a separate valine-alpha-ketoglutarate activity.

    PubMed

    Lee-Peng, F C; Hermodson, M A; Kohlhaw, G B

    1979-08-01

    Transaminase B (branched-chain amino acid aminotransferase, EC 2.6.1.42), the ilvE gene product, was purified to apparent homogeneity from an Escherichia coli K-12 strain which carries the ilvE gene both on the host chromosome and on a plasmid. The oligomeric structure of the enzyme, as determined by analytical ultracentrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was confirmed to be that of a hexamer with a molecular weight of about 182,000 and apparently identical subunits. Cross-linking with dimethylsuberimidate yielded trimers, dimers, and monomers, but essentially no species of higher molecular weight. These results are consistent with a double-trimer arrangement of the subunits in native enzyme. The amino-terminal sequence was found to be: Gly Thr Lys Lys Ala Asp Tyr Ile (Trp) Phe Asn Gly (Thr) (Met) Val. Purified transaminase B catalyzed transamination between alpha-ketoglutarate and l-isoleucine, l-leucine, l-valine, and, to a lesser extent, l-phenylalanine and l-tyrosine, the latter reacting very sluggishly. The enzyme was free of aspartate transaminase and of transaminase C. The apparent K(m) values for the branched-chain alpha-ketoacids were smaller than those for the corresponding amino acids. The lowest K(m) was recorded for dl-alpha-keto-beta-methyl-n-valerate, and the highest was recorded for l-valine. The ratio of the valine- and isoleucine-alpha-ketoglutarate activities did not change significantly during purification, and both activities were quantitatively removed from crude extract by antibody raised against purified transaminase B. These observations argue against the existence of a separate valine-alpha-ketoglutarate transaminase. Anti-E. coli transaminase B antibody cross-reacted with crude extract from Salmonella typhimurium, but not with extract obtained from Pseudomonas aeruginosa. PMID:378964

  11. α,β-Dicarbonyl reduction is mediated by the Saccharomyces Old Yellow Enzyme.

    PubMed

    van Bergen, Barry; Cyr, Normand; Strasser, Rona; Blanchette, Maxime; Sheppard, John D; Jardim, Armando

    2016-08-01

    The undesirable flavor compounds diacetyl and 2,3-pentanedione are vicinal diketones (VDKs) formed by extracellular oxidative decarboxylation of intermediate metabolites of the isoleucine, leucine and valine (ILV) biosynthetic pathway. These VDKs are taken up by Saccharomyces and enzymatically converted to acetoin and 3-hydroxy-2-pentanone, respectively. Purification of a highly enriched diacetyl reductase fraction from Saccharomyces cerevisiae in conjunction with mass spectrometry identified Old Yellow Enzyme (Oye) as an enzyme capable of catalyzing VDK reduction. Kinetic analysis of recombinant Oye1p, Oye2p and Oye3p isoforms confirmed that all three isoforms reduced diacetyl and 2,3-pentanedione in an NADPH-dependent reaction. Transcriptomic analysis of S. cerevisiae (ale) and S. pastorianus (lager) yeast during industrial fermentations showed that the transcripts for OYE1, OYE2, arabinose dehydrogenase (ARA1), α-acetolactate synthase (ILV2) and α-acetohydroxyacid reductoisomerase (ILV5) were differentially regulated in a manner that correlated with changes in extracellular levels of VDKs. These studies provide insights into the mechanism for reducing VDKs and decreasing maturation times of beer which are of commercial importance. PMID:27400981

  12. A Family of Tetraspans Organizes Cargo for Sorting into Multivesicular Bodies

    PubMed Central

    MacDonald, Chris; Payne, Johanna A.; Aboian, Mariam; Smith, William; Katzmann, David J.; Piper, Robert C.

    2015-01-01

    SUMMARY The abundance of cell surface membrane proteins is regulated by internalization and delivery into intralumenal vesicles (ILVs) of multivesicular bodies (MVB). Many cargoes are ubiquitinated, allowing access to an ESCRT-dependent pathway into MVBs. Yet, how non-ubiquitinated proteins, such as Glycosylphosphatidylinisotol-anchored proteins, enter MVBs is unclear, supporting the possibility of mechanistically distinct ILV biogenesis pathways. Here we show a family of highly ubiquitinated tetraspan Cos proteins provide a Ub-signal in trans, allowing sorting of non-ubiquitinated MVB cargo into the canonical ESCRT- and Ub-dependent pathway. Cos proteins create discrete endosomal subdomains that concentrate Ub-cargo prior to their envelopment into ILVs and the activity of Cos proteins is required not only for efficient sorting of canonical Ub-cargo but is also essential for sorting non-ubiquitinated cargo into MVBs. Expression of these proteins increases during nutrient stress though a NAD+/Sir2-dpendent mechanism that in turn accelerates the down-regulation of a broad range of cell surface proteins. PMID:25942624

  13. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes.

    PubMed Central

    Blomqvist, K; Nikkola, M; Lehtovaara, P; Suihko, M L; Airaksinen, U; Stråby, K B; Knowles, J K; Penttilä, M E

    1993-01-01

    The genes involved in the 2,3-butanediol pathway coding for alpha-acetolactate decarboxylase, alpha-acetolactate synthase (alpha-ALS), and acetoin (diacetyl) reductase were isolated from Klebsiella terrigena and shown to be located in one operon. This operon was also shown to exist in Enterobacter aerogenes. The budA gene, coding for alpha-acetolactate decarboxylase, gives in both organisms a protein of 259 amino acids. The amino acid similarity between these proteins is 87%. The K. terrigena genes budB and budC, coding for alpha-ALS and acetoin reductase, respectively, were sequenced. The 559-amino-acid-long alpha-ALS enzyme shows similarities to the large subunits of the Escherichia coli anabolic alpha-ALS enzymes encoded by the genes ilvB, ilvG, and ilvI. The K. terrigena alpha-ALS is also shown to complement an anabolic alpha-ALS-deficient E. coli strain for valine synthesis. The 243-amino-acid-long acetoin reductase has the consensus amino acid sequence for the insect-type alcohol dehydrogenase/ribitol dehydrogenase family and has extensive similarities with the N-terminal and internal regions of three known dehydrogenases and one oxidoreductase. Images PMID:8444801

  14. LEU3 of Saccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanucleotide core sequence

    SciTech Connect

    Friden, P.; Schimmel, P.

    1988-07-01

    LEU3 of Saccharomyces cerevisiae encodes an 886-amino-acid polypeptide that regulates transcription of a group of genes involved in leucine biosynthesis and has been shown to bind specifically to a 114-base-pair DNA fragment of the LEU2 upstream region. The authors show here that, in addition to LEU2, LEU3 binds in vitro to sequences in the promoter regions of LEU1, LEU4, ILV2, and, by inference, ILV5. The largely conserved decanucleotide core sequence shared by the binding sites in these genes is CCGGNNCCGG. Methylation interference footprinting experiements show that LEU 3 makes symmetrical contacts with the conserved bases that lie in the major groove. Synthetic oligonucleides (19 to 29 base pairs) which contain the core decanucleotide and flanking sequences of LEU1, LEU2, LEU4, and ILV2 have individually been placed upstream of a LEU3-insensitive test promoter. The expression of each construction is activated by LEU3, although the degree of activation varies considerably according to the specific oligonucleotide which is introduced. A promoter construction with substitutions in the core sequence remains LEU3 insensitive, however. One of the oligonucleotides (based on a LEU2 sequence) was also tested and shown to confer leucine-sensitive expression on the test promoter. The results demonstrate that only a short sequence element is necessary for LEU3-dependent promoter binding and activation and provide direct evidence for an expanded repertoire of genes that are activated by LEU3.

  15. Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: Sequence determinants of structure and stability.

    PubMed

    Kathuria, Sagar V; Chan, Yvonne H; Nobrega, R Paul; Özen, Ayşegül; Matthews, C Robert

    2016-03-01

    Measurements of protection against exchange of main chain amide hydrogens (NH) with solvent hydrogens in globular proteins have provided remarkable insights into the structures of rare high-energy states that populate their folding free-energy surfaces. Lacking, however, has been a unifying theory that rationalizes these high-energy states in terms of the structures and sequences of their resident proteins. The Branched Aliphatic Side Chain (BASiC) hypothesis has been developed to explain the observed patterns of protection in a pair of TIM barrel proteins. This hypothesis supposes that the side chains of isoleucine, leucine, and valine (ILV) residues often form large hydrophobic clusters that very effectively impede the penetration of water to their underlying hydrogen bond networks and, thereby, enhance the protection against solvent exchange. The linkage between the secondary and tertiary structures enables these ILV clusters to serve as cores of stability in high-energy partially folded states. Statistically significant correlations between the locations of large ILV clusters in native conformations and strong protection against exchange for a variety of motifs reported in the literature support the generality of the BASiC hypothesis. The results also illustrate the necessity to elaborate this simple hypothesis to account for the roles of adjacent hydrocarbon moieties in defining stability cores of partially folded states along folding reaction coordinates. PMID:26660714

  16. Staphylococcal enterotoxin A gene is associated with a variable genetic element.

    PubMed Central

    Betley, M J; Löfdahl, S; Kreiswirth, B N; Bergdoll, M S; Novick, R P

    1984-01-01

    The genetic determinant of Staphylococcus aureus enterotoxin A (SEA) has been cloned in pBR322 in Escherichia coli and found to be expressed and secreted into the periplasmic space in that organism. The SEA gene (entA) is within a 2.5-kilobase-pair HindIII fragment that is part of a discrete genetic element 8-12 kilobase pairs in length. This entA element has a standard chromosomal location [between the purine (pur) and isoleucine-valine (ilv) markers] in most S. aureus strains. In some strains it is unlinked to pur-ilv. However, its internal structure is conserved at different locations. Some naturally occurring SEA-nonproducer (EntA-) strains lack the entire entA element, and one instance of its spontaneous loss is reported. Other naturally occurring strains have EntA- structural variants of the element at the same pur-ilv location at which the intact element is most commonly found. Some of these strains are EntA-, others are EntA+; the latter have a second, unlinked copy of the element containing their functional entA gene. These results suggest that entA is associated with a structurally unstable, possibly mobile, discrete genetic element. Images PMID:6089183

  17. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol.

    PubMed

    Park, Seong-Hee; Kim, Sujin; Hahn, Ji-Sook

    2014-11-01

    Saccharomyces cerevisiae naturally produces small amounts of isobutanol and 3-methyl-1-butanol via Ehrlich pathway from the catabolism of valine and leucine, respectively. In this study, we engineered CEN.PK2-1C, a leucine auxotrophic strain having a LEU2 gene mutation, for the production of isobutanol and 3-methyl-1-butanol. First, ALD6 encoding aldehyde dehydrogenase and BAT1 involved in valine synthesis were deleted to eliminate competing pathways. We also increased transcription of endogenous genes in the valine and leucine biosynthetic pathways by expressing Leu3Δ601, a constitutively active form of Leu3 transcriptional activator. For the production of isobutanol, genes involved in isobutanol production (ILV2, ILV3, ILV5, ARO10, and ADH2) were additionally overexpressed in ald6Δbat1Δ strain expressing LEU3Δ601, resulting in 376.9 mg/L isobutanol production from 100 g/L glucose. To increase 3-methyl-1-butanol production, leucine biosynthetic genes were additionally overexpressed in the final isobutanol-production strain. The resulting strain overexpressing LEU2 and LEU4 (D578Y) , a feedback inhibition-insensitive mutant of LEU4, showed a 34-fold increase in 3-methyl-1-butanol synthesis compared with CEN.PK2-1C control strain, producing 765.7 mg/L 3-methyl-1-butanol. PMID:25280745

  18. Divergent evolution of a bifunctional de novo protein.

    PubMed

    Smith, Betsy A; Mularz, Ann E; Hecht, Michael H

    2015-02-01

    Primordial proteins, the evolutionary ancestors of modern sequences, are presumed to have been minimally active and nonspecific. Following eons of selective pressure, these early progenitors evolved into highly active and specific proteins. While evolutionary trajectories from poorly active and multifunctional generalists toward highly active specialists likely occurred many times in evolutionary history, such pathways are difficult to reconstruct in natural systems, where primordial sequences are lost to time. To test the hypothesis that selection for enhanced activity leads to a loss of promiscuity, we evolved a de novo designed bifunctional protein. The parental protein, denoted Syn-IF, was chosen from a library of binary patterned 4-helix bundles. Syn-IF was shown previously to rescue two different auxotrophic strains of E. coli: ΔilvA and Δfes. These two strains contain deletions for proteins with very different biochemical functions; IlvA is involved in isoleucine biosynthesis, while Fes is involved in iron assimilation. In two separate experiments, Syn-IF, was evolved for faster rescue of either ΔilvA or Δfes. Following multiple rounds of mutagenesis, two new proteins were selected, each capable of rescuing the selected function significantly faster than the parental protein. In each case, the evolved protein also lost the ability to rescue the unselected function. In both evolutionary trajectories, the original bifunctional generalist was evolved into a monofunctional specialist with enhanced activity. PMID:25420677

  19. System identification of closed-loop cardiovascular control: effects of posture and autonomic blockade

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.

    1997-01-01

    We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.

  20. A tightly packed hydrophobic cluster directs the formation of an off-pathway sub-millisecond folding intermediate in the alpha subunit of tryptophan synthase, a TIM barrel protein.

    PubMed

    Wu, Ying; Vadrevu, Ramakrishna; Kathuria, Sagar; Yang, Xiaoyan; Matthews, C Robert

    2007-03-01

    Protein misfolding is now recognized as playing a crucial role in both normal and pathogenic folding reactions. An interesting example of misfolding at the earliest state of a natural folding reaction is provided by the alpha-subunit of tryptophan synthase, a (beta/alpha)(8) TIM barrel protein. The molecular basis for the formation of this off-pathway misfolded intermediate, I(BP), and a subsequent on-pathway intermediate, I1, was probed by mutational analysis of 20 branched aliphatic side-chains distributed throughout the sequence. The elimination of I(BP) and the substantial destabilization of I1 by replacement of a selective set of the isoleucine, leucine or valine residues (ILV) with alanine in a large ILV cluster external-to-the-barrel and spanning the N and C termini (cluster 2) implies tight-packing at most sites in both intermediates. Differential effects on I(BP) and I1 for replacements in alpha3, beta4 and alpha8 at the boundaries of cluster 2 suggest that their incorporation into I1 but not I(BP) reflects non-native folds at the edges of the crucial (beta/alpha)(1-2)beta(3) core in I(BP). The retention of I(BP) and the smaller and consistent destabilization of both I(BP) and I1 by similar replacements in an internal-to-the-barrel ILV cluster (cluster 1) and a second external-to-the-barrel ILV cluster (cluster 3) imply molten globule-like packing. The tight packing inferred, in part, for I(BP) or for all of I1 in cluster 2, but not in clusters 1 and 3, may reflect the larger size of cluster 2 and/or the enhanced number of isoleucine, leucine and valine self-contacts in and between contiguous elements of secondary structure. Tightly packed ILV-dominated hydrophobic clusters could serve as an important driving force for the earliest events in the folding and misfolding of the TIM barrel and other members of the (beta/alpha)(n) class of proteins. PMID:17222865

  1. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16

    SciTech Connect

    Lu, JN; Brigham, CJ; Plassmeier, JK; Sinskey, AJ

    2014-08-01

    2-Ketoisovalerate is an important cellular intermediate for the synthesis of branched-chain amino acids as well as other important molecules, such as pantothenate, coenzyme A, and glucosinolate. This ketoacid can also serve as a precursor molecule for the production of biofuels, pharmaceutical agents, and flavor agents in engineered organisms, such as the betaproteobacterium Ralstonia eutropha. The biosynthesis of 2-ketoisovalerate from pyruvate is carried out by three enzymes: acetohydroxyacid synthase (AHAS, encoded by ilvBH), acetohydroxyacid isomeroreductase (AHAIR, encoded by ilvC), and dihydroxyacid dehydratase (DHAD, encoded by ilvD). In this study, enzymatic activities and kinetic parameters were determined for each of the three R. eutropha enzymes as heterologously purified proteins. AHAS, which serves as a gatekeeper for the biosynthesis of all three branched-chain amino acids, demonstrated the tightest regulation through feedback inhibition by l-valine (IC50 = 1.2 mM), l-isoleucine (IC50 = 2.3 mM), and l-leucine (IC50 = 5.4 mM). Intermediates in the valine biosynthesis pathway also exhibit feedback inhibitory control of the AHAS enzyme. In addition, AHAS has a very weak affinity for pyruvate (K-M = 10.5 mu M) and is highly selective towards 2-ketobutyrate (R = 140) as a second substrate. AHAIR and DHAD are also inhibited by the branched-chain amino acids, although to a lesser extent when compared to AHAS. Experimental evolution and rational site-directed mutagenesis revealed mutants of the regulatory subunit of AHAS (IlvH) (N11S, T34I, A36V, T104S, N11F, G14E, and N29H), which, when reconstituted with wild-type IlvB, lead to AHAS having reduced valine, leucine, and isoleucine sensitivity. The study of the kinetics and inhibition mechanisms of R. eutropha AHAS, AHAIR, and DHAD has shed light on interactions between these enzymes and the products they produce; it, therefore, can be used to engineer R. eutropha strains with optimal production of 2

  2. Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport.

    PubMed

    Pasqual, Giulia; Rojek, Jillian M; Masin, Mark; Chatton, Jean-Yves; Kunz, Stefan

    2011-09-01

    The highly pathogenic Old World arenavirus Lassa virus (LASV) and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) use α-dystroglycan as a cellular receptor and enter the host cell by an unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the viruses are delivered to acidified endosomes in a Rab5-independent manner bypassing classical routes of incoming vesicular trafficking. Here we sought to identify cellular factors involved in the unusual and largely unknown entry pathway of LASV and LCMV. Cell entry of LASV and LCMV required microtubular transport to late endosomes, consistent with the low fusion pH of the viral envelope glycoproteins. Productive infection with recombinant LCMV expressing LASV envelope glycoprotein (rLCMV-LASVGP) and LCMV depended on phosphatidyl inositol 3-kinase (PI3K) as well as lysobisphosphatidic acid (LBPA), an unusual phospholipid that is involved in the formation of intraluminal vesicles (ILV) of the multivesicular body (MVB) of the late endosome. We provide evidence for a role of the endosomal sorting complex required for transport (ESCRT) in LASV and LCMV cell entry, in particular the ESCRT components Hrs, Tsg101, Vps22, and Vps24, as well as the ESCRT-associated ATPase Vps4 involved in fission of ILV. Productive infection with rLCMV-LASVGP and LCMV also critically depended on the ESCRT-associated protein Alix, which is implicated in membrane dynamics of the MVB/late endosomes. Our study identifies crucial cellular factors implicated in Old World arenavirus cell entry and indicates that LASV and LCMV invade the host cell passing via the MVB/late endosome. Our data further suggest that the virus-receptor complexes undergo sorting into ILV of the MVB mediated by the ESCRT, possibly using a pathway that may be linked to the cellular trafficking and degradation of the cellular receptor. PMID:21931550

  3. Remnants of an ancient pathway to L-phenylalanine and L-tyrosine in enteric bacteria: evolutionary implications and biotechnological impact.

