Science.gov

Sample records for kakrapar atomic power

  1. An attempt for modeling the atmospheric transport of 3H around Kakrapar Atomic Power Station.

    PubMed

    Patra, A K; Nankar, D P; Joshi, C P; Venkataraman, S; Sundar, D; Hegde, A G

    2008-01-01

    Prediction of downwind tritium air concentrations in the environment around Kakrapar Atomic Power Station (KAPS) was studied on the basis of Gaussian plume dispersion model. The tritium air concentration by field measurement [measured tritium air concentrations in the areas adjacent to KAPS] were compared with the theoretically calculated values (predicted) to validate the model. This approach will be useful in evaluating environmental radiological impacts due to pressurised heavy water reactors. PMID:18664562

  2. Atomic Power Safety.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: What is Atomic Power?; What Does Safety Depend On?; Control of Radioactive Material During Operation; Accident Prevention; Containment in the Event of an Accident; Licensing and…

  3. ATOMIC POWER PLANT

    DOEpatents

    Daniels, F.

    1957-11-01

    This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

  4. 78 FR 58571 - Maine Yankee Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic Electric Company... Commission (NRC) is issuing an exemption in response to a May 16, 2011, request from Maine Yankee Atomic Power Company (Maine Yankee), Connecticut Yankee Atomic Power Company (Connecticut Yankee), and...

  5. Atomic power in space: A history

    SciTech Connect

    Not Available

    1987-03-01

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs.

  6. Atomic Power in Space: A History

    DOE R&D Accomplishments Database

    1987-03-01

    "Atomic Power in Space," a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. Interplanetary space exploration successes and achievements have been made possible by this technology, for which there is no known substitue.

  7. Rotary-Atomizer Electric Power Generator

    NASA Astrophysics Data System (ADS)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  8. 77 FR 36298 - In the Matter of Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August... COMMISSION In the Matter of Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Station... Yankee Atomic Power Company (Maine Yankee or the Licensee), to address statutory requirements and...

  9. Nuclear Power and the Environment, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. Discussion concentrates on the radiological and thermal aspects of the environmental effects of nuclear power plants; on the procedures followed by the Atomic Energy…

  10. Power from Radioisotopes, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.; Mead, Robert L.

    This 1971 revision deals with radioisotopes and their use in power generators. Early developments and applications for the Systems for Nuclear Auxiliary Power (SNAP) and Radioisotope Thermoelectric Generators (RTGs) are reviewed. Present uses in space and on earth are included. Uses in space are as power sources in various satellites and space…

  11. Recirculation of Laser Power in an Atomic Fountain

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Klipstein, WIlliam M.; Moore, James D.

    2007-01-01

    A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present

  12. (Shippingport Atomic Power Station). Quarterly operating report, fourth quarter 1980

    SciTech Connect

    Not Available

    1980-01-01

    At the beginning of the fourth quarter of 1980, the Shippingport Atomic Power Station remained shutdown for the normally planned semiannual maintenance and testing program, initiated September 12, 1980. Operational testing began on November 7. Maximum power was achieved November 28 and was maintained throughout the remainder of the quarter except as noted. The LWBR Core has generated 19,046.07 EFPH from start-up through the end of the quarter. During this quarter, approximately 0.000025 curies of Xe 133 activity were released from the station. During the fourth quarter of 1980, 1081 cubic feet of radioactive solid waste was shipped out of state for burial. These shipments contained 0.037 curies of radioactivity.

  13. Effect of Laser Power on Atom Probe Tomography of Silicates

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Gorman, B.; Jackson, C.; Cooper, R. F.; Diercks, D.

    2011-12-01

    Atom probe tomography (APT) is an emerging analytical method that has the potential to produce nm-scale spatial resolution of atom positions with ppm-level detection limits. Until recently, APT has been limited to analysis of conducting samples due to the high pulsed electrical fields previously required. The recent development of laser-assisted APT now allows much lower laser powers to be used, opening the door to analysis of geologic minerals. The potential applications are many, ranging from diffusion profiles to the distribution of nano-phases to grain boundary chemical properties. We reported the first analysis of natural olivine using APT last year (Parman et al, 2010). While the spatial resolution was good (nm-scale), the accuracy of the compositional analysis was not. Two of the primary barriers to accurate ion identification in APT are: 1) Specimen overheating - This is caused by the interaction of the laser with the low thermal conductivity insulating specimens. Ions are assumed to have left the surface of the sample at the time the laser is pulsed during the analysis (laser pulse width = 12 ps). If the laser power is too high, the surface remains heated for an appreciable time (greater than 5 ns in some cases) after the laser pulse, causing atoms to field evaporate from the surface well after the laser pulse. Since they hit the detector later than the atoms that were released during the pulse, they are interpreted to be higher mass. Thus overheating appears in the analysis as a smearing of mass/charge peaks to higher mass/charge ratios (thermal tails). For well separated peaks, this is not a substantial problem, but for closely spaced peaks, overheating causes artificial mass interferences. 2) Molecular evaporation or clustering - This is also caused by overheating by the laser. Ideally, atoms are field evaporated individually from the surface of the cylindrical specimen. However, if the absorbed energy is high enough, clusters of atoms will be formed

  14. Feedwater heater life optimization at Peach Bottom Atomic Power Station

    SciTech Connect

    Thomas, D.S.; Catapano, M.C.

    1996-08-01

    This paper illustrates a complete inspection, testing, and maintenance program implemented at PECO Energy`s Peach Bottom Atomic Power Station (PBAPS). Concerns that tubes may have been too conservatively plugged due to insufficient data justified a program that included: removal of previously installed plugs; videoprobe inspection of failed areas; extraction of tube samples for further analysis; eddy current testing of selected tubes; evaluation of the condition of insurance plugged tubes for return to service; hydrostatic testing of selected tubes; final repair plan based on the results of the above program. This paper concludes that no single method of inspection or testing should be solely relied upon in establishing: the extent of actual degraded conditions; the source(s) of failure mechanisms; and the details of repair. It is a combination of all gathered data that affords the best chance in arresting problems and optimizing feedwater heater life.

  15. Containment venting analysis for the Peach Bottom Atomic Power Station

    SciTech Connect

    Hanson, D.J.; Blackman, H.S.; Nelson, W.R.; Wright, R.E.; Leonard, M.T.; DiSalvo, R.

    1986-12-01

    The extent to which containment venting is an effective means of preventing or mitigating the consequences of overpressurization during severe accidents was evaluated for the Peach Bottom Atomic Power Station Units 2 and 3 (boiling water reactors with Mark I containments). Detailed analyses were conducted on operator performance, equipment performance, and the physical phenomenology for three severe accident sequences currently identified as being important contributors to risk. The results indicate that containment venting can be effective in reducing risk for several classes of severe accidents but, based on procedures in draft form and equipment in place at the time of the analyses, has limited potential for further reducing the risk for severe accidents currently identified as being important contributors to the risk for Peach Bottom.

  16. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1999

    SciTech Connect

    2000-12-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the three KAPL Sites [Knolls Site, Niskayuna, New York; Kesselring Site, West Milton, New York; S1C Site, Windsor, Connecticut] during calendar year 1999 resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations.

  17. Stopping powers and ranges for the heaviest atoms

    NASA Astrophysics Data System (ADS)

    Sagaidak, Roman N.; Utyonkov, Vladimir K.; Dmitriev, Sergey N.

    2015-12-01

    Slowing down and stopping of the heaviest atoms, products of the fusion-evaporation nuclear reactions, during their passage through the Dubna gas-filled recoil separator has been studied using TRIM simulations. The study is important for experiments on the synthesis of super-heavy elements (SHEs) with atomic numbers around ZP = 114 produced with accelerated heavy ion (HI) beams and extracted with a separator for their detection. The average Mylar stopping power (SP) values obtained with the simulations for HIs with 82 ⩽ ZP ⩽ 92 reveal almost the same magnitudes, allowing extrapolation to the region of ZP > 92. Similar extrapolation of the ranges in an He + Ar gas mixture leads to rather small values for the heaviest atoms (ZP ⩾ 102) as compared to the range for U. The extrapolated values have large uncertainties and should be verified with different approaches. Available SP data obtained for HIs with 18 ⩽ ZP ⩽ 92 at energies E < 20 MeV/u have been analysed within various semi-empirical approaches. The analysis has shown that existing parameterizations give Mylar SP values for ZP ⩾ 82 that are very different from each other at energies of interest (around 0.1 MeV/u). We propose to use a general approach based on the HI effective charge parameterization obtained with available SP data for HIs and the hydrogen SP and effective charge corresponding to the same velocity and stopping medium as those for HIs. In this manner, the SPs of the gases H2, He, C4H10, and Ar as well as those of the solids Mylar, C, Al, and Ti have been obtained for any atoms with ZP ⩾ 18 (including the heaviest ones) at their reduced velocities 0.03 ⩽ Vred ⩽ 5.0. The SP values derived in such a way seem to be more reliable compared to the existing semi-empirical calculations and can be used in the conditioning of experiments on the synthesis of SHEs.

  18. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1980

    SciTech Connect

    Zagorski, J. F.

    1980-01-01

    At the beginning of the third quarter of 1980, the Shippingport Atomic Power Station was operating with the 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops in service. During the quarter, the Station was operated for Duquesne Light Company System grid including base load and swing load operation. Twelve (12) planned swing load operations were performed on the LWBR Core this quarter to complete the LWBR operating plan of fifty (50) during this operating phase. The Station was shutdown on September 12 for the Fall 1980 Shutdown and remained in this mode through the end of the quarter. The LWBR Core has generated 18,297.98 EFPH from start-up through the end of the quarter. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. The radioactive liquid waste effluent line to the river remained blanked off to prevent inadvertent radioactive liquid waste discharges. During the quarter, approximately 0.001 curies of Xe 133 activity were released from the station. The radioactivity released from Shippingport Station is far too small to have any measurable effect on the general background environmental radioactivity outside the plant.

  19. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2000

    SciTech Connect

    2001-12-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls Site, Niskayuna, New York and the Kesselring Site, West Milton, New York and site closure activities at the S1C Site, Windsor, Connecticut, continued to have no adverse effect on human health and the quality of the environment during calendar year 2000. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations. Monitoring programs at the S1C Site were reduced in scope during calendar year 2000 due to completion of site dismantlement activities during 1999.

  20. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2001

    SciTech Connect

    2002-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls and Kesselring Sites and Site closure activities at the S1C Site (also known as the KAPL Windsor Site) continue to have no adverse effect on human health and the quality of the environment. The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations. The environmental monitoring program for the S1C Site continues to be reduced in scope from previous years due to the completion of Site dismantlement activities during 1999 and a return to green field conditions during 2000.

  1. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1996

    SciTech Connect

    1996-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. The principal function at KAPL sites (Knolls, Kesselring, and Windsor) is research and development in the design and operation of Naval nuclear propulsion plants. The Kesselring Site is also used for the training of personnel in the operation of these plants. The Naval nuclear propulsion plant at the Windsor Site is currently being dismantled. Operations at the three KAPL sites resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations.

  2. 77 FR 36302 - Yankee Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... entities participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR... COMMISSION Yankee Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying License... (NRC or the Commission) issued a Confirmatory Order to Yankee Atomic Electric Company (Yankee Atomic...

  3. 76 FR 48184 - Exelon Nuclear, Peach Bottom Atomic Power Station, Unit 1; Exemption From Certain Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... (76 FR 37842). Based upon the environmental assessment, the Commission has determined that issuance of... COMMISSION Exelon Nuclear, Peach Bottom Atomic Power Station, Unit 1; Exemption From Certain Security... issued for Peach Bottom Atomic Power Station (PBAPS), Unit 1, located in York County, PA. PBAPS Unit 1...

  4. 76 FR 41530 - Connecticut Yankee Atomic Power Company, Haddam Neck Plant; Notice of Consideration of Approval...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... accordance with the NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires... COMMISSION Connecticut Yankee Atomic Power Company, Haddam Neck Plant; Notice of Consideration of Approval of... Atomic Power Company (CYAPCO), as owner and licensed operator of the Haddam Neck Plant. According to...

  5. 75 FR 33653 - Connecticut Yankee Atomic Power Company; Notice of Consideration of Issuance of Amendment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit and serve all... COMMISSION Connecticut Yankee Atomic Power Company; Notice of Consideration of Issuance of Amendment to... amendment to Facility Operating License No. DPR-61 issued to Connecticut Yankee Atomic Power Company...

  6. Feedwater heater life optimization at Peach Bottom Atomic Power Station

    SciTech Connect

    Catapano, M.C.; Thomas, D.S.

    1995-12-01

    Many papers published over the last 15 years have strongly emphasized the need for an ongoing program of inspection and testing with subsequent failure cause analysis of feedwater heaters. With deregulation of the electric utility industry in various phases of implementation, utilities must decrease costs, both O&M and capital, while optimizing plant efficiency. In order to accomplish this coal, utility engineers must monitor feedwater heater performance in order to recognize degradation, correct/eliminate failure mechanisms, and prevent in-service failures while optimizing availability. Periodic tube plugging without complete analysis of the degraded/failed area resolves the immediate need for return for service, however, heater life will not be graded/failed area resolves optimized. This paper illustrates a complete inspection, testing, and maintenance program implemented at PECO Energy`s Peach Bottom Atomic Power Station (PBAPS). Concerns that tubes may have been too conservatively plugged due to insufficient data justified a program that included: (1) Removal of previously installed plugs. (2) Videoprobe inspection of failed areas. (3) Extraction of tube samples for further analysis. (4) Eddy current testing of selected tubes. (5) Evaluation of the condition of {open_quotes}insurance{close_quotes} plugged tubes for return to service. (6) Hydrostatic testing of selected tubes. (7) Final repair plan based on the results of the above program. This paper concludes that no single method of inspection or testing should solely be relied upon in establishing: (1) The extent of actual degraded conditions, (2) The source(s) of failure mechanisms, (3) The details of repair. It is a combination of all gathered data that affords the best chance in arresting problems and optimizing feedwater heater life.

  7. Nuclear Reactors for Space Power, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.

    The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…

  8. 75 FR 20867 - DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1 Environmental Assessment and Finding of No... Operating License No. DPR-9 issued to DTE Energy (DTE or the licensee), for the Enrico Fermi Atomic...

  9. 76 FR 41532 - Yankee Atomic Electric Company, Yankee Nuclear Power Station (Yankee-Rowe); Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... accordance with the NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires... COMMISSION Yankee Atomic Electric Company, Yankee Nuclear Power Station (Yankee-Rowe); Notice of...-Rowe), currently held by Yankee Atomic Electric Company (YAEC), as owner and licensed operator...

  10. Safe use of atomic (Nuclear) power (Nuclear Safety)

    NASA Astrophysics Data System (ADS)

    Sidorenko, V. A.

    2013-12-01

    The established concept of ensuring safety for nuclear power sources is presented; the influence of severe accidents on nuclear power development is considered, including the accident at a Japan NPP in 2011, as well as the role of state regulation of nuclear safety.

  11. Electroslag melting of blanks for valve bodies of atomic electric power plants

    SciTech Connect

    Rabinovich, V.I.; Borodin, M.A.; Chistyakov, G.A.; Kriger, Yu.N.

    1983-01-01

    The application of electroslag melting (ESM) makes it possible to obtain high quality castings. In the power engineering industry, the ESM method is used to manufacture blanks for the control valves of atomic electric power plants which were formerly made by forging. Valve body blanks made from sand steel castings are cheaper than blanks obtained by ESM, but of inferior quality.

  12. The Mighty Atom? The Development of Nuclear Power Technology

    ERIC Educational Resources Information Center

    Harris, Frank

    2014-01-01

    The use of nuclear energy for the generation of electricity started in the 1950s and was viewed, at the time, as a source of virtually free power. Development flourished and some countries adopted the nuclear option as their principal source for producing electrical energy. However, a series of nuclear incidents and concern about the treatment of…

  13. Photoionization of optically trapped ultracold atoms with a high-power light-emitting diode

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Amthor, Thomas; Weidemueller, Matthias

    2013-04-15

    Photoionization of laser-cooled atoms using short pulses of a high-power light-emitting diode (LED) is demonstrated. Light pulses as short as 30 ns have been realized with the simple LED driver circuit. We measure the ionization cross section of {sup 85}Rb atoms in the first excited state, and show how this technique can be used for calibrating efficiencies of ion detector assemblies.

  14. Atom and the fault: experts, earthquakes, and nuclear power

    SciTech Connect

    Meehan, R.L.

    1984-01-01

    A narrative account of the geology expert's role in an environmental controversy focuses on the problem of siting nuclear power plants near geologic faults and the conflicting testimony delivered by equally sincere consultants. The author examines the problem of faults and their significance to reactor safety, and concludes that part of the controversy and regulatory indecision are due to the lack of an accepted scientific standard for risk. He explores the historical and social role of the principal professional groups (geologists and engineers) in the debate, and concludes that concerns at some sites were warranted. Scientific advocacy, he feels, serves a useful function in the hearing process, and that the representation for intervenors has been generally good. 18 references, 10 figures.

  15. Observation of a power-law energy distribution in atom-ion hybrid system

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Akerman, Nitzan; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2016-05-01

    Understanding atom-ion collision dynamics is at the heart of the growing field of ultra-cold atom-ion physics. The naive picture of a hot ion sympathetically-cooled by a cold atomic bath doesn't hold due to the time dependent potentials generated by the ion Paul trap. The energy scale of the atom-ion system is determined by a combination of the atomic bath temperature, the ion's excess micromotion (EMM) and the back action of the atom-ion attraction on the ion's position in the trap. However, it is the position dependent ion's inherent micromotion which acts as an amplifier for the ion's energy during random consecutive collisions. Due to this reason, the ion's energy distribution deviates from Maxwell-Boltzmann (MB) characterized by an exponential tail to one with power-law tail described by Tsallis q-exponential function. Here we report on the observation of a strong deviation from MB to Tsallis energy distribution of a trapped ion. In our experiment, a ground-state cooled 88 Sr+ ion is immersed in an ultra-cold cloud of 87 Rb atoms. The energy scale is determined by either EMM or solely due to the back action on the ion position during a collision with an atom in the trap. Energy distributions are obtained using narrow optical clock spectroscopy.

  16. Environmental radionuclide concentrations in the vicinity of the Peach Bottom Atomic Power Station: 1991--1994

    SciTech Connect

    Stanek, M.A.; Jones, T.S.; Frithsen, J.B.; McLean, R.I.

    1997-02-01

    The Maryland Power Plant Research Program monitors concentrations of natural, weapons, and power plant produced radionuclides in environmental samples collected from the Susquehanna River-Chesapeake Bay system in the vicinity of Peach Bottom Atomic Power Station (PBAPS). The purpose of this monitoring is to determine the fate, transport, and potential effects of power plant produced radionuclides. This report contains a description of monitoring activities and data collected during the period 1991 through 1994 and is the fifth in a series reporting monitoring results initiated at PBAPS in 1979.

  17. Search for Elastic Coherent Neutrino Scattering off Atomic Nuclei at the Kalinin Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Akimov, D. Yu.; Belov, V. A.; Bolozdynya, A. I.; Burenkov, A. A.; Efremenko, Yu. V.; Etenko, A. V.; Kaplin, V. A.; Khromov, A. V.; Konovalov, A. M.; Kovalenko, A. G.; Kumpan, A. V.; Melikyan, Yu. A.; Rudik, D. G.; Sosnovtsev, V. V.

    We propose to detect and study neutrino neutral elastic coherent scattering off atomic nuclei with two-phase emission detector with liquid xenon as a target medium. One of the possible experimental site is a Kalinin Nuclear Power Plant (KNPP) situated in the Russian Federation. In this paper we discuss the design of the detector and expected signals and background for this site.

  18. Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Li, Y. H.; Gao, N.; Yang, F.; Chen, Y. Q.; Fang, K.; Zhang, Y. W.; Chen, H.

    2015-03-01

    In this letter, a potential way to transfer power wirelessly based on magnetic metamaterials (MMs) assembled by ultra-subwavelength meta-atoms is proposed. Frequency-domain simulation and experiments are performed for accurately obtaining effective permeability of magnetic metamaterials. The results demonstrate that MMs possess great power for enhancing the wireless power transfer efficiency between two non-resonant coils. Further investigations on the magnetic-field distribution demonstrate that a large-area flattened magnetic field in near range can be effectively realized, exhibiting great flexibility in assembling.

  19. 77 FR 133 - In the Matter of Connecticut Yankee Atomic Power Company; Northeast Utilities; NSTAR (Haddam Neck...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... opportunity to request a hearing was published in the Federal Register on July 14, 2011 (76 FR 41530). No... COMMISSION In the Matter of Connecticut Yankee Atomic Power Company; Northeast Utilities; NSTAR (Haddam Neck Plant); Order Approving Application Regarding Proposed Merger I Connecticut Yankee Atomic Power...

  20. 77 FR 14007 - Environmental Assessment for a Radiological Work and Storage Building at the Knolls Atomic Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... Environmental Assessment for a Radiological Work and Storage Building at the Knolls Atomic Power Laboratory... availability of a Draft Environmental Assessment (EA) for construction and operation of a radiological work and... operating a new radiological work and storage building at the Knolls Atomic Power Laboratory Kesselring...

  1. 76 FR 25378 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Units 2 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... December 14, 2010 (75 FR 77913). However, by letter dated April 26, 2011, the licensee withdrew the... COMMISSION Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Units 2 and... Nos. DPR-44 and DPR-56 for the Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, located...

  2. 75 FR 24755 - DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... quality of the human environment as documented in Federal Register (FR) notice 75 FR 20867, April 21, 2010... COMMISSION DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste... and holder of Facility Operating License No. DPR-9 issued for Enrico Fermi Atomic Power Plant, Unit...

  3. 75 FR 57535 - Connecticut Yankee Atomic Power Company; Haddam Neck Plant; Notice of Issuance of Amendment To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... Federal Register on June 14, 2010 (75 FR 33653). On September 10, 2010, the NRC approved and issued... COMMISSION Connecticut Yankee Atomic Power Company; Haddam Neck Plant; Notice of Issuance of Amendment To... application dated April 2, 2009, as supplemented March 30, 2010, Connecticut Yankee Atomic Power...

  4. 75 FR 6071 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station Units 2 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ..., 2009 (74 FR 20744). However, by letter dated January 19, 2010, the licensee withdrew the proposed... COMMISSION Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station Units 2 and 3... Operating License Nos. DPR-44 and DPR-56 for the Peach Bottom Atomic Power Station (PBAPS), Units 2 and...

  5. 75 FR 58445 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3; Environmental... operation of Peach Bottom Atomic Power Station (PBAPS), Unit Nos. 2 and 3, located in York and...

  6. Effects of Ion Atomic Number on Single-Event Gate Rupture (SEGR) Susceptibility of Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Goldsman, Neil; Liu, Sandra; Titus, Jeffrey L.; Ladbury, Raymond L.; Kim, Hak S.; Phan, Anthony M.; LaBel, Kenneth A.; Zafrani, Max; Sherman, Phillip

    2012-01-01

    The relative importance of heavy-ion interaction with the oxide, charge ionized in the epilayer, and charge ionized in the drain substrate, on the bias for SEGR failure in vertical power MOSFETs is experimentally investigated. The results indicate that both the charge ionized in the epilayer and the ion atomic number are important parameters of SEGR failure. Implications on SEGR hardness assurance are discussed.

  7. Technologies for protection of the Space Station power system surfaces in atomic oxygen environment

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Rutledge, Sharon K.

    1988-01-01

    Technologies for protecting Space Station surfaces from degradation caused by atomic oxygen are discussed, stressing protection of the power system surfaces. The Space Station power system is described and research concerning the solar array surfaces and radiator surfaces is examined. The possibility of coating the solar array sufaces with a sputter deposited thin film of silicon oxide containing small concentrations of polytetrafluoroethylene is presented. Hexamethyldisiloxane coating for these surfaces is also considered. For the radiator surfaces, possible coatings include silver teflon thermal coating and zinc orthotitanate.

  8. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    SciTech Connect

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro; Kozuma, Mikio

    2015-07-15

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources for laser cooling experiments including transportable optical lattice clocks.

  9. Atomic Physics in ITER — The Foundation for the Next Step to Fusion Power

    NASA Astrophysics Data System (ADS)

    Stotler, D. P.; Bell, R. E.; Hill, K. W.; Johnson, D. W.; Levinton, F. M.

    2007-04-01

    ITER represents the next step towards practical magnetic confinement fusion power. Its primary physics objective is to study plasmas in which the fusion power exceeds the external heating power by a factor of 5 to 10; its technological objectives include the use of superconducting magnets and remote maintenance. We will describe the ITER experiment and then detail the fundamental roles that will be played by atomic physics processes in facilitating the achievement of ITER's objectives. First, atoms and molecules generated by the interaction of the ITER plasma with surrounding material surfaces will impact and, in some respects, dominate the particle, momentum, and energy balances in both the adjacent and confined, core plasmas. Second, impurity radiation in the edge plasma, either from intrinsic or extrinsic species, will ensure that heat coming out from the core is spread more uniformly over the surrounding material surfaces than it would otherwise. Third, many of the diagnostics used to monitor the dense (ne ˜ 1020 m-3), hot (˜ 1 × 108 K) core plasma leverage off of atomic physics effects.

  10. Tape Transfer Atomization Patterning of Liquid Alloys for Microfluidic Stretchable Wireless Power Transfer

    PubMed Central

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-01-01

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times. PMID:25673261

  11. Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer.

    PubMed

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-01-01

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times. PMID:25673261

  12. Tape Transfer Atomization Patterning of Liquid Alloys for Microfluidic Stretchable Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-02-01

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times.

  13. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    SciTech Connect

    Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

  14. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks.

    PubMed

    O'Connor, A P; Grussie, F; Bruhns, H; de Ruette, N; Koenning, T P; Miller, K A; Savin, D W; Stützel, J; Urbain, X; Kreckel, H

    2015-11-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ∼7.4% for H(-) at a beam energy of 10 keV and ∼3.7% for C(-) at 28 keV. The diode laser systems used here operate at 975 nm and 808 nm, respectively, and provide high continuous power levels of up to 2 kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table. PMID:26628128

  15. 77 FR 134 - In the Matter of Yankee Atomic Electric Company; Northeast Utilities; NSTAR (Yankee Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... opportunity to request a hearing was published in the Federal Register on July 14, 2011 (76 FR 41532). No... COMMISSION In the Matter of Yankee Atomic Electric Company; Northeast Utilities; NSTAR (Yankee Nuclear Power Station); Order Approving Application Regarding Proposed Merger I Yankee Atomic Electric Company...

  16. 76 FR 19476 - Exelon Generation Company, LLC, Peach Bottom Atomic Power Station, Unit Nos. 2 and 3; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC, Peach Bottom Atomic Power Station, Unit Nos. 2 and 3; Exemption 1... Operating License Nos. DPR-44 and DPR-56, which authorizes operation of the Peach Bottom Atomic...

  17. 77 FR 36300 - In the Matter of Connecticut Yankee Atomic Power Company; Haddam Neck Plant; Confirmatory Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... accordance with the NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires... COMMISSION In the Matter of Connecticut Yankee Atomic Power Company; Haddam Neck Plant; Confirmatory Order... Regulatory Commission (NRC or the Commission) issued a Confirmatory Order to Connecticut Yankee Atomic...

  18. Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site

    SciTech Connect

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1983-09-01

    As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station.

  19. Knolls Atomic Power Laboratory annual environmental monitoring report, calendar year 1997

    SciTech Connect

    1997-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations.

  20. Atomic-powered democracy: Policy against politics in the quest for American nuclear energy

    SciTech Connect

    Williams, R.W.

    1993-01-01

    This dissertation focuses on the relationship of American nuclear energy to democracy. It examines whether the nuclear policy processes have furthered the legitimacy-government accountability and citizen participation-which the democratic institutes are based. Nuclear policy and its institutions have placed severe limitations on democratic practices. Contravened democracy is seen most clearly in the decoupling of policy from politics. Decoupling refers to the weakening of institutional linkages between citizens and government, and to the erosion of the norms that ground liberal democracy. Decoupling is manifested in policy centralization, procedural biases, technical rationality, and the spatial displacement of conflict. Decoupling has normative implications: While federal accountability was limited and citizen participation was shackled, other major groups enjoyed privileged access to policy making. The decoupling of nuclear policy from politics arose within the context of US liberal-democratic capitalism. The federal government pursued its own goals of defense and world leadership. Yet, it was not structurally autonomous from the hegemony of the political-economic context. Economically, the Atomic Energy Act did not permit federal agencies to directly invest in power plant construction, and did not authorize them to commercially generate electricity. Private industry was structurally placed to domesticate the atom. Politically, the liberal-democratic system hampered an unquestioning pursuit of atomic energy. Federal institutions have been forced to heed some of the anti-nuclear concerns. The pervasive influence of the US political economy on nuclear policy has come to transgress democracy. Nuclear power's growth faltered during the 1970s. The political and economic constraints on federal actions have limited the means available to revive a becalmed nuclear industry; this has exerted strong pressure on federal institutions to decouple policy from participation.

  1. Environmental radionuclide concentrations in the vicinity of the Calvert Cliffs Nuclear Power Plant and the Peach Bottom Atomic Power station: 1995

    SciTech Connect

    Jones, T.S.; Frithsen, J.B.; McLean, R.I.

    1997-02-01

    The Maryland Power Plant Research Program monitors concentrations of natural, weapons, and power plant produced radionuclides in environmental samples collected from the Chesapeake Bay in the vicinity of the Calvert Cliffs Nuclear Power Plant (CCNPP) and from the Susquehanna River-Chesapeake Bay system in the vicinity of Peach Bottom Atomic Power Station (PBAPS). The purpose of this monitoring is to determine the fate, transport, and potential effects of power plant produced radionuclides. Radionuclide concentrations in shellfish, finfish, aquatic vegetation, and sediment were measured using high-resolution gamma spectrometry. Radionuclides in environmental samples originated from natural sources, atmospheric weapons testing, and normal operations of CCNPP and PBAPS.

  2. Increase in the power of lasing on atomic and ion transitions in chemical elements

    SciTech Connect

    Klimkin, V M; Sokovikov, V G

    2007-02-28

    A method for increasing the power of pulsed lasing on atomic and ion transitions in chemical elements obtained by the conversion of the UV radiation of excimer lasers in cells with metal vapours is studied. A part of UV radiation transmitted through a cell with metal vapour is used for pumping a dye solution in such a way that the cell converter with metal vapour represents a master oscillator, while the dye cell represents an amplifier. The study is performed by the example of amplification of weak spectral components of radiation from a XeCl* laser converted in mercury and barium vapours. In the amplifying stage the longitudinal pumping of the dye is used and a scheme for suppressing self-excitation is employed. It is found by selecting dyes that the alcohol solution of uranin is nearly optimal for amplification of the 546.1-nm laser line of mercury, while the best results in amplification of the 533-nm and 648.2-nm laser lines of barium were obtained by using alcohol solutions of rhodamine 6G and oxazine 17, respectively. The power of the 546.1-nm mercury line was increased by an order of magnitude, while the power of the 533-nm and 648.2-nm lines of barium - almost by a factor of twenty-five. (lasers)

  3. Floating atomic central heating-and-power plant converted from a strategic submarine

    SciTech Connect

    Bilashenko, V.P.; Gorigledzhan, E.A.; Slonimsky, V.J.

    1993-12-31

    In accordance with {open_quotes}The Treaty on the Reduction of Strategic Offensive Arms{close_quotes} signed in July 1991, the operations envisages by {open_quotes}The Procedures for elimination of SSBN`s Launchers{close_quotes} should be accomplished at submarines of the second generation both by eliminating missile compartments together with launchers and by removal of launchers only from missile compartments. THe number of such ships could reach 30 units as has been forecasted for the year of 1998 inclusive. With regard to the fact that the remaining operation life of the main power plant equipment of a nuclear submarine decommissioned in accordance with the Treaty is about 50 per cent, potentially there is a possibility to convert them into floating atomic central heating-and-power plants. The latter variant envisaged in the {open_quotes}Procedures...{close_quotes} is preferable for developing a floating plant based on ships decommissioned from the Navy, since it permits to remove launchers without cutting and subsequent connection of main cables, pipelines and systems which provide the control of the main power plant, nuclear safety, radiological safety, damage control and fire safety of the floating plant. A submarine could be delivered for refitting into a floating plant only after accomplishing the works envisaged by the {open_quotes}Procedures...{close_quotes}.

  4. Analysis of containment venting at the Peach Bottom Atomic Power Station

    SciTech Connect

    Hanson, D.J.; Blackman, H.S.; Nelson, W.R.; Wright, R.E.; Leonard, M.T.; DiSalvo, R.

    1986-10-24

    An analysis of the extent to which containment venting would be effective in preventing or mitigating the consequences of severe accidents has been completed for the Peach Bottom Atomic Power Station, Units 2 and 3 (BWR-4s with Mark I containments). The analysis indicates that the effectiveness of venting in preventing containment overpressurization highly depends on the sequence of the severe accident. Containment venting can be effective for several classes of sequences, including transients with failure of long-term decay heat removal and loss-of-coolant accidents with breaks inside the containment. However, based on draft procedures and equipment in place at the time of the evaluation, containment venting has limited potential for further reducing the risk associated with three severe accident sequences currently identified as important risk contributors at Peach Bottom. Means of improving the potential for risk reduction is identified, but their influence on risk is not analyzed.

  5. Analysis of containment venting for the Peach Bottom Atomic Power Station

    SciTech Connect

    Hanson, D.J.; Wright, R.E.; Jenkins, J.P.

    1986-09-12

    The effectiveness of containment venting as a means of preventing or mitigating the consequences of severe accidents was evaluated for Peach Bottom Atomic Power Station Units 2 and 3 (BWR-4s with Mark I containments). Results from this evaluation indicate that the effectiveness of venting in preventing containment failure is highly dependent on the severe accident sequence. Containment venting can be effective for several classes of sequences, including loss-of-coolant accidents with breaks in the containment and transients with a failure of containment heat removal. However, based on draft procedures and equipment in place at the time of the evaluation, containment venting has limited potential for further reducing the risk associated with several sequences currently identified as significant contributors to risk. Means of improving the potential for risk reduction were identified, but their influence on risk was not analyzed.

  6. Daniell method for power spectral density estimation in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander

    2016-03-01

    An alternative method for power spectral density (PSD) estimation—the Daniell method—is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion—the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum.

  7. Daniell method for power spectral density estimation in atomic force microscopy.

    PubMed

    Labuda, Aleksander

    2016-03-01

    An alternative method for power spectral density (PSD) estimation--the Daniell method--is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion--the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum. PMID:27036781

  8. Analysis of 2011 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    SciTech Connect

    Aluzzi, F J

    2012-02-27

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, NY and the Kesselring Site Operations (KSO) facility near Ballston Spa, NY are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the US Environmental Protection Agency (EPA), which regulates these facilities. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted by KAPL to process the on-site data for the calendar year 2011. The purpose of this document is to: (1) summarize the procedures used in the preparation/analysis of the 2011 meteorological data; and (2) document adherence of these procedures to the guidance set forth in 'Meteorological Monitoring Guidance for Regulatory Modeling Applications', EPA document - EPA-454/R-99-005 (EPA-454). This document outlines the steps in analyzing and processing meteorological data from the Knolls Atomic Power Laboratory and Kesselring Site Operations facilities into a format that is compatible with the steady state dispersion model CAP88. This process is based on guidance from the EPA regarding the preparation of meteorological data for use in regulatory dispersion models. The analysis steps outlined in this document can be easily adapted to process data sets covering time period other than one year. The procedures will need to be modified should the guidance in EPA-454 be updated or revised.

  9. Low-power embedded read-only memory using atom switch and silicon-on-thin-buried-oxide transistor

    NASA Astrophysics Data System (ADS)

    Sakamoto, Toshitsugu; Tada, Munehiro; Tsuji, Yukihide; Makiyama, Hideki; Hasegawa, Takumi; Yamamoto, Yoshiki; Okanishi, Shinobu; Banno, Naoki; Miyamura, Makoto; Okamoto, Koichiro; Iguchi, Noriyuki; Ogasahara, Yasuhiro; Oda, Hidekazu; Kamohara, Shiro; Yamagata, Yasushi; Sugii, Nobuyuki; Hada, Hiromitsu

    2015-04-01

    We developed an atom-switch read-only memory (ROM) fabricated on silicon-on-thin-buried-oxide (SOTB) for use in a low-power microcontroller for the first time. An atom switch with a low programming voltage and large ON/OFF conductance ratio is suitable for low-power nonvolatile memory. The atom-switch ROM using an SOTB transistor uses a 0.34-1.2 V operating voltage and 12 µA/MHz active current (or 4.5 µW/MHz active power). Furthermore, the sleep current is as low as 0.4 µA when a body bias voltage is applied to the SOTB.

