Science.gov

Sample records for kaihatsu amorphous silicon

  1. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  2. Amorphous silicon photovoltaic devices

    SciTech Connect

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  3. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  4. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  5. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  6. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  7. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  8. Perspective on photovoltaic amorphous silicon

    SciTech Connect

    Luft, W.; Stafford, B.; von Roedern, B.

    1992-05-01

    Amorphous silicon is a thin film option that has the potential for a cost-effective product for large-scale utility photovoltaics application. The initial efficiencies for single-junction and multijunction amorphous silicon cells and modules have increased significantly over the past 10 years. The emphasis of research and development has changed to stabilized efficiency, especially that of multijunction modules. NREL has measured 6.3%--7.2% stabilized amorphous silicon module efficiencies for US products, and 8.1% stable efficiencies have been reported by Fuji Electric. This represents a significant increase over the stabilized efficiencies of modules manufactured only a few years ago. An increasing portion of the amorphous silicon US government funding is now for manufacturing technology development to reduce cost. The funding for amorphous silicon for photovoltaics by Japan over the last 5 years has been about 50% greater than that in the United State, and by Germany in the last 2--3 years more than twice that of the US Amorphous silicon is the only thin-film technology that is selling large-area commercial modules. The cost for amorphous silicon modules is now in the $4.50 range; it is a strong function of plant production capacity and is expected to be reduced to $1.00--1.50/W{sub p} for plants with 10 MW/year capacities. 10 refs.

  9. Perspective on photovoltaic amorphous silicon

    SciTech Connect

    Luft, W.; Stafford, B.; von Roedern, B. )

    1992-12-01

    Amorphous silicon is a thin film option that has the potential for a cost-effective product for large-scale utility photovoltaics application. The initial efficiencies for single-junction and multijunction amorphous silicon cells and modules have increased significantly over the past 10 years. The emphasis of research and development has changed to stabilized efficiency, especially that of multijunction modules. NREL has measured 6.3%--7.2% stabilized amorphous silicon module efficiencies for U.S. products, and 8.1% stable efficiencies have been reported by Fuji Electric. This represents a significant increase over the stabilized efficiencies of modules manufactured only a few years ago. An increasing portion of the amorphous silicon U.S. government funding is now for manufacturing technology development to reduce cost. The funding for amorphous silicon for photovoltaics by Japan over the last 5 years has been about 50% greater than that in the United States, and by Germany in the last 2--3 years more than twice that of the U.S. Amorphous silicon is the only thin-film technology that is selling large-area commercial modules. The cost for amorphous silicon modules is now in the $4.50 range; it is a strong function of plant production capacity and is expected to be reduced to $1.00--1.50/W[sub [ital p

  10. Plasma Deposition of Amorphous Silicon

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1982-01-01

    Strongly adhering films of silicon are deposited directly on such materials as Pyrex and Vycor (or equivalent materials) and aluminum by a non-equilibrium plasma jet. Amorphous silicon films are formed by decomposition of silicon tetrachloride or trichlorosilane in the plasma. Plasma-jet technique can also be used to deposit an adherent silicon film on aluminum from silane and to dope such films with phosphorus. Ability to deposit silicon films on such readily available, inexpensive substrates could eventually lead to lower cost photovoltaic cells.

  11. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  12. Exoelectron analysis of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Dekhtyar, Yu. D.; Vinyarskaya, Yu. A.

    1994-04-01

    The method based on registration of photothermostimulated exoelectron emission (PTSE) is used in the proposed new field of investigating the structural defects in amorphous silicon (a-Si). This method can be achieved if the sample under investigation is simultaneously heated and illuminated by ultraviolet light. The mechanism of PTSE from a-Si has been studied in the case of a hydrogenized amorphous silicon (a-Si:H) film grown by glow discharge method. The electronic properties and annealing of defects were analyzed in the study. It has been shown from the results that the PTSE from a-Si:H takes place as a prethreshold single-photon external photoeffect. The exoemission spectroscopy of a-Si:H was shown to be capable in the study of thermally and optically stimulated changes in the electronic structure of defects, their annealing, as well as diffusion of atomic particles, such as hydrogen.

  13. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  14. Amorphous-silicon cell reliability testing

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1985-01-01

    The work on reliability testing of solar cells is discussed. Results are given on initial temperature and humidity tests of amorphous silicon devices. Calibration and measurement procedures for amorphous and crystalline cells are given. Temperature stress levels are diagrammed.

  15. Amorphous silicon solar cell allowing infrared transmission

    DOEpatents

    Carlson, David E.

    1979-01-01

    An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

  16. Studies of hydrogenated amorphous silicon

    SciTech Connect

    Bishop, S G; Carlos, W E

    1984-07-01

    This report discusses the results of probing the defect structure and bonding of hydrogenated amorphous silicon films using both nuclear magnetic resonance (NMR) and electron spin resonance (ESR). The doping efficiency of boron in a-Si:H was found to be less than 1%, with 90% of the boron in a threefold coordinated state. On the other hand, phosphorus NMR chemical shift measurements yielded a ration of threefold to fourfold P sites of roughly 4 to 1. Various resonance lines were observed in heavily boron- and phosphorus-doped films and a-SiC:H alloys. These lines were attributed to band tail states on twofold coordinated silicon. In a-SiC:H films, a strong resonance was attributed to dangling bonds on carbon atoms. ESR measurements on low-pressure chemical-vapor-deposited (LPCVD) a-Si:H were performed on samples. The defect density in the bulk of the films was 10/sup 17//cc with a factor of 3 increase at the surface of the sample. The ESR spectrum of LPCVD-prepared films was not affected by prolonged exposure to strong light. Microcrystalline silicon samples were also examined. The phosphorus-doped films showed a strong signal from the crystalline material and no resonance from the amorphous matrix. This shows that phosphorus is incorporated in the crystals and is active as a dopant. No signal was recorded from the boron-doped films.

  17. Method of producing hydrogenated amorphous silicon film

    DOEpatents

    Wiesmann, Harold J.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silane (SiH.sub.4) or other gases comprising H and Si, from a tungsten or carbon foil heated to a temperature of about 1400.degree.-1600.degree. C., in a vacuum of about 10.sup.-6 to 19.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseos mixture onto a substrate independent of and outside said source of thermal decomposition, to form hydrogenated amorphous silicon. The presence of an ammonia atmosphere in the vacuum chamber enhances the photoconductivity of the hydrogenated amorphous silicon film.

  18. Tests Of Amorphous-Silicon Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.

    1988-01-01

    Progress in identification of strengths and weaknesses of amorphous-silicon technology detailed. Report describes achievements in testing reliability of solar-power modules made of amorphous-silicon photovoltaic cells. Based on investigation of modules made by U.S. manufacturers. Modules subjected to field tests, to accelerated-aging tests in laboratory, and to standard sequence of qualification tests developed for modules of crystalline-silicon cells.

  19. Electron tunnelling into amorphous germanium and silicon.

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  20. Amorphous silicon-tellurium alloys

    NASA Astrophysics Data System (ADS)

    Shufflebotham, P. K.; Card, H. C.; Kao, K. C.; Thanailakis, A.

    1986-09-01

    Amorphous silicon-tellurium alloy thin films were fabricated by coevaporation over the composition range of 0-82 at. % Te. The electronic and optical properties of these films were systematically investigated over this same range of composition. The optical gap of these films was found to decrease monotonically with increasing Te content. Conduction near room temperature was due to extended state conduction, while variable range hopping dominated below 250 K. The incorporation of Te in concentrations of less than 1 at. % was found to produce an increase in the density of localized states at the Fermi level and a decrease in the activation energy. This was attributed to the Te being incorporated as a substitutional, fourfold coordinated, double donor in a-Si. At approximately 60 at. % Te, a decrease in the density of localized states at the Fermi level, and an increase in the activation energy and photoresponse was indicated. This was attributed to the possible formation of a less defective a-Si:Te compound.

  1. Atomic-scale disproportionation in amorphous silicon monoxide

    PubMed Central

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material. PMID:27172815

  2. Atomic-scale disproportionation in amorphous silicon monoxide

    NASA Astrophysics Data System (ADS)

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-05-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material.

  3. Atomic-scale disproportionation in amorphous silicon monoxide.

    PubMed

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material. PMID:27172815

  4. Cooling of hot electrons in amorphous silicon

    SciTech Connect

    Vanderhaghen, R.; Hulin, D.; Cuzeau, S.; White, J.O.

    1997-07-01

    Measurements of the cooling rate of hot carriers in amorphous silicon are made with a two-pump, one-probe technique. The experiment is simulated with a rate-equation model describing the energy transfer between a population of hot carriers and the lattice. An energy transfer rate proportional to the temperature difference is found to be consistent with the experimental data while an energy transfer independent of the temperature difference is not. This contrasts with the situation in crystalline silicon. The measured cooling rates are sufficient to explain the difficulty in observing avalanche effects in amorphous silicon.

  5. Amorphous silicon detectors in positron emission tomography

    SciTech Connect

    Conti, M. Lawrence Berkeley Lab., CA ); Perez-Mendez, V. )

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  6. Amorphous Silicon Based Neutron Detector

    SciTech Connect

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies

  7. Transverse and longitudinal vibrations in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Beltukov, Y. M.; Fusco, C.; Tanguy, A.; Parshin, D. A.

    2015-12-01

    We show that harmonic vibrations in amorphous silicon can be decomposed to transverse and longitudinal components in all frequency range even in the absence of the well defined wave vector q. For this purpose we define the transverse component of the eigenvector with given ω as a component, which does not change the volumes of Voronoi cells around atoms. The longitudinal component is the remaining orthogonal component. We have found the longitudinal and transverse components of the vibrational density of states for numerical model of amorphous silicon. The vibrations are mostly transverse below 7 THz and above 15 THz. In the frequency interval in between the vibrations have a longitudinal nature. Just this sudden transformation of vibrations at 7 THz from almost transverse to almost longitudinal ones explains the prominent peak in the diffusivity of the amorphous silicon just above 7 THz.

  8. Neutron irradiation induced amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Hay, J.C.

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  9. Structural relaxation of amorphous silicon carbide.

    PubMed

    Ishimaru, Manabu; Bae, In-Tae; Hirotsu, Yoshihiko; Matsumura, Syo; Sickafus, Kurt E

    2002-07-29

    We have examined amorphous structures of silicon carbide (SiC) using both transmission electron microscopy and a molecular-dynamics approach. Radial distribution functions revealed that amorphous SiC contains not only heteronuclear (Si-C) bonds but also homonuclear (Si-Si and C-C) bonds. The ratio of heteronuclear to homonuclear bonds was found to change upon annealing, suggesting that structural relaxation of the amorphous SiC occurred. Good agreement was obtained between the simulated and experimentally measured radial distribution functions. PMID:12144449

  10. Inverted amorphous silicon solar cell utilizing cermet layers

    DOEpatents

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  11. Amorphous metallic films in silicon metallization systems

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.; Kattelus, H.; So, F.

    1984-01-01

    The general objective was to determine the potential of amorphous metallic thin films as a means of improving the stability of metallic contacts to a silicon substrate. The specific objective pursued was to determine the role of nitrogen in the formation and the resulting properties of amorphous thin-film diffusion barriers. Amorphous metallic films are attractive as diffusion barriers because of the low atomic diffusivity in these materials. Previous investigations revealed that in meeting this condition alone, good diffusion barriers are not necessarily obtained, because amorphous films can react with an adjacent medium (e.g., Si, Al) before they recrystallize. In the case of a silicon single-crystalline substrate, correlation exists between the temperature at which an amorphous metallic binary thin film reacts and the temperatures at which the films made of the same two metallic elements react individually. Amorphous binary films made of Zr and W were investigated. Both react with Si individually only at elevated temperatures. It was confirmed that such films react with Si only above 700 C when annealed in vacuum for 30 min. Amorphous W-N films were also investigated. They are more stable as barriers between Al and Si than polycrystalline W. Nitrogen effectively prevents the W-Al reaction that sets in at 500 C with polycrystalline W.

  12. New Amorphous Silicon Alloy Systems

    NASA Astrophysics Data System (ADS)

    Kapur, Mridula N.

    1990-01-01

    The properties of hydrogenated amorphous silicon (a-Si:H) have been modified by alloying with Al, Ga and S respectively. The Al and Ga alloys are in effect quaternary alloys as they were fabricated in a carbon-rich discharge. The alloys were prepared by the plasma assisted chemical vapor deposition (PACVD) method. This method has several advantages, the major one being the relatively low defect densities of the resulting materials. The PACVD system used to grow the alloy films was designed and constructed in the laboratory. It was first tested with known (a-Si:H and a-Si:As:H) materials. Thus, it was established that device quality alloy films could be grown with the home-made PACVD setup. The chemical composition of the alloys was characterized by secondary ion mass spectrometry (SIMS), and electron probe microanalysis (EPMA). The homogeneous nature of hydrogen distribution in the alloys was established by SIMS depth profile analysis. A quantitative analysis of the bulk elemental content was carried out by EPMA. The analysis indicated that the alloying element was incorporated in the films more efficiently at low input gas concentrations than at the higher concentrations. A topological model was proposed to explain the observed behavior. The optical energy gap of the alloys could be varied in the 0.90 to 1.92 eV range. The Al and Ga alloys were low band gap materials, whereas alloying with S had the effect of widening the energy gap. It was observed that although the Si-Al and Si-Ga alloys contained significant amounts of C and H, the magnitude of the energy gap was determined by the metallic component. The various trends in optical properties could be related to the binding characteristics of the respective alloy systems. A quantitative explanation of the results was provided by White's tight binding model. The dark conductivity-temperature dependence of the alloys was examined. A linear dependence was observed for the Al and Ga systems. Electronic conduction in

  13. Metal electrode for amorphous silicon solar cells

    DOEpatents

    Williams, Richard

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  14. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOEpatents

    Carlson, David E.

    1982-01-01

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  15. Amorphization of Silicon Carbide by Carbon Displacement

    SciTech Connect

    Devanathan, Ram; Gao, Fei; Weber, William J.

    2004-05-10

    We have used molecular dynamics simulations to examine the possibility of amorphizing silicon carbide (SiC) by exclusively displacing C atoms. At a defect generation corresponding to 0.2 displacements per atom, the enthalpy surpasses the level of melt-quenched SiC, the density decreases by about 15%, and the radial distribution function shows a lack of long-range order. Prior to amorphization, the surviving defects are mainly C Frenkel pairs (67%), but Si Frenkel pairs (18%) and anti-site defects (15%) are also present. The results indicate that SiC can be amorphized by C sublattice displacements. Chemical short-range disorder, arising mainly from interstitial production, plays a significant role in the amorphization.

  16. Crystalline to amorphous transformation in silicon

    SciTech Connect

    Cheruvu, S.M.

    1982-09-01

    In the present investigation, an attempt was made to understand the fundamental mechanism of crystalline-to-amorphous transformation in arsenic implanted silicon using high resolution electron microscopy. A comparison of the gradual disappearance of simulated lattice fringes with increasing Frenkel pair concentration with the experimental observation of sharp interfaces between crystalline and amorphous regions was carried out leading to the conclusion that when the defect concentration reaches a critical value, the crystal does relax to an amorphous state. Optical diffraction experiments using atomic models also supported this hypothesis. Both crystalline and amorphous zones were found to co-exist with sharp interfaces at the atomic level. Growth of the amorphous fraction depends on the temperature, dose rate and the mass of the implanted ion. Preliminary results of high energy electron irradiation experiments at 1.2 MeV also suggested that clustering of point defects occurs near room temperature. An observation in a high resolution image of a small amorphous zone centered at the core of a dislocation is presented as evidence that the nucleation of an amorphous phase is heterogeneous in nature involving clustering or segregation of point defects near existing defects.

  17. Ion bombardment and disorder in amorphous silicon

    SciTech Connect

    Sidhu, L.S.; Gaspari, F.; Zukotynski, S.

    1997-07-01

    The effect of ion bombardment during growth on the structural and optical properties of amorphous silicon are presented. Two series of films were deposited under electrically grounded and positively biased substrate conditions. The biased samples displayed lower growth rates and increased hydrogen content relative to grounded counterparts. The film structure was examined using Raman spectroscopy. The transverse optic like phonon band position was used as a parameter to characterize network order. Biased samples displayed an increased order of the amorphous network relative to grounded samples. Furthermore, biased samples exhibited a larger optical gap. These results are correlated and attributed to reduced ion bombardment effects.

  18. Investigations on silicon/amorphous-carbon and silicon/nanocrystalline palladium/ amorphous-carbon interfaces.

    PubMed

    Roy, M; Sengupta, P; Tyagi, A K; Kale, G B

    2008-08-01

    Our previous work revealed that significant enhancement in sp3-carbon content of amorphous carbon films could be achieved when grown on nanocrystalline palladium interlayer as compared to those grown on bare silicon substrates. To find out why, the nature of interface formed in both the cases has been investigated using Electron Probe Micro Analysis (EPMA) technique. It has been found that a reactive interface in the form of silicon carbide and/silicon oxy-carbide is formed at the interface of silicon/amorphous-carbon films, while palladium remains primarily in its native form at the interface of nanocrystalline palladium/amorphous-carbon films. However, there can be traces of dissolved oxygen within the metallic layer as well. The study has been corroborated further from X-ray photoelectron spectroscopic studies. PMID:19049221

  19. Self-Diffusion in Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Strauß, Florian; Dörrer, Lars; Geue, Thomas; Stahn, Jochen; Koutsioubas, Alexandros; Mattauch, Stefan; Schmidt, Harald

    2016-01-01

    The present Letter reports on self-diffusion in amorphous silicon. Experiments were done on 29Si/natSi heterostructures using neutron reflectometry and secondary ion mass spectrometry. The diffusivities follow the Arrhenius law in the temperature range between 550 and 700 °C with an activation energy of (4.4 ±0.3 ) eV . In comparison with single crystalline silicon the diffusivities are tremendously higher by 5 orders of magnitude at about 700 °C , which can be interpreted as the consequence of a high diffusion entropy.

  20. Deuterium in crystalline and amorphous silicon

    SciTech Connect

    Borzi, R.; Ma, H.; Fedders, P.A.; Leopold, D.J.; Norberg, R.E.; Boyce, J.B.; Johnson, N.M.; Ready, S.E.; Walker, J.

    1997-07-01

    The authors report deuteron magnetic resonance (DMR) measurements on aged deuterium-implanted single crystal n-type silicon and comparisons with amorphous silicon spectra. The sample film was prepared six years ago by deuteration from a-D{sub 2} plasma and evaluated by a variety of experimental methods. Deuterium has been evolving with time and the present DMR signal shows a smaller deuteron population. A doublet from Si-D configurations along (111) has decreased more than have central molecular DMR components, which include 47 and 12 kHz FWHM gaussians. Transient DMR magnetization recoveries indicate spin lattice relaxation to para-D{sub 2} relaxation centers.

  1. Mechanism for hydrogen diffusion in amorphous silicon

    SciTech Connect

    Biswas, R.; Li, Q.; Pan, B.C.; Yoon, Y.

    1998-01-01

    Tight-binding molecular-dynamics calculations reveal a mechanism for hydrogen diffusion in hydrogenated amorphous silicon. Hydrogen diffuses through the network by successively bonding with nearby silicons and breaking their Si{endash}Si bonds. The diffusing hydrogen carries with it a newly created dangling bond. These intermediate transporting states are densely populated in the network, have lower energies than H at the center of stretched Si{endash}Si bonds, and can play a crucial role in hydrogen diffusion. {copyright} {ital 1998} {ital The American Physical Society}

  2. Self-Diffusion in Amorphous Silicon.

    PubMed

    Strauß, Florian; Dörrer, Lars; Geue, Thomas; Stahn, Jochen; Koutsioubas, Alexandros; Mattauch, Stefan; Schmidt, Harald

    2016-01-15

    The present Letter reports on self-diffusion in amorphous silicon. Experiments were done on ^{29}Si/^{nat}Si heterostructures using neutron reflectometry and secondary ion mass spectrometry. The diffusivities follow the Arrhenius law in the temperature range between 550 and 700 °C with an activation energy of (4.4±0.3)  eV. In comparison with single crystalline silicon the diffusivities are tremendously higher by 5 orders of magnitude at about 700 °C, which can be interpreted as the consequence of a high diffusion entropy. PMID:26824552

  3. Dynamical models of hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Mousseau, Normand; Lewis, Laurent J.

    1991-04-01

    The results of our molecular-dynamics simulation of bulk hydrogenated amorphous silicon using empirical potentials are presented. More specifically, we discuss a dynamical procedure for incorporating hydrogen into a pure amorphous silicon matrix, which is derived from the concept of floating bonds put forward by Pantelides [Phys. Rev. Lett. 57, 2979 (1986)]. The structures resulting from this model are compared with those obtained with use of a static approach recently developed by us. This method exhibits considerable improvement over the previous one and, in particular, unambiguously reveals the strain-relieving role of hydrogen. While the former model leads to substantial overcoordination, the present one results in almost perfect tetrahedral bonding, with an average coordination number Z=4.03, the lowest value ever achieved using a Stillinger-Weber potential. The simulations are also used to calculate the vibrational densities of states, which are found to be in good accord with corresponding neutron-scattering measurements.