    PubMed Central

    Bonner, C A; Fischer, R S; Ahmad, S; Jensen, R A

    1990-01-01

    The pathway construction for biosynthesis of aromatic amino acids in Escherichia coli is atypical of the phylogenetic subdivision of gram-negative bacteria to which it belongs (R. A. Jensen, Mol. Biol. Evol. 2:92-108, 1985). Related organisms possess second pathways to phenylalanine and tyrosine which depend upon the expression of a monofunctional chorismate mutase (CM-F) and cyclohexadienyl dehydratase (CDT). Some enteric bacteria, unlike E. coli, possess either CM-F or CDT. These essentially cryptic remnants of an ancestral pathway can be a latent source of biochemical potential under certain conditions. As one example of advantageous biochemical potential, the presence of CM-F in Salmonella typhimurium increases the capacity for prephenate accumulation in a tyrA auxotroph. We report the finding that a significant fraction of the latter prephenate is transaminated to L-arogenate. The tyrA19 mutant is now the organism of choice for isolation of L-arogenate, uncomplicated by the presence of other cyclohexadienyl products coaccumulated by a Neurospora crassa mutant that had previously served as the prime biological source of L-arogenate. Prephenate aminotransferase activity was not conferred by a discrete enzyme, but rather was found to be synonymous with the combined activities of aspartate aminotransferase (aspC), aromatic aminotransferase (tyrB), and branched-chain aminotransferase (ilvE). This conclusion was confirmed by results obtained with combinations of aspC-, tyrB-, and ilvE-deficient mutations in E. coli. An example of disadvantageous biochemical potential is the presence of a cryptic CDT in Klebsiella pneumoniae, where a mutant carrying multiple enzyme blocks is the standard organism used for accumulation and isolation of chorismate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2082822

  4. Old World Arenaviruses Enter the Host Cell via the Multivesicular Body and Depend on the Endosomal Sorting Complex Required for Transport

    PubMed Central

    Pasqual, Giulia; Rojek, Jillian M.; Masin, Mark; Chatton, Jean-Yves; Kunz, Stefan

    2011-01-01

    The highly pathogenic Old World arenavirus Lassa virus (LASV) and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) use α-dystroglycan as a cellular receptor and enter the host cell by an unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the viruses are delivered to acidified endosomes in a Rab5-independent manner bypassing classical routes of incoming vesicular trafficking. Here we sought to identify cellular factors involved in the unusual and largely unknown entry pathway of LASV and LCMV. Cell entry of LASV and LCMV required microtubular transport to late endosomes, consistent with the low fusion pH of the viral envelope glycoproteins. Productive infection with recombinant LCMV expressing LASV envelope glycoprotein (rLCMV-LASVGP) and LCMV depended on phosphatidyl inositol 3-kinase (PI3K) as well as lysobisphosphatidic acid (LBPA), an unusual phospholipid that is involved in the formation of intraluminal vesicles (ILV) of the multivesicular body (MVB) of the late endosome. We provide evidence for a role of the endosomal sorting complex required for transport (ESCRT) in LASV and LCMV cell entry, in particular the ESCRT components Hrs, Tsg101, Vps22, and Vps24, as well as the ESCRT-associated ATPase Vps4 involved in fission of ILV. Productive infection with rLCMV-LASVGP and LCMV also critically depended on the ESCRT-associated protein Alix, which is implicated in membrane dynamics of the MVB/late endosomes. Our study identifies crucial cellular factors implicated in Old World arenavirus cell entry and indicates that LASV and LCMV invade the host cell passing via the MVB/late endosome. Our data further suggest that the virus-receptor complexes undergo sorting into ILV of the MVB mediated by the ESCRT, possibly using a pathway that may be linked to the cellular trafficking and degradation of the cellular receptor. PMID:21931550

  5. The distribution of acetohydroxyacid synthase in soil bacteria.

    PubMed

    Nelson, Darryl R; Duxbury, Trevor

    2008-01-01

    Most bacteria possess the enzyme acetohydroxyacid synthase, which is used to produce branched-chain amino acids. Enteric bacteria contain several isozymes suited to different conditions, but the distribution of acetohydroxyacid synthase in soil bacteria is largely unknown. Growth experiments confirmed that Escherichia coli, Salmonella enterica serotype Typhimurium, and Enterobacter aerogenes contain isozymes of acetohydroxyacid synthase, allowing the bacteria to grow in the presence of valine (which causes feedback inhibition of AHAS I) or the sulfonylurea herbicide triasulfuron (which inhibits AHAS II) although a slight lag phase was observed in growth in the latter case. Several common soil isolates were inhibited by triasulfuron, but Pseudomonas fluorescens and Rhodococcus erythropolis were not inhibited by any combination of triasulfuron and valine. The extent of sulfonylurea-sensitive acetohydroxyacid synthase in soil was revealed when 21 out of 27 isolated bacteria in pure culture were inhibited by triasulfuron, the addition of isoleucine and/or valine reversing the effect in 19 cases. Primers were designed to target the genes encoding the large subunits (ilvB, ilvG and ilvI) of acetohydroxyacid synthase from available sequence data and a approximately 355 bp fragment in Bacillus subtilis, Arthrobacter globiformis, E. coli and S. enterica was subsequently amplified. The primers were used to create a small clone library of sequences from an agricultural soil. Phylogenetic analysis revealed significant sequence variation, but all 19 amino acid sequences were most closely related to published large subunit acetohydroxyacid synthase amino acid sequences within several phyla including the Proteobacteria and Actinobacteria. The results suggested the majority of soil microorganisms contain only one functional acetohydroxyacid synthase enzyme sensitive to sulfonylurea herbicides. PMID:17624809

  6. Organization of the Bacillus subtilis 168 chromosome between kdg and the attachment site of the SP beta prophage: use of Long Accurate PCR and yeast artificial chromosomes for sequencing.

    PubMed

    Capuano, V; Galleron, N; Pujic, P; Sorokin, A; Ehrlich, S D

    1996-11-01

    Within the Bacillus subtilis genome sequencing project, the region between lysA and ilvA was assigned to our laboratory. In this report we present the sequence of the last 36 kb of this region, between the kdg operon and the attachment site of the SP beta prophage. A two-step strategy was used for the sequencing. In the first step, total chromosomal DNA was cloned in phage M13-based vectors and the clones carrying inserts from the target region were identified by hybridization with a cognate yeast artificial chromosome (YAC) from our collection. Sequencing of the clones allowed us to establish a number of contigs. In the second step the contigs were mapped by Long Accurate (LA) PCR and the remaining gaps closed by sequencing of the PCR products. The level of sequence inaccuracy due to LA PCR errors appeared to be about 1 in 10,000, which does not affect significantly the final sequence quality. This two-step strategy is efficient and we suggest that it can be applied to sequencing of longer chromosomal regions. The 36 kb sequence contains 38 coding sequences (CDSs), 19 of which encode unknown proteins. Seven genetic loci already mapped in this region, xpt, metB, ilvA, ilvD, thyB, dfrA and degR were identified. Eleven CDSs were found to display significant similarities to known proteins from the data banks, suggesting possible functions for some of the novel genes: cspD may encode a cold shock protein; bcsA, the first bacterial homologue of chalcone synthase; exol, a 5' to 3' exonuclease, similar to that of DNA polymerase I of Escherichia coli; and bsaA, a stress-response-associated protein. The protein encoded by yplP has homology with the transcriptional NifA-like regulators. The arrangement of the genes relative to possible promoters and terminators suggests 19 potential transcription units. PMID:8969496

  7. Corynebacterium glutamicum Tailored for Efficient Isobutanol Production ▿ †

    PubMed Central

    Blombach, Bastian; Riester, Tanja; Wieschalka, Stefan; Ziert, Christian; Youn, Jung-Won; Wendisch, Volker F.; Eikmanns, Bernhard J.

    2011-01-01

    We recently engineered Corynebacterium glutamicum for aerobic production of 2-ketoisovalerate by inactivation of the pyruvate dehydrogenase complex, pyruvate:quinone oxidoreductase, transaminase B, and additional overexpression of the ilvBNCD genes, encoding acetohydroxyacid synthase, acetohydroxyacid isomeroreductase, and dihydroxyacid dehydratase. Based on this strain, we engineered C. glutamicum for the production of isobutanol from glucose under oxygen deprivation conditions by inactivation of l-lactate and malate dehydrogenases, implementation of ketoacid decarboxylase from Lactococcus lactis, alcohol dehydrogenase 2 (ADH2) from Saccharomyces cerevisiae, and expression of the pntAB transhydrogenase genes from Escherichia coli. The resulting strain produced isobutanol with a substrate-specific yield (YP/S) of 0.60 ± 0.02 mol per mol of glucose. Interestingly, a chromosomally encoded alcohol dehydrogenase rather than the plasmid-encoded ADH2 from S. cerevisiae was involved in isobutanol formation with C. glutamicum, and overexpression of the corresponding adhA gene increased the YP/S to 0.77 ± 0.01 mol of isobutanol per mol of glucose. Inactivation of the malic enzyme significantly reduced the YP/S, indicating that the metabolic cycle consisting of pyruvate and/or phosphoenolpyruvate carboxylase, malate dehydrogenase, and malic enzyme is responsible for the conversion of NADH+H+ to NADPH+H+. In fed-batch fermentations with an aerobic growth phase and an oxygen-depleted production phase, the most promising strain, C. glutamicum ΔaceE Δpqo ΔilvE ΔldhA Δmdh(pJC4ilvBNCD-pntAB)(pBB1kivd-adhA), produced about 175 mM isobutanol, with a volumetric productivity of 4.4 mM h−1, and showed an overall YP/S of about 0.48 mol per mol of glucose in the production phase. PMID:21441331

  8. Reconnaissance exploration geochemistry in the central Brooks Range, northern Alaska: Implications for exploration of sediment-hosted zinc-lead-silver deposits

    USGS Publications Warehouse

    Kelley, K.D.; Kelley, D.L.

    1992-01-01

    A reconnaissance geochemical survey was conducted in the southern Killik River quadrangle, central Brooks Range, northern Alaska. The Brooks Range lies within the zone of continuous permafrost which may partially inhibit chemical weathering and oxidation. The minus 30-mesh and nonmagnetic heavy-mineral concentrate fractions of sediment samples were chosen as the sample media for the survey so that mechanical rather than chemical dispersion patterns would be enhanced. A total of 263 sites were sampled within the southern half of the Killik River quadrangle at an average sample density of approximately one sample per 12 km2. All samples were submitted for multi-element analyses. In the western and central Brooks Range, several known sediment-hosted Zn-Pb-Ag(-Ba) deposits occur within a belt of Paleozoic rocks of the Endicott Mountains allochthon. Exploration for this type of deposit in the Brook Range is difficult, due to the inherently high background values for Ba, Zn and Pb in shale and the common occurrence of metamorphic quartz-calcite veins, many of which contain traces of sulfide minerals. Stream sediments derived from these sources produce numerous geochemical anomalies which are not necessarily associated with significant mineralization. R-mode factor analysis provides a means of distinguishing between element associations related to lithology and those related to possible mineralization. Factor analysis applied to the multi-element data from the southern Killik River quadrangle resulted in the discovery of two additional Zn-Pb-Ag mineral occurrences of considerable areal extent which are 80-100 km east of any previously known deposit. These have been informally named the Kady and Vidlee. Several lithogeochemical element associations, or factors, and three factors which represent sulfide mineralization were identified: Ag-Pb-Zn (galena and sphalerite) and Fe-Ni-Co-Cu (pyrite ?? chalcopyrite) in the concentrate samples and Cd-Zn-Pb-As-Mn in the sediment

  9. I-129 Desorption from SRS Water Treatment Media from the Effluent Treatment Facility and the F-Area Groundwater Treatment Facility

    SciTech Connect

    Kaplan, D.I.

    2001-01-26

    The objective of this study was to quantify I-129 desorption of four waste materials and to provide reasonably conservative Kd values for modeling efforts. Since the ILV PA considers dose thousands of years in the future, additional attention was directed at evaluating how I-129 desorption changed as a function of time. The scope of this work involved evaluating four waste materials (F-WTU Dowex 21K, F-WTU Sludge, ETF Carbon, and ETF GT-73) under two aqueous conditions (acid rain and cement simulants) by two different experimental protocols (static batch and dynamic flow column experiments).

  10. Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae.

    PubMed

    Brat, Dawid; Boles, Eckhard

    2013-03-01

    Simultaneous overexpression of an optimized, cytosolically localized valine biosynthesis pathway together with overexpression of xylose isomerase XylA from Clostridium phytofermentans, transaldolase Tal1 and xylulokinase Xks1 enabled recombinant Saccharomyces cerevisiae cells to complement the valine auxotrophy of ilv2,3,5 triple deletion mutants for growth on D-xylose as the sole carbon source. Moreover, after additional overexpression of ketoacid decarboxylase Aro10 and alcohol dehydrogenase Adh2, the cells were able to ferment D-xylose directly to isobutanol. PMID:23279585

  11. Recharge Data for the Islands of Kauai, Lanai and Molokai, Hawaii

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Recharge data for the islands of Kauai, Lanai and Molokai in shapefile format. These data are from the following sources: Whittier, R.B and A.I. El-Kadi. 2014. Human Health and Environmental Risk Ranking of On-Site Sewage Disposal systems for the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final, Prepared for Hawaii Dept. of Health, Safe Drinking Water Branch by the University of Hawaii, Dept. of Geology and Geophysics. (for Kauai, Lanai, Molokai). Shade, P.J., 1995, Water Budget for the Island of Kauai, Hawaii, USGS Water-Resources Investigations Report 95-4128, 25 p. (for Kauai). Izuka, S.K. and D.S. Oki, 2002 Numerical simulation of ground-water withdrawals in the Southern Lihue Basin, Kauai, Hawaii, U.S. Geologic Survey Water-Resources Investigations Report 01-4200, 52 pgs. (for Kauai). Hardy, W.R., 1996, A Numerical Groundwater Model for the Island of Lanai, Hawaii - CWRM Report No., CWRM-1, Commission on Water Resources Management, Department of Natural Resources, State of Hawaii, Honolulu, HI. (for Lanai). Oki, D.S., 1997, Geohydrology and numerical Simulation of the Ground-Water Flow System of Molokai, Hawaii, USGS Water-Resources Investigations Report 97-4176, 62 p. (for Molokai).

  12. High Genetic Diversity among Strains of the Unindustrialized Lactic Acid Bacterium Carnobacterium maltaromaticum in Dairy Products as Revealed by Multilocus Sequence Typing

    PubMed Central

    Rahman, Abdur; Cailliez-Grimal, Catherine; Bontemps, Cyril; Payot, Sophie; Chaillou, Stéphane; Revol-Junelles, Anne-Marie

    2014-01-01

    Dairy products are colonized with three main classes of lactic acid bacteria (LAB): opportunistic bacteria, traditional starters, and industrial starters. Most of the population structure studies were previously performed with LAB species belonging to these three classes and give interesting knowledge about the population structure of LAB at the stage where they are already industrialized. However, these studies give little information about the population structure of LAB prior their use as an industrial starter. Carnobacterium maltaromaticum is a LAB colonizing diverse environments, including dairy products. Since this bacterium was discovered relatively recently, it is not yet commercialized as an industrial starter, which makes C. maltaromaticum an interesting model for the study of unindustrialized LAB population structure in dairy products. A multilocus sequence typing scheme based on an analysis of fragments of the genes dapE, ddlA, glpQ, ilvE, pyc, pyrE, and leuS was applied to a collection of 47 strains, including 28 strains isolated from dairy products. The scheme allowed detecting 36 sequence types with a discriminatory index of 0.98. The whole population was clustered in four deeply branched lineages, in which the dairy strains were spread. Moreover, the dairy strains could exhibit a high diversity within these lineages, leading to an overall dairy population with a diversity level as high as that of the nondairy population. These results are in agreement with the hypothesis according to which the industrialization of LAB leads to a diversity reduction in dairy products. PMID:24747901

  13. Drosophila Vps4 promotes Epidermal growth factor receptor signaling independently of its role in receptor degradation

    PubMed Central

    Legent, Kevin; Liu, Hui Hua; Treisman, Jessica E.

    2015-01-01

    Endocytic trafficking of signaling receptors is an important mechanism for limiting signal duration. Components of the Endosomal Sorting Complexes Required for Transport (ESCRT), which target ubiquitylated receptors to intra-lumenal vesicles (ILVs) of multivesicular bodies, are thought to terminate signaling by the epidermal growth factor receptor (EGFR) and direct it for lysosomal degradation. In a genetic screen for mutations that affect Drosophila eye development, we identified an allele of Vacuolar protein sorting 4 (Vps4), which encodes an AAA ATPase that interacts with the ESCRT-III complex to drive the final step of ILV formation. Photoreceptors are largely absent from Vps4 mutant clones in the eye disc, and even when cell death is genetically prevented, the mutant R8 photoreceptors that develop fail to recruit surrounding cells to differentiate as R1-R7 photoreceptors. This recruitment requires EGFR signaling, suggesting that loss of Vps4 disrupts the EGFR pathway. In imaginal disc cells mutant for Vps4, EGFR and other receptors accumulate in endosomes and EGFR target genes are not expressed; epistasis experiments place the function of Vps4 at the level of the receptor. Surprisingly, Vps4 is required for EGFR signaling even in the absence of Shibire, the Dynamin that internalizes EGFR from the plasma membrane. In ovarian follicle cells, in contrast, Vps4 does not affect EGFR signaling, although it is still essential for receptor degradation. Taken together, these findings indicate that Vps4 can promote EGFR activity through an endocytosis-independent mechanism. PMID:25790850

  14. System identification of closed-loop cardiovascular control mechanisms: diabetic autonomic neuropathy

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Mathias, J. M.; Mullen, T. J.; Cohen, R. J.; Freeman, R.

    1999-01-01

    We applied cardiovascular system identification (CSI) to characterize closed-loop cardiovascular regulation in patients with diabetic autonomic neuropathy (DAN). The CSI method quantitatively analyzes beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize four physiological coupling mechanisms, two of which are autonomically mediated (the heart rate baroreflex and the coupling of respiration, measured in terms of ILV, to heart rate) and two of which are mechanically mediated (the coupling of ventricular contraction to the generation of the ABP wavelet and the coupling of respiration to ABP). We studied 37 control and 60 diabetic subjects who were classified as having minimal, moderate, or severe DAN on the basis of standard autonomic tests. The autonomically mediated couplings progressively decreased with increasing severity of DAN, whereas the mechanically mediated couplings were essentially unchanged. CSI identified differences between the minimal DAN and control groups, which were indistinguishable based on the standard autonomic tests. CSI may provide a powerful tool for assessing DAN.

  15. A spectrum of CodY activities drives metabolic reorganization and virulence gene expression in Staphylococcus aureus.

    PubMed

    Waters, Nicholas R; Samuels, David J; Behera, Ranjan K; Livny, Jonathan; Rhee, Kyu Y; Sadykov, Marat R; Brinsmade, Shaun R

    2016-08-01

    The global regulator CodY controls the expression of dozens of metabolism and virulence genes in the opportunistic pathogen Staphylococcus aureus in response to the availability of isoleucine, leucine and valine (ILV), and GTP. Using RNA-Seq transcriptional profiling and partial activity variants, we reveal that S. aureus CodY activity grades metabolic and virulence gene expression as a function of ILV availability, mediating metabolic reorganization and controlling virulence factor production in vitro. Strains lacking CodY regulatory activity produce a PIA-dependent biofilm, but development is restricted under conditions that confer partial CodY activity. CodY regulates the expression of thermonuclease (nuc) via the Sae two-component system, revealing cascading virulence regulation and factor production as CodY activity is reduced. Proteins that mediate the host-pathogen interaction and subvert the immune response are shut off at intermediate levels of CodY activity, while genes coding for enzymes and proteins that extract nutrients from tissue, that kill host cells, and that synthesize amino acids are among the last genes to be derepressed. We conclude that S. aureus uses CodY to limit host damage to only the most severe starvation conditions, providing insight into one potential mechanism by which S. aureus transitions from a commensal bacterium to an invasive pathogen. PMID:27116338

  16. Acetohydroxy acid synthase I, a required enzyme for isoleucine and valine biosynthesis in Escherichia coli K-12 during growth on acetate as the sole carbon source.

    PubMed Central

    Dailey, F E; Cronan, J E

    1986-01-01

    Escherichia coli K-12 has two acetohydroxy acid synthase (AHAS) isozymes (AHAS I and AHAS III). Both of these isozymes catalyze the synthesis of alpha-aceto-alpha-hydroxybutyrate and alpha-acetolactate, which are key intermediates of the isoleucine-valine biosynthetic pathway. Strains lacking either isozyme but not both activities have been previously shown to grow well in minimal media in the absence of isoleucine and valine on any of several commonly used carbon sources (e.g., glucose or succinate). We report the characterization of mutants that were unable to grow on either acetate or oleate as a sole carbon source due to a defect in isoleucine-valine biosynthesis. The defect in isoleucine-valine biosynthesis was expressed only on these carbon sources and was due to the loss of AHAS I activity, resulting from lesions in the ilvBN operon. Previously identified ilvBN mutant strains also failed to grow on acetate or oleate minimal media. Our results indicated that AHAS I is an essential enzyme for isoleucine and valine biosynthesis when E. coli K-12 is grown on acetate or oleate as the sole carbon source. AHAS III was expressed during growth on acetate or oleate but was somehow unable to produce sufficient amounts of alpha-aceto-alpha-hydroxybutyrate and alpha-acetolactate to allow growth. PMID:3511034

  17. An Unexpected Route to an Essential Cofactor: Escherichia coli Relies on Threonine for Thiamine Biosynthesis

    PubMed Central

    Bazurto, Jannell V.; Farley, Kristen R.

    2016-01-01

    ABSTRACT Metabolism consists of biochemical reactions that are combined to generate a robust metabolic network that can respond to perturbations and also adapt to changing environmental conditions. Escherichia coli and Salmonella enterica are closely related enterobacteria that share metabolic components, pathway structures, and regulatory strategies. The synthesis of thiamine in S. enterica has been used to define a node of the metabolic network by analyzing alternative inputs to thiamine synthesis from diverse metabolic pathways. To assess the conservation of metabolic networks in organisms with highly conserved components, metabolic contributions to thiamine synthesis in E. coli were investigated. Unexpectedly, we found that, unlike S. enterica, E. coli does not use the phosphoribosylpyrophosphate (PRPP) amidotransferase (PurF) as the primary enzyme for synthesis of phosphoribosylamine (PRA). In fact, our data showed that up to 50% of the PRA used by E. coli to make thiamine requires the activities of threonine dehydratase (IlvA) and anthranilate synthase component II (TrpD). Significantly, the IlvA- and TrpD-dependent pathway to PRA functions in S. enterica only in the absence of a functional reactive intermediate deaminase (RidA) enzyme, bringing into focus how these closely related bacteria have distinct metabolic networks. PMID:26733068

  18. Crystal structures of RidA, an important enzyme for the prevention of toxic side products

    PubMed Central

    Liu, Xiwen; Zeng, Jianhua; Chen, Xiaolei; Xie, Wei

    2016-01-01

    The YjgF/YER057c/UK114 family proteins are highly conserved across all three domains of life, and most of them currently have no clearly defined biological roles. In vitro, these proteins were found to hydrolyze the enamine/imine intermediates generated from serine or threonine, and were renamed Reactive Intermediate Deaminase A (RidA). RidA was recently discovered in Arabidopsis thaliana, and by deaminating the toxic enamine/imine intermediates, it prevents the inactivation of many functionally important pyridoxal 5′-phosphate (PLP)-containing enzymes in plants such as branched-chain aminotransferase BCAT (IlvE). In this study, we determined the crystal structure of Arabidopsis thaliana RidA in the apo form, as well as RidA complexed with the ligand pyruvate. RidA forms the trimeric, barrel-like quaternary structure and inter-subunit cavities, and resembles most RidA family members. Each pyruvate molecule binds to the interface between two subunits, and the recognition of pyruvate is achieved by the interactions with R165 and T167. From sequence alignment and structural superposition, we identified a series of key residues responsible for the trimer assembly, whose importance was confirmed by enzymatic assays. This study provides structural insight into RidA functions in plants. PMID:27458092

  19. Annexin A1 Tethers Membrane Contact Sites that Mediate ER to Endosome Cholesterol Transport.

    PubMed

    Eden, Emily R; Sanchez-Heras, Elena; Tsapara, Anna; Sobota, Andrzej; Levine, Tim P; Futter, Clare E

    2016-06-01

    Membrane contact sites between the ER and multivesicular endosomes/bodies (MVBs) play important roles in endosome positioning and fission and in neurite outgrowth. ER-MVB contacts additionally function in epidermal growth factor receptor (EGFR) tyrosine kinase downregulation by providing sites where the ER-localized phosphatase, PTP1B, interacts with endocytosed EGFR before the receptor is sorted onto intraluminal vesicles (ILVs). Here we show that these contacts are tethered by annexin A1 and its Ca(2+)-dependent ligand, S100A11, and form a subpopulation of differentially regulated contact sites between the ER and endocytic organelles. Annexin A1-regulated contacts function in the transfer of ER-derived cholesterol to the MVB when low-density lipoprotein-cholesterol in endosomes is low. This sterol traffic depends on interaction between ER-localized VAP and endosomal oxysterol-binding protein ORP1L, and is required for the formation of ILVs within the MVB and thus for the spatial regulation of EGFR signaling. PMID:27270042

  20. On multi-timescale variability of temperature in China in modulated annual cycle reference frame

    NASA Astrophysics Data System (ADS)

    Qian, Cheng; Wu, Zhaohua; Fu, Congbin; Zhou, Tianjun

    2010-09-01

    The traditional anomaly (TA) reference frame and its corresponding anomaly for a given data span changes with the extension of data length. In this study, the modulated annual cycle (MAC), instead of the widely used climatological mean annual cycle, is used as an alternative reference frame for computing climate anomalies to study the multi-timescale variability of surface air temperature (SAT) in China based on homogenized daily data from 1952 to 2004. The Ensemble Empirical Mode Decomposition (EEMD) method is used to separate daily SAT into a high frequency component, a MAC component, an interannual component, and a decadal-to-trend component. The results show that the EEMD method can reflect historical events reasonably well, indicating its adaptive and temporally local characteristics. It is shown that MAC is a temporally local reference frame and will not be altered over a particular time span by an extension of data length, thereby making it easier for physical interpretation. In the MAC reference frame, the low frequency component is found more suitable for studying the interannual to longer timescale variability (ILV) than a 13-month window running mean, which does not exclude the annual cycle. It is also better than other traditional versions (annual or summer or winter mean) of ILV, which contains a portion of the annual cycle. The analysis reveals that the variability of the annual cycle could be as large as the magnitude of interannual variability. The possible physical causes of different timescale variability of SAT in China are further discussed.