  10. Efficiency at maximum power of a heat engine working with a two-level atomic system.

    PubMed

    Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli

    2013-04-01

    We consider the finite-time operation of a quantum heat engine whose working substance is composed of a two-level atomic system. The engine cycle, consisting of two quantum adiabatic and two quantum isochoric (constant-frequency) processes and working between two heat reservoirs at temperatures T(h) and T(c)(power output with respect to two frequencies, we obtain the efficiency at maximum power output (EMP) and analyze numerically the effects of the times taken for two adiabatic and two isochoric processes on the EMP. In the absence of internally dissipative friction, we find that the EMP is bounded from the upper side by a function of the Carnot efficiency η(C), η(+)=η(C)(2)/[η(C)-(1-η(C))ln(1-η(C))], with η(C)=1-T(c)/T(h). This analytic expression is confirmed by our exact numerical result and is identical to the one derived in an engine model based on a mesoscopic or macroscopic system. If the internal friction is included, we find that the EMP decreases as the friction coefficient increases. PMID:23679385

  11. Chip Scale Atomic Resonator Frequency Stabilization System With Ultra-Low Power Consumption for Optoelectronic Oscillators.

    PubMed

    Zhao, Jianye; Zhang, Yaolin; Lu, Haoyuan; Hou, Dong; Zhang, Shuangyou; Wang, Zhong

    2016-07-01

    We present a long-term chip scale stabilization scheme for optoelectronic oscillators (OEOs) based on a rubidium coherent population trapping (CPT) atomic resonator. By locking a single mode of an OEO to the (85)Rb 3.035-GHz CPT resonance utilizing an improved phase-locked loop (PLL) with a PID regulator, we achieved a chip scale frequency stabilization system for the OEO. The fractional frequency stability of the stabilized OEO by overlapping Allan deviation reaches 6.2 ×10(-11) (1 s) and  ∼ 1.45 ×10 (-11) (1000 s). This scheme avoids a decrease in the extra phase noise performance induced by the electronic connection between the OEO and the microwave reference in common injection locking schemes. The total physical package of the stabilization system is [Formula: see text] and the total power consumption is 400 mW, which provides a chip scale and portable frequency stabilization approach with ultra-low power consumption for OEOs. PMID:26529751

  12. Environmental radionuclide concentrations in the vicinity of the Peach Bottom Atomic Power Station: 1987-1990. Final report

    SciTech Connect

    Stanek, M.A.; McLean, R.I.

    1995-12-20

    The Maryland Power Plant Research Program monitors concentrations of natural, weapons, and power plant produced radionuclides in environmental samples collected from the Susquehanna River-Chesapeake Bay system in the vicinity of Peach Bottom Atomic Power Station (PBAPS). The purpose of the monitoring is to determine the fate, transport, and potential effects of power plant produced radionuclides. The data report contains a description of monitoring activities and data collected during the period 1987 through 1990 and is the fourth in a series reporting monitoring results initiated at Peach Bottom in 1978.

  13. VUV absorption spectroscopy measurements of the role of fast neutral atoms in high-power gap breakdown

    SciTech Connect

    FILUK,A.B.; BAILEY,JAMES E.; CUNEO,MICHAEL E.; LAKE,PATRICK WAYNE; NASH,THOMAS J.; NOACK,DONALD D.; MARON,Y.

    2000-03-20

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

  14. Atomic mean excitation energies for stopping powers from local plasma oscillator strengths

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Xu, Y. J.; Chang, C. K.; Kamaratos, E.

    1984-01-01

    The stopping of a charged particle by isolated atoms is investigated theoretically using an 'atomic plasma' model in which atomic oscillator strengths are replaced by the plasma frequency spectrum. The plasma-frequency correction factor for individual electron motion proposed by Pines (1953) is incorporated, and atomic mean excitation energies are calculated for atoms through Sr. The results are compared in a graph with those obtained theoretically by Inokuti et al. (1978, 1981) and Dehmer et al. (1975) and with the experimental values compiled by Seltzer and Berger (1982): good agreement is shown.

  15. Analysis of 2014 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    SciTech Connect

    Aluzzi, Fernando J.

    2015-02-25

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, N.Y. and the Kesselring Site Operations (KSO) facility near Ballston Spa, N.Y. are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the U.S. Environmental Protection Agency (EPA), which regulates both sites. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted by KAPL to process the on-site data for the calendar year 2014.

  16. Atomic Bomb Survivors Life-Span Study: Insufficient Statistical Power to Select Radiation Carcinogenesis Model.

    PubMed

    Socol, Yehoshua; Dobrzyński, Ludwik

    2015-01-01

    The atomic bomb survivors life-span study (LSS) is often claimed to support the linear no-threshold hypothesis (LNTH) of radiation carcinogenesis. This paper shows that this claim is baseless. The LSS data are equally or better described by an s-shaped dependence on radiation exposure with a threshold of about 0.3 Sievert (Sv) and saturation level at about 1.5 Sv. A Monte-Carlo simulation of possible LSS outcomes demonstrates that, given the weak statistical power, LSS cannot provide support for LNTH. Even if the LNTH is used at low dose and dose rates, its estimation of excess cancer mortality should be communicated as 2.5% per Sv, i.e., an increase of cancer mortality from about 20% spontaneous mortality to about 22.5% per Sv, which is about half of the usually cited value. The impact of the "neutron discrepancy problem" - the apparent difference between the calculated and measured values of neutron flux in Hiroshima - was studied and found to be marginal. Major revision of the radiation risk assessment paradigm is required. PMID:26673526

  17. Radiotoxicity of Actinides During Transmutation in Final Stage of Atomic Power

    SciTech Connect

    Gerasimov, Aleksander S.; Bergelson, Boris R.; Myrtsymova, Lidia A.; Tikhomirov, Georgy V.

    2002-07-01

    Characteristics of a transmutation mode in final stage of atomic power are analyzed. In this stage, transmutation of actinides accumulated in transmutation reactors is performed without feed by actinides from other reactors. The radiotoxicity during first 20 years of transmutation is caused mainly by {sup 244}Cm. During following period of time, {sup 252}Cf is main nuclide. Contribution of {sup 246}Cm and {sup 250}Cf is 5-7 times less than that of {sup 252}Cf. During 50 years of a transmutation, the total radiotoxicity falls by 50 times. Long-lived radiotoxicity decreases slowly. During the period between T=50 years and T=100 years, long-lived radiotoxicity falls by 3.7 times. For each following 50 years after this period, long-lived radiotoxicity falls by 3.2 times. These results corresponding to neutron flux density 10{sup 14} neutr/(cm{sup 2}s) in transmutation reactor demonstrate that the final stage of a transmutation should be performed with use of high flux transmutation facilities which provide shorter time of transmutation. (authors)

  18. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    SciTech Connect

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

  19. Peach Bottom Atomic Power Station recirc pipe dose rates with zinc injection and condenser replacement

    SciTech Connect

    DiCello, D.C.; Odell, A.D.; Jackson, T.J.

    1995-03-01

    Peach Bottom Atomic Power Station (PBAPS) is located near the town of Delta, Pennsylvania, on the west bank of the Susquehanna River. It is situated approximately 20 miles south of Lancaster, Pennsylvania. The site contains two boiling water reactors of General Electric design and each rated at 3,293 megawatts thermal. The units are BWR 4s and went commercial in 1977. There is also a decommissioned high temperature gas-cooled reactor on site, Unit 1. PBAPS Unit 2 recirc pipe was replaced in 1985 and Unit 3 recirc pipes replaced in 1988 with 326 NGSS. The Unit 2 replacement pipe was electropolished, and the Unit 3 pipe was electropolished and passivated. The Unit 2 brass condenser was replaced with a Titanium condenser in the first quarter of 1991, and the Unit 3 condenser was replaced in the fourth quarter of 1991. The admiralty brass condensers were the source of natural zinc in both units. Zinc injection was initiated in Unit 2 in May 1991, and in Unit 3 in May 1992. Contact dose rate measurements were made in standard locations on the 28-inch recirc suction and discharge lines to determine the effectiveness of zinc injection and to monitor radiation build-up in the pipe. Additionally, HPGe gamma scans were performed to determine the isotopic composition of the oxide layer inside the pipe. In particular, the specific ({mu}Ci/cm{sup 2}) of Co-60 and Zn-65 were analyzed.

  20. Environmental radionuclide concentrations in the vicinity of the Calvert Cliffs Nuclear Power Plant and the Peach Bottom Atomic Power Station: 1996--1997. Final report

    SciTech Connect

    McLean, R.I.; Jones, T.S.

    1998-11-20

    The Maryland Power Plant Research Program monitors concentrations of natural, weapons, and power plant produced radionuclides in environmental samples collected from the Chesapeake Bay in the vicinity of the Calvert Cliffs Nuclear Power Plant (CCNPP) and from the Susquehanna River-Chesapeake Bay system in the vicinity of Peach Bottom Atomic Power Station (PBAPS). The purpose of this monitoring is to determine the fate, transport, and potential effects of power plant-produced radionuclides. This report contains a description of monitoring activities and data collected during the 1996 and 1997 calendar years. Radionuclide concentrations in shellfish, finfish, aquatic vegetation, and sediment were measured using high-resolution gamma spectrometry. Radionuclides in environmental samples originated from natural sources, historic atmospheric weapons testing, and normal operations of CCNPP and PBAPS.

  1. Knolls Atomic Power Laboratory annual environmental monitoring report. Calendar Year 1993

    SciTech Connect

    Not Available

    1993-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. Operations at the three KAPL sites resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations. KAPL environmental controls are subject to applicable state and federal regulations governing use, emission, treatment, storage and/or disposal of solid, liquid and gaseous materials. Some non-radiological water and air emissions are generated and treated on-site prior to discharge to the environment. Liquid effluents and air emissions are controlled and monitored in accordance with permits issued by the Connecticut Department of Environmental Protection (CTDEP) for the Windsor Site and by the New York State Department of Environmental Conservation (NYSDEC) for the Knolls and Kesselring Sites. The liquid effluent monitoring data show that KAPL has maintained a high degree of compliance with permit requirements. Where required, radionuclide air emission sources are authorized by the US Environmental Protection Agency (EPA). The non-radiological air emissions, with the exception of opacity for the boilers, are not required to be monitored.

  2. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    SciTech Connect

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  3. Comparison between power-law rheological parameters of living cells in frequency and time domains measured by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryosuke; Okajima, Takaharu

    2016-08-01

    We investigated how stress relaxation mapping is quantified compared with the force modulation mapping of confluent epithelial cells using atomic force microscopy (AFM). Using a multi-frequency AFM technique, we estimated the power-law rheological behaviors of cells simultaneously in time and frequency domains. When the power-law exponent α was low (<0.1), the α values were almost the same in time and frequency domains. On the other hand, we found that at the high values (α > 0.1), α in the time domain was underestimated relative to that in the frequency domain, and the difference increased with α, whereas the cell modulus was overestimated in the time domain. These results indicate that power-law rheological parameters estimated by stress relaxation are sensitive to lag time during initial indentation, which is inevitable in time-domain AFM experiments.

  4. Use of Atomic Fuels for Rocket-Powered Launch Vehicles Analyzed

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1999-01-01

    At the NASA Lewis Research Center, the launch vehicle gross lift-off weight (GLOW) was analyzed for solid particle feed systems that use high-energy density atomic propellants (ref. 1). The analyses covered several propellant combinations, including atoms of aluminum, boron, carbon, and hydrogen stored in a solid cryogenic particle, with a cryogenic liquid as the carrier fluid. Several different weight percents for the liquid carrier were investigated, and the GLOW values of vehicles using the solid particle feed systems were compared with that of a conventional oxygen/hydrogen (O2/H2) propellant vehicle. Atomic propellants, such as boron, carbon, and hydrogen, have an enormous potential for high specific impulse Isp operation, and their pursuit has been a topic of great interest for decades. Recent and continuing advances in the understanding of matter, the development of new technologies for simulating matter at its most basic level, and manipulations of matter through microtechnology and nanotechnology will no doubt create a bright future for atomic propellants and an exciting one for the researchers exploring this technology.

  5. Atomic Oxygen Exposure of Power System and other Spacecraft Materials: Results of the EOIM-3 Experiment

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.; Ferguson, Dale C.

    1997-01-01

    In order to test their reactivity with Atomic Oxygen, twenty five materials were flown on the EOIM-3 (Evaluation of Oxygen Interactions with Materials) portion of the STS-46 Mission. These materials include refractory metals, candidate insulation materials, candidate radiator coatings, and a selection of miscellaneous materials. This report documents the results of the pre- and post-flight analysis of these materials.

  6. Source terms released into the environment for a station blackout severe accident at the Peach Bottom Atomic Power Station

    SciTech Connect

    Carbajo, J.J.

    1995-07-01

    This study calculates source terms released into the environment at the Peach Bottom Atomic Power Station after containment failure during a postulated low-pressure, short-term station blackout severe accident. The severe accident analysis code MELCOR, version 1.8.1, was used in these calculations. Source terms were calculated for three different containment failure modes. The largest environmental releases occur for early containment failure at the drywell liner in contact with the cavity by liner melt-through. This containment failure mode is very likely to occur when the cavity is dry during this postulated severe accident sequence.

  7. Infrared and thermoelectric power generation in thin atomic layer deposited Nb-doped TiO{sub 2} films

    SciTech Connect

    Mann, Harkirat S.; Lang, Brian N.; Schwab, Yosyp; Scarel, Giovanna; Niemelä, Janne-Petteri; Karppinen, Maarit

    2015-01-15

    Infrared radiation is used to radiatively transfer heat to a nanometric power generator (NPG) device with a thermoelectric Nb-doped TiO{sub 2} film deposited by atomic layer deposition (ALD) as the active element, onto a borosilicate glass substrate. The linear rise of the produced voltage with respect to the temperature difference between the “hot” and “cold” junctions, typical of the Seebeck effect, is missing. The discovery of the violation of the Seebeck effect in NPG devices combined with the ability of ALD to tune thermoelectric thin film properties could be exploited to increase the efficiency of these devices for energy harvesting purposes.

  8. Mapping power-law rheology of living cells using multi-frequency force modulation atomic force microscopy

    SciTech Connect

    Takahashi, Ryosuke; Okajima, Takaharu

    2015-10-26

    We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained in force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.

  9. High-power Ti:sapphire lasers for spectroscopy of antiprotonic atoms and radioactive ions

    NASA Astrophysics Data System (ADS)

    Hori, M.; Dax, A.; Soter, A.

    The ASACUSA collaboration has developed injection-seeded Ti:sapphire lasers of linewidth Γpl ˜ 6 MHz, pulse energy 50-100 mJ, and output wavelength λ = 726-941 nm. They are being used in two-photon spectroscopy experiments of antiprotonic helium atoms at the Antiproton Decelerator (AD) of CERN. Ti:sapphire lasers of larger linewidth Γpl ˜ 100 MHz but more robust design will also be used in collinear resonance ionization spectroscopy (CRIS) experiments of neutron-deficient francium ions at the ISOLDE facility.

  10. High-power Ti:sapphire lasers for spectroscopy of antiprotonic atoms and radioactive ions

    NASA Astrophysics Data System (ADS)

    Hori, M.; Dax, A.; Soter, A.

    2012-12-01

    The ASACUSA collaboration has developed injection-seeded Ti:sapphire lasers of linewidth Γpl ˜ 6 MHz, pulse energy 50-100 mJ, and output wavelength λ = 726-941 nm. They are being used in two-photon spectroscopy experiments of antiprotonic helium atoms at the Antiproton Decelerator (AD) of CERN. Ti:sapphire lasers of larger linewidth Γpl ˜ 100 MHz but more robust design will also be used in collinear resonance ionization spectroscopy (CRIS) experiments of neutron-deficient francium ions at the ISOLDE facility.

  11. INSTRUMENTS AND METHODS OF INVESTIGATION: Radiation safety in the Russian atomic power industry

    NASA Astrophysics Data System (ADS)

    Gerasimov, Aleksandr S.; Kiselev, Gennadii V.

    2003-07-01

    Of all the radioactive wastes known in nuclear power industry and engineering, long-lived actinides and fission products from spent nuclear fuel are the most hazardous. One way to reduce their radiation hazard is to resort to nuclear transmutation, which can be performed either in reactors of various types or in accelerator-driven subcritical systems, whose nuclear safety is superior to that of conventional reactors. Fundamentally resolving the problem of the destruction of long-lived radioactive wastes is likely to stimulate progress in the development of the nuclear power industry.

  12. 78 FR 26401 - Connecticut Yankee Atomic Power Company, Haddam Neck Plant, Environmental Assessment and Finding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... licensing of production and utilization facilities (76 FR 72560; November 23, 2011) (EP Final Rule). The EP... of Spent Fuel in NRC-Approved Storage Casks at Power Reactor Sites (55 FR 29181; July 18, 1990), the... (55 FR 29185), the Commission responded to comments related to emergency preparedness for spent...

  13. 78 FR 45984 - Yankee Atomic Electric Company, Yankee Nuclear Power Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... (November 23, 2011; 76 FR 72560) (EP Final Rule). The EP Final Rule was effective on December 23, 2011, with... adequate protection. On page 76 FR 72563 of the Federal Register notice for the EP Final Rule, the... of Spent Fuel in NRC-Approved Storage Casks at Power Reactor Sites (55 FR 29181; July 18, 1990),...

  14. Environmental radionuclide concentrations in the vicinity of the peach bottom atomic power station: 1985-1986. Data report

    SciTech Connect

    Domotor, S.L.; McLean, R.I.

    1989-07-01

    High-resolution gamma spectroscopy was used to determine radionuclide concentrations in over 450 biota and sediment samples collected from the Susquehanna River-Chesapeake Bay system in the vicinity of the Peach Bottom Atomic Power Station (PBAPS) during 1985-1986. Low concentrations of PBAPS-related radionuclides (Zn65, Cs-134, and Cs-137) were detected in finfish, mussels, and crayfish. These PBAPS-related radionuclides and Co-60 were also detected in sediments. I-131 attributable to the Chernobyl reactor accident (April 26, 1986) was detected in environmental samples collected in May 1986. PBAPS-related radionuclide concentrations in biota and sediments represent small increments to the Susquehanna River-Chesapeake Bay system relative to natural and weapons test levels; radionuclide releases by PBAPS, and radiation doses to man, are well within regulatory limits.

  15. Multi-V-type and Λ-type electromagnetically induced transparency experiments in rubidium atoms with low-power low-cost free running single mode diode lasers

    NASA Astrophysics Data System (ADS)

    Lavín Varela, S.; León Suazo, J. A.; Gutierrez González, J.; Vargas Roco, J.; Buberl, T.; Aguirre Gómez, J. G.

    2016-05-01

    In this work we present the experimental realization of electromagnetically induced transparency (EIT) in A-type and multi-V-type configurations in a sample of rubidium atoms inside a vapor cell at room temperature. Typical EIT windows are clearly visible in the Doppler- broadened absorption signal of the weak probe beam. The coherent optical pump and probe fields are produced by two tunable low-cost, low-power, continuous-wave (cw), free-running and single mode operated diode laser systems, temperature stabilized and current controlled, tuned to the D2 line of rubidium atoms at 780.2 nm wavelength. The continuum wave and single mode operation of our laser systems are confirmed by direct and saturated absorption spectroscopy techniques. Among other applications, these simple experiments can be used as a low-cost undergraduate laboratory in atomic physics, laser physics, coherent light-atom interaction, and high resolution atomic spectroscopy.

  16. Selection of higher eigenmode amplitude based on dissipated power and virial contrast in bimodal atomic force microscopy

    SciTech Connect

    Diaz, Alfredo J.; Eslami, Babak; López-Guerra, Enrique A.; Solares, Santiago D.

    2014-09-14

    This paper explores the effect of the amplitude ratio of the higher to the fundamental eigenmode in bimodal atomic force microscopy (AFM) on the phase contrast and the dissipated power contrast of the higher eigenmode. We explore the optimization of the amplitude ratio in order to maximize the type of contrast that is most relevant to the particular study. Specifically, we show that the trends in the contrast range behave differently for different quantities, especially the dissipated power and the phase, with the former being more meaningful than the latter (a similar analysis can be carried out using the virial, for which we also provide a brief example). Our work is based on numerical simulations using two different conservative-dissipative tip-sample models, including the standard linear solid and the combination of a dissipation coefficient with a conservative model, as well as experimental images of thin film Nafion{sup ®} proton exchange polymers. We focus on the original bimodal AFM method, where the higher eigenmode is driven with constant amplitude and frequency (i.e., in “open loop”).

  17. Magnetospheric effects of ion and atom injections by the satellite power system

    SciTech Connect

    Chiu, Y.T.; Luhmann, J.G.; Schulz, M.; Cornwall, J.M.

    1980-07-01

    This is the final report of a two-year assessment of magnetospheric effects of the construction and operation of a satellite power system. This assessment effort is based on application of present scientific knowledge rather than on original scientific research. As such, it appears that mass and energy injections of the system are sufficient to modify the magnetosphere substantially, to the extent of possibly requiring mitigation measures for space systems but not to the extent of causing major redirection of efforts and concepts. The scale of the SPS is so unprecedentedly large, however, that these impressions require verification (or rejection) by in-depth assessment based on original scientific treatment of the principal issues. Indeed, it is perhaps appropriate to state that present ignorance far exceeds present knowledge in regard to SPS magnetospheric effects, even though we only seek to define the approximate limits of magnetospheric modifications here. Modifications of the space radiation environment, of the atmospheric airglow background, of the auroral response to solar activity and of the fluctuations in space plasma density are identified to be the principal impacts.

  18. Atomic Calligraphy

    NASA Astrophysics Data System (ADS)

    Imboden, Matthias; Pardo, Flavio; Bolle, Cristian; Han, Han; Tareen, Ammar; Chang, Jackson; Christopher, Jason; Corman, Benjamin; Bishop, David

    2013-03-01

    Here we present a MEMS based method to fabricate devices with a small number of atoms. In standard semiconductor fabrication, a large amount of material is deposited, after which etching removes what is not wanted. This technique breaks down for structures that approach the single atom limit, as it is inconceivable to etch away all but one atom. What is needed is a bottom up method with single or near single atom precision. We demonstrate a MEMS device that enables nanometer position controlled deposition of gold atoms. A digitally driven plate is swept as a flux of gold atoms passes through an aperture. Appling voltages on four comb capacitors connected to the central plate by tethers enable nanometer lateral precision in the xy plane over 15x15 sq. microns. Typical MEMS structures have manufacturing resolutions on the order of a micron. Using a FIB it is possible to mill apertures as small as 10 nm in diameter. Assuming a low incident atomic flux, as well as an integrated MEMS based shutter with microsecond response time, it becomes possible to deposit single atoms. Due to their small size and low power consumption, such nano-printers can be mounted directly in a cryogenic system at ultrahigh vacuum to deposit clean quench condensed metallic structures.

  19. Measures of nonclassicality for a two-level atom interacting with power-law potential field under decoherence effect

    NASA Astrophysics Data System (ADS)

    Abdel-Khalek, S.; Berrada, K.; Alkhateeb, Sadah A.

    2016-09-01

    In this paper, we propose a useful quantum system to perform different tasks of quantum information and computational technologies. We explore the required optimal conditions for this system that are feasible with real experimental realization. We present an active way to control the variation of some measures of nonclassicality considering the time-dependent coupling and photon transition effects under a model that closely describes a realistic experimental scenario. We investigate qualitatively the quantum measures for a two-level atom system interacting with a quantum field initially defined in a coherent state in the framework of power-law potentials (PLPCSs). We study the nonlocal correlation in the whole system state using the negativity as a measure of entanglement in terms of the exponent parameter, number of photon transition, and phase damping effect. The influences of the different physical parameters on the statistical properties and purity of the field are also demonstrated during the time evolution. The results indicate that the preservation and enhancement of entanglement greatly benefit from the combination of the choice of the physical parameters. Finally, we explore an interesting relationship between the different quantum measures of non-classicality during the time evolution in the absence and presence of time-dependent coupling effect.

  20. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Convergence of the Uncertainty Results

    SciTech Connect

    Bixler, Nathan E.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Eckert-Gallup, Aubrey Celia; Mattie, Patrick D.; Ghosh, S. Tina

    2014-02-01

    This paper describes the convergence of MELCOR Accident Consequence Code System, Version 2 (MACCS2) probabilistic results of offsite consequences for the uncertainty analysis of the State-of-the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout scenario at the Peach Bottom Atomic Power Station. The consequence metrics evaluated are individual latent-cancer fatality (LCF) risk and individual early fatality risk. Consequence results are presented as conditional risk (i.e., assuming the accident occurs, risk per event) to individuals of the public as a result of the accident. In order to verify convergence for this uncertainty analysis, as recommended by the Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards, a ‘high’ source term from the original population of Monte Carlo runs has been selected to be used for: (1) a study of the distribution of consequence results stemming solely from epistemic uncertainty in the MACCS2 parameters (i.e., separating the effect from the source term uncertainty), and (2) a comparison between Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) in order to validate the original results obtained with LHS. Three replicates (each using a different random seed) of size 1,000 each using LHS and another set of three replicates of size 1,000 using SRS are analyzed. The results show that the LCF risk results are well converged with either LHS or SRS sampling. The early fatality risk results are less well converged at radial distances beyond 2 miles, and this is expected due to the sparse data (predominance of “zero” results).

  1. Technical evaluation report on the adequacy of station electric distribution system voltages for the Peach Bottom Atomic Power Station. Units 2 and 3

    SciTech Connect

    White, R.L.

    1982-06-21

    This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Peach Bottom Atomic Power Station, Units 2 and 3. The evaluation is to determine if the onsite distribution system, in conjunction with the offsite power sources, has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The analysis submitted indicates that the capacity is sufficient to meet the NRC requirements provided specific plant procedures are followed for shutting down the second unit after an accident in the first unit and with a loss of one offsite source.

  2. International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability

    SciTech Connect

    Not Available

    1993-10-01

    This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

  3. Radio frequency plasma power dependence of the moisture permeation barrier characteristics of Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition

    SciTech Connect

    Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 ; Choi, Hagyoung; Lee, Sanghun; Jeon, Heeyoung; Jeon, Hyeongtag; Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791

    2013-11-07

    In the present study, we investigated the gas and moisture permeation barrier properties of Al{sub 2}O{sub 3} films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH{sub 3}){sub 3}] as the Al source and O{sub 2} plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al{sub 2}O{sub 3} at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradation test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10{sup −4} gm{sup −2}day{sup −1} and 1.2 × 10{sup −3} gm{sup −2}day{sup −1}, respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O{sub 2} plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties.

  4. Unexpected high power performance of atomic layer deposition coated Li[Ni1/3Mn1/3Co1/3]O2 cathodes

    NASA Astrophysics Data System (ADS)

    Kim, Ji Woo; Travis, Jonathan J.; Hu, Enyuan; Nam, Kyung-Wan; Kim, Seul Cham; Kang, Chan Soon; Woo, Jae-Ha; Yang, Xiao-Qing; George, Steven M.; Oh, Kyu Hwan; Cho, Sung-Jin; Lee, Se-Hee

    2014-05-01

    Electric-powered transportation requires an efficient, low-cost, and safe energy storage system with high energy density and power capability. Despite its high specific capacity, the current commercially available cathode material for today's state-of-art Li-ion batteries, lithium nickel-manganese-cobalt oxide Li[Ni1/3 Mn1/3Co1/3]O2 (NMC), suffers from poor cycle life for high temperature operation and marginal rate capability resulting from irreversible degradation of the cathode material upon cycling. Using an atomic-scale surface engineering, the performance of Li[Ni1/3Mn1/3Co1/3]O2 in terms of rate capability and high temperature cycle-life is significantly improved. The Al2O3 coating deposited by atomic layer deposition (ALD) dramatically reduces the degradation in cell conductivity and reaction kinetics. This durable ultra-thin Al2O3-ALD coating layer also improves stability for the NMC at an elevated temperature (55 °C). The experimental results suggest that a highly durable and safe cathode material enabled by atomic-scale surface modification could meet the demanding performance and safety requirements of next-generation electric vehicles.

  5. Autler-Townes splitting via frequency up-conversion at ultralow-power levels in cold 87Rb atoms using an optical nanofiber

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Gokhroo, Vandna; Deasy, Kieran; Chormaic, Síle Nic

    2015-05-01

    The tight confinement of the evanescent light field around the waist of an optical nanofiber makes it a suitable tool for studying nonlinear optics in atomic media. Here, we use an optical nanofiber embedded in a cloud of laser-cooled 87Rb for near-infrared frequency up-conversion via a resonant two-photon process. Sub-nW powers of the two-photon radiation, at 780 and 776 nm, copropagate through the optical nanofiber and the generation of 420 nm photons is observed. A measurement of the Autler-Townes splitting provides a direct measurement of the Rabi frequency of the 780 nm transition. Through this method, dephasings of the system can be studied. In this work, the optical nanofiber is used as an excitation and detection tool simultaneously, and it highlights some of the advantages of using fully fibered systems for nonlinear optics with atoms.

  6. Atomic Fisher information versus atomic number

    NASA Astrophysics Data System (ADS)

    Nagy, Á.; Sen, K. D.

    2006-12-01

    It is shown that the Thomas Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gáspár provides a qualitatively correct expression for the Fisher information: Gáspár's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number.

  7. Ultra-low voltage and ultra-low power consumption nonvolatile operation of a three-terminal atomic switch.

    PubMed

    Wang, Qi; Itoh, Yaomi; Tsuruoka, Tohru; Aono, Masakazu; Hasegawa, Tsuyoshi

    2015-10-21

    Nonvolatile three-terminal operation, with a very small range of bias sweeping (-80 to 250 mV), a high on/off ratio of up to six orders of magnitude, and a very small gate leakage current (<1 pA), is demonstrated using an Ag (gate)/Ta2 O5 (ionic transfer layer)/Pt (source), Pt (drain) three-terminal atomic switch structure. PMID:26314544

  8. FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004)

    SciTech Connect

    Erika Bailey

    2011-07-07

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963.

  9. 76 FR 52357 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Unit 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit...\\ Requestors should note that the filing requirements of the NRC's E-Filing Rule (72 FR 49139; August 28, 2007... Power Ratio (SLMCPR) values. The SLMCPR is established to assure that at least 99.9% of the fuel rods...

  10. A Physicist in the Corridors of Power: P. M. S. Blackett's Opposition to Atomic Weapons Following the War

    NASA Astrophysics Data System (ADS)

    Nye, M. J.

    1999-06-01

    . Blackett had been a naval officer during the First World War, a veteran of Ernest Rutherford's Cavendish Laboratory and head of the physics department at Manchester in the interwar years, and he was a founder of operational research during the Second World War. Vilified in the British and American press in the 1940s and 1950s, he continued to contest prevailing nuclear weapons strategy, finding a more favorable reception for his arguments by the early 1960s. This paper examines the publication and reception of Blackett's views on atomic weapons, analyzing the risks to a physicist who writes about a subject other than physics, as well as the circumstances that might compel one to do so.

  11. Light Water Breeder end-of-life component examinations at Shippingport Atomic Power Station and module visual and dimensional examinations at Expended Core Facility (LWBR Development Program)

    SciTech Connect

    Wargo, J.E.

    1987-10-01

    This report presents highlights of visual and dimensional examinations of the Light Water Breeder Reactor fuel assemblies and selected core components following five years of power operation in which the core achieved 29,047 effective full power hours. Each type of fuel assembly (seed, blanket, and reflector) is described, and the end-of-life conditions are documented in photographs and data plots. Fuel modules were examined immediately after removal from the reactor vessel at the Shippingport Atomic Power Station and after shipment to the Expended Core Facility at the Naval Reactors Facility in Idaho. Further inspection was performed on one seed and one reflector assembly after their external support shells were removed. Module length changes and bow data are presented for selected assemblies. Structural component examinations include magnetic particle testing and ultrasonic test inspection of the LWBR reactor vessel closure head. Visual inspections were also performed on compression sleeves and guide tube extensions which formed part of the guide path for the movable fuel assemblies. 4 refs., 103 figs., 5 tabs.

  12. FINAL REPORT – CHARACTERIZATION SURVEY OF THE SPRU LOWER LEVEL HILLSIDE AREA AT THE KNOLLS ATOMIC POWER LABORATORY, NISKAYUNA, NEW YORK DCN 5146-SR-01-0

    SciTech Connect

    Evan Harpenau

    2011-08-29

    The Separations Process Research Unit (SPRU) is located within the boundary of Knolls Atomic Power Laboratory (KAPL) at 2425 River Road, Niskayuna, Schenectady County, New York (Figure A-1). SPRU was designed and developed to research an efficient process to chemically separate plutonium and uranium from processed fuel. Buildings H2 and G2 were the primary research and process facilities. SPRU operated between February 1950 and October 1953 at which time the research was successful in developing useable reduction oxidation and plutonium uranium extraction processes. These processes were subsequently moved to the Hanford and the Savannah River sites for full-scale operations. Building H2 was used by KAPL after the SPRU process ceased until the late 1990s for radioactive wastewater processing and Building G2 was utilized for offices. Process areas and equipment were maintained in a safe condition under a surveillance and maintenance program.

  13. Summary final report: Contract between the Japan atomic power company and the U.S. Department of Energy Improvement of core safety - study on GEM (III)

    SciTech Connect

    Burke, T.M.; Lucoff, D.M.

    1997-03-18

    This report provides a summary of activities associated with the technical exchange between representatives of the Japan Atomic Power Company (JAPC) and the United States Department of Energy (DOE) regarding the development and testing of Gas Expansion Modules (GEM) at the Fast Flux Test Facility (FFTF). Issuance of this report completes the scope of work defined in the original contract between JAPC and DOE titled ''Study on Improvement of Core Safety - Study on GEM (III).'' Negotiations related to potential modification of the contract are in progress. Under the proposed contract modification, DOE would provide an additional report documenting FFTF pump start tests with GEMs and answer additional JAPC questions related to core safety with and without GEMs.

  14. Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators

    NASA Technical Reports Server (NTRS)

    Mcclure, Donald J.

    1988-01-01

    A system for the vacuum deposition of atomic-oxygen durable coatings for reflective solar dynamic power systems (SDPS) concentrators was designed and demonstrated. The design issues pertinent to SDPS were developed by the Government Aerospace Systems Division of the Harris Corporation and are described in NASA-CR-179489. Both design and demonstration phases have been completed. At the time of this report the deposition system was ready for coating of facets for SDPS concentrators. The materials issue relevant to the coating work were not entirely resolved. These issues can only be resolved when substrates which are comparable to those which will be used in flight hardware are available. The substrates available during the contract period were deficient in the areas of surface roughness and contamination. These issues are discussed more thoroughly in the body of the report.

  15. Low power ovonic threshold switching characteristics of thin GeTe{sub 6} films using conductive atomic force microscopy

    SciTech Connect

    Manivannan, Anbarasu E-mail: ranjith@iith.ac.in; Sahu, Smriti; Myana, Santosh Kumar; Miriyala, Kumaraswamy; Ramadurai, Ranjith E-mail: ranjith@iith.ac.in

    2014-12-15

    Minimizing the dimensions of the electrode could directly impact the energy-efficient threshold switching and programming characteristics of phase change memory devices. A ∼12–15 nm AFM probe-tip was employed as one of the electrodes for a systematic study of threshold switching of as-deposited amorphous GeTe{sub 6} thin films. This configuration enables low power threshold switching with an extremely low steady state current in the on state of 6–8 nA. Analysis of over 48 different probe locations on the sample reveals a stable Ovonic threshold switching behavior at threshold voltage, V{sub TH} of 2.4 ± 0.5 V and the off state was retained below a holding voltage, V{sub H} of 0.6 ± 0.1 V. All these probe locations exhibit repeatable on-off transitions for more than 175 pulses at each location. Furthermore, by utilizing longer biasing voltages while scanning, a plausible nano-scale control over the phase change behavior from as-deposited amorphous to crystalline phase was studied.

  16. VCSELs for atomic clocks

    NASA Astrophysics Data System (ADS)

    Serkland, Darwin K.; Peake, Gregory M.; Geib, Kent M.; Lutwak, Robert; Garvey, R. Michael; Varghese, Mathew; Mescher, Mark

    2006-02-01

    The spectroscopic technique of coherent population trapping (CPT) enables an all-optical interrogation of the groundstate hyperfine splitting of cesium (or rubidium), compared to the optical-microwave double resonance technique conventionally employed in atomic frequency standards. All-optical interrogation enables the reduction of the size and power consumption of an atomic clock by two orders of magnitude, and vertical-cavity surface-emitting lasers (VCSELs) are preferred optical sources due to their low power consumption and circular output beam. Several research teams are currently using VCSELs for DARPA's chip-scale atomic clock (CSAC) program with the goal of producing an atomic clock having a volume < 1 cm^3, a power consumption < 30 mW, and an instability (Allan deviation) < 1x10^-11 during a 1-hour averaging interval. This paper describes the VCSEL requirements for CPT-based atomic clocks, which include single mode operation, single polarization operation, modulation bandwidth > 4 GHz, low power consumption (for the CSAC), narrow linewidth, and low relative intensity noise (RIN). A significant manufacturing challenge is to reproducibly obtain the required wavelength at the specified VCSEL operating temperature and drive current. Data are presented that show the advantage of operating at the D1 (rather than D2) resonance of the alkali atoms. Measurements of VCSEL linewidth will be discussed in particular, since atomic clock performance is especially sensitive to this parameter.