  4. Amorphous metallic films in silicon metallization systems

    NASA Technical Reports Server (NTRS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-01-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  5. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  6. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  7. Amorphous silicon/polycrystalline thin film solar cells

    SciTech Connect

    Ullal, H.S.

    1991-03-13

    An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

  8. Amorphous molybdenum silicon superconducting thin films

    SciTech Connect

    Bosworth, D. Sahonta, S.-L.; Barber, Z. H.; Hadfield, R. H.

    2015-08-15

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using W{sub x}Si{sub 1−x}, though other amorphous superconductors such as molybdenum silicide (Mo{sub x}Si{sub 1−x}) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo{sub 83}Si{sub 17}. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  9. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOEpatents

    Kaschmitter, James L.

    1996-01-01

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

  10. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOEpatents

    Kaschmitter, J.L.

    1996-07-23

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

  11. Hydrogenated amorphous silicon-germanium alloys

    SciTech Connect

    Luft, W.

    1988-02-01

    This report describes the effects of the germanium fraction in hydrogenated amorphous silicon-germanium alloys on various parameters, especially those that are indicators of film quality, and the impact of deposition methods, feedgas mixtures, and other deposition parameters on a SiGe:H and a-SiGe:H:F film characteristics and quality. Literature data show the relationship between germanium content, hydrogen content, deposition method (various glow discharges and CVD), feedgas lmixture, and other parameters and properties, such as optical band gap, dark and photoconductivities, photosensitivity, activation energy, Urbach parameter, and spin density. Some of these are convenient quality indicators; another is the absence of microstructure. Examining RF glow discharge with both a diode and triode geometry, DC proximity glow discharge, microwave glow discharge, and photo-CVD, using gas mixtures such as hydrogen-diluted and undiluted mixtures of silane/germane, disilane/germane, silane/germaniumtetrafluoride, and others, it was observed that hydrogen dilution (or inert gas dilution) is essential in achieving high photosensitivity in silicon-germanium alloys (in contradistinction to amorphous hydrogenated silicon). Hydrogen dilution results in a higher photosensitivity than do undiluted gas mixtures. 81 refs., 42 figs., 7 tabs.

  12. Radiation resistance studies of amorphous silicon films

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Payson, J. Scott

    1989-01-01

    Hydrogenated amorphous silicon thin films were irradiated with 2.00 MeV helium ions using fluences ranging from 1E11 to 1E15 cm(-2). The films were characterized using photothermal deflection spectroscopy and photoconductivity measurements. The investigations show that the radiation introduces sub-band-gap states 1.35 eV below the conduction band and the states increase supralinearly with fluence. Photoconductivity measurements suggest the density of states above the Fermi energy is not changing drastically with fluence.

  13. Medical imaging applications of amorphous silicon

    SciTech Connect

    Mireshghi, A.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.K.; Perez-Mendez, V.

    1994-07-01

    Two dimensional hydrogenated amorphous silicon (a-Si:H) pixel arrays are good candidates as flat-panel imagers for applications in medical imaging. Various performance characteristics of these imagers are reviewed and compared with currently used equipments. An important component in the a-Si:H imager is the scintillator screen. A new approach for fabrication of high resolution CsI(Tl) scintillator layers, appropriate for coupling to a-Si:H arrays, are presented. For nuclear medicine applications, a new a-Si:H based gamma camera is introduced and Monte Carlo simulation is used to evaluate its performance.

  14. Structural relaxation of vacancies in amorphous silicon

    SciTech Connect

    Kim, E.; Lee, Y.H.; Chen, C.; Pang, T.

    1997-07-01

    The authors have studied the structural relaxation of vacancies in amorphous silicon (a-Si) using a tight-binding molecular-dynamics method. The most significant difference between vacancies in a-Si and those in crystalline silicon (c-Si) is that the deep gap states do not show up in a-Si. This difference is explained through the unusual behavior of the structural relaxation near the vacancies in a-Si, which enhances the sp{sup 2} + p bonding near the band edges. They have also observed that the vacancies do not migrate below 450 K although some of them can still be annihilated, particularly at high defect density due to large structural relaxation.

  15. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOEpatents

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  16. Endurance Tests Of Amorphous-Silicon Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.; Sugimura, Russell S.

    1989-01-01

    Failure mechanisms in high-power service studied. Report discusses factors affecting endurance of amorphous-silicon solar cells. Based on field tests and accelerated aging of photovoltaic modules. Concludes that aggressive research needed if amorphous-silicon modules to attain 10-year life - value U.S. Department of Energy established as goal for photovoltaic modules in commercial energy-generating plants.

  17. Method for improving the stability of amorphous silicon

    DOEpatents

    Branz, Howard M.

    2004-03-30

    A method of producing a metastable degradation resistant amorphous hydrogenated silicon film is provided, which comprises the steps of growing a hydrogenated amorphous silicon film, the film having an exposed surface, illuminating the surface using an essentially blue or ultraviolet light to form high densities of a light induced defect near the surface, and etching the surface to remove the defect.

  18. An infrared and luminescence study of tritiated amorphous silicon

    SciTech Connect

    Sidhu, L.S.; Kosteski, T.; Kherani, N.P.; Gaspari, F.; Zukotynski, S.; Shmayda, W.

    1997-07-01

    Tritium has been incorporated into amorphous silicon. Infrared spectroscopy shows new infrared vibration modes due to silicon-tritium (Si-T) bonds in the amorphous silicon network. Si-T vibration frequencies are related to Si-H vibration frequencies by simple mass relationships. Inelastic collisions of {beta} particles, produced as a result of tritium decay, with the amorphous silicon network results in the generation of electron-hole pairs. Radiative recombination of these carriers is observed. Dangling bonds associated with the tritium decay reduce luminescence efficiency.

  19. Amorphous silicon carbide films prepared using vaporized silicon ink

    NASA Astrophysics Data System (ADS)

    Masuda, Takashi; Shen, Zhongrong; Takagishi, Hideyuki; Ohdaira, Keisuke; Shimoda, Tatsuya

    2014-03-01

    The deposition of wide-band-gap silicon films using nonvacuum processes rather than conventional vacuum processes is of substantial interest because it may reduce cost. Herein, we present the optical and electrical properties of p-type hydrogenated amorphous silicon carbide (a-SiC:H) films prepared using a nonvacuum process in a simple chamber with a vaporized silicon ink consisting of cyclopentasilane, cyclohexene, and decaborane. The incorporation of carbon into the silicon network induced by the addition of cyclohexene to the silicon ink resulted in an increase in the optical band gap (Eg) of films from 1.56 to 2.11 eV. The conductivity of films with Eg < 1.9 eV is comparable to that of conventional a-SiC:H films prepared using a vacuum process, while the films with Eg > 1.9 eV show lower conductivity than expected because of the incorporation of excess carbon without the formation of Si-C bonds.

  20. Amorphous silicon bolometer for fire/rescue

    NASA Astrophysics Data System (ADS)

    Francisco, Glenn L.

    2001-03-01

    Thermal imaging sensors have completely changed the way the world views fire and rescue applications. Recently, in the uncooled infrared camera and microbolometer detector areas, major strides have been made in manufacturing personal fire and rescue sensors. A family of new amorphous silicon microbolometers are being produced utilizing low cost, low weight, ultra low power, small size, high volume vacuum packaged silicon wafer-level focal plane array technologies. These bolometers contain no choppers or thermoelectric coolers, require no manual calibration and use readily available commercial off-the-shelf components. Manufacturing and packaging discoveries have allowed infrared sensitive silicon arrays to be produced with the same methods that have driven the rapidly advancing digital wireless telecommunications industries. Fire and rescue professionals are now able to conduct minimum time thermal imaging penetration, surveillance, detection, recognition, rescue and egress while maintaining situational awareness in a manner consistent with the modern technological applications. The purpose of this paper is to describe an uncooled micro bolometer infrared camera approach for meeting fire/rescue wants, needs and requirements, with application of recent technology advancements. This paper also details advances in bolometric focal plane arrays, optical and circuit card technologies, while providing a glimpse into the future of micro sensor growth. Technical barriers are addressed in light of constraints and lessons learned around this technology.

  1. Theoretical studies of amorphous silicon and hydrogenated amorphous silicon with molecular dynamics simulations

    SciTech Connect

    Kwon, I.

    1991-12-20

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) have been studied with molecular dynamics simulations. The structural, vibrational, and electronic properties of these materials have been studied with computer-generated structural models and compare well with experimental observations. The stability of a-si and a-Si:H have been studied with the aim of understanding microscopic mechanisms underlying light-induced degradation in a-Si:H (the Staebler-Wronski effect). With a view to understanding thin film growth processes, a-Si films have been generated with molecular dynamics simulations by simulating the deposition of Si-clusters on a Si(111) substrate. A new two- and three-body interatomic potential for Si-H interactions has been developed. The structural properties of a-Si:H networks are in good agreement with experimental measurements. The presence of H atoms reduces strain and disorder relative to networks without H.

  2. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-01

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  3. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  4. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  5. Tunable plasticity in amorphous silicon carbide films.

    PubMed

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold. PMID:23876200

  6. Short range atomic migration in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Strauß, F.; Jerliu, B.; Geue, T.; Stahn, J.; Schmidt, H.

    2016-05-01

    Experiments on self-diffusion in amorphous silicon between 400 and 500 °C are presented, which were carried out by neutron reflectometry in combination with 29Si/natSi isotope multilayers. Short range diffusion is detected on a length scale of about 2 nm, while long range diffusion is absent. Diffusivities are in the order of 10-19-10-20 m2/s and decrease with increasing annealing time, reaching an undetectable low value for long annealing times. This behavior is strongly correlated to structural relaxation and can be explained as a result of point defect annihilation. Diffusivities for short annealing times of 60 s follow the Arrhenius law with an activation enthalpy of (0.74 ± 0.21) eV, which is interpreted as the activation enthalpy of Si migration.

  7. Amorphous Silicon-Carbon Nanostructure Solar Cells

    NASA Astrophysics Data System (ADS)

    Schriver, Maria; Regan, Will; Loster, Matthias; Zettl, Alex

    2011-03-01

    Taking advantage of the ability to fabricate large area graphene and carbon nanotube networks (buckypaper), we produce Schottky junction solar cells using undoped hydrogenated amorphous silicon thin films and nanostructured carbon films. These films are useful as solar cell materials due their combination of optical transparency and conductance. In our cells, they behave both as a transparent conductor and as an active charge separating layer. We demonstrate a reliable photovoltaic effect in these devices with a high open circuit voltage of 390mV in buckypaper devices. We investigate the unique interface properties which result in an unusual J-V curve shape and optimize fabrication processes for improved solar conversion efficiency. These devices hold promise as a scalable solar cell made from earth abundant materials and without toxic and expensive doping processes.

  8. Amorphous Silicon Display Backplanes on Plastic Substrates

    NASA Astrophysics Data System (ADS)

    Striakhilev, Denis; Nathan, Arokia; Vygranenko, Yuri; Servati, Peyman; Lee, Czang-Ho; Sazonov, Andrei

    2006-12-01

    Amorphous silicon (a-Si) thin-film transistor (TFT) backplanes are very promising for active-matrix organic light-emitting diode displays (AMOLEDs) on plastic. The technology benefits from a large manufacturing base, simple fabrication process, and low production cost. The concern lies in the instability of the TFTs threshold voltage (VT) and its low device mobility. Although VT-instability can be compensated by means of advanced multi-transistor pixel circuits, the lifetime of the display is still dependent on the TFT process quality and bias conditions. A-Si TFTs with field-effect mobility of 1.1 cm2/V · s and pixel driver circuits have been fabricated on plastic substrates at 150 °C. The circuits are characterized in terms of current drive capability and long-term stability of operation. The results demonstrate sufficient and stable current delivery and the ability of the backplane on plastic to meet AMOLED requirements.

  9. Radiation resistance studies of amorphous silicon films

    NASA Technical Reports Server (NTRS)

    Payson, J. Scott; Woodyard, James R.

    1988-01-01

    A study of hydrogenated amorphous silicon thin films irradiated with 2.00 MeV helium ions using fluences ranging from 1E11 to 1E15/sq cm is presented. The films were characterized using photothermal deflection spectroscopy, transmission and reflection spectroscopy, and photoconductivity and annealing measurements. Large changes were observed in the subband-gap optical absorption for energies between 0.9 and 1.7 eV. The steady-state photoconductivity showed decreases of almost five orders of magnitude for a fluence of 1E15/sq cm, but the slope of the intensity dependence of the photoconductivity remained almost constant for all fluences. Substantial annealing occurs even at room temperature, and for temperatures greater than 448 K the damage is completely annealed. The data are analyzed to describe the defects and the density of states function.

  10. Direct-patterned optical waveguides on amorphous silicon films

    DOEpatents

    Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan

    2005-08-02

    An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.

  11. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    DOEpatents

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  12. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE PAGESBeta

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  13. Process for producing amorphous and crystalline silicon nitride

    DOEpatents

    Morgan, P.E.D.; Pugar, E.A.

    1985-11-12

    A process for producing amorphous or crystalline silicon nitride is disclosed which comprises reacting silicon disulfide ammonia gas at elevated temperature. In a preferred embodiment silicon disulfide in the form of whiskers'' or needles is heated at temperature ranging from about 900 C to about 1,200 C to produce silicon nitride which retains the whisker or needle morphological characteristics of the silicon disulfide. Silicon carbide, e.g. in the form of whiskers, also can be prepared by reacting substituted ammonia, e.g. methylamine, or a hydrocarbon containing active hydrogen-containing groups, such as ethylene, with silicon disulfide, at elevated temperature, e.g. 900 C. 6 figs.

  14. Process for producing amorphous and crystalline silicon nitride

    DOEpatents

    Morgan, Peter E. D.; Pugar, Eloise A.

    1985-01-01

    A process for producing amorphous or crystalline silicon nitride is disclosed which comprises reacting silicon disulfide ammonia gas at elevated temperature. In a preferred embodiment silicon disulfide in the form of "whiskers" or needles is heated at temperature ranging from about 900.degree. C. to about 1200.degree. C. to produce silicon nitride which retains the whisker or needle morphological characteristics of the silicon disulfide. Silicon carbide, e.g. in the form of whiskers, also can be prepared by reacting substituted ammonia, e.g. methylamine, or a hydrocarbon containing active hydrogen-containing groups, such as ethylene, with silicon disulfide, at elevated temperature, e.g. 900.degree. C.

  15. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon

    PubMed Central

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  16. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon.

    PubMed

    Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  17. Hydrogenated amorphous silicon films prepared by glow discharge of disilane

    SciTech Connect

    Wiesmann, H.J. )

    1990-01-01

    This report describes the results of an investigation of the properties of hydrogenated amorphous silicon films and the efficiency of amorphous silicon solar cells deposited from disilane at rates of 1.5 nanometers/second or greater. The study was divided into two parts, investigation of basic materials properties of hydrogenated amorphous silicon thin films and the fabrication of glass-P-I-N-metal solar cells. The thin film materials properties investigated included the dark conductivity, photoconductivity, dihydride/monohydride concentration ratio, activation energy, and mobility-lifetime product. Hydrogenated amorphous silicon solar cells were fabricated with an intrinsic layer which was deposited at 1.5 nanometers/second. The absolute and reverse bias quantum yields were measured and solar cell efficiencies of 5% were achieved. Attempts to increase the efficiency by reverse bias annealing are also reported. 7 refs., 27 figs.

  18. Photo-electronic properties of CVD amorphous silicon

    NASA Astrophysics Data System (ADS)

    Salau, Akinola Muritala

    1983-12-01

    D.c. conductivity, thermoelectric power and photoconductivity of amorphous silicon films prepared by chemical vapor deposition (CVD) have been measured as functions of operating and annealing temperatures. Several interpretations of the results obtained have been suggested.

  19. Thermal properties of amorphous/crystalline silicon superlattices.

    PubMed

    France-Lanord, Arthur; Merabia, Samy; Albaret, Tristan; Lacroix, David; Termentzidis, Konstantinos

    2014-09-01

    Thermal transport properties of crystalline/amorphous silicon superlattices using molecular dynamics are investigated. We show that the cross-plane conductivity of the superlattices is very low and close to the conductivity of bulk amorphous silicon even for amorphous layers as thin as ≃ 6 Å. The cross-plane thermal conductivity weakly increases with temperature which is associated with a decrease of the Kapitza resistance with temperature at the crystalline/amorphous interface. This property is further investigated considering the spatial analysis of the phonon density of states in domains close to the interface. Interestingly, the crystalline/amorphous superlattices are shown to display large thermal anisotropy, according to the characteristic sizes of elaborated structures. These last results suggest that the thermal conductivity of crystalline/amorphous superlattices can be phonon engineered, providing new directions for nanostructured thermoelectrics and anisotropic materials in thermal transport. PMID:25105883

  20. Amorphous Silicon: Flexible Backplane and Display Application

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.

    Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays.

  1. Silicon heterojunction solar cell and crystallization of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Lu, Meijun

    The rapid growth of photovoltaics in the past decade brings on the soaring price and demand for crystalline silicon. Hence it becomes necessary and also profitable to develop solar cells with over 20% efficiency, using thin (˜100mum) silicon wafers. In this respect, diffused junction cells are not the best choice, since the inescapable heating in the diffusion process not only makes it hard to handle thin wafers, but also reduces carriers' bulk lifetime and impairs the crystal quality of the substrate, which could lower cell efficiency. An alternative is the heterojunction cells, such as amorphous silicon/crystalline silicon heterojunction (SHJ) solar cell, where the emitter layer can be grown at low temperature (<200°C). In first part of this dissertation, I will introduce our work on front-junction SHJ solar cell, including the importance of intrinsic buffer layer; the discussion on the often observed anomalous "S"-shaped J-V curve (low fill factor) by using band diagram analysis; the surface passivation quality of intrinsic buffer and its relationship to the performance of front-junction SHJ cells. Although the a-Si:H is found to help to achieve high efficiency in c-Si heterojuntion solar cells, it also absorbs short wavelength (<600 nm) light, leading to non-ideal blue response and lower short circuit currents (JSC) in the front-junction SHJ cells. Considering this, heterojunction with both a-Si:H emitter and base contact on the back side in an interdigitated pattern, i.e. interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell, is developed. This dissertation will show our progress in developing IBC-SHJ solar cells, including the structure design; device fabrication and characterization; two dimensional simulation by using simulator Sentaurus Device; some special features of IBC-SHJ solar cells; and performance of IBC-SHJ cells without and with back surface buffer layers. Another trend for solar cell industry is thin film solar cells, since

  2. Electrical characteristics of amorphous iron-tungsten contacts on silicon

    NASA Technical Reports Server (NTRS)

    Finetti, M.; Pan, E. T.-S.; Nicolet, M.-A.; Suni, I.

    1983-01-01

    The electrical characteristics of amorphous Fe-W contacts have been determined on both p-type and n-type silicon. The amorphous films were obtained by cosputtering from a composite target. Contact resistivities of 1 x 10 to the -7th and 2.8 x 10 to the -6th were measured on n(+) and p(+) silicon, respectively. These values remain constant after thermal treatment up to at least 500 C. A barrier height of 0.61 V was measured on n-type silicon.

  3. Hydrogenated amorphous silicon deposited by ion-beam sputtering

    NASA Technical Reports Server (NTRS)

    Lowe, V. E.; Henin, N.; Tu, C.-W.; Tavakolian, H.; Sites, J. R.

    1981-01-01

    Hydrogenated amorphous silicon films 1/2 to 1 micron thick were deposited on metal and glass substrates using ion-beam sputtering techniques. The 800 eV, 2 mA/sq cm beam was a mixture of argon and hydrogen ions. The argon sputtered silicon from a pure (7.6 cm) single crystal wafer, while the hydrogen combined with the sputtered material during the deposition. Hydrogen to argon pressure ratios and substrate temperatures were varied to minimize the defect state density in the amorphous silicon. Characterization was done by electrical resistivity, index of refraction and optical absorption of the films.

  4. Amorphous and microcrystalline silicon technology--1997. Materials Research Society symposium proceedings, Volume 467

    SciTech Connect

    Wagner, S.; Hack, M.; Schiff, E.A.; Schropp, R.; Shimizu, I.