  1. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae.

    PubMed

    Freeman, Kathryn M; Hoffmann, George R

    2007-03-01

    Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, beta-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv(+) revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state. PMID:17156798

  2. An inter-laboratory validation of a multiplex dipstick assay for four classes of antibiotics in honey.

    PubMed

    Heinrich, Katharina; Macarthur, Roy; von Holst, Christoph; Sharman, Matthew

    2013-09-01

    In this paper, we report the inter-laboratory validation (ILV) of a recently developed indirect competitive multiplex dipstick (Bee4sensor®) which is capable of the simultaneous detection of residues of some of the most frequently detected antibiotic residues in honey: sulfonamides, tylosin, fluoroquinolones and chloramphenicol. The multi-sensor dipstick can be interpreted via visual observation or by an instrumental measurement of four test lines. Statistical analysis of the ILV data demonstrated that the multi-sensor can reliably detect the presence of sulfathiazole at 25 μg kg(-1) and tylosin at 10 μg kg(-1), which fully meet the 'recommended concentrations' of the EU. Ciprofloxacin and chloramphenicol can be detected at 25 and 5 μg kg(-1) in honey, respectively. Whilst the concentration for chloramphenicol is above the EU minimum required performance limit of 0.3 μg kg(-1), this part of the multiplex test may still be of use to both the industry and enforcement authorities, to provide an early warning of contaminated honey. The estimated false-negative and false-positive rates for this easy-to-use and robust assay were less than 5%. PMID:23820949

  3. Production of 2-methyl-1-butanol in engineered Escherichia coli.

    PubMed

    Cann, Anthony F; Liao, James C

    2008-11-01

    Recent progress has been made in the production of higher alcohols by harnessing the power of natural amino acid biosynthetic pathways. Here, we describe the first strain of Escherichia coli developed to produce the higher alcohol and potential new biofuel 2-methyl-1-butanol (2MB). To accomplish this, we explored the biodiversity of enzymes catalyzing key parts of the isoleucine biosynthetic pathway, finding that AHAS II (ilvGM) from Salmonella typhimurium and threonine deaminase (ilvA) from Corynebacterium glutamicum improve 2MB production the most. Overexpression of the native threonine biosynthetic operon (thrABC) on plasmid without the native transcription regulation also improved 2MB production in E. coli. Finally, we knocked out competing pathways upstream of threonine production (DeltametA, Deltatdh) to increase its availability for further improvement of 2MB production. This work led to a strain of E. coli that produces 1.25 g/L 2MB in 24 h, a total alcohol content of 3 g/L, and with yields of up to 0.17 g 2MB/g glucose. PMID:18758769

  4. Stereoselectivity and stereospecificity of the alpha,beta-dihydroxyacid dehydratase from Salmonella typhimurium.

    PubMed

    Armstrong, F B; Muller, U S; Reary, J B; Whitehouse, D; Croute, D H

    1977-07-21

    1. In addition to the known 2R,3R- and 2R, 3S-2,3-dihydroxy-3-methylpentanoic acids (DHI), the 1S,3S- and sS,DR-isomers were prepared. 2S-2,3-Dihydroxy-3-methylbutanoic acid (DHV) was also prepared in addition to the known 2R-isomer. 2. The six dihydroxy acids were examined for their ability to promote the growth of isoleucine-valine (ilv)-requiring strains of Salmonella typhimurium and to serve as substrates for the alpha,beta-dihydroxyacid dehydratase of the same organism. 3. Only 2R,3R-2,3-dihydroxy-3-methylpentanoic and 2R-2,3-dihydroxy-3-methylbutanoic acids supported growth of the ilv strains of S. typhimurium. 4. alpha,beta-Dihydroxyacid dehydratase utilized the three isomers with the 2R-configuration as substrates but not those with the 2S-configuration. 5. In an additional growth study that utilized the 3R- and 3S-isomers of 3-methyl-2-oxopentanoic acid, the alpha-keto acid analogue of isoleucine, only the 3S-isomer supported growth. 6. It is concluded that the mechanism of action of the dehydratase is stereospecific in that the proton that is attached to C-3 of the substrate occupies the same steriochemical position as the departing hydroxyl group (Fig. 6). PMID:328058

  5. Cloning and nucleotide sequence of the leucyl-tRNA synthetase gene of Bacillus subtilis.

    PubMed Central

    Vander Horn, P B; Zahler, S A

    1992-01-01

    The leucyl-tRNA synthetase gene (leuS) of Bacillus subtilis was cloned and sequenced. A mutation in the gene, leuS1, increases the transcription and expression of the ilv-leu operion, permitting monitoring of leuS alleles. The leuS1 mutation was mapped to 270 degrees on the chromosome. Sequence analysis showed that the mutation is a single-base substitution, possibly in a monocistronic operon. The leader mRNA predicted by the sequence would contain a number of possible secondary structures and a T box, a sequence observed upstream of leader mRNA terminators of Bacillus tRNA synthetases and the B. subtilis ilv-leu operon. The DNA of the B. subtilis leuS open reading frame is 48% identical to the leuS gene of Escherichia coli and is predicted to encode a polypeptide with 46% identity to the leucyl-tRNA synthetase of E. coli. PMID:1317842

  6. A comprehensive survey on isoleucine biosynthesis pathways in seven epidemic Leptospira interrogans reference strains of China.

    PubMed

    Zou, Ying; Guo, Xiaokui; Picardeau, Mathieu; Xu, Hai; Zhao, Guoping

    2007-04-01

    Previous studies have indicated that different species of Leptospira synthesize isoleucine via either pyruvate and/or threonine pathways. Seven epidemic Leptospira interrogans reference strains from China belonging to different serovars, together with three saprophytic strains of Leptospira biflexa and Leptospira meyeri, were analysed. The isoleucine biosynthesis properties were studied firstly by measuring the key enzymes of the two pathways, citramalate synthase (CimA, CE4.1.3.-) and threonine deaminase (IlvA, CE4.2.1.16), from cell extracts of the bacteria. Meanwhile, alpha-isopropylmalate synthase (LeuA, CE4.2.1.12), the key enzyme of leucine biosynthesis, was also measured as a control. It was found that all L. interrogans strains synthesized isoleucine via the pyruvate pathway exclusively, but L. biflexa and L. meyeri used both pathways. Dot-Blot and PCR amplification of both cimA and ilvA genes in the corresponding strains provided additional evidence consistent with the data of enzymatic assays. Although it is evident that leptospires' isoleucine biosynthesis may preferentially adapt either to the pyruvate pathway exclusively for pathogens or to the combination of both pyruvate and threonine pathways for saprophytes, broader sampling with careful genomospecies identification is needed for a solid conclusion. PMID:17227461

  7. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of L-isoleucine biosynthesis.

    PubMed

    Dong, Xunyan; Zhao, Yue; Zhao, Jianxun; Wang, Xiaoyuan

    2016-06-01

    Previously we have characterized a threonine dehydratase mutant TD(F383V) (encoded by ilvA1) and an acetohydroxy acid synthase mutant AHAS(P176S, D426E, L575W) (encoded by ilvBN1) in Corynebacterium glutamicum IWJ001, one of the best L-isoleucine producing strains. Here, we further characterized an aspartate kinase mutant AK(A279T) (encoded by lysC1) and a homoserine dehydrogenase mutant HD(G378S) (encoded by hom1) in IWJ001, and analyzed the consequences of all these mutant enzymes on amino acids production in the wild type background. In vitro enzyme tests confirmed that AK(A279T) is completely resistant to feed-back inhibition by L-threonine and L-lysine, and that HD(G378S) is partially resistant to L-threonine with the half maximal inhibitory concentration between 12 and 14 mM. In C. glutamicum ATCC13869, expressing lysC1 alone led to exclusive L-lysine accumulation, co-expressing hom1 and thrB1 with lysC1 shifted partial carbon flux from L-lysine (decreased by 50.1 %) to L-threonine (4.85 g/L) with minor L-isoleucine and no L-homoserine accumulation, further co-expressing ilvA1 completely depleted L-threonine and strongly shifted carbon flux from L-lysine (decreased by 83.0 %) to L-isoleucine (3.53 g/L). The results demonstrated the strongly feed-back resistant TD(F383V) might be the main driving force for L-isoleucine over-synthesis in this case, and the partially feed-back resistant HD(G378S) might prevent the accumulation of toxic intermediates. Information exploited from such mutation-bred production strain would be useful for metabolic engineering. PMID:27033538

  8. Smoking-induced changes in cancer-related factors in patients with upper tract urothelial cancer

    PubMed Central

    MIYATA, YASUYOSHI; MITSUNARI, KENSUKE; AKIHIRO, ASAI; WATANABE, SHIN-ICHI; MOCHIZUKI, YASUSHI; SAKAI, HIDEKI

    2015-01-01

    Cigarette smoking is a major risk factor for urothelial cancer (UC) development. However, the associations between smoking and changes in the pathological characteristics and molecular expression of cancer-related molecules in upper tract (UT) UC have not been fully elucidated. We investigated the associations between smoking status and cancer-related factors, including cancer cell proliferation, apoptosis, angiogenesis, lymphangiogenesis and expression of vascular endothelial growth factor-A and -C, matrix metalloproteinase (MMP)-2 and −9, cyclooxygenase (COX)-2 and urokinase-type plasminogen activator, in patients with UTUC. A total of 134 patients who underwent nephroureterectomy were retrospectively investigated. Proliferation index (PI), microvessel density and lymphatic vessel density (LVD) were measured using anti-Ki-67, anti-CD105 and anti-D2-40 antibodies in formalin-fixed specimens. The apoptotic index was evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method. Other cancer-related molecules were investigated by immunohistochemistry in similar specimens. The patients were divided into three groups; non-smoker (n=54, 40.3%), former smoker (n=46, 34.3%) and current smoker (n=34, 25.4%). The PI and the apoptotic index were not found to be correlated with smoking status; however, the mean/standard deviation level of LVD in current smokers (40.9/12.9) was significantly higher (P=0.034) compared to that in patients who had never smoked (34.4/10.6). In addition, smoking status was positively correlated with the presence of intratumoral lymphatic vessels (iLV) (P=0.010) and the expression of COX-2 and MMP-9 (P=0.032). The multivariate analysis demonstrated that current smoking was independently associated with all the abovementioned smoking-related factors. However, former smoking was correlated with LVD and the presence of iLV. In the survival analysis, LVD, the presence of iLV and the expression of COX-2 and MMP-9

  9. Genetic Analysis of an Escherichia coli Syndrome

    PubMed Central

    Lennette, Evelyne T.; Apirion, David

    1971-01-01

    A mutant strain of Escherichia coli that fails to recover from prolonged (72 hr) starvation also fails to grow at 43 C. Extracts of this mutant strain show an increased ribonuclease II activity as compared to extracts of the parental strain, and stable ribonucleic acid is degraded to a larger extent in this strain during starvation. Ts+ transductants and revertants were tested for all the above-mentioned phenotypes. All the Ts+ transductants and revertants tested behaved like the Ts+ parental strain, which suggests that all the observed phenotypes are caused by a single sts (starvation-temperature sensitivity) mutation. The reversion rate from sts− to sts+ is rather low but is within the range of reversion rates for other single-site mutations. Three-point transduction crosses located this sts mutation between the ilv and rbs genes. The properties of sts+/sts− merozygotes suggested that the Ts− phenotype of this mutation is recessive. PMID:4945197

  10. Diacetyl and acetoin production from whey permeate using engineered Lactobacillus casei.

    PubMed

    Nadal, Inmaculada; Rico, Juan; Pérez-Martínez, Gaspar; Yebra, María J; Monedero, Vicente

    2009-09-01

    The capability of Lactobacillus casei to produce the flavor-related compounds diacetyl and acetoin from whey permeate has been examined by a metabolic engineering approach. An L. casei strain in which the ilvBN genes from Lactococcus lactis, encoding acetohydroxyacid synthase, were expressed from the lactose operon was mutated in the lactate dehydrogenase gene (ldh) and in the pdhC gene, which codes for the E2 subunit of the pyruvate dehydrogenase complex. The introduction of these mutations resulted in an increased capacity to synthesize diacetyl/acetoin from lactose in whey permeate (1,400 mg/l at pH 5.5). The results showed that L. casei can be manipulated to synthesize added-value metabolites from dairy industry by-products. PMID:19609583

  11. The mutagenicity of Gramoxone (paraquat) on different eukaryotic systems.

    PubMed

    el-Abidin Salam, A Z; Hussein, E H; el-Itriby, H A; Anwar, W A; Mansour, S A

    1993-10-01

    The possible mutagenicity of the herbicide Gramoxone was evaluated using five different living systems: Allium cepa, Vicia faba, yeast, Drosophila melanogaster and human lymphocytes. The results indicate that Gramoxone has mutagenic activity at the cytological level in Allium cepa, Vicia faba and human lymphocytes. All doses were effective in inducing chromosomal abnormalities and a clear dose-response relationship was observed in the various cytological tests. Analysis of chromosomal abnormalities revealed that this herbicide displays clastogenic and turbagenic activities. At the gene mutation level Gramoxone induced gene conversion at the trp-5 locus and reversion at the ilv locus in Saccharomyces cerevisiae. In Drosophila melanogaster, Gramoxone proved to be mutagenic to germ cells and induced a high frequency of sex-linked recessive lethals (SLRL). At the protein level, Gramoxone had detectable mutagenic effects on the genetic background of two enzymes, Adh and Est-6. Gramoxone should be considered a mutagenic herbicide. PMID:7692291

  12. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication.

    PubMed

    Mackey, Abigail L; Rasmussen, Lotte K; Kadi, Fawzi; Schjerling, Peter; Helmark, Ida C; Ponsot, Elodie; Aagaard, Per; Durigan, João Luiz Q; Kjaer, Michael

    2016-06-01

    With this study we investigated the role of nonsteroidal anti-inflammatory drugs (NSAIDs) in human skeletal muscle regeneration. Young men ingested NSAID [1200 mg/d ibuprofen (IBU)] or placebo (PLA) daily for 2 wk before and 4 wk after an electrical stimulation-induced injury to the leg extensor muscles of one leg. Muscle biopsies were collected from the vastus lateralis muscles before and after stimulation (2.5 h and 2, 7, and 30 d) and were assessed for satellite cells and regeneration by immunohistochemistry and real-time RT-PCR, and we also measured telomere length. After injury, and compared with PLA, IBU was found to augment the proportion of ActiveNotch1(+) satellite cells at 2 d [IBU, 29 ± 3% vs. PLA, 19 ± 2% (means ± sem)], satellite cell content at 7 d [IBU, 0.16 ± 0.01 vs. PLA, 0.12 ± 0.01 (Pax7(+) cells/fiber)], and to expedite muscle repair at 30 d. The PLA group displayed a greater proportion of embryonic myosin(+) fibers and a residual ∼2-fold increase in mRNA levels of matrix proteins (all P < 0.05). Endomysial collagen was also elevated with PLA at 30 d. Minimum telomere length shortening was not observed. In conclusion, ingestion of NSAID has a potentiating effect on Notch activation of satellite cells and muscle remodeling during large-scale regeneration of injured human skeletal muscle.-Mackey, A. L., Rasmussen, L. K., Kadi, F., Schjerling, P., Helmark, I. C., Ponsot, E., Aagaard, P., Durigan, J. L. Q., Kjaer, M. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication. PMID:26936358

  13. A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I.

    PubMed

    Parkinson, Michael D J; Piper, Siân C; Bright, Nicholas A; Evans, Jennifer L; Boname, Jessica M; Bowers, Katherine; Lehner, Paul J; Luzio, J Paul

    2015-10-01

    The Kaposi's sarcoma-associated herpes virus (KSHV) K3 viral gene product effectively down-regulates cell surface MHC class I. K3 is an E3 ubiquitin ligase that promotes Lys(63)-linked polyubiquitination of MHC class I, providing the signal for clathrin-mediated endocytosis. Endocytosis is followed by sorting into the intralumenal vesicles (ILVs) of multivesicular bodies (MVBs) and eventual delivery to lysosomes. The sorting of MHC class I into MVBs requires many individual proteins of the four endosomal sorting complexes required for transport (ESCRTs). In HeLa cells expressing the KSHV K3 ubiquitin ligase, the effect of RNAi-mediated depletion of individual proteins of the ESCRT-0 and ESCRT-I complexes and three ESCRT-III proteins showed that these are required to down-regulate MHC class I. However, depletion of proteins of the ESCRT-II complex or of the ESCRT-III protein, VPS20 (vacuolar protein sorting 20)/CHMP6 (charged MVB protein 6), failed to prevent the loss of MHC class I from the cell surface. Depletion of histidine domain phosphotyrosine phosphatase (HD-PTP) resulted in an increase in the cell surface concentration of MHC class I in HeLa cells expressing the KSHV K3 ubiquitin ligase. Rescue experiments with wild-type (WT) and mutant HD-PTP supported the conclusion that HD-PTP acts as an alternative to ESCRT-II and VPS20/CHMP6 as a link between the ESCRT-I and those ESCRT-III protein(s) necessary for ILV formation. Thus, the down-regulation of cell surface MHC class I, polyubiquitinated by the KSHV K3 ubiquitin ligase, does not employ the canonical ESCRT pathway, but instead utilizes an alternative pathway in which HD-PTP replaces ESCRT-II and VPS20/CHMP6. PMID:26221024

  14. Stereospecific enzymatic transformation of alpha-ketoglutarate to (2S,3R)-3-methyl glutamate during acidic lipopeptide biosynthesis.

    PubMed

    Mahlert, Christoph; Kopp, Florian; Thirlway, Jenny; Micklefield, Jason; Marahiel, Mohamed A

    2007-10-01

    The acidic lipopeptides, including the calcium-dependent antibiotics (CDA), daptomycin, and A54145, are important macrocyclic peptide natural products produced by Streptomyces species. All three compounds contain a 3-methyl glutamate (3-MeGlu) as the penultimate C-terminal residue, which is important for bioactivity. Here, biochemical in vitro reconstitution of the 3-MeGlu biosynthetic pathway is presented, using exclusively enzymes from the CDA producer Streptomyces coelicolor. It is shown that the predicted 3-MeGlu methyltransferase GlmT and its homologues DptI from the daptomycin producer Streptomyces roseosporus and LptI from the A54145 producer Streptomyces fradiae do not methylate free glutamic acid, PCP-bound glutamate, or Glu-containing CDA in vitro. Instead, GlmT, DptI, and LptI are S-adenosyl methionine (SAM)-dependent alpha-ketoglutarate methyltransferases that catalyze the stereospecific methylation of alpha-ketoglutarate (alphaKG) leading to (3R)-3-methyl-2-oxoglutarate. Subsequent enzyme screening identified the branched chain amino acid transaminase IlvE (SCO5523) as an efficient catalyst for the transformation of (3R)-3-methyl-2-oxoglutarate into (2S,3R)-3-MeGlu. Comparison of reversed-phase HPLC retention time of dabsylated 3-MeGlu generated by the coupled enzymatic reaction with dabsylated synthetic standards confirmed complete stereocontrol during enzymatic catalysis. This stereospecific two-step conversion of alphaKG to (2S,3R)-3-MeGlu completes our understanding of the biosynthesis and incorporation of beta-methylated amino acids into the nonribosomal lipopeptides. Finally, understanding this pathway may provide new possibilities for the production of modified peptides in engineered microbes. PMID:17784761

  15. Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA.