  17. Liquid atomization

    NASA Astrophysics Data System (ADS)

    Bayvel, L.; Orzechowski, Z.

    The present text defines the physical processes of liquid atomization, the primary types of atomizers and their design, and ways of measuring spray characteristics; it also presents experimental investigation results on atomizers and illustrative applications for them. Attention is given to the macrostructural and microstructural parameters of atomized liquids; swirl, pneumatic, and rotary atomizers; and optical drop sizing methods, with emphasis on nonintrusive optical methods.

  18. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-01-01

    (135)Cs/(137)Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure (135)Cs, there were no (135)Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited (135)Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of (134)Cs, (135)Cs, and (137)Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the (134)Cs/(137)Cs activity ratio (1.033 ± 0.006) and (135)Cs/(137)Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace (135)Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%-52.6%. The obtained (135)Cs/(137)Cs database will be useful for its application as a geochemical tracer in the future. PMID:27052481

  19. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident

    PubMed Central

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-01-01

    135Cs/137Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure 135Cs, there were no 135Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited 135Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of 134Cs, 135Cs, and 137Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the 134Cs/137Cs activity ratio (1.033 ± 0.006) and 135Cs/137Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace 135Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%–52.6%. The obtained 135Cs/137Cs database will be useful for its application as a geochemical tracer in the future. PMID:27052481

  20. Release of radionuclides and chelating agents from cement-solidified decontamination low-level radioactive waste collected from the Peach Bottom Atomic Power Station Unit 3

    SciTech Connect

    Akers, D.W.; Kraft, N.C.; Mandler, J.W.

    1994-03-01

    As part of a study being performed for the Nuclear Regulatory Commission (NRC), small-scale waste-form specimens were collected during a low oxidation-state transition-metal ion (LOMI)-nitric permanganate (NP)-LOMI solidification performed in October 1989 at the Peach Bottom Atomic Power Station Unit 3. The purpose of this program was to evaluate the performance of cement-solidified decontamination waste to meet the low-level waste stability requirements defined in the NRC`s ``Technical Position on Waste Form,`` Revision 1. The samples were acquired and tested because little data have been obtained on the physical stability of actual cement-solidified decontamination ion-exchange resin waste forms and on the leachability of radionuclides and chelating agents from those waste forms. The Peach Bottom waste-form specimens were subjected to compressive strength, immersion, and leach testing in accordance with the NRC`s ``Technical Position on Waste Form,`` Revision 1. Results of this study indicate that the specimens withstood the compression tests (>500 psi) before and after immersion testing and leaching, and that the leachability indexes for all radionuclides, including {sup 14}C, {sup 99}{Tc}, and {sup 129}I, are well above the leachability index requirement of 6.0, required by the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  1. [Carbon stable isotope composition (delta 13C) of lichen thalli in the forests in the vicinity of the Chernobyl atomic power station].

    PubMed

    Biazrov, L G; Gongal'skiĭ, K B; Pel'gunova, L A; Tiunov, A V

    2010-01-01

    The stable isotope abundance of carbon in the lichens Cladina mitis, Cladonia crispata Hypogymnia physodes, Parmelia sulcata has been investigated in a study relating these values with known levels of 106Ru, 134Cs, 137Cs and 144Ce defined activity in their thalli in the pine forests of region within a 30-km radius of the Chernobyl atomic power station and beyond it (37 km). All 63 samples of the lichens were obtained from 7 different sites. Small effects on delta 13C values in the lichens Cladina mitis, Hypogymnia physodes were found to be associated with distance from CNPP, activity level of radionuclides in them thalli whereas at Cladonia crispata is observed weighting of carbon with increase in values of 134Cs and 137Cs activity in thalli. Values of delta 13C the investigated lichen species more depends on habitat conditions rather than from levels of thalli radioactivity. In our study we didn't reveal the isotope specificity of any one species as it was not possible to establish a correlation between values of delta 13C and a particular species. PMID:20297687

  2. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-04-01

    135Cs/137Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure 135Cs, there were no 135Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited 135Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of 134Cs, 135Cs, and 137Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the 134Cs/137Cs activity ratio (1.033 ± 0.006) and 135Cs/137Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace 135Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%–52.6%. The obtained 135Cs/137Cs database will be useful for its application as a geochemical tracer in the future.

  3. Surface Roughness and Critical Exponent Analyses of Boron-Doped Diamond Films Using Atomic Force Microscopy Imaging: Application of Autocorrelation and Power Spectral Density Functions

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Vierkant, G. P.

    2014-09-01

    The evolution of the surface roughness of growing metal or semiconductor thin films provides much needed information about their growth kinetics and corresponding mechanism. While some systems show stages of nucleation, coalescence, and growth, others exhibit varying microstructures for different process conditions. In view of these classifications, we report herein detailed analyses based on atomic force microscopy (AFM) characterization to extract the surface roughness and growth kinetics exponents of relatively low boron-doped diamond (BDD) films by utilizing the analytical power spectral density (PSD) and autocorrelation function (ACF) as mathematical tools. The machining industry has applied PSD for a number of years for tool design and analysis of wear and machined surface quality. Herein, we present similar analyses at the mesoscale to study the surface morphology as well as quality of BDD films grown using the microwave plasma-assisted chemical vapor deposition technique. PSD spectra as a function of boron concentration (in gaseous phase) are compared with those for samples grown without boron. We find that relatively higher boron concentration yields higher amplitudes of the longer-wavelength power spectral lines, with amplitudes decreasing in an exponential or power-law fashion towards shorter wavelengths, determining the roughness exponent ( α ≈ 0.16 ± 0.03) and growth exponent ( β ≈ 0.54), albeit indirectly. A unique application of the ACF, which is widely used in signal processing, was also applied to one-dimensional or line analyses (i.e., along the x- and y-axes) of AFM images, revealing surface topology datasets with varying boron concentration. Here, the ACF was used to cancel random surface "noise" and identify any spatial periodicity via repetitive ACF peaks or spatially correlated noise. Periodicity at shorter spatial wavelengths was observed for no doping and low doping levels, while smaller correlations were observed for relatively

  4. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  5. Atomic Scale Plasmonic Switch.

    PubMed

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level. PMID:26670551

  6. Atomic supersymmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    1993-01-01

    Atomic supersymmetry is a quantum-mechanical supersymmetry connecting the properties of different atoms and ions. A short description of some established results in the subject are provided and a few recent developments are discussed including the extension to parabolic coordinates and the calculation of Stark maps using supersymmetry-based models.

  7. Liquid atomization

    SciTech Connect

    Walzel, P. )

    1993-01-01

    A systematic review of different liquid atomizers is presented, accompanied by a discussion of various mechanisms of droplet formation in a gas atmosphere as a function of the liquid flow-regime and the geometry of the atomizer. Equations are presented for the calculation of the mean droplet-diameter. In many applications, details of the droplet size distribution are, also, important, e.g., approximate values of the breadth of the droplet formation are given. The efficiency of utilization of mechanical energy in droplet formation is indicated for the different types of atomizers. Atomization is used, in particular, for the following purposes: (1) atomization of fuels; (2) making granular products; (3) carrying out mass-transfer operations; and (4) coating of surfaces.

  8. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  9. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  10. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  11. Newton's Atom

    NASA Astrophysics Data System (ADS)

    Chaney, Andrea; Espinosa, James; Espinosa, James

    2006-10-01

    At the turn of the twentieth century, physicists and chemists were developing atomic models. Some of the phenomena that they had to explain were the periodic table, the stability of the atom, and the emission spectra. Niels Bohr is known as making the first modern picture that accounted for these. Unknown to much of the physics community is the work of Walter Ritz. His model explained more emission spectra and predates Bohr's work. We will fit several spectra using Ritz's magnetic model for the atom. The problems of stability and chemical periodicity will be shown to be challenges that this model has difficulty solving, but we will present some potentially useful adaptations to the Ritzian atom that can account for them.

  12. Use of a CO{sub 2} pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    SciTech Connect

    Bench, T.R.

    1997-05-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants from the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.

  13. Cold Atoms

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    This chapter and the following one address collective effects of quantum particles, that is, the effects which are observed when we put together a large number of identical particles, for example, electrons, helium-4 or rubidium-85 atoms. We shall see that quantum particles can be classified into two categories, bosons and fermions, whose collective behavior is radically different. Bosons have a tendency to pile up in the same quantum state, while fermions have a tendency to avoid each other. We say that bosons and fermions obey two different quantum statistics, the Bose-Einstein and the Fermi-Dirac statistics, respectively. Temperature is a collective effect, and in Section 5.1 we shall explain the concept of absolute temperature and its relation to the average kinetic energy of molecules. We shall describe in Section 5.2 how we can cool atoms down thanks to the Doppler effect, and explain how cold atoms can be used to improve the accuracy of atomic clocks by a factor of about 100. The effects of quantum statistics are prominent at low temperatures, and atom cooling will be used to obtain Bose-Einstein condensates at low enough temperatures, when the atoms are bosons.

  14. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  15. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  16. Optics and interferometry with atoms and molecules

    SciTech Connect

    Cronin, Alexander D.; Schmiedmayer, Joerg; Pritchard, David E.

    2009-07-15

    Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review the basic tools for coherent atom optics are described including diffraction by nanostructures and laser light, three-grating interferometers, and double wells on atom chips. Scientific advances in a broad range of fields that have resulted from the application of atom interferometers are reviewed. These are grouped in three categories: (i) fundamental quantum science, (ii) precision metrology, and (iii) atomic and molecular physics. Although some experiments with Bose-Einstein condensates are included, the focus of the review is on linear matter wave optics, i.e., phenomena where each single atom interferes with itself.

  17. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  18. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  19. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2010-01-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  20. Magneto-optical cooling of atoms.

    PubMed

    Raizen, Mark G; Budker, Dmitry; Rochester, Simon M; Narevicius, Julia; Narevicius, Edvardas

    2014-08-01

    We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumping and stimulated optical transitions, combined with magnetic forces, can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultracold atoms and phase-space density, with lower required laser power. PMID:25078213

  1. Atomic Scale Characterization of Compound Semiconductors Using Atom Probe Tomography

    SciTech Connect

    Gorman, B. P.; Norman, A. G.; Lawrence, D.; Prosa, T.; Guthrey, H.; Al-Jassim, M.

    2011-01-01

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  2. Atomic rivals

    SciTech Connect

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  3. Atomic arias

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  4. Atomic physics

    SciTech Connect

    Livingston, A.E.; Kukla, K.; Cheng, S.

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  5. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm–1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  6. Chiral atomically thin films.

    PubMed

    Kim, Cheol-Joo; Sánchez-Castillo, A; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm(-1)) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra. PMID:26900756

  7. Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Wynands, Robert

    Time is a strange thing. On the one hand it is arguably the most inaccessible physical phenomenon of all: both in that it is impossible to manipulate or modify—for all we know—and in that even after thousands of years mankind's philosophers still have not found a fully satisfying way to understand it. On the other hand, no other quantity can be measured with greater precision. Today's atomic clocks allow us to reproduce the length of the second as the SI unit of time with an uncertainty of a few parts in 1016—orders of magnitude better than any other quantity. In a sense, one can say [1

  8. Technical evaluation report (Revision 1) on the proposed design modifications and technical specification changes on grid voltage degradation for the Peach Bottom Atomic Power Station, Units 2 and 3

    SciTech Connect

    Selan, J.C.

    1983-03-11

    This report is a revision of the technical evaluation documented in a separate report dated November 3, 1981 (UCID-19115) on the proposed design modification and Technical Specification changes for the protection of the Class 1E equipment from grid voltage degradation for the Peach Bottom Atomic Power Station, Units 2 and 3. The review criteria are based on several IEEE standards and The Code of Federal Regulations. The evaluation compares the submittals made by the plant with the NRC staff positions and the review criteria. The evaluation finds that the proposed design modifications and the required changes to the Technical Specifications will ensure that the Class 1E equipment will be protected from sustained voltage degradation.

  9. A test program for predicting and monitoring the emergency diesel generator heat exchangers at Limerick Generating Station and Peach Bottom Atomic Power Station

    SciTech Connect

    Elder, J.J.; Fusegni, L.J.; McFarland, W.J.; Andreone, C.F.

    1995-12-31

    The USNRC issued Generic Letter 89-13, ``Service Water Problems Affecting Safety-Related Equipment`` to all nuclear power plant licensees which requires the implementation of a program to ensure that nuclear safety-related heat exchangers are capable of performing their intended functions. The heat exchangers on the standby emergency diesel generator (EDG) skids are covered by this requirement. PECo and SWEC have developed a program of testing and analysis to monitor the level of fouling in the EDG`s at the Limerick and Peach Bottom nuclear power plants in response to the Generic Letter. The development of an EDG heat exchanger test program is significantly more complex than for most other heat exchangers. This is because the process fluid flows are controlled by self-modulating thermostatic valves to maintain proper process temperature setpoints. As a result, under some test conditions the process flows may be reduced to as little as 20% of their design values. Flow changes of this magnitude significantly affect the performance of the coolers and obscure observation of the effects of fouling if not properly addressed. This paper describes the methods developed by PECo and SWEC to address this problem.

  10. Power and polarization dependences of ultra-narrow electromagnetically induced absorption (EIA) spectra of 85 Rb atoms in degenerate two-level system

    NASA Astrophysics Data System (ADS)

    Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-05-01

    We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.

  11. Atom Skimmers and Atom Lasers Utilizing Them

    NASA Technical Reports Server (NTRS)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  12. Nuclear Power Plants. Revised.

    ERIC Educational Resources Information Center

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  13. Viewing minerals, atom by atom

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    With state-of-the-art technology supported by scissors and bungy cords, Earth scientists are beginning to look at mineral surfaces and mineral-fluid interactions on an atomic scale.The instrument that can provide such a detailed view is the scanning tunneling microscope (STM), which made a great theoretical and practical splash when it was introduced in 1981 by Gerd Binnig and Heinrich Rohrer, physicists at IBM's laboratory in Zurich. They won a Nobel Prize in Physics for their work 5 years later.

  14. Atomic magnetometer

    DOEpatents

    Schwindt, Peter; Johnson, Cort N.

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  15. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOEpatents

    Montcalm, Claude; Folta, James Allen; Tan, Swie-In; Reiss, Ira

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  16. Revised FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004) 2018-SR-02-1

    SciTech Connect

    Erika Bailey

    2011-10-27

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963. The reactor was tested at low power during the first couple years of operation. Power ascension testing above 1 MW commenced in December 1965 immediately following the receipt of a high-power operating license. In October 1966 during power ascension, zirconium plates at the bottom of the reactor vessel became loose and blocked sodium coolant flow to some fuel subassemblies. Two subassemblies started to melt and the reactor was manually shut down. No abnormal releases to the environment occurred. Forty-two months later after the cause had been determined, cleanup completed, and the fuel replaced, Fermi 1 was restarted. However, in November 1972, PRDC made the decision to decommission Fermi 1 as the core was approaching its burn-up limit. The fuel and blanket subassemblies were shipped off-site in 1973. Following that, the secondary sodium system was drained and sent off-site. The radioactive primary sodium was stored on-site in storage tanks and 55 gallon (gal) drums until it was shipped off-site in 1984. The initial decommissioning of Fermi 1 was completed in 1975. Effective January 23, 1976, DPR-9 was transferred to the Detroit Edison Company (DTE) as a 'possession only' license (DTE 2010a). This report details the confirmatory activities performed during the second Oak Ridge Institute for Science and Education (ORISE

  17. The Atom and the Ocean, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hull, E. W. Seabrook

    Included is a brief description of the characteristics of the ocean, its role as a resource for food and minerals, its composition and its interactions with land and air. The role of atomic physics in oceanographic exploration is illustrated by the use of nuclear reactors to power surface and submarine research vessels and the design and use of…

  18. Chemical identification of individual surface atoms by atomic force microscopy.

    PubMed

    Sugimoto, Yoshiaki; Pou, Pablo; Abe, Masayuki; Jelinek, Pavel; Pérez, Rubén; Morita, Seizo; Custance, Oscar

    2007-03-01

    Scanning probe microscopy is a versatile and powerful method that uses sharp tips to image, measure and manipulate matter at surfaces with atomic resolution. At cryogenic temperatures, scanning probe microscopy can even provide electron tunnelling spectra that serve as fingerprints of the vibrational properties of adsorbed molecules and of the electronic properties of magnetic impurity atoms, thereby allowing chemical identification. But in many instances, and particularly for insulating systems, determining the exact chemical composition of surfaces or nanostructures remains a considerable challenge. In principle, dynamic force microscopy should make it possible to overcome this problem: it can image insulator, semiconductor and metal surfaces with true atomic resolution, by detecting and precisely measuring the short-range forces that arise with the onset of chemical bonding between the tip and surface atoms and that depend sensitively on the chemical identity of the atoms involved. Here we report precise measurements of such short-range chemical forces, and show that their dependence on the force microscope tip used can be overcome through a normalization procedure. This allows us to use the chemical force measurements as the basis for atomic recognition, even at room temperature. We illustrate the performance of this approach by imaging the surface of a particularly challenging alloy system and successfully identifying the three constituent atomic species silicon, tin and lead, even though these exhibit very similar chemical properties and identical surface position preferences that render any discrimination attempt based on topographic measurements impossible. PMID:17330040

  19. The Future of Atomic Energy

    DOE R&D Accomplishments Database

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  20. Atoms for peace and war, 1953-1961

    SciTech Connect

    Hewlett, R.G.; Holl, J.M.

    1989-01-01

    This paper reports on nuclear power for the marketplace, pursuit of the peaceful atom, safeguards, EORATOM, and the international agency. Nuclear issues include the presidential campaign of 1956, politics of the peaceful atom and a nuclear test moratorium.

  1. Study of the transfer of 137Cs from fodder to cow milk in the region around Narora Atomic Power Station NPP Site, India.

    PubMed

    Kumar, Deepak; Kumar, Avinash; Sharma, A K; Singh, B; Ravi, P M; Sarkar, P K

    2013-09-01

    Site-specific transfer coefficient from feed to cow's milk, for (137)Cs in the villages around Narora, a nuclear power station site in India, determined over a period of 17 y, is presented in this paper. In the transport model for the prediction of the concentration of (137)Cs in milk, the transfer coefficient from feed to milk, Fm, is an important parameter. The transfer coefficient value is determined from (137)Cs concentration in milk and grass samples of the Narora region, and the result ranged from 4.28E-03 to 3.30E-02 d l(-1) with a geometric mean value of 1.15E-03 d l(-1). The highest and the lowest values were only below one order of magnitude different from the mean, regardless of the type of diet, milk yield and age of the cow. The result is compared with that for (40)K, determined concurrently at the same region and ranged from 6.92E-03 to 8.01E-03 d l(-1) with a geometric mean value of 7.45E-03 d l(-1). This parameter is quite useful in decision-making for implementing countermeasures during a large-area contamination with (137)Cs in tropical areas like Narora. The ingestion dose from fallout (137)Cs through milk intake for adult and child is also estimated. PMID:23535080

  2. Transfer-Free Growth of Atomically Thin Transition Metal Disulfides Using a Solution Precursor by a Laser Irradiation Process and Their Application in Low-Power Photodetectors.

    PubMed

    Huang, Chi-Chih; Medina, Henry; Chen, Yu-Ze; Su, Teng-Yu; Li, Jian-Guang; Chen, Chia-Wei; Yen, Yu-Ting; Wang, Zhiming M; Chueh, Yu-Lun

    2016-04-13

    Although chemical vapor deposition is the most common method to synthesize transition metal dichalcogenides (TMDs), several obstacles, such as the high annealing temperature restricting the substrates used in the process and the required transfer causing the formation of wrinkles and defects, must be resolved. Here, we present a novel method to grow patternable two-dimensional (2D) transition metal disulfides (MS2) directly underneath a protective coating layer by spin-coating a liquid chalcogen precursor onto the transition metal oxide layer, followed by a laser irradiation annealing process. Two metal sulfides, molybdenum disulfide (MoS2) and tungsten disulfide (WS2), are investigated in this work. Material characterization reveals the diffusion of sulfur into the oxide layer prior to the formation of the MS2. By controlling the sulfur diffusion, we are able to synthesize continuous MS2 layers beneath the top oxide layer, creating a protective coating layer for the newly formed TMD. Air-stable and low-power photosensing devices fabricated on the synthesized 2D WS2 without the need for a further transfer process demonstrate the potential applicability of TMDs generated via a laser irradiation process. PMID:26906714

  3. Atom chips on direct bonded copper substrates

    NASA Astrophysics Data System (ADS)

    Squires, Matthew B.; Stickney, James A.; Carlson, Evan J.; Baker, Paul M.; Buchwald, Walter R.; Wentzell, Sandra; Miller, Steven M.

    2011-02-01

    We present the use of direct bonded copper (DBC) for the straightforward fabrication of high power atom chips. Atom chips using DBC have several benefits: excellent copper/substrate adhesion, high purity, thick (>100 μm) copper layers, high substrate thermal conductivity, high aspect ratio wires, the potential for rapid (<8 h) fabrication, and three-dimensional atom chip structures. Two mask options for DBC atom chip fabrication are presented, as well as two methods for etching wire patterns into the copper layer. A test chip, able to support 100 A of current for 2 s without failing, is used to determine the thermal impedance of the DBC. An assembly using two DBC atom chips is used to magnetically trap laser cooled 87Rb atoms. The wire aspect ratio that optimizes the magnetic field gradient as a function of power dissipation is determined to be 0.84:1 (height:width).

  4. Atom chips on direct bonded copper substrates

    SciTech Connect

    Squires, Matthew B.; Stickney, James A.; Carlson, Evan J.; Baker, Paul M.; Buchwald, Walter R.; Wentzell, Sandra; Miller, Steven M.

    2011-02-15

    We present the use of direct bonded copper (DBC) for the straightforward fabrication of high power atom chips. Atom chips using DBC have several benefits: excellent copper/substrate adhesion, high purity, thick (>100 {mu}m) copper layers, high substrate thermal conductivity, high aspect ratio wires, the potential for rapid (<8 h) fabrication, and three-dimensional atom chip structures. Two mask options for DBC atom chip fabrication are presented, as well as two methods for etching wire patterns into the copper layer. A test chip, able to support 100 A of current for 2 s without failing, is used to determine the thermal impedance of the DBC. An assembly using two DBC atom chips is used to magnetically trap laser cooled {sup 87}Rb atoms. The wire aspect ratio that optimizes the magnetic field gradient as a function of power dissipation is determined to be 0.84:1 (height:width).

  5. Cosmology of atomic dark matter

    NASA Astrophysics Data System (ADS)

    Cyr-Racine, Francis-Yan; Sigurdson, Kris

    2013-05-01

    While, to ensure successful cosmology, dark matter (DM) must kinematically decouple from the standard model plasma very early in the history of the Universe, it can remain coupled to a bath of “dark radiation” until a relatively late epoch. One minimal theory that realizes such a scenario is the atomic dark matter model, in which two fermions oppositely charged under a new U(1) dark force are initially coupled to a thermal bath of “dark photons” but eventually recombine into neutral atomlike bound states and begin forming gravitationally bound structures. As dark atoms have (dark) atom-sized geometric cross sections, this model also provides an example of self-interacting DM with a velocity-dependent cross section. Delayed kinetic decoupling in this scenario predicts novel DM properties on small scales but retains the success of cold DM on larger scales. We calculate the atomic physics necessary to capture the thermal history of this dark sector and show significant improvements over the standard atomic hydrogen calculation are needed. We solve the Boltzmann equations that govern the evolution of cosmological fluctuations in this model and find in detail the impact of the atomic DM scenario on the matter power spectrum and the cosmic microwave background (CMB). This scenario imprints a new length scale, the dark-acoustic-oscillation scale, on the matter density field. This dark-acoustic-oscillation scale shapes the small-scale matter power spectrum and determines the minimal DM halo mass at late times, which may be many orders of magnitude larger than in a typical weakly interacting-massive-particle scenario. This model necessarily includes an extra dark radiation component, which may be favored by current CMB experiments, and we quantify CMB signatures that distinguish an atomic DM scenario from a standard ΛCDM model containing extra free-streaming particles. We finally discuss the impacts of atomic DM on galactic dynamics and show that these provide the

  6. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    , exploited as a useful tool at room temperature and higher, are greatly enhanced at low energy. For example, collisional spin transfer from one species of polarized atoms to another has long been a useful method for polarizing a sample of atoms where no other means was available. Because optical pumping cannot be used to polarize the nuclear spin of Xe-129 or He-3 (for use in nmr imaging of the lungs), the nuclear spins are polarized via collisions with an optically pumped Rb vapor in a cell containing both gases. In another case, a spin polarized thermal Cs beam was used to polarize the hyperfine states of trapped He(+)-3 ions in order to measure their hyperfine clock transition frequency. The absence of an x-ray light source to optically pump the ground state of the He(+)-3 ion necessitated this alternative state preparation. Similarly, Cd(+) and Sr(+) ions were spin-oriented via collisions in a cell with optically pumped Rb vapor. Resonant RF spin changing transitions in the ground state of the ions were detected by changes in the Rb resonance light absorption. Because cold collision spin exchange rates scale with temperature as T(sup -1/2) this technique is expected to be a far more powerful tool than the room temperature counterpart. This factor of 100 or more enhancement in spin exchange reaction rates at low temperatures is the basis for a novel trapped ion clock where laser cooled neutrals will cool, state select and monitor the ion clock transition. The advantage over conventional direct laser cooling of trapped ions is that the very expensive and cumbersome UV laser light sources, required to excite the ionic cooling transition, are effectively replaced by simple diode lasers.

  7. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  8. Atomic Energy Basics, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  9. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae

    PubMed Central

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-01-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20–40 years) and a group of elderly women (n = 5, age: 70–95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (−2.374 vs. −2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. PMID:22946475

  10. Atoms in flux

    SciTech Connect

    Damian, M.

    1996-07-01

    In 1953, President Eisenhower offered the United Nations his vision for peaceful uses of atomic energy, which included the construction of nuclear power plants to generate electricity. However, in the four decades since the infancy of the nuclear-energy industry, its creators` dream of cheap, abundant, and safe source of energy has not been fully realized, says Michel Damian, research associate with the Institut d`Economie et de Politique de l`Energie in France. Though some observers cite such nuclear mishaps as Three Mile Island and Chernobyl as the reason for the slowdown in the nuclear industry, Damian lays the blame largely on the inflated estimates of the future need for electricity made in the 1960`s. {open_quotes}In fact, declining demand for electricity may be a more critical factor in the slow growth of commercial nuclear power worldwide than the poor track record of nuclear power-plant construction and operation,{close_quotes} he notes. No clear resolution to the woes of the nuclear-energy industry is in sight, Damian says. {open_quotes}Indeed, that will occur only when engineers design a risk-free reactor and find a safe, long-term disposal method for nuclear waste.{close_quotes}

  11. In Situ Imaging of Atomic Quantum Gases

    NASA Astrophysics Data System (ADS)

    Hung, Chen-Lung; Chin, Cheng

    2015-09-01

    One exciting progress in recent cold atom experiments is the development of high resolution, in situ imaging techniques for atomic quantum gases.1-3 These new powerful tools provide detailed information on the distribution of atoms in a trap with resolution approaching the level of single atom and even single lattice site, and complement the welldeveloped time-of-flight method that probes the system in momentum space. In a condensed matter analogy, this technique is equivalent to locating electrons of a material in a snap shot. In situ imaging has offered a new powerful tool to study atomic gases and inspired many new research directions and ideas. In this chapter, we will describe the experimental setup of in situ absorption imaging, observables that can be extracted from the images, and new physics that can be explored with this technique.

  12. Atomic oxygen studies on polymers

    NASA Technical Reports Server (NTRS)

    Morison, W. D.; Tennyson, R. C.; French, J. B.; Braithwaite, T.; Moisan, M.; Hubert, J.

    1988-01-01

    The purpose was to study the effects of atomic oxygen on the erosion of polymer based materials. The development of an atomic oxygen neutral beam facility using a SURFATRON surface wave launcher that can produce beam energies between 2 and 3 eV at flux levels as high as approx. 10 to the 17th power atoms/cm (2)-sec is described. Thin film dielectric materials were studied to determine recession rates and and reaction efficiencies as a function of incident beam energy and fluence. Accelerated testing was also accomplished and the values of reaction efficiency compared to available space flight data. Electron microscope photomicrographs of the samples' surface morphology were compared to flight test specimens.

  13. Ultracold-Atom Accelerometers

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    Proposed class of accelerometers and related motion sensors based on use of ultracold atoms as inertial components of motion transducers. Ultracold atoms supplant spring-and-mass components of older accelerometers. As used here, "ultracold atoms" means atoms with kinetic energies equivalent to temperatures equal to or less than 20 mK. Acclerometers essentially frictionless. Primary advantage high sensitivity.

  14. Continuum source tungsten coil atomic fluorescence spectrometry.

    PubMed

    Gu, Jiyan; Donati, George L; Young, Carl G; Jones, Bradley T

    2011-04-01

    A simple continuum source tungsten coil atomic fluorescence spectrometer is constructed and evaluated. The heart of the system is the atomizer: a low-cost tungsten filament extracted from a 150 W light bulb. The filament is resistively heated with a small, solid-state, constant-current power supply. The atomizer is housed in a glass chamber and purged with a 1 L/min flow of a conventional welding gas mixture: 10% H(2)/Ar. A 25 μL sample aliquot is pipetted onto the tungsten coil, the liquid is dried at low current, and then the atomic vapor is produced by applying a current in the range 3.5-5.5 A. The atomization current does not produce temperatures high enough to excite atomic emission. Radiation from a 300 W xenon lamp is focused through the atomic vapor, exciting atomic fluorescence. Fluorescence signals are collected using a hand-held charge-coupled device (CCD) spectrometer. Simultaneous determination of ten elements (Ag, Bi, Cr, Cu, Ga, In, Mg, Mn, and Tl) results in detection limits in the range 0.3 to 10 ng. The application of higher atomization currents (10 A) leads to straightforward detection of atomic emission signals with no modifications to the instrument. PMID:21396184

  15. Efficient transfer of francium atoms

    NASA Astrophysics Data System (ADS)

    Aubin, Seth; Behr, John; Gorelov, Alexander; Pearson, Matt; Tandecki, Michael; Collister, Robert; Gwinner, Gerald; Shiells, Kyle; Gomez, Eduardo; Orozco, Luis; Zhang, Jiehang; Zhao, Yanting; FrPNC Collaboration

    2016-05-01

    We report on the progress of the FrPNC collaboration towards Parity Non Conservation Measurements (PNC) using francium atoms at the TRIUMF accelerator. We demonstrate efficient transfer (higher than 40%) to the science vacuum chamber where the PNC measurements will be performed. The transfer uses a downward resonant push beam from the high-efficiency capture magneto optical trap (MOT) towards the science chamber where the atoms are recaptured in a second MOT. The transfer is very robust with respect to variations in the parameters (laser power, detuning, alignment, etc.). We accumulate a growing number of atoms at each transfer pulse (limited by the lifetime of the MOT) since the push beam does not eliminate the atoms already trapped in the science MOT. The number of atoms in the science MOT is on track to meet the requirements for competitive PNC measurements when high francium rates (previously demonstrated) are delivered to our apparatus. The catcher/neutralizer for the ion beam has been tested reliably to 100,000 heating/motion cycles. We present initial tests on the direct microwave excitation of the ground hyperfine transition at 45 GHz. Support from NSERC and NRC from Canada, NSF and Fulbright from USA, and CONACYT from Mexico.

  16. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  17. Atomic Fuel, Understanding the Atom Series. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is part of the "Understanding the Atom" series. Complete sets of the series are available free to teachers, schools, and public librarians who can make them available for reference or use by groups. Among the topics discussed are: What Atomic Fuel Is; The Odyssey of Uranium; Production of Uranium; Fabrication of Reactor Fuel…

  18. Atomic Particle Detection, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. The instruments used to detect both particles and electromagnetic radiation that emerge from the nucleus are described. The counters reviewed include ionization chambers,…

  19. Continuum ionization transition probabilities of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Petrosky, V. E.

    1974-01-01

    The technique of photoelectron spectroscopy was employed in the investigation. Atomic oxygen was produced in a microwave discharge operating at a power of 40 W and at a pressure of approximately 20 mtorr. The photoelectron spectrum of the oxygen with and without the discharge is shown. The atomic states can be clearly seen. In connection with the measurement of the probability for transitions into the various ionic states, the analyzer collection efficiency was determined as a function of electron energy.

  20. Presenting the Bohr Atom.

    ERIC Educational Resources Information Center

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  1. The atomic strain tensor

    SciTech Connect

    Mott, P.H.; Argon, A.S. ); Suter, U.W. Massachusetts Institute of Technology, Cambridge, MA )

    1992-07-01

    A definition of the local atomic strain increments in three dimensions and an algorithm for computing them is presented. An arbitrary arrangement of atoms is tessellated in to Delaunay tetrahedra, identifying interstices, and Voronoi polyhedra, identifying atomic domains. The deformation gradient increment tensor for interstitial space is obtained from the displacement increments of the corner atoms of Delaunay tetrahedra. The atomic site strain increment tensor is then obtained by finding the intersection of the Delaunay tetrahedra with the Voronoi polyhedra, accumulating the individual deformation gradient contributions of the intersected Delaunay tetrahedra into the Voronoi polyhedra. An example application is discussed, showing how the atomic strain clarifies the relative local atomic movement for a polymeric glass treated at the atomic level. 6 refs. 10 figs.

  2. Friction and Wear on the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst

    Friction is an old subject of research: the empirical da Vinci-Amontons laws are common knowledge. Macroscopic experiments systematically performed by the school of Bowden and Tabor have revealed that macroscopic friction can be related to the collective action of small asperities. During the last 15 years, experiments performed with the atomic force microscope gave new insight into the physics of single asperities sliding over surfaces. This development, together with complementary experiments by means of surface force apparatus and quartz microbalance, established the new field of nanotribology. At the same time, increasing computing power allowed for the simulation of the processes in sliding contacts consisting of several hundred atoms. It became clear that atomic processes cannot be neglected in the interpretation of nanotribology experiments. Experiments on even well-defined surfaces directly revealed atomic structures in friction forces. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes in the sliding contact.

  3. Atoms in Action

    SciTech Connect

    2009-01-01

    This movie produced with Berkeley Lab's TEAM 0.5 microscope shows the growth of a hole and the atomic edge reconstruction in a graphene sheet. An electron beam focused to a spot on the sheet blows out the exposed carbon atoms to make the hole. The carbon atoms then reposition themselves to find a stable configuration. http://newscenter.lbl.gov/press-releases/2009/03/26/atoms-in-action/

  4. Atomizing nozzle and process

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1993-07-20

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  5. Atomizing nozzle and process

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  6. Adaptive atom-optics in atom interferometry

    NASA Astrophysics Data System (ADS)

    Marable, M. L.; Savard, T. A.; Thomas, J. E.

    1997-02-01

    We suggest a general technique for creating virtual atom-optical elements which are adaptive. The shape and position of these elements is determined by the frequency distribution for optical fields which induce transitions in a high gradient potential. This adaptive method is demonstrated in an all-optical atom interferometer, by creating either a variable optical slit or a variable optical grating which is scanned across the atomic spatial patterns to measure the fringes. This method renders mechanical motion of the interferometer elements unnecessary.

  7. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  8. Images of Atoms.

    ERIC Educational Resources Information Center

    Wright, Tony

    2003-01-01

    Recommends using a simple image, such as the fuzzy atom ball to help students develop a useful understanding of the molecular world. Explains that the image helps students easily grasp ideas about atoms and molecules and leads naturally to more advanced ideas of atomic structure, chemical bonding, and quantum physics. (Author/NB)

  9. The Nature of Atoms.

    ERIC Educational Resources Information Center

    Holden, Alan

    This monograph was written for the purpose of presenting physics to college students who are not preparing for careers in physics. It deals with the nature of atoms, and treats the following topics: (1) the atomic hypothesis, (2) the chemical elements, (3) models of an atom, (4) a particle in a one-dimensional well, (5) a particle in a central…

  10. Atom interferometry in an optical cavity.

    PubMed

    Hamilton, Paul; Jaffe, Matt; Brown, Justin M; Maisenbacher, Lothar; Estey, Brian; Müller, Holger

    2015-03-13

    We propose and demonstrate a new scheme for atom interferometry, using light pulses inside an optical cavity as matter wave beam splitters. The cavity provides power enhancement, spatial filtering, and a precise beam geometry, enabling new techniques such as low power beam splitters (<100  μW), large momentum transfer beam splitters with modest power, or new self-aligned interferometer geometries utilizing the transverse modes of the optical cavity. As a first demonstration, we obtain Ramsey-Raman fringes with >75% contrast and measure the acceleration due to gravity, g, to 60  μg/sqrt[Hz] resolution in a Mach-Zehnder geometry. We use >10(7) cesium atoms in the compact mode volume (600  μm 1/e(2) waist) of the cavity and show trapping of atoms in higher transverse modes. This work paves the way toward compact, high sensitivity, multiaxis interferometry. PMID:25815912

  11. Atom Interferometry in an Optical Cavity

    NASA Astrophysics Data System (ADS)

    Hamilton, Paul; Jaffe, Matt; Brown, Justin M.; Maisenbacher, Lothar; Estey, Brian; Müller, Holger

    2015-03-01

    We propose and demonstrate a new scheme for atom interferometry, using light pulses inside an optical cavity as matter wave beam splitters. The cavity provides power enhancement, spatial filtering, and a precise beam geometry, enabling new techniques such as low power beam splitters (<100 μ W ), large momentum transfer beam splitters with modest power, or new self-aligned interferometer geometries utilizing the transverse modes of the optical cavity. As a first demonstration, we obtain Ramsey-Raman fringes with >75 % contrast and measure the acceleration due to gravity, g , to 60 μ g /√{Hz } resolution in a Mach-Zehnder geometry. We use >107 cesium atoms in the compact mode volume (600 μ m 1 /e2 waist) of the cavity and show trapping of atoms in higher transverse modes. This work paves the way toward compact, high sensitivity, multiaxis interferometry.