    1997-07-01

    This book was divided into the following parts: Staebler-Wronski and Fundamental Defect Studies in Amorphous Silicon; The Story of Hydrogen in Amorphous Silicon; Photoelectric Properties of Amorphous Silicon; Deposition and Properties of Microcrystalline Silicon; Deposition Studies for Amorphous Silicon and Related Materials; Solar Cells; Thin-Film Transistors; and Sensors and Novel Device Concepts. Separate abstracts were prepared for most of the papers in the volume.

  5. Growth and Characterization of Hydrogenated Amorphous Silicon and Hydrogenated Amorphous Silicon Carbide with Liquid Organometallic Sources.

    NASA Astrophysics Data System (ADS)

    Gaughan, Kevin David

    The growth and characterization of hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous silicon -carbon (rm a-rm Si _{1-X}C_{X}: H) alloys employing liquid organometallic sources are described. N -type a-Si:H films were grown using a mixture of silane and tertiarybutylphosphine (TBP-rm C_4H _9P_2) vapor in a plasma enhanced chemical vapor deposition system. Impurity levels from parts per million to about 5 at. % phosphorus have been incorporated into the film with this method. Tertiarybutylphosphine is less toxic and less pyrophoric than phosphine which is usually used in n-type doping of a-Si:H films. Optical and electronic properties were characterized by room temperature as well as temperature dependent dark conductivity, photothermal deflection spectroscopy, infrared vibrational spectroscopy, electron spin resonance, and electron microprobe analysis. The gross doping properties of a-Si:H doped with TBP are the same as those obtained with phosphine. The experimental results are compared with the predictions of several models that describe the chemical equilibrium between active dopants and deep defects. A pronounced decrease in the effects of doping, such as an increase in the activation energy of electrical conductivity and an decrease in the conductivity of the sample, were seen in heavily doped films (TBP/SiH _4> 0.5%), perhaps influenced by the increased carbon and/or phosphorus concentrations. Amorphous silicon-carbide alloys have been grown by the plasma decomposition of ditertiarybutylsilane ( rm DTBS-rm SiH_2(C _4H_9)_2). The optical bandgaps, which varied from 2.2 to 3.3 eV, are strongly dependent upon the deposition conditions. The carbon concentrations in these films varied from 60 to 95 at. %. The optical band-edge is very broad compared to that which is found in a-Si:H and this breadth is essentially independent of the deposition conditions. The plasma decomposition of admixtures of DTBS and silane has produced rm a- rm Si_{1-X

  6. Latent ion tracks in amorphous silicon

    SciTech Connect

    Bierschenk, Thomas; Giulian, Raquel; Afra, Boshra; Rodriguez, Matias D; Schauries, D; Mudie, Stephen; Pakarinen, Olli H; Djurabekova, Flyura; Nordlund, Kai; Osmani, Orkhan; Medvedev, Nikita; Rethfield, Baerbel; Ridgway, Mark C; Kluth, Patrick

    2013-01-01

    We present experimental evidence for the formation of ion tracks in amorphous Si induced by swift heavy ion irradiation. An underlying core-shell structure consistent with remnants of a high density liquid structure was revealed by small-angle x-ray scattering and molecular dynamics simulations. Ion track dimensions dier for as-implanted and relaxed Si as attributed to dierent microstructures and melting temperatures. The identication and characterisation of ion tracks in amorphous Si yields new insight into mechanisms of damage formation due to swift heavy ion irradiation in amorphous semiconductors.

  7. Transmissive metallic contact for amorphous silicon solar cells

    DOEpatents

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  8. Recent improvements in amorphous silicon-based multijunction modules

    SciTech Connect

    Arya, R.R.; Bennett, M.; Yang, L.; Newton, J.; Li, Y.M.; Maley, N.; Fieselmann, B.; Chen, L.F.; Rajan, K.; Wilczynski, A.; Wood, G. )

    1994-06-30

    Advances in intrinsic amorphous silicon and in amorphous silicon carbon alloys have resulted in thin single junction devices with V[sub oc]'s over 1.0 volts and excellent stability with both i-layer materials. Incorporation of improved a-Si:H i-layers and thin microcrystalline n-layers in a-Si/a-Si/a-SiGe triple junction modules has resulted in large area triple junction modules with initial efficiencies as high as 11.35%. These modules exhibit a degradation of [similar to]20% after 1000 hours of light-soaking resulting in [similar to]9% stable modules.

  9. Amorphous silicon alloy-based roof integrated photovoltaic systems

    SciTech Connect

    Nath, P.; Vogeli, C.; Singh, A.; Call, J.

    1994-12-31

    A roll-to-roll process is used to deposit tandem amorphous silicon alloy solar cell onto thin (0.005 inch) stainless steel substrate. Using this solar cell material, the authors have designed and fabricated a photovoltaic (PV) module which can be integrated into building roofs. The module is fabricated by laminating the large area amorphous silicon on stainless steel solar cell material onto a 0.03 inch thick coated galvanized steel support plate. The module is then formed in such a way to allow installation as a batten and seam roofing system. This paper describes the fabrication and installation details of such PV systems.

  10. Solution-processed amorphous silicon surface passivation layers

    SciTech Connect

    Mews, Mathias Sontheimer, Tobias; Korte, Lars; Rech, Bernd; Mader, Christoph; Traut, Stephan; Wunnicke, Odo

    2014-09-22

    Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X-ray and constant-final-state-yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120 meV and 200 meV lower optical band gaps than material prepared by plasma enhanced chemical vapor deposition. Applying a hydrogen plasma treatment, a minority charge carrier lifetime of 1.37 ms at an injection level of 10{sup 15}/cm{sup 3} enabling an implied open circuit voltage of 724 mV was achieved, demonstrating excellent silicon surface passivation.

  11. Proposed planar-type amorphous-silicon MOS transistors

    NASA Astrophysics Data System (ADS)

    Uchida, Y.; Matsumura, M.

    1985-10-01

    Novel planar-type amorphous-silicon metal-oxide-semiconductor transistors have been proposed and their features have been demonstrated. The gate insulator of silicon-dioxide grown inside the original amorphous silicon layer makes transistor characteristics highly stable. The source and drain of micro-crystal silicon make the fabrication process simple and the parasitic elements small. The on-current of the prototype transistor was extrapolated to decrease to one-half of its initial value 10 billion years after the application of dc bias. The on-off current ratio was about a million and no voltage offset was observed. The field-effect mobility was 0.6 sq cm Vs.

  12. Threshold irradiation dose for amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Zinkle, S.J.

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.

  13. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    SciTech Connect

    Chowdhury, Zahidur R. Kherani, Nazir P.

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  14. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Chowdhury, Zahidur R.; Kherani, Nazir P.

    2014-12-01

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide-plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are VOC of 666 mV, JSC of 29.5 mA-cm-2, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  15. Nanoindentation-induced amorphization in silicon carbide

    NASA Astrophysics Data System (ADS)

    Szlufarska, Izabela; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2004-07-01

    The nanoindentation-induced amorphization in SiC is studied using molecular dynamics simulations. The load-displacement response shows an elastic shoulder followed by a plastic regime consisting of a series of load drops. Analyses of bond angles, local pressure, and shear stress, and shortest-path rings show that these drops are related to dislocation activities under the indenter. We show that amorphization is driven by coalescence of dislocation loops and that there is a strong correlation between load-displacement response and ring distribution.

  16. Surface passivation of heavily boron or phosphorus doped crystalline silicon utilizing amorphous silicon

    NASA Astrophysics Data System (ADS)

    Carstens, K.; Dahlinger, M.

    2016-05-01

    Excellent surface passivation of heavily boron or phosphorus doped crystalline silicon is presented utilizing undoped hydrogenated amorphous silicon (a-Si:H). For passivating boron doped crystalline silicon surfaces, amorphous silicon needs to be deposited at low temperatures 150°C ≤Tdep≤200°C , leading to a high bandgap. In contrast, low bandgap amorphous silicon causes an inferior surface passivation of highly boron doped crystalline silicon. Boron doping in crystalline silicon leads to a shift of the Fermi energy towards the valence band maximum in the undoped a-Si:H. A simulation, implementing dangling bond defects according to the defect pool model, shows this shift in the undoped a-Si:H passivation to be more pronounced if the a-Si:H has a lower bandgap. Hence, the inferior passivation of boron doped surfaces with low bandgap amorphous silicon stems from a lower silicon-hydrogen bond energy due to this shift of the Fermi energy. Hydrogen effusion and ellipsometry measurements support our interpretation.

  17. Performance of amorphous silicon photovoltaic systems, 1985--1989

    SciTech Connect

    Not Available

    1990-04-01

    This report discusses the performance of commercial amorphous silicon modules used in photovoltaic power systems from 1985 through 1989. Topics discussed include initial degradation, reliability, durability, and effects of temperature and solar irradiance on peak power and energy production. 6 refs., 18 figs.

  18. Long-term stability of amorphous-silicon modules

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1986-01-01

    The Jet Propulsion Laboratory (JPL) program of developing qualification tests necessary for amorphous silicon modules, including appropriate accelerated environmental tests reveal degradation due to illumination. Data were given which showed the results of temperature-controlled field tests and accelerated tests in an environmental chamber.

  19. Integral bypass diodes in an amorphous silicon alloy photovoltaic module

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Flaisher, H.

    1991-01-01

    Thin-film, tandem-junction, amorphous silicon (a-Si) photovoltaic modules were constructed in which a part of the a-Si alloy cell material is used to form bypass protection diodes. This integral design circumvents the need for incorporating external, conventional diodes, thus simplifying the manufacturing process and reducing module weight.

  20. Photocurrent images of amorphous-silicon solar-cell modules

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Shumka, A.; Trask, J.

    1985-01-01

    Results obtained in applying the unique characteristics of the solar cell laser scanner to investigate the defects and quality of amorphous silicon cells are presented. It is concluded that solar cell laser scanners can be effectively used to nondestructively test not only active defects but also the cell quality and integrity of electrical contacts.

  1. Amorphous silicon carbide coatings for extreme ultraviolet optics

    NASA Technical Reports Server (NTRS)

    Kortright, J. B.; Windt, David L.

    1988-01-01

    Amorphous silicon carbide films formed by sputtering techniques are shown to have high reflectance in the extreme ultraviolet spectral region. X-ray scattering verifies that the atomic arrangements in these films are amorphous, while Auger electron spectroscopy and Rutherford backscattering spectroscopy show that the films have composition close to stoichiometric SiC, although slightly C-rich, with low impurity levels. Reflectance vs incidence angle measurements from 24 to 1216 A were used to derive optical constants of this material, which are presented here. Additionally, the measured extreme ultraviolet efficiency of a diffraction grating overcoated with sputtered amorphous silicon carbide is presented, demonstrating the feasibility of using these films as coatings for EUV optics.

  2. Ion-assisted recrystallization of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Priolo, F.; Spinella, C.; La Ferla, A.; Rimini, E.; Ferla, G.

    1989-12-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The planar motion of the crystal-amorphous interface was monitored in situ, during irradiations, by transient reflectivity measurements. This technique allows the measurement of the ion-induced growth rate with a very high precision. We have observed that this growth rate scales linearly with the number of displacements produced at the crystal-amorphous interface by the impinging ions. Moreover the regrowth onto <100> oriented substrates is a factor of ≈ 4 faster with respect to that on <111> substrates. Impurities dissolved in the amorphous layer influence the kinetics of recrystallization. For instance, dopants such as As, B and P enhance the ion-induced growth rate while oxygen has the opposite effect. The dependence of the rate on impurity concentration is however less strong with respect to pure thermal annealing. For instance, an oxygen concentration of 1 × 1021 / cm3 decreases the ion-induced growth rate by a factor of ≈ 3; this same concentration would have decreased the rate of pure thermal annealing by more than 4 orders of magnitude. The reduced effects of oxygen during ion-beam crystallization allow the regrowth of deposited Si layers despite the presence of a high interfacial oxygen content. The process is investigated in detail and its possible application to the microelectronic technology is discussed.

  3. Hydrogen-free amorphous silicon with no tunneling states.

    PubMed

    Liu, Xiao; Queen, Daniel R; Metcalf, Thomas H; Karel, Julie E; Hellman, Frances

    2014-07-11

    The ubiquitous low-energy excitations, known as two-level tunneling systems (TLSs), are one of the universal phenomena of amorphous solids. Low temperature elastic measurements show that e-beam amorphous silicon (a-Si) contains a variable density of TLSs which diminishes as the growth temperature reaches 400 °C. Structural analyses show that these a-Si films become denser and more structurally ordered. We conclude that the enhanced surface energetics at a high growth temperature improved the amorphous structural network of e-beam a-Si and removed TLSs. This work obviates the role hydrogen was previously thought to play in removing TLSs in the hydrogenated form of a-Si and suggests it is possible to prepare "perfect" amorphous solids with "crystal-like" properties for applications. PMID:25062205

  4. Deposition of device quality low H content, amorphous silicon films

    DOEpatents

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  5. Deposition of device quality low H content, amorphous silicon films

    DOEpatents

    Mahan, Archie H.; Carapella, Jeffrey C.; Gallagher, Alan C.

    1995-01-01

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  6. Heat-Induced Agglomeration of Amorphous Silicon Nanoparticles Toward the Formation of Silicon Thin Film.

    PubMed

    Jang, Bo Yun; Kim, Ja Young; Seo, Gyeongju; Shin, Chae-Ho; Ko, Chang Hyun

    2016-01-01

    The thermal behavior of silicon nanoparticles (Si NPs) was investigated for the preparation of silicon thin film using a solution process. TEM analysis of Si NPs, synthesized by inductively coupled plasma, revealed that the micro-structure of the Si NPs was amorphous and that the Si NPs had melted and merged at a comparatively low temperature (~750 °C) considering bulk melting temperature of silicon (1414 °C). A silicon ink solution was prepared by dispersing amorphous Si NPs in propylene glycol (PG). It was then coated onto a silicon wafer and a quartz plate to form a thin film. These films were annealed in a vacuum or in an N₂ environment to increase their film density. N2 annealing at 800 °C and 1000 °C induced the crystallization of the amorphous thin film. An elemental analysis by the SIMS depth profile showed that N₂annealing at 1000 °C for 180 min drastically reduced the concentrations of carbon and oxygen inside the silicon thin film. These results indicate that silicon ink prepared using amorphous Si NPs in PG can serve as a proper means of preparing silicon thin film via solution process. PMID:27398566

  7. Multi-band silicon quantum dots embedded in an amorphous matrix of silicon carbide.

    PubMed

    Chang, Geng-rong; Ma, Fei; Ma, Da-yan; Xu, Ke-wei

    2010-11-19

    Silicon quantum dots embedded in an amorphous matrix of silicon carbide were realized by a magnetron co-sputtering process and post-annealing. X-ray photoelectron spectroscopy, glancing x-ray diffraction, Raman spectroscopy and high-resolution transmission electron microscopy were used to characterize the chemical composition and the microstructural properties. The results show that the sizes and size distribution of silicon quantum dots can be tuned by changing the annealing atmosphere and the atom ratio of silicon and carbon in the matrix. A physicochemical mechanism is proposed to demonstrate this formation process. Photoluminescence measurements indicate a multi-band configuration due to the quantum confinement effect of silicon quantum dots with different sizes. The PL spectra are further widened as a result of the existence of amorphous silicon quantum dots. This multi-band configuration would be extremely advantageous in improving the photoelectric conversion efficiency of photovoltaic solar cells. PMID:20975214

  8. Plasma Deposition of Doped Amorphous Silicon

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1985-01-01

    Pair of reports present further experimental details of investigation of plasma deposition of films of phosphorous-doped amosphous silicon. Probe measurements of electrical resistance of deposited films indicated films not uniform. In general, it appeared that resistance decreased with film thickness.

  9. Light-induced metastable structural changes in hydrogenated amorphous silicon

    SciTech Connect

    Fritzsche, H.

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  10. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect

    Bhat, P.K.; Brown, S.; Hollingsworth, R.; Shen, D.S.; del Cueto, J.; Iwanicko, E.; Marshall, C.; DeHart, C.; Mentor, D.; Benson, A.; Matovich, C.; Sandwisch, J. )

    1991-04-01

    This report describes a contract to produce multijunction modules based entirely on amorphous silicon alloys, the modules having an aperture area of at least 900 cm{sup 2} and a stable, reproducible conversion efficiency of at least 6.5% after 600 hours of light exposure (air mass 1.5) at 50{degrees} C. The work focussed on (1) producing opto-electronic-grade amorphous silicon material for band gaps of about 1.7 and 1.9 eV by changing the hydrogen content in the film bonded to the silicon, (2) studying and obtaining data on the light stability of single-junction p-i-n solar cells with gaps of about 1.7 and 1.9 eV, and (3) analyzing losses in a silicon/silicon multijunction cell. We report new results on an indium tin oxide (ITO)/silver back contact and the deposition of granular tin oxide by atmospheric-pressure chemical vapor deposition. Progress toward module fabrication at the end of six months has been good, with the demonstration of 5.4% initial efficiency in a silicon/silicon multijunction submodule with an aperture area of 4620 cm{sup 2} and incorporating devices with 2nd-junction i-layer thicknesses of about 3500 {angstrom}. We also demonstrated a single-junction silicon submodule with an aperture area of 4620 cm{sup 2}, a thickness of about 3500 {angstrom}, and an initial efficiency of 6.5%. 4 refs., 39 figs., 5 tabs.

  11. Use of Tritium in the Study of defects in Amorphous Silicon

    SciTech Connect

    Costea, S.; Pisana, S.; Kherani, N.P.; Gaspari, F.; Kosteski, T.; Shmayda, W.T.; Zukotynski, S.

    2005-11-28

    Hydrogen is known to strongly affect the physical properties of amorphous semiconductors. Indeed hydrogen is introduced during the growth of amorphous silicon films, used in active matrix displays and solar cells, to passivate silicon dangling bonds and to relax the lattice thereby reducing the density of states in the energy gap by several orders of magnitude and giving rise to device grade material. Ideally, hydrogenated amorphous silicon (a-Si:H) is a continuous covalently bonded random network of silicon-silicon and silicon-hydrogen atoms, with the predominant nearest neighbour environment similar to that of crystalline silicon.

  12. The reliability and stability of multijunction amorphous silicon PV modules

    SciTech Connect

    Carlson, D.E.

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies are about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.

  13. Amorphous silicon based large format uncooled FPA microbolometer technology

    NASA Astrophysics Data System (ADS)

    Schimert, T.; Brady, J.; Fagan, T.; Taylor, M.; McCardel, W.; Gooch, R.; Ajmera, S.; Hanson, C.; Syllaios, A. J.

    2008-04-01

    This paper presents recent developments in next generation microbolometer Focal Plane Array (FPA) technology at L-3 Communications Infrared Products (L-3 CIP). Infrared detector technology at L-3 CIP is based on hydrogenated amorphous silicon (a-Si:H) and amorphous silicon germanium(a-SiGe:H). Large format high performance, fast, and compact IR FPAs are enabled by a low thermal mass pixel design; favorable material properties; an advanced ROIC design; and wafer level packaging. Currently at L-3 CIP, 17 micron pixel FPA array technology including 320x240, 640 x 480 and 1024 x768 arrays is under development. Applications of these FPAs range from low power microsensors to high resolution near-megapixel imager systems.

  14. Electrochemical degradation of amorphous-silicon photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Ross, R. G., Jr.

    1985-01-01

    Techniques of module electrochemical corrosion research, developed during reliability studies of crystalline-silicon modules (C-Si), have been applied to this new investigation into amorphous-silicon (a-Si) module reliability. Amorphous-Si cells, encapsulated in the polymers polyvinyl butyral (PVB) and ethylene vinyl acetate (EVA), were exposed for more than 1200 hours in a controlled 85 C/85 percent RH environment, with a constant 500 volts applied between the cells and an aluminum frame. Plotting power output reduction versus charge transferred reveals that about 50 percent a-Si cell failures can be expected with the passage of 0.1 to 1.0 Coulomb/cm of cell-frame edge length; this threshold is somewhat less than that determined for C-Si modules.

  15. Spherical silicon photonic microcavities: From amorphous to polycrystalline

    NASA Astrophysics Data System (ADS)

    Fenollosa, R.; Garín, M.; Meseguer, F.