    PubMed

    Lee, Chang-Ro; Cho, Seung-Hyon; Yoon, Mi-Jeong; Peterkofsky, Alan; Seok, Yeong-Jae

    2007-03-01

    The maintenance of ionic homeostasis in response to changes in the environment is essential for all living cells. Although there are still many important questions concerning the role of the major monovalent cation K(+), cytoplasmic K(+) in bacteria is required for diverse processes. Here, we show that enzyme IIA(Ntr) (EIIA(Ntr)) of the nitrogen-metabolic phosphotransferase system interacts with and regulates the Escherichia coli K(+) transporter TrkA. Previously we reported that an E. coli K-12 mutant in the ptsN gene encoding EIIA(Ntr) was extremely sensitive to growth inhibition by leucine or leucine-containing peptides (LCPs). This sensitivity was due to the requirement of the dephosphorylated form of EIIA(Ntr) for the derepression of ilvBN expression. Whereas the ptsN mutant is extremely sensitive to LCPs, a ptsN trkA double mutant is as resistant as WT. Furthermore, the sensitivity of the ptsN mutant to LCPs decreases as the K(+) level in culture media is lowered. We demonstrate that dephosphorylated EIIA(Ntr), but not its phosphorylated form, forms a tight complex with TrkA that inhibits the accumulation of high intracellular concentrations of K(+). High cellular K(+) levels in a ptsN mutant promote the sensitivity of E. coli K-12 to leucine or LCPs by inhibiting both the expression of ilvBN and the activity of its gene products. Here, we delineate the similarity of regulatory mechanisms for the paralogous carbon and nitrogen phosphotransferase systems. Dephosphorylated EIIA(Glc) regulates a variety of transport systems for carbon sources, whereas dephosphorylated EIIA(Ntr) regulates the transport system for K(+), which has global effects related to nitrogen metabolism. PMID:17289841

  16. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha.

    PubMed

    Lu, Jingnan; Brigham, Christopher J; Gai, Claudia S; Sinskey, Anthony J

    2012-10-01

    Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180 mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis. PMID:22864971

  17. Characterization and mutagenesis of two novel iron-sulphur cluster pentonate dehydratases.

    PubMed

    Andberg, Martina; Aro-Kärkkäinen, Niina; Carlson, Paul; Oja, Merja; Bozonnet, Sophie; Toivari, Mervi; Hakulinen, Nina; O'Donohue, Michael; Penttilä, Merja; Koivula, Anu

    2016-09-01

    We describe here the identification and characterization of two novel enzymes belonging to the IlvD/EDD protein family, the D-xylonate dehydratase from Caulobacter crescentus, Cc XyDHT, (EC 4.2.1.82), and the L-arabonate dehydratase from Rhizobium leguminosarum bv. trifolii, Rl ArDHT (EC 4.2.1.25), that produce the corresponding 2-keto-3-deoxy-sugar acids. There is only a very limited amount of characterization data available on pentonate dehydratases, even though the enzymes from these oxidative pathways have potential applications with plant biomass pentose sugars. The two bacterial enzymes share 41 % amino acid sequence identity and were expressed and purified from Escherichia coli as homotetrameric proteins. Both dehydratases were shown to accept pentonate and hexonate sugar acids as their substrates and require Mg(2+) for their activity. Cc XyDHT displayed the highest activity on D-xylonate and D-gluconate, while Rl ArDHT functioned best on D-fuconate, L-arabonate and D-galactonate. The configuration of the OH groups at C2 and C3 position of the sugar acid were shown to be critical, and the C4 configuration also contributed substantially to the substrate recognition. The two enzymes were also shown to contain an iron-sulphur [Fe-S] cluster. Our phylogenetic analysis and mutagenesis studies demonstrated that the three conserved cysteine residues in the aldonic acid dehydratase group of IlvD/EDD family members, those of C60, C128 and C201 in Cc XyDHT, and of C59, C127 and C200 in Rl ArDHT, are needed for coordination of the [Fe-S] cluster. The iron-sulphur cluster was shown to be crucial for the catalytic activity (kcat) but not for the substrate binding (Km) of the two pentonate dehydratases. PMID:27102126

  18. The contest for precursors: channelling L-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation.

    PubMed

    Vogt, Michael; Krumbach, Karin; Bang, Won-Gi; van Ooyen, Jan; Noack, Stephan; Klein, Bianca; Bott, Michael; Eggeling, Lothar

    2015-01-01

    L-Isoleucine is an essential amino acid, which is required as a pharma product and feed additive. Its synthesis shares initial steps with that of L-lysine and L-threonine, and four enzymes of L-isoleucine synthesis have an enlarged substrate specificity involved also in L-valine and L-leucine synthesis. As a consequence, constructing a strain specifically overproducing L-isoleucine without byproduct formation is a challenge. Here, we analyze for consequences of plasmid-encoded genes in Corynebacterium glutamicum MH20-22B on L-isoleucine formation, but still obtain substantial accumulation of byproducts. In a different approach, we introduce point mutations into the genome of MH20-22B to remove the feedback control of homoserine dehydrogenase, hom, and threonine dehydratase, ilvA, and we assay sets of genomic promoter mutations to increase hom and ilvA expression as well as to reduce dapA expression, the latter gene encoding the dihydrodipicolinate synthase. The promoter mutations are mirrored in the resulting differential protein levels determined by a targeted LC-MS/MS approach for the three key enzymes. The best combination of genomic mutations was found in strain K2P55, where 53 mM L-isoleucine could be obtained. Whereas in fed-batch fermentations with the plasmid-based strain, 94 mM L-isoleucine with L-lysine as byproduct was formed; with the plasmid-less strain K2P55, 109 mM L-isoleucine accumulated with no substantial byproduct formation. The specific molar yield with the latter strain was 0.188 mol L-isoleucine (mol glucose)(-1) which characterizes it as one of the best L-isoleucine producers available and which does not contain plasmids. PMID:25301583

  19. A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I

    PubMed Central

    Parkinson, Michael D.J.; Piper, Siân C.; Bright, Nicholas A.; Evans, Jennifer L.; Boname, Jessica M.; Bowers, Katherine; Lehner, Paul J.; Luzio, J. Paul

    2015-01-01

    The Kaposi's sarcoma-associated herpes virus (KSHV) K3 viral gene product effectively down-regulates cell surface MHC class I. K3 is an E3 ubiquitin ligase that promotes Lys63-linked polyubiquitination of MHC class I, providing the signal for clathrin-mediated endocytosis. Endocytosis is followed by sorting into the intralumenal vesicles (ILVs) of multivesicular bodies (MVBs) and eventual delivery to lysosomes. The sorting of MHC class I into MVBs requires many individual proteins of the four endosomal sorting complexes required for transport (ESCRTs). In HeLa cells expressing the KSHV K3 ubiquitin ligase, the effect of RNAi-mediated depletion of individual proteins of the ESCRT-0 and ESCRT-I complexes and three ESCRT-III proteins showed that these are required to down-regulate MHC class I. However, depletion of proteins of the ESCRT-II complex or of the ESCRT-III protein, VPS20 (vacuolar protein sorting 20)/CHMP6 (charged MVB protein 6), failed to prevent the loss of MHC class I from the cell surface. Depletion of histidine domain phosphotyrosine phosphatase (HD-PTP) resulted in an increase in the cell surface concentration of MHC class I in HeLa cells expressing the KSHV K3 ubiquitin ligase. Rescue experiments with wild–type (WT) and mutant HD-PTP supported the conclusion that HD-PTP acts as an alternative to ESCRT-II and VPS20/CHMP6 as a link between the ESCRT-I and those ESCRT-III protein(s) necessary for ILV formation. Thus, the down-regulation of cell surface MHC class I, polyubiquitinated by the KSHV K3 ubiquitin ligase, does not employ the canonical ESCRT pathway, but instead utilizes an alternative pathway in which HD-PTP replaces ESCRT-II and VPS20/CHMP6. PMID:26221024

  20. High level expression of peptides and proteins using cytochrome b5 as a fusion host.

    PubMed

    Mitra, Ashima; Chakrabarti, Kalyan Sundar; Shahul Hameed, M S; Srinivas, Kalyan V; Senthil Kumar, Ganesan; Sarma, Siddhartha P

    2005-05-01

    A novel fusion protein system based on the highly soluble heme-binding domain of cytochrome b5 has been designed. The ability of cytochrome b5 to increase the levels of expression and solubility of target proteins has been tested by expressing several proteins and peptides, viz., alpha hemoglobin stabilizing protein, the regulatory subunits of acetohydroxy acid synthase I (ilvM) and II (ilvN), the carboxy terminal domains of mouse neuronal kinesin and pantothenate synthatase, two peptide toxins from cone snails, and the inactivation gate from the brain voltage gated sodium channel, NaV1.2. The fusion protein system has been designed to incorporate protease cleavage sites for commonly used proteases, viz., enterokinase, Factor Xa, and Tobacco etch virus protease. Accumulation of expressed protein as a function of time may be visually ascertained by the fact that the cells take on a bright red color during the course of induction. In all the cases tested so far, the fusion protein accumulates in the soluble fraction to high levels. A novel purification protocol has been designed to purify the fusion proteins using metal affinity chromatography, without the need of a hexahistidine-tag. Mass spectral analysis has shown that the fusion proteins are of full length. CD studies have shown that the solubilized fusion proteins are structured. The proteins of interest may be cleaved from the parent protein by either chemical or enzymatic means. The results presented here demonstrate the versatility of the cytochrome b5 based fusion system for the production of peptides and small proteins (<15 kDa). PMID:15802225

  1. Conserved Gene Order and Expanded Inverted Repeats Characterize Plastid Genomes of Thalassiosirales

    PubMed Central

    Ashworth, Matt P.; Baeshen, Nabih A.; Baeshen, Mohammad N.; Bahieldin, Ahmed; Theriot, Edward C.; Jansen, Robert K.

    2014-01-01

    Diatoms are mostly photosynthetic eukaryotes within the heterokont lineage. Variable plastid genome sizes and extensive genome rearrangements have been observed across the diatom phylogeny, but little is known about plastid genome evolution within order- or family-level clades. The Thalassiosirales is one of the more comprehensively studied orders in terms of both genetics and morphology. Seven complete diatom plastid genomes are reported here including four Thalassiosirales: Thalassiosira weissflogii, Roundia cardiophora, Cyclotella sp. WC03_2, Cyclotella sp. L04_2, and three additional non-Thalassiosirales species Chaetoceros simplex, Cerataulina daemon, and Rhizosolenia imbricata. The sizes of the seven genomes vary from 116,459 to 129,498 bp, and their genomes are compact and lack introns. The larger size of the plastid genomes of Thalassiosirales compared to other diatoms is due primarily to expansion of the inverted repeat. Gene content within Thalassiosirales is more conserved compared to other diatom lineages. Gene order within Thalassiosirales is highly conserved except for the extensive genome rearrangement in Thalassiosira oceanica. Cyclotella nana, Thalassiosira weissflogii and Roundia cardiophora share an identical gene order, which is inferred to be the ancestral order for the Thalassiosirales, differing from that of the other two Cyclotella species by a single inversion. The genes ilvB and ilvH are missing in all six diatom plastid genomes except for Cerataulina daemon, suggesting an independent gain of these genes in this species. The acpP1 gene is missing in all Thalassiosirales, suggesting that its loss may be a synapomorphy for the order and this gene may have been functionally transferred to the nucleus. Three genes involved in photosynthesis, psaE, psaI, psaM, are missing in Rhizosolenia imbricata, which represents the first documented instance of the loss of photosynthetic genes in diatom plastid genomes. PMID:25233465

  2. Characterization of genetically transformed Saccharomyces cerevisiae baker's yeasts able to metabolize melibiose.

    PubMed Central

    Gasent-Ramírez, J M; Codón, A C; Benítez, T

    1995-01-01

    Three transformant (Mel+) Saccharomyces cerevisiae baker's yeast strains, CT-Mel, VS-Mel, and DADI-Mel, have been characterized. The strains, which originally lacked alpha-galactosidase activity (Mel-), had been transformed with a DNA fragment which possessed an ILV1-SMR1 allele of the ILV2 gene and a MEL1 gene. The three transformed strains showed growth rates similar to those of the untransformed controls in both minimal and semi-industrial (molasses) media. The alpha-galactosidase specific activity of strain CT-Mel was twice that of VS-Mel and DADI-Mel. The yield, YX/S (milligrams of protein per milligram of substrate), in minimal medium with raffinose as the carbon source was 2.5 times higher in the transformed strains than in the controls and was 1.5 times higher in CT-Mel than in VS-Mel and DADI-Mel. When molasses was used, YX/S (milligrams of protein per milliliter of culture) increased 8% when the transformed strains CT-Mel and DADI-Mel were used instead of the controls. Whereas no viable spores were recovered from either DADI-Mel or VS-Mel tetrads, genetic analysis carried out with CT-Mel indicated that the MEL1 gene has been integrated in two of three homologous loci. Analysis of the DNA content by flow cytometry indicated that strain CT-Mel was 3n, whereas VS-Mel was 2n and DADI-Mel was 1.5n. Electrophoretic karyotype and Southern blot analyses of the transformed strains showed that the MEL1 gene has been integrated in the same chromosomic band, probably chromosome XIII, in the three strains.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7793932

  3. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha

    SciTech Connect

    Lu, JN; Brigham, CJ; Gai, CS; Sinskey, AJ

    2012-08-04

    Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180 mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis.

  4. Avoiding the Water-Climate-Poverty Trap: Adaptive Risk Management for Bangladesh's Coastal Embankments

    NASA Astrophysics Data System (ADS)

    Hall, J. W.

    2015-12-01

    ., Aerts, J.C.J.H., Ait-Kadi, M., Brown, C., Cox, A., Dadson, S., Garrick, D., Kelman, J., McCornick, P., Ringler, C., Rosegrant, M., Whittington, D. and Wiberg, D. Securing Water, Sustaining Growth: Report of the GWP/OECD Task Force on Water Security and Sustainable Growth, University of Oxford, April 2015, 180pp.

  5. The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation.

    PubMed Central

    Hu, Y; Cooper, T G; Kohlhaw, G B

    1995-01-01

    The Leu3 protein of Saccharomyces cerevisiae has been shown to be a transcriptional regulator of genes encoding enzymes of the branched-chain amino acid biosynthetic pathways. Leu3 binds to upstream activating sequences (UASLEU) found in the promoters of LEU1, LEU2, LEU4, ILV2, and ILV5. In vivo and in vitro studies have shown that activation by Leu3 requires the presence of alpha-isopropylmalate. In at least one case (LEU2), Leu3 actually represses basal-level transcription when alpha-isopropylmalate is absent. Following identification of a UASLEU-homologous sequence in the promoter of GDH1, the gene encoding NADP(+)-dependent glutamate dehydrogenase, we demonstrate that Leu3 specifically interacts with this UASLEU element. We then show that Leu3 is required for full activation of the GDH1 gene. First, the expression of a GDH1-lacZ fusion gene is three- to sixfold lower in a strain lacking the LEU3 gene than in an isogenic LEU3+ strain. Expression is restored to near-normal levels when the leu3 deletion cells are transformed with a LEU3-bearing plasmid. Second, a significant decrease in GDH1-lacZ expression is also seen when the UASLEU of the GDH1-lacZ construct is made nonfunctional by mutation. Third, the steady-state level of GDH1 mRNA decreases about threefold in leu3 null cells. The decrease in GDH1 expression in leu3 null cells is reflected in a diminished specific activity of NADP(+)-dependent glutamate dehydrogenase. We also demonstrate that the level of GDH1-lacZ expression correlates with the cells' ability to generate alpha-isopropylmalate and is lowest in cells unable to produce alpha-isopropylmalate. We conclude that GDH1, which plays an important role in the assimilation of ammonia in yeast cells, is, in part, activated by a Leu3-alpha-isopropylmalate complex. This conclusion suggests that Leu3 participates in transcriptional regulation beyond the branched-chain amino acid biosynthetic pathways. PMID:7799961

  6. Estimate of Gaseous 14Carbon Concentrations Emanating from the Intermediate-Level Vault Disposal Facility

    SciTech Connect

    Kaplan, D

    2005-08-31

    {sup 14}Carbon-bearing resin waste will be disposed in the Low-Activity Waste (LAW) Intermediate Level Vaults (ILV) located in E-Area on the Savannah River Site (SRS). This waste will be buried in a cementitious environment in the vadose zone, i.e., the subsurface zone above the aquifer. As the resin ages, and equilibrates with slowly infiltrating water, it is expected that the {sup 14}C will partition to the solid, liquid, and gaseous phases. The objective of this task was to estimate the concentration of gaseous {sup 14}C in the waste pore space that is in contact with the resin leachate. The approach used to estimate this value was built largely around data generated from lysimeter studies that were conducted for 9 years. These lysimeters contained the same type of used resins (mixed-bed deionizer resins used in the purification of the heavy water moderator of SRS reactors) as are being disposed in the ILV. During the 9 year period, pore water {sup 14}C leaching concentrations were monitored to provide an excellent estimate of the long-term behavior of {sup 14}C release rates from the resins. Thermodynamic calculations were conducted to calculate {sup 14}CO{sub 2(g)} concentrations. These calculations included the {sup 14}C pore water data from the lysimeter study, and data from a field study that was a natural analogue to a long-term cementitious environment (Khoury et al. 1992). The calculations predicted an extremely low {sup 14}CO{sub 2(g)} concentration of 1.9 x 10{sup -7} Ci/m{sup 3} {sup 14}CO{sub 2(g)} in the air spaces above the resin leachate. This low concentrations is not surprising in light of both laboratory and field observations that concrete acts as a strong sorbent of CO{sub 2(g)}. This calculated {sup 14}CO{sub 2(g)} concentration will now be included in future risk calculations.

  7. Effective Trapping of Fruit Flies with Cultures of Metabolically Modified Acetic Acid Bacteria

    PubMed Central

    Ishii, Yuri; Akasaka, Naoki; Goda, Itsuko; Sakoda, Hisao

    2015-01-01

    Acetoin in vinegar is an attractant to fruit flies when combined with acetic acid. To make vinegar more effective in attracting fruit flies with increased acetoin production, Komagataeibacter europaeus KGMA0119 was modified by specific gene disruption of the acetohydroxyacid isomeroreductase gene (ilvC). A previously constructed mutant lacking the putative ligand-sensing region in the leucine-responsive regulatory protein (KeLrp, encoded by Kelrp) was also used. The ilvC and Kelrp disruptants (KGMA5511 and KGMA7203, respectively) produced greater amounts of acetoin (KGMA5511, 0.11%; KGMA7203, 0.13%) than the wild-type strain KGMA0119 (0.069%). KGMA7203 produced a trace amount of isobutyric acid (0.007%), but the other strains did not. These strains produced approximately equal amounts of acetic acid (0.7%). The efficiency of fruit fly attraction was investigated with cultured Drosophila melanogaster. D. melanogaster flies (approximately 1,500) were released inside a cage (2.5 m by 2.5 m by 1.5 m) and were trapped with a device containing vinegar and a sticky sheet. The flies trapped on the sticky sheet were counted. The cell-free supernatant from KGMA7203 culture captured significantly more flies (19.36 to 36.96% of released flies) than did KGMA0119 (3.25 to 11.40%) and KGMA5511 (6.87 to 21.50%) cultures. Contrastingly, a 0.7% acetic acid solution containing acetoin (0.13%) and isobutyric acid (0.007%), which mimicked the KGMA7203 supernatant, captured significantly fewer flies (0.88 to 4.57%). Furthermore, the KGMA0119 supernatant with additional acetoin (0.13%) and isobutyric acid (0.007%) captured slightly more flies than the original KGMA0119 supernatant but fewer than the KGMA7203 supernatant, suggesting that the synergistic effects of acetic acid, acetoin, isobutyric acid, and unidentified metabolites achieved the efficient fly trapping of the KGMA7203 supernatant. PMID:25595769

  8. Repression and inhibition of transport systems for branched-chain amino acids in Salmonella typhimurium.

    PubMed

    Kiritani, K; Ohnishi, K

    1977-02-01

    Kinetics of the transport systems common for entry of L-isoleucine, L-leucine, and L-valine in Salmonella typhimurium LT2 have been analyzed as a function of substrateconcentration in the range of 0.5 to 45 muM. The systems of transport mutants, KA203 (ilvT3) and KA204 (ilvT4), are composed of two components; apparent Km values for uptake of isoleucine, leucine, and valine by the low Km component are 2 muM, 2 to 3 muM, and 1 muM, respectively, and by the high Km component 30 muM, 20 to 40 muM, and 0.1 mM, respectively. The transport system(s) of the wild type has not been separated into components but rather displays single Km values of 9 muM for isoleucine, 10 muM for leucine, and 30 muM for valine. The transport activity of the wild type was repressed by L-leucine, alpha ketoisocaproate, glycyl-L-isoleucine, glycyl-L-leucine, and glycyl-L-methionine. That for the transport mutants was repressed by L-alanine, L-isoleucine, L-methionine, L-valine, alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, glycyl-L-alanine, glycyl-L-threonine, and glycyl-L-valine, in addition to the compounds described above. Repression of the mutant transport systems resulted in disappearance of the low Km component for valine uptake, together with a decrease in Vmax of the high Km component; the kinetic analysis with isoleucine and leucine as substrates was not possible because of poor uptake. The maximum reduction of the transport activity for isoleucine was obtained after growing cells for two to three generations in a medium supplemented with repressor, and for the depression, protein synthesis was essential after removal of the repressor. The transport activity for labeled isoleucine in the transport mutant and wild-type strains was inhibited by unlabeled L-alanine, L-cysteine, L-isoleucine, L-leucine, L-methionine, L-threonine, and L-valine. D-Amino acids neither repressed nor inhibited the transport activity of cells for entry of isoleucine. PMID:320186

  9. ESCRT-0 Is Not Required for Ectopic Notch Activation and Tumor Suppression in Drosophila

    PubMed Central

    Tognon, Emiliana; Wollscheid, Nadine; Cortese, Katia; Tacchetti, Carlo; Vaccari, Thomas

    2014-01-01

    Multivesicular endosome (MVE) sorting depends on proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) family. These are organized in four complexes (ESCRT-0, -I, -II, -III) that act in a sequential fashion to deliver ubiquitylated cargoes into the internal luminal vesicles (ILVs) of the MVE. Drosophila genes encoding ESCRT-I, -II, -III components function in sorting signaling receptors, including Notch and the JAK/STAT signaling receptor Domeless. Loss of ESCRT-I, -II, -III in Drosophila epithelia causes altered signaling and cell polarity, suggesting that ESCRTs genes are tumor suppressors. However, the nature of the tumor suppressive function of ESCRTs, and whether tumor suppression is linked to receptor sorting is unclear. Unexpectedly, a null mutant in Hrs, encoding one of the components of the ESCRT-0 complex, which acts upstream of ESCRT-I, -II, -III in MVE sorting is dispensable for tumor suppression. Here, we report that two Drosophila epithelia lacking activity of Stam, the other known components of the ESCRT-0 complex, or of both Hrs and Stam, accumulate the signaling receptors Notch and Dome in endosomes. However, mutant tissue surprisingly maintains normal apico-basal polarity and proliferation control and does not display ectopic Notch signaling activation, unlike cells that lack ESCRT-I, -II, -III activity. Overall, our in vivo data confirm previous evidence indicating that the ESCRT-0 complex plays no crucial role in regulation of tumor suppression, and suggest re-evaluation of the relationship of signaling modulation in endosomes and tumorigenesis. PMID:24718108

  10. Linear and nonlinear ARMA model parameter estimation using an artificial neural network

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Cohen, R. J.