  12. 'Seeing' atoms: the crystallographic revolution.

    PubMed

    Schwarzenbach, Dieter

    2014-01-01

    Laue's experiment in 1912 of the diffraction of X-rays by crystals led to one of the most influential discoveries in the history of science: the first determinations of crystal structures, NaCl and diamond in particular, by W. L. Bragg in 1913. For the first time, the visualisation of the structure of matter at the atomic level became possible. X-ray diffraction provided a sort of microscope with atomic resolution, atoms became observable physical objects and their relative positions in space could be seen. All branches of science concerned with matter, solid-state physics, chemistry, materials science, mineralogy and biology, could now be firmly anchored on the spatial arrangement of atoms. During the ensuing 100 years, structure determination by diffraction methods has matured into an indispensable method of chemical analysis. We trace the history of the development of 'small-structure' crystallography (excepting macromolecular structures) in Switzerland. Among the pioneers figure Peter Debye and Paul Scherrer with powder diffraction, and Paul Niggli and his Zurich School with space group symmetry and geometrical crystallography. Diffraction methods were applied early on by chemists at the Universities of Bern and Geneva. By the 1970s, X-ray crystallography was firmly established at most Swiss Universities, directed by full professors. Today, chemical analysis by structure determination is the task of service laboratories. However, the demand of diffraction methods to solve problems in all disciplines of science is still increasing and powerful radiation sources and detectors are being developed in Switzerland and worldwide. PMID:24801690

  13. Atom Wavelike Nature Solved Mathematically

    NASA Astrophysics Data System (ADS)

    Sven, Charles

    2010-02-01

    Like N/S poles of a magnet the strong force field surrounding, confining the nucleus exerts an equal force [noted by this author] driving electrons away from the attraction of positively charged protons force fields in nucleus -- the mechanics for wavelike nature of electron. Powerful forces corral closely packed protons within atomic nucleus with a force that is at least a million times stronger than proton's electrical attraction that binds electrons. This then accounts for the ease of electron manipulation in that electron is already pushed away by the very strong atomic N/S force field; allowing electrons to drive photons when I strike a match. Ageless atom's electron requirements, used to drive light/photons or atom bomb, without batteries, must be supplied from a huge, external, super high frequency, super-cooled source, undetected by current technology, one that could exist 14+ billion years without degradation -- filling a limitless space prior to Big Bang. Using only replicable physics, I show how our Universe emanated from that event. )

  14. Atom Wavelike Nature Solved Mathematically

    NASA Astrophysics Data System (ADS)

    Sven, Charles

    2010-03-01

    Like N/S poles of a magnet the strong force field surrounding, confining the nucleus exerts an equal force [noted by this author] driving electrons away from the attraction of positively charged protons force fields in nucleus -- the mechanics for wavelike nature of electron. Powerful forces corral closely packed protons within atomic nucleus with a force that is at least a million times stronger than proton's electrical attraction that binds electrons. This then accounts for the ease of electron manipulation in that electron is already pushed away by the very strong atomic N/S force field; allowing electrons to drive photons when I strike a match. Ageless atom's electron requirements, used to drive light/photons or atom bomb, without batteries, must be supplied from a huge, external, super high frequency, super-cooled source, undetected by current technology, one that could exist 14+ billion years without degradation -- filling a limitless space prior to Big Bang. Using only replicable physics, I show how our Universe emanated from that event.

  15. Atom Wavelike Nature Solved Mathematically

    NASA Astrophysics Data System (ADS)

    Sven, Charles

    2009-11-01

    Like N/S poles of a magnet the strong force field surrounding, confining the nucleus exerts an equal force [noted by this author] driving electrons away from the attraction of positively charged protons force fields in nucleus -- the mechanics for wavelike nature of electron. Powerful forces corral closely packed protons within atomic nucleus with a force that is at least a million times stronger than proton's electrical attraction that binds electrons. This then accounts for the ease of electron manipulation in that electron is already pushed away by the very strong atomic N/S force field; allowing electrons to drive photons when I strike a match. Ageless atom's electron requirements, used to drive light/photons or atom bomb, without batteries, must be supplied from a huge, external, super high frequency, super-cooled source, undetected by current technology, one that could exist 14+ billion years without degradation -- filling a limitless space prior to Big Bang. Using only replicable physics, I show how our Universe emanated from that event.

  16. Single atom electrochemical and atomic analytics

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  17. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy.

    PubMed

    Krivanek, Ondrej L; Chisholm, Matthew F; Nicolosi, Valeria; Pennycook, Timothy J; Corbin, George J; Dellby, Niklas; Murfitt, Matthew F; Own, Christopher S; Szilagyi, Zoltan S; Oxley, Mark P; Pantelides, Sokrates T; Pennycook, Stephen J

    2010-03-25

    Direct imaging and chemical identification of all the atoms in a material with unknown three-dimensional structure would constitute a very powerful general analysis tool. Transmission electron microscopy should in principle be able to fulfil this role, as many scientists including Feynman realized early on. It images matter with electrons that scatter strongly from individual atoms and whose wavelengths are about 50 times smaller than an atom. Recently the technique has advanced greatly owing to the introduction of aberration-corrected optics. However, neither electron microscopy nor any other experimental technique has yet been able to resolve and identify all the atoms in a non-periodic material consisting of several atomic species. Here we show that annular dark-field imaging in an aberration-corrected scanning transmission electron microscope optimized for low voltage operation can resolve and identify the chemical type of every atom in monolayer hexagonal boron nitride that contains substitutional defects. Three types of atomic substitutions were found and identified: carbon substituting for boron, carbon substituting for nitrogen, and oxygen substituting for nitrogen. The substitutions caused in-plane distortions in the boron nitride monolayer of about 0.1 A magnitude, which were directly resolved, and verified by density functional theory calculations. The results demonstrate that atom-by-atom structural and chemical analysis of all radiation-damage-resistant atoms present in, and on top of, ultra-thin sheets has now become possible. PMID:20336141

  18. Programmable solid state atom sources for nanofabrication

    NASA Astrophysics Data System (ADS)

    Han, Han; Imboden, Matthias; Stark, Thomas; Del Corro, Pablo G.; Pardo, Flavio; Bolle, Cristian A.; Lally, Richard W.; Bishop, David J.

    2015-06-01

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques. Electronic supplementary information (ESI) available: A document containing further information about device characterization

  19. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  20. Development of neutral atom traps based on a microfabricated waveguide

    NASA Astrophysics Data System (ADS)

    Jau, Yuan-Yu; Lee, Jongmin; Biedermann, Grant; Siddiqui, Aleem; Eichenfield, Matt; Dougla, Erica

    2016-05-01

    Implementation of trapping neutral atoms in the evanescent fields generated by a nano-structure, such as a nanofiber or a microfabricated nano-waveguide, will naturally enable strong atom-photon interactions, which serve the key mechanisms for different type of quantum controls. At Sandia National Labs, we are aiming to develop a platform based on this concept to eventually trap cesium atoms with a microfabricated waveguide. Although, neutral atom traps using optical nanofiber has been demonstrated, there are several key issues that need to be resolved to realize trapping atoms with microfabricated structure. The subjects include the material for making the waveguide, optical power handling capability, surface adsorption of alkali-metal atoms, surface roughness of the nano-structure, cold-atom source for loading the atoms into the evanescent-field traps, etc. We will discuss our studies on these related subjects and report our latest progress.

  1. Submillimetre observations of atomic carbon

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Keene, J.

    1982-01-01

    Emission from the ground state fine structure transition of atomic carbon at 610 microns has been observed in Galactic sources. From comparison of the observations with CO emission, it can be deduced that the abundance of neutral carbon relative to CO is high (approximately 0.1-3). The spatial and velocity distribution of CI and CO are often very similar. If molecular clouds are older than 1 x 10 to the 6th power years, the observations necessitate a mechanism which can maintain a high abundance of neutral carbon in cloud material, either by hindering complete conversion of C into CO or by physically and chemically rejuvenating the material.

  2. Graphite filter atomizer in atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  3. 78 FR 42556 - Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Plant Issuance of Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... facilities (76 FR 72560; November 23, 2011) (EP Final Rule). The EP Final Rule was effective on December 23... (55 FR 29181; July 18, 1990), the NRC amended its regulations to provide for the storage of spent... Considerations (SOC) for the Final Rule (55 FR 29185), the Commission responded to comments related to...

  4. Advances in atomic physics

    PubMed Central

    El-Sherbini, Tharwat M.

    2013-01-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356

  5. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  6. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  7. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  8. Solar Spectroscopy: Atomic Processes

    NASA Astrophysics Data System (ADS)

    Mason, H.; Murdin, P.

    2000-11-01

    A Greek philosopher called DEMOCRITUS (c. 460-370 BC) first introduced the concept of atoms (which means indivisible). His atoms do not precisely correspond to our atoms of today, which are not indivisible, but made up of a nucleus (protons with positive charge and neutrons which have no charge) and orbiting electrons (with negative charge). Indeed, in the solar atmosphere, the temperature is suc...

  9. Visualization of atom's orbits.

    PubMed

    Kim, Byungwhan

    2014-02-01

    High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions. PMID:24749452

  10. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  11. Atomic modeling of the plasma EUV sources

    NASA Astrophysics Data System (ADS)

    Sasaki, Akira; Sunahara, Atsushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Nishikawa, Takeshi; Koike, Fumihiro; Tanuma, Hajime

    2009-09-01

    We present the development of population kinetics models for tin plasmas that can be employed to design an EUV source for microlithography. The atomic kinetic code is constrained for the requirement that the model must be able to calculate spectral emissivity and opacity that can be used in radiation hydrodynamic simulations. Methods to develop compact and reliable atomic model with an appropriate set of atomic states are discussed. Specifically, after investigation of model dependencies and comparison experiment, we improve the effect of configuration interaction and the treatment of satellite lines. Using the present atomic model we discuss the temperature and density dependencies of the emissivity, as well as conditions necessary to obtain high efficiency EUV power at λ = 13.5 nm.

  12. Quantum Chemical Topology: Knowledgeable atoms in peptides

    NASA Astrophysics Data System (ADS)

    Popelier, Paul L. A.

    2012-06-01

    The need to improve atomistic biomolecular force fields remains acute. Fortunately, the abundance of contemporary computing power enables an overhaul of the architecture of current force fields, which typically base their electrostatics on fixed atomic partial charges. We discuss the principles behind the electrostatics of a more realistic force field under construction, called QCTFF. At the heart of QCTFF lies the so-called topological atom, which is a malleable box, whose shape and electrostatics changes in response to a changing environment. This response is captured by a machine learning method called Kriging. Kriging directly predicts each multipole moment of a given atom (i.e. the output) from the coordinates of the nuclei surrounding this atom (i.e. the input). This procedure yields accurate interatomic electrostatic energies, which form the basis for future-proof progress in force field design.

  13. Physical Limits on Atomic Resolution

    NASA Astrophysics Data System (ADS)

    van Dyck, D.; van Aert, S.; den Dekker, A. J.

    2004-02-01

    It is shown that the ultimate resolution is not limited by the bandwidth of the microscope but by the bandwidth (i.e., the scattering power) of the object. In the case of a crystal oriented along a zone axis, the scattering is enhanced by the channeling of the electrons. However, if the object is aperiodic along the beam direction, the bandwidth is much more reduced. A particular challenge are the amorphous objects. For amorphous materials, the natural bandwidth is that of the single atom and of the order of 1 [Angstrom capital A, ring][minus sign]1, which can be reached with the present generation of medium voltage microscopes without aberration correctors. A clear distinction is made between resolving a structure and refining, that is, between resolution and precision. In the case of an amorphous structure, the natural bandwidth also puts a limit on the number of atom coordinates that can be refined quantitatively. As a consequence, amorphous structures cannot be determined from one projection, but only by using atomic resolution tomography. Finally a theory of experiment design is presented that can be used to predict the optimal experimental setting or the best instrumental improvement. Using this approach it is suggested that the study of amorphous objects should be done at low accelerating voltage with correction of both spherical and chromatic aberration.

  14. Oxygen atom loss coefficient of carbon nanowalls

    NASA Astrophysics Data System (ADS)

    Mozetic, Miran; Vesel, Alenka; Stoica, Silviu Daniel; Vizireanu, Sorin; Dinescu, Gheorghe; Zaplotnik, Rok

    2015-04-01

    Extremely high values of atomic oxygen loss coefficient on carbon nanowall (CNW) surface are reported. CNW layers consisting of interconnected individual nanostructures with average length of 1.1 μm, average thickness of 66 nm and surface density of 3 CNW/μm2 were prepared by plasma jet enhanced chemical-vapor deposition using C2H2/H2/Ar gas mixtures. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectrometry (RS) as well as X-ray photoelectron spectroscopy (XPS). The surface loss coefficient was measured at room temperature in a flowing afterglow at different densities of oxygen atoms supplied from inductively coupled radiofrequency O2 plasma. The RF generator operated at 13.56 MHz and different nominal powers up to 900 W corresponding to different O-atom density in the afterglow up to 1.3 × 1021 m-3. CNW and several different samples of known coefficients for heterogeneous surface recombination of neutral oxygen atoms have been placed separately in the afterglow chamber and the O-atom density in their vicinity was measured with calibrated catalytic probes. Comparison of measured results allowed for determination of the loss coefficient for CNWs and the obtained value of 0.59 ± 0.03 makes this material an extremely effective sink for O-atoms.

  15. Squeezing of Spin Waves in Atomic Ensembles

    NASA Astrophysics Data System (ADS)

    Baragiola, Ben; Norris, Leigh; Montano, Enrique; Michelson, Pascal; Jessen, Poul; Deutsch, Ivan

    2013-05-01

    Squeezing the collective spin of an atomic ensemble via QND measurement is based on the lighhift interaction between a cloud of atoms and a laser probe. When the shot noise resolution of the laser probe is below the projection noise of the atoms, the resulting backaction can reduce the uncertainty for a collective atomic observable. Most current models of this process rely on idealized one-dimensional plane wave approximations of the underlying light-matter interaction, which are not appropriate for describing a real system consisting of an atomic cloud in dipole trap interacting with a paraxial probe laser. We derive from first principles a model for three-dimensional QND spin squeezing of an ensemble of alkali atoms. The model includes spin waves, diffraction, propagation phase, paraxial modes, and optical pumping, based on a full master equation description. Our model easily generalizes to atoms with hyperfine spin f >1/2, for which initial state preparation of the ensemble using internal hyperfine control can enhance the entangling power of the Faraday interaction [Norris et al., PRL 109, 173603 (2012)]. Including dissipative dynamics, we find optimal geometries to maximize spin squeezing for a variety of state preparations and spin sizes.

  16. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or

  17. Evanescent Wave Atomic Mirror

    NASA Astrophysics Data System (ADS)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  18. Atomic Scale Characterization of Compound Semiconductors using Atom Probe Tomography: Preprint

    SciTech Connect

    Gorman, B. P.; Guthrey, H.; Norman, A. G.; Al-Jassim, M.; Lawrence, D.; Prosa, T.

    2011-07-01

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  19. Modified Embedded Atom Method

    Energy Science and Technology Software Center (ESTSC)

    2012-08-01

    Interatomic force and energy calculation subroutine to be used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluated the total energy and atomic forces (energy gradient) according to a cubic spline-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM) with a additional Stillinger-Weber (SW) contribution.

  20. Greek Atomic Theory.

    ERIC Educational Resources Information Center

    Roller, Duane H. D.

    1981-01-01

    Focusing on history of physics, which began about 600 B.C. with the Ionian Greeks and reaching full development within three centuries, suggests that the creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists. (Author/SK)

  1. Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.

    2005-01-01

    A symposium on atomic and molecular physics was held on November 18, 2005 at Goddard Space Flight Center. There were a number of talks through the day on various topics such as threshold law of ionization, scattering of electrons from atoms and molecules, muonic physics, positron physics, Rydberg states etc. The conference was attended by a number of physicists from all over the world.

  2. When Atoms Want

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  3. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  4. Greek atomic theory

    NASA Astrophysics Data System (ADS)

    Roller, Duane H. D.

    1981-03-01

    Physics began about 600 B.C. with the Ionian Greeks and reached full development within three centuries. The creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists.

  5. Power Play, Laser Style

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a NASA SBIR (Small Business Innovation Research) SDL, Inc., has developed the TC40 Single-Frequency Continuously Tunable 500 mw Laser Diode System. This is the first commercially available single frequency diode laser system that offers the broad tunability and the high powers needed for atomic cooling and trapping as well as a variety of atomic spectroscopy techniques. By greatly decreasing both the equipment and the costs of entry, the TC40 enables researchers to pursue some of the most interesting areas of physical chemistry, biochemistry, and atomic physics.

  6. Laser-Atomic Oscillator

    NASA Astrophysics Data System (ADS)

    Jau, Yuan-Yu; Happer, William

    2008-05-01

    We report a newly developed technique, laser-atomic oscillator, for simultaneously generating stable optical and electrical modulations with a very few components. It requires only a semiconductor laser, a vapor cell, and a few optical components. No photodetector and electronic feedback are needed. In this new system, the ground-state hyperfine coherence of alkali-metal atoms is spontaneously generated. The modulated laser light with a spectrum of a small optical comb is automatically produced, and the spacing between the comb peaks is photonically locked to the hyperfine frequency. The charge carriers in the semiconductor laser are also modulated at the hyperfine frequency. Laser-atomic oscillator is purely optical. Its simple structure allows the system to be very compact. We believe this new technique will bring some advantages in the applications of atomic chronometry, atomic magnetometry, and generation of multi-coherent light.

  7. Moving Single Atoms

    NASA Astrophysics Data System (ADS)

    Stuart, Dustin

    2016-05-01

    Single neutral atoms are promising candidates for qubits, the fundamental unit of quantum information. We have built a set of optical tweezers for trapping and moving single Rubidium atoms. The tweezers are based on a far off-resonant dipole trapping laser focussed to a 1 μm spot with a single aspheric lens. We use a digital micromirror device (DMD) to generate dynamic holograms of the desired arrangement of traps. The DMD has a frame rate of 20 kHz which, when combined with fast algorithms, allows for rapid reconfiguration of the traps. We demonstrate trapping of up to 20 atoms in arbitrary arrangements, and the transport of a single-atom over a distance of 14 μm with continuous laser cooling, and 5 μm without. In the meantime, we are developing high-finesse fibre-tip cavities, which we plan to use to couple pairs of single atoms to form a quantum network.

  8. Coaxial airblast atomizers

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.

  9. Atomic Oxygen Textured Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget

    1995-01-01

    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.

  10. Applications of atomic and molecular data to radiation physics

    SciTech Connect

    Inokuti, M.

    1982-01-01

    The general purpose of our work is to provide atomic and molecular collision cross sections useful for radiological physics, dosimetry, and other applications. Studies on the systematics of atomic oscillator-strength spectra and a survey of stopping power data are briefly described. (WHK)

  11. Solar and Geothermal Energy: New Competition for the Atom

    ERIC Educational Resources Information Center

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  12. Atom Probe Tomography of Geomaterials

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Diercks, D.; Gorman, B.; Cooper, R. F.

    2013-12-01

    From the electron microprobe to the secondary ion microprobe to laser-ablation ICP-MS, steady improvements in the spatial resolution and detection limits of geochemical micro-analysis have been central to generating new discoveries. Atom probe tomography (APT) is a relatively new technology that promises nm-scale spatial resolution (in three dimensions) with ppm level detection limits. The method is substantially different from traditional beam-based (electron, ion, laser) methods. In APT, the sample is shaped (usually with a dual-beam FIB) into a needle with typical dimensions of 1-2 μm height and 100-200 nm diameter. Within the atom probe, the needle is evaporated one atom (ideally) at a time by a high electric field (ten's of V per square nm at the needle tip). A femtosecond laser (12 ps pulse width) is used to assist in evaporating non-conducting samples. The two-dimensional detector locates where the atom was released from the needle's surface and so can reconstruct the positions of all detected atoms in three dimensions. It also records the time of flight of the ion, which is used to calculate the mass/charge ratio of the ion. We will discuss our results analyzing a range of geologic materials. In one case, naturally occurring platinum group alloys (PGA) from the Josephine Ophiolite have been imaged. Such alloys are of interest as recorders of the Os heterogeneity of the mantle [1,2]. Optimal ablation was achieved with a laser power of 120-240 pJ and laser pulse rates 500 kHz. Runs were stopped after 10 million atoms were imaged. An example analysis is: Pt 61(1), Fe 26.1(9), Rh 1.20(4), Ir 7.0(7), Ni 2.65(8), Ru 0.20(9), Cu 1.22(8), Co 0.00029(5). Values are in atomic %; values in parentheses are one-sigma standard deviations on five separate needles from the same FIB lift-out, which was 30 μm long. Assuming the sample is homogenous over the 30 μm from which the needle was extracted, the analyses suggest relative errors for major elements below 5% and for

  13. Probing Atomic Dynamics and Structures Using Optical Patterns

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2015-05-01

    Pattern formation is a widely studied phenomenon that can provide fundamental insights into nonlinear systems. Emergent patterns in cold atoms are of particular interest in condensed matter physics and quantum information science because one can relate optical patterns to spatial structures in the atoms. In our experimental system, we study multimode optical patterns generated from a sample of cold, thermal atoms. We observe this nonlinear optical phenomenon at record low input powers due to the highly nonlinear nature of the spatial bunching of atoms in an optical lattice. We present a detailed study of the dynamics of these bunched atoms during optical pattern formation. We show how small changes in the atomic density distribution affect the symmetry of the generated patterns as well as the nature of the nonlinearity that describes the light-atom interaction. We gratefully acknowledge the financial support of the National Science Foundation through Grant #PHY-1206040.

  14. A thin-walled metallic hollow cathode as an atomizer for Zeeman atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Ganeyev, A. A.; Sholupov, S. E.

    1998-03-01

    A new kind of glow discharge atomizer, a thin-walled metallic hollow cathode (TMHC) combined with Zeeman atomic absorption spectrometry using high frequency modulated light polarization (ZAAS-HFM), is studied. A theoretically suggested, and experimentally confirmed, model of the atom confinement in the TMHC yields the appearance of the diffusion traps for atoms at both ends of the cathode, which increases the residence time of the analyte atoms in the analysis volume. The high atomization efficiency in the glow discharge atomizer (caused by the ionic-thermal mechanism of sputtering) and the high selectivity of ZAAS-HFM are demonstrated in the analysis of complex matrix samples such as whole blood and urine. The analytical system TMHC + ZAAS-HFM is characterized by low detection limits, which are comparable to those of graphite furnace atomic absorption spectrometry (GFAAS). Owing to its rather low average power consumption (30-50 W) the TMHC can be used in a portable and mobile spectrometer, and is therefore suitable for the in situ analysis of various sample materials.

  15. Atom-wall interactions and their role in the spectroscopy of spatially constrained atomic vapors

    NASA Astrophysics Data System (ADS)

    Vartanyan, T. A.; Khromov, V. V.; Przhibelskii, S. G.; Pazgalev, A. S.

    2013-03-01

    Atom-wall interactions play an unexpectedly important role in the atomic spectroscopy. J.L. Cojan was the first who observed and then interpreted the effects of the atom-wall interactions on the reflection spectra in the vicinity of the atomic spectral line. His observation was made on the mercury vapors of such a low concentration that the Doppler width was much larger than the homogeneous width of the atomic transition. Surprisingly, the width of the spectral line he observed in reflection was much smaller than the Doppler width. He pointed out that the atoms those leave the window posses a transient rather than the stationary polarization. This is the reason why their contribution to the reflected field differs from what was expected. M. Ducloy employed the tiny distortions of these narrow resonances in reflection spectra to measure for the first time the van der Waals constants in the excited atomic states. In our work we considered reflection from a narrow slice of atomic vapors and found a manifold of spectral line shapes depending on the width of the vapor slice that have nothing in common with the Fabri-Perot resonances. It was not until the invention of an Extremely Thin Cell (ETC) by D. Sarkisyan that the observation of these effects becomes possible in the optical domain. In the subsequent years ETC proved to be a very powerful tool of modern spectroscopy.

  16. Nuclear Power and the Environment.

    ERIC Educational Resources Information Center

    International Atomic Energy Agency, Vienna (Austria).

    This booklet is a summary of an international symposium, held in August 1970 in New York City, on the environmental aspects of nuclear power stations. The symposium was convened under the sponsorship of the International Atomic Energy Agency (IAEA) and the U.S. Atomic Energy Commission (USAEC). The information is presented in a condensed and…

  17. THz Detection and Imaging using Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Wade, Christopher; Sibalic, Nikola; Kondo, Jorge; de Melo, Natalia; Adams, Charles; Weatherill, Kevin

    2016-05-01

    Atoms make excellent electromagnetic field sensors because each atom of the same isotope is identical and has well-studied, permanent properties allowing calibration to SI units. Thus far, atoms have not generally been exploited for terahertz detection because transitions from the atomic ground state are constrained to a limited selection of microwave and optical frequencies. In contrast, highly excited `Rydberg' states allow us access to many strong, electric dipole transitions from the RF to THz regimes. Recent advances in the coherent optical detection of Rydberg atoms have been exploited by a number of groups for precision microwave electrometry Here we report the demonstration of a room-temperature, cesium Rydberg gas as a THz to optical interface. We present two configurations: First, THz-induced fluorescence offers non-destructive and direct imaging of the THz field, providing real-time, single shot images. Second, we convert narrowband terahertz photons to infrared photons with 6% quantum efficiency allowing us to use nano-Watts of THz power to control micro-Watts of laser power on microsecond timescales. Exploiting hysteresis and a room-temperature phase transition in the response of the medium, we demonstrate a latching optical memory for sub pico-Joule THz pulses.

  18. Atom trap trace analysis

    SciTech Connect

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  19. Atomic and molecular supernovae

    SciTech Connect

    Liu, W.

    1997-12-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  20. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  1. Atomic mass evaluation

    SciTech Connect

    Wang, M.; Audi, G.; Kondev, F. G.; Xu, X.; Pfeiffer, B.

    2012-11-12

    The atomic masses are important input parameters for nuclear astrophysics calculations. The Atomic Mass Evaluation (AME) is the most reliable source for comprehensive information related to atomic masses. The latest AME was published in 2003. A new version, which will include the impact of a wealth of new, high-precision experimental data, will be published in December 2012. In this paper we will give the current status of AME2012. The mass surface has been changed significantly compared to AME2003, and the impact on astrophysics calculations is discussed.

  2. Trapping deuterium atoms

    SciTech Connect

    Wiederkehr, A. W.; Hogan, S. D.; Lambillotte, B.; Andrist, M.; Schmutz, H.; Agner, J.; Salathe, Y.; Merkt, F.

    2010-02-15

    Cold deuterium atoms in a supersonic beam have been decelerated from an initial velocity of 475 m/s to zero velocity in the laboratory frame using a 24-stage Zeeman decelerator. The atoms have been loaded in a magnetic quadrupole trap at a temperature of {approx}100 mK and an initial density of {approx}10{sup 6} cm{sup -3}. Efficient deceleration was achieved by pulsing the magnetic fields in the decelerator solenoids using irregular sequences of phase angles. Trap loading was optimized by monitoring and suppressing the observed reflection of the atoms by the field gradient of the back solenoid of the trap.

  3. Precisely detecting atomic position of atomic intensity images.

    PubMed

    Wang, Zhijun; Guo, Yaolin; Tang, Sai; Li, Junjie; Wang, Jincheng; Zhou, Yaohe

    2015-03-01

    We proposed a quantitative method to detect atomic position in atomic intensity images from experiments such as high-resolution transmission electron microscopy, atomic force microscopy, and simulation such as phase field crystal modeling. The evaluation of detection accuracy proves the excellent performance of the method. This method provides a chance to precisely determine atomic interactions based on the detected atomic positions from the atomic intensity image, and hence to investigate the related physical, chemical and electrical properties. PMID:25544105

  4. Kicking atoms with finite duration pulses

    NASA Astrophysics Data System (ADS)

    Fekete, Julia; Chai, Shijie; Daszuta, Boris; Andersen, Mikkel F.

    2016-05-01

    The atom optics delta-kicked particle is a paradigmatic system for experimental studies of quantum chaos and classical-quantum correspondence. It consists of a cloud of laser cooled atoms exposed to a periodically pulsed standing wave of far off-resonant laser light. A purely quantum phenomena in such systems are quantum resonances which transfers the atoms into a coherent superposition of largely separated momentum states. Using such large momentum transfer ``beamsplitters'' in atom interferometers may have applications in high precision metrology. The growth in momentum separation cannot be maintained indefinitely due to finite laser power. The largest momentum transfer is achieved by violating the usual delta-kick assumption. Therefore we explore the behavior of the atom optics kicked particle with finite pulse duration. We have developed a semi-classical model which shows good agreement with the full quantum description as well as our experiments. Furthermore we have found a simple scaling law that helps to identify optimal parameters for an atom interferometer. We verify this by measurements of the ``Talbot time'' (a measurement of h/m) which together with other well-known constants constitute a measurement of the fine structure constant.

  5. Fully exponentially correlated wavefunctions for small atoms

    SciTech Connect

    Harris, Frank E.

    2015-01-22

    Fully exponentially correlated atomic wavefunctions are constructed from exponentials in all the interparticle coordinates, in contrast to correlated wavefunctions of the Hylleraas form, in which only the electron-nuclear distances occur exponentially, with electron-electron distances entering only as integer powers. The full exponential correlation causes many-configuration wavefunctions to converge with expansion length more rapidly than either orbital formulations or correlated wavefunctions of the Hylleraas type. The present contribution surveys the effectiveness of fully exponentially correlated functions for the three-body system (the He isoelectronic series) and reports their application to a four-body system (the Li atom)

  6. Dendritic microstructure in argon atomized superalloy powders

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Kumar, Mahundra

    1986-01-01

    The dendritic microstructure of atomized nickel base superalloy powders (Ni-20 pct Cr, NIMONIC-80A, ASTROALOY, and ZHS6-K) was studied. Prealloyed vacuum induction melted ingots were argon-atomized, the powders were cooled to room temperature, and various powder-size fractions were examined by optical metallography. Linear correlations were obtained for the powder size dependence of the secondary dendrite arm spacing, following the expected d-alpha (R) to the m power dependence on the particle size for all four superalloy compositions. However, the Ni-20 pct Cr alloy, which had much coarser arm spacing as compared to the other three alloys, had a much larger value of m.

  7. Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    Adatom chains, precise structures artificially created on an atomically regulated surface, are the smallest possible candidates for future nanoelectronics. Since all the devices are created by combining adatom chains precisely prepared with atomic precision, device characteristics are predictable, and free from deviations due to accidental structural defects. In this atomic dimension, however, an analogy to the current semiconductor devices may not work. For example, Si structures are not always semiconducting. Adatom states do not always localize at the substrate surface when adatoms form chemical bonds to the substrate atoms. Transport properties are often determined for the entire system of the chain and electrodes, and not for chains only. These fundamental issues are discussed, which will be useful for future device considerations.

  8. Conceptual atomism rethought.

    PubMed

    Schneider, Susan

    2010-06-01

    Focusing on Machery's claim that concepts play entirely different roles in philosophy and psychology, I explain how one well-known philosophical theory of concepts, Conceptual Atomism (CA), when properly understood, takes into account both kinds of roles. PMID:20584416

  9. Atomic branching in molecules

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Rodríguez-Velázquez, Juan A.; Randić, Milan

    A graph theoretic measure of extended atomic branching is defined that accounts for the effects of all atoms in the molecule, giving higher weight to the nearest neighbors. It is based on the counting of all substructures in which an atom takes part in a molecule. We prove a theorem that permits the exact calculation of this measure based on the eigenvalues and eigenvectors of the adjacency matrix of the graph representing a molecule. The definition of this measure within the context of the Hückel molecular orbital (HMO) and its calculation for benzenoid hydrocarbons are also studied. We show that the extended atomic branching can be defined using any real symmetric matrix, as well as any Hermitian (self-adjoint) matrix, which permits its calculation in topological, geometrical, and quantum chemical contexts.

  10. Anti-atoms: Gotcha!

    NASA Astrophysics Data System (ADS)

    Surko, Clifford M.

    2011-07-01

    Refined techniques to mix cold antiprotons and positrons in a magnetic bottle show that antihydrogen atoms can be trapped for 15 minutes -- an improvement of four orders of magnitude over previous experiments.

  11. Atomic Bomb Health Benefits

    PubMed Central

    Luckey, T. D.

    2008-01-01

    Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation, leukemia and solid tissue cancer mortality rates, and increased average lifespan. Each study exhibits a threshold that repudiates the LNT dogma. The average threshold for acute exposures to atomic bombs is about 100 cSv. Conclusions from these studies of atomic bomb survivors are: One burst of low dose irradiation elicits a lifetime of improved health.Improved health from low dose irradiation negates the LNT paradigm.Effective triage should include radiation hormesis for survivor treatment. PMID:19088902

  12. The Atomic Dating Game.

    ERIC Educational Resources Information Center

    Cummo, Evelyn; Matthews, Catherine E.

    2002-01-01

    Presents an activity designed to provide students with opportunities to practice drawing atomic models and discover the logical pairings of whole families on the periodic table. Follows the format of a television game show. (DDR)

  13. The CHIANTI atomic database

    NASA Astrophysics Data System (ADS)

    Young, P. R.; Dere, K. P.; Landi, E.; Del Zanna, G.; Mason, H. E.

    2016-04-01

    The freely available CHIANTI atomic database was first released in 1996 and has had a huge impact on the analysis and modeling of emissions from astrophysical plasmas. It contains data and software for modeling optically thin atom and positive ion emission from low density (≲1013 cm-3) plasmas from x-ray to infrared wavelengths. A key feature is that the data are assessed and regularly updated, with version 8 released in 2015. Atomic data for modeling the emissivities of 246 ions and neutrals are contained in CHIANTI, together with data for deriving the ionization fractions of all elements up to zinc. The different types of atomic data are summarized here and their formats discussed. Statistics on the impact of CHIANTI to the astrophysical community are given and examples of the diverse range of applications are presented.

  14. Atomic & Molecular Interactions

    SciTech Connect

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  15. Atom chip gravimeter

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  16. Improved Atomizer Resists Clogging

    NASA Technical Reports Server (NTRS)

    Dea, J. Y.

    1983-01-01

    Improved constant-output atomizer has conical orifice that permits air to sweep out all liquid thoroughly and prevent any buildup of liquid or dissolved solids. Capillary groove guides liquid to gas jet. Simple new design eliminates clogging.

  17. Metal atomization spray nozzle

    DOEpatents

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  18. Optical atomic magnetometer

    DOEpatents

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  19. Atomizing nozzle and method

    SciTech Connect

    Ting, Jason; Anderson, Iver E.; Terpstra, Robert L.

    2000-03-16

    A high pressure close-coupled gas atomizing nozzle includes multiple discrete gas jet discharge orifices having aerodynamically designed convergent-divergent geometry with an first converging section communicated to a gas supply manifold and to a diverging section by a constricted throat section to increase atomizing gas velocity. The gas jet orifices are oriented at gas jet apex angle selected relative to the melt supply tip apex angle to establish a melt aspiration condition at the melt supply tip.

  20. Metal atomization spray nozzle

    DOEpatents

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  1. Correctly Expressing Atomic Weights

    NASA Astrophysics Data System (ADS)

    Paolini, Moreno; Cercignani, Giovanni; Bauer, Carlo

    2000-11-01

    Very often, atomic or molecular weights are expressed as dimensionless quantities, but although the historical importance of their definition as "pure numbers" is acknowledged, it is inconsistent with experimental formulas and with the theory of measure in general. Here, we propose on the basis of clear-cut formulas that, contrary to customary statements, atomic and molecular weights should be expressed as dimensional quantities (masses) in which the Dalton (= 1.663 x 10-24 g) is taken as the unit.