    2016-06-01

    Shaping silicon as a spherical object is not an obvious task, especially when the object size is in the micrometer range. This has the important consequence of transforming bare silicon material in a microcavity, so it is able to confine light efficiently. Here, we have explored the inside volume of such microcavities, both in their amorphous and in their polycrystalline versions. The synthesis method, which is based on chemical vapor deposition, causes amorphous microspheres to have a high content of hydrogen that produces an onionlike distributed porous core when the microspheres are crystallized by a fast annealing regime. This substantially influences the resonant modes. However, a slow crystallization regime does not yield pores, and produces higher-quality-factor resonances that could be fitted to the Mie theory. This allows the establishment of a procedure for obtaining size calibration standards with relative errors of the order of 0.1%.

  16. Amorphous-silicon thin-film heterojunction solar cells

    SciTech Connect

    Cretella, M. C.; Gregory, J. A.; Sandstrom, D. B.; Paul, W.

    1981-01-01

    The investigation of amorphous silicon materials at MTSEC has had two major thrusts: (1) to improve the amorphous material, i.e., obtain a low state density in the gap, improve the carrier collection depth and diminish non-radiative recombinations; and (2) to attempt to understand and improve on the limitations of the junction devices while evaluating the amorphous silicon materials. In the first of these efforts, the investigation has continued to examine the modifications to the a-Si(H) network by alloying silicon with other group IVA elements, either in binary or ternary compositions, and/or by replacing the hydrogenation for defect compensation with a combination of hydrogenation and alkylation or hydrogenation and halogenation. The doped junction layers are being examined in an attempt to determine the limiting characteristics of the junctions in solar cell devices of these amorphous materials. Amorphous alloys of Si-Ge, Si-C, Si-Sn were prepared as well as ternary compositions of Si-Ge-C and Si-Sn-C. In addition, Na vapor was added to the gas feed to deposit a-Si(Na, H) films, and to prepare Si-Sn, fluoride was added along with the tin by vapor additions of SnF/sub 4/ to the gas feed. The optical properties of these materials were measured, and structural and compositional information was obtained from the IR vibrational spectra using the scanning electron microscope and from analyses using scanning Auger microscopy. Electrical measurements have included the dark conductivity and the photo conductivity under room fluorescent light and at AM1 conditions. With alloys that displayed promising photoconductive properties n-i-p devices were prepared to assess the solar cell properties. Details are presented. (WHK)

  17. Advances and opportunities in the amorphous silicon research field

    SciTech Connect

    Sabisky, E.; Wallace, W.; Mikhall, A.; Mahan, H.; Tsuo, S.

    1984-05-01

    The amorphous materials and thin-film solar cells program was initiated by the US Department of Energy in 1978 and then transferred to the Solar Energy Research Institute. The aim of the present DOE/SERI program is to achieve 5-year DOE research goals by addressing photovoltaic research in single-junction amorphous thin films as well as the most promising option in high-efficiency, multijunction solar cells. Multiyear subcontract awards initiated in 1983 were designed to demonstrate a stable, small-area, p-i-n solar cell of at least 12% (AMI) efficiency, a stable submodule of at least 8% (AMI) efficiency, a stable submodule of at least 8% (AMI) efficiency (total area, 1000 cm/sup 2/), and a proof-of-concept multijunction amorphous silicon alloy thin-film solar cell that will lead to achieving an 18% efficiency goal in 1988.

  18. Amorphization and defect recombination in ion implanted silicon carbide

    SciTech Connect

    Grimaldi, M.G.; Calcagno, L.; Musumeci, P.; Frangis, N.; Van Landuyt, J.

    1997-06-01

    The damage produced in silicon carbide single crystals by ion implantation was investigated by Rutherford backscattering channeling and transmission electron microscopy techniques. Implantations were performed at liquid nitrogen and at room temperatures with several ions to examine the effect of the ion mass and of the substrate temperature on the damaging process. The damage accumulation is approximately linear with fluence until amorphization occurs when the elastic energy density deposited by the ions overcomes a critical value. The critical energy density for amorphization depends on the substrate temperature and is greatest at 300 K indicating that defects recombination occurs already at room temperature. Formation of extended defects never occurred and point defects and uncollapsed clusters of point defects were found before amorphization even in the case of light ion implantation. The atomic displacement energy has been estimated to be {approximately}12 eV/atom from the analysis of the damage process in dilute collision cascades. {copyright} {ital 1997 American Institute of Physics.}

  19. Electron trapping in amorphous silicon: A quantum molecular dynamics study

    SciTech Connect

    Yang, Lin H.; Kalia, R.K.; Vashishta, P.

    1990-12-01

    Quantum molecular dynamics (QMD) simulations provide the real-time dynamics of electrons and ions through numerical solutions of the time-dependent Schrodinger and Newton equations, respectively. Using the QMD approach we have investigated the localization behavior of an excess electron in amorphous silicon at finite temperatures. For time scales on the order of a few picoseconds, we find the excess electron is localized inside a void of radius {approximately}3 {Angstrom} at finite temperatures. 12 refs.

  20. Charged particle detectors made from thin layers of amorphous silicon

    SciTech Connect

    Morel, J.R.

    1986-05-01

    A series of experiments was conducted to determine the feasibility of using hydrogenated amorphous silicon (..cap alpha..-Si:H) as solid state thin film charged particle detectors. /sup 241/Am alphas were successfully detected with ..cap alpha..-Si:H devices. The measurements and results of these experiments are presented. The problems encountered and changes in the fabrication of the detectors that may improve the performance are discussed.

  1. Corrosion In Amorphous-Silicon Solar Cells And Modules

    NASA Technical Reports Server (NTRS)

    Mon, Gordon R.; Wen, Liang-Chi; Ross, Ronald G., Jr.

    1988-01-01

    Paper reports on corrosion in amorphous-silicon solar cells and modules. Based on field and laboratory tests, discusses causes of corrosion, ways of mitigating effects, and consequences for modules already in field. Suggests sealing of edges as way of reducing entry of moisture. Cell-free perimeters or sacrificial electrodes suggested to mitigate effects of sorbed moisture. Development of truly watertight module proves to be more cost-effective than attempting to mitigate effects of moisture.

  2. Optically induced conductivity changes in amorphous silicon: A historical perspective

    SciTech Connect

    Staebler, D.L.

    1997-07-01

    A historical perspective of the discovery of optically induced changes in amorphous silicon is presented in this paper from my personal point of view. It includes the story of how Chris Wronski and the author discovered the effect, the key elements in the R and D environment that lead to the quick realization that the effect was reversible and reproducible, how the research environment supported the rapid publication of their first paper, and a brief look at the effect from today's perspective.

  3. Advances in amorphous silicon alloy multijunction cells and modules

    SciTech Connect

    Guha, S.; Yang, J.; Banerjee, A.; Glatfelter, T.; Hoffman, K.; Xu, X.

    1996-01-01

    We discuss the research directions taken to improve the stable efficiency of amorphous silicon alloy multijunction modules. Use of hydrogen dilution during deposition has resulted in improvement of initial efficiency and stability of the component cells in the triple-junction structure. An innovative laser-interconnected module design has resulted in the reduction of optical and electrical losses in the module down to 1{percent}. {copyright} {ital 1996 American Institute of Physics.}

  4. Detection of charged particles in amorphous silicon layers

    SciTech Connect

    Kaplan, S.N.; Morel, J.R.; Mulera, T.A.; Perez-Mendez, V.; Schnurmacher, G.; Street, R.A.

    1985-10-01

    The successful development of radiation detectors made from amorphous silicon could offer the possibility for relatively easy construction of large area position-sensitive detectors. We have conducted a series of measurements with prototype detectors, on signals derived from alpha particles. The measurement results are compared with simple model calculations, and projections are made of potential applications in high-energy and nuclear physics. 4 refs., 7 figs.

  5. Enhanced Multiple Exciton Generation in Amorphous Silicon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kryjevski, Andrei; Mihaylov, Deyan; Kilin, Dmitri

    2015-03-01

    Multiple exciton generation (MEG) in nm-sized hydrogen-passivated silicon nanowires (NWs), and quasi two-dimensional nanofilms depends strongly on the degree of the core structural disorder as shown by the many-body perturbation theory (MBPT) calculations based on the DFT simulations. Here, we use the HSE exchange correlation functional. In MBPT, we work to the 2nd order in the electron-photon coupling and in the approximate screened Coulomb interaction. We also include the effect of excitons for which we solve Bethe-Salpeter Equation. We calculate quantum efficiency (QE), the average number of excitons created by a single absorbed photon, in 3D arrays of Si29H36 quantum dots, NWs, and quasi 2D silicon nanofilms, all with both crystalline and amorphous core structures. Efficient MEG with QE of 1.3 up to 1.8 at the photon energy of about 3Eg , where Eg is the gap, is predicted in these nanoparticles except for the crystalline NW and film where QE ~= 1 . MEG in the amorphous nanoparticles is enhanced by the electron localization due to structural disorder. The exciton effects significantly red-shift QE (Ephoton) curves. Nanometer-sized amorphous silicon NWs and films are predicted to have effective MEG within the solar spectrum range. We acknowledge NSF support (CHE-1413614) for method development.

  6. Femtosecond studies of plasma formation in crystalline and amorphous silicon

    NASA Astrophysics Data System (ADS)

    Kuett, Waldemar; Esser, Anton; Seibert, Klaus; Lemmer, Uli; Kurz, Heinrich

    1990-08-01

    Transient pump-probe reflectivity measurements are performed on crystalline and amorphous Silicon samples with 50 fs optical pulses at 2 eV. The excited carrier densities range from 1017cm3 up to a few 1021cm3. In both cases the reflectivity signal is dominated by a Drude-like carrier response. Crystalline Silicon shows a distinct subpicosecond feature due to the cooling of the optically excited hot carriers with a time constant of 200-300 fs. Diffusion and Auger-recombination come into play at higher carrier densities. A superlinear increase of instant reflectivity signal with excitation fluence is due to two-photon absorption (TPA) with a TPA-coeffiecient f:37+-5 cm/GW. In amorphous Silicon the TPA process is not observable. The recovery of the induced negative reflectivity changes is dominated by trapping into bandtail and defect states at lower carrier densities. At higher densities a non-radiative recombination process dominates the relaxation of free carriers in both materials. Comparison with crystalline Silicon clearly demonstrates the enhancement of the Auger-recombination process in disordered materials by more than an order of magnitude.

  7. Improved method of preparing p-i-n junctions in amorphous silicon semiconductors

    DOEpatents

    Madan, A.

    1984-12-10

    A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

  8. Electron-beam-induced information storage in hydrogenated amorphous silicon devices

    DOEpatents

    Yacobi, B.G.

    1985-03-18

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge collection efficiency and thus in the charge collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage.

  9. The U.S. and Japanese amorphous silicon technology programs A comparison

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1984-01-01

    The U.S. Department of Energy/Solar Energy Research Institute Amorphous Silicon (a-Si) Solar Cell Program performs R&D on thin-film hydrogenated amorphous silicon for eventual development of stable amorphous silicon cells with 12 percent efficiency by 1988. The Amorphous Silicon Solar Cell Program in Japan is sponsored by the Sunshine Project to develop an alternate energy technology. While the objectives of both programs are to eventually develop a-Si photovoltaic modules and arrays that would produce electricity to compete with utility electricity cost, the U.S. program approach is research oriented and the Japanese is development oriented.

  10. Grain boundary resistance to amorphization of nanocrystalline silicon carbide.

    PubMed

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-01-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized. PMID:26558694

  11. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-11-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized.

  12. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    PubMed Central

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-01-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized. PMID:26558694

  13. Amorphous silicon technology improvement at CEA-LETI

    NASA Astrophysics Data System (ADS)

    Mottin, Eric; Bain, Astrid; Castelein, Pierre; Ouvrier-Buffet, Jean-Louis; Tissot, Jean-Luc; Yon, Jean-Jacques; Chatard, Jean-Pierre

    2002-05-01

    The emergence of uncooled infrared detectors has opened new opportunities for IR imaging both for military and civil applications. Infrared imaging sensors that operate without cryogenic cooling have the potential to provide the military or civilian users with infrared vision capabilities packaged in a camera of extremely small size, weight and power. Uncooled infrared sensor technology has advanced rapidly in the past few years. Higher performance sensors, electronics integration at the sensor, and new concepts for signal processing are generating advanced infrared focal plane arrays. This would significantly reduce the cost and accelerate the implementation of sensors for applications such as surveillance or predictive maintenance. We present the uncooled infrared detector operation principle and the development at CEA/LETI from the 256 x 64 with a pitch of 50 micrometers to the 320 x 240 with a pitch of 35 micrometers . LETI has been involved in Amorphous Silicon uncooled microbolometer development since 1992. This silicon IR detection is now well mastered and matured so that industrial transfer of LETI technology was performed in 2000 towards Sofradir. Industrial production of 320 x 240 microbolometer array with 45micrometers pitch is then started. After a description of the technology and the methodology for reliability enhancement, we present the readout circuit architectures designs and its evolution from the 256 x 64 array to the different version of 320 x 240 arrays. Electro-optical results obtained from these IRCMOS are presented. NEDT close to 30 mK is now obtained with our standard microbolometer amorphous silicon technology.

  14. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    SciTech Connect

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.; Tok, E. S.; Vittone, E.

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  15. Ultralight amorphous silicon alloy photovoltaic modules for space applications

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Chen, Englade; Fulton, C.; Myatt, A.; Woodyard, J. R.

    1987-01-01

    Ultralight and ultrathin, flexible, rollup monolithic PV modules have been developed consisting of multijunction, amorphous silicon alloys for either terrestrial or aerospace applications. The rate of progress in increasing conversion efficiency of stable multijunction and multigap PV cells indicates that arrays of these modules can be available for NASA's high power systems in the 1990's. Because of the extremely light module weight and the highly automated process of manufacture, the monolithic a-Si alloy arrays are expected to be strongly competitive with other systems for use in NASA's space station or in other large aerospace applications.

  16. Radiation damage and annealing of amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Slemp, W. S.; Smith, B. T.; Buoncristiani, A. M.

    1984-01-01

    Amorphous silicon solar cells were irradiated with 1 MeV electrons at the Space Environmental Effects Laboratory of the NASA Langley Research Center. The cells accumulated a total fluence of 10 to the 14th, 10 to the 15th, and 10 to the 16th electrons per square centimeter and exhibited increasing degradation with each irradiation. This degradation was tracked by evaluating the I-V curves for AM0 illumination and the relative spectral response. The observed radiation damage was reversed following an anneal of the cells under vacuum at 200 C for 2 hours.

  17. Progress in amorphous silicon multijunction research at solarex

    SciTech Connect

    Arya, R.R.; Carlson, D.E.; Yang, L.; Chen, L.F.; Willing, F.; Rajan, K.; Jansen, K.; Poplawski, C.; Bradley, D.; Wood, G.

    1997-02-01

    Large strides have been made at Solarex inadvancing amorphous silicon multijunction technology to a maturity level where large-area commercial modules are technically and economically viable. Tandem junction modules (4ft{sup 2}) have been demonstrated with average stabilized efficiency of 8{percent}. While maintaining stabilized efficiency the a-Si alloy deposition time has been reduced by 28{percent} and the material usage reduced by 38{percent}. Progress has also been made in understanding and improving ZnO front contact and stability. {copyright} {ital 1997 American Institute of Physics.}

  18. Progress in amorphous silicon PV technology: An update

    SciTech Connect

    Luft, W.; Branz, H.M.; Dalal, V.L.; Hegedus, S.S.; Schiff, E.A.

    1995-07-01

    To reach the 15% stabilized efficiency goal for amorphous silicon (a-Si) modules by the year 2005, the National Renewable Energy Laboratory has established four research teams. The teams -- with members from industry, universities, and NREL -- have been in operation for 2.5 years now. Consensus has been reached that a triple-junction a-Si structure is needed to reach the efficiency goal. Performance parameter goals for the overall structure and the three component cells have been formulated. All four teams have generated their own development plans. Individual team progress relative to the plans is reported.

  19. Structural properties of amorphous silicon produced by electron irradiation

    SciTech Connect

    Yamasaki, J.; Takeda, S.

    1999-07-01

    The structural properties of the amorphous Si (a-Si), which was created from crystalline silicon by 2 MeV electron irradiation at low temperatures about 25 K, are examined in detail by means of transmission electron microscopy and transmission electron diffraction. The peak positions in the radial distribution function (RDF) of the a-Si correspond well to those of a-Si fabricated by other techniques. The electron-irradiation-induced a-Si returns to crystalline Si after annealing at 550 C.

  20. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    NASA Astrophysics Data System (ADS)

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.; Tok, E. S.; Vittone, E.

    2014-05-01

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  1. Diffusion length measurements of thin amorphous silicon layers

    NASA Astrophysics Data System (ADS)

    van den Heuvel, J. C.; van Oort, R. C.; Geerts, M. J.

    1989-02-01

    A new method for the analysis of diffusion length measurements by the Surface Photovoltage (SPV) method is presented. It takes into account the effect of the reflection of light from the back contact in thin layers and the effect of a finite bandwidth of the used interference filters. The model was found to agree with experiments on thin amorphous silicon (a-Si:H) layers. It is shown that in the region were these effects are negligible this method is equivalent to the standard method.

  2. Athermal shear-transformation-zone theory of amorphous plastic deformation. II. Analysis of simulated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Bouchbinder, Eran; Langer, J. S.; Procaccia, Itamar

    2007-03-01

    In the preceding paper, we developed an athermal shear-transformation-zone (STZ) theory of amorphous plasticity. Here we use this theory in an analysis of numerical simulations of plasticity in amorphous silicon by Demkowicz and Argon (DA). In addition to bulk mechanical properties, those authors observed internal features of their deforming system that challenge our theory in important ways. We propose a quasithermodynamic interpretation of their observations in which the effective disorder temperature, generated by mechanical deformation well below the glass temperature, governs the behavior of other state variables that fall in and out of equilibrium with it. Our analysis points to a limitation of either the step-strain procedure used by DA in their simulations, or the STZ theory in its ability to describe rapid transients in stress-strain curves, or perhaps to both. Once we allow for this limitation, we are able to bring our theoretical predictions into accurate agreement with the simulations.

  3. Chemical vapor deposition of hydrogenated amorphous silicon from disilane

    SciTech Connect

    Bogaert, R.J.; Russell, T.W.F.; Klein, M.T. . Dept. of Chemical Engineering); Rocheleau, R.E.; Baron, B.N. . Inst. of Energy Conversion)

    1989-10-01

    The authors describe hydrogenated amorphous silicon (a-Si:H) thin films deposited at growth rates of 1 to 30 A/s by chemical vapor deposition (CVD) from disilane source gas at 24 torr total pressure in a tubular reactor. The effects of substrate temperature and gas holding time (flow rate) on film growth rate and effluent gas composition were measured at temperatures ranging from 360{sup 0} to 485{sup 0}C and gas holding times from 3 to 62s. Effluent gases determined by gas chromatography included silane, disilane and other higher order silanes. A chemical reaction engineering model, based on a silylene (SiH/sub 2/) insertion gas phase reaction network and film growth from both SiH/sub 2/ and high molecular weight silicon species, Si/sub n/H/sub 2n/, was developed. The model predictions were in good agreement with experimentally determined growth rates and effluent gas compositions.

  4. Chemical vapor deposition of boron-doped hydrogenated amorphous silicon

    SciTech Connect

    Ellis F.B. Jr.; Delahoy, A.E.

    1985-07-15

    Deposition conditions and film properties for a variety of boron-doped hydrogenated amorphous silicon films and silicon-carbon films produced by chemical vapor deposition (CVD) are discussed. Deposition gases include monosilane, disilane, trisilane, and acetylene. Two types of optically wide band-gap p layers are obtained. One of these window p layers (without carbon) has been extensively tested in photovoltaic devices. Remarkably, this p layer can be deposited between about 200 to 300 /sup 0/C. A typical open circuit voltage in an all CVD p-i-n device is 0.70--0.72 V, and in a hybrid device where the i and n layers are deposited by glow discharge, 0.8--0.83 V.

  5. Lithium concentration dependent structure and mechanics of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Sitinamaluwa, H. S.; Wang, M. C.; Will, G.; Senadeera, W.; Zhang, S.; Yan, C.

    2016-06-01

    A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of LixSi alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus of elasticity and fracture strength but increase in ductility in tension. For a LixSi system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.

  6. Optical absorption of ion-beam sputtered amorphous silicon coatings

    NASA Astrophysics Data System (ADS)

    Steinlechner, Jessica; Martin, Iain W.; Bassiri, Riccardo; Bell, Angus; Fejer, Martin M.; Hough, Jim; Markosyan, Ashot; Route, Roger K.; Rowan, Sheila; Tornasi, Zeno

    2016-03-01

    Low mechanical loss at low temperatures and a high index of refraction should make silicon optimally suited for thermal noise reduction in highly reflective mirror coatings for gravitational wave detectors. However, due to high optical absorption, amorphous silicon (aSi) is unsuitable for being used as a direct high-index coating material to replace tantala. A possible solution is a multimaterial design, which enables exploitation of the excellent mechanical properties of aSi in the lower coating layers. The possible number of aSi layers increases with absorption reduction. In this work, the optimum heat treatment temperature of aSi deposited via ion-beam sputtering was investigated and found to be 450 °C . For this temperature, the absorption after deposition of a single layer of aSi at 1064 nm and 1550 nm was reduced by more than 80%.