    1997-01-01

    This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.

  11. Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici.

    PubMed

    Sidhu, Y S; Cairns, T C; Chaudhari, Y K; Usher, J; Talbot, N J; Studholme, D J; Csukai, M; Haynes, K

    2015-06-01

    The lack of techniques for rapid assembly of gene deletion vectors, paucity of selectable marker genes available for genetic manipulation and low frequency of homologous recombination are major constraints in construction of gene deletion mutants in Zymoseptoria tritici. To address these issues, we have constructed ternary vectors for Agrobacterium tumefaciens mediated transformation of Z. tritici, which enable the single step assembly of multiple fragments via yeast recombinational cloning. The sulfonylurea resistance gene, which is a mutated allele of the Magnaporthe oryzae ILV2 gene, was established as a new dominant selectable marker for Z. tritici. To increase the frequency of homologous recombination, we have constructed Z. tritici strains deficient in the non-homologous end joining pathway of DNA double stranded break repair by inactivating the KU70 and KU80 genes. Targeted gene deletion frequency increased to more than 85% in both Z. tritici ku70 and ku80 null strains, compared to ⩽10% seen in the wild type parental strain IPO323. The in vitro growth and in planta pathogenicity of the Z. tritici ku70 and ku80 null strains were comparable to strain IPO323. Together these molecular tools add significantly to the platform available for genomic analysis through targeted gene deletion or promoter replacements and will facilitate large-scale functional characterization projects in Z. tritici. PMID:26092796

  12. Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum.

    PubMed

    Hu, Jinyu; Tan, Yanzhen; Li, Yanyan; Hu, Xiaoqing; Xu, Daqing; Wang, Xiaoyuan

    2013-11-01

    Gene deletion techniques are important for modifying Corynebacterium glutamicum, the bacterium for industrial production of amino acids. In this study, a novel multiple-gene-deletion system for C. glutamicum was developed. The system is composed of three plasmids pDTW109, pDTW201 and pDTW202. pDTW109 is a temperature-sensitive vector which harbors a cat gene under the tacM promoter, a cre gene under the tac promoter, an origin oriE for replicating in Escherichia coli, and another origin rep(TS) for replicating in C. glutamicum only at low temperatures; it has high transformation efficiency in C. glutamicum and can be easily eliminated by growing at 37°C. pDTW201 and pDTW202 carry loxp-flanked or mutant lox-flanked kan, respectively. This deletion system combines homologous recombination and Cre/lox site-specific recombination, could efficiently delete the aceE gene from the chromosome of C. glutamicum ATCC13032, ATCC13869 or ATCC14067, respectively, and could also delete both genes of aceE and ilvA from the chromosome of C. glutamicum ATCC14067. The system is simple and efficient, and can be easily implemented for multiple-gene-deletion in C. glutamicum. PMID:23856168

  13. Amino acid sequence of Salmonella typhimurium branched-chain amino acid aminotransferase.

    PubMed

    Feild, M J; Nguyen, D C; Armstrong, F B

    1989-06-13

    The complete amino acid sequence of the subunit of branched-chain amino acid aminotransferase (transaminase B, EC 2.6.1.42) of Salmonella typhimurium was determined. An Escherichia coli recombinant containing the ilvGEDAY gene cluster of Salmonella was used as the source of the hexameric enzyme. The peptide fragments used for sequencing were generated by treatment with trypsin, Staphylococcus aureus V8 protease, endoproteinase Lys-C, and cyanogen bromide. The enzyme subunit contains 308 residues and has a molecular weight of 33,920. To determine the coenzyme-binding site, the pyridoxal 5-phosphate containing enzyme was treated with tritiated sodium borohydride prior to trypsin digestion. Peptide map comparisons with an apoenzyme tryptic digest and monitoring radioactivity incorporation allowed identification of the pyridoxylated peptide, which was then isolated and sequenced. The coenzyme-binding site is the lysyl residue at position 159. The amino acid sequence of Salmonella transaminase B is 97.4% identical with that of Escherichia coli, differing in only eight amino acid positions. Sequence comparisons of transaminase B to other known aminotransferase sequences revealed limited sequence similarity (24-33%) when conserved amino acid substitutions are allowed and alignments were forced to occur on the coenzyme-binding site. PMID:2669973

  14. Endogenous Synthesis of 2-Aminoacrylate Contributes to Cysteine Sensitivity in Salmonella enterica

    PubMed Central

    Ernst, Dustin C.; Lambrecht, Jennifer A.; Schomer, Rebecca A.

    2014-01-01

    RidA, the archetype member of the widely conserved RidA/YER057c/UK114 family of proteins, prevents reactive enamine/imine intermediates from accumulating in Salmonella enterica by catalyzing their hydrolysis to stable keto acid products. In the absence of RidA, endogenous 2-aminoacrylate persists in the cellular environment long enough to damage a growing list of essential metabolic enzymes. Prior studies have focused on the dehydration of serine by the pyridoxal 5′-phosphate (PLP)-dependent serine/threonine dehydratases, IlvA and TdcB, as sources of endogenous 2-aminoacrylate. The current study describes an additional source of endogenous 2-aminoacrylate derived from cysteine. The results of in vivo analysis show that the cysteine sensitivity of a ridA strain is contingent upon CdsH, the predominant cysteine desulfhydrase in S. enterica. The impact of cysteine on 2-aminoacrylate accumulation is shown to be unaffected by the presence of serine/threonine dehydratases, revealing another mechanism of endogenous 2-aminoacrylate production. Experiments in vitro suggest that 2-aminoacrylate is released from CdsH following cysteine desulfhydration, resulting in an unbound aminoacrylate substrate for RidA. This work expands our understanding of the role played by RidA in preventing enamine stress resulting from multiple normal metabolic processes. PMID:25002544

  15. De Novo Designed Proteins from a Library of Artificial Sequences Function in Escherichia Coli and Enable Cell Growth

    PubMed Central

    Fisher, Michael A.; McKinley, Kara L.; Bradley, Luke H.; Viola, Sara R.; Hecht, Michael H.

    2011-01-01

    A central challenge of synthetic biology is to enable the growth of living systems using parts that are not derived from nature, but designed and synthesized in the laboratory. As an initial step toward achieving this goal, we probed the ability of a collection of >106 de novo designed proteins to provide biological functions necessary to sustain cell growth. Our collection of proteins was drawn from a combinatorial library of 102-residue sequences, designed by binary patterning of polar and nonpolar residues to fold into stable 4-helix bundles. We probed the capacity of proteins from this library to function in vivo by testing their abilities to rescue 27 different knockout strains of Escherichia coli, each deleted for a conditionally essential gene. Four different strains – ΔserB, ΔgltA, ΔilvA, and Δfes – were rescued by specific sequences from our library. Further experiments demonstrated that a strain simultaneously deleted for all four genes was rescued by co-expression of four novel sequences. Thus, cells deleted for ∼0.1% of the E. coli genome (and ∼1% of the genes required for growth under nutrient-poor conditions) can be sustained by sequences designed de novo. PMID:21245923

  16. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes.

    PubMed

    Gschweitl, Michaela; Ulbricht, Anna; Barnes, Christopher A; Enchev, Radoslav I; Stoffel-Studer, Ingrid; Meyer-Schaller, Nathalie; Huotari, Jatta; Yamauchi, Yohei; Greber, Urs F; Helenius, Ari; Peter, Matthias

    2016-01-01

    Cullin-3 (CUL3)-based ubiquitin ligases regulate endosome maturation and trafficking of endocytic cargo to lysosomes in mammalian cells. Here, we report that these functions depend on SPOPL, a substrate-specific CUL3 adaptor. We find that SPOPL associates with endosomes and is required for both the formation of multivesicular bodies (MVBs) and the endocytic host cell entry of influenza A virus. In SPOPL-depleted cells, endosomes are enlarged and fail to acquire intraluminal vesicles (ILVs). We identify a critical substrate ubiquitinated by CUL3-SPOPL as EPS15, an endocytic adaptor that also associates with the ESCRT-0 complex members HRS and STAM on endosomes. Indeed, EPS15 is ubiquitinated in a SPOPL-dependent manner, and accumulates with HRS in cells lacking SPOPL. Together, our data indicates that a CUL3-SPOPL E3 ubiquitin ligase complex regulates endocytic trafficking and MVB formation by ubiquitinating and degrading EPS15 at endosomes, thereby influencing influenza A virus infection as well as degradation of EGFR and other EPS15 targets. PMID:27008177

  17. Integrative Food-Grade Expression System Based on the Lactose Regulon of Lactobacillus casei

    PubMed Central

    Gosalbes, María José; Esteban, Carlos David; Galán, José Luis; Pérez-Martínez, Gaspar

    2000-01-01

    The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3′ end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, β-glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses. PMID:11055930

  18. Genetic location of genes encoding enterobacterial common antigen.

    PubMed Central

    Meier, U; Mayer, H

    1985-01-01

    A new rff mutation (rff-726) of Escherichia coli is described which affects the biosynthesis of the enterobacterial common antigen. This mutation was detected in an rfe-defective strain. A Tn10 insertion near the rfe locus was isolated to facilitate further mapping. Both mutations rfe and rff were mapped by transduction with bacteriophage P1, giving the gene order ilv rfe rff uvrD metE. The F' factor F14 was able to complement both mutations rfe and rff, whereas the F' factor F16 could complement the rfe but not the rff mutation. The rff mutation did not affect the biosynthesis of N-acetyl-D-mannosaminuronic acid, as the previously described rff mutations in Salmonella typhimurium do (H. C. Lew, H. Nikaido, and P. H. Mäkelä, J. Bacteriol. 136:227-233, 1978), and also did not affect the biosynthesis of other enterobacterial common antigen components; however, the biosynthesis of the complete enterobacterial common antigen molecule was blocked. PMID:3894334

  19. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes

    PubMed Central

    Gschweitl, Michaela; Ulbricht, Anna; Barnes, Christopher A; Enchev, Radoslav I; Stoffel-Studer, Ingrid; Meyer-Schaller, Nathalie; Huotari, Jatta; Yamauchi, Yohei; Greber, Urs F; Helenius, Ari; Peter, Matthias

    2016-01-01

    Cullin-3 (CUL3)-based ubiquitin ligases regulate endosome maturation and trafficking of endocytic cargo to lysosomes in mammalian cells. Here, we report that these functions depend on SPOPL, a substrate-specific CUL3 adaptor. We find that SPOPL associates with endosomes and is required for both the formation of multivesicular bodies (MVBs) and the endocytic host cell entry of influenza A virus. In SPOPL-depleted cells, endosomes are enlarged and fail to acquire intraluminal vesicles (ILVs). We identify a critical substrate ubiquitinated by CUL3-SPOPL as EPS15, an endocytic adaptor that also associates with the ESCRT-0 complex members HRS and STAM on endosomes. Indeed, EPS15 is ubiquitinated in a SPOPL-dependent manner, and accumulates with HRS in cells lacking SPOPL. Together, our data indicates that a CUL3-SPOPL E3 ubiquitin ligase complex regulates endocytic trafficking and MVB formation by ubiquitinating and degrading EPS15 at endosomes, thereby influencing influenza A virus infection as well as degradation of EGFR and other EPS15 targets. DOI: http://dx.doi.org/10.7554/eLife.13841.001 PMID:27008177

  20. Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici

    PubMed Central

    Sidhu, Y.S.; Cairns, T.C.; Chaudhari, Y.K.; Usher, J.; Talbot, N.J.; Studholme, D.J.; Csukai, M.; Haynes, K.

    2015-01-01

    The lack of techniques for rapid assembly of gene deletion vectors, paucity of selectable marker genes available for genetic manipulation and low frequency of homologous recombination are major constraints in construction of gene deletion mutants in Zymoseptoria tritici. To address these issues, we have constructed ternary vectors for Agrobacterium tumefaciens mediated transformation of Z. tritici, which enable the single step assembly of multiple fragments via yeast recombinational cloning. The sulfonylurea resistance gene, which is a mutated allele of the Magnaporthe oryzae ILV2 gene, was established as a new dominant selectable marker for Z. tritici. To increase the frequency of homologous recombination, we have constructed Z. tritici strains deficient in the non-homologous end joining pathway of DNA double stranded break repair by inactivating the KU70 and KU80 genes. Targeted gene deletion frequency increased to more than 85% in both Z. tritici ku70 and ku80 null strains, compared to ⩽10% seen in the wild type parental strain IPO323. The in vitro growth and in planta pathogenicity of the Z. tritici ku70 and ku80 null strains were comparable to strain IPO323. Together these molecular tools add significantly to the platform available for genomic analysis through targeted gene deletion or promoter replacements and will facilitate large-scale functional characterization projects in Z. tritici. PMID:26092796

  1. Dual role of alpha-acetolactate decarboxylase in Lactococcus lactis subsp. lactis.

    PubMed Central

    Goupil-Feuillerat, N; Cocaign-Bousquet, M; Godon, J J; Ehrlich, S D; Renault, P

    1997-01-01

    The alpha-acetolactate decarboxylase gene aldB is clustered with the genes for the branched-chain amino acids (BCAA) in Lactococcus lactis subsp. lactis. It can be transcribed with BCAA genes under isoleucine regulation or independently of BCAA synthesis under the control of its own promoter. The product of aldB is responsible for leucine sensibility under valine starvation. In the presence of more than 10 microM leucine, the alpha-acetolactate produced by the biosynthetic acetohydroxy acid synthase IlvBN is transformed to acetoin by AldB and, consequently, is not available for valine synthesis. AldB is also involved in acetoin formation in the 2,3-butanediol pathway, initiated by the catabolic acetolactate synthase, AlsS. The differences in the genetic organization, the expression, and the kinetics parameters of these enzymes between L. lactis and Klebsiella terrigena, Bacillus subtilis, or Leuconostoc oenos suggest that this pathway plays a different role in the metabolism in these bacteria. Thus, the alpha-acetolactate decarboxylase from L. lactis plays a dual role in the cell: (i) as key regulator of valine and leucine biosynthesis, by controlling the acetolactate flux by a shift to catabolism; and (ii) as an enzyme catalyzing the second step of the 2,3-butanediol pathway. PMID:9335274

  2. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida

    PubMed Central

    Liu, Tao; Wang, Guoliang; Chi, Shan; Liu, Cui; Wang, Haiyang

    2015-01-01

    In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome. PMID:26426800

  3. Single lung transplantation and fatal fat embolism acquired from the donor: management and literature review.

    PubMed

    López-Sánchez, Marta; Alvarez-Antoñán, Carlos; Arce-Mateos, Félix P; Gómez-Román, José; Quesada-Suescun, Antonio; Zurbano-Goñi, Felipe

    2010-01-01

    Fat embolism (FE) is a consequence of skeletal trauma that occurs in more than 90% of cases of severe trauma. However, most of these emboli are clinically insignificant. We report the case of a 59-yr-old man with massive progressive fibrosis who died from widespread FE after a single-lung transplantation (SLT). The lung donor was a 22-yr-old woman who died from traumatic cerebral injury. She had sustained a closed fracture of the tibia, fibula and pelvis. The PaO(2)/FiO(2) before procurement was 452 mmHg. A left SLT using cardiopulmonary bypass was performed. In the immediate postoperative period, profound pulmonary edema in the transplanted lung developed, with overinflation of the native lung and systemic hypotension. Severe Primary Graft Dysfunction (PGD) was suspected and nitric oxide (NO) and independent lung ventilation (ILV) initiated. Over the next 24 h the patient's condition deteriorated and extracorporeal membrane oxygenation (ECMO) was initiated. The patient died 45 h after transplantation as cardiovascular and respiratory function continued to decline and massive thoracic bleeding secondary to coagulopathy appeared. Post-mortem examination revealed both massive FE in the non-transplanted donor lung and in the allograft lung. Only two previous cases of donor-acquired FE and PGD after lung transplantation (LT) have been reported. Occult pulmonary FE in a traumatized donor should be considered a cause of PGD. PMID:19888997

  4. Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast.

    PubMed

    Saerens, S M G; Verbelen, P J; Vanbeneden, N; Thevelein, J M; Delvaux, F R

    2008-10-01

    During fermentation, the yeast Saccharomyces cerevisiae produces a broad range of aroma-active substances, which are vital for the complex flavour of beer. In order to obtain insight into the influence of high-gravity brewing and fermentation temperature on flavour formation, we analysed flavour production and the expression level of ten genes (ADH1, BAP2, BAT1, BAT2, ILV5, ATF1, ATF2, IAH1, EHT1 and EEB1) during fermentation of a lager and an ale yeast. Higher initial wort gravity increased acetate ester production, while the influence of higher fermentation temperature on aroma compound production was rather limited. In addition, there is a good correlation between flavour production and the expression level of specific genes involved in the biosynthesis of aroma compounds. We conclude that yeasts with desired amounts of esters and higher alcohols, in accordance with specific consumer preferences, may be identified based on the expression level of flavour biosynthesis genes. Moreover, these results demonstrate that the initial wort density can determine the final concentration of important volatile aroma compounds, thereby allowing beneficial adaptation of the flavour of beer. PMID:18751696

  5. Metabolic Engineering of Candida glabrata for Diacetyl Production

    PubMed Central

    Gao, Xiang; Xu, Nan; Li, Shubo; Liu, Liming

    2014-01-01

    In this study, Candida glabrata, an efficient pyruvate-producing strain, was metabolically engineered for the production of the food ingredient diacetyl. A diacetyl biosynthetic pathway was reconstructed based on genetic modifications and medium optimization. The former included (i) channeling carbon flux into the diacetyl biosynthetic pathway by amplification of acetolactate synthase, (ii) elimination of the branched pathway of α-acetolactate by deleting the ILV5 gene, and (iii) restriction of diacetyl degradation by deleting the BDH gene. The resultant strain showed an almost 1∶1 co-production of α-acetolactate and diacetyl (0.95 g L−1). Furthermore, addition of Fe3+ to the medium enhanced the conversion of α-acetolactate to diacetyl and resulted in a two-fold increase in diacetyl production (2.1 g L−1). In addition, increased carbon flux was further channeled into diacetyl biosynthetic pathway and a titer of 4.7 g L−1 of diacetyl was achieved by altering the vitamin level in the flask culture. Thus, this study illustrates that C. glabrata could be tailored as an attractive platform for enhanced biosynthesis of beneficial products from pyruvate by metabolic engineering strategies. PMID:24614328

  6. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium.

    PubMed

    LaRossa, R A; Schloss, J V

    1984-07-25

    The sulfonylurea herbicide sulfometuron methyl inhibits the growth of several bacterial species. In the presence of L-valine, sulfometuron methyl inhibits Salmonella typhimurium, this inhibition can be reversed by L-isoleucine. Reversal of growth retardation by L-isoleucine, accumulation of guanosine 5'-diphosphate 3'-diphosphate (magic spot), and relA mutant hypersensitivity suggest sulfometuron methyl interference with branched-chain amino acid biosynthesis. Growth inhibition of S. typhimurium is mediated by sulfometuron methyl's inhibition of acetolactate synthase, the first common enzyme in the branched-chain amino acid biosynthetic pathway. Sulfometuron methyl exhibits slow-binding inhibition of acetolactate synthase isozyme II from S. typhimurium with an initial Ki of 660 +/- 60 nM and a final, steady-state Ki of 65 +/- 25 nM. Inhibition of acetolactate synthase by sulfometuron methyl is substantially more rapid (10 times) in the presence of pyruvate with a maximal first-order rate constant for conversion from initial to final steady-state inhibition of 0.25 +/- 0.07 min-1 (minimal half-time of 2.8 min). Mutants of S. typhimurium able to grow in the presence of sulfometuron methyl were obtained. They have acetolactate synthase activity that is insensitive to sulfometuron methyl because of mutations in or near ilvG, the structural gene for acetolactate synthase isozyme II. PMID:6378902

  7. Regulation of branched-chain amino acid transport in Escherichia coli.

    PubMed Central

    Quay, S C; Oxender, D L

    1976-01-01

    The repression and derepression of leucine, isoleucine, and valine transport in Escherichia coli K-12 was examined by using strains auxotrophic for leucine, isoleucine, valine, and methionine. In experiments designed to limit each of these amino acids separately, we demonstrate that leucine limitation alone derepressed the leucine-binding protein, the high-affinity branched-chain amino acid transport system (LIV-I), and the membrane-bound, low-affinity system (LIV-II). This regulation did not seem to involve inactivation of transport components, but represented an increase in the differential rate of synthesis of transport components relative to total cellular proteins. The apparent regulation of transport by isoleucine, valine, and methionine reported elsewhere was shown to require an intact leucine, biosynthetic operon and to result from changes in the level of leucine biosynthetic enzymes. A functional leucyl-transfer ribonucleic acid synthetase was also required for repression of transport. Transport regulation was shown to be essentially independent of ilvA or its gene product, threonine deaminase. The central role of leucine or its derivatives in cellular metabolism in general is discussed. PMID:783137

  8. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.