  2. Sharing the atom bomb

    SciTech Connect

    Chace, J.

    1996-01-01

    Shaken by the devastation of Hiroshima and Nagasaki and fearful that the American atomic monopoly would spark an arms race, Dean Acheson led a push in 1946 to place the bomb-indeed, all atomic energy-under international control. But as the memories of wartime collaboration faded, relations between the superpowers grew increasingly tense, and the confrontational atmosphere undid his proposal. Had Acheson succeeded, the Cold War might not have been. 2 figs.

  3. Atomic mass compilation 2012

    SciTech Connect

    Pfeiffer, B.; Venkataramaniah, K.; Czok, U.; Scheidenberger, C.

    2014-03-15

    Atomic mass reflects the total binding energy of all nucleons in an atomic nucleus. Compilations and evaluations of atomic masses and derived quantities, such as neutron or proton separation energies, are indispensable tools for research and applications. In the last decade, the field has evolved rapidly after the advent of new production and measuring techniques for stable and unstable nuclei resulting in substantial ameliorations concerning the body of data and their precision. Here, we present a compilation of atomic masses comprising the data from the evaluation of 2003 as well as the results of new measurements performed. The relevant literature in refereed journals and reports as far as available, was scanned for the period beginning 2003 up to and including April 2012. Overall, 5750 new data points have been collected. Recommended values for the relative atomic masses have been derived and a comparison with the 2003 Atomic Mass Evaluation has been performed. This work has been carried out in collaboration with and as a contribution to the European Nuclear Structure and Decay Data Network of Evaluations.

  4. Solar-simulator-pumped atomic iodine laser kinetics

    NASA Technical Reports Server (NTRS)

    Wilson, H. W.; Raju, S.; Shiu, Y. J.

    1983-01-01

    The literature contains broad ranges of disagreement in kinetic data for the atomic iodine laser. A kinetic model of a solar-simulator-pumped iodine laser is used to select those kinetic data consistent with recent laser experiments at the Langley Research Center. Analysis of the solar-simulator-pumped laser experiments resulted in the following estimates of rate coefficients: for alkyl radical (n-C3F7) and atomic iodine (I) recombination, 4.3 x 10 to the 11th power (1.9) + or - cu cm/s; for n-C3F7I stabilized atomic iodine recombination (I + I) 3.7 x 10 to the -32nd power (2.3) + or -1 cm to the 6th power/s; and for molecular iodine (I2) quenching, 3.1 x 10 to the -11th power (1.6) + or - 1 cu cm/s. These rates are consistent with the recent measurements.

  5. Direct drive rotary atomization for dry flue gas desulfurization applications

    SciTech Connect

    Martinelli, R.; Elwell, R.C.

    1986-01-01

    General Electric Environmental Services, Inc. (GEESI) and APV Anhydro A/S (Anhydro) have chosen the direct drive approach for atomizers rated at 200 HP and above. This approach was selected to increase component life, improve reliability and reduce power transmission losses which are encountered in conventional gear-driven units. As an added benefit, the use of a variable frequency drive simplified atomizer speed changes, and provides lower inrush current than required with a conventional starter. This paper presents design and production considerations, laboratory tests results, and field experience with the GEESI variable speed, direct drive atomizer system. Data is presented on atomized droplet size characterization, power consumption, rotor vibration, bearing temperatures, and motor performance at various liquid flow rates and atomizer rotating speeds.

  6. Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas

    NASA Technical Reports Server (NTRS)

    Braun, C. G.; Kunc, J. A.

    1989-01-01

    A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.

  7. Fracture toughness of irradiated Zr-2.5Nb pressure tube from Indian PHWR

    NASA Astrophysics Data System (ADS)

    Shah, Priti Kotak; Dubey, J. S.; Shriwastaw, R. S.; Dhotre, M. P.; Bhandekar, A.; Pandit, K. M.; Anantharaman, S.; Singh, R. N.; Chakravartty, J. K.

    2015-03-01

    Fracture toughness of irradiated Zr-2.5Nb alloy pressure tube, fabricated by the cold pilgering and stress relieving route, was evaluated using disk compact tension type specimens. These specimens were punched out from the irradiated pressure tube (S-07), which was in service for about 8 effective full power years of reactor operation in the Kakrapar Atomic Power Station-2 (KAPS-2). The tests were carried out remotely inside a lead shielded enclosure. Crack growth during the test was measured using the direct current potential drop technique. The irradiated pressure tube showed low fracture toughness at 25 °C. The fracture toughness increased with increase in temperature up to 250 °C but was practically unaffected with further increase in temperature up to 300 °C. This paper discusses the fracture behavior of irradiated Indian pressure tube material and compares it with other data available.

  8. Atomic spectrometry update - atomic mass spectrometry.

    SciTech Connect

    Bacon, J.; Crain, J. S.; McMahon, A. W.; Williams, J. G.; Analytical Chemistry Laboratory; The Macaulay Land Use Research Inst.; Manchester Metropolitan Univ.; Imperial Coll.

    1996-10-01

    The MS and XRF updates have been published together since their introduction in 1988. In the last few years, however, the two sections have been prepared independently of each other and it therefore seemed appropriate to publish the two sections separately. With effect from this issue, the MS Update will appear in the October issue of JAAS and the XRF Update in the November issue. The format used for the MS section is broadly similar to that used last year, with some additional sub-headings. This Update is intended to cover all atomic and stable isotopic MS techniques, but not those used in studies of fundamental nuclear physics and exotic nuclei far from stability. Also excluded are those reports in which MS is used as a tool in the study of molecular processes and of gaseous components. the review is based on critical selection of developments in instrumentation and methodology, notable for their innovation, originality or achievement of significant advances, and is not intended to be comprehensive in its coverage. Conference papers are only included if they contain enough information to show they meet these criteria, and our policy in general remains one of waiting for a development to appear in a full paper before inclusion in the review. a similar policy applies to foreign language papers unlikely to reach a wide audience. Routine applications of atomic MS are not included in this Update and the reader is referred to the Updates on Industrial Analysis: Metals, Chemicals and Advanced Materials (96/416), Environmental Analysis (96/1444) and Clinical and Biological Materials, Food and Beverages (96/2479). Also excluded are those applications, even if not routine, which use atomic spectroscopy as a tool for the study of a non-atomic property, for example, the use of stable isotope labeling of carbon or nitrogen in biomolecules in metabolic studies. There have been few general reviews on atomic MS of note in the period covered by this update. That of Colodner et al

  9. A simple method for experimental determination of electron temperature and electron density in a nanosecond pulsed longitudinal discharge used for excitation of high-power atomic and ionic metal and metal halide vapour lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Vuchkov, N. K.

    2016-05-01

    A simple method based on the time-resolved measurement of electrical discharge parameters, such as tube voltage and discharge current, is developed and applied for determination of electron temperature and electron density in the discharge period of a nanosecond pulsed longitudinal discharge, exciting high-power DUV Cu+ Ne-CuBr, He-Hg+ and He-Sr+ lasers.

  10. JPL Ultrastable Trapped Ion Atomic Frequency Standards.

    PubMed

    Burt, Eric A; Yi, Lin; Tucker, Blake; Hamell, Robert; Tjoelker, Robert L

    2016-07-01

    Recently, room temperature trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on three directions: 1) ultrastable atomic clocks, usually for terrestrial applications emphasizing ultimate stability performance and autonomous timekeeping; 2) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements; and 3) miniature clocks. In this paper, we concentrate on the first direction and present a design and the initial results from a new ultrastable clock referred to as L10 that achieves a short-term stability of 4.5 ×10(-14)/τ(1/2) and an initial measurement of no significant drift with an uncertainty of 2.4 ×10(-16) /day over a two-week period. PMID:27249827

  11. Atomic Defects in Two Dimensional Materials.

    PubMed

    Rasool, Haider I; Ophus, Colin; Zettl, Alex

    2015-10-14

    Atomic defects in crystalline structures have pronounced affects on their bulk properties. Aberration-corrected transmission electron microscopy has proved to be a powerful characterization tool for understanding the bonding structure of defects in materials. In this article, recent results on the characterization of defect structures in two dimensional materials are discussed. The dynamic behavior of defects in graphene shows the stability of zigzag edges of the material and gives insights into the dislocation motion. Polycrystalline graphene is characterized using advanced electron microscopy techniques, revealing the global crystal structure of the material, as well as atomic-resolution observation of the carbon atom positions between neighboring crystal grains. Studies of hexagonal boron nitride (hBN) are also visited, highlighting the interlayer bonding, which occurs upon defect formation, and characterization of grain boundary structures. Lastly, defect structures in monolayer polycrystalline transition metal dichalcogenides grown by CVD are discussed. PMID:25946075

  12. Atomic resolution holography.

    PubMed

    Hayashi, Kouichi

    2014-11-01

    Atomic resolution holography, such as X-ray fluorescence holography (XFH)[1] and photoelectron holography (PH), has the attention of researcher as an informative local structure analysis, because it provides three dimensional atomic images around specific elements within a range of a few nanometers. It can determine atomic arrangements around a specific element without any prior knowledge of structures. It is considered that the atomic resolution holographic is a third method of structural analysis at the atomic level after X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). As known by many researchers, XRD and XAFS are established methods that are widespread use in various fields. XRD and XAFS provide information on long-range translational periodicities and very local environments, respectively, whereas the atomic resolution holography gives 3D information on the local order and can visualize surrounding atoms with a large range of coordination shells. We call this feature "3D medium-range local structure observation".In addition to this feature, the atomic resolution holography is very sensitive to the displacement of atoms from their ideal positions, and one can obtain quantitative information about local lattice distortions by analyzing reconstructed atomic images[2] When dopants with different atomic radii from the matrix elements are present, the lattices around the dopants are distorted. However, using the conventional methods of structural analysis, one cannot determine the extent to which the local lattice distortions are preserved from the dopants. XFH is a good tool for solving this problem.Figure 1 shows a recent achievement on a relaxor ferroelectric of Pb(Mg1/3Nb2/3)O3 (PMN) using XFH. The structural studies of relaxor ferroelectrics have been carried out by X-ray or neutron diffractions, which suggested rhombohedral distortions of their lattices. However, their true pictures have not been obtained, yet. The Nb Kα holograms showed

  13. Single-atom electron energy loss spectroscopy of light elements

    PubMed Central

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds. PMID:26228378

  14. Cold Atom Magnetometers

    NASA Astrophysics Data System (ADS)

    Eto, Yujiro; Sadrove, Mark; Hirano, Takuya

    Detection of weak magnetic fields with high spatial resolution is an important technology for various applications such as biological imaging, detection of MRI signals and fundamental physics. Cold atom magnetometry enables 10-11 T/ Hz sqrt{text{Hz}} sensitivities at the micron scale, that is, at the scale of a typical biological cell size. This magnetometry takes advantage of unique properties of atomic gaseous Bose-Einstein condensates with internal spin degrees of freedom. In this chapter, we first overview various state-of-the-art magnetometers, addressing their sensitivities and spatial resolutions. Then we describe properties of spinor condensates, ultracold atom magnetometers, and the latest research developments achieved in the FIRST project, especially for the detection of alternate current magnetic fields using a spin-echo-based magnetometer. We also discuss future prospects of the magnetometers.

  15. Element selective detection of molecular species applying chromatographic techniques and diode laser atomic absorption spectrometry.

    PubMed

    Kunze, K; Zybin, A; Koch, J; Franzke, J; Miclea, M; Niemax, K

    2004-12-01

    Tunable diode laser atomic absorption spectroscopy (DLAAS) combined with separation techniques and atomization in plasmas and flames is presented as a powerful method for analysis of molecular species. The analytical figures of merit of the technique are demonstrated by the measurement of Cr(VI) and Mn compounds, as well as molecular species including halogen atoms, hydrogen, carbon and sulfur. PMID:15561625

  16. Single atoms in a MOT

    SciTech Connect

    Meschede, Dieter; Ueberholz, Bernd; Gomer, Victor; Knappe, Svenja; Reiter, Uwe; Schadwinkel, Harald; Strauch, Frank

    1999-06-11

    We are experimenting with individual neutral cesium atoms stored in a magneto-optical trap. The atoms are detected by their resonance fluorescence, and fluorescence fluctuations contain signatures of the atomic internal and external degrees of freedom. This noninvasive probe provides a rich source of information about atomic dynamics at all relevant time scales.

  17. Mining information from atom probe data.

    PubMed

    Cairney, Julie M; Rajan, Krishna; Haley, Daniel; Gault, Baptiste; Bagot, Paul A J; Choi, Pyuck-Pa; Felfer, Peter J; Ringer, Simon P; Marceau, Ross K W; Moody, Michael P

    2015-12-01

    Whilst atom probe tomography (APT) is a powerful technique with the capacity to gather information containing hundreds of millions of atoms from a single specimen, the ability to effectively use this information creates significant challenges. The main technological bottleneck lies in handling the extremely large amounts of data on spatial-chemical correlations, as well as developing new quantitative computational foundations for image reconstruction that target critical and transformative problems in materials science. The power to explore materials at the atomic scale with the extraordinary level of sensitivity of detection offered by atom probe tomography has not been not fully harnessed due to the challenges of dealing with missing, sparse and often noisy data. Hence there is a profound need to couple the analytical tools to deal with the data challenges with the experimental issues associated with this instrument. In this paper we provide a summary of some key issues associated with the challenges, and solutions to extract or "mine" fundamental materials science information from that data. PMID:26095825

  18. Steering random walks with kicked ultracold atoms

    NASA Astrophysics Data System (ADS)

    Weiß, Marcel; Groiseau, Caspar; Lam, W. K.; Burioni, Raffaella; Vezzani, Alessandro; Summy, Gil S.; Wimberger, Sandro

    2015-09-01

    The kicking sequence of the atom-optics kicked rotor at quantum resonance can be interpreted as a quantum random walk in momentum space. We show how such a walk can become the basis for nontrivial classical walks by applying a random sequence of intensities and phases of the kicking lattice chosen according to a probability distribution. This distribution converts on average into the final momentum distribution of the kicked atoms. In particular, it is shown that a power-law distribution for the kicking strengths results in a Lévy walk in momentum space and in a power law with the same exponent in the averaged momentum distribution. Furthermore, we investigate the stability of our predictions in the context of a realistic experiment with Bose-Einstein condensates.

  19. A single-atom heat engine

    NASA Astrophysics Data System (ADS)

    Roßnagel, Johannes; Dawkins, Samuel T.; Tolazzi, Karl N.; Abah, Obinna; Lutz, Eric; Schmidt-Kaler, Ferdinand; Singer, Kilian

    2016-04-01

    Heat engines convert thermal energy into mechanical work and generally involve a large number of particles. We report the experimental realization of a single-atom heat engine. An ion is confined in a linear Paul trap with tapered geometry and driven thermally by coupling it alternately to hot and cold reservoirs. The output power of the engine is used to drive a harmonic oscillation. From direct measurements of the ion dynamics, we were able to determine the thermodynamic cycles for various temperature differences of the reservoirs. We then used these cycles to evaluate the power P and efficiency η of the engine, obtaining values up to P = 3.4 × 10–22 joules per second and η = 0.28%, consistent with analytical estimations. Our results demonstrate that thermal machines can be reduced to the limit of single atoms.

  20. A single-atom heat engine.

    PubMed

    Roßnagel, Johannes; Dawkins, Samuel T; Tolazzi, Karl N; Abah, Obinna; Lutz, Eric; Schmidt-Kaler, Ferdinand; Singer, Kilian

    2016-04-15

    Heat engines convert thermal energy into mechanical work and generally involve a large number of particles. We report the experimental realization of a single-atom heat engine. An ion is confined in a linear Paul trap with tapered geometry and driven thermally by coupling it alternately to hot and cold reservoirs. The output power of the engine is used to drive a harmonic oscillation. From direct measurements of the ion dynamics, we were able to determine the thermodynamic cycles for various temperature differences of the reservoirs. We then used these cycles to evaluate the power P and efficiency η of the engine, obtaining values up to P = 3.4 × 10(-22)joules per second and η = 0.28%, consistent with analytical estimations. Our results demonstrate that thermal machines can be reduced to the limit of single atoms. PMID:27081067

  1. Imaging Genetic Molecules At Atomic Resolution

    NASA Technical Reports Server (NTRS)

    Coles, L. Stephen

    1993-01-01

    Proposed method of imaging informational polymeric biological molecules at atomic resolution enables determination of sequences of component monomers about 10 to the 3rd power to 10 to the 4th power times as fast as conventional methods do. Accelerates research on genetic structures of animals and plants. Also contributes significantly to imaging processes like scanning electron microscopy (SEM), atomic-force microscopy (AFM), and scanning tunneling microscopy (STM) in cases in which necessary to locate or identify small specimens on relatively large backgrounds and subtract background images to obtain images of specimens in isolation. V-grooves on silicon wafer laid out in square pattern, intersections of which marked to identify coordinates. Specimen molecules held in grooves for reproducible positioning and scanning by AFM or STM.

  2. Atomization and Mixing Study

    NASA Technical Reports Server (NTRS)

    Ferrenberg, A.; Hunt, K.; Duesberg, J.

    1985-01-01

    The primary objective was the obtainment of atomization and mixing performance data for a variety of typical liquid oxygen/hydrocarbon injector element designs. Such data are required to establish injector design criteria and to provide critical inputs to liquid rocket engine combustor performance and stability analysis, and computational codes and methods. Deficiencies and problems with the atomization test equipment were identified, and action initiated to resolve them. Test results of the gas/liquid mixing tests indicated that an assessment of test methods was required. A series of 71 liquid/liquid tests were performed.

  3. Computer Modeling Of Atomization

    NASA Technical Reports Server (NTRS)

    Giridharan, M.; Ibrahim, E.; Przekwas, A.; Cheuch, S.; Krishnan, A.; Yang, H.; Lee, J.

    1994-01-01

    Improved mathematical models based on fundamental principles of conservation of mass, energy, and momentum developed for use in computer simulation of atomization of jets of liquid fuel in rocket engines. Models also used to study atomization in terrestrial applications; prove especially useful in designing improved industrial sprays - humidifier water sprays, chemical process sprays, and sprays of molten metal. Because present improved mathematical models based on first principles, they are minimally dependent on empirical correlations and better able to represent hot-flow conditions that prevail in rocket engines and are too severe to be accessible for detailed experimentation.

  4. Atomic Force Microscope

    SciTech Connect

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  5. Hirshfeld atom refinement

    PubMed Central

    Capelli, Silvia C.; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-01-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu’s), all other structural parameters agree within less than 2 csu’s. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å. PMID:25295177

  6. Pulsed atomic soliton laser

    SciTech Connect

    Carr, L.D.; Brand, J.

    2004-09-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments.

  7. Warm Vapor Atom Interferometer

    NASA Astrophysics Data System (ADS)

    Biedermann, Grant; Wheeler, David; Jau, Yuan-Yu; McGuinness, Hayden

    2014-05-01

    We present a light pulse atom interferometer using room temperature rubidium vapor. Doppler sensitive stimulated Raman transitions forming the atom optical elements inherently select a cold velocity group for the interferometer. The interferometer is configured to be sensitive to accelerations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Atom Tunneling in Chemistry.

    PubMed

    Meisner, Jan; Kästner, Johannes

    2016-04-25

    Quantum mechanical tunneling of atoms is increasingly found to play an important role in many chemical transformations. Experimentally, atom tunneling can be indirectly detected by temperature-independent rate constants at low temperature or by enhanced kinetic isotope effects. In contrast, the influence of tunneling on the reaction rates can be monitored directly through computational investigations. The tunnel effect, for example, changes reaction paths and branching ratios, enables chemical reactions in an astrochemical environment that would be impossible by thermal transition, and influences biochemical processes. PMID:26990917

  9. Iowa Powder Atomization Technologies

    SciTech Connect

    2012-01-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  10. Iowa Powder Atomization Technologies

    ScienceCinema

    None

    2013-03-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  11. Korean atomic bomb victims.

    PubMed

    Sasamoto, Yukuo

    2009-01-01

    After colonizing Korea, Japan invaded China, and subsequently initiated the Pacific War against the United States, Britain, and their allies. Towards the end of the war, U.S. warplanes dropped atomic bombs on Hiroshima and Nagasaki, which resulted in a large number of Koreans who lived in Hiroshima and Nagasaki suffering from the effects of the bombs. The objective of this paper is to examine the history of Korea atomic bomb victims who were caught in between the U.S., Japan, the Republic of Korea (South Korea) and the Democratic People's Republic of Korea (North Korea). PMID:20521424

  12. Ultracold collisions between Rb atoms and a Sr+ ion

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2015-05-01

    In last decade, a novel field emerged, in which ultracold atoms and ions in overlapping traps are brought into interaction. In contrast to the short ranged atom-atom interaction which scales as r-6, atom-ion potential persists for hundreds of μm's due to its lower power-law scaling - r-4. Inelastic collisions between the consistuents lead to spin and charge transfer and also to molecule formation. Elastic collisions control the energy transfer between the ion and the atoms. The study of collisions at the μK range has thus far been impeded by the effect of the ion's micromotion which limited collision energy to mK scale. Unraveling this limit will allow to investigate few partial wave and even S-wave collisions. Our system is capable of trapping Sr+ ions and Rb and Sr atoms and cooling them to their quantum ground state. Atoms and ions are trapped and cooled in separate chambers. Then, the atoms are transported using an optical conveyer belt to overlap the ions. In contrast to other experiments in this field where the atoms are used to sympathetic cool the ion, our system is also capable of ground state cooling the ion before immersing it into the atom cloud. By this method, we would be able to explore heating and cooling dynamics in the ultracold regime.

  13. Friction and Wear on the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst

    Friction has long been the subject of research: the empirical da Vinci-Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 15 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact.

  14. A Newtonian Model of the Hydrogen Atom

    NASA Astrophysics Data System (ADS)

    Espinosa, James; Woodyard, James

    2010-03-01

    Classical physics was deemed useless in atomic physics in the early 1900's by the vast majority of the physics community. There were multiple problems that were believed to be insoluble, such as blackbody radiation and the photoelectric and Compton effects. Another outstanding problem had been the explanation of atomic spectra. By the 1920's, a very powerful theory called quantum mechanics was created which explained all atomic experiments. Nevertheless, a few physicists, most notably Albert Einstein, rejected this theory on the grounds that it did not give a complete description of the microscopic world. Another more radical view held by Walter Ritz is that Newtonian physics is applicable to all of atomic physics. Over the last couple of years, we have presented classical explanations of many of the ``insoluble'' problems given by textbooks. We will present a model of the hydrogen atom that stays within the framework of Newton. Using only the assumption that the stable building blocks of matter are the electron, positron, and neutrino, we will deduce the following results from our model: orbital stability, line spectra, and scattering cross sections for electrons and protons. We will also qualitatively demonstrate how to explain the lifetime of excited states.

  15. Magnetic Control of Atomic Motion

    NASA Astrophysics Data System (ADS)

    Mazur, Tom; Bannerman, Travis; Chavez, Isaac; Clark, Rob; Libson, Adam; Raizen, Mark

    2010-03-01

    Using a sequence of pulsed electromagnetic coils, known as the atomic coilgun, we slowed supersonic beams of atomic neon and molecular oxygen. We report our progress toward adapting the atomic coilgun for magnetically trapping hydrogen isotopes. This work has motivated us to investigate other methods for magnetic control of atomic motion. We describe these techniques, and present calculations suggesting their utility in controlling atomic motion. We then outline our plans for using these methods in certain applications.

  16. AtomDB and PyAtomDB: Atomic Data and Modelling Tools for High Energy and Non-Maxwellian Plasmas

    NASA Astrophysics Data System (ADS)

    Foster, Adam; Smith, Randall K.; Brickhouse, Nancy S.; Cui, Xiaohong

    2016-04-01

    The release of AtomDB 3 included a large wealth of inner shell ionization and excitation data allowing accurate modeling of non-equilibrium plasmas. We describe the newly calculated data and compare it to published literature data. We apply the new models to existing supernova remnant data such as W49B and N132D. We further outline progress towards AtomDB 3.1, including a new energy-dependent charge exchange cross sections.We present newly developed models for the spectra of electron-electron bremsstrahlung and those due to non-Maxwellian electron distributions.Finally, we present our new atomic database access tools, released as PyAtomDB, allowing powerful use of the underlying fundamental atomic data as well as the spectral emissivities.

  17. Nuclear power attitude trends

    SciTech Connect

    Nealey, S.M.

    1981-11-01

    The increasing vulnerability of nuclear power to political pressures fueled by public concerns, particularly about nuclear plant safety and radioactive waste disposal, has become obvious. Since Eisenhower's Atoms-for-Peace program, utility and government plans have centered on expansion of nuclear power generating capability. While supporters have outnumbered opponents of nuclear power expansion for many years, in the wake of the Three Mile Island (TMI) accident the margin of support has narrowed. The purpose of this paper is to report and put in perspective these long-term attitude trends.

  18. Spatially resolved photoionization of ultracold atoms on an atom chip

    SciTech Connect

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-06-15

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 {mu}K in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 {mu}m, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip.

  19. Cavity-modified collective Rayleigh scattering of two atoms.

    PubMed

    Reimann, René; Alt, Wolfgang; Kampschulte, Tobias; Macha, Tobias; Ratschbacher, Lothar; Thau, Natalie; Yoon, Seokchan; Meschede, Dieter

    2015-01-16

    We report on the observation of cooperative radiation of exactly two neutral atoms strongly coupled to the single mode field of an optical cavity, which is close to the lossless-cavity limit. Monitoring the cavity output power, we observe constructive and destructive interference of collective Rayleigh scattering for certain relative distances between the two atoms. Because of cavity backaction onto the atoms, the cavity output power for the constructive two-atom case (N=2) is almost equal to the single-emitter case (N=1), which is in contrast to free-space where one would expect an N^{2} scaling of the power. These effects are quantitatively explained by a classical model as well as by a quantum mechanical model based on Dicke states. We extract information on the relative phases of the light fields at the atom positions and employ advanced cooling to reduce the jump rate between the constructive and destructive atom configurations. Thereby we improve the control over the system to a level where the implementation of two-atom entanglement schemes involving optical cavities becomes realistic. PMID:25635545

  20. Rutherford-Bohr atom

    NASA Astrophysics Data System (ADS)

    Heilbron, J. L.

    1981-03-01

    Bohr used to introduce his attempts to explain clearly the principles of the quantum theory of the atom with an historical sketch, beginning invariably with the nuclear model proposed by Rutherford. That was sound pedagogy but bad history. The Rutherford-Bohr atom stands in the middle of a line of work initiated by J.J. Thomson and concluded by the invention of quantum mechanics. Thompson's program derived its inspiration from the peculiar emphasis on models characteristic of British physics of the 19th century. Rutherford's atom was a late product of the goals and conceptions of Victorian science. Bohr's modifications, although ultimately fatal to Thomson's program, initially gave further impetus to it. In the early 1920s the most promising approach to an adequate theory of the atom appeared to be the literal and detailed elaboration of the classical mechanics of multiply periodic orbits. The approach succeeded, demonstrating in an unexpected way the force of an argument often advanced by Thomson: because a mechanical model is richer in implications than the considerations for which it was advanced, it can suggest new directions of research that may lead to important discoveries.

  1. Atomism, Pragmatism, Holism.

    ERIC Educational Resources Information Center

    Miller, John P.

    1986-01-01

    Examines three world views influencing curriculum development--atomism (underpinning competency-based education), pragmatism (promoting inquiry-based approaches), amd holism (associated with confluent or Waldorf education). Holism embodies the perennial philosophy and attempts to integrate cognitive, affective, and transpersonal dimensions,…

  2. INL Laboratory Scale Atomizer

    SciTech Connect

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  3. Atomic collisions, inelastic indeed

    NASA Astrophysics Data System (ADS)

    Bercegol, Herve; Ferrando, Gwenael; Lehoucq, Roland

    At the turn of the twentieth century, a hot controversy raged about the ability of Boltzmann's framework to take care of irreversibility. The so-called Loschmidt's paradox progressively faded with time during the last hundred years, due to the predictive efficiency of statistical mechanics. However, one detail at the origin of the controversy - the elasticity of atomic collisions - was not completely challenged. A semi-classical treatment of two atoms interacting with the vacuum zero-point field permits to predict a friction force acting against the rotation of the pair of atoms. By its form and its level, the calculated torque is a candidate as a physical cause for diffusion of energy and angular momentum, and consequently for entropy growth. It opens the way to a revision of the standard vision of irreversibility. This presentation will focus on two points. First we will discuss the recent result in a broader context of electromagnetic interactions during microscopic collisions. The predicted friction phenomenon can be compared to and distinguished from Collision-Induced Emission and other types of inelastic collisions. Second we will investigate the consequences of the friction torque on calculated trajectories of colliding atoms, quantifying the generation of dimers linked by dispersion forces.

  4. Bonds Between Atoms.

    ERIC Educational Resources Information Center

    Holden, Alan

    The field of inquiry into how atoms are bonded together to form molecules and solids crosses the borderlines between physics and chemistry encompassing methods characteristic of both sciences. At one extreme, the inquiry is pursued with care and rigor into the simplest cases; at the other extreme, suggestions derived from the more careful inquiry…

  5. Observational Evidence for Atoms.

    ERIC Educational Resources Information Center

    Jones, Edwin R., Jr.; Childers, Richard L.

    1984-01-01

    Discusses the development of the concept of atomicity and some of the many which can be used to establish its validity. Chemical evidence, evidence from crystals, Faraday's law of electrolysis, and Avogadro's number are among the areas which show how the concept originally developed from a purely philosophical idea. (JN)

  6. Atomically Traceable Nanostructure Fabrication.

    PubMed

    Ballard, Josh B; Dick, Don D; McDonnell, Stephen J; Bischof, Maia; Fu, Joseph; Owen, James H G; Owen, William R; Alexander, Justin D; Jaeger, David L; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J; Wallace, Robert M; Reidy, Richard; Silver, Richard M; Randall, John N; Von Ehr, James

    2015-01-01

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure. PMID:26274555

  7. Diffraction by cold atoms

    NASA Astrophysics Data System (ADS)

    Strauch, F.; Gomer, V.; Schadwinkel, H.; Ueberholz, B.; Haubrich, D.; Meschede, D.

    1998-01-01

    We have observed diffraction of a laser probe beam by a trapped sample of cold atoms. The effect is only visible in the vicinity of a resonance line. The observed diffraction pattern arises from interference of the incident and scattered light wave, allowing reconstruction of geometric properties of the trapped sample from the holographic record.

  8. Atoms in Astronomy.

    ERIC Educational Resources Information Center

    Blanchard, Paul A.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. A Basic Topics section discusses atomic structure, emphasizing states of matter at high temperature and spectroscopic analysis of light from the stars. A section…

  9. Atomic Oxygen Task

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.

    1997-01-01

    This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.

  10. Energy from the Atom.

    ERIC Educational Resources Information Center

    Smith, Patricia L.

    This curriculum guide was written to supplement fifth and sixth grade science units on matter and energy. It was designed to provide more in-depth material on the atom. The first part, "Teacher Guide," contains background information, biographical sketches of persons in the history of nuclear energy, vocabulary, answer sheets, management sheets…

  11. Surface characterization of silica glass substrates treated by atomic hydrogen

    SciTech Connect

    Inoue, Hiroyuki; Masuno, Atsunobu; Ishibashi, Keiji; Tawarayama, Hiromasa; Zhang, Yingjiu; Utsuno, Futoshi; Koya, Kazuo; Fujinoki, Akira; Kawazoe, Hiroshi

    2013-12-15

    Silica glass substrates with very flat surfaces were exposed to atomic hydrogen at different temperatures and durations. An atomic force microscope was used to measure root-mean-square (RMS) roughness and two-dimensional power spectral density (PSD). In the treatment with atomic hydrogen up to 900 °C, there was no significant change in the surface. By the treatment at 1000 °C, the changes in the RMS roughness and the PSD curves were observed. It was suggested that these changes were caused by etching due to reactions of atomic hydrogen with surface silica. By analysis based on the k-correlation model, it was found that the spatial frequency of the asperities became higher with an increase of the treatment time. Furthermore, the data showed that atomic hydrogen can flatten silica glass surfaces by controlling heat-treatment conditions. - Highlights: • Silica glass surface was treated by atomic hydrogen at various temperatures. • Surface roughness was measured by an atomic force microscope. • Roughness data were analyzed by two-dimensional power spectral density. • Atomic hydrogen can flatten silica glass surfaces.

  12. [Changes in the L-serine and L-threonine dehydrogenase activities in the blood serum of those who worked in the cleanup of the aftermath of the accident at the Chernobyl Atomic Electric Power Station who became ill with chronic acalculous cholecystitis].

    PubMed

    Komarenko, D I; Soboleva, L P; Ovsiannikova, L M; Kadiuk, E N; Shvaĭko, E A; Nosach, E V

    1999-06-01

    Activity was studied of blood serum plasmic enzymes L-serine and L-threonine dehydrogenazes (SDG and ThDG) in 92 liquidators of aftermath of the Chernobyl atomic power plant breakdown, presenting with chronic non-calculous cholecystitis during the stage of moderately severe exacerbation with no clinical and laboratory and sonographic signs of affection of the liver. A quarter of the examinees demonstrated an increased activity of the enzymes under study, which fact is regarded by the authors as a preclinical sign of reactive hepatitis. Recommendations are given as to the outpatient registration and prophylactic management and therapy of those persons having taken part in the elimination of the effects of the Chernobyl accident, presenting with biliary pathologies. PMID:10476630

  13. EDITORIAL: Atomic layer deposition Atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Godlewski, Marek

    2012-07-01

    The growth method of atomic layer deposition (ALD) was introduced in Finland by Suntola under the name of atomic layer epitaxy (ALE). The method was originally used for deposition of thin films of sulphides (ZnS, CaS, SrS) activated with manganese or rare-earth ions. Such films were grown for applications in thin-film electroluminescence (TFEL) displays. The ALE mode of growth was also tested in the case of molecular beam epitaxy. Films grown by ALD are commonly polycrystalline or even amorphous. Thus, the name ALE has been replaced by ALD. In the 80s ALD was developed mostly in Finland and neighboring Baltic countries. Deposition of a range of different materials was demonstrated at that time, including II-VI semiconductors (e.g. CdTe, CdS) and III-V (e.g. GaAs, GaN), with possible applications in e.g. photovoltaics. The number of publications on ALD was slowly increasing, approaching about 100 each year. A real boom in interest came with the development of deposition methods of thin films of high-k dielectrics. This research was motivated by a high leakage current in field-effect transistors with SiO2-based gate dielectrics. In 2007 Intel introduced a new generation of integrated circuits (ICs) with thin films of HfO2 used as gate isolating layers. In these and subsequent ICs, films of HfO2 are deposited by the ALD method. This is due to their unique properties. The introduction of ALD to the electronics industry led to a booming interest in the ALD growth method, with the number of publications increasing rapidly to well above 1000 each year. A number of new applications were proposed, as reflected in this special issue of Semiconductor Science and Technology. The included articles cover a wide range of possible applications—in microelectronics, transparent electronics, optoelectronics, photovoltaics and spintronics. Research papers and reviews on the basics of ALD growth are also included, reflecting a growing interest in precursor chemistry and growth

  14. 2D numerical modelling of the gas temperature in a high-temperature high-power strontium atom laser excited by nanosecond pulsed longitudinal discharge in a He-SrBr2 mixture

    NASA Astrophysics Data System (ADS)

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2014-05-01

    Assuming axial symmetry and a uniform power input, a 2D model (r, z) is developed numerically for determination of the gas temperature in the case of a nanosecond pulsed longitudinal discharge in He-SrBr2 formed in a newly-designed large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge-free zone, in order to find the optimal thermal mode for achievement of maximal output laser parameters. The model determines the gas temperature of a nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  15. HPAM: Hirshfeld Partitioned Atomic Multipoles

    PubMed Central

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2011-01-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank lmax on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from lmax = 0 (atomic charges) to lmax = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank lmax are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ lmax. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (lmax = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. PMID:22140274

  16. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    NASA Astrophysics Data System (ADS)

    Duben, Ondřej; Boušek, Jaroslav; Dědina, Jiří; Kratzer, Jan

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min- 1 Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml- 1 Se in the DBD and 0.15 ng ml- 1 Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer.

  17. Atoms to Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: (1) "The Role of Nuclear Power"; (2) "The Role of Electricity"; (3) Generating Electricity…

  18. Atoms to Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and the role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: the role of nuclear power; the role of electricity; generating electricity with the…

  19. Atom inlays performed at room temperature using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yoshiaki; Abe, Masayuki; Hirayama, Shinji; Oyabu, Noriaki; Custance, Óscar; Morita, Seizo

    2005-02-01

    The ability to manipulate single atoms and molecules laterally for creating artificial structures on surfaces is driving us closer to the ultimate limit of two-dimensional nanoengineering. However, experiments involving this level of manipulation have been performed only at cryogenic temperatures. Scanning tunnelling microscopy has proved, so far, to be a unique tool with all the necessary capabilities for laterally pushing, pulling or sliding single atoms and molecules, and arranging them on a surface at will. Here we demonstrate, for the first time, that it is possible to perform well-controlled lateral manipulations of single atoms using near-contact atomic force microscopy even at room temperature. We report the creation of 'atom inlays', that is, artificial atomic patterns formed from a few embedded atoms in the plane of a surface. At room temperature, such atomic structures remain stable on the surface for relatively long periods of time.