  7. Amorphous silicon-carbon alloys and amorphous carbon from direct methane and ethylene activation by ECR

    SciTech Connect

    Conde, J.P.; Chu, V.; Giorgis, F.; Pirri, C.F.; Arekat, S.

    1997-07-01

    Hydrogenated amorphous silicon-carbon alloys are prepared using electron-cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition. Hydrogen is introduced into the source resonance cavity as an excitation gas. Silane is introduced in the main chamber in the vicinity of the plasma stream, whereas the carbon source gases, methane or ethylene, are introduced either with the silane or with the hydrogen as excitation gases. The effect of the type of carbon-source gas, excitation gas mixture and silane-to-carbon source gas flow ratio on the deposition rate, bandgap, subgap density of states, spin density and hydrogen evolution are studied.

  8. Chemical vapor deposition of amorphous silicon films from disilane

    SciTech Connect

    Bogaert, R.J.

    1986-01-01

    Amorphous silicon films for fabrication of solar cells have been deposited by thermal chemical vapor deposition (CVD) from disilane (Si/sub 2/H/sub 6/) using a tubular flow reactor. A mathematical description for the CVD reactor was developed and solved by a numerical procedure. The proposed chemical reaction network for the model is based on silylene (SiH/sub 2/) insertion in the gas phase and film growth from SiH/sub 2/ and silicon polymers (Si/sub n/N/sub 2n/, n approx. 10). Estimates of the rate constants have been obtained for trisilane decomposition, silicon polymer formation, and polymer dehydrogenation. The silane unimolecular decomposition rate constants were corrected for pressure effects. The model behavior is compared to the experimental results over the range of conditions: reactor temperature (360 to 485/sup 0/C), pressures (2 to 48 torr), and gas holding time (1 to 70 s). Within the above range of conditions, film growth rate varies from 0.01 to 30 A/s. Results indicate that silicon polymers are the main film precursors for gas holding times greater than 3 s. Film growth by silylene only becomes important at short holding times, large inert gas dilution, and positions near the beginning of the reactor hot zone.

  9. Hydrogen structures in heavily hydrogenated crystalline and amorphous silicon

    SciTech Connect

    Jackson, W.G.; Franz, A.; Chabal, Y.; Weldon, M.K.; Jin, H.C.; Abelson, J.R.

    1998-12-31

    The hydrogen binding energy distribution and IR spectra of hydrogen platelets in c-Si have been measured and compared to H in other forms of silicon including hydrogenated polycrystalline and amorphous Si. The binding distribution for platelet containing samples, determined using H evolution, exhibits two peaks: a bulk peak at 1.8--1.9 eV below the transport barrier, and a second possibly surface related peak 1.8--1.9 eV below the surface evolution barrier. The bulk peak grows at 250 C and is consistent with calculated energies for platelet structures. The same two evolution peaks are found in hydrogenated polycrystalline Si and amorphous silicon. The IR spectra for heavily hydrogenated c-Si are dominated by the stretching modes at 2076 and 2128 cm{sup {minus}1}. Most surprisingly there appears to be a strong mode at 856 cm{sup {minus}1} which is associated with a deformation mode of SiH{sub 3}. Even more surprising, this SiH{sub 3} 856 cm{sup {minus}1} mode remains until 550 C indicating that the SiH{sub 3} containing structures are rather stable.

  10. Geometric photovoltaics applied to amorphous silicon thin film solar cells

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Timothy

    Geometrically generalized analytical expressions for device transport are derived from first principles for a photovoltaic junction. Subsequently, conventional planar and unconventional coaxial and hemispherical photovoltaic architectures are applied to detail the device physics of the junction based on their respective geometry. For the conventional planar cell, the one-dimensional transport equations governing carrier dynamics are recovered. For the unconventional coaxial and hemispherical junction designs, new multi-dimensional transport equations are revealed. Physical effects such as carrier generation and recombination are compared for each cell architecture, providing insight as to how non-planar junctions may potentially enable greater energy conversion efficiencies. Numerical simulations are performed for arrays of vertically aligned, nanostructured coaxial and hemispherical amorphous silicon solar cells and results are compared to those from simulations performed for the standard planar junction. Results indicate that fundamental physical changes in the spatial dependence of the energy band profile across the intrinsic region of an amorphous silicon p-i-n junction manifest as an increase in recombination current for non-planar photovoltaic architectures. Despite an increase in recombination current, however, the coaxial architecture still appears to be able to surpass the efficiency predicted for the planar geometry, due to the geometry of the junction leading to a decoupling of optics and electronics.

  11. Anharmonicity Rise the Thermal Conductivity in Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Lv, Wei; Henry, Asegun

    We recently proposed a new method called Direct Green-Kubo Modal Analysis (GKMA) method, which has been shown to calculate the thermal conductivity (TC) of several amorphous materials accurately. A-F method has been widely used for amorphous materials. However, researchers have found out that it failed on several different materials. The missing component of A-F method is the harmonic approximation and considering only the interactions of modes with similar frequencies, which neglect interactions of modes with large frequency difference. On the contrary, GKMA method, which is based on molecular dynamics, intrinsically includes all types of phonon interactions. In GKMA method, each mode's TC comes from both mode self-correlations (autocorrelations) and mode-mode correlations (crosscorrelations). We have demonstrated that the GKMA predicted TC of a-Si from Tersoff potential is in excellent agreement with one of experimental results. In this work, we will present the GKMA applications on a-Si using multiple potentials and gives us more insight of the effect of anharmonicity on the TC of amorphous silicon. This research was supported Intel grant AGMT DTD 1-15-13 and computational resources by NSF supported XSEDE resources under allocations DMR130105 and TG- PHY130049.

  12. Electrical characteristics of amorphous molybdenum-nickel contacts to silicon

    NASA Technical Reports Server (NTRS)

    Kung, K. T.-Y.; Nicolet, M.-A.; Suni, I.

    1984-01-01

    The electrical characteristics of sputtered, amorphous Mo-Ni contacts have been measured on both p- and n-type Si, as functions of composition (30, 54, and 58 at. percent Mo). The contact resistivity on both p(+) and n(+) Si is in the 0.00000 ohm sq cm range. The barrier height for as-deposited samples varies between phi-bp = 0.47-0.42 V on p-type Si and between phi-bn = 0.63-0.68 V on n-type Si, as the composition of the amorphous layer goes from Ni-rich to Mo-rich. The sum phi-bp + phi-bn always equals 1.12 V, within experimental error. After thermal treatment at 500 C for 1/2 h, the contact resistivity changes by a factor of two or less, while the barrier height changes by at most approximately 0.05 V. In light of these results, the amorphous Mo-Ni film makes good ohmic contacts to silicon.

  13. Theory of structural transformation in lithiated amorphous silicon.

    PubMed

    Cubuk, Ekin D; Kaxiras, Efthimios

    2014-07-01

    Determining structural transformations in amorphous solids is challenging due to the paucity of structural signatures. The effect of the transitions on the properties of the solid can be significant and important for applications. Moreover, such transitions may not be discernible in the behavior of the total energy or the volume of the solid as a function of the variables that identify its phases. These issues arise in the context of lithiation of amorphous silicon (a-Si), a promising anode material for high-energy density batteries based on lithium ions. Recent experiments suggest the surprising result that the lithiation of a-Si is a two-phase process. Here, we present first-principles calculations of the structure of a-Si at different lithiation levels. Through a detailed analysis of the short and medium-range properties of the amorphous network, using Voronoi-Delaunay methods and ring statistics, we show that a-LixSi has a fundamentally different structure below and above a lithiation level corresponding to x ∼ 2. PMID:24911996

  14. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors. PMID:27174318

  15. Sputtered pin amorphous silicon semi-conductor device and method therefor

    DOEpatents

    Moustakas, Theodore D.; Friedman, Robert A.

    1983-11-22

    A high efficiency amorphous silicon PIN semi-conductor device is constructed by the sequential sputtering of N, I and P layers of amorphous silicon and at least one semi-transparent ohmic electrode. A method of construction produces a PIN device, exhibiting enhanced physical integrity and facilitates ease of construction in a singular vacuum system and vacuum pump down procedure.

  16. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    SciTech Connect

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  17. Electron-beam-induced information storage in hydrogenated amorphous silicon device

    DOEpatents

    Yacobi, Ben G.

    1986-01-01

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge-collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge-collection efficiency; and thus in the charge-collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage, in the device, which darkened areas can be restored to their original charge-collection efficiency by heating the hydrogenated amorphous silicon to a temperature of about 100.degree. C. to 250.degree. C. for a sufficient period of time to provide for such restoration.

  18. Mechanism of the growth of amorphous and microcrystalline silicon from silicon tetrafluoride and hydrogen

    NASA Astrophysics Data System (ADS)

    Okada, Y.; Chen, J.; Campbell, I. H.; Fauchet, P. M.; Wagner, S.

    1990-02-01

    We study the growth of amorphous (a-Si:H,F) and of microcrystalline (μc-Si) silicon over trench patterns in crystalline silicon substrates. We vary the conditions of the SiF4-H2 glow discharge from deposition to etching. All deposited films form lips at the trench mouth and are uniformly thick on the trench walls. Therefore, surface diffusion is not important. The results of a Monte Carlo simulation suggest that film growth is governed by a single growth species with a low (˜0.2) sticking coefficient, in combination with a highly reactive etching species.

  19. High Performance Molybdenum Disulfide Amorphous Silicon Heterojunction Photodetector

    PubMed Central

    Esmaeili-Rad, Mohammad R.; Salahuddin, Sayeef

    2013-01-01

    One important use of layered semiconductors such as molybdenum disulfide (MoS2) could be in making novel heterojunction devices leading to functionalities unachievable using conventional semiconductors. Here we demonstrate a metal-semiconductor-metal heterojunction photodetector, made of MoS2 and amorphous silicon (a-Si), with rise and fall times of about 0.3 ms. The transient response does not show persistent (residual) photoconductivity, unlike conventional a-Si devices where it may last 3–5 ms, thus making this heterojunction roughly 10X faster. A photoresponsivity of 210 mA/W is measured at green light, the wavelength used in commercial imaging systems, which is 2−4X larger than that of a-Si and best reported MoS2 devices. The device could find applications in large area electronics, such as biomedical imaging, where a fast response is critical. PMID:23907598

  20. Monolithic amorphous silicon modules on continuous polymer substrate

    SciTech Connect

    Grimmer, D.P. )

    1992-03-01

    This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

  1. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect

    Guha, S. )

    1992-09-01

    This report describes research on semiconductor and non-semiconductor materials to enhance the performance of multi-band-gap, multijunction panel with an area greater than 900 cm[sup 2] by 1992. Double-junction and triple-junction cells are mode on a Ag/ZnO back reflector deposited on stainless steel substrates. An a-SiGe alloy is used for the i-layer in the bottom and the middle cells; the top cell uses an amorphous silicon alloy. After the evaporation of an antireflection coating, silver grids and bus bars are put on the top surface and the panel is encapsulated in an ethylene vinyl acetate (EVA)/Tefzel structure to make a 1-ft[sup 2] monolithic module.

  2. Atomistic simulations of material damping in amorphous silicon nanoresonators

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sankha; Song, Jun; Vengallatore, Srikar

    2016-06-01

    Atomistic simulations using molecular dynamics (MD) are emerging as a valuable tool for exploring dissipation and material damping in nanomechanical resonators. In this study, we used isothermal MD to simulate the dynamics of the longitudinal-mode oscillations of an amorphous silicon nanoresonator as a function of frequency (2 GHz–50 GHz) and temperature (15 K–300 K). Damping was characterized by computing the loss tangent with an estimated uncertainty of 7%. The dissipation spectrum displays a sharp peak at 50 K and a broad peak at around 160 K. Damping is a weak function of frequency at room temperature, and the loss tangent has a remarkably high value of ~0.01. In contrast, at low temperatures (15 K), the loss tangent increases monotonically from 4× {{10}-4} to 4× {{10}-3} as the frequency increases from 2 GHz to 50 GHz. The mechanisms of dissipation are discussed.

  3. ESR studies on hot-wire amorphous silicon

    SciTech Connect

    Unold, T.; Mahan, A.H.

    1997-07-01

    The authors measure a series of hot-wire (HW) amorphous silicon films grown with hydrogen contents C{sub H} varying between 0.5--17 at.%. From constant photocurrent method (CPM) measurements and the steady-state photocarrier grating method (SSPG) they find good agreement with previous measurements on similar hot-wire films. Electron spin resonance measurements on the same samples, however, yield significantly higher spin densities than expected. A thickness series indicates a highly defective layer close to the substrate interface. They propose that this defective layer may be due to excessive out diffusion of hydrogen during growth at high temperatures, as seen by secondary ion mass spectroscopy. ESR measurements on light-degraded samples indicate an improved stability of samples with C{sub H} < 9 at.%.

  4. Laser induced melting and crystallization of boron doped amorphous silicon

    SciTech Connect

    Nebel, C.E.; Schoeniger, S.; Dahlheimer, B.; Stutzmann, M.

    1997-07-01

    Transient reflectivity experiments have been performed to measure the dynamics of laser-induced melting of amorphous silicon (a-Si) and the crystallization to {micro}c-Si of films with different thicknesses on Corning 7059 glass. The laser-induced melting takes place with a velocity of 13 to 24 m/s, while the solidification is about a factor 10 slower. The crystallization starts at the Si/glass interface and at the surface. In the center of the films Si remains liquid for an extended period of time. The crystallization dynamics point towards an heterogeneous morphology of laser-crystallized Si, where the surface and the interface layers are composed of small grains and the bulk of larger grains.

  5. Radiation Resistance Studies of Amorphous Silicon Alloy Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys was investigated. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below lE14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  6. Light-induced metastability in pure and hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Queen, D. R.; Liu, X.; Karel, J.; Wang, Q.; Crandall, R. S.; Metcalf, T. H.; Hellman, F.

    2015-10-01

    Light soaking is found to increase the specific heat C and internal friction Q-1 of pure (a-Si) and hydrogenated (a-Si:H) amorphous silicon. At the lowest temperatures, the increases in C and Q-1 are consistent with an increased density of two-level systems (TLS). The light-induced increase in C persists to room temperature. Neither the sound velocity nor shear modulus change with light soaking indicating that the Debye specific heat is unchanged which suggests that light soaking creates localized vibrational modes in addition to TLS. The increase can be reversibly added and removed by light soaking and annealing, respectively, suggesting that it is related to the Staebler-Wronski effect (SWE), even in a-Si without H, and involves a reversible nanoscale structural rearrangement that is facilitated by, but does not require, H to occur.

  7. Hydrogenated Amorphous Silicon (a-Si:H) Colloids

    SciTech Connect

    Harris, Justin T.; Hueso, Jose L.; Korgel, Brian A.

    2010-12-14

    Colloidal particles of hydrogenated amorphous silicon (a-Si:H) were synthesized by decomposition of trisilane (Si{sub 3}H{sub 8}) in supercritical n-hexane (sc-hexane) at temperatures ranging from 380 to 550 °C. The reaction temperature, pressure and Si{sub 3}H{sub 8} concentration have a significant influence on the average particle size, Si bond order and hydrogen content. The particle diameter could be varied from 170 nm to 1.7 μm, with hydrogen loadings between 10% and 58%. Raman spectroscopy of the particles revealed significant differences in Si bond order that correlated with hydrogen content, with the lowest reaction temperatures yielding particles with the least structural order and most associated hydrogen. Particles synthesized at temperatures higher than 420 °C had sufficient bond order to allow crystallization under the Raman laser probe.

  8. Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering

    NASA Astrophysics Data System (ADS)

    Demaurex, Bénédicte; De Wolf, Stefaan; Descoeudres, Antoine; Charles Holman, Zachary; Ballif, Christophe

    2012-10-01

    Damage of the hydrogenated amorphous/crystalline silicon interface passivation during transparent conductive oxide sputtering is reported. This occurs in the fabrication process of silicon heterojunction solar cells. We observe that this damage is at least partially caused by luminescence of the sputter plasma. Following low-temperature annealing, the electronic interface properties are recovered. However, the silicon-hydrogen configuration of the amorphous silicon film is permanently changed, as observed from infra-red absorbance spectra. In silicon heterojunction solar cells, although the as-deposited film's microstructure cannot be restored after sputtering, no significant losses are observed in their open-circuit voltage.

  9. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD

    NASA Astrophysics Data System (ADS)

    Abdulraheem, Yaser; Gordon, Ivan; Bearda, Twan; Meddeb, Hosny; Poortmans, Jozef

    2014-05-01

    An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H) layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si) wafers by plasma enhanced chemical vapor deposition (PECVD). The layer thicknesses along with their optical properties -including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE) in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc) bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause of the observed

  10. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD

    SciTech Connect

    Abdulraheem, Yaser; Gordon, Ivan; Bearda, Twan; Meddeb, Hosny; Poortmans, Jozef

    2014-05-15

    An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H) layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si) wafers by plasma enhanced chemical vapor deposition (PECVD). The layer thicknesses along with their optical properties –including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE) in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc) bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause of the observed

  11. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, J.L.; Truher, J.B.; Weiner, K.H.; Sigmon, T.W.

    1994-09-13

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate is disclosed. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900 C), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180 C for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180 C) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide. 5 figs.

  12. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, James L.; Truher, Joel B.; Weiner, Kurt H.; Sigmon, Thomas W.

    1994-01-01

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  13. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect

    Ghosh, M.; DelCueto, J.: Kampas, F.; Xi, J. )

    1993-02-01

    This report describes results from the first phase of a three-phase contract for the development of stable, high-efficiency, same-band-gap, amorphous silicon (a-Si) multijunction photovoltaic (PV) modules. The program involved improving the properties of individual layers of semiconductor and non-semiconductor materials and small-area single-junction and multijunction devices, as well as the multijunction modules. The semiconductor materials research was performed on a-Si p, i, and n layers, and on microcrystalline silicon n layers. These were deposited using plasma-enhanced chemical vapor deposition. The non-semiconductor materials studied were tin oxide, for use as a transparent-conducting-oxide (TCO), and zinc oxide, for use as a back reflector and as a buffer layer between the TCO and the semiconductor layers. Tin oxide was deposited using atmospheric-pressure chemical vapor deposition. Zinc oxide was deposited using magnetron sputtering. The research indicated that the major challenge in the fabrication of a-Si multijunction PV modules is the contact between the two p-i-n cells. A structure that has low optical absorption but that also facilitates the recombination of electrons from the first p-i-n structure with holes from the second p-i-n structure is required. Non-semiconductor layers and a-Si semiconductor layers were tested without achieving the desired result.

  14. Temperature dependence of hydrogenated amorphous silicon solar cell performances

    NASA Astrophysics Data System (ADS)

    Riesen, Y.; Stuckelberger, M.; Haug, F.-J.; Ballif, C.; Wyrsch, N.

    2016-01-01

    Thin-film hydrogenated amorphous silicon solar (a-Si:H) cells are known to have better temperature coefficients than crystalline silicon cells. To investigate whether a-Si:H cells that are optimized for standard conditions (STC) also have the highest energy yield, we measured the temperature and irradiance dependence of the maximum power output (Pmpp), the fill factor (FF), the short-circuit current density (Jsc), and the open-circuit voltage (Voc) for four series of cells fabricated with different deposition conditions. The parameters varied during plasma-enhanced chemical vapor deposition (PE-CVD) were the power and frequency of the PE-CVD generator, the hydrogen-to-silane dilution during deposition of the intrinsic absorber layer (i-layer), and the thicknesses of the a-Si:H i-layer and p-type hydrogenated amorphous silicon carbide layer. The results show that the temperature coefficient of the Voc generally varies linearly with the Voc value. The Jsc increases linearly with temperature mainly due to temperature-induced bandgap reduction and reduced recombination. The FF temperature dependence is not linear and reaches a maximum at temperatures between 15 °C and 80 °C. Numerical simulations show that this behavior is due to a more positive space-charge induced by the photogenerated holes in the p-layer and to a recombination decrease with temperature. Due to the FF(T) behavior, the Pmpp (T) curves also have a maximum, but at a lower temperature. Moreover, for most series, the cells with the highest power output at STC also have the best energy yield. However, the Pmpp (T) curves of two cells with different i-layer thicknesses cross each other in the operating cell temperature range, indicating that the cell with the highest power output could, for instance, have a lower energy yield than the other cell. A simple energy-yield simulation for the light-soaked and annealed states shows that for Neuchâtel (Switzerland) the best cell at STC also has the best energy

  15. Controlled growth of nanocrystalline silicon within amorphous silicon carbide thin films

    NASA Astrophysics Data System (ADS)

    Kole, Arindam; Chaudhuri, Partha

    2014-04-01

    Controlled formation of nanocrystalline silicon (nc-Si) within hydrogenated amorphous silicon carbide (a-SiC:H) thin films has been demonstrated by a rf (13.56 MHz) plasma chemical vapour deposition (PECVD) method at a low deposition temperature of 200°C by regulating the deposition pressure (Pr) between 26.7 Pa and 133.3 Pa. Evolution of the size and the crystalline silicon volume fraction within the a-SiC:H matrix has been studied by XRD, Raman and HRTEM. The study reveals that at Pr of 26.7 Pa there are mostly isolated grains of nc-Si within the a-SiC:H matrix with average size of 4.5 nm. With increase of Pr the isolated nc-Si grains coalesce more and more giving rise to larger size connected nc-Si islands which appear as microcrystalline silicon in the Raman spectra. As a result net isolated nc-Si volume fraction decreases while the total crystalline silicon volume fraction increases.