    PubMed

    Kondo, Takashi; Tezuka, Hironori; Ishii, Jun; Matsuda, Fumio; Ogino, Chiaki; Kondo, Akihiko

    2012-05-31

    The production of higher alcohols by engineered bacteria has received significant attention. The budding yeast, Saccharomyces cerevisiae, has considerable potential as a producer of higher alcohols because of its capacity to naturally fabricate fusel alcohols, in addition to its robustness and tolerance to low pH. However, because its natural productivity is not significant, we considered a strategy of genetic engineering to increase production of the branched-chain higher alcohol isobutanol, which is involved in valine biosynthesis. Initially, we overexpressed 2-keto acid decarboxylase (KDC) and alcohol dehydrogenase (ADH) in S. cerevisiae to enhance the endogenous activity of the Ehrlich pathway. We then overexpressed Ilv2, which catalyzes the first step in the valine synthetic pathway, and deleted the PDC1 gene encoding a major pyruvate decarboxylase with the intent of altering the abundant ethanol flux via pyruvate. Through these engineering steps, along with modification of culture conditions, the isobutanol titer of S. cerevisiae was elevated 13-fold, from 11 mg/l to 143 mg/l, and the yield was 6.6 mg/g glucose, which is higher than any previously reported value for S. cerevisiae. PMID:22342368

  9. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli.

    PubMed

    Choi, So Young; Park, Si Jae; Kim, Won Jun; Yang, Jung Eun; Lee, Hyuk; Shin, Jihoon; Lee, Sang Yup

    2016-04-01

    Poly(lactate-co-glycolate) (PLGA) is a widely used biodegradable and biocompatible synthetic polymer. Here we report one-step fermentative production of PLGA in engineered Escherichia coli harboring an evolved polyhydroxyalkanoate (PHA) synthase that polymerizes D-lactyl-CoA and glycolyl-CoA into PLGA. Introduction of the Dahms pathway enables production of glycolate from xylose. Deletion of ptsG enables simultaneous utilization of glucose and xylose. An evolved propionyl-CoA transferase converts D-lactate and glycolate to D-lactyl-CoA and glycolyl-CoA, respectively. Deletion of adhE, frdB, pflB and poxB prevents by-product formation. We also demonstrate modulation of the monomer fractions in PLGA by overexpressing ldhA and deleting dld to increase the proportion of D-lactate or by deleting aceB, glcB, glcD, glcE, glcF and glcG to increase the proportion of glycolate. Incorporation of 2-hydroxybutyrate is prevented by deleting ilvA or feeding strains with L-isoleucine. The utility of our approach for generating diverse forms of PLGA is shown by the production of copolymers containing 3-hydroxybutyrate, 4-hydroxybutyrate or 2-hydroxyisovalerate. PMID:26950748

  10. Metabolic engineering of Escherichia coli for the production of 1-propanol.

    PubMed

    Choi, Yong Jun; Park, Jin Hwan; Kim, Tae Yong; Lee, Sang Yup

    2012-09-01

    An engineered Escherichia coli strain that produces 1-propanol under aerobic condition was developed based on an L-threonine-overproducing E. coli strain. First, a feedback resistant ilvA gene encoding threonine dehydratase was introduced and the competing metabolic pathway genes were deleted. Further engineering was performed by overexpressing the cimA gene encoding citramalate synthase and the ackA gene encoding acetate kinase A/propionate kinase II, introducing a modified adhE gene encoding an aerobically functional AdhE, and by deleting the rpoS gene encoding the stationary phase sigma factor. Fed-batch culture of the final engineered strain harboring pBRthrABC-tac-cimA-tac-ackA and pTacDA-tac-adhE(mut) allowed production of 10.8 g L(-1) of 1-propanol with the yield and productivity of 0.107 g g(-1) and 0.144 g L(-1) h(-1), respectively, from 100 g L(-1) of glucose, and 10.3 g L(-1) of 1-propanol with the yield and productivity of 0.259 g g(-1) and 0.083 g L(-1) h(-1), respectively, from 40 g L(-1) glycerol. PMID:22871504

  11. Candida albicans PROTEIN PROFILE CHANGES IN RESPONSE TO THE BUTANOLIC EXTRACT OF Sapindus saponariaL.

    PubMed Central

    FIORINI, Adriana; ROSADO, Fabio Rogério; BETTEGA, Eliane Martins da Silva; MELO, Kátia Cristina Sibin; KUKOLJ, Caroline; BONFIM-MENDONÇA, Patrícia de Souza; SHINOBU-MESQUITA, Cristiane Suemi; GHIRALDI, Luciana Dias; CAMPANERUT, Paula Aline Zanetti; CAPOCI, Isis Regina Grenier; GODOY, Janine Silva Ribeiro; FERREIRA, Izabel Cristina Piloto; SVIDZINSKI, Terezinha Inez Estivalet

    2016-01-01

    Candida albicans is an opportunistic human pathogen that is capable of causing superficial and systemic infections in immunocompromised patients. Extracts of Sapindus saponaria have been used as antimicrobial agents against various organisms. In the present study, we used a combination of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to identify the changes in protein abundance of C. albicans after exposure to the minimal inhibitory concentration (MIC) and sub-minimal inhibitory concentration (sub-MIC) of the butanolic extract (BUTE) of S. saponaria and also to fluconazole. A total of six different proteins with greater than 1.5 fold induction or repression relative to the untreated control cells were identified among the three treatments. In general, proteins/enzymes involved with the glycolysis (GPM1, ENO1, FBA1), amino acid metabolism (ILV5, PDC11) and protein synthesis (ASC1) pathways were detected. In conclusion, our findings reveal antifungal-induced changes in protein abundance of C. albicans. By using the previously identified components of the BUTE of S. saponaria(e.g., saponins and sesquiterpene oligoglycosides), it will be possible to compare the behavior of compounds with unknown mechanisms of action, and this knowledge will help to focus the subsequent biochemical work aimed at defining the effects of these compounds. PMID:27074319

  12. Triad Resonance in the Gravity-Acoustic Family

    NASA Astrophysics Data System (ADS)

    Kadri, U.

    2015-12-01

    Resonance interactions of waves play a prominent role in energy share among the different wave types involved. Such interactions may significantly contribute, among others, to the evolution of the ocean energy spectrum by exchanging energy between surface-gravity waves; surface and internal gravity waves; or even surface and compression-type waves, that can transfer energy from the upper ocean through the whole water column reaching down to the seafloor. A resonant triad occurs among a triplet of waves, usually involving interaction of nonlinear terms of second order perturbed equations. Until recently, it has been believed that in a homogeneous fluid a resonant triad is possible only when tension forces are included, or at the limit of a shallow water, and that when the compressibility of water is considered, no resonant triads can occur within the family of gravity-acoustic waves. However, more recently it has been proved that, under some circumstances, resonant triads comprising two opposing surface-gravity waves of similar periods (though not identical) and a much longer acoustic-gravity wave, of almost double the frequency, exist [Kadri and Stiassnie 2013, J. Fluid Mech.735 R6]. Here, I report on a new resonant triad involving a gravity wave and two acoustic waves of almost double the length. Interestingly, the two acoustic waves propagate in the same direction with similar wavelengths, that are almost double of that of the gravity wave. The evolution of the wave triad amplitudes is periodic and it is derived analytically, in terms of Jacobian elliptic functions and elliptic integrals. The physical importance of this type of triad interactions is the modulation of pertinent acoustic signals, leading to inaccurate signal perceptions. Enclosed figure: presents an example spatio-temporal evolution of the wave triad amplitudes. The gravity wave (top) remains almost unaltered, while the envelope slowly displaces to the left. However, the prescribed acoustic

  13. Complete primary structure of the triple-helical region and the carboxyl-terminal domain of a new type IV collagen chain, alpha 5(IV).

    PubMed

    Pihlajaniemi, T; Pohjolainen, E R; Myers, J C

    1990-08-15

    .-R., Kadri, A.S., Goddard, A.D., Sheer, D., Solomon, E., and Pihlajaniemi, T. (1990) Am. J. Hum. Genet. 46, 1024-1033). Consequently, the newly discovered alpha 5(IV) collagen chain may have a critical role in inherited diseases of connective tissue. PMID:2380186

  14. 40Ar/39Ar Dating of Zn-Pb-Ag Mineralization in the Northern Brooks Range, Alaska

    USGS Publications Warehouse

    Werdon, Melanie B.; Layer, Paul W.; Newberry, Rainer J.

    2004-01-01

    The 40Ar/39Ar laser step-heating method potentially can be used to provide absolute ages for a number of formerly undatable, low-temperature ore deposits. This study demonstrates the use of this method by determining absolute ages for Zn-Pb-Ag sediment-hosted massive sulfide deposits and vein-breccia occurrences found throughout a 300-km-long, east-west-trending belt in the northern Brooks Range, Alaska. Massive sulfide deposits are hosted by Mississippian to Pennsylvanian(?) black carbonaceous shale, siliceous mudstone, and lesser chert and carbonate turbidites of the Kuna Formation (e.g., Red Dog, Anarraaq, Lik (Su), and Drenchwater). The vein-breccia occurrences (e.g., Husky, Story Creek, West Kivliktort Mountain, Vidlee, and Kady) are hosted by a deformed but only weakly metamorphosed package of Upper Devonian to Lower Mississippian mixed continental and marine clastic rocks (the Endicott Group) that stratigraphically underlie the Kuna Formation. The vein-breccias are mineralogically similar to, but not spatially associated with, known massive sulfide deposits. The region's largest shale-hosted massive sulfide deposit is Red Dog; it has reserves of 148 Mt grading 16.6 percent zinc, 4.5 percent lead, and 77 g of silver per tonne. Hydrothermally produced white mica in a whole-rock sample from a sulfide-bearing igneous sill within the Red Dog deposit yielded a plateau age of 314.5 Ma. The plateau age of this whole-rock sample records the time at which temperatures cooled below the argon closure temperature of the white mica and is interpreted to represent the minimum age limit for massive sulfide-related hydrothermal activity in the Red Dog deposit. Sulfide-bearing quartz veins at Drenchwater crosscut a hypabyssal intrusion with a maximum biotite age of 337.0 Ma. Despite relatively low sulfide deposition temperatures in the vein-breccia occurrences (162°-251°C), detrital white mica in sandstone immediately adjacent to large vein-breccia zones was partially to

  15. Recognition of p63 by the E3 ligase ITCH: Effect of an ectodermal dysplasia mutant.

    PubMed

    Bellomaria, A; Barbato, Gaetano; Melino, G; Paci, M; Melino, Sonia

    2010-09-15

    The E3 ubiquitin ligase Itch mediates the degradation of the p63 protein. Itch contains four WW domains which are pivotal for the substrate recognition process. Indeed, this domain is implicated in several signalling complexes crucially involved in human diseases including Muscular Dystrophy, Alzheimer's Disease and Huntington Disease. WW domains are highly compact protein-protein binding modules that interact with short proline-rich sequences. The four WW domains present in Itch belong to the Group I type, which binds polypeptides with a PY motif characterized by a PP xY consensus sequence, where x can be any residue. Accordingly, the Itch-p63 interaction results from a direct binding of Itch-WW2 domain with the PY motif of p63. Here, we report a structural analysis of the Itch-p63 interaction by fluorescence, CD and NMR spectroscopy. Indeed, we studied the in vitro interaction between Itch-WW2 domain and p63(534-551), an 18-mer peptide encompassing a fragment of the p63 protein including the PY motif. In addition, we evaluated the conformation and the interaction with Itch-WW2 of a site specific mutant of p63, I549T, that has been reported in both Hay-Wells syndrome and Rapp-Hodgkin syndrome. Based on our results, we propose an extended PP xY motif for the Itch recognition motif (P-P-P-Y-x(4)-[ST]-[ILV]), which includes these C-terminal residues to the PP xY motif. PMID:20855944

  16. Expanding the Regulatory Network Governed by the Extracytoplasmic Function Sigma Factor σH in Corynebacterium glutamicum

    PubMed Central

    Toyoda, Koichi; Teramoto, Haruhiko; Yukawa, Hideaki

    2014-01-01

    The extracytoplasmic function sigma factor σH is responsible for the heat and oxidative stress response in Corynebacterium glutamicum. Due to the hierarchical nature of the regulatory network, previous transcriptome analyses have not been able to discriminate between direct and indirect targets of σH. Here, we determined the direct genome-wide targets of σH using chromatin immunoprecipitation with microarray technology (ChIP-chip) for analysis of a deletion mutant of rshA, encoding an anti-σ factor of σH. Seventy-five σH-dependent promoters, including 39 new ones, were identified. σH-dependent, heat-inducible transcripts for several of the new targets, including ilvD encoding a labile Fe-S cluster enzyme, dihydroxy-acid dehydratase, were detected, and their 5′ ends were mapped to the σH-dependent promoters identified. Interestingly, functional internal σH-dependent promoters were found in operon-like gene clusters involved in the pentose phosphate pathway, riboflavin biosynthesis, and Zn uptake. Accordingly, deletion of rshA resulted in hyperproduction of riboflavin and affected expression of Zn-responsive genes, possibly through intracellular Zn overload, indicating new physiological roles of σH. Furthermore, sigA encoding the primary σ factor was identified as a new target of σH. Reporter assays demonstrated that the σH-dependent promoter upstream of sigA was highly heat inducible but much weaker than the known σA-dependent one. Our ChIP-chip analysis also detected the σH-dependent promoters upstream of rshA within the sigH-rshA operon and of sigB encoding a group 2 σ factor, supporting the previous findings of their σH-dependent expression. Taken together, these results reveal an additional layer of the sigma factor regulatory network in C. glutamicum. PMID:25404703

  17. Rapid Protein Global Fold Determination Using Ultrasparse Sampling, High-Dynamic Range Artifact Suppression, and Time-Shared NOESY

    PubMed Central

    Coggins, Brian E.; Werner-Allen, Jonathan W.; Yan, Anthony; Zhou, Pei

    2012-01-01

    In structural studies of large proteins by NMR, global fold determination plays an increasingly important role in providing a first look at a target’s topology and reducing assignment ambiguity in NOESY spectra of fully-protonated samples. In this work, we demonstrate the use of ultrasparse sampling, a new data processing algorithm, and a 4-D time-shared NOESY experiment (1) to collect all NOEs in 2H/13C/15N-labeled protein samples with selectively-protonated amide and ILV methyl groups at high resolution in only four days, and (2) to calculate global folds from this data using fully automated resonance assignment. The new algorithm, SCRUB, incorporates the CLEAN method for iterative artifact removal, but applies an additional level of iteration, permitting real signals to be distinguished from noise and allowing nearly all artifacts generated by real signals to be eliminated. In simulations with 1.2% of the data required by Nyquist sampling, SCRUB achieves a dynamic range over 10000:1 (250× better artifact suppression than CLEAN) and completely quantitative reproduction of signal intensities, volumes, and lineshapes. Applied to 4-D time-shared NOESY data, SCRUB processing dramatically reduces aliasing noise from strong diagonal signals, enabling the identification of weak NOE crosspeaks with intensities 100× less than diagonal signals. Nearly all of the expected peaks for interproton distances under 5 Å were observed. The practical benefit of this method is demonstrated with structure calculations for 23 kDa and 29 kDa test proteins using the automated assignment protocol of CYANA, in which unassigned 4-D time-shared NOESY peak lists produce accurate and well-converged global fold ensembles, whereas 3-D peak lists either fail to converge or produce significantly less accurate folds. The approach presented here succeeds with an order of magnitude less sampling than required by alternative methods for processing sparse 4-D data. PMID:22946863

  18. Construction of an industrial brewing yeast strain to manufacture beer with low caloric content and improved flavor.

    PubMed

    Wang, Jin-Jing; Wang, Zhao-Yue; Liu, Xi-Feng; Guo, Xue-Na; He, Xiu-Ping; Wensel, Pierre Christian; Zhang, Bo-Run

    2010-04-01

    In this study, the problems of high caloric content, increased maturation time and off-flavors in commercial beer manufacture arising from residual sugar, diacetyl, and acetaldehyde levels were addressed. A recombinant industrial brewing yeast strain (TQ1) was generated from T1 [Lipomyces starkeyi dextranase gene (LSD1) introduced, alpha-acetohydroxyacid synthase gene (ILV2) disrupted] by introducing Saccharomyces cerevisiae glucoamylase (SGA1) and a strong promoter PGK1 while disrupting the genes coding alcohol dehydrogenase (ADH2). The highest glucoamylase activity for TQ1 was 93.26 U/ml compared with host strain T1 (12.36 U/ml) and wild-type industrial yeast strain YSF5 (10.39 U/ml), respectively. European Brewery Convention (EBC) tube fermentation tests comparing the fermentation broths of TQ1 with T1 and YSF5 showed that the real extract were reduced by 15.79% and 22.47%; the main residual maltotriose concentration were reduced by 13.75% and 18.82%; the caloric content were reduced by 27.18 and 35.39 calories per 12 oz. Due to the disruption of ADH2 gene in TQ1, the off-flavor acetaldehyde concentration in the fermentation broth were 9.43% and 13.28% respectively lower than that of T1 and YSF5. No heterologous DNA sequences or drug-resistance genes were introduced into TQ1. So, the gene manipulations in this work properly solved the addressed problems in commercial beer manufacture. PMID:20467251

  19. A Defect in Menadione Biosynthesis Induces Global Changes in Gene Expression in Staphylococcus aureus▿ †

    PubMed Central

    Kohler, Christian; von Eiff, Christof; Liebeke, Manuel; McNamara, Peter J.; Lalk, Michael; Proctor, Richard A.; Hecker, Michael; Engelmann, Susanne

    2008-01-01

    Both the high-resolution two-dimensional protein gel electrophoresis technique and full-genome DNA microarrays were used for identification of Staphylococcus aureus genes whose expression was changed by a mutation in menD. Because the electron transport chain is interrupted, the mutant should be unable to use oxygen and nitrate as terminal electron acceptors. Consistent with this, a mutation in menD was found to cause a gene expression pattern typically detected under anaerobic conditions in wild-type cells: proteins involved in glycolytic as well as in fermentation pathways were upregulated, whereas tricarboxylic acid (TCA) cycle enzymes were significantly downregulated. Moreover, the expression of genes encoding enzymes for nitrate respiration and the arginine deiminase pathway was strongly increased in the mutant strain. These results indicate that the menD mutant, just as the site-directed S. aureus hemB mutant, generates ATP from glucose or fructose mainly by substrate phosphorylation and might be defective in utilizing a variety of carbon sources, including TCA cycle intermediates and compounds that generate ATP only via electron transport phosphorylation. Of particular interest is that there are also differences in the gene expression patterns between hemB and menD mutants. While some anaerobically active enzymes were present in equal amounts in both strains (Ldh1, SACOL2535), other classically anaerobic enzymes seem to be present in higher amounts either in the hemB mutant (e.g., PflB, Ald1, IlvA1) or in the menD mutant (arc operon). Only genes involved in nitrate respiration and the ald1 operon seem to be additionally regulated by a depletion of oxygen in the hemB and/or menD mutant. PMID:18676673

  20. Exosome Biogenesis, Regulation, and Function in Viral Infection

    PubMed Central

    Alenquer, Marta; Amorim, Maria João

    2015-01-01

    Exosomes are extracellular vesicles released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation. This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system, which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and

  1. Overexpression of PrfA Leads to Growth Inhibition of Listeria monocytogenes in Glucose-Containing Culture Media by Interfering with Glucose Uptake

    PubMed Central

    Marr, A. K.; Joseph, B.; Mertins, S.; Ecke, R.; Müller-Altrock, S.; Goebel, W.

    2006-01-01

    Listeria monocytogenes strains expressing high levels of the virulence regulator PrfA (mutant PrfA* or wild-type PrfA) show strong growth inhibition in minimal media when they are supplemented with glucose but not when they are supplemented with glucose-6-phosphate compared to the growth of isogenic strains expressing low levels of PrfA. A significantly reduced rate of glucose uptake was observed in a PrfA*-overexpressing strain growing in LB supplemented with glucose. Comparative transcriptome analyses were performed with RNA isolated from a prfA mutant and an isogenic strain carrying multiple copies of prfA or prfA* on a plasmid. These analyses revealed that in addition to high transcriptional up-regulation of the known PrfA-regulated virulence genes (group I), there was less pronounced up-regulation of the expression of several phage and metabolic genes (group II) and there was strong down-regulation of several genes involved mainly in carbon and nitrogen metabolism in the PrfA*-overexpressing strain (group III). Among the latter genes are the nrgAB, gltAB, and glnRA operons (involved in nitrogen metabolism), the ilvB operon (involved in biosynthesis of the branched-chain amino acids), and genes for some ABC transporters. Most of the down-regulated genes have been shown previously to belong to a class of genes in Bacillus subtilis whose expression is negatively affected by impaired glucose uptake. Our results lead to the conclusion that excess PrfA (or PrfA*) interferes with a component(s) essential for phosphotransferase system-mediated glucose transport. PMID:16707681

  2. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway.

    PubMed

    Xu, Jianzhong; Han, Mei; Zhang, Junlan; Guo, Yanfeng; Zhang, Weiguo

    2014-09-01

    The experiments presented here were based on the conclusions of our previous results. In order to avoid introduction of expression plasmid and to balance the NADH/NAD ratio, the NADH biosynthetic enzyme, i.e., NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GADPH), was replaced by NADP-dependent GADPH, which was used to biosynthesize NADPH rather than NADH. The results indicated that the NADH/NAD ratio significantly decreased, and glucose consumption and L-lysine production drastically improved. Moreover, increasing the flux through L-lysine biosynthetic pathway and disruption of ilvN and hom, which involve in the branched amino acid and L-methionine biosynthesis, further improved L-lysine production by Corynebacterium glutamicum. Compared to the original strain C. glutamicum Lys5, the L-lysine production and glucose conversion efficiency (α) were enhanced to 81.0 ± 6.59 mM and 36.45% by the resulting strain C. glutamicum Lys5-8 in shake flask. In addition, the by-products (i.e., L-threonine, L-methionine and L-valine) were significantly decreased as results of genetic modification in homoserine dehydrogenase (HSD) and acetohydroxyacid synthase (AHAS). In fed-batch fermentation, C. glutamicum Lys5-8 began to produce L-lysine at post-exponential growth phase and continuously increased over 36 h to a final titer of 896 ± 33.41 mM. The L-lysine productivity was 2.73 g l(-1) h(-1) and the α was 47.06% after 48 h. However, the attenuation of MurE was not beneficial to increase the L-lysine production because of decreasing the cell growth. Based on the above-mentioned results, we get the following conclusions: cofactor NADPH, precursor, the flux through L-lysine biosynthetic pathway and DCW are beneficial to improve L-lysine production in C. glutamicum. PMID:24879631

  3. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis.