  20. Power-Supply-Conditioning Circuit

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Loveland, R. C.

    1989-01-01

    Fluctuations of voltage suppressed in power supplies for precise radio-frequency circuits. Circuit suppresses both periodic and random deviations of dc supply voltage from desired steady level. Highly-stable feedback voltage regulator, conditioner intended in conjunction with conventional power-supply circuit to provide constant voltage to atomic frequency standard or other precise oscillator. Without conditioners, outputs of most commercial power supplies contain fluctuations causing unacceptably-large phase and amplitude modulation of precise oscillators.

  1. A Compact, High-Flux Cold Atom Beam Source

    NASA Technical Reports Server (NTRS)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  2. A Saturnian atom.

    PubMed

    Lee, E; Farrelly, D; Uzer, T

    1997-09-29

    In Bohr's original planetary model of the atom the electron moves along orbits of special geometric simplicity. While wave mechanics precludes the idea that a physical path could be ascribed to the electron, a classical or planetary atom can still be envisaged in which the electronic wavepacket neither spreads nor disperses as its center moves along the Kepler orbit, and this orbit is conned to a single plane in space. We show theoretically how an electronic wavepacket may be localized in this fashion in a similar way to ion confinement in a Penning trap. Because external fields are needed to keep the packet confined, a more fitting analogy than a planetary orbit is the motion of a charged dust grain in one of the rings of a giant planet such as Saturn. PMID:19373405

  3. Optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.

    2013-12-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  4. Atomic Disorder in Tetrahedrite

    NASA Astrophysics Data System (ADS)

    Salasin, John Robert; Chakoumakos, Bryan; Rawn, Claudia; May, Andrew; Lara-Curzio, Edgar; McGuire, Michael; Cao, Huibo

    2015-03-01

    Thermoelectrics (TE) are materials which turn heat energy into electrical energy with applications spanning multiple disciplines including space exploration, Peltier cooling, and engine efficiency. Tetrahedrite is a copper sulfosalt with the general formula Cu12-xMx(Sb,As)4S13. Where M denotes a Cu2+ site frequently replaced in natural tetrahedrite with Zn, Fe, Hg, or Mn. It has a cubic structure with an I-43m symmetry, a = 10.4 Å, and only a handful of adjustable parameters. This structural study corroborates theoretical calculations on atomic disorder. Positional disorder of the trigonally coordinated Cu(2) site is suggested from the temperature dependence of the atomic displacement parameters determine from single-crystal x-ray and neutron diffraction. The displacements are extremely anisotropic for Cu(2) with a maximum rms static displacement of ~ 0.25 Å.

  5. Cavity enhanced atomic magnetometry

    PubMed Central

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  6. D- mesic atoms

    NASA Astrophysics Data System (ADS)

    García-Recio, C.; Nieves, J.; Salcedo, L. L.; Tolos, L.

    2012-02-01

    The anti-D meson self-energy is evaluated self-consistently, using unitarized coupled-channel theory, by computing the in-medium meson-baryon T matrix in the C=-1,S=0 sector. The heavy pseudo-scalar and heavy vector mesons, D¯ and D¯*, are treated on equal footing as required by heavy-quark spin symmetry. Results for energy levels and widths of D- mesic atoms in 12C, 40Ca, 118Sn, and 208Pb are presented. The spectrum contains states of atomic and of nuclear types for all nuclei. D¯0-nucleus bound states are also obtained. We find that, after electromagnetic and nuclear cascade, these systems end up with the D¯ bound in the nucleus, either as a meson or as part of an exotic D¯N (pentaquark) loosely bound state.

  7. Cavity enhanced atomic magnetometry.

    PubMed

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  8. Cavity enhanced atomic magnetometry

    NASA Astrophysics Data System (ADS)

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  9. Vibration-Induced Droplet Atomization

    NASA Technical Reports Server (NTRS)

    Smith, M. K.; James, A.; Vukasinovic, B.; Glezer, A.

    1999-01-01

    Thermal management is critical to a number of technologies used in a microgravity environment and in Earth-based systems. Examples include electronic cooling, power generation systems, metal forming and extrusion, and HVAC (heating, venting, and air conditioning) systems. One technique that can deliver the large heat fluxes required for many of these technologies is two-phase heat transfer. This type of heat transfer is seen in the boiling or evaporation of a liquid and in the condensation of a vapor. Such processes provide very large heat fluxes with small temperature differences. Our research program is directed toward the development of a new, two-phase heat transfer cell for use in a microgravity environment. In this paper, we consider the main technology used in this cell, a novel technique for the atomization of a liquid called vibration-induced droplet atomization. In this process, a small liquid droplet is placed on a thin metal diaphragm that is made to vibrate by an attached piezoelectric transducer. The vibration induces capillary waves on the free surface of the droplet that grow in amplitude and then begin to eject small secondary droplets from the wave crests. In some situations, this ejection process develops so rapidly that the entire droplet seems to burst into a small cloud of atomized droplets that move away from the diaphragm at speeds of up to 50 cm/s. By incorporating this process into a heat transfer cell, the active atomization and transport of the small liquid droplets could provide a large heat flux capability for the device. Experimental results are presented that document the behavior of the diaphragm and the droplet during the course of a typical bursting event. In addition, a simple mathematical model is presented that qualitatively reproduces all of the essential features we have seen in a burst event. From these two investigations, we have shown that delayed droplet bursting results when the system passes through a resonance

  10. Interfacing ultracold atoms and mechanical oscillators on an atom chip

    NASA Astrophysics Data System (ADS)

    Treutlein, Philipp

    2010-03-01

    Ultracold atoms can be trapped and coherently manipulated close to a chip surface using atom chip technology. This opens the exciting possibility of studying interactions between atoms and on-chip solid-state systems such as micro- and nanostructured mechanical oscillators. One goal is to form hybrid quantum systems, in which atoms are used to read out, cool, and coherently manipulate the oscillators' state. In our work, we investigate different coupling mechanisms between ultracold atoms and mechanical oscillators. In a first experiment, we use atom-surface forces to couple the vibrations of a mechanical cantilever to the motion of a Bose-Einstein condensate in a magnetic microtrap on an atom chip. The atoms are trapped at about one micrometer distance from the cantilever surface. We make use of the coupling to read out the cantilever vibrations with the atoms and observe resonant coupling to several well-resolved mechanical modes of the condensate. In a second experiment, we investigate coupling via a 1D optical lattice that is formed by a laser beam retroreflected from a SiN membrane oscillator. The optical lattice serves as a `transfer rod' that couples vibrations of the membrane to the atoms and vice versa. We point out that the strong coupling regime can be reached in coupled atom-oscillator systems by placing both the atoms and the oscillator in a high-finesse optical cavity.

  11. Effect of liquid film on atomizing performance in airblast atomizers

    NASA Astrophysics Data System (ADS)

    Zhao, Qishou; Gan, Xiaohua

    1991-08-01

    Results are presented from a comprehensive consideration of the relationship between experimental data obtained in the course of several years on atomization characteristics and both (1) liquid film thickness and (2) airblast atomizer dynamic characteristics. It is noted that no liquid accumulation arises at the atomizer's edges.

  12. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  13. Atomic lighthouse effect.

    PubMed

    Máximo, C E; Kaiser, R; Courteille, Ph W; Bachelard, R

    2014-11-01

    We investigate the deflection of light by a cold atomic cloud when the light-matter interaction is locally tuned via the Zeeman effect using magnetic field gradients. This "lighthouse" effect is strongest in the single-scattering regime, where deviation of the incident field is largest. For optically dense samples, the deviation is reduced by collective effects, as the increase in linewidth leads to a decrease in magnetic field efficiency. PMID:25401364

  14. Semiclassical model for atoms

    PubMed Central

    Pearson, Ralph G.

    1981-01-01

    The energies of several two- and three-electron atoms, in both ground states and excited states, are calculated by a very simple semiclassical model. The only change from Bohr's original method is to replace definite orbits by probability distribution functions based on classical dynamics. The energies are better than Hartree-Fock values. There is still a need for an exchange-energy correction. Images PMID:16593047

  15. Atomic lighthouse effect

    NASA Astrophysics Data System (ADS)

    Máximo, C. E.; Kaiser, R.; Courteille, Ph. W.; Bachelard, R.

    2014-11-01

    We investigate the deflection of light by a cold atomic cloud when the light-matter interaction is locally tuned via the Zeeman effect using magnetic field gradients. This "lighthouse" effect is strongest in the single-scattering regime, where deviation of the incident field is largest. For optically dense samples, the deviation is reduced by collective effects, as the increase in linewidth leads to a decrease of the magnetic field efficiency.

  16. Wild atom: Nuclear terrorism

    SciTech Connect

    1998-12-31

    Nuclear explosives are no longer beyond the reach of terrorists. The wild Atom simulation demonstrated that, because interdiction is difficult, governments must combat illicit possession of nuclear weapons, improve working relationships among domestic agencies, and curb rivalries among national and international counterproliferation and counterterrorism officials. If a nuclear incident occurs, officials must be trained for consequence management; the national security community and the national disaster medical community should be well practiced in working together and with experts in other countries.

  17. Seeing single atoms.

    PubMed

    Isaacson, Michael S

    2012-12-01

    New discoveries and ideas often occur at the confluence of events and technologies that allow them to happen. So it was with the first electron microscopic observations of individual atoms at the University of Chicago laboratory of Albert Crewe forty years ago. This paper will describe the technologies developed then, present some of the historical instrumental details and describe the rationale for the designs that came about in that laboratory over a period of about a decade. PMID:22871487

  18. Atomic emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  19. Atomic properties of Lu+

    NASA Astrophysics Data System (ADS)

    Paez, Eduardo; Arnold, K. J.; Hajiyev, Elnur; Porsev, S. G.; Dzuba, V. A.; Safronova, U. I.; Safronova, M. S.; Barrett, M. D.

    2016-04-01

    Singly ionized lutetium has recently been suggested as a potential clock candidate. Here we report a joint experimental and theoretical investigation of Lu+. Measurements relevant to practical clock operation are made and compared to atomic structure calculations. Calculations of scalar and tensor polarizabilities for clock states over a range of wavelengths are also given. These results will be useful for future work with this clock candidate.

  20. Development of laser excited atomic fluorescence and ionization methods

    SciTech Connect

    Winefordner, J.D.

    1991-01-01

    Progress report: May 1, 1988 to December 31, 1991. The research supported by DE-FG05-88ER13881 during the past (nearly) 3 years can be divided into the following four categories: (1) theoretical considerations of the ultimate detection powers of laser fluorescence and laser ionization methods; (2) experimental evaluation of laser excited atomic fluorescence; (3) fundamental studies of atomic and molecular parameters in flames and plasmas; (4) other studies.

  1. Atomic Weights and Isotopic Compositions

    National Institute of Standards and Technology Data Gateway

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  2. Atom-Light Hybrid Interferometer.

    PubMed

    Chen, Bing; Qiu, Cheng; Chen, Shuying; Guo, Jinxian; Chen, L Q; Ou, Z Y; Zhang, Weiping

    2015-07-24

    A new type of hybrid atom-light interferometer is demonstrated with atomic Raman amplification processes replacing the beam splitting elements in a traditional interferometer. This nonconventional interferometer involves correlated optical and atomic waves in the two arms. The correlation between atoms and light developed with the Raman process makes this interferometer different from conventional interferometers with linear beam splitters. It is observed that the high-contrast interference fringes are sensitive to the optical phase via a path change as well as the atomic phase via a magnetic field change. This new atom-light correlated hybrid interferometer is a sensitive probe of the atomic internal state and should find wide applications in precision measurement and quantum control with atoms and photons. PMID:26252684

  3. Real and Hybrid Atomic Orbitals.

    ERIC Educational Resources Information Center

    Cook, D. B.; Fowler, P. W.

    1981-01-01

    Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)

  4. Atomic phenomena in dense plasmas

    SciTech Connect

    Weisheit, J.C.

    1981-03-01

    The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination. (MOW)

  5. Recent progress of laser cooling for neutral mercury atom

    NASA Astrophysics Data System (ADS)

    Liu, Kang-Kang; Zhao, Ru-Chen; Fu, Xiao-Hu; Hu, Jin-Meng; Feng, Yan; Xu, Zhen; Wang, Yu-Zhu

    2014-11-01

    Mercury is the heaviest stable atom that could be laser cooled, and have a large nuclear charge number. So it has a distinct advantage in quantum precision measurement such as fine-structure constant α and permanent electric dipole moment. Due to its insensitivity of black body radiation, atomic mercury is a good candidate of optical clock. Here we report our recent development of laser cooling of neutral mercury atom. By cooling the mercury source to about -70°C, an ultra-high vacuum system was realized to produce ultracold mercury atoms. The commercial frequency quadrupled semiconductor laser is locked on the cooling transition (1S0-3P1 transition, wavelength of 253.7 nm) by sub-Doppler frequency modulation spectroscopy. By the modification with feed-forward method, the UV laser becomes faster tunable and more stable. A folded beam configuration was used to realize the magneto-optical trap (MOT) because of the shortage of cooling laser power, and the ultracold mercury atoms were observed by fluorescence detection. All of six rich abundant isotopes have been observed, and the atom number is about 1.5×106 with density of 3.5×109 /cm3 for 202Hg. With optical shutter and the programmable system to control the time sequence, the temperature of ultracold atoms can be measured by time of flight method. To enhance the laser power, a 1014.8 nm fiber laser amplifier was developed, which can work at room temperature. After two stages of frequency doubling, about 75 mW of 253.7 nm UV laser were generated, and the saturated absorption spectroscopy of mercury atom was also observed. More power of UV laser could help to trap more atoms in the future. These works laid a good foundation to realize the mercury lattice clock.

  6. Surface production of H(-) ions by hyperthermal hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Lee, Brian S.; Seidl, M.

    1992-12-01

    Hyperthermal atomic hydrogen of energy in the range of 1-10 eV has been produced by electron impact dissociation in a CW 2.45 GHz microwave electron cyclotron resonance discharge using a Lisitano-Coil (Lisitano, 1970). The flux and the energy of the hydrogen atoms have been measured by negative surface ionization of the atoms backscattered from pure and cesiated metal surfaces. A hyperthermal atomic hydrogen flux density equivalent to more than 0.5 A/sq cm and a temperature of about 5 eV has been produced for 420 W discharge power under CW condition. These hydrogen atoms can be directed onto an external converter located outside the discharge. This opens up new possibilities for H(-) ion source design.

  7. Thermoelectricity in atom-sized junctions at room temperatures

    PubMed Central

    Tsutsui, Makusu; Morikawa, Takanori; Arima, Akihide; Taniguchi, Masateru

    2013-01-01

    Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junctions at room temperatures. We measured the electrical conductance and thermoelectric power of gold nanocontacts simultaneously down to the single atom size. We found junction conductance dependent thermoelectric voltage oscillations with period 2e2/h. We also observed quantum suppression of thermovoltage fluctuations in fully-transparent contacts. These quantum confinement effects appeared only statistically due to the geometry-sensitive nature of thermoelectricity in the atom-sized junctions. The present method can be applied to various nanomaterials including single-molecules or nanoparticles and thus may be used as a useful platform for developing low-dimensional thermoelectric building blocks. PMID:24270238

  8. Thermoelectricity in atom-sized junctions at room temperatures.

    PubMed

    Tsutsui, Makusu; Morikawa, Takanori; Arima, Akihide; Taniguchi, Masateru

    2013-01-01

    Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junctions at room temperatures. We measured the electrical conductance and thermoelectric power of gold nanocontacts simultaneously down to the single atom size. We found junction conductance dependent thermoelectric voltage oscillations with period 2e(2)/h. We also observed quantum suppression of thermovoltage fluctuations in fully-transparent contacts. These quantum confinement effects appeared only statistically due to the geometry-sensitive nature of thermoelectricity in the atom-sized junctions. The present method can be applied to various nanomaterials including single-molecules or nanoparticles and thus may be used as a useful platform for developing low-dimensional thermoelectric building blocks. PMID:24270238

  9. Atoms to electricity. [Booklet

    SciTech Connect

    Not Available

    1987-11-01

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle and the role of nuclear energy as one of the domestic energy resources being developed to help meet our national energy demand. Nuclear power accounted for over 16 percent of the US electric energy supply in 1986 and was second only to coal as a source of our electric power. In the 1990s, nuclear energy is expected to provide almost 20 percent of the Nation's electricity. 38 figs., 5 tabs.

  10. Atoms to electricity

    SciTech Connect

    Not Available

    1983-11-01

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle and the role of nuclear energy as one of the domestic energy resources being developed to help meet our national energy demand. Nuclear power accounted for some 12 percent of the US electric energy supply in 1982. In the 1990's, it is expected to become second only to coal as a source of our electric power, almost doubling its present contribution to our national electricity supply. 14 references, 40 figures, 5 tables.

  11. Simultaneous multielement atomic absorption spectrometry with graphite furnace atomization

    NASA Astrophysics Data System (ADS)

    Harnly, James M.; Miller-Ihli, Nancy J.; O'Haver, Thomas C.

    The extended analytical range capability of a simultaneous multielement atomic absorption continuum source spectrometer (SIMAAC) was tested for furnace atomization with respect to the signal measurement mode (peak height and area), the atomization mode (from the wall or from a platform), and the temperature program mode (stepped or ramped atomization). These parameters were evaluated with respect to the shapes of the analytical curves, the detection limits, carry-over contamination and accuracy. Peak area measurements gave more linear calibration curves. Methods for slowing the atomization step heating rate, the use of a ramped temperature program or a platform, produced similar calibration curves and longer linear ranges than atomization with a stepped temperature program. Peak height detection limits were best using stepped atomization from the wall. Peak area detection limits for all atomization modes were similar. Carry-over contamination was worse for peak area than peak height, worse for ramped atomization than stepped atomization, and worse for atomization from a platform than from the wall. Accurate determinations (100 ± 12% for Ca, Cu, Fe, Mn, and Zn in National Bureau of Standards' Standard Reference Materials Bovine Liver 1577 and Rice Flour 1568 were obtained using peak area measurements with ramped atomization from the wall and stepped atomization from a platform. Only stepped atomization from a platform gave accurate recoveries for K. Accurate recoveries, 100 ± 10%, with precisions ranging from 1 to 36 % (standard deviation), were obtained for the determination of Al, Co, Cr, Fe, Mn, Mo, Ni. Pb, V and Zn in Acidified Waters (NBS SRM 1643 and 1643a) using stepped atomization from a platform.

  12. Rapid prototyping of versatile atom chips for atom interferometry applications.

    NASA Astrophysics Data System (ADS)

    Kasch, Brian; Squires, Matthew; Olson, Spencer; Kroese, Bethany; Imhof, Eric; Kohn, Rudolph; Stuhl, Benjamin; Schramm, Stacy; Stickney, James

    2016-05-01

    We present recent advances in the manipulation of ultracold atoms with ex-vacuo atom chips (i.e. atom chips that are not inside to the UHV chamber). Details will be presented of an experimental system that allows direct bonded copper (DBC) atom chips to be removed and replaced in minutes, requiring minimal re-optimization of parameters. This system has been used to create Bose-Einstein condensates, as well as magnetic waveguides with precisely tunable axial parameters, allowing double wells, pure harmonic confinement, and modified harmonic traps. We investigate the effects of higher order magnetic field contributions to the waveguide, and the implications for confined atom interferometry.

  13. Miniature, atomically referenced offset phase-locked laser for cold-atom sensors

    NASA Astrophysics Data System (ADS)

    Pino, Juan; Luey, Ben; Bickman, Sarah; Anderson, Mike

    2012-06-01

    As ultracold atom sensors begin to see their way to the field, there is a growing need for small, accurate, and robust laser systems to cool and manipulate atoms for sensing applications such as magnetometers, gravimeters, atomic clocks and inertial sensing. In this poster we present an ultracompact, frequency agile laser source, referenced to a hyperfine transition of ^87Rb. The laser system is housed in a package roughly the size of a stack of business cards, is hermetically sealed, and contains no moving parts -- ideal for field deployment. The laser system includes two lasers with independent temperature control, a Rb-filled vapor cell, a high-speed photodetector for monitoring the offset frequency between the lasers, as well the necessary optical isolation. We will present designs of the ultracompact laser system, as well as quantitative results including size, weight, expected power consumption, frequency agility, and frequency stability.

  14. Friction forces on atoms after acceleration

    DOE PAGESBeta

    Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; Scheel, Stefan; Dalvit, Diego A. R.; Henkel, Carsten

    2015-05-12

    The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contributionmore » to the frictional power which goes as v4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v3.« less

  15. Friction forces on atoms after acceleration

    SciTech Connect

    Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; Scheel, Stefan; Dalvit, Diego A. R.; Henkel, Carsten

    2015-05-12

    The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contribution to the frictional power which goes as v4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v3.

  16. Indirect Determinations of Atomic Radii

    ERIC Educational Resources Information Center

    Walker, Noojin

    1976-01-01

    Describes laboratory activities which relate the mass, volume, density, and radii of atoms through the assumption that the smallest unit of matter is a cubic box containing one atom. From calculations based on macroscopic materials, the author feels that the concept of an atom may be better developed. (CP)

  17. Atomizer with liquid spray quenching

    DOEpatents

    Anderson, Iver E.; Osborne, Matthew G.; Terpstra, Robert L.

    1998-04-14

    Method and apparatus for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled.

  18. Atomizer with liquid spray quenching

    DOEpatents

    Anderson, I.E.; Osborne, M.G.; Terpstra, R.L.

    1998-04-14

    Method and apparatus are disclosed for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled. 6 figs.

  19. Lasers, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. Basic information for understanding the laser is provided including discussion of the electromagnetic spectrum, radio waves, light and the atom, coherent light, controlled…

  20. The International Atomic Energy Agency

    ERIC Educational Resources Information Center

    Dufour, Joanne

    2004-01-01

    The dropping of atomic bombs on Hiroshima and Nagasaki in World War II inaugurated a new era in world history, the atomic age. After the war, the Soviet Union, eager to develop the same military capabilities as those demonstrated by the United States, soon rivaled the U.S. as an atomic and nuclear superpower. Faced by the possibility of…

  1. Current Trends in Atomic Spectroscopy.

    ERIC Educational Resources Information Center

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  2. Atomic clock based on transient coherent population trapping

    SciTech Connect

    Guo Tao; Deng Ke; Chen Xuzong; Wang Zhong

    2009-04-13

    We proposed a scheme to implement coherent population trapping (CPT) atomic clock based on the transient CPT phenomenon. We proved that the transient transmitted laser power in a typical {lambda} system near CPT resonance features as a damping oscillation. Also, the oscillating frequency is exactly equal to the frequency detuning from the atomic hyperfine splitting. Therefore, we can directly measure the frequency detuning and then compensated to the output frequency of microwave oscillator to get the standard frequency. By this method, we can further simplify the structure of CPT atomic clock, and make it easier to be digitized and miniaturized.

  3. Next Generation JPL Ultra-Stable Trapped Ion Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert

    2013-01-01

    Over the past decade, trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable atomic clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped ion clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.

  4. A new miniaturized atomic magnetic gradiometer

    NASA Astrophysics Data System (ADS)

    Sheng, Dong; Perry, Abigail; Krzyzewski, Sean; Geller, Shawn; Knappe, Svenja; Kitching, John

    2016-05-01

    We report the development of a new miniaturized magnetic gradiometer using alkali atoms. The gradiometer, with the length of 5 cm and cross section diameter of 11 mm, is made of two chip-scale atomic magnetometers placed on a printed optical bench with a defined separation. Both magnetometers work in the spin-exchange relaxation free regime, share the same beam for pumping and probing to reduce the common mode noises from the lasers, and atom temperature is independently controlled by heating beams at telecom wavelength. With 2 cm baseline, 1 mW pumping beam power, and less than 400 mW input heating beam power, we measure a noise level of 15 fT/ Hz1/2 from the subtraction of two magnetometer outputs, which corresponds to a gradient field sensitivity of 7.5 fT/ Hz1/2/cm. The maximum common mode magnetic field noise rejection is up to 1000 within the gradiometer bandwidth. This device is useful in many fields that require both sensitive gradient field information and high common mode noise cancellation. We are also developing a new hybrid system based on this device to improve its dynamical range.

  5. Quantum transport in ultracold atoms

    NASA Astrophysics Data System (ADS)

    Chien, Chih-Chun; Peotta, Sebastiano; di Ventra, Massimiliano

    2015-12-01

    Ultracold atoms confined by engineered magnetic or optical potentials are ideal to study phenomena otherwise difficult to realize or probe in the solid state, thanks to the ability to control the atomic interaction strength, number of species, density and geometry. Here, we review quantum transport phenomena in atomic gases that mirror and can either better elucidate or show fundamental differences with respect to those observed in mesoscopic and nanoscopic systems. We discuss the significant progress in transport experiments in atomic gases, the similarities and differences between transport in cold atoms and in condensed matter systems, and survey theoretical predictions that are difficult to verify in conventional set-ups.

  6. Atomization and mixing study

    NASA Technical Reports Server (NTRS)

    Ferrenberg, A.; Jaqua, V. W.

    1983-01-01

    The state of the art in atomization and mixing for triplet, pentad, and coaxial injectors is described. Injectors that are applicable for LOX/hydrocarbon propellants and main chamber and fuel rich preburner/gas generator mixture ratios are of special interest. Various applicable correlating equations and parameters as well as test data found in the literature are presented. The validity, utility, and important aspects of these data and correlations are discussed and the measurement techniques used are evaluated. Propellant mixing tests performed are described and summarized, results are reported, and tentative conclusions are included.

  7. Atomic transport of oxygen

    SciTech Connect

    Routbort, J.L.; Tomlins, G.W.

    1994-06-15

    Atomic transport of oxygen in nonstoichiometric oxides is an extremely important topic which overlaps science and technology. In many cases the diffusion of oxygen controls sintering, grain growth, and creep. High oxygen diffusivity is critical for efficient operation of many fuel cells. Additionally, oxygen diffusivities are an essential ingredient in any point defect model. Secondary Ion Mass Spectrometry (SIMS) is the most accurate modern technique to measure oxygen tracer diffusion. This paper briefly reviews the principles and applications of SIMS for the measurement of oxygen transport. Case studies are taken from recent work on ZnO and some high-temperature superconductors.

  8. Ultraviolet atomic emission detector

    NASA Technical Reports Server (NTRS)

    Braun, W.; Peterson, N. C.; Bass, A. M.; Kurylo, M. J., III (Inventor)

    1972-01-01

    A device and method are provided for performing qualitative and quantitative elemental analysis through the utilization of a vacuum UV chromatographic detector. The method involves the use of a carrier gas at low pressure. The gas carries a sample to a gas chromatograph column; the column output is directed to a microwave cavity. In this cavity, a low pressure microwave discharge produces fragmentation of the compounds present and generates intense atomic emissions in the vacuum ultraviolet. These emissions are isolated by a monochromator and measured by photometer to establish absolute concentration for the elements.

  9. Atomic data for fusion

    SciTech Connect

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  10. The coupled atom transistor.

    PubMed

    Jehl, X; Voisin, B; Roche, B; Dupont-Ferrier, E; De Franceschi, S; Sanquer, M; Cobian, M; Niquet, Y-M; Sklénard, B; Cueto, O; Wacquez, R; Vinet, M

    2015-04-22

    We describe the first implementation of a coupled atom transistor where two shallow donors (P or As) are implanted in a nanoscale silicon nanowire and their electronic levels are controlled with three gate voltages. Transport spectroscopy through these donors placed in series is performed both at zero and microwave frequencies. The coherence of the charge transfer between the two donors is probed by Landau-Zener-Stückelberg interferometry. Single-charge transfer at zero bias (electron pumping) has been performed and the crossover between the adiabatic and non-adiabatic regimes is studied. PMID:25783566

  11. The coupled atom transistor

    NASA Astrophysics Data System (ADS)

    Jehl, X.; Voisin, B.; Roche, B.; Dupont-Ferrier, E.; De Franceschi, S.; Sanquer, M.; Cobian, M.; Niquet, Y.-M.; Sklénard, B.; Cueto, O.; Wacquez, R.; Vinet, M.

    2015-04-01

    We describe the first implementation of a coupled atom transistor where two shallow donors (P or As) are implanted in a nanoscale silicon nanowire and their electronic levels are controlled with three gate voltages. Transport spectroscopy through these donors placed in series is performed both at zero and microwave frequencies. The coherence of the charge transfer between the two donors is probed by Landau-Zener-Stückelberg interferometry. Single-charge transfer at zero bias (electron pumping) has been performed and the crossover between the adiabatic and non-adiabatic regimes is studied.

  12. Doping of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kutler, Paul (Technical Monitor)

    1997-01-01

    Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  13. A thermoelectric heat engine with ultracold atoms.

    PubMed

    Brantut, Jean-Philippe; Grenier, Charles; Meineke, Jakob; Stadler, David; Krinner, Sebastian; Kollath, Corinna; Esslinger, Tilman; Georges, Antoine

    2013-11-01

    Thermoelectric effects, such as the generation of a particle current by a temperature gradient, have their origin in a reversible coupling between heat and particle flows. These effects are fundamental probes for materials and have applications to cooling and power generation. Here, we demonstrate thermoelectricity in a fermionic cold atoms channel in the ballistic and diffusive regimes, connected to two reservoirs. We show that the magnitude of the effect and the efficiency of energy conversion can be optimized by controlling the geometry or disorder strength. Our observations are in quantitative agreement with a theoretical model based on the Landauer-Büttiker formalism. Our device provides a controllable model system to explore mechanisms of energy conversion and realizes a cold atom-based heat engine. PMID:24158905

  14. Trapping Rydberg Atoms in an Optical Lattice

    SciTech Connect

    Anderson, S. E.; Younge, K. C.; Raithel, G.

    2011-12-23

    Rubidium Rydberg atoms are laser excited and subsequently trapped in a one-dimensional optical lattice (wavelength 1064 nm). Efficient trapping is achieved by a lattice inversion immediately after laser excitation using an electro-optic technique. The trapping efficiency is probed via analysis of the trap-induced shift of the two-photon microwave transition 50S{yields}51S. The inversion technique allows us to reach a trapping efficiency of 90%. The dependence of the efficiency on the timing of the lattice inversion and on the trap laser power is studied. The dwell time of 50D{sub 5/2} Rydberg atoms in the lattice is analyzed using lattice-induced photoionization.

  15. Atomically resolved force microscopy at room temperature

    SciTech Connect

    Morita, Seizo

    2014-04-24

    Atomic force microscopy (AFM) can now not only image individual atoms but also construct atom letters using atom manipulation method even at room temperature (RT). Therefore, the AFM is the second generation atomic tool following the scanning tunneling microscopy (STM). However the AFM can image even insulating atoms, and also directly measure/map the atomic force and potential at the atomic scale. Noting these advantages, we have been developing a bottom-up nanostructuring system at RT based on the AFM. It can identify chemical species of individual atoms and then manipulate selected atom species to the predesigned site one-by-one to assemble complex nanostructures consisted of multi atom species at RT. Here we introduce our results toward atom-by-atom assembly of composite nanostructures based on the AFM at RT including the latest result on atom gating of nano-space for atom-by-atom creation of atom clusters at RT for semiconductor surfaces.

  16. The chip-scale atomic clock : prototype evaluation.

    SciTech Connect

    Mescher, Mark; Varghese, Mathew; Lutwak, Robert; Serkland, Darwin Keith; Tepolt, Gary; Geib, Kent Martin; Leblanc, John; Peake, Gregory Merwin; Rashid, Ahmed

    2007-12-01

    The authors have developed a chip-scale atomic clock (CSAC) for applications requiring atomic timing accuracy in portable battery-powered applications. At PTTI/FCS 2005, they reported on the demonstration of a prototype CSAC, with an overall size of 10 cm{sup 3}, power consumption > 150 mW, and short-term stability sy(t) < 1 x 10-9t-1/2. Since that report, they have completed the development of the CSAC, including provision for autonomous lock acquisition and a calibrated output at 10.0 MHz, in addition to modifications to the physics package and system architecture to improve performance and manufacturability.

  17. Atomic vapor laser isotope separation using resonance ionization

    SciTech Connect

    Comaskey, B.; Crane, J.; Erbert, G.; Haynam, C.; Johnson, M.; Morris, J.; Paisner, J.; Solarz, R.; Worden, E.

    1986-09-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power-reactor fuel has been under development for over 10 years. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for enriched uranium. Resonance photoionization is the heart of the AVLIS process. We discuss those fundamental atomic parameters that are necessary for describing isotope-selective resonant multistep photoionization along with the measurement techniques that we use. We illustrate the methodology adopted with examples of other elements that are under study in our program.

  18. Cancer in atomic bomb survivors

    SciTech Connect

    Shigematsu, I.; Kagan, A.

    1986-01-01

    This book presents information on the following topics: sampling of atomic bomb survivors and method of cancer detection in Hiroshima and Nagasaki; atomic bomb dosimetry for epidemiological studies of survivors in Hiroshima and Nagasaki; tumor and tissue registries in Hiroshima and Nagasaki; the cancer registry in Nagasaki, with atomic bomb survivor data, 1973-1977; cancer mortality; methods for study of delayed health effects of a-bomb radiation; experimental radiation carcinogenesis in rodents; leukemia, multiple myeloma, and malignant lymphoma; cancer of the thyroid and salivary glands; malignant tumors in atomic bomb survivors with special reference to the pathology of stomach and lung cancer; colorectal cancer among atomic bomb survivors; breast cancer in atomic bomb survivors; and ovarian neoplasms in atomic bomb survirors.

  19. Current-driven atomic waterwheels

    NASA Astrophysics Data System (ADS)

    Dundas, Daniel; McEniry, Eunan J.; Todorov, Tchavdar N.

    2009-02-01

    A current induces forces on atoms inside the conductor that carries it. It is now possible to compute these forces from scratch, and to perform dynamical simulations of the atomic motion under current. One reason for this interest is that current can be a destructive force-it can cause atoms to migrate, resulting in damage and in the eventual failure of the conductor. But one can also ask, can current be made to do useful work on atoms? In particular, can an atomic-scale motor be driven by electrical current, as it can be by other mechanisms? For this to be possible, the current-induced forces on a suitable rotor must be non-conservative, so that net work can be done per revolution. Here we show that current-induced forces in atomic wires are not conservative and that they can be used, in principle, to drive an atomic-scale waterwheel.

  20. Current-driven atomic waterwheels.

    PubMed

    Dundas, Daniel; McEniry, Eunan J; Todorov, Tchavdar N

    2009-02-01

    A current induces forces on atoms inside the conductor that carries it. It is now possible to compute these forces from scratch, and to perform dynamical simulations of the atomic motion under current. One reason for this interest is that current can be a destructive force--it can cause atoms to migrate, resulting in damage and in the eventual failure of the conductor. But one can also ask, can current be made to do useful work on atoms? In particular, can an atomic-scale motor be driven by electrical current, as it can be by other mechanisms? For this to be possible, the current-induced forces on a suitable rotor must be non-conservative, so that net work can be done per revolution. Here we show that current-induced forces in atomic wires are not conservative and that they can be used, in principle, to drive an atomic-scale waterwheel. PMID:19197311

  1. Hydrogen-Atom Transfer Reactions.

    PubMed

    Wang, Liang; Xiao, Jian

    2016-04-01

    The cascade [1,n]-hydrogen transfer/cyclization, recognized as the tert-amino effect one century ago, has received considerable interest in recent decades, and great achievements have been made. With the aid of this strategy, the inert C(sp(3))-H bonds can be directly functionalized into C-C, C-N, C-O bonds under catalysis of Lewis acids, Brønsted acids, as well as organocatalysts, and even merely under thermal conditions. Hydrogen can be transferred intramolecularly from hydrogen donor to acceptor in the form of hydride, or proton, followed by cyclization to furnish the cyclic products in processes featuring high atom economy. Methylene/methine adjacent to heteroatoms, e.g., nitrogen, oxygen, sulfur, can be exploited as hydride donor as well as methylene/methine without heteroatom assistance. Miscellaneous electrophilic subunits or intermediates, e.g., alkylidene malonate, carbophilic metal activated alkyne or allene, α,β-unsaturated aldehydes/ketone, saturated aldehydes/iminium, ketenimine/carbodiimide, metal carbenoid, electron-withdrawing groups activated allene/alkyne, in situ generated carbocation, can serve as hydride acceptors. This methodology has shown preeminent power to construct 5-, 6-, or 7-membered heterocyclic as well as carbon rings. In this chapter, various hydrogen donors and acceptors are adequately discussed. PMID:27573142

  2. Topological Superconductivity with Magnetic Atoms

    NASA Astrophysics Data System (ADS)

    Glazman, Leonid

    2015-03-01

    Chains of magnetic impurities embedded in a conventional s-wave superconductor may induce the formation of a topologically non-trivial superconducting phase. If such a phase is formed along a chain, then its ends carry Majorana fermions. We investigate this possibility theoretically by developing a tight-binding Bogoliubov-de Gennes description, starting from the Shiba bound states induced by the individual magnetic impurities. While the resulting Hamiltonian has similarities with the Kitaev model for one-dimensional spinless p-wave superconductors, there are also important differences, most notably the long-range (power-law) nature of hopping and pairing as well as the complex hopping amplitudes. We develop an analytical theory, complemented by numerical approaches, which accounts for the electron long-range pairing and hopping along the chain, inhomogeneous magnetic order in the chain of embedded impurities or spin-orbit coupling in the host superconductor, and the possibility of direct electron hopping between the impurity atoms. This allows us to elucidate the domain of parameters favoring the formation of a topological phase and to find the spatial structure of Majorana states appearing in that phase. This talk is based on joint work with F. von Oppen, Falko Pientka, and Yang Peng.