  16. Temperature-dependent minority carrier lifetime of crystalline silicon wafers passivated by high quality amorphous silicon oxide

    NASA Astrophysics Data System (ADS)

    Inaba, Masahiro; Todoroki, Soichiro; Nakada, Kazuyoshi; Miyajima, Shinsuke

    2016-04-01

    We investigated the effects of annealing on the temperature-dependent minority carrier lifetime of a crystalline silicon wafer passivated by hydrogenated amorphous silicon oxide. The annealing significantly affects the lifetime and its temperature dependence. Our device simulations clearly indicate that valence band offset significantly affects the temperature dependence. We also found a slight increase in the interface defect density after annealing.

  17. Depth profiling in amorphous and microcrystalline silicon by transient photoconductivity techniques

    NASA Astrophysics Data System (ADS)

    Brüggemann, R.; Main, C.; Reynolds, S.

    2002-07-01

    We probe near-surface regions in hydrogenated amorphous and microcrystalline silicon by recording the transient photocurrent after application of a green laser pulse with short absorption depth through the glass-substrate/silicon interface. Depending on the spatial defect inhomogeneity close to the illuminated surface the transient photocurrent shows a different decay behaviour under strongly absorbed green light as compared with more uniformly absorbed red illumination. We apply a Fourier transform technique to the photocurrent decay, which reveals spatial inhomogeneities in the deep-defect density in amorphous silicon. For a highly crystalline sample of microcrystalline silicon we find depth homogeneity in the electronic properties, in agreement with information from structural investigations.

  18. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  19. Accuracy and long-term stability of amorphous-silicon measurements

    NASA Technical Reports Server (NTRS)

    Mueller, R.

    1986-01-01

    The measurement system requirements to obtain accurate electrical performance measurements of amorphous silicon cells and modules were described. The progress achieved in modifying the Jet Propulsion Laboratory (JPL) system toward that objective were reviewed.

  20. Optical losses in amorphous silicon solar cells due to back reflectors

    SciTech Connect

    Sopori, B.L.; Madjdpour, J.; Von Roedern, B.; Chen, W.; Hegedus, S.S.

    1997-07-01

    The authors have used a new numerical model and here present initial results on how texturing and backreflectors affect the maximum achievable short-circuit current densities in amorphous silicon solar cells.

  1. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    DOEpatents

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  2. A fax-machine amorphous silicon sensor for X-ray detection

    NASA Astrophysics Data System (ADS)

    Alberdi, J.; Barcala, J. M.; Chvatchkine, V.; Ioudine, I.; Molinero, A.; Navarrete, J. J.; Yuste, C.

    Amorphous silicon detectors have been used, basically, as solar cells for energetics applications. As light detectors, linear sensors are used in fax and photocopier machines because they can be built with a large size, low price and have a high radiation hardness. Due to these performances, amorphous silicon detectors have been used as radiation detectors, and, presently, some groups are developing matrix amorphous silicon detectors with built-in electronics for medical X-ray applications. Our group has been working on the design and development of an X-ray image system based on a commercial fax linear amorphous silicon detector. The sensor scans the selected area and detects light produced by the X-ray in a scintillator placed on the sensor. Image-processing software produces a final image with better resolution and definition.

  3. Atomistic models of hydrogenated amorphous silicon nitride from first principles

    NASA Astrophysics Data System (ADS)

    Jarolimek, K.; de Groot, R. A.; de Wijs, G. A.; Zeman, M.

    2010-11-01

    We present a theoretical study of hydrogenated amorphous silicon nitride (a-SiNx:H) , with equal concentrations of Si and N atoms (x=1) , for two considerably different densities (2.0 and 3.0g/cm3 ). Densities and hydrogen concentration were chosen according to experimental data. Using first-principles molecular-dynamics within density-functional theory the models were generated by cooling from the liquid. Where both models have a short-range order resembling that of crystalline Si3N4 because of their different densities and hydrogen concentrations they show marked differences at longer length scales. The low-density nitride forms a percolating network of voids with the internal surfaces passivated by hydrogen. Although some voids are still present for the high-density nitride, this material has a much denser and uniform space filling. The structure factors reveal some tendency for the nonstoichiometric high-density nitride to phase separate into nitrogen rich and poor areas. For our slowest cooling rate (0.023 K/fs) we obtain models with a modest number of defect states, where the low (high) density nitride favors undercoordinated (overcoordinated) defects. Analysis of the structural defects and electronic density of states shows that there is no direct one-to-one correspondence between the structural defects and states in the gap. There are several structural defects that do not contribute to in-gap states and there are in-gap states that do only have little to no contributions from (atoms in) structural defects. Finally an estimation of the size and cooling rate effects on the amorphous network is reported.

  4. Laser-induced amorphization of silicon during pulsed-laser irradiation of TiN/Ti/polycrystalline silicon/SiO2/silicon

    NASA Astrophysics Data System (ADS)

    Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.

    2002-11-01

    In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.

  5. Quantitative assessment of molecular dynamics-grown amorphous silicon and germanium films on silicon (111)

    NASA Astrophysics Data System (ADS)

    Käshammer, Peter; Borgardt, Nikolai I.; Seibt, Michael; Sinno, Talid

    2016-09-01

    Molecular dynamics based on the empirical Tersoff potential was used to simulate the deposition of amorphous silicon and germanium on silicon(111) at various deposition rates and temperatures. The resulting films were analyzed quantitatively by comparing one-dimensional atomic density profiles to experimental measurements. It is found that the simulations are able to capture well the structural features of the deposited films, which exhibit a gradual loss of crystalline order over several monolayers. A simple mechanistic model is used to demonstrate that the simulation temperature may be used to effectively accelerate the surface relaxation processes during deposition, leading to films that are consistent with experimental samples grown at deposition rates many orders-of-magnitude slower than possible in a molecular dynamics simulation.

  6. Recrystallization of silicon-on-sapphire structures at various amorphization-ion-beam energies

    SciTech Connect

    Alexandrov, P. A. Demakov, K. D.; Shemardov, S. G.; Kuznetsov, Yu. Yu.

    2013-02-15

    Silicon films on sapphire substrates are grown via recrystallization from the silicon-sapphire interface. An amorphous layer is formed using ion implantation with silicon ion energies of 90-150 keV. An X-ray rocking curve is used to estimate the crystalline perfection of the silicon films. After recrystallization, the silicon layer consists of two parts with different crystalline quality. The recrystallized silicon-on-sapphire structures have a highly perfect upper layer (for fabricating microelectronic devices) and a lower layer adjacent to the sapphire substrate containing a large number of defects.

  7. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres

    2015-12-01

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiNx) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiNx stack, recombination current density J0 values of 9, 11, 47, and 87 fA/cm2 are obtained on 10 Ω.cm n-type, 0.8 Ω.cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J0 on n-type 10 Ω.cm wafers is further reduced to 2.5 ± 0.5 fA/cm2 when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiNx stack is thermally stable at 400 °C in N2 for 60 min on all four c-Si surfaces. Capacitance-voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiNx stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  8. Progress Developing Hybrid Silicon Quantum Dot/Amorphous Silicon Thin Films for Photovoltaics Application

    NASA Astrophysics Data System (ADS)

    Guan, Tianyuan; Fields, Jeremy; Klafehn, Grant; Kendrick, Chito; Lochner, Robert; Nourbakhsh, Zahra; Lusk, Mark; Stradins, Paul; Taylor, Craig; Collins, Reuben

    2013-03-01

    Quantum confined (QC) nanostructures exhibit novel, size tunable, quantum mechanical phenomena and their use in solar cell architectures may yield significant efficiency gains. We demonstrate QC hybrid silicon nanocrystal(nc-Si:H) - hydrogenated amorphous silicon (a-Si:H) structures, which can potentially serve as photo-stable, thin film silicon, solar cell materials and provide higher open-circuit voltage compared to conventional materials. We deposit a/nc-Si:H films sequentially, where nc-Si:H and a-Si:H are grown layer-by-layer using separate plasma reactors in a common deposition chamber. X-ray diffraction, Raman spectroscopy, and electron microscopy results confirm the nanoparticles are the appropriate size to achieve QC (3-7nm). Photoluminescence spectroscopy reveals the QC. Co-planar electrical probe experiments investigate carrier transport in a/nc-Si:H, which could be limited by defects accompanying plasma interruption in the sequential deposition process. Defect spectroscopies, such as electron paramagnetic resonance and photothermal deflection spectroscopy are used to study this relationship. These studies reveal material quality limitations to be addressed for realizing film silicon materials that harvest QC to enhance PV device performance. Support of the DOE SunShot and NSF MRSEC programs are gratefully acknowledged.

  9. Hydrogenated amorphous silicon produced by pyrolysis and photolysis of disilane

    SciTech Connect

    Ashida, Y.; Hirose, M.; Isogaya, K.; Kitagawa, N.; Mishima, Y.; Osuka, Y.

    1984-05-01

    A new class of hydrogenated amorphous silicon (a-Si:H) was prepared by the thermal CVD and photo-CVD of disilane. In the low pressure thermal CVD, the horizontal quartz tube heated by resistance heaters was used as a reactor. The growth rate of the thermal CVD a-Si:H films is plotted as a function of reciprocal substrate temperature. As a new alternative approach to prepare high quality CVD films at temperatures below 300/sup 0/C, the direct photochemical decomposition of disilane has been attempted utilizing a low pressure mercury lamp as a UV radiation source. In the case of undoped and phosphorus doped films, the growth rate is independent of the substrate temperature. In contrast to this, for boron doping, the growth rate has an activation energy of 0.64 eV as in the case of the thermal CVD although the growth rate of the photo-CVD is about three times as large as that of the thermal CVD. This implies that the photoCVD process in boron doping is dominated by the thermal reaction catalyzed with diborane. The dark conductivity and photoconductivity before and after light exposure (AM-1, 200 mW/cm/sup 2/) exhibit no change, indicating the absence of the light-soak degradation in photo-CVD films. The valency control in thermal CVD and photo-CVD is also successfully carried out.

  10. Raman spectroscopy of PIN hydrogenated amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Keya, Kimitaka; Torigoe, Yoshihiro; Toko, Susumu; Yamashita, Daisuke; Seo, Hyunwoong; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Light-induced degradation of hydrogenated amorphous silicon (a-Si:H) is a key issue for enhancing competitiveness in solar cell market. A-Si:H films with a lower density of Si-H2 bonds shows higher stability. Here we identified Si-H2 bonds in PIN a-Si:H solar cells fabricated by plasma CVD using Raman spectroscopy. A-Si:H solar cell has a structure of B-doped μc-SiC:H (12.5 nm)/ non-doped a-Si:H (250nm)/ P-doped μc-Si:H (40 nm) on glass substrates (Asahi-VU). By irradiating HeNe laser light from N-layer, peaks correspond to Si-H2 bonds (2100 cm-1) and Si-H bonds (2000 cm-1) have been identified in Raman scattering spectra. The intensity ratio of Si-H2 and Si-H ISiH2/ISiH is found to correlate well to light induced degradation of the cells Therefore, Raman spectroscopy is a promising method for studying origin of light-induced degradation of PIN solar cells.

  11. Laminated Amorphous Silicon Neutron Detector (pre-print)

    SciTech Connect

    Harry McHugh, Howard Branz, Paul Stradins, and Yueqin Xu

    2009-01-29

    An internal R&D project was conducted at the Special Technologies Laboratory (STL) of National Security Technologies, LLC (NSTec), to determine the feasibility of developing a multi-layer boron-10 based thermal neutron detector using the amorphous silicon (AS) technology currently employed in the manufacture of liquid crystal displays. The boron-10 neutron reaction produces an alpha that can be readily detected. A single layer detector, limited to an approximately 2-micron-thick layer of boron, has a theoretical sensitivity of about 3%; hence a thin multi-layer device with high sensitivity can theoretically be manufactured from single layer detectors. Working with National Renewable Energy Laboratory (NREL), an AS PiN diode alpha detector was developed and tested. The PiN diode was deposited on a boron-10 coated substrate. Testing confirmed that the neutron sensitivity was nearly equal to the theoretical value of 3%. However, adhesion problems with the boron-10 coating prevented successful development of a prototype detector. Future efforts will include boron deposition work and development of integrated AS signal processing circuitry.

  12. Electrical characterization of hydrogenated amorphous silicon oxide films

    NASA Astrophysics Data System (ADS)

    Itoh, Takashi; Katayama, Ryuichi; Yamakawa, Koki; Matsui, Kento; Saito, Masaru; Sugiyama, Shuhichiroh; Sichanugrist, Porponth; Nonomura, Shuichi; Konagai, Makoto

    2015-08-01

    The electrical characterization of hydrogenated amorphous silicon oxide (a-SiOx:H) films was performed by electron spin resonance (ESR) and electrical conductivity measurements. In the ESR spectra of the a-SiOx:H films, two ESR peaks with g-values of 2.005 and 2.013 were observed. The ESR peak with the g-value of 2.013 was not observed in the ESR spectra of a-Si:H films. The photoconductivity of the a-SiOx:H films decreased with increasing spin density estimated from the ESR peak with the g-value of 2.005. On the other hand, photoconductivity was independent of spin density estimated from the ESR peak with the g-value of 2.013. The optical absorption coefficient spectra of the a-SiOx:H films were also measured. The spin density estimated from the ESR peak with the g-value of 2.005 increased proportionally with increasing optical absorption owing to the gap-state defect.

  13. Characterization of hydrogenated amorphous silicon films obtained from rice husk

    NASA Astrophysics Data System (ADS)

    Nandi, K. C.; Mukherjee, D.; Biswas, A. K.; Acharya, H. N.

    1991-08-01

    Hydrogenated amorphous silicon ( a-Si: H) films were prepared by chemical vapour deposition (CVD) of silanes generated by the acid hydrolysis of magnesium silicide (Mg 2Si) obtained from rice husk. The films were deposited at various substrate temperatures ( Ts) ranging from 430 to 520°C. The results show that the films have room temperature (294 K) dark conductivity (σ d) of the order of 10 -8 - 10 -10 (ohm-cm) -1 with single activation energy (Δ Ed) and the photoconductivity (σ ph) decreases with increase of Ts. Optical band gap ( Eopt) lies between 1.60-1.73 eV and hydrogen content ( CH) in the films is at best 8.3 at %. Au/ a-Si: H junction shows that it acts as a rectifier contact with Schottky barrier height ( VB) 0.69 eV. The films are contaminated by traces of impurities like Na, K, Al, Cl and O as revealed by secondary ion mass spectrometric (SIMS) analysis.

  14. High efficiency neutron sensitive amorphous silicon pixel detectors

    SciTech Connect

    Mireshghi, A.; Cho, G.; Drewery, J.S.; Hong, W.S.; Jing, T.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V.

    1993-11-01

    A multi-layer a-Si:H based thermal neutron detector was designed, fabricated and simulated by Monte Carlo method. The detector consists of two PECVD deposited a-Si:H pin detectors interfaced with coated layers of Gd, as a thermal neutron converter. Simulation results indicate that a detector consisting of 2 Gd films with thicknesses of 2 and 4 {mu}m, sandwiched properly with two layers of sufficiently thick ({approximately}30{mu}m) amorphous silicon diodes, has the optimum parameters. The detectors have an intrinsic efficiency of about 42% at a threshold setting of 7000 electrons, with an expected average signal size of {approximately}12000 electrons which is well above the noise. This efficiency will be further increased to nearly 63%, if we use Gd with 50% enrichment in {sup 157}Gd. We can fabricate position sensitive detectors with spatial resolution of 300 {mu}m with gamma sensitivity of {approximately}1 {times} 10{sup {minus}5}. These detectors are highly radiation resistant and are good candidates for use in various application, where high efficiency, high resolution, gamma insensitive position sensitive neutron detectors are needed.

  15. Hot wire deposited hydrogenated amorphous silicon solar cells

    SciTech Connect

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S.

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  16. Power change in amorphous silicon technology by low temperature annealing

    NASA Astrophysics Data System (ADS)

    Mittal, Ankit; Rennhofer, Marcus; Dangel, Angelika; Duman, Bogdan; Schlosser, Victor

    2015-07-01

    Amorphous silicon (a-Si) is one of the best established thin-film solar-cell technologies. Despite its long history of research, it still has many critical issues because of its defect rich material and its susceptibility to degrade under light also called as Staebler-Wronski effect (SWE). This leads to an increase in the defect density of a-Si, but as a metastable effect it can be completely healed at temperatures above 170 °C. Our study is focused on investigating the behavior of annealing of different a-Si modules under low temperature conditions below 80 °C indicated by successive change of module power. These conditions reflect the environmental temperature impact of the modules in the field, or integrated in buildings as well. The power changes were followed by STC power rating and investigation of module-power evolution under low irradiance conditions at 50 W/m2. Our samples were recovered close to their initial state of power, reaching as high as 99% from its degraded value. This shows the influence of low temperature annealing and light on metastable module behavior in a-Si thin-film modules.

  17. Optical position detectors based on thin film amorphous silicon

    NASA Astrophysics Data System (ADS)

    Henry, Jasmine; Livingstone, John

    2001-10-01

    Thin film optical position sensitive detectors (PSDs) based on novel hydrogenated amorphous silicon Schottky barrier (SB) structures are compared in this work. The three structures reported here have been tested under different light sources to measure their linear properties and wavelength response characteristics. The sputtered a-Si sensors were configured as layered structures of platinum, a-Si and indium tin oxide, forming SB-i-n devices and exhibited linear properties similar to multi-layer a-Si p-i- n devices produced by complex chemical vapor deposition procedures, which involve flammable and toxic gases. All structures were test4ed as possible configurations for 2D sensors. The devices were tested under white light, filtered white light and also a red diode laser. Each of the three structures responded quite differently to each of the sources. Results, based on the correlation coefficient, which measures the linearity of output and which has a maximum value of 1, produced r values ranging between 0.992 to 0.999, in the best performances.

  18. Temperature dependent deformation mechanisms in pure amorphous silicon

    SciTech Connect

    Kiran, M. S. R. N. Haberl, B.; Williams, J. S.; Bradby, J. E.

    2014-03-21

    High temperature nanoindentation has been performed on pure ion-implanted amorphous silicon (unrelaxed a-Si) and structurally relaxed a-Si to investigate the temperature dependence of mechanical deformation, including pressure-induced phase transformations. Along with the indentation load-depth curves, ex situ measurements such as Raman micro-spectroscopy and cross-sectional transmission electron microscopy analysis on the residual indents reveal the mode of deformation under the indenter. While unrelaxed a-Si deforms entirely via plastic flow up to 200 °C, a clear transition in the mode of deformation is observed in relaxed a-Si with increasing temperature. Up to 100 °C, pressure-induced phase transformation and the observation of either crystalline (r8/bc8) end phases or pressure-induced a-Si occurs in relaxed a-Si. However, with further increase of temperature, plastic flow rather than phase transformation is the dominant mode of deformation. It is believed that the elevated temperature and pressure together induce bond softening and “defect” formation in structurally relaxed a-Si, leading to the inhibition of phase transformation due to pressure-releasing plastic flow under the indenter.

  19. Electrodeposition of polycrystalline and amorphous silicon for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Rauh, R. D.