    PubMed

    Neshat, Armin; Mentz, Almut; Rückert, Christian; Kalinowski, Jörn

    2014-11-20

    The Gram-positive bacterium Corynebacterium glutamicum belongs to the order Corynebacteriales and is used as a producer of amino acids at industrial scales. Due to its economic importance, gene expression and particularly the regulation of amino acid biosynthesis has been investigated extensively. Applying the high-resolution technique of transcriptome sequencing (RNA-seq), recently a vast amount of data has been generated that was used to comprehensively analyze the C. glutamicum transcriptome. By analyzing RNA-seq data from a small RNA cDNA library of C. glutamicum, short transcripts in the known transcriptional attenuators sites of the trp operon, the ilvBNC operon and the leuA gene were verified. Furthermore, whole transcriptome RNA-seq data were used to elucidate the transcriptional organization of these three amino acid biosynthesis operons. In addition, we discovered and analyzed the novel attenuator aroR, located upstream of the aroF gene (cg1129). The DAHP synthase encoded by aroF catalyzes the first step in aromatic amino acid synthesis. The AroR leader peptide contains the amino acid sequence motif F-Y-F, indicating a regulatory effect by phenylalanine and tyrosine. Analysis by real-time RT-PCR suggests that the attenuator regulates the transcription of aroF in dependence of the cellular amount of tRNA loaded with phenylalanine when comparing a phenylalanine-auxotrophic C. glutamicum mutant fed with limiting and excess amounts of a phenylalanine-containing dipeptide. Additionally, the very interesting finding was made that all analyzed attenuators are leaderless transcripts. PMID:24910972

  4. E-Area Performance Assessment Interim Measures Assessment FY2005

    SciTech Connect

    Stallings, M

    2006-01-31

    After major changes to the limits for various disposal units of the E-Area Low Level Waste Facility (ELLWF) last year, no major changes have been made during FY2005. A Special Analysis was completed which removes the air pathway {sup 14}C limit from the Intermediate Level Vault (ILV). This analysis will allow the disposal of reactor moderator deionizers which previously had no pathway to disposal. Several studies have also been completed providing groundwater transport input for future special analyses. During the past year, since Slit Trenches No.1 and No.2 were nearing volumetric capacity, they were operationally closed under a preliminary closure analysis. This analysis was performed using as-disposed conditions and data and showed that concrete rubble from the demolition of 232-F was acceptable for disposal in the STs even though the latest special analysis for the STs had reduced the tritium limits so that the inventory in the rubble exceeded limits. A number of special studies are planned during the next years; perhaps the largest of these will be revision of the Performance Assessment (PA) for the ELLWF. The revision will be accomplished by incorporating special analyses performed since the last PA revision as well as revising analyses to include new data. Projected impacts on disposal limits of more recent studies have been estimated. No interim measures will be applied during this year. However, it is being recommended that tritium disposals to the Components-in-Grout (CIG) Trenches be suspended until a limited Special Analysis (SA) currently in progress is completed. This SA will give recommendations for optimum placement of tritiated D-Area tower waste. Further recommendations for tritiated waste placement in the CIG Trenches will be given in the upcoming PA revision.

  5. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression.

    PubMed

    Rautio, Jari J; Huuskonen, Anne; Vuokko, Heikki; Vidgren, Virve; Londesborough, John

    2007-09-01

    Brewer's yeast experiences constantly changing environmental conditions during wort fermentation. Cells can rapidly adapt to changing surroundings by transcriptional regulation. Changes in genomic expression can indicate the physiological condition of yeast in the brewing process. We monitored, using the transcript analysis with aid of affinity capture (TRAC) method, the expression of some 70 selected genes relevant to wort fermentation at high frequency through 9-10 day fermentations of very high gravity wort (25 degrees P) by an industrial lager strain. Rapid changes in expression occurred during the first hours of fermentations for several genes, e.g. genes involved in maltose metabolism, glycolysis and ergosterol synthesis were strongly upregulated 2-6 h after pitching. By the time yeast growth had stopped (72 h) and total sugars had dropped by about 50%, most selected genes had passed their highest expression levels and total mRNA was less than half the levels during growth. There was an unexpected upregulation of some genes of oxygen-requiring pathways during the final fermentation stages. For five genes, expression of both the Saccharomyces cerevisiae and S. bayanus components of the hybrid lager strain were determined. Expression profiles were either markedly different (ADH1, ERG3) or very similar (MALx1, ILV5, ATF1) between these two components. By frequent analysis of a chosen set of genes, TRAC provided a detailed and dynamic picture of the physiological state of the fermenting yeast. This approach offers a possible way to monitor and optimize the performance of yeast in a complex process environment. PMID:17605133

  6. Isolation of NAD cycle mutants defective in nicotinamide mononucleotide deamidase in Salmonella typhimurium.

    PubMed

    Cheng, W; Roth, J

    1995-12-01

    The NAD or pyridine nucleotide cycle is the sequence of reactions involved in the breakdown of NAD to nicotinamide mononucleotide (NMN) and regeneration of NAD. This cycle is fivefold more active during aerobic growth of Salmonella typhimurium and under this condition breaks down half of the NAD pool every 90 min. DNA ligase is known to convert NAD to NMN but is only a minor contributor to the NAD cycle during aerobic growth. The dominant aerobic route of NMN formation is otherwise uncharacterized. Accumulated NMN generated by either of these routes is potentially dangerous in that it can inhibit the essential enzyme DNA ligase. The reactions which recycle NMN to NAD may serve to minimize the inhibition of ligase and other enzymes by accumulated NMN. The predominant recycling reaction in S. typhimurium appears to be NMN deamidase, which converts NMN directly to the biosynthetic intermediate nicotinic acid mononucleotide. Mutants defective in this recycling step were isolated and characterized. By starting with a ligase-deficient (lig mutant) parent strain that requires deamidase to assimilate exogenous NMN, two classes of mutants that are unable to grow on minimal NMN media were isolated. One class (pncC) maps at 83.7 min and shows only 2% of the wild-type levels of NMN deamidase. Under aerobic conditions, a lig+ allele allows a pncC mutant to grow on NMN and restores some deamidase activity. This growth ability and enzyme activity are not found in lig+ strains grown without oxygen. This suggests that the existence of a second NMN deamidase (pncL) dependent on ligase and stimulated during aerobic growth. The second class of mutants (pncD) gains a requirement for isoleucine plus valine with growth in the presence of exogenous NMN. We propose that pncD mutations reduce the activity of an ilv biosynthetic enzyme that is naturally sensitive to inhibition by NMN. PMID:7592458

  7. flrB, a Regulatory Locus Controlling Branched-Chain Amino Acid Biosynthesis in Salmonella typhimurium

    PubMed Central

    Friedberg, Devorah; Mikulka, Thomas W.; Jones, Judith; Calvo, Joseph M.

    1974-01-01

    Salmonella typhimurium strain CV123 (ara-9 gal-205 flrB1), isolated as a mutant resistant to trifluoroleucine, has derepressed and constitutive levels of enzymes forming branched-chain amino acids. This strain grows more slowly than the parent at several temperatures, both in minimal medium and nutrient broth. It overproduces and excretes sizeable amounts of leucine, valine, and isoleucine in comparison with the parental strain. Both leuS (coding for leucyl-transfer ribonucleic acid [tRNA]synthetase) and flrB are linked to lip (min 20 to 25) by P1 transduction, whereas only leuS is linked to lip by P22 transduction. Strain CV123 containing an F′ lip+ episome from Escherichia coli has repressed levels of leucine-forming enzymes, indicating that flrB+ is dominant to flrB. Leucyl-tRNA synthetase from strain CV123 appears to be identical to the leucyl-tRNA synthetase in the parent. No differences were detected between strain CV123 and the parent with respect to tRNA acceptor activity for a number of amino acids. Furthermore, there was no large difference between the two strains in the patterns of leucine tRNA isoaccepting species after fractionation on several different columns. Several other flrB strains exhibited temperature-sensitive excretion of leucine, i.e., they excreted leucine at 37 C but not 25 C. In one such strain, excretion at 37 C was correlated with derepression of some enzymes specified by ilv and leu. These latter results suggest that flrB codes for a protein. PMID:4598011

  8. flrB, a regulatory locus controlling branched-chain amino acid biosynthesis in Salmonella typhimurium.

    PubMed

    Friedberg, D; Mikulka, T W; Jones, J; Calvo, J M

    1974-06-01

    Salmonella typhimurium strain CV123 (ara-9 gal-205 flrB1), isolated as a mutant resistant to trifluoroleucine, has derepressed and constitutive levels of enzymes forming branched-chain amino acids. This strain grows more slowly than the parent at several temperatures, both in minimal medium and nutrient broth. It overproduces and excretes sizeable amounts of leucine, valine, and isoleucine in comparison with the parental strain. Both leuS (coding for leucyl-transfer ribonucleic acid [tRNA]synthetase) and flrB are linked to lip (min 20 to 25) by P1 transduction, whereas only leuS is linked to lip by P22 transduction. Strain CV123 containing an F' lip(+) episome from Escherichia coli has repressed levels of leucine-forming enzymes, indicating that flrB(+) is dominant to flrB. Leucyl-tRNA synthetase from strain CV123 appears to be identical to the leucyl-tRNA synthetase in the parent. No differences were detected between strain CV123 and the parent with respect to tRNA acceptor activity for a number of amino acids. Furthermore, there was no large difference between the two strains in the patterns of leucine tRNA isoaccepting species after fractionation on several different columns. Several other flrB strains exhibited temperature-sensitive excretion of leucine, i.e., they excreted leucine at 37 C but not 25 C. In one such strain, excretion at 37 C was correlated with derepression of some enzymes specified by ilv and leu. These latter results suggest that flrB codes for a protein. PMID:4598011

  9. Exometabolomics Assisted Design and Validation of Synthetic Obligate Mutualism.

    PubMed

    Kosina, Suzanne M; Danielewicz, Megan A; Mohammed, Mujahid; Ray, Jayashree; Suh, Yumi; Yilmaz, Suzan; Singh, Anup K; Arkin, Adam P; Deutschbauer, Adam M; Northen, Trent R

    2016-07-15

    Synthetic microbial ecology has the potential to enhance the productivity and resiliency of biotechnology processes compared to approaches using single isolates. Engineering microbial consortia is challenging; however, one approach that has attracted significant attention is the creation of synthetic obligate mutualism using auxotrophic mutants that depend on each other for exchange or cross-feeding of metabolites. Here, we describe the integration of mutant library fitness profiling with mass spectrometry based exometabolomics as a method for constructing synthetic mutualism based on cross-feeding. Two industrially important species lacking known ecological interactions, Zymomonas mobilis and Escherichia coli, were selected as the test species. Amino acid exometabolites identified in the spent medium of Z. mobilis were used to select three corresponding E. coli auxotrophs (proA, pheA and IlvA), as potential E. coli counterparts for the coculture. A pooled mutant fitness assay with a Z. mobilis transposon mutant library was used to identify mutants with improved growth in the presence of E. coli. An auxotroph mutant in a gene (ZMO0748) with sequence similarity to cysteine synthase A (cysK), was selected as the Z. mobilis counterpart for the coculture. Exometabolomic analysis of spent E. coli medium identified glutathione related metabolites as potentially available for rescue of the Z. mobilis cysteine synthase mutant. Three sets of cocultures between the Z. mobilis auxotroph and each of the three E. coli auxotrophs were monitored by optical density for growth and analyzed by flow cytometry to confirm high cell counts for each species. Taken together, our methods provide a technological framework for creating synthetic mutualisms combining existing screening based methods and exometabolomics for both the selection of obligate mutualism partners and elucidation of metabolites involved in auxotroph rescue. PMID:26885935

  10. Isoleucine biosynthesis in Leptospira interrogans serotype lai strain 56601 proceeds via a threonine-independent pathway.

    PubMed

    Xu, Hai; Zhang, Yuzhen; Guo, Xiaokui; Ren, Shuangxi; Staempfli, Andreas A; Chiao, Juishen; Jiang, Weihong; Zhao, Guoping

    2004-08-01

    Three leuA-like protein-coding sequences were identified in Leptospira interrogans. One of these, the cimA gene, was shown to encode citramalate synthase (EC 4.1.3.-). The other two encoded alpha-isopropylmalate synthase (EC 4.1.3.12). Expressed in Escherichia coli, the citramalate synthase was purified and characterized. Although its activity was relatively low, it was strictly specific for pyruvate as the keto acid substrate. Unlike the citramalate synthase of the thermophile Methanococcus jannaschii, the L. interrogans enzyme is temperature sensitive but exhibits a much lower K(m) (0.04 mM) for pyruvate. The reaction product was characterized as (R)-citramalate, and the proposed beta-methyl-d-malate pathway was further confirmed by demonstrating that citraconate was the substrate for the following reaction. This alternative pathway for isoleucine biosynthesis from pyruvate was analyzed both in vitro by assays of leptospiral isopropylmalate isomerase (EC 4.2.1.33) and beta-isopropylmalate dehydrogenase (EC 1.1.1.85) in E. coli extracts bearing the corresponding clones and in vivo by complementation of E. coli ilvA, leuC/D, and leuB mutants. Thus, the existence of a leucine-like pathway for isoleucine biosynthesis in L. interrogans under physiological conditions was unequivocally proven. Significant variations in either the enzymatic activities or mRNA levels of the cimA and leuA genes were detected in L. interrogans grown on minimal medium supplemented with different levels of the corresponding amino acids or in cells grown on serum-containing rich medium. The similarity of this metabolic pathway in leptospires and archaea is consistent with the evolutionarily primitive status of the eubacterial spirochetes. PMID:15292141

  11. Integrons in Xanthomonas: A source of species genome diversity

    PubMed Central

    Gillings, Michael R.; Holley, Marita P.; Stokes, H. W.; Holmes, Andrew J.

    2005-01-01

    Integrons are best known for assembling antibiotic resistance genes in clinical bacteria. They capture genes by using integrase-mediated site-specific recombination of mobile gene cassettes. Integrons also occur in the chromosomes of many bacteria, notably β- and γ-Proteobacteria. In a survey of Xanthomonas, integrons were found in all 32 strains representing 12 pathovars of two species. Their chromosomal location was downstream from the acid dehydratase gene, ilvD, suggesting that an integron was present at this site in the ancestral xanthomonad. There was considerable sequence and structural diversity among the extant integrons. The majority of integrase genes were predicted to be inactivated by frameshifts, stop codons, or large deletions, suggesting that the associated gene cassettes can no longer be mobilized. In support, groups of strains with the same deletions or stop codons/frameshifts in their integrase gene usually contained identical arrays of gene cassettes. In general, strains within individual pathovars had identical cassettes, and these exhibited no similarity to cassettes detected in other pathovars. The variety and characteristics of contemporary gene cassettes suggests that the ancestral integron had access to a diverse pool of these mobile elements, and that their genes originated outside the Xanthomonas genome. Subsequent inactivation of the integrase gene in particular lineages has largely fixed the gene cassette arrays in particular pathovars during their differentiation and specialization into ecological niches. The acquisition of diverse gene cassettes by different lineages within Xanthomonas has contributed to the species-genome diversity of the genus. The role of gene cassettes in survival on plant surfaces is currently unknown. PMID:15755815

  12. Primary biliary cirrhosis is characterized by IgG3 antibodies cross-reactive with the major mitochondrial autoepitope and its Lactobacillus mimic.

    PubMed

    Bogdanos, Dimitrios-Petrou; Baum, Harold; Okamoto, Manabu; Montalto, Paolo; Sharma, Umesh C; Rigopoulou, Eirini I; Vlachogiannakos, John; Ma, Yun; Burroughs, Andrew K; Vergani, Diego

    2005-08-01

    The serological hallmark of primary biliary cirrhosis (PBC) is the presence of pyruvate dehydrogenase complex E2 subunit (PDC-E2) antimitochondrial antibodies (AMAs). Anti-PDC-E2 antibodies cross-react specifically with mycobacterial hsp65, and we have demonstrated that the motif SxGDL[ILV]AE shared by PDC-E2(212-226) and hsp's is a cross-reactive target. Having found that this same motif is present only in beta-galactosidase of Lactobacillus delbrueckii (BGAL LACDE), we hypothesized that this homology would also lead to cross-reactivity. The mimics were tested via ELISA for reactivity and competitive cross-reactivity using sera from 100 AMA-positive and 23 AMA-negative PBC patients and 190 controls. An Escherichia coli (ECOLI) PDC-E2 mimic that has been pathogenetically linked to PBC but lacks this motif has been also tested. Anti-BGAL(266-280) LACDE antibodies were restricted to AMA-positive patients (54 of 95, 57%) and belonged to immunoglobulin (Ig) G3. Of the 190 controls, 22 (12%; P < .001) had anti-BGAL(266-280) antibodies, mainly of the IgG4 subclass. ECOLI PDC-E2 reactivity was virtually absent. BGAL(266-280)/PDC-E2(212-226) reactivity of the IgG3 isotype was found in 52 (52%) AMA-positive PBC patients but in only 1 of the controls (P < .001). LACDE BGAL(266-280)/PDC-E2(212-226) reactivity was due to cross-reactivity as confirmed via competition ELISA. Antibody affinity for BGAL(266-280) was greater than for PDC-E2 mimics. Preincubation of a multireactive serum with BGAL(266-280) reduced the inhibition of enzymatic activity by 40%, while marginal effect (12%) or no effect (2%) was observed in human or ECOLI PDC-E2 mimics. In conclusion, IgG3 antibodies to BGAL LACDE cross-react with the major mitochondrial autoepitope and are characteristic of PBC. PMID:16025495

  13. Rotaviruses Reach Late Endosomes and Require the Cation-Dependent Mannose-6-Phosphate Receptor and the Activity of Cathepsin Proteases To Enter the Cell

    PubMed Central

    Díaz-Salinas, Marco A.; Silva-Ayala, Daniela; López, Susana

    2014-01-01

    ABSTRACT Rotaviruses (RVs) enter cells through different endocytic pathways. Bovine rotavirus (BRV) UK uses clathrin-mediated endocytosis, while rhesus rotavirus (RRV) employs an endocytic process independent of clathrin and caveolin. Given the differences in the cell internalization pathway used by these viruses, we tested if the intracellular trafficking of BRV UK was the same as that of RRV, which is known to reach maturing endosomes (MEs) to infect the cell. We found that BRV UK also reaches MEs, since its infectivity depends on the function of Rab5, the endosomal sorting complex required for transport (ESCRT), and the formation of endosomal intraluminal vesicles (ILVs). However, unlike RRV, the infectivity of BRV UK was inhibited by knocking down the expression of Rab7, indicating that it has to traffic to late endosomes (LEs) to infect the cell. The requirement for Rab7 was also shared by other RV strains of human and porcine origin. Of interest, most RV strains that reach LEs were also found to depend on the activities of Rab9, the cation-dependent mannose-6-phosphate receptor (CD-M6PR), and cathepsins B, L, and S, suggesting that cellular factors from the trans-Golgi network (TGN) need to be transported by the CD-M6PR to LEs to facilitate RV cell infection. Furthermore, using a collection of UK × RRV reassortant viruses, we found that the dependence of BRV UK on Rab7, Rab9, and CD-M6PR is associated with the spike protein VP4. These findings illustrate the elaborate pathway of RV entry and reveal a new process (Rab9/CD-M6PR/cathepsins) that could be targeted for drug intervention. IMPORTANCE Rotavirus is an important etiological agent of severe gastroenteritis in children. In most instances, viruses enter cells through an endocytic pathway that delivers the viral particle to vesicular organelles known as early endosomes (EEs). Some viruses reach the cytoplasm from EEs, where they start to replicate their genome. However, other viruses go deeper into the

  14. Crystallization and X-ray diffraction analysis of an l-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii and a d-xylonate dehydratase from Caulobacter crescentus

    PubMed Central

    Rahman, Mohammad Mubinur; Andberg, Martina; Koivula, Anu; Rouvinen, Juha; Hakulinen, Nina

    2016-01-01

    l-Arabinonate dehydratase (EC 4.2.1.25) and d-xylonate dehydratase (EC 4.2.1.82) are two enzymes that are involved in a nonphosphorylative oxidation pathway of pentose sugars. l-Arabinonate dehydratase converts l-arabinonate into 2-dehydro-3-deoxy-l-arabinonate, and d-xylonate dehydratase catalyzes the dehydration of d-xylonate to 2-dehydro-3-deoxy-d-xylonate. l-Arabinonate and d-xylonate dehydratases belong to the IlvD/EDD family, together with 6-phosphogluconate dehydratases and dihydroxyacid dehydratases. No crystal structure of any l-arabinonate or d-xylonate dehydratase is available in the PDB. In this study, recombinant l-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii (RlArDHT) and d-xylonate dehydratase from Caulobacter crescentus (CcXyDHT) were heterologously expressed in Escherichia coli and purified by the use of affinity chromatography followed by gel-filtration chromatography. The purified proteins were crystallized using the hanging-drop vapour-diffusion method at 293 K. Crystals of RlArDHT that diffracted to 2.40 Å resolution were obtained using sodium formate as a precipitating agent. They belonged to space group P21, with unit-cell parameters a = 106.07, b = 208.61, c = 147.09 Å, β = 90.43°. Eight RlArDHT molecules (two tetramers) in the asymmetric unit give a V M value of 3.2 Å3 Da−1 and a solvent content of 62%. Crystals of CcXyDHT that diffracted to 2.66 Å resolution were obtained using sodium formate and polyethylene glycol 3350. They belonged to space group C2, with unit-cell parameters a = 270.42, b = 236.13, c = 65.17 Å, β = 97.38°. Four CcXyDHT molecules (a tetramer) in the asymmetric unit give a V M value of 4.0 Å3 Da−1 and a solvent content of 69%. PMID:27487924

  15. Crystallization and X-ray diffraction analysis of an L-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii and a D-xylonate dehydratase from Caulobacter crescentus.