  3. Rf power sources

    SciTech Connect

    Allen, M.A.

    1988-05-01

    This paper covers RF power sources for accelerator applications. The approach has been with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. This paper is confined to electron-positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. 11 refs., 13 figs.

  4. Experiments in cold atom optics towards precision atom interferometry

    NASA Astrophysics Data System (ADS)

    Aveline, David C.

    Atom optics has been a highly active field of research with many scientific breakthroughs over the past two decades, largely due to successful advances in laser technology, microfabrication techniques, and the development of laser cooling and trapping of neutral atoms. This dissertation details several atom optics experiments with the motivation to develop tools and techniques for precision atom wave interferometry. It provides background information about atom optics and the fundamentals behind laser cooling and trapping, including basic techniques for cold gas thermometry and absorptive detection of atoms. A brief overview of magnetic trapping and guiding in tight wire-based traps is also provided before the experimental details are presented. We developed a novel laser source of 780 nm light using frequency-doubled 1560 nm fiber amplifier. This laser system provided up to a Watt of tunable frequency stabilized light for two Rb laser cooling and trapping experiments. One system generates Bose-Einstein condensates in an optical trap while the second is based on atom chip magnetic traps. The atom chip system, detailed in this thesis, was designed and built to develop the tools necessary for transport and loading large numbers of cold atoms and explore the potential for guided atom interferometry. Techniques and results from this experiment are presented, including an efficient magnetic transport and loading method to deliver cold atom to atom chip traps. We also developed a modeling tool for the magnetic fields formed by coiled wire geometries, as well as planar wire patterns. These models helped us design traps and determine adiabatic transportation of cold atoms between macro-scale traps and micro-traps formed on atom chips. Having achieved near unity transfer efficiency, we demonstrated that this approach promises to be a consistent method for loading large numbers of atoms into micro-traps. Furthermore, we discuss an in situ imaging technique to investigate

  5. Neuromorphic Atomic Switch Networks

    PubMed Central

    Martin-Olmos, Cristina; Shieh, Hsien Hang; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2012-01-01

    Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system. PMID:22880101

  6. 124. TV MESSAGE FROM WHITE HOUSE AUTHORIZING LWBR POWER INCREASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    124. TV MESSAGE FROM WHITE HOUSE AUTHORIZING LWBR POWER INCREASE TO 100%, DECEMBER 2, 1977 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  7. Mapping Out Atom-Wall Interaction with Atomic Clocks

    SciTech Connect

    Derevianko, A.; Obreshkov, B.; Dzuba, V. A.

    2009-09-25

    We explore the feasibility of probing atom-wall interaction with atomic clocks based on atoms trapped in engineered optical lattices. Optical lattice is normal to the wall. By monitoring the wall-induced clock shift at individual wells of the lattice, one would measure the dependence of the atom-wall interaction on the atom-wall separation. We find that the induced clock shifts are large and observable at already experimentally demonstrated levels of accuracy. We show that this scheme may uniquely probe the long-range atom-wall interaction in all three qualitatively distinct regimes of the interaction: van der Waals (image-charge interaction), Casimir-Polder (QED vacuum fluctuations), and Lifshitz (thermal-bath fluctuations) regimes.

  8. Atomization Performance of an Atomizer with Internal Impingement

    NASA Astrophysics Data System (ADS)

    Wang, Muh-Rong; Lin, Tien-Chu; Lai, Teng-San; Tseng, Ing-Ren

    This paper describes the atomization performance of a newly designed atomizer with internal impinging mechanisms inside the atomizer. The spray drop size distribution was measured by a Malvern RT-Sizer. Results show that the Sauter mean diameter below 10µm has been achieved with GLR of 0.14. The minimum mean drop size can be lowered to 4.0µm under a test condition of the liquid pressure and gas pressure of 2.5bar and 3.5bar, respectively. This test suggests that extra fine atomization on the liquid phase can be achieved under low pressure conditions using this particular atomizer. Such performance cannot be easily achieved with the conventional nozzle design. Results also show that better atomization performance can be achieved by increasing the internal impinging angle and the orifice diameter. An empirical formula of SMD, in terms of operating conditions and nozzle length scale is also presented in this paper.

  9. Control of atom-atom entanglement by cavity detuning

    NASA Astrophysics Data System (ADS)

    Calderón, O.; Joya, M. R.; Fonseca Romero, K. M.

    2016-02-01

    Using the atomic levels previously employed to demonstrate a two-photon maser, we show that the atom-atom entanglement produced by the successive passage of two three-level Rydberg atoms across a single-mode lossless cavity can be enhanced using the Stark shift. The atoms are assumed to be prepared in their excited states and to interact with the field during the same amount of time. Employing a physically motivated perturbation-theory approach, we obtain an effective two-level Hamiltonian. We show that, within the limits of validity of the approximation, atomic entanglement can be controlled by changing the frequency of the cavity field, and can be enhanced up to a maximum where the squared concurrence attains the value 16/27.

  10. Electron correlation energies in atoms

    NASA Astrophysics Data System (ADS)

    McCarthy, Shane Patrick

    This dissertation is a study of electron correlation energies Ec in atoms. (1) Accurate values of E c are computed for isoelectronic sequences of "Coulomb-Hooke" atoms with varying mixtures of Coulombic and Hooke character. (2) Coupled-cluster calculations in carefully designed basis sets are combined with fully converged second-order Moller-Plesset perturbation theory (MP2) computations to obtain fairly accurate, non-relativistic Ec values for the 12 closed-shell atoms from Ar to Rn. The complete basis-set (CBS) limits of MP2 energies are obtained for open-shell atoms by computations in very large basis sets combined with a knowledge of the MP2/CBS limit for the next larger closed-shell atom with the same valence shell structure. Then higher-order correlation corrections are found by coupled-cluster calculations using basis sets that are not quite as large. The method is validated for the open-shell atoms from Al to Cl and then applied to get E c values, probably accurate to 3%, for the 4th-period open-shell atoms: K, Sc-Cu, and Ga-Br. (3) The results show that, contrary to quantum chemical folklore, MP2 overestimates |Ec| for atoms beyond Fe. Spin-component scaling arguments are used to provide a simple explanation for this overestimation. (4) Eleven non-relativistic density functionals, including some of the most widely-used ones, are tested on their ability to predict non-relativistic, electron correlation energies for atoms and their cations. They all lead to relatively poor predictions for the heavier atoms. Several novel, few-parameter, density functionals for the correlation energy are developed heuristically. Four new functionals lead to improved predictions for the 4th-period atoms without unreasonably compromising accuracy for the lighter atoms. (5) Simple models describing the variation of E c with atomic number are developed.

  11. Atoms in dense plasmas

    SciTech Connect

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  12. Efficient atomic clocks operated with several atomic ensembles.

    PubMed

    Borregaard, J; Sørensen, A S

    2013-08-30

    Atomic clocks are typically operated by locking a local oscillator (LO) to a single atomic ensemble. In this Letter, we propose a scheme where the LO is locked to several atomic ensembles instead of one. This results in an exponential improvement compared to the conventional method and provides a stability of the clock scaling as (αN)(-m/2) with N being the number of atoms in each of the m ensembles and α a constant depending on the protocol being used to lock the LO. PMID:24033017

  13. Cooperative scattering of light and atoms in ultracold atomic gases

    NASA Astrophysics Data System (ADS)

    Uys, H.; Meystre, P.

    2008-07-01

    Superradiance and coherent atomic recoil lasing are two closely related phenomena, both resulting from the cooperative scattering of light by atoms. In ultracold atomic gases below the critical temperature for Bose-Einstein condensation these processes take place with the simultaneous amplification of the atomic matter waves. We explore these phenomena by surveying some of the experimental and theoretical developments that have emerged in this field of study since the first observation of superradiant scattering from a Bose-Einstein condensate in 1999 [1].

  14. Atoms in astronomy

    NASA Technical Reports Server (NTRS)

    Blanchard, P. A.

    1976-01-01

    Aspects of electromagnetic radiation and atomic physics needed for an understanding of astronomical applications are explored. Although intended primarily for teachers, this brochure is written so that it can be distributed to students if desired. The first section, Basic Topics, is suitable for a ninth-grade general science class; the style is simple and repetitive, and no mathematics or physics background is required. The second section, Intermediate and Advanced Topics, requires a knowledge of the material in the first section and assumes a generally higher level of achievement and motivation on the part of the student. These latter topics might fit well into junior-level physics, chemistry, or earth-science courses. Also included are a glossary, a list of references and teaching aids, class exercises, and a question and answer section.

  15. Atomization in Sparkling Fireworks

    NASA Astrophysics Data System (ADS)

    Inoue, Chihiro; Koshi, Mitsuo; Terashima, Hiroshi; Himeno, Takehiro; Watanabe, Toshinori; Sparkling Fireworks Team

    2013-11-01

    The physics behind the beauty of sparkling fireworks has not been clarified yet due to a lack of coherent visualization results. In the present study, atomization process in sparkling fireworks is elucidated by using a high-speed video camera. In the first-half sequence of the fireworks, the fireball repeatedly expands, bursts, and shrinks due to the high pressure gas inside the fireball. In contrast, in the last-half sequence, the bubbly fireball slightly deforms, and small bubbles burst on the fireball. A scenario of droplets generation is as follows: a liquid thread extends from the bottom of the bursting fireball, and fragments into droplets. Thus the droplets originate from inside the fireball rather than from its surface.

  16. Photoionization of Atomic Sc

    NASA Astrophysics Data System (ADS)

    Sossah, A. M.; Zhou, H.-L.; Manson, S. T.; Hibbert, A.

    2009-05-01

    Photoionization cross sections are calculated for the ground ([Mg] 3p^63d4s^2 ^2D^e) state of atomic Sc for photon energies from threshold to 40.0 eV. The discrete Sc^+ orbitals are generated using both the AUTOSTRUCTURE and CIV3 codes, and R-matrix is used to carry out the cross section calculations. The results are compared with each other, then with previous calculations and available experimental data for final-ionic states representing the 3d and 4s main lines and associated satellites (ionization with excitation) in the region of the 3p -> 3d giant resonances [1]. Reasonably good agreement between our non-relativistic results and experiment is obtained. This work is supported by US DOE and NSF [4pt] [1] S. B. Whitfield, K. Kehoe, R. Wehlitz, M. O. Krause, and C. D. Caldwell ->hys. Rev. A 64, 022701 (2001).

  17. Atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity, respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous - whose rates are related by a non-constant function beta sub a - is demonstrated. The cosmological character of beta sub a is also discussed.

  18. Magnetic trap for thulium atoms

    SciTech Connect

    Sukachev, D D; Sokolov, A V; Chebakov, K A; Akimov, A V; Kolachevskii, N N; Sorokin, Vadim N

    2011-08-31

    For the first time ultra-cold thulium atoms were trapped in a magnetic quadrupole trap with a small field gradient (20 Gs cm{sup -1}). The atoms were loaded from a cloud containing 4x10{sup 5} atoms that were preliminarily cooled in a magneto-optical trap to the sub-Doppler temperature of 80 {mu}K. As many as 4x10{sup 4} atoms were trapped in the magnetic trap at the temperature of 40 {mu}K. By the character of trap population decay the lifetime of atoms was determined (0.5 s) and an upper estimate was obtained for the rate constant of inelastic binary collisions for spin-polarised thulium atoms in the ground state (g{sub in} < 10{sup -11}cm{sup 3} s{sup -1}). (magnetic traps)

  19. Entanglement of remote atomic qubits.

    PubMed

    Matsukevich, D N; Chanelière, T; Jenkins, S D; Lan, S-Y; Kennedy, T A B; Kuzmich, A

    2006-01-27

    We report observations of entanglement of two remote atomic qubits, achieved by generating an entangled state of an atomic qubit and a single photon at site , transmitting the photon to site in an adjacent laboratory through an optical fiber, and converting the photon into an atomic qubit. Entanglement of the two remote atomic qubits is inferred by performing, locally, quantum state transfer of each of the atomic qubits onto a photonic qubit and subsequent measurement of polarization correlations in violation of the Bell inequality [EQUATION: SEE TEXT]. We experimentally determine [EQUATION: SEE TEXT]. Entanglement of two remote atomic qubits, each qubit consisting of two independent spin wave excitations, and reversible, coherent transfer of entanglement between matter and light represent important advances in quantum information science. PMID:16486672

  20. Primary Atomic Clock Reference System

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0103191

  1. Primary Atomic Clock Reference System

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0100120.

  2. Cold Atoms and Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Steck, Daniel A.

    2013-12-01

    Recent experiments have focused on realizing and studying asymmetric potential barriers for ultracold atoms. Practically speaking, asymmetric barriers, or "atomtronic diodes", open up newmethods for controlling cold atoms, and possibly methods for laser cooling atoms and molecules that are not amenable to present laser-cooling techniques. More fundamentally, asymmetric barriers are interesting as realizations of the textbook statistical-mechanics scenario of Maxwell's demon. This chapter reviews experimental progress in this area, as well as some related practical and theoretical issues.

  3. Real and hybrid atomic orbitals

    NASA Astrophysics Data System (ADS)

    Cook, D. B.; Fowler, P. W.

    1981-09-01

    It is shown that the Schrödinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. Thus the real and hybrid atomic orbitals have as sound a pedigree as the more familiar complex orbitals based on the separation of the Schrödinger equation in spherical polar coordinates.

  4. Phase shift due to atom-atom interactions in a light-pulse atom interferometer

    NASA Astrophysics Data System (ADS)

    Jannin, Raphaël; Cladé, Pierre; Guellati-Khélifa, Saïda

    2015-07-01

    We present a theoretical model allowing precise calculation of the phase shift induced by atom-atom interactions in a light-pulse atom interferometer based on two-photon Raman atom optics. This model is in good agreement with numerical simulations based on solving the Gross-Pitaevskii equation. The atom interferometer exhibits an atom-atom-interaction-induced phase shift when there is asymmetry between the two arms of the interferometer. In the case of a Ramsey-Bordé atom interferometer ({π /2 -π /2 }-{π /2 -π /2 } pulse configuration), the asymmetry comes from the fact that the number of atoms in each arm of the interferometer is not constant. In the case of a Mach-Zehnder ({π /2 -π -π /2 } pulse sequence), if the pulses are perfect, the number of atoms is constant in the interferometer. We study the effect due to imperfections of the light pulses as well as the effect due to the expansion of the cloud. Our model leads to precise and simple formulas of the mean-field phase shift as a function of the experimental parameters.

  5. Optical atomic clocks and metrology

    NASA Astrophysics Data System (ADS)

    Ludlow, Andrew

    2014-05-01

    The atomic clock has long demonstrated the capability to measure time or frequency with very high precision. Consequently, these clocks are used extensively in technological applications such as advanced synchronization or communication and navigation networks. Optical atomic clocks are next- generation timekeepers which reference narrowband optical transitions between suitable atomic states. Many optical time/frequency standards utilize state-of-the-art quantum control and precision measurement. Combined with the ultrahigh quality factors of the atomic resonances at their heart, optical atomic clocks have promised new levels of timekeeping precision, orders of magnitude higher than conventional atomic clocks based on microwave transitions. Such measurement capability enables and/or enhances many of the most exciting applications of these clocks, including the study of fundamental laws of physics through the measurement of time evolution. Here, I will highlight optical atomic clocks and their utility, as well as review recent advances in their development and performance. In particular, I will describe in detail the optical lattice clock and the realization of frequency measurement at the level of one part in 1018. To push the performance of these atomic timekeepers to such a level and beyond, several key advances are being explored worldwide. These will be discussed generally, with particular emphasis on our recent efforts at NIST in developing the optical lattice clock based on atomic ytterbium.

  6. Energy partitioning for ``fuzzy'' atoms

    NASA Astrophysics Data System (ADS)

    Salvador, P.; Mayer, I.

    2004-03-01

    The total energy of a molecule is presented as a sum of one- and two-atomic energy components in terms of "fuzzy" atoms, i.e., such divisions of the three-dimensional physical space into atomic regions in which the regions assigned to the individual atoms have no sharp boundaries but exhibit a continuous transition from one to another. By proper definitions the energy components are on the chemical energy scale. The method is realized by using Becke's integration scheme and weight function permitting very effective numerical integrations.

  7. Versatile cold atom target apparatus

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Hofmann, Christoph S.; Litsch, Dominic; DePaola, Brett D.; Weidemueller, Matthias

    2012-07-15

    We report on a compact and transportable apparatus that consists of a cold atomic target at the center of a high resolution recoil ion momentum spectrometer. Cold rubidium atoms serve as a target which can be operated in three different modes: in continuous mode, consisting of a cold atom beam generated by a two-dimensional magneto-optical trap, in normal mode in which the atoms from the beam are trapped in a three-dimensional magneto-optical trap (3D MOT), and in high density mode in which the 3D MOT is operated in dark spontaneous optical trap configuration. The targets are characterized using photoionization.

  8. Many-Body Atomic Physics

    NASA Astrophysics Data System (ADS)

    Boyle, J. J.; Pindzola, M. S.

    2005-11-01

    Preface; Contributors; Introduction; Part I. Atomic Structure: 1. Development of atomic many-body theory Ingvar Lindgren; 2. Relativistic MBPT for highly charged ions W. R. Johnson; 3. Parity nonconservation in atoms S. A. Blundell, W. R. Johnson, and J. Sapirstein; Part II. Photoionization of Atoms: 4. Single photoionization processes J. J. Boyle, and M. D. Kutzner; 5. Photoionization dominated by double excitation T. N. Chang; 6. Direct double photoionization in atoms Z. W. Liu; 7. Photoelectron angular distributions Steven T. Manson; Part III. A. Atomic Scattering - General Considerations: 8. The many-body approach to electron-atom collisions M. Ya Amusia; 9. Theoretical aspects of electron impact ionization P. L. Altick; Part III. B. Atomic Scattering - Low-Order Applications: 10. Perturbation series methods D. H. Madison; 11. Target dependence of the triply differential cross section Cheng Pan and Anthony F. Starace; 12. Overview of Thomas processes for fast mass transfer J. H. McGuire, Jack C. Straton and T. Ishihara; Part III. C. Atomic Scattering - All-Order Applications: 13. R-matrix Theory: Some Recent Applications Philip G. Burke: 14. Electron scattering: application of Dirac R-matrix theory Wasantha Wijesundera, Ian Grant and Patrick Norrington; 15. Close coupling and distorted-wave theory D. C. Griffin and M. S. Pindzola; Appendix: Units and notation; References; Index.

  9. Many-Body Atomic Physics

    NASA Astrophysics Data System (ADS)

    Boyle, J. J.; Pindzola, M. S.

    1998-09-01

    Preface; Contributors; Introduction; Part I. Atomic Structure: 1. Development of atomic many-body theory Ingvar Lindgren; 2. Relativistic MBPT for highly charged ions W. R. Johnson; 3. Parity nonconservation in atoms S. A. Blundell, W. R. Johnson, and J. Sapirstein; Part II. Photoionization of Atoms: 4. Single photoionization processes J. J. Boyle, and M. D. Kutzner; 5. Photoionization dominated by double excitation T. N. Chang; 6. Direct double photoionization in atoms Z. W. Liu; 7. Photoelectron angular distributions Steven T. Manson; Part III. A. Atomic Scattering - General Considerations: 8. The many-body approach to electron-atom collisions M. Ya Amusia; 9. Theoretical aspects of electron impact ionization P. L. Altick; Part III. B. Atomic Scattering - Low-Order Applications: 10. Perturbation series methods D. H. Madison; 11. Target dependence of the triply differential cross section Cheng Pan and Anthony F. Starace; 12. Overview of Thomas processes for fast mass transfer J. H. McGuire, Jack C. Straton and T. Ishihara; Part III. C. Atomic Scattering - All-Order Applications: 13. R-matrix Theory: Some Recent Applications Philip G. Burke: 14. Electron scattering: application of Dirac R-matrix theory Wasantha Wijesundera, Ian Grant and Patrick Norrington; 15. Close coupling and distorted-wave theory D. C. Griffin and M. S. Pindzola; Appendix: Units and notation; References; Index.

  10. Surface Production of Hydride Ions by Backscattering Hyperthermal Hydrogen Atoms

    NASA Astrophysics Data System (ADS)

    Lee, Brian Seungwhan

    The thesis experimentally demonstrates the surface production of H^- ions by backscattering hyperthermal hydrogen atoms of energy 1-10 eV from clean molybdenum and cesiated molybdenum surfaces. Hyperthermal hydrogen atoms are produced by electron impact dissociation through Frank-Condon excitation process in a hydrogen plasma. Theoretical calculations of the hyperthermal hydrogen atom flux density in various plasmas are made by using particle balance equations. A Lisitano-Coil interdigital slow wave structure is used for plasma production. The efficient production of hyperthermal hydrogen atoms by electron impact dissociation makes the discharge source an excellent source of hyperthermal hydrogen atom beams. The total H^- ion yield, which is the ratio of the H^- ion flux density to the atom flux density, is estimated taking a Maxwellian beam distribution and a cosine angular scattering distribution of H atoms on the basis of theoretical calculation of surface charge transfer probability. More than 20% of total H^- ion yield is expected for atomic hydrogen beams of a few eV temperature from cesiated metal surfaces with an extraction electric field of thousands Volts/cm. The abundant presence of hyperthermal hydrogen atoms and the high H^- ion yield suggest that major parts of H^ - ions in most H^- ion sources are produced by the surface process by backscattering hyperthermal hydrogen atoms from cesiated walls. H^ - ions produced on external converter surfaces, located outside the plasma, are analyzed by magnetic spectroscopy developed for this purpose. The measured parallel energy distribution of H^- ions follows a Maxwellian with temperature of a few eV. Several experimental results of parallel energy distributions are obtained for different operating conditions. Experimental data on production of H^ - ions from clean molybdenum and cesiated molybdenum converter surfaces as functions of discharge power and H_2 gas flow rate for several operating modes are presented

  11. How to Test Atom and Neutron Neutrality with Atom Interferometry

    SciTech Connect

    Arvanitaki, Asimina; Dimopoulos, Savas; Geraci, Andrew A.; Hogan, Jason; Kasevich, Mark

    2008-03-28

    We propose an atom-interferometry experiment based on the scalar Aharonov-Bohm effect which detects an atom charge at the 10{sup -28}e level, and improves the current laboratory limits by 8 orders of magnitude. This setup independently probes neutron charges down to 10{sup -28}e, 7 orders of magnitude below current bounds.

  12. How to test atom and neutron neutrality with atom interferometry.

    PubMed

    Arvanitaki, Asimina; Dimopoulos, Savas; Geraci, Andrew A; Hogan, Jason; Kasevich, Mark

    2008-03-28

    We propose an atom-interferometry experiment based on the scalar Aharonov-Bohm effect which detects an atom charge at the 10{-28}e level, and improves the current laboratory limits by 8 orders of magnitude. This setup independently probes neutron charges down to 10{-28}e, 7 orders of magnitude below current bounds. PMID:18517846

  13. Atomic masses 1993. The 1993 atomic mass evaluation

    NASA Astrophysics Data System (ADS)

    Audi, G.; Wapstra, A. H.

    1993-11-01

    The 1993 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment of systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge.

  14. A Quantum Model of Atoms (the Energy Levels of Atoms).

    ERIC Educational Resources Information Center

    Rafie, Francois

    2001-01-01

    Discusses the model for all atoms which was developed on the same basis as Bohr's model for the hydrogen atom. Calculates the radii and the energies of the orbits. Demonstrates how the model obeys the de Broglie's hypothesis that the moving electron exhibits both wave and particle properties. (Author/ASK)

  15. Testing Atom and Neutron Neutrality with Atom Interferometry

    SciTech Connect

    Arvanitaki, Asimina; Dimopoulos, Savas; Geraci, Andrew A.; Hogan, Jason; Kasevich, Mark; /Stanford U., Phys. Dept.

    2008-01-07

    We propose an atom-interferometry experiment based on the scalar Aharonov-Bohm effect which detects an atom charge at the 10{sup -28} e level, and improves the current laboratory limits by 8 orders of magnitude. This setup independently probes neutron charges down to 10{sup 28} e, 7 orders of magnitude below current bounds.

  16. Detection of palladium by cold atom solution atomic absorption.

    PubMed

    Molloy, John L; Holcombe, James A

    2006-09-15

    One of the largest obstacles in miniaturizing traditional atomic spectroscopic sources is the need for a thermal/electrical source for free atom production. A single article in the literature has demonstrated atomic absorption detection of Ag, Cu, and Pd in solution at room temperature for atoms in the gas phase, which may ultimately permit miniaturization. Unfortunately, several laboratories have found that reproducing the phenomenon has been difficult. Without a sound fundamental explanation of the processes leading to the signal, one must conclude that it can be done, but some unsuspected and unknown design/methodological nuances are responsible for only a single reported success. Gas phase atoms could exist at room temperature "in solution" if the atoms were trapped in very small bubbles. In the current study, submicrometer-sized bubbles were created in a flow-through cell during the mixing of an alcohol-water solution containing a reducing agent with water containing the analyte. A repeatable atomic absorption signal was produced. Replacement of ethanol with 1-propanol and use of a surfactant increased the signal. Limits of detection of approximately 100 ppb in Pd were achieved, and it is estimated that approximately 0.4% of the Pd initially added is contained within the bubbles as gaseous atoms. The paper discusses the fundamental processes needed to achieve a repeatable signal. PMID:16970344

  17. Electron temperature and concentration in a thermal atomic oxygen source

    NASA Technical Reports Server (NTRS)

    Pedrow, Patrick Dennis

    1990-01-01

    A thermal atomic oxygen source for materials screening was built for NASA by Boeing Aerospace. The objective here was to use a microwave interferometer and Langmuir probe to characterize the electron concentration in this thermal atomic oxygen source. Typical operating conditions in the thermal atomic oxygen source were found to produce electron concentrations that were well below the detection threshold of the interferometer (10(exp 8) cm (sup -3)). The researchers calibrated (with the interferometer) the Langmuir probe at an artificially high plasma density and then used the circular and the square Langmuir probes to measure the low electron concentrations that exist during materials exposure tests. Electron concentration was measured as a function of power and position. The electrons were lost to the walls through ambipolar diffusion, and their concentration was accurately described by an equation. The electron concentration was proportional to power squared and decayed exponentially with distance.

  18. SMALL OIL BURNER CONCEPTS BASED ON LOW PRESSURE AIR ATOMIZATION

    SciTech Connect

    BUTCHER,T.; CELEBI,Y.; WEI,G.; KAMATH,B.

    2000-03-16

    The development of several novel oil burner applications based on low pressure air atomization is described. The atomizer used is a prefilming, airblast nozzle of the type commonly used in gas turbine combustion. The air pressure used can be as low as 1,300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. The development of three specific applications is presented. The first two are domestic heating burners covering a capacity range 10 to 26 kW. The third application presented involves the use of this burner in an oil-fired thermophotovoltaic power generator system. Here the design firing rate is 2.9 kW and the system produces 500 watts of electric power.

  19. Spectroscopy of Rb atoms in hollow-core fibers

    SciTech Connect

    Slepkov, Aaron D.; Bhagwat, Amar R.; Venkataraman, Vivek; Londero, Pablo; Gaeta, Alexander L.

    2010-05-15

    Recent demonstrations of light-matter interactions with atoms and molecules confined to hollow waveguides offer great promise for ultralow-light-level applications. The use of waveguides allows for tight optical confinement over interaction lengths much greater than what could be achieved in bulk geometries. However, the combination of strong atom-photon interactions and nonuniformity of guided light modes gives rise to spectroscopic features that must be understood in order to take full advantage of the properties of such systems. We use light-induced atomic desorption to generate an optically dense Rb vapor at room temperature inside a hollow-core photonic band-gap fiber. Saturable-absorption spectroscopy and passive slow-light experiments reveal large ac Stark shifts, power broadening, and transit-time broadening, that are present in this system even at nanowatt powers.

  20. Deep optical trap for cold alkaline-Earth atoms.

    PubMed

    Cruz, Luciano S; Sereno, Milena; Cruz, Flavio C

    2008-03-01

    We describe a setup for a deep optical dipole trap or lattice designed for holding atoms at temperatures of a few mK, such as alkaline-Earth atoms which have undergone only regular Doppler cooling. We use an external optical cavity to amplify 3.2 W from a commercial single-frequency laser at 532 nm to 523 W. Powers of a few kW, attainable with low-loss optics or higher input powers, allow larger trap volumes for improved atom transfer from magneto-optical traps. We analyze possibilities for cooling inside the deep trap, the induced Stark shifts for calcium, and a cancellation scheme for the intercombination clock transition using an auxiliary laser. PMID:18542375

  1. Light-induced ejection of calcium atoms from polymer surfaces

    NASA Astrophysics Data System (ADS)

    Mango, F.; Maccioni, E.

    2008-12-01

    Laser-induced fluorescence (LIF) of calcium atoms at room temperature has been observed in a polydimethylsiloxane (PDMS) coated cell when the walls are illuminated with non resonant visible light. Ca atomic density in the gas phase, monitored by the LIF, is much higher than normal room-temperature vapour pressure of calcium. In past years photon-stimulated desorption (PSD) was observed for several alkali metals that adsorbed to solid films of PDMS polymers. High yields of photo-desorbed atoms (and molecules in the case of sodium) can be induced, at room temperature and below, by weak intensity radiation. The desorption is characterised by a frequency threshold, whereas any power threshold is undetectable. The calcium photo-ejection is characterised both by a frequency threshold (about 18 500 cm-1) and by an observable power threshold (whose value becomes lower when the photo-ejecting light wavelength decreases).

  2. Local atomic structure in disordered and nanocrystalline catalytic materials.

    SciTech Connect

    Dmowski, W.; Egami, T.; Swider-Lyons, K.; Dai, Sheng; Overbury, Steven {Steve} H

    2007-01-01

    The power of the atomic pair density function method to study the local atomic structure of dispersed materials is discussed for three examples (I) supercapacitor hydrous ruthenia, (II) electroctalyst platinum-iron phosphate and (III) nanoparticle gold catalyst. Hydrous ruthenia appears to be amorphous, but was found to be nanocomposite with RuO{sub 2} nanocrystals supporting electronic and hydrous boundaries protonic conductivity. A platinum-iron phosphate electrocatalyst, that exhibits activity for the oxygen reduction reaction has platinum in a non-metallic state. In catalysts comprised of gold nanoparticles supported on TiO{sub 2}, atomic correlations in the second atomic shell were observed suggesting interaction with the support that could modify gold chemical activity.

  3. Hunting for topological dark matter with atomic clocks

    NASA Astrophysics Data System (ADS)

    Derevianko, A.; Pospelov, M.

    2014-12-01

    The cosmological applications of atomic clocks so far have been limited to searches for the uniform-in-time drift of fundamental constants. We point out that a transient-in-time change of fundamental constants can be induced by dark-matter objects that have large spatial extent, such as stable topological defects built from light non-Standard Model fields. Networks of correlated atomic clocks, some of them already in existence, such as the Global Positioning System, can be used as a powerful tool to search for topological defect dark matter, thus providing another important fundamental physics application for the ever-improving accuracy of atomic clocks. During the encounter with an extended dark-matter object, as it sweeps through the network, initially synchronized clocks will become desynchronized. Time discrepancies between spatially separated clocks are expected to exhibit a distinct signature, encoding the defect's space structure and its interaction strength with atoms.

  4. Electrical power system WP-04

    NASA Technical Reports Server (NTRS)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  5. Demonstration of a cold atom beam splitter on atom chip

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaojun; Li, Xiaolin; Zhang, Haichao; Wang, Yuzhu

    2016-08-01

    We report an experimental demonstration of a new scheme to split cold atoms on an atom chip. The atom chip consists of a U-wire and a Z-wire. The cold atom cloud is initially loaded and prepared in the Z-trap, which is split into two separate parts by switching on the current of the U-wire. The two separate atom clouds have a distance more than one millimeter apart from each other and show almost symmetrical profiles, corresponding to about a 50/50 splitting ratio. Project supported by the State Key Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).

  6. Atom-surface studies with Rb Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Chao, Yuanxi; Sheng, Jiteng; Sedlacek, Jonathon; Shaffer, James

    2015-05-01

    We report on experimental and theoretical progress studying atom-surface interactions using rubidium Rydberg atoms. Rydberg atoms can be strongly coupled to surface phonon polariton (SPhP) modes of a dielectric material. The coherent interaction between Rydberg atoms and SPhPs has potential applications for quantum hybrid devices. Calculations of TM-mode SPhPs on engineered surfaces of periodically poled lithium niobate (PPLN) and lithium tantalate (PPLT) for different periodic domains and surface orientations, as well as natural materials such as quartz, are presented. Our SPhP calculations account for the semi-infinite anisotropic nature of the materials. In addition to theoretical calculations, we show experimental results of measurements of adsorbate fields and coupling of Rydberg atoms to SPhPs on quartz.

  7. Cold collisions of alkali-metal atoms and chromium atoms

    NASA Astrophysics Data System (ADS)

    Jeung, G.-H.; Hagebaum-Reignier, D.; Jamieson, M. J.

    2010-12-01

    We present ab initio potentials for ground state lithium, sodium, potassium and rubidium atoms interacting with ground state chromium atoms via the 6Σ+ and 8Σ+ states of the corresponding dimers. Each potential is matched to the leading van der Waals dispersion energy -C6/R6 - C8/R8 and an exchange energy; we list the values of C6, C8 and the exchange fitting parameters. We present calculated values from quantal and semi-classical approximations for the s-wave scattering length and effective range and the p-wave scattering volume for collisions of each of the alkali-metal atoms lithium, sodium, potassium and rubidium with 52chromium atoms and comment on s-wave scattering by 53chromium atoms.

  8. Enhanced Cooling of Hydrogen Atoms by Lithium Atoms

    SciTech Connect

    Cote, R.; Jamieson, M. J.; Yan, Z-C.; Geum, N.; Jeung, G.-H.; Dalgarno, A.

    2000-03-27

    We present calculated scattering lengths for collisions between various isotopic forms of lithium and hydrogen atoms interacting via singlet and triplet molecular states of LiH. We demonstrate that one bound triplet level is supported for each isotopomer {sup 7}LiH , {sup 6}LiH , {sup 7}LiD , and {sup 6}LiD . We obtain large calculated triplet scattering lengths that are stable against uncertainties in the potential. We present elastic and momentum transfer cross sections, and the corresponding rate coefficients, for hydrogen atoms colliding with {sup 7}Li atoms. We suggest that enhanced cooling of trapped atomic hydrogen by {sup 7}Li atoms is feasible. (c) 2000 The American Physical Society.

  9. COMPUTER-ASSISTED FURNACE ATOMIC ABSORPTION SPECTROMETRIC ANALYSIS

    EPA Science Inventory

    The use of furnace atomic absorption instrumentation with a turnkey chromatography data system is described. A simple addition of relays to the furnace power supply allows for automatic start-up of A/D conversion and spectrophotometer zeroing at the proper time. Manipulations inv...

  10. Resonant inelastic x-ray scattering from molecules and atoms

    SciTech Connect

    Arp, U.; Deslattes, R.D.; Miyano, K.E.; Southworth, S.H.

    1995-12-31

    X-ray fluorescence spectroscopy is one of the most powerful methods for the understanding of the electronic structure of matter. We report here on fluorescence experiments in the 2 to 6 keV photon energy range using tunable synchrotron radiation and the resulting experimental programs on resonant inelastic scattering in atoms and on polarization measurements in resonant molecular excitations.