    1980-07-01

    Plating experiments with SiHCl3 solutions in propylene carbonate with 0.1 M tetrabutylammonium tetrafluoroborate are described. Silicon was deposited on ITO glass (Nesatron) as well as Mo substrates at temperatures from 25-80 C. Both potentiostatic and galvanostatic conditions were used. The high resistance of the films limited the thickness which could be deposited by either method to less than 5 micrometers. Deposition beyond this limit resulted in a deterioration of the film quality. X-ray analysis of the films confirmed that they were amorphous. SEM analysis of the films revealed a very porous structure with nodules about 1 micrometer in diameter. Annealing the deposit at 400 C in an Ar:H2 atmosphere resulted in a slightly smoother surface but the nodules remained. The films deposited on ITO glass had a band gap of about 1.0 eV and an EO4 value of 1.5-2.0 eV. The Auger analysis of the films showed the presence of large amounts of oxygen in the samples that had been exposed to air.

  20. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect

    Guha, S. )

    1991-12-01

    This report describes research to improve the understanding of amorphous silicon alloys and other relevant non-semiconductor materials for use in high-efficiency, large-area multijunction modules. The research produced an average subcell initial efficiency of 8.8% over a 1-ft{sup 2} area using same-band-gap, dual-junction cells deposited over a ZnO/AlSi back reflector. An initial efficiency of 9.6% was achieved using a ZnO/Ag back reflector over smaller substrates. A sputtering machine will be built to deposit a ZnO/Ag back reflector over a 1-ft{sup 2} area so that a higher efficiency can also be obtained on larger substrates. Calculations have been performed to optimize the grid pattern, bus bars, and cell interconnects on modules. With our present state of technology, we expect a difference of about 6% between the aperture-area and active-area efficiencies of modules. Preliminary experiments show a difference of about 8%. We can now predict the performance of single-junction cells after long-term light exposure at 50{degree}C by exposing cells to short-term intense light at different temperatures. We find that single-junction cells deposited on a ZnO/Ag back reflector show the highest stabilized efficiency when the thickness of the intrinsic layers is about 2000 {angstrom}. 8 refs.

  1. Deployable aerospace PV array based on amorphous silicon alloys

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  2. Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.

    PubMed

    Johlin, Eric; Al-Obeidi, Ahmed; Nogay, Gizem; Stuckelberger, Michael; Buonassisi, Tonio; Grossman, Jeffrey C

    2016-06-22

    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices. PMID:27227369

  3. Si-H bond dynamics in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Scharff, R. Jason; McGrane, Shawn D.

    2007-08-01

    The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( <2.5cm-1 linewidth) of the 0→1 and 1→2 vibrational transitions within the extensively inhomogeneously broadened ( 78cm-1 linewidth) Si-H vibrational band. There is no spectral diffusion evident in correlation spectra obtained at 0.2, 1, and 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.

  4. Carrier transport in amorphous silicon utilizing picosecond photoconductivity

    NASA Astrophysics Data System (ADS)

    Johnson, A. M.

    1981-08-01

    The development of a high-speed electronic measurement capability permitted the direct observation of the transient photoresponse of amorphous silicon (a-Si) with a time resolution of approximately 10ps. This technique was used to measure the initial mobility of photogenerated (2.1eV) free carriers in three types of a-Si having widely different densities of structural defects (i.e., as prepared by: (1) RF glow discharge (a-Si:H); (2) chemical vapor deposition; and (3) evaporation in ultra-high vacuum). In all three types of a-Si, the same initial mobility of approximately 1 cu cm/Vs at room temperature was found. This result tends to confirm the often-made suggestion that the free carrier mobility is determined by the influence of shallow states associated with the disorder in the random atomic network, and is an intrinsic property of a-Si which is unaffected by the method of preparation. The rate of decay of the photocurrent correlates with the density of structural defects and varies from 4ps to 200ps for the three types of a-Si investigated. The initial mobility of a-Si:H was found to be thermally activated. The possible application of extended state transport controlled by multiple trapping and small polaron formation is discussed.

  5. Hydrogenated amorphous silicon thin film anode for proton conducting batteries

    NASA Astrophysics Data System (ADS)

    Meng, Tiejun; Young, Kwo; Beglau, David; Yan, Shuli; Zeng, Peng; Cheng, Mark Ming-Cheng

    2016-01-01

    Hydrogenated amorphous Si (a-Si:H) thin films deposited by chemical vapor deposition were used as anode in a non-conventional nickel metal hydride battery using a proton-conducting ionic liquid based non-aqueous electrolyte instead of alkaline solution for the first time, which showed a high specific discharge capacity of 1418 mAh g-1 for the 38th cycle and retained 707 mAh g-1 after 500 cycles. A maximum discharge capacity of 3635 mAh g-1 was obtained at a lower discharge rate, 510 mA g-1. This electrochemical discharge capacity is equivalent to about 3.8 hydrogen atoms stored in each silicon atom. Cyclic voltammogram showed an improved stability 300 mV below the hydrogen evolution potential. Both Raman spectroscopy and Fourier transform infrared spectroscopy studies showed no difference to the pre-existing covalent Si-H bond after electrochemical cycling and charging, indicating a non-covalent nature of the Si-H bonding contributing to the reversible hydrogen storage of the current material. Another a-Si:H thin film was prepared by an rf-sputtering deposition followed by an ex-situ hydrogenation, which showed a discharge capacity of 2377 mAh g-1.

  6. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect

    Banerjee, A.; Chen, E.; Clough, R.; Glatfelter, T.; Guha, S.; Hammond, G.; Hopson, M.; Jackett, N.; Lycette, M.; Noch, J.; Palmer, T.; Pawlikiewicz, A.; Rosenstein, I.; Ross, R.; Wolf, D.; Xu, X.; Yang, J.; Younan, K.

    1992-04-01

    This report describes the progress made during Phase 1 of research and development program to obtain high-efficiency amorphous silicon alloy multijunction modules. Using a large-area deposition system, double-and triple-junction cells were made on stainless steel substrates of over 1 ft{sup 2} area with Ag and ZnO predeposited back reflector. Modules of over 1 ft{sup 2} were produced with between 9.2% and 9.9 initial aperture-area efficiencies as measured under a USSC Spire solar simulator. Efficiencies as measured under the NREL Spire solar simulator were found to be typically 15% to 18% lower. The causes for this discrepancy are now being investigated. The modules show about 15% degradation after 600 hours of one-sun illumination at 50{degrees}C. To optimize devices for higher stabilized efficiency, a new method was developed by which the performance of single-junction cells after long-term, one-sun exposure at 50{degrees}C can be predicted by exposing cells to short-term intense light at different temperatures. This method is being used to optimize the component cells of the multijunction structure to obtain the highest light-degraded efficiency.

  7. Effect of argon ion bombardment on amorphous silicon carbonitride films

    NASA Astrophysics Data System (ADS)

    Batocki, R. G. S.; Mota, R. P.; Honda, R. Y.; Santos, D. C. R.

    2014-04-01

    Amorphous silicon carbonitride (a-SiCN:H) films were synthesized by radiofrequency (RF) Plasma Enhanced Vapor Chemical Deposition (PECVD) using hexamethyldisilazane (HMDSN) as precursor compound. Then, the films were post-treated by Plasma Immersion Ion Implantation (PIII) in argon atmosphere from 15 to 60 min. The hardness of the film enhanced after ion implantation, and the sample treated at 45 min process showed hardness greater than sixfold that of the untreated sample. This result is explained by the crosslinking and densification of the structure. Films were exposed to oxygen plasma for determining of the etching rate. It decreased monotonically from 33 Å/min to 19 Å/min for the range of process time, confirming structural alterations. Hydrophobic character of the a-SiCN:H films were modified immediately after ion bombardment, due to incorporation of polar groups. However, the high wettability of the films acquired by the ion implantation was diminished after aging in air. Therefore, argon PIII made a-SiCN:H films mechanically more resistant and altered their hydrophobic character.

  8. Amorphous silicon cell array powered solar tracking apparatus

    DOEpatents

    Hanak, Joseph J.

    1985-01-01

    An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.

  9. The importance of inhomogeneities in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Agarwal, Satish

    2014-03-01

    We shall discuss how the heterogeneities present in hydrogenated amorphous silicon (a-Si:H) can be taken into account by considering the long range potential fluctuations (LRPF), arising from them. Using these ideas we try to understand several challenging puzzles, some of them remaining unresolved till now. These range, from why undoped a-Si:H is n-type, to why the light soaking (LS) degrades boron doped a-Si:H films faster than the undoped or the phosphorous doped films, and why hole injection favors larger degradation than electron injection. Also, the failure of reciprocity and the saturation of the number of dangling bonds created by LS at the low value of about 1017 cm-3 can be explained. The improved stability of a-Si:H containing nc-Si has been attributed to the LRPF assisted diffusion of photo carriers to nc-Si and recombination there. These and other similar observations will be taken up. Work supported by CSIR, New Delhi.

  10. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    SciTech Connect

    Newby, Pascal J.; Canut, Bruno; Bluet, Jean-Marie; Lysenko, Vladimir; Gomes, Severine; Isaiev, Mykola; Burbelo, Roman; Chantrenne, Patrice; Frechette, Luc G.

    2013-07-07

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first time such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 Degree-Sign C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.

  11. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  12. New results on the microstructure of amorphous silicon as observed by internal friction

    SciTech Connect

    Crandall, R.S.; Mahan, A.H.; Iwaniczko, E.; Jones, K.M.; Liu, X.; White, B.E. Jr.; Pohl, R.O.

    1997-07-01

    The authors have measured the low temperature internal friction (Q{sup {minus}1}) of amorphous silicon (a-Si) films. Electron-beam evaporation leads to the well-known temperature-independent Q{sub 0}{sup {minus}1} plateau common to all amorphous solids. For hydrogenated amorphous silicon (a-Si:H) with about 1 at.% H produced by hot wire chemical vapor deposition, however, the value of Q{sub 0}{sup {minus}1} is over two hundred times smaller than for e-beam a-Si. This is the first observation of an amorphous solid without any significant low energy excitations. This finding offers the opportunity to study amorphous solids containing controlled densities of tunneling defects, and thus to explore their nature.

  13. Experimental investigation of the amorphous silicon melting temperature by fast heating processes

    SciTech Connect

    Baeri, P.; Campisano, S.U.; Grimaldi, M.G.; Rimini, E.

    1982-12-01

    The recrystallization of amorphous Si layers on Si crystal substrates after laser irradiation was investigated to test previous experimental evidence that both the melting point and the melting enthalpy of the amorphous are lower than the corresponding crystalline values. The irradiation was performed in some cases from the back side of 100-..mu..m-thick Si wafers to obtain a temperature distribution in the amorphous layer with a small spatial gradient. In the case of front irradiation the threshold energy density was measured as a function of the amorphous layer thickness, for the polycrystalline formation, crystallization with residual disorder, and good annealing, respectively. The experimental data agree quite well with heat flow calculations assuming a reduction of about 30% in the melting point and enthalpy of amorphous silicon with respect to crystalline silicon.

  14. Stabilization of amorphous structure in silicon thin film by adding germanium

    SciTech Connect

    Makino, Nobuaki; Shigeta, Yukichi

    2015-06-21

    The stabilization of the amorphous structure in amorphous silicon film by adding Ge atoms was studied using Raman spectroscopy. Amorphous Si{sub 1−x}Ge{sub x} (x = 0.0, 0.03, 0.14, and 0.27) films were deposited on glass substrates from electron beam evaporation sources and annealed in N{sub 2} atmosphere. The change in the amorphous states and the phase transition from amorphous to crystalline were characterized using the TO, LO, and LA phonons in the Raman spectra. The temperature of the transition from the amorphous phase to the crystalline phase was higher for the a-Si{sub 1−x}Ge{sub x} (x = 0.03, 0.14) films, and the crystallization was hindered. The reason why the addition of a suitable quantity of Ge atoms into the three-dimensional amorphous silicon network stabilizes its amorphous structure is discussed based on the changes in the Raman signals of the TO, LO, and LA phonons during annealing. The characteristic bond length of the Ge atoms allows them to stabilize the random network of the amorphous Si composed of quasi-tetrahedral Si units, and obstruct its rearrangement.

  15. Properties of hydrogenated amorphous silicon prepared by chemical vapor deposition

    SciTech Connect

    Ellis, F.B. Jr.; Gordon, R.G.; Paul, W.; Yacobi, B.G.

    1984-06-15

    Hydrogenated amorphous silicon (a-Si:H) films were prepared by chemical vapor deposition (CVD) from mixtures of silane, disilane, trisilane, and higher polysilanes in hydrogen carrier gas at 1 atm total pressure, at substrate temperatures from 420--530 /sup 0/C. Experimental parameters are explained and properties as a function of these parameters are shown. The measurements include hydrogen content (by IR), optical, electrical, and photovoltaic properties of the material. In most respects, the CVD material closely resembles the a-Si:H usually prepared by glow discharge. The following differences have been noted: (1) the CVD a-Si:H shows no IR absorption at 840--850 cm/sup -1/, which is consistent with the expected better thermal stability of the CVD material because of the much higher substrate temperatures in the CVD process than in the glow discharge process. (2) The band gap of CVD a-Si:H is lower by about 0.1 eV than glow discharge a-Si:H of the same hydrogen content. Thus, the band gap of CVD a-Si:H is better matched to the solar spectrum than is glow discharge a-Si:H. (3) All three IR absorption bands due to hydrogen are about 20% narrower in the CVD a-Si:H, suggesting a simpler structure. (4) The temperature dependence of the dark conductivity of CVD a-Si:H fits a curve for a single activation energy, in contrast to the more complicated temperature dependence often found in glow discharge a-Si:H, in which two different activation energies are seen at high and low temperatures. This suggests that the conduction mechanism is also simpler in the CVD a-Si:H.

  16. Dynamics of hydrogenated amorphous silicon flexural resonators for enhanced performance

    NASA Astrophysics Data System (ADS)

    Mouro, J.; Chu, V.; Conde, J. P.

    2016-04-01

    Hydrogenated amorphous silicon thin-film flexural resonators with sub-micron actuation gaps are fabricated by surface micromachining on glass substrates. Experimentally, the resonators are electrostatically actuated and their motion is optically detected. Three different configurations for the electrostatic excitation force are used to study the dynamics of the resonators. In the first case, a dc voltage (Vdc) is added to an ac voltage with variable excitation frequency (Vac(ω)) and harmonic, superharmonic, and subharmonic resonances of different orders are observed. The second case consists on mixing the dc voltage (Vdc) with an ac voltage applied at a fixed frequency of twice the natural frequency of the resonator (V(2ω0)). High-amplitude parametric resonance is excited at the natural frequency of the system, ω0. This configuration allows a separation between the frequencies of the excitation and the mechanical motion. Finally, in the third case, the dc voltage (Vdc) is combined with both ac voltages, Vac(ω) and V(2ω0), and parametric resonance is excited and emerges from the fundamental harmonic resonance peak. The single-degree-of-freedom equation of motion is modeled and discussed for each case. The nonlinearity inherent to the electrostatic force is responsible for modulating the spring constant of the system at different frequencies, giving rise to parametric resonance. These equations of motion are simulated in the time and frequency domains, providing a consistent explanation of the experimentally observed phenomena. A wide variety of possible resonance modes with different characteristics can be used advantageously in MEMS device design.

  17. Electron beam quality control using an amorphous silicon EPID

    SciTech Connect

    Beck, J. A.; Budgell, G. J.; Roberts, D. A.; Evans, P. M.

    2009-05-15

    An amorphous silicon EPID has been investigated to determine whether it is capable of quality control constancy measurements for linear accelerator electron beams. The EPID grayscale response was found to be extremely linear with dose over a wide dose range and, more specifically, for exposures of 95-100 MU. Small discrepancies of up to 0.8% in linearity were found at 6 MeV (8-15 MeV showed better agreement). The shape of the beam profile was found to be significantly altered by scatter in air over the approximately 60 cm gap between the end of the applicator and the EPID. Nevertheless, relative changes in EPID-measured profile flatness and symmetry were linearly related to changes in these parameters at 95 cm focus to surface distance (FSD) measured using a 2D diode array. Similar results were obtained at 90 deg. and 270 deg. gantry angles. Six months of daily images were acquired and analyzed to determine whether the device is suitable as a constancy checker. EPID output measurements agreed well with daily ion chamber measurements, with a 0.8% standard deviation in the difference between the two measurement sets. When compared to weekly parallel plate chamber measurements, this figure dropped to 0.5%. A Monte Carlo (MC) model of the EPID was created and demonstrated excellent agreement between MC-calculated profiles in water and the EPID at 95 and 157 cm FSD. Good agreement was also found with measured EPID profiles, demonstrating that the EPID provides an accurate measurement of electron profiles. The EPID was thus shown to be an effective method for performing electron beam daily constancy checks.

  18. Growth and defect chemistry of amorphous hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Scott, Bruce A.; Reimer, Jeffrey A.; Longeway, Paul A.

    1983-12-01

    Magnetic resonance (NMR,EPR) and infrared studies are presented of amorphous hydrogenated silicon (a-Si:H) films prepared by homogeneous chemical vapor deposition (HOMOCVD) and rf plasma decomposition using silane and disilane. Hydrogen incorporation occurs with a small activation energy (˜0.06 eV) for all films, while the barrier for changes in spin defect density is almost an order of magnitude larger and comparable to that measured in defect annealing studies. Films deposited by rf(Si2H6) plasma exhibit the greatest hydrogen contents, followed by HOMOCVD and rf(SiH4) plasma material. NMR measurements suggest that HOMOCVD films are less disordered than plasma-deposited a-Si:H. Previous work and recent kinetic studies of plasma and thermal environments are extensively analyzed, along with thermodynamic and kinetic data, to determine a a-Si:H growth mechanisms most consistent with the experimental results. The model presented to explain compositional and defect changes with substrate temperature emphasizes plasma deposition by monoradical precursors and HOMOCVD growth by diradicals, resulting initially in a similar surface-bound intermediate in all cases. Plasma growth from Si2H6 involves the surface attachment of longer radical chains, compared to SiH4, while oligomeric diradicals could be present in HOMOCVD. The possibility that reactions at the hot reactor wall, as well as in the gas, create monoradicals in HOMOCVD is also explored in detail. Finally, film dehydrogenation and crosslinking reactions are examined, and experiments proposed to determine the channels most relevant for each deposition environment.

  19. Fiber Optic Excitation of Silicon Microspheres in Amorphous and Crystalline Fluids

    NASA Astrophysics Data System (ADS)

    Yılmaz, Huzeyfe; Yılmaz, Hasan; Sharif Murib, Mohammed; Serpengüzel, Ali

    2016-03-01

    This study investigates the optical resonance spectra of free-standing monolithic single crystal silicon microspheres immersed in various amorphous fluids, such as air, water, ethylene glycol, and 4-Cyano-4'-pentylbiphenyl nematic liquid crystal. For the various amorphous fluids, morphology-dependent resonances with quality factors on the order of 105 are observed at 1428 nm. The mode spacing is always on the order of 0.23 nm. The immersion in various amorphous fluids affects the spectral response of the silicon microsphere and heralds this technique for use in novel optofluidics applications. Even though the nematic liquid crystal is a highly birefringent, scattering, and high-index optical medium, morphology-dependent resonances with quality factors on the order of 105 are observed at 1300 nm in the elastic scattering spectra of the silicon microsphere, realizing a liquid-crystal-on-silicon geometry. The relative refractive index and the size parameter of the silicon microsphere are the parameters that affect the resonance structure. The more 4-Cyano-4'-pentylbiphenyl interacting with the silicon microsphere, the lower the quality factor of the resonances is. The more 4-Cyano-4'-pentylbiphenyl is interacting with the silicon microsphere, the lower the mode spacing Δλ of the resonances is. The silicon microspheres wetted with nematic liquid crystal can be used for optically addressed liquid-crystal-on-silicon displays, light valve applications, or reconfigurable optical networks.

  20. Amorphous-silicon module hot-spot testing

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1985-01-01

    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.

  1. Formation of amorphous silicon by light ion damage

    SciTech Connect

    Shih, Y.C.

    1985-12-01

    Amorphization by implantation of boron ions (which is the lightest element generally used in I.C. fabrication processes) has been systematically studied for various temperatures, various voltages and various dose rates. Based on theoretical considerations and experimental results, a new amorphization model for light and intermediate mass ion damage is proposed consisting of two stages. The role of interstitial type point defects or clusters in amorphization is emphasized. Due to the higher mobility of interstitials out-diffusion to the surface particularly during amorphization with low energy can be significant. From a review of the idealized amorphous structure, diinterstitial-divacancy pairs are suggested to be the embryos of amorphous zones formed during room temperature implantation. The stacking fault loops found in specimens implanted with boron at room temperature are considered to be the origin of secondary defects formed during annealing.