    PubMed

    Rahman, Mohammad Mubinur; Andberg, Martina; Koivula, Anu; Rouvinen, Juha; Hakulinen, Nina

    2016-08-01

    L-Arabinonate dehydratase (EC 4.2.1.25) and D-xylonate dehydratase (EC 4.2.1.82) are two enzymes that are involved in a nonphosphorylative oxidation pathway of pentose sugars. L-Arabinonate dehydratase converts L-arabinonate into 2-dehydro-3-deoxy-L-arabinonate, and D-xylonate dehydratase catalyzes the dehydration of D-xylonate to 2-dehydro-3-deoxy-D-xylonate. L-Arabinonate and D-xylonate dehydratases belong to the IlvD/EDD family, together with 6-phosphogluconate dehydratases and dihydroxyacid dehydratases. No crystal structure of any L-arabinonate or D-xylonate dehydratase is available in the PDB. In this study, recombinant L-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii (RlArDHT) and D-xylonate dehydratase from Caulobacter crescentus (CcXyDHT) were heterologously expressed in Escherichia coli and purified by the use of affinity chromatography followed by gel-filtration chromatography. The purified proteins were crystallized using the hanging-drop vapour-diffusion method at 293 K. Crystals of RlArDHT that diffracted to 2.40 Å resolution were obtained using sodium formate as a precipitating agent. They belonged to space group P21, with unit-cell parameters a = 106.07, b = 208.61, c = 147.09 Å, β = 90.43°. Eight RlArDHT molecules (two tetramers) in the asymmetric unit give a VM value of 3.2 Å(3) Da(-1) and a solvent content of 62%. Crystals of CcXyDHT that diffracted to 2.66 Å resolution were obtained using sodium formate and polyethylene glycol 3350. They belonged to space group C2, with unit-cell parameters a = 270.42, b = 236.13, c = 65.17 Å, β = 97.38°. Four CcXyDHT molecules (a tetramer) in the asymmetric unit give a VM value of 4.0 Å(3) Da(-1) and a solvent content of 69%. PMID:27487924

  16. Unravelling the Secrets of Mycobacterial Cidality through the Lens of Antisense

    PubMed Central

    Datta, Santanu; Shandil, Radha Krishan; Kumar, Naveen; Robert, Nanduri; Sokhi, Upneet K.; Guptha, Supreeth; Narayanan, Shridhar; Anbarasu, Anand; Ramaiah, Sudha

    2016-01-01

    One of the major impediments in anti-tubercular drug discovery is the lack of a robust grammar that governs the in-vitro to the in-vivo translation of efficacy. Mycobacterium tuberculosis (Mtb) is capable of growing both extracellular as well as intracellular; encountering various hostile conditions like acidic milieu, free radicals, starvation, oxygen deprivation, and immune effector mechanisms. Unique survival strategies of Mtb have prompted researchers to develop in-vitro equivalents to simulate in-vivo physiologies and exploited to find efficacious inhibitors against various phenotypes. Conventionally, the inhibitors are screened on Mtb under the conditions that are unrelated to the in-vivo disease environments. The present study was aimed to (1). Investigate cidality of Mtb targets using a non-chemical inhibitor antisense-RNA (AS-RNA) under in-vivo simulated in-vitro conditions.(2). Confirm the cidality of the targets under in-vivo in experimental tuberculosis. (3). Correlate in-vitro vs. in-vivo cidality data to identify the in-vitro condition that best predicts in-vivo cidality potential of the targets. Using cidality as a metric for efficacy, and AS-RNA as a target-specific inhibitor, we delineated the cidality potential of five target genes under six different physiological conditions (replicating, hypoxia, low pH, nutrient starvation, nitrogen depletion, and nitric oxide).In-vitro cidality confirmed in experimental tuberculosis in BALB/c mice using the AS-RNA allowed us to identify cidal targets in the rank order of rpoB>aroK>ppk>rpoC>ilvB. RpoB was used as the cidality control. In-vitro and in-vivo studies feature aroK (encoding shikimate kinase) as an in-vivo mycobactericidal target suitable for anti-TB drug discovery. In-vitro to in-vivo cidality correlations suggested the low pH (R = 0.9856) in-vitro model as best predictor of in-vivo cidality; however, similar correlation studies in pathologically relevant (Kramnik) mice are warranted. In the acute

  17. Organic electronic devices via interface engineering

    NASA Astrophysics Data System (ADS)

    Xu, Qianfei

    This dissertation focuses on interface engineering and its influence on organic electronic devices. A comprehensive review of interface studies in organic electronic devices is presented in Chapter 1. By interface engineering at the cathode contact, an ultra-high efficiency green polymer light emitting diode is demonstrated in Chapter 2. The interface modification turns out to be solution processable by using calcium acetylacetonate, donated by Ca(acac)2. The device structure is Induim Tin Oxide (ITO)/3,4-polyethylenedioxythiophene-polystyrene-sulfonate (PEDOT)/Green polyfluorene/Ca(acac) 2/Al. Based on this structure, we obtained device efficiencies as high as 28 cd/A at 2650 cd/m2, which is about a 3 times improvement over previous devices. The mechanism of this nano-layer has been studied by I-L-V measurements, photovoltaic measurements, XPS/UPS studies, impedance measurements as well as transient EL studies. The interfacial layer plays a crucial role for the efficiency improvement. It is believed to work as a hole blocking layer as well as an electron injection layer. Meanwhile, a systematic study on ITO electrodes is also carried out in Chapter 4. By engineering the interface at ITO electrode, the device lifetime has been improved. In Chapter 5, very bright white emission PLEDs are fabricated based on blue polyfluorene (PF) doped with 1 wt% 6, 8, 15, 17-tetraphyenyl-1.18, 4.5, 9.10, 13.14-tetrabenzoheptacene (TBH). The maximum luminance exceeds 20,000 cd/m2. The maximum luminance efficiency is 3.55 cd/A at 4228 cd/m2 while the maximum power efficiency is 1.6 lm/W at 310 cd/m2. The white color is achieved by an incomplete energy transfer from blue PF to TBH. The devices show super stable CIE coordinates as a function of current density. The interface engineering is also applied to memory devices. In Chapter 6, a novel nonvolatile memory device is fabricated by inserting a buffer layer at the anode contact. Devices with the structure of Cu

  18. An expanded two-state model accounts for homotropic cooperativity in biosynthetic threonine deaminase from Escherichia coli.

    PubMed

    Eisenstein, E; Yu, H D; Fisher, K E; Iacuzio, D A; Ducote, K R; Schwarz, F P

    1995-07-25

    The linkage between substrate and regulatory effector binding to separate sites on allosteric enzymes results in shifts in their sigmoidal kinetics to regulate metabolism. Control of branched chain amino acid biosynthesis in Escherichia coli occurs in part through shifts in the sigmoidal dependence of alpha-ketobutyrate production promoted by isoleucine and valine binding to biosynthetic threonine deaminase. The structural similarity of threonine, valine, and isoleucine have given rise to suggestions that there may be competition among different ligands for the same sites on this tetrameric enzyme, resulting in a complex pattern of regulation. In an effort to provide a coherent interpretation of the cooperative association of ligands to the active sites and to the effector sites of threonine deaminase, binding studies using single amino acid variants were undertaken. A previously-isolated, feedback-resistant mutant identified in Salmonella typhimurium, ilvA219, has been cloned and sequenced. The phenotype is attributable to a single amino acid substitution in the regulatory domain of the enzyme in which leucine at position 447 is substituted with phenylalanine. The mutant exhibits hyperbolic saturation curves in both ligand binding and steady-state kinetics. These results, in addition to calorimetric and spectroscopic measurements of isoleucine and valine binding, indicate that the low affinity (T) state is destabilized in the mutant and that it exists predominantly in the high affinity (R) conformation in the absence of ligands, providing an explanation for its resistance to isoleucine. Chemical and spectroscopic analyses of another mutant, in which alanine has replaced an essential lysine at position 62 that forms a Schiff base with pyridoxal phosphate, indicate that the cofactor is complexed to exogenous threonine and is therefore unable to bind additional amino acids at the active sites. Isoleucine and valine binding to this inactive, active site

  19. Use of the valine biosynthetic pathway to convert glucose into isobutanol.

    PubMed

    Savrasova, Ekaterina A; Kivero, Aleksander D; Shakulov, Rustem S; Stoynova, Nataliya V

    2011-09-01

    Microbiological synthesis of higher alcohols (1-butanol, isobutanol, 2-methyl-1-butanol, etc.) from plant biomass is critically important due to their advantages over ethanol as a motor fuel. In recent years, the use of branched-chain amino acid (BCAA) biosynthesis pathways together with heterologous Ehrlich pathway enzyme system (Hazelwood et al. in Appl Environ Microbiol 74:2259-2266, 2008) has been proposed by the Liao group as an alternative approach to aerobic production of higher alcohols as new-generation biofuels (Atsumi et al. in Nature 451:86-90, 2008; Atsumi et al. in Appl Microbiol Biotechnol 85:651-657, 2010; Cann and Liao in Appl Microbiol Biotechnol 81:89-98, 2008; Connor and Liao in Appl Environ Microbiol 74:5769-5775, 2008; Shen and Liao in Metab Eng 10:312-320, 2008; Yan and Liao in J Ind Microbiol Biotechnol 36:471-479, 2009). On the basis of these remarkable investigations, we re-engineered Escherichia coli valine-producing strain H-81, which possess overexpressed ilvGMED operon, for the aerobic conversion of sugar into isobutanol. To redirect valine biosynthesis to the production of alcohol, we also--as has been demonstrated previously (Atsumi et al. in Nature 451:86-90, 2008; Atsumi et al. in Appl Microbiol Biotechnol 85:651-657, 2010; Cann and Liao in Appl Microbiol Biotechnol 81:89-98, 2008; Connor and Liao in Appl Environ Microbiol 74:5769-5775, 2008; Shen and Liao in Metab Eng 10:312-320, 2008; Yan and Liao in J Ind Microbiol Biotechnol 36:471-479, 2009)--used enzymes of Ehrlich pathway. In particular, in our study, the following heterologous proteins were exploited: branched-chain 2-keto acid decarboxylase (BCKAD) encoded by the kdcA gene from Lactococcus lactis with rare codons substituted, and alcohol dehydrogenase (ADH) encoded by the ADH2 gene from Saccharomyces cerevisiae. We show that expression of both of these genes in the valine-producing strain H-81 results in accumulation of isobutanol instead of valine. Expression of BCKAD

  20. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    SciTech Connect

    Kaplan, D

    2006-02-28

    The Savannah River Site disposes of certain types of radioactive waste within subsurface-engineered facilities. One of the tools used to establish the capacity of a given site to safely store radioactive waste (i.e., that a site does not exceed its Waste Acceptance Criteria) is the Performance Assessment (PA). The objective of this document is to provide the geochemical values for the PA calculations. This work is being conducted as part of the on-going maintenance program that permits the PA to periodically update existing calculations when new data becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). The geochemical parameters describe transport processes for 38 elements (>90 radioisotopes) potentially occurring within eight disposal units (Slit Trenches, Engineered Trenches, Low Activity Waste (LAW) Vault, Intermediate Level (ILV) Vaults, TRU-Pad-1, Naval Reactor Waste Pads, Components-in-Grout Trenches, and Saltstone Facility). This work builds upon well-documented work from previous PA calculations (McDowell-Boyer et al. 2000). The new geochemical concepts introduced in this data package are: (1) In the past, solubility products were used only in a few conditions (element existing in a specific environmental setting). This has been expanded to >100 conditions. (2) Radionuclide chemistry in cementitious environments is described through the use of both the Kd and apparent solubility concentration limit. Furthermore, the solid phase is assumed to age during the assessment period (thousands of years), resulting in three main types of controlling

  1. Evaluation of a Shuttle Derived Vehicle (SDV) for Cargo Transportation

    NASA Technical Reports Server (NTRS)

    Roman, Jose M.; Meacham, Stephen B.; Krupp, Donald R.; Threet, G. E.; Best, Joel; Davis, Stephan R.; Crumbly, Christopher; Olsen, Ronald A.; Engler, Leah M.; Garner, Tim

    2005-01-01

    In this new era of space exploration, a host of launch vehicles are being examined for possible use in transporting cargo and crew to low Earth orbit and beyond. Launch vehicles derived from the Space Shuttle Program (SSP), known as Shuttle Derived Vehicles (SDVs), are prime candidates for heavy-lift duty because of their potential to minimize non-recurring costs and because the Shuttle can leverage off proven high-performance flight systems with established ground and flight support. To determine the merits of SDVs, a detailed evaluation was performed. This evaluation included a trade study and risk assessment of options based on performance, safety reliability, cost, operations, and evolution. The purpose of this paper is to explain the approach, processes, and tools used to evaluate launch vehicles for heavy lift cargo transportation. The process included defining the trade space, characterizing the concepts, analyzing the systems, and scoring the options. The process also included a review by subject experts from NASA and industry to compare past and recent study data and assess the risks. A set of technical performance measures (TPMs) was generated based on the study requirements and constraints. Tools such as INTROS and POST were used to calculate performance, FIRST was used for prediction of reliability, and other software packages, both commercial and NASA-owned, were applied to study the trade space. By following a clear process and using the right tools a thorough assessment was performed. An SDV can be classified as either a side-mount vehicle (SMV) or an in-line vehicle OLV). An SMV is a Space Shuttle where the Orbiter is replaced by a cargo carrier. An ILV is comprised of a modified Shuttle External Tank (ET) with engines mounted to the bottom and cargo mounted atop. For both families of vehicles, Solid Rocket Boosters (SRBs) are attached to the ET. The first derivate of Shuttle is defined as the vehicle with minimum changes necessary to transform the

  2. Characteristics and phylogeny of Bacillus cereus strains isolated from Maari, a traditional West African food condiment.

    PubMed

    Thorsen, Line; Kando, Christine Kere; Sawadogo, Hagrétou; Larsen, Nadja; Diawara, Bréhima; Ouédraogo, Georges Anicet; Hendriksen, Niels Bohse; Jespersen, Lene

    2015-03-01

    Maari is a spontaneously fermented food condiment made from baobab tree seeds in West African countries. This type of product is considered to be safe, being consumed by millions of people on a daily basis. However, due to the spontaneous nature of the fermentation the human pathogen Bacillus cereus occasionally occurs in Maari. This study characterizes succession patterns and pathogenic potential of B. cereus isolated from the raw materials (ash, water from a drilled well (DW) and potash), seed mash throughout fermentation (0-96h), after steam cooking and sun drying (final product) from two production sites of Maari. Aerobic mesophilic bacterial (AMB) counts in raw materials were of 10(5)cfu/ml in DW, and ranged between 6.5×10(3) and 1.2×10(4)cfu/g in potash, 10(9)-10(10)cfu/g in seed mash during fermentation and 10(7) - 10(9) after sun drying. Fifty three out of total 290 AMB isolates were identified as B. cereus sensu lato by use of ITS-PCR and grouped into 3 groups using PCR fingerprinting based on Escherichia coli phage-M13 primer (M13-PCR). As determined by panC gene sequencing, the isolates of B. cereus belonged to PanC types III and IV with potential for high cytotoxicity. Phylogenetic analysis of concatenated sequences of glpF, gmk, ilvD, pta, pur, pycA and tpi revealed that the M13-PCR group 1 isolates were related to B. cereus biovar anthracis CI, while the M13-PCR group 2 isolates were identical to cereulide (emetic toxin) producing B. cereus strains. The M13-PCR group 1 isolates harboured poly-γ-D-glutamic acid capsule biosynthesis genes capA, capB and capC showing 99-100% identity with the environmental B. cereus isolate 03BB108. Presence of cesB of the cereulide synthetase gene cluster was confirmed by PCR in M13-PCR group 2 isolates. The B. cereus harbouring the cap genes were found in potash, DW, cooking water and at 8h fermentation. The "emetic" type B. cereus were present in DW, the seed mash at 48-72h of fermentation and in the final product

  3. Cardiovascular Deconditioning in Humans: Alteration in Cardiovascular Regulation and Function During Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Cohen, Richard

    1999-01-01

    Alterations in cardiovascular regulation and function that occur during and after space flight have been reported. These alterations are manifested, for example, by reduced orthostatic tolerance upon reentry to the earth's gravity from space. However, the precise physiologic mechanisms responsible for these alterations remain to be fully elucidated. Perhaps, as a result, effective countermeasures have yet to be developed. In this project we apply a powerful, new method - cardiovascular system identification (CSI) - for the study of the effects of space flight on the cardiovascular system so that effective countermeasures can be developed. CSI involves the mathematical analysis of second-to-second fluctuations in non-invasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV - respiratory activity) in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of all the physiologic mechanisms coupling these signals, CSI provides a model of the closed-loop cardiovascular regulatory state in an individual subject. The model includes quantitative descriptions of the heart rate baroreflex, autonomic function, as well as other important physiologic mechanisms. We are in the process of incorporating beat-to-beat fluctuations of stroke volume into the CSI technique in order to quantify additional physiologic mechanisms such as those involved in control of peripheral vascular resistance and alterations in cardiac contractility. We apply CSI in conjunction with the two general protocols of the Human Studies Core project. The first protocol involves ground-based, human head down tilt bed rest to simulate microgravity and acute stressors - upright tilt, standing and bicycle exercise - to provide orthostatic and exercise challenges. The second protocol is intended to be the same as the first but with the addition of sleep deprivation to determine whether

  4. EDITORIAL: Focus on Mechanical Systems at the Quantum Limit FOCUS ON MECHANICAL SYSTEMS AT THE QUANTUM LIMIT

    NASA Astrophysics Data System (ADS)

    Aspelmeyer, Markus; Schwab, Keith

    2008-09-01

    progress was reported almost on a monthly basis and new groups entered the field. We intend to keep submission to this Focus Issue open for some time and invite everyone to share their latest results with us. And finally, a note to our fellow colleagues: keep up the good work! We would like to call the next Focus Issue 'Mechanical Systems IN the Quantum Regime'. Focus on Mechanical Systems at the Quantum Limit Contents Parametric coupling between macroscopic quantum resonators L Tian, M S Allman and R W Simmonds Quantum noise in a nanomechanical Duffing resonator E Babourina-Brooks, A Doherty and G J Milburn Creating and verifying a quantum superposition in a micro-optomechanical system Dustin Kleckner, Igor Pikovski, Evan Jeffrey, Luuk Ament, Eric Eliel, Jeroen van den Brink and Dirk Bouwmeester Ground-state cooling of a nanomechanical resonator via a Cooper-pair box qubit Konstanze Jaehne, Klemens Hammerer and Margareta Wallquist Dissipation in circuit quantum electrodynamics: lasing and cooling of a low-frequency oscillator Julian Hauss, Arkady Fedorov, Stephan André, Valentina Brosco, Carsten Hutter, Robin Kothari, Sunil Yeshwanth, Alexander Shnirman and Gerd Schön Route to ponderomotive entanglement of light via optically trapped mirrors Christopher Wipf, Thomas Corbitt, Yanbei Chen and Nergis Mavalvala Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system Xiao-Zhong Yuan, Hsi-Sheng Goan, Chien-Hung Lin, Ka-Di Zhu and Yi-Wen Jiang High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators A Schliesser, G Anetsberger, R Rivière, O Arcizet and T J Kippenberg Optomechanical to mechanical entanglement transformation Giovanni Vacanti, Mauro Paternostro, G Massimo Palma and Vlatko Vedral The optomechanical instability in the quantum regime Max Ludwig, Björn Kubala and Florian Marquardt Quantum limits of photothermal and radiation pressure cooling of a movable mirror M Pinard and A Dantan

  5. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    SciTech Connect

    Sinskey, Anthony J.; Worden, Robert Mark; Brigham, Christopher; Lu, Jingnan; Quimby, John Westlake; Gai, Claudia; Speth, Daan; Elliott, Sean; Fei, John Qiang; Bernardi, Amanda; Li, Sophia; Grunwald, Stephan; Grousseau, Estelle; Maiti, Soumen; Liu, Chole

    2013-12-16

    into complex cellular molecules using the energy from hydrogen. In this research project, engineered strains of R. eutropha redirected the excess carbon from PHB storage into the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can be used directly as substitutes for fossil-based fuels and are seen as alternative biofuels to ethanol and biodiesel. Importantly, these alcohols have approximately 98 % of the energy content of gasoline, 17 % higher than the current gasoline additive ethanol, without impacting corn market production for feed or food. Unlike ethanol, these branched-chain alcohols have low vapor pressure, hygroscopicity, and water solubility, which make them readily compatible with the existing pipelines, gasoline pumps, and engines in our transportation infrastructure. While the use of alternative energies from solar, wind, geothermal, and hydroelectric has spread for stationary power applications, these energy sources cannot be effectively or efficiently employed in current or future transportation systems. With the ongoing concerns of fossil fuel availability and price stability over the long term, alternative biofuels like branched-chain higher alcohols hold promise as a suitable transportation fuel in the future. We showed in our research that various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, would produce isobutanol and 3-methyl-1-butanol when initiated during nitrogen or phosphorus limitation. Early on, we isolated one mutant R. eutropha strain which produced over 180 mg/L branched-chain alcohols in flask culture while being more tolerant of isobutanol toxicity. After the targeted elimination of genes encoding several potential carbon sinks (ilvE, bkdAB, and ace