  2. Reaction of amorphous Ni-W and Ni-N-W films with substrate silicon

    NASA Technical Reports Server (NTRS)

    Zhu, M. F.; Suni, I.; Nicolet, M.-A.; Sands, T.

    1984-01-01

    Wiley et al. (1982) have studied sputtered amorphous films of Nb-Ni, Mo-Ni, Si-W, and Si-Mo. Kung et al. (1984) have found that amorphous Ni-Mo films as diffusion barriers between multilayer metallizations on silicon demonstrate good electrical and thermal stability. In the present investigation, the Ni-W system was selected because it is similar to the Ni-Mo system. However, W has a higher silicide formation temperature than Mo. Attention is given to aspects of sample preparation, sample characterization, the interaction between amorphous Ni-W films and Si, the crystallization of amorphous Ni(36)W(64) films on SiO2, amorphous Ni-N-W films, silicide formation and phase separation, and the crystallization of amorphous Ni(36)W(64) and Ni(30)N(21)W(49) layers.

  3. Laser nucleated grain growth in hydrogenated amorphous silicon films

    NASA Astrophysics Data System (ADS)

    Dabney, Matthew S.

    annealed directly from the as grown state. The trends in EBSD grain size with in situ XRD crystallization time tc are consistent with theoretical predictions obtained from the classical model of nucleation and grain growth. An optical method was developed as a new and simple method to investigate crystallite nucleation and growth in stepwise, thermally annealed PECVD and HWCVD a-Si:H films. By confining film thicknesses to the range 500-4000A, optical microscopy in the reflection mode was used to readily detect crystallites in the thermally annealed a-Si:H lattice. Measurements of the crystallite density versus annealing time for identically prepared films of different thicknesses demonstrated crystallite nucleation rates smaller for thinner films, suggesting homogeneous nucleation, in agreement with previous results. The effect of film stress on crystallite nucleation was investigated in 0.11microm thick, thermally annealed hydrogenated amorphous silicon films. The nucleation rate was significantly suppressed around scratches, cleaved film edges, and laser ablated areas, extending laterally as much as 100-150um from these regions where the film connectivity was disrupted. u-Raman measurements of the transverse optical mode of Si demonstrated an accompanying reduction in tensile stress in the regions where nucleation was suppressed. The first measurements of nucleation rate in stress and in stress relieved areas in the same film are presented.

  4. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    SciTech Connect

    Wan, Yimao Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} for 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  5. Status and future of government-supported amorphous silicon research in the United States

    SciTech Connect

    Wallace, W L; Sabisky, E S

    1986-06-01

    The Amorphous Silicon Research Project (ASRP) was established at the Solar Energy Research Institute in 1983 and is responsible for all US Department of Energy government supported research activities in the field of amorphous silicon photovoltaics. The objectives and research directions of the project have been established by a Five-Year Research Plan, which was developed at SERI in cooperation with the Department of Energy in 1984 and is divided into research on single-junction and multi-junction solar cells. DOE/SERI has recently initiated a new three year program to be performed in collaboration with US industry to perform work on high efficiency amorphous silicon solar cells and submodules. The objectives of this initiative are: (i) to achieve 18% efficiencies for small area multi-junction amorphous silicon cells, and (ii) to achieve amorphous silicon submodule efficiencies in the 10 to 13% range for single-junction and multi-junction submodule configurations over areas of at least 1000 cm/sup 2/.

  6. Pressure-induced transformations in amorphous silicon: A computational study

    SciTech Connect

    Garcez, K. M. S.; Antonelli, A.

    2014-02-14

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  7. Performance and modeling of amorphous silicon photovoltaics for building-integrated applications

    SciTech Connect

    Kroposki, B.; Hansen, R.

    1999-07-01

    Amorphous silicon photovoltaic (PV) modules offer several advantages for building-integrated applications. The material can be deposited on glass or flexible substrates, which allows for products like roofing shingles and integrated PV/building glass. The material also has a uniform surface, which is ideal for many architectural applications. Amorphous silicon modules perform well in warm weather and have a small temperature coefficient for power. Depending on the building load, this may be beneficial when compared to crystalline systems. At the National Renewable Energy Laboratory, the authors are monitoring the performance of a triple-junction a-Si system. The system consists of 72 roofing shingles mounted directly to simulated roofing structures. This paper examines the performance of the building-integrated amorphous silicon PV system and applicability for covering residential loads. A simple model of system performance is also developed and is presented.

  8. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    PubMed

    Marrs, Michael A; Raupp, Gregory B

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  9. Stable, high-efficiency amorphous silicon solar cells with low hydrogen content

    SciTech Connect

    Fortmann, C.M.; Hegedus, S.S. )

    1992-12-01

    Results and conclusions obtained during a research program of the investigation of amorphous silicon and amorphous silicon based alloy materials and solar cells fabricated by photo-chemical vapor and glow discharge depositions are reported. Investigation of the effects of the hydrogen content in a-si:H i-layers in amorphous silicon solar cells show that cells with lowered hydrogen content i-layers are more stable. A classical thermodynamic formulation of the Staebler-Wronski effect has been developed for standard solar cell operating temperatures and illuminations. Methods have been developed to extract a lumped equivalent circuit from the current voltage characteristic of a single junction solar cell in order to predict its behavior in a multijunction device.

  10. Stable, high-efficiency amorphous silicon solar cells with low hydrogen content

    NASA Astrophysics Data System (ADS)

    Fortmann, C. M.; Hegedus, S. S.

    1992-12-01

    Results and conclusions obtained during the investigation of amorphous silicon, amorphous silicon based alloy materials, and solar cells fabricated by photo-chemical vapor and glow discharge depositions are reported. Investigation of the effects of the hydrogen content in a-Si:H i-layers in amorphous silicon solar cells show that cells with lowered hydrogen content i-layers are more stable. A classical thermodynamic formulation of the Staebler-Wronski effect has been developed for standard solar cell operating temperatures and illuminations. Methods have been developed to extract a lumped equivalent circuit from the current voltage characteristic of a single junction solar cell in order to predict its behavior in a multijunction device.

  11. Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires

    NASA Astrophysics Data System (ADS)

    Yu, Linwei; O'Donnell, Benedict; Foldyna, Martin; Cabarrocas, Pere Roca i.

    2012-05-01

    Constructing radial junction hydrogenated amorphous silicon (a-Si:H) solar cells on top of silicon nanowires (SiNWs) represents a promising approach towards high performance and cost-effective thin film photovoltaics. We here develop an all-in situ strategy to grow SiNWs, via a vapour-liquid-solid (VLS) mechanism on top of ZnO-coated glass substrate, in a plasma-enhanced chemical vapour deposition (PECVD) reactor. Controlling the distribution of indium catalyst drops allows us to tailor the as-grown SiNW arrays into suitable size and density, which in turn results in both a sufficient light trapping effect and a suitable arrangement allowing for conformal coverage of SiNWs by subsequent a-Si:H layers. We then demonstrate the fabrication of radial junction solar cells and carry on a parametric study designed to shed light on the absorption and quantum efficiency response, as functions of the intrinsic a-Si:H layer thickness and the density of SiNWs. These results lay a solid foundation for future structural optimization and performance ramp-up of the radial junction thin film a-Si:H photovoltaics.

  12. Investigation of hydrogen plasma treatment for reducing defects in silicon quantum dot superlattice structure with amorphous silicon carbide matrix

    NASA Astrophysics Data System (ADS)

    Yamada, Shigeru; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; Konagai, Makoto

    2014-02-01

    We investigate the effects of hydrogen plasma treatment (HPT) on the properties of silicon quantum dot superlattice films. Hydrogen introduced in the films efficiently passivates silicon and carbon dangling bonds at a treatment temperature of approximately 400°C. The total dangling bond density decreases from 1.1 × 1019 cm-3 to 3.7 × 1017 cm-3, which is comparable to the defect density of typical hydrogenated amorphous silicon carbide films. A damaged layer is found to form on the surface by HPT; this layer can be easily removed by reactive ion etching.

  13. Investigation of hydrogen plasma treatment for reducing defects in silicon quantum dot superlattice structure with amorphous silicon carbide matrix.

    PubMed

    Yamada, Shigeru; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; Konagai, Makoto

    2014-01-01

    We investigate the effects of hydrogen plasma treatment (HPT) on the properties of silicon quantum dot superlattice films. Hydrogen introduced in the films efficiently passivates silicon and carbon dangling bonds at a treatment temperature of approximately 400°C. The total dangling bond density decreases from 1.1 × 1019 cm-3 to 3.7 × 1017 cm-3, which is comparable to the defect density of typical hydrogenated amorphous silicon carbide films. A damaged layer is found to form on the surface by HPT; this layer can be easily removed by reactive ion etching. PMID:24521208

  14. Investigation of hydrogen plasma treatment for reducing defects in silicon quantum dot superlattice structure with amorphous silicon carbide matrix

    PubMed Central

    2014-01-01

    We investigate the effects of hydrogen plasma treatment (HPT) on the properties of silicon quantum dot superlattice films. Hydrogen introduced in the films efficiently passivates silicon and carbon dangling bonds at a treatment temperature of approximately 400°C. The total dangling bond density decreases from 1.1 × 1019 cm-3 to 3.7 × 1017 cm-3, which is comparable to the defect density of typical hydrogenated amorphous silicon carbide films. A damaged layer is found to form on the surface by HPT; this layer can be easily removed by reactive ion etching. PMID:24521208

  15. On electronic structure of polymer-derived amorphous silicon carbide ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Kewei; Li, Xuqin; Ma, Baisheng; Wang, Yiguang; Zhang, Ligong; An, Linan

    2014-06-01

    The electronic structure of polymer-derived amorphous silicon carbide ceramics was studied by combining measurements of temperature-dependent conductivity and optical absorption. By comparing the experimental results to theoretical models, electronic structure was constructed for a carbon-rich amorphous silicon carbide, which revealed several unique features, such as deep defect energy level, wide band-tail band, and overlap between the band-tail band and defect level. These unique features were discussed in terms of the microstructure of the material and used to explain the electric behavior.

  16. Experimental determination of the distribution of tail states of hydrogenated amorphous silicon: A transient photocurrent analysis

    SciTech Connect

    Webb, D.P.; Chan, F.Y.M.; Zou, X.C.; Chan, Y.C.; Lam, Y.W.; Lin, S.H.; O'Leary, S.K.; Lim, P.K.

    1997-07-01

    Recent experimental developments have cast doubt on the validity of the common assumption that the distribution of tail states of hydrogenated amorphous silicon exhibits a single exponential functional form. The authors employ transient photocurrent decay measurements to determine this distribution of tail states. In their approach, however, they determine the distribution of tail states directly from the experimental data, without assuming, a priori, a specific functional form. It is found that these experimental results are consistent with other more recent experimental determinations of the distribution of tail states, suggesting the possibility of deviations from a single exponential distribution of tail states in hydrogenated amorphous silicon.

  17. Origin of the photo-induced changes in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Adler, D.

    1983-07-01

    The electronic properties of hydrogenated amorphous silicon films are discussed in detail. Particular attention is paid to the changes induced by photogeneration of excess free carriers. Previous models which have been proposed to account for such effects are classified and criticized. An alternative explanation, which is based on the unique electronic structure of hydrogenated amorphous silicon, is proposed and analyzed. In this model, no new defects are created by the light, but rather the photo-induced effects follow from a metastable trapping of the excess free carriers at charged spinless defects which are present at equilibrium.

  18. Hydrogenated amorphous silicon radiation detectors: Material parameters, radiation hardness, charge collection

    SciTech Connect

    Qureshi, S.

    1991-01-01

    For nearly two decades now hydrogenated amorphous silicon has generated considerable interest for its potential use in various device applications namely, solar cells, electrolithography, large-area electronics etc. The development of efficient and economic solar cells has been on the forefront of this research. This interest in hydrogenated amorphous silicon has been motivated by the fact that amorphous silicon can be deposited over a large area at relatively low cost compared to crystalline silicon. Hydrogenated amorphous silicon, frequently abbreviated as a-Si:H, used in solar-cell applications is a micron or less thick. The basic device structure is a p-i-n diode where the i layer is the active layer for radiation to interact. This is so because intrinsic a-Si:H has superior electrical properties in comparison to doped a-Si:H which serves the purpose of forming a potential barrier on either end of the i layer. The research presented in this dissertation was undertaken to study the properties of a-Si:H for radiation detection applications in physics and medicine.

  19. Amorphization and nanocrystallization of silicon under laser shock compression: bridging experiment with atomic simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Shiteng; Kad, Bimal; Hahn, Eric; Remington, Bruce; Wehrenberg, Christopher; Bringa, Eduardo; Huntington, Channing; Park, Hye-Sook; More, Karren; Meyers, Marc

    Terawatt, nanosecond-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111}slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed by classical nucleation theory. This research is funded by a UC Research Laboratories Grant (09-LR-06-118456-MEYM) and a National Laser Users Facility (NLUF) Grant (PE-FG52-09NA-29043).

  20. Graphene as a transparent electrode for amorphous silicon-based solar cells

    SciTech Connect

    Vaianella, F. Rosolen, G.; Maes, B.

    2015-06-28

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  1. Crystal-amorphous-silicon interface kinetics under ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Campisano, S. U.; Ferla, G.

    1990-01-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The crystallization was induced by a 600 keV Kr2+ beam at a dose rate of 1×1012/cm2 · s. During irradiations the samples were mounted on a resistively heated copper block whose temperature was maintained constant in the range 250-450°C. The planar motion of the crystal-amorphous interface was monitored in situ by dynamic reflectivity measurements. This technique allows the ion-induced growth rate to be measured with a very high precision. We have observed that this growth rate scales linearly with the energy deposited into elastic collisions at the crystal-amorphous interface by the impinging ions. Moreover, the rate shows an Arrhenius temperature dependence with a well defined activation energy of 0.32±0.05 eV. The dependence of this process on substrate orientation and on impurities either dissolved in the amorphous layer or present at very high concentration at the crystal-amorphous interface is also discussed.

  2. Crystal-amorphous-silicon interface kinetics under ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Campisano, S. U.; Ferla, G.

    1989-11-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The crystallization was induced by a 600 keV Kr 2+ beam at a dose rate of 1×10 12/cm 2 · s. During irradiations the samples were mounted on a resistively heated copper block whose temperature was maintained constant in the range 250-450°C. The planar motion of the crystal-amorphous interface was monitored in situ by dynamic reflectivity measurements. This technique allows the ion-induced growth rate to be measured with a very high precision. We have observed that this growth rate scales linearly with the energy deposited into elastic collisions at the crystal-amorphous interface by the impinging ions. Moreover, the rate shows an Arrhenius temperature dependence with a well defined activation energy of 0.32±0.05 eV. The dependence of this process on substrate orientation and on impurities either dissolved in the amorphous layer or present at very high concentration at the crystal-amorphous interface is also discussed.

  3. Crystalline-amorphous silicon nano-composites: Nano-pores and nano-inclusions impact on the thermal conductivity

    NASA Astrophysics Data System (ADS)

    Verdier, M.; Termentzidis, K.; Lacroix, D.

    2016-05-01

    The thermal conductivities of nanoporous and nanocomposite silicon with incorporated amorphous phases have been computed by molecular dynamics simulations. A systematic investigation of the porosity and the width of the amorphous shell contouring a spherical pore has been made. The impact of amorphous phase nanoinclusions in a crystalline matrix has also been studied with the same amorphous fraction as the porosity of nanoporous silicon to achieve comparison. The key parameter for all configurations with or without the amorphous phase is proved to be the interface (between the crystalline and amorphous phases or crystalline and void) to volume ratio. We obtain the sub-amorphous thermal conductivity for several configurations by combining pores, amorphous shell, and crystalline phase. These configurations are promising candidates for low cost and not toxic thermoelectric devices based on abundant semiconductors.

  4. Charging/discharging behavior and mechanism of silicon quantum dots embedded in amorphous silicon carbide films

    NASA Astrophysics Data System (ADS)

    Wen, Xixing; Zeng, Xiangbin; Zheng, Wenjun; Liao, Wugang; Feng, Feng

    2015-01-01

    The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiCx) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiCx/SiO2/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiCx, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiCx can promote the application of Si QDs in low-power consumption semiconductor memory devices.

  5. Charging/discharging behavior and mechanism of silicon quantum dots embedded in amorphous silicon carbide films

    SciTech Connect

    Wen, Xixing; Zeng, Xiangbin Zheng, Wenjun; Liao, Wugang; Feng, Feng

    2015-01-14

    The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiC{sub x}) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiC{sub x}/SiO{sub 2}/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiC{sub x}, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiC{sub x} can promote the application of Si QDs in low-power consumption semiconductor memory devices.

  6. Metal induced crystallization of amorphous silicon for photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Van Gestel, D.; Gordon, I.; Poortmans, J.

    A silicon thin-film technology could lead to less expensive modules by the use of less silicon material and by the implementation of monolithic module processes. A technology based on polycrystalline-silicon thin-films with a grain size between 1 μm and 1 mm (pc-Si), seems particularly promising since it combines the low-cost potential of a thin-film technology with the high efficiency potential of crystalline silicon. One of the possible approaches to fabricate pc-Si absorber layers is metal induced crystallization (MIC). For solar cell applications mainly aluminium is investigated as metal because 1) it forms a eutectic system with silicon instead of a silicide-metal system like e.g. Ni 2) only shallow level defects are formed in the forbidden bandgap of silicon and 3) a layer exchange process can be obtained in combination with a-Si. Aluminum induced crystallization (AIC) of a-Si on non-silicon substrates can results in grains with a preferential (100) orientation and a maximum grain sizes above 50 micrometer. These layers can act as seed layers for further epitaxial growth. Based on this two-step approach (AIC + epitaxial growth) we made solar cells with an energy conversion efficiency of 8%. Based on TEM, EBIC, SEM, defect etch and EBSD measurements we showed that the efficiency is nowadays mainly limited by the presence of electrical intragrain defects.

  7. Hybrid method of making an amorphous silicon P-I-N semiconductor device

    DOEpatents

    Moustakas, Theodore D.; Morel, Don L.; Abeles, Benjamin

    1983-10-04

    The invention is directed to a hydrogenated amorphous silicon PIN semiconductor device of hybrid glow discharge/reactive sputtering fabrication. The hybrid fabrication method is of advantage in providing an ability to control the optical band gap of the P and N layers, resulting in increased photogeneration of charge carriers and device output.

  8. Amorphous silicon research. Annual subcontract report, October 1, 1994--September 30, 1995

    SciTech Connect

    Arya, R R; Bennett, M; Bradley, D

    1996-02-01

    The major effort in this program is to develop cost-effective processes which satisfy efficiency, yield, and material usage criteria for mass production of amorphous silicon-based multijunction modules. New and improved processes were developed for the component cells and a more robust rear contact was developed for better long term stability.

  9. Elastic constants of defected and amorphous silicon with the environment-dependent interatomic potential

    SciTech Connect

    Allred, Clark L.; Yuan Xianglong; Hobbs, Linn W.; Bazant, Martin Z.

    2004-10-01

    The elastic constants of a wide range of models of defected crystalline and amorphous silicon are calculated, using the environment-dependent interatomic potential (EDIP). The defected crystalline simulation cells contain randomly generated defect distributions. An extensive characterization of point defects is performed, including structure, energy and influence on elastic constants. Three important conclusions are drawn. (1) Defects have independent effects on the elastic constants of silicon up to (at least) a defect concentration of 0.3%. (2) The linear effect of Frenkel pairs on the <110> Young's modulus of silicon is -1653 GPa per defect fraction. (3) 17 different point defect types cause a very similar decrease in the <110> Young's modulus: -(0.28{+-}0.05)% when calculated in isolation using a 1728-atom cell. These principles will be very useful for predicting the effect of radiation damage on the elastic modulus of silicon in the typical case in which point-defect concentrations can be estimated, but the exact distribution and species of defects is unknown. We also study amorphous samples generated in quenching the liquid with EDIP, including an ideal structure of perfect fourfold coordination, samples with threefold and fivefold coordinated defects, one with a nanovoid, and one with an amorphous inclusion in a crystalline matrix. In the last case, a useful finding is that the change in the Young's modulus is simply related to the volume fraction of amorphous material, as has also been observed by experiment.

  10. Method of forming semiconducting amorphous silicon films from the thermal decomposition of fluorohydridodisilanes

    DOEpatents

    Sharp, Kenneth G.; D'Errico, John J.

    1988-01-01

    The invention relates to a method of forming amorphous, photoconductive, and semiconductive silicon films on a substrate by the vapor phase thermal decomposition of a fluorohydridodisilane or a mixture of fluorohydridodisilanes. The invention is useful for the protection of surfaces including electronic devices.