  11. Faraday rotation spectroscopy in multi-pass atomic vapor cells

    NASA Astrophysics Data System (ADS)

    Li, Shuguang; Vachaspati, Pranjal; Dural, Nezih; Romalis, Michael

    2011-05-01

    Many important applications of atomic vapors, such as quantum measurements, light storage experiments, and atomic magnetometers benefit from large optical depth of the atomic ensemble. We explore multi-pass cells using cylindrical mirrors with a hole for the entrance and exit of the laser beam to achieve very high optical depth while sampling a large number of atoms. Such cells are much less sensitive to mirror quality and alignment compared to optical cavities and do not require laser frequency locking, mode matching or power coupling matching. Cells with more than 100 passes have been fabricated using internal high-reflectivity mirrors. We have performed paramagnetic Faraday rotation measurements on Rb vapor and have observed atomic rotation angles in excess of 60 radians. Quantum spin noise from unpolarized atomic vapor has also been observed with a high signal-to-noise ratio. This system also exhibits non-linear spin relaxation due to spin-exchange collisions, opening the possibility of using spin-squeezing techniques to improve long-term sensitivity of frequency measurements. We will report on the development of a scalar atomic magnetometer using such spin-squeezing techniques.

  12. Enhanced MOT Atom Number via Zeeman-Shifted Bichromatic Cooling

    NASA Astrophysics Data System (ADS)

    Blanshan, Eric; Liebisch, Tara; Donley, Elizabeth; Kitching, John

    2011-05-01

    A key issue in creating compact cold-atom samples for chip scale atomic devices is that the number of atoms captured in a magneto-optical trap (MOT) scales strongly with the laser beam diameter [Gibble et al., OL17, 526 (1992)]. To overcome this effect, we use bichromatic stimulated cooling [Söding et al., PRL78, 1420 (1997)] to slow a Rb atomic beam and increase the atom number of a compact trap. By tuning the Rabi frequency and phase, trains of counter-propagating π-pulses are created which, with 4mW of total laser power, exert a cooling force 8x larger than the spontaneous limit. We broaden the velocity range addressed by the bichromatic light via the Zeeman shift from a magnetic field gradient which sweeps the bichromatic force profile from a higher velocity class down to our chosen center velocity, increasing the effective width of the profile by 50%. We report that for effective cooling lengths under 4.5cm, greater MOT number enhancement occurs with swept stimulated forces than with spontaneous forces. This technique may be useful for producing cold atom samples for future compact technologies. A key issue in creating compact cold-atom samples for chip scale atomic devices is that the number of atoms captured in a magneto-optical trap (MOT) scales strongly with the laser beam diameter [Gibble et al., OL17, 526 (1992)]. To overcome this effect, we use bichromatic stimulated cooling [Söding et al., PRL78, 1420 (1997)] to slow a Rb atomic beam and increase the atom number of a compact trap. By tuning the Rabi frequency and phase, trains of counter-propagating π-pulses are created which, with 4mW of total laser power, exert a cooling force 8x larger than the spontaneous limit. We broaden the velocity range addressed by the bichromatic light via the Zeeman shift from a magnetic field gradient which sweeps the bichromatic force profile from a higher velocity class down to our chosen center velocity, increasing the effective width of the profile by 50%. We

  13. Atoms and Space

    NASA Technical Reports Server (NTRS)

    Dryden, Hugh L.

    1959-01-01

    The stated subject of this paper is so broad that it might include everything from the study of the infinitely small recesses of the atom to the vast infinity of galactic space. We will therefore begin by limiting the scope of the subject to a discussion of three questions: --- (1) What are the potentialities of the use of nuclear energy in the exploration of space? --- (2) What uses of nuclear energy in space exploration are expected in the next decade? - - - (3) What is likely to be the impact of space exploration on the development of other applications of nuclear energy? We will discuss these questions in relation to the space activities of the United States as set forth in the National Aeronautics and Space Act of 1958 and in the programs of the National Aeronautics and Space Administration, the agency established by Congress to carry out the policy established in that Act that activities in space should be devoted to peaceful purposes for the benefit of all mankind. Such activities include at present the exploration of space to gain greater knowledge and understanding of the earth and its atmosphere, the moon, planets, and the universe; the application of available knowledge to develop capabilities for other activities in space for the benefit of mankind; and the beginning of the exploration of space by man himself.

  14. Deep atomic force microscopy

    SciTech Connect

    Barnard, H.; Drake, B.; Randall, C.; Hansma, P. K.

    2013-12-15

    The Atomic Force Microscope (AFM) possesses several desirable imaging features including the ability to produce height profiles as well as two-dimensional images, in fluid or air, at high resolution. AFM has been used to study a vast selection of samples on the scale of angstroms to micrometers. However, current AFMs cannot access samples with vertical topography of the order of 100 μm or greater. Research efforts have produced AFM scanners capable of vertical motion greater than 100 μm, but commercially available probe tip lengths are still typically less than 10 μm high. Even the longest probe tips are below 100 μm and even at this range are problematic. In this paper, we present a method to hand-fabricate “Deep AFM” probes with tips of the order of 100 μm and longer so that AFM can be used to image samples with large scale vertical topography, such as fractured bone samples.

  15. Transport of muonic atoms

    SciTech Connect

    Rusjan, E.

    1988-01-01

    Transport of muonic hydrogen and deuterium atoms in gaseous hydrogen and deuterium is studied in the diffusion approximation and by means of the multiple collision expansion. The diffusion coefficient is derived. Scattering kernels are computed from the kinematics of an inelastic binary collision. The effect of rotations of the target molecules is treated by defining and computing an effective inelastic energy transfer Q{sub eff}. The Doppler effect is taken into account by averaging the cross sections over the Maxwellian velocity distribution of the target molecules. Numerical results of the time-dependent problem in slab geometry are presented. In part two the author constructs a candidate for a realistic four generation Calabi-Yau manifold by dividing an algebraic variety in CP{sub 4} {times} CP{sub 4} with the Z{sub 2} {times} Z{sub 2} symmetry. A nontrivial embedding of Z{sub 2} {times} Z{sub 2} in E(6) allows the physically interesting intermediate symmetry; based on Pati-Salam SU(2){sub L} {times} SU(2){sub R} {times} SU(4){sub C} group. The group of honest symmetries G{sub H} of the manifold is identified and the transformation properties of quark and lepton fields under G{sub H} are given.

  16. Atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Goodman, Colin H. L.; Pessa, Markus V.

    1986-08-01

    Atomic layer epitaxy (ALE) is not so much a new technique for the preparation of thin films as a novel modification to existing methods of vapor-phase epitaxy, whether physical [e.g., evaporation, at one limit molecular-beam epitaxy (MBE)] or chemical [e.g., chloride epitaxy or metalorganic chemical vapor deposition (MOCVD)]. It is a self-regulatory process which, in its simplest form, produces one complete molecular layer of a compound per operational cycle, with a greater thickness being obtained by repeated cycling. There is no growth rate in ALE as in other crystal growth processes. So far ALE has been applied to rather few materials, but, in principle, it could have a quite general application. It has been used to prepare single-crystal overlayers of CdTe, (Cd,Mn)Te, GaAs and AlAs, a number of polycrystalline films and highly efficient electroluminescent thin-film displays based on ZnS:Mn. It could also offer particular advantages for the preparation of ultrathin films of precisely controlled thickness in the nanometer range and thus may have a special value for growing low-dimensional structures.

  17. Hyperthermal atomic oxygen generator

    NASA Technical Reports Server (NTRS)

    Khandelwal, Govind S.; Wu, Dongchuan

    1990-01-01

    Characterization of the transport properties of oxygen through silver was continued. Specifically, experiments measuring the transport through Ag(111), Ag(110), Ag(100) single crystals and through Ag0.05 Zr alloy were completed. In addition, experiments using glow discharge excitation of oxygen to assist in the transport were completed. It was found that the permeability through the different orientations of single crystal Ag was the same, but significant differences existed in the diffusivity. The experimental ratio of diffusivities, however, was in reasonable agreement with theoretical estimates. Since the solubilities of orientations must be the same, this suggests some problems with the assumption K = DS. The glow discharge experiments show that there is a substantial increase in transport (factor of six) when the upstream pressure is dissociated to some fraction of atoms (which have a much higher sticking coefficient). These results indicate that there is a significant surface limitation because of dissociative adsorption of the molecules. Experiments with the Ag0.05 Zr alloy and its high-grain boundary and defect density show a permeability of greater than a factor of two over ordinary polycrystalline Ag, but it is unclear as to whether this is because of enhanced transport through these defects or whether the Zr and defects on the surface increased the sticking coefficient and therefore the transport.

  18. Building Atoms Shell by Shell.

    ERIC Educational Resources Information Center

    Sussman, Beverly

    1993-01-01

    Describes an atom-building activity where students construct three-dimensional models of atoms using a styrofoam ball as the nucleus and pom-poms, gum drops, minimarshmallows, or other small items of two different colors to represent protons and neutrons attached. Rings of various sizes with pom-poms attached represent electron shells and…

  19. Microfabricated Spin Polarized Atomic Magnetometers

    NASA Astrophysics Data System (ADS)

    Jimenez Martinez, Ricardo

    Spin polarized atomic magnetometers involve the preparation of atomic spins and their detection for monitoring magnetic fields. Due to the fact that magnetic fields are ubiquitous in our world, spin polarized atomic magnetometers are used in a wide range of applications from the detection of magnetic fields generated by the human heart and brain to the detection of nuclear magnetic resonance. In this thesis we developed microfabricated spin polarized atomic magnetometers. These sensors are based on optical pumping and spin-exchange collisions between alkali atoms and noble gases contained in microfabricated millimeter-scale vapor cells. In the first part of the thesis, we improved different features of current microfabricated optical magnetometers. Specifically, we improved the bandwidth of these devices, without degrading their magnetic field sensitivity, by broadening their magnetic resonance through spin-exchange collisions between alkali atoms. We also implemented all-optical excitation techniques to avoid problems, such as the magnetic perturbation of the environment, induced by the radio-frequency fields used in some of these sensors. In the second part of the thesis we demonstrated a microfluidic chip for the optical production and detection of hyperpolarized Xe gas through spin-exchange collisions with optically pumped Rb atoms. These devices are critical for the widespread use of spin polarized atomic magnetometers in applications requiring simple, compact, low-cost, and portable instrumentation.

  20. Hot tube atomic absorption spectrochemistry.

    PubMed

    Woodriff, R; Stone, R W

    1968-07-01

    A small, commercially available atomic absorption instrument is used with a heated graphite tube for the atomic absorption analysis of liquid and solid silver samples. Operating conditions of the furnace are described and a sensitivity of about 5 ng of silver is reported. PMID:20068797

  1. Fast Atom Bombardment Mass Spectrometry.

    ERIC Educational Resources Information Center

    Rinehart, Kenneth L., Jr.

    1982-01-01

    Discusses reactions and characteristics of fast atom bombardment (FAB) mass spectroscopy in which samples are ionized in a condensed state by bombardment with xenon or argon atoms, yielding positive/negative secondary ions. Includes applications of FAB to structural problems and considers future developments using the technique. (Author/JN)

  2. The Stair-Step Atom.

    ERIC Educational Resources Information Center

    Jordan, Thomas M.; And Others

    1992-01-01

    Presents a model of a generic atom that is used to represent the movement of electrons from lower to higher levels and vice-versa due to excitation and de-excitation of the atom. As the process of de-excitation takes place, photons represented by colored ping-pong balls are emitted, indicating the emission of light. (MDH)

  3. Metal Atomization (Materials Preparation Center)

    SciTech Connect

    2010-01-01

    The following video is a slow motion capture of an atomization event. Atomization of metal requires high pressure gas and specialized chambers for cooling and collecting the powders without contamination. The critical step for morphological control is the impingement of the gas on the melt stream. This material was cast at the Ames Laboratorys Materials Preparation Center http://www.mpc.ameslab.gov

  4. Atomic Spectroscopic Databases at NIST

    NASA Technical Reports Server (NTRS)

    Reader, J.; Kramida, A. E.; Ralchenko, Yu.

    2006-01-01

    We describe recent work at NIST to develop and maintain databases for spectra, transition probabilities, and energy levels of atoms that are astrophysically important. Our programs to critically compile these data as well as to develop a new database to compare plasma calculations for atoms that are not in local thermodynamic equilibrium are also summarized.

  5. Fuel Injector With Shear Atomizer

    NASA Technical Reports Server (NTRS)

    Beal, George W.; Mills, Virgil L.; Smith, Durward B., II; Beacom, William F.

    1995-01-01

    Atomizer for injecting liquid fuel into combustion chamber uses impact and swirl to break incoming stream of fuel into small, more combustible droplets. Slanted holes direct flow of liquid fuel to stepped cylindrical wall. Impact on wall atomizes liquid. Air flowing past vanes entrains droplets of liquid in swirling flow. Fuel injected at pressure lower than customarily needed.

  6. Stochastic noise in atomic force microscopy.

    PubMed

    Labuda, Aleksander; Lysy, Martin; Paul, William; Miyahara, Yoichi; Grütter, Peter; Bennewitz, Roland; Sutton, Mark

    2012-09-01

    Having reached the quantum and thermodynamic limits of detection, atomic force microscopy (AFM) experiments are routinely being performed at the fundamental limit of signal to noise. A critical understanding of the statistical properties of noise leads to more accurate interpretation of data, optimization of experimental protocols, advancements in instrumentation, and new measurement techniques. Furthermore, accurate simulation of cantilever dynamics requires knowledge of stochastic behavior of the system, as stochastic noise may exceed the deterministic signals of interest, and even dominate the outcome of an experiment. In this article, the power spectral density (PSD), used to quantify stationary stochastic processes, is introduced in the context of a thorough noise analysis of the light source used to detect cantilever deflections. The statistical properties of PSDs are then outlined for various stationary, nonstationary, and deterministic noise sources in the context of AFM experiments. Following these developments, a method for integrating PSDs to provide an accurate standard deviation of linear measurements is described. Lastly, a method for simulating stochastic Gaussian noise from any arbitrary power spectral density is presented. The result demonstrates that mechanical vibrations of the AFM can cause a logarithmic velocity dependence of friction and induce multiple slip events in the atomic stick-slip process, as well as predicts an artifactual temperature dependence of friction measured by AFM. PMID:23030863

  7. Condensate polishing cost reduction at Peach Bottom Atomic Power Station

    SciTech Connect

    Blomquist, R.J.

    1996-10-01

    In May 1995, PECO Nuclear began an investment of over 3 million dollars for improvements in the condensate polishers at Peach Bottom Unit 3. Based on current performance, the investment is expected to be returned by the first quarter of 1997. The centerpiece of the improvements is the backfit of pleat filters on most of the vessels. Manual isolation valves and new precoating equipment will assure sustained performance. This report summarizes the improved performance and the new equipment and methods used to achieve it.

  8. Knolls Atomic Power Laboratory Environmental Monitoring Report, Calendar Year 2003

    SciTech Connect

    2003-12-31

    The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations.

  9. Absorption-free Bragg reflector using Zeeman sublevels in atomic vapor.

    PubMed

    Chen, Zhongjie; Luo, Bin; Guo, Hong

    2014-06-30

    Absorption-free Bragg reflector has been studied in ions doped in crystals. We propose a new scheme using Zeeman sublevels of atoms to construct an absorption-free Bragg reflector with practical laser power. Its spatial period of refractive index equals half of the wavelength of the incident standing-wave coupling light. The proposal is simulated in a helium atom scheme, and can be extended to alkali earth atoms. PMID:24977814

  10. High Resolution Neutral Atom Microscope

    NASA Astrophysics Data System (ADS)

    Bucay, Igal; Castillo-Garza, Rodrigo; Stratis, Georgios; Raizen, Mark

    2015-03-01

    We are developing a high resolution neutral atom microscope based on metastable atom electron spectroscopy (MAES). When a metastable atom of a noble gas is near a solid, a surface electron will tunnel to an empty energy level of the metastable atom, thereby ejecting the excited electron from the atom. The emitted electrons carry information regarding the local topography and electronic, magnetic, and chemical structures of most hard materials. Furthermore, using a chromatic aberration corrected magnetic hexapole lens we expect to attain a spatial resolution below 10 nm. We will use this microscope to investigate how local phenomena can give rise to macroscopic effects in materials that cannot be probed using a scanning tunneling microscope, namely insulating transition metal oxides.

  11. AC Zeeman potentials for atom chip-based ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, Charles; Pyle, Andrew; Ziltz, Austin; Aubin, Seth

    2015-05-01

    We present experimental and theoretical progress on using the AC Zeeman force produced by microwave magnetic near-fields from an atom chip to manipulate and eventually trap ultracold atoms. These AC Zeeman potentials are inherently spin-dependent and can be used to apply qualitatively different potentials to different spin states simultaneously. Furthermore, AC Zeeman traps are compatible with the large DC magnetic fields necessary for accessing Feshbach resonances. Applications include spin-dependent trapped atom interferometry and experiments in 1D many-body physics. Initial experiments and results are geared towards observing the bipolar detuning-dependent nature of the AC Zeeman force at 6.8 GHz with ultracold 87Rb atoms trapped in the vicinity of an atom chip. Experimental work is also underway towards working with potassium isotopes at frequencies of 1 GHz and below. Theoretical work is focused on atom chip designs for AC Zeeman traps produced by magnetic near-fields, while also incorporating the effect of the related electric near-fields. Electromagnetic simulations of atom chip circuits are used for mapping microwave propagation in on-chip transmission line structures, accounting for the skin effect, and guiding impedance matching.

  12. Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy

    ERIC Educational Resources Information Center

    Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.

    2015-01-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…

  13. Atomic Force Microscope Operation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation (large file)

    This animation is a scientific illustration of the operation of NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA.

    The AFM is used to image the smallest Martian particles using a very sharp tip at the end of one of eight beams.

    The beam of the AFM is set into vibration and brought up to the surface of a micromachined silicon substrate. The substrate has etched in it a series of pits, 5 micrometers deep, designed to hold the Martian dust particles.

    The microscope then maps the shape of particles in three dimensions by scanning them with the tip.

    At the end of the animation is a 3D representation of the AFM image of a particle that was part of a sample informally called 'Sorceress.' The sample was delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Nickel atom and ion densities in an inductively coupled plasma with an internal coil

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Sadeghi, Nader; Donnelly, Vincent M.; Economou, Demetre J.

    2007-01-01

    The nickel atom density was measured in an inductively coupled argon plasma with an internal Ni coil, as a function of pressure and power, using optical absorption spectroscopy. Nickel atoms were sputtered from the coil and from a separate Ni target under optional target bias. A fraction of the atoms was ionized in the high-density plasma. The gas temperature was determined by analyzing the rovibrational spectra of the second positive system of nitrogen actinometer gas. The electron density was determined by optical emission spectroscopy in combination with a global model. For a pressure of 8-20mTorr and coil power of 40-200W, the Ni atom density ranged from 2.7×109to1.5×1010cm-3, increasing strongly with pressure. The Ni atom density first increased with power but saturated at high power levels. The measured Ni atom density agreed fairly well with the predictions of a global model, in particular, at the higher pressures. The model also predicted that the Ni+ ion density greatly increased at higher powers and pressures. Applying 70W bias on the target electrode increased the Ni atom density by 60%.

  15. Compact 2.45 GHz microwave ion/atom source

    SciTech Connect

    Sakamoto, Y.; Kasuya, T.; Wada, M.; Maeno, S.

    2008-02-15

    Characteristics of a microwave driven 3.4 cm diameter compact ion/atom source equipped with permanent magnets were tested. The source can be mounted to a standard copper gasket flange, and microwave power is supplied through an N-type microwave connector. The ion source plasma was observed through an ion extraction hole with an optical emission spectrometer. Peak height of an optical line spectrum emission corresponding to atomic nitrogen increased in proportion to the microwave input power. Quadrupole mass spectrometer showed that N{sup +} and N{sub 2}{sup +} were the dominant species in the extracted ion beam. Nitrogen ion current density of 0.23 mA/cm{sup 2} was obtained with only 10 W discharge power and 6x10{sup -3} Pa source surrounding pressure.

  16. In-situ control system for atomization

    SciTech Connect

    Anderson, Iver E.; Figliola, Richard S.; Terpstra, Robert L.

    1995-06-13

    Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray.

  17. In-situ control system for atomization

    DOEpatents

    Anderson, I.E.; Figliola, R.S.; Terpstra, R.L.

    1995-06-13

    Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray is disclosed. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray. 3 figs.

  18. Atoms for space

    SciTech Connect

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig.

  19. Detection of transient fluorine atoms

    NASA Astrophysics Data System (ADS)

    Loge, Gary W.; Nereson, Norris; Fry, Herbert A.

    1987-09-01

    A KrF laser with a fluence of 50 mJ/cm2 was used to photolyze either uranium hexafluoride or molecular fluorine, yielding a transient number density of fluorine atoms. The rise and decay of the atomic fluorine density was observed by transient absorption of a 25-μm Pb-salt diode laser. To prevent the diode laser wavelength from drifting out of resonance with the atomic fluorine line, part of the beam was split off and sent through a microwave discharge fluorine atom cell. This allowed a wavelength modulation-feedback technique to be used to lock the diode laser wavelength onto the atomic line. The remaining diode laser beam was made collinear with the excimer laser beam using a LiF window with a 45° angle of incidence to reflect the infrared beam while transmitting most of the uv beam. Using this setup along with a transient digitizer to average between 100 and 200 transient absorption profiles, fluorine atom number densities on the order of 1014 cm-3 in a 1.7 m pathlength were detected. The signal observed were about a factor of two less than expected from known photolysis and atomic fluorine absorption cross-sections.

  20. A linear atomic quantum coupler

    NASA Astrophysics Data System (ADS)

    El-Orany, Faisal A. A.; Wahiddin, M. R. B.

    2010-04-01

    In this paper we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of which includes a localized atom. These waveguides are placed close enough to allow exchange of energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way as the Jaynes-Cummings model (JCM) and with the atom-mode system in the second waveguide via the evanescent wave. We present the Hamiltonian for this system and deduce its wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional coupler the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit a long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions the system can yield the results of the two-mode JCM.

  1. Giant light enhancement in atomic clusters

    SciTech Connect

    Gadomsky, O. N. Gadomskaya, I. V.; Altunin, K. K.

    2009-07-15

    We show that the polarizing effect of the atoms in an atomic cluster can lead to full compensation of the radiative damping of excited atomic states, a change in the sign of the dispersion of the atomic polarizability, and giant light enhancement by the atomic cluster.

  2. Supersonic coal water slurry fuel atomizer

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Balsavich, John

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  3. Controllable Atom Localization in Four-Level Atomic Systems

    SciTech Connect

    Jin Luling; Jin Shiqi; Gong Shangqing

    2007-12-26

    We propose controllable atom localization schemes for four-level atomic systems. In the alkaline earth atomic system we give the analytical expressions of the localization peak positions as well as the widths versus the parameters of the optical fields. We show that the probability of finding the atom at a particular position can be increased from 1/4 to 1/3 or 1/2 by adjusting the detuning of the probe field and the Rabi frequencies of the optical fields. Furthermore, the localization precision can be dramatically enhanced by increasing the intensity of the standing-wave field. In the ladder-type system, we use two standing-wave fields and find that the detecting probability can be increased to 1/2 by adjusting the Rabi frequencies of the standing-wave fields.

  4. Recognizing nitrogen dopant atoms in graphene using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    van der Heijden, Nadine J.; Smith, Daniël; Calogero, Gaetano; Koster, Rik S.; Vanmaekelbergh, Daniel; van Huis, Marijn A.; Swart, Ingmar

    2016-06-01

    Doping graphene by heteroatoms such as nitrogen presents an attractive route to control the position of the Fermi level in the material. We prepared N-doped graphene on Cu(111) and Ir(111) surfaces via chemical vapor deposition of two different molecules. Using scanning tunneling microscopy images as a benchmark, we show that the position of the dopant atoms can be determined using atomic force microscopy. Specifically, the frequency shift-distance curves Δ f (z ) acquired above a N atom are significantly different from the curves measured over a C atom. Similar behavior was found for N-doped graphene on Cu(111) and Ir(111). The results are corroborated by density functional theory calculations employing a van der Waals functional.

  5. Interaction between single neutral atoms and an ultracold atomic gas

    NASA Astrophysics Data System (ADS)

    Bauer, Michael; Kindermann, Farina; Franzreb, Philipp; Gänger, Benjamin; Phieler, Jan; Chakrabarti, Shrabana; Spethmann, Nicolas; Meschede, Dieter; Widera, Artur

    2013-05-01

    Recently hybrid systems immersing single atoms in a many body system have been a subject of intense interest. Here we present an example of controlled doping of an ultracold Rubidium cloud with single neutral Cesium impurity atoms. We observe thermalization of ``hot'' Cs atoms by elastic interaction with an ultracold Rb gas, employing different schemes of measuring the impurities' energy distribution. In addition we present a concept and review the current status of a new setup, which will be capable of breeding an all optical BEC in a few seconds. Our setup will feature mechanisms for independently manipulating and imaging both single atoms and the BEC, thereby providing an unrivaled level of control over impurities in a quantum gas. Possible research directions include the investigation of coherent impurity physics and the creation and characterization of polarons in a BEC. Funded by the ERC, starting grant project QuantumProbe.

  6. Rydberg atoms in ultracold plasmas

    NASA Astrophysics Data System (ADS)

    Rolston, Steven

    2009-05-01

    Ultracold plasmas are formed through the photoionization of laser-cooled atoms, or spontaneous ionization of a dense cloud of Rydberg atoms or now molecules[1]. Ultracold plasmas are inherently metastable, as the ions and electrons would be in a lower energy state bound together as atoms. The dominant process of atom formation in these plasmas is three-body recombination, a collision between two electrons and an ion that leads to the formation of a Rydberg atom. This collisional process is not only important in determining the lifetime and density of the plasma, but is also critical in determining the time evolution of the temperature. The formation of the Rydberg atoms is accompanied by an increase in electron energy for the extra electron in the collision, and is a source of heating in these plasmas. Classical three-body recombination theory scales as T-9/2, and thus as a plasma cools due to a process such as adiabatic expansion, recombination-induced heating turns on, limiting the temperature [2]. The Rydberg atoms formed live in the plasma and contribute to the temperature dynamics, as collisions with plasma electrons can change the principal quantum number of the Rydberg atom, driving it to more tightly bound states (a source of plasma heating) or to higher states (a source of plasma cooling). If the plasma is cold and dense enough to be strongly coupled, classical three-body recombination theory breaks down. Recent theoretical work [3] suggests that the rate limits as the plasma gets strongly coupled. I will review the role of Rydberg atoms in ultracold plasmas and prospects for probing Rydberg collisions in the strongly coupled environment. [4pt] [1] J. P. Morrison, et al., Phys. Rev. Lett. 101, 205005 (2008 [0pt] [2] R. S. Fletcher, X. Zhang, and S. L. Rolston, Phys. Rev. Lett. 99, 145001 (2007 [0pt] [3] T. Pohl, private communication.

  7. Atom Interferometry on Sounding Rockets

    NASA Astrophysics Data System (ADS)

    Seidel, S. T.; Lachmann, M. D.; Becker, D.; Grosse, J.; Popp, M. A.; Wang, J. B.; Wendrich, T.; Rasel, E. M.; Quantus Collaboration

    2015-09-01

    Atom interferometry in microgravity offers the possibility to perform high precision measurements of inertial forces complementary to experiments based on classical test masses. The ultimate goal is to perform these quantum measurements in space on board dedicated satellite missions. To reach this, a series of pathfinder microgravity experiments with cold atoms were build. The latest installment of these are conducted on sounding rockets. Here we give a short motivation of atom interferometry in space, an overview of the techniques used, and an introduction of the current mission MAIUS- 1.

  8. Atom gravimeters and gravitational redshift.

    PubMed

    Wolf, Peter; Blanchet, Luc; Bordé, Christian J; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude

    2010-09-01

    In ref. 1 the authors present a re-interpretation of atom interferometry experiments published a decade ago. They now consider the atom interferometry experiments as a measurement of the gravitational redshift on the quantum clock operating at the Compton frequency omega(C) = mc(2)/ approximately 2pi x 3.0 x 10(25) Hz, where m is the caesium (Cs) atom rest mass. They then argue that this redshift measurement compares favourably with existing as well as projected clock tests. Here we show that this interpretation is incorrect. PMID:20811407

  9. NIST Databases on Atomic Spectra

    NASA Astrophysics Data System (ADS)

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new

  10. Atomic Data for Stellar Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher Alan; Lawler, James E.; Den Hartog, Elizabeth A.; Wood, Michael

    2015-08-01

    Stellar chemical composition analyses can only yield reliable abundances if the atomic transition parameters are accurately determined. During the last couple of decades a renewed emphasis on laboratory spectroscopy has produced large sets of useful atomic transition probabilities for species of interest to stellar spectroscopists. In many cases the transition data are of such high quality that they play little part in the abundance error budgets. In this talk we will review the current state of atomic parameters, highlighting the areas of satisfactory progress and noting places where further laboratoryprogress will be welcome.

  11. Hadronic atoms and leptonic conservations

    SciTech Connect

    Kunselman, R.

    1989-01-01

    The major 1989 efforts have been mainly on two experiments at TRIUMF. One was a search for events where the leptonic flavor number conservation law would be violated. The second was an attempt to produce muonic hydrogen and muonic deuterium into a vacuum, and if there are found a adequate number of muons in the 2s state to measure precision energies. The minor efforts have been on the LAMPF experiment on lepton conservations which has consumed effort only in fabricating equipment, and on the completion of analyses from the experiments with hadronic atoms at LAMPF (pionic atoms) and BNL (kaonic and sigmonic atoms).

  12. Microcavities coupled to multilevel atoms

    SciTech Connect

    Schmid, Sandra Isabelle; Evers, Joerg

    2011-11-15

    A three-level atom in the {Lambda} configuration coupled to a microcavity is studied. The two transitions of the atom are assumed to couple to different counterpropagating mode pairs in the cavity. We analyze the dynamics both in the strong-coupling and the bad-cavity limits. We find that, compared to a two-level setup, the third atomic state and the additional control field modes crucially modify the system dynamics and enable more advanced control schemes. All results are explained using appropriate dressed-state and eigenmode representations. As potential applications, we discuss optical switching and turnstile operations and detection of particles close to the resonator surface.

  13. Mass spectrometers and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Hunton, D. E.; Trzcinski, E.; Cross, J. B.; Spangler, L. H.; Hoffbauer, M. H.; Archuleta, F. H.; Visentine, J. T.

    1987-01-01

    The likely role of atmospheric atomic oxygen in the recession of spacecraft surfaces and in the shuttle glow has revived interest in the accurate measurement of atomic oxygen densities in the upper atmosphere. The Air Force Geophysics Laboratory is supplying a quadrupole mass spectrometer for a materials interactions flight experiment being planned by the Johnson Space Center. The mass spectrometer will measure the flux of oxygen on test materials and will also identify the products of surface reactions. The instrument will be calibrated at a new facility for producing high energy beams of atomic oxygen at the Los Alamos National Laboratory. The plans for these calibration experiments are summarized.

  14. AtomPy: an open atomic-data curation environment

    NASA Astrophysics Data System (ADS)

    Bautista, Manuel; Mendoza, Claudio; Boswell, Josiah S; Ajoku, Chukwuemeka

    2014-06-01

    We present a cloud-computing environment for atomic data curation, networking among atomic data providers and users, teaching-and-learning, and interfacing with spectral modeling software. The system is based on Google-Drive Sheets, Pandas (Python Data Analysis Library) DataFrames, and IPython Notebooks for open community-driven curation of atomic data for scientific and technological applications. The atomic model for each ionic species is contained in a multi-sheet Google-Drive workbook, where the atomic parameters from all known public sources are progressively stored. Metadata (provenance, community discussion, etc.) accompanying every entry in the database are stored through Notebooks. Education tools on the physics of atomic processes as well as their relevance to plasma and spectral modeling are based on IPython Notebooks that integrate written material, images, videos, and active computer-tool workflows. Data processing workflows and collaborative software developments are encouraged and managed through the GitHub social network. Relevant issues this platform intends to address are: (i) data quality by allowing open access to both data producers and users in order to attain completeness, accuracy, consistency, provenance and currentness; (ii) comparisons of different datasets to facilitate accuracy assessment; (iii) downloading to local data structures (i.e. Pandas DataFrames) for further manipulation and analysis by prospective users; and (iv) data preservation by avoiding the discard of outdated sets.

  15. Phases, collective modes, and nonequilibrium dynamics of dissipative Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Ray, S.; Sinha, S.; Sengupta, K.

    2016-03-01

    We use a density matrix formalism to study the equilibrium phases and nonequilibrium dynamics of a system of dissipative Rydberg atoms in an optical lattice within mean-field theory. We provide equations for the fixed points of the density matrix evolution for atoms with infinite on-site repulsion and analyze these equations to obtain their Mott-insulator-superfluid (MI-SF) phase boundary. A stability analysis around these fixed points provides us with the excitation spectrum of the atoms both in the MI and SF phases. We study the nature of the MI-SF critical point in the presence of finite dissipation of Rydberg excitations, discuss the fate of the superfluid order parameter of the atoms in the presence of such dissipation in the weak-coupling limit using a coherent state representation of the density matrix, and extend our analysis to Rydberg atoms with finite on-site interaction via numerical solution of the density matrix equations. Finally, we vary the boson (atom) hopping parameter J and the dissipation parameter Γ according to a linear ramp protocol. We study the evolution of entropy of the system following such a ramp and show that the deviation of the entropy from its steady-state value for the latter protocol exhibits power-law behavior as a function of the ramp time. We discuss experiments that can test our theory.

  16. A nanowaveguide platform for collective atom-light interaction

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Lee, J.; Dagenais, M.; Rolston, S. L.

    2015-08-01

    We propose a nanowaveguide platform for collective atom-light interaction through evanescent field coupling. We have developed a 1 cm-long silicon nitride nanowaveguide can use evanescent fields to trap and probe an ensemble of 87Rb atoms. The waveguide has a sub-micrometer square mode area and was designed with tapers for high fiber-to-waveguide coupling efficiencies at near-infrared wavelengths (750 nm to 1100 nm). Inverse tapers in the platform adiabatically transfer a weakly guided mode of fiber-coupled light into a strongly guided mode with an evanescent field to trap atoms and then back to a weakly guided mode at the other end of the waveguide. The coupling loss is -1 dB per facet (˜80% coupling efficiency) at 760 nm and 1064 nm, which is estimated by a propagation loss measurement with waveguides of different lengths. The proposed platform has good thermal conductance and can guide high optical powers for trapping atoms in ultra-high vacuum. As an intermediate step, we have observed thermal atom absorption of the evanescent component of a nanowaveguide and have demonstrated the U-wire mirror magneto-optical trap that can transfer atoms to the proximity of the surface.

  17. A nanowaveguide platform for collective atom-light interaction

    SciTech Connect

    Meng, Y.; Dagenais, M.; Lee, J.; Rolston, S. L.

    2015-08-31

    We propose a nanowaveguide platform for collective atom-light interaction through evanescent field coupling. We have developed a 1 cm-long silicon nitride nanowaveguide can use evanescent fields to trap and probe an ensemble of {sup 87}Rb atoms. The waveguide has a sub-micrometer square mode area and was designed with tapers for high fiber-to-waveguide coupling efficiencies at near-infrared wavelengths (750 nm to 1100 nm). Inverse tapers in the platform adiabatically transfer a weakly guided mode of fiber-coupled light into a strongly guided mode with an evanescent field to trap atoms and then back to a weakly guided mode at the other end of the waveguide. The coupling loss is −1 dB per facet (∼80% coupling efficiency) at 760 nm and 1064 nm, which is estimated by a propagation loss measurement with waveguides of different lengths. The proposed platform has good thermal conductance and can guide high optical powers for trapping atoms in ultra-high vacuum. As an intermediate step, we have observed thermal atom absorption of the evanescent component of a nanowaveguide and have demonstrated the U-wire mirror magneto-optical trap that can transfer atoms to the proximity of the surface.

  18. Oxygen atom reaction with shuttle materials at orbital altitudes

    NASA Technical Reports Server (NTRS)

    Leger, L. J.

    1982-01-01

    Surfaces of materials used in the space shuttle orbiter payload bay and exposed during STS-1 through STS-3 were examined after flight. Paints and polymers, in particular Kapton used on the television camera thermal blanket, showed significant change. Generally, the change was a loss of surface gloss on the polymer with apparent aging on the paint surfaces. The Kapton surfaces showed the greatest change, and postflight analyses showed mass loss of 4.8 percent on STS-2 and 35 percent on STS-3 for most heavily affected surfaces. Strong shadow patterns were evident. The greatest mass loss was measured on surfaces which were exposed to solar radiation in conjunction with exposure in the vehicle velocity vector. A mechanism which involves the interaction of atomic oxygen with organic polymer surfaces is proposed. Atomic oxygen is the major ambient species at low orbital altitudes and presents a flux of 8 x 10 to the 14th power atoms/cu cm sec for reaction. Correlation of the expected mass loss based on ground-based oxygen atom/polymer reaction rates shows lower mass loss of the Kapton than measured. Consideration of solar heating effects on reaction rates as well as the high oxygen atom energy due to the orbiter's orbital velocity brings the predicted and measured mass loss in surprisingly good agreement. Flight sample surface morphology comparison with ground based Kapton/oxygen atom exposures provides additional support for the oxygen interaction mechanism.

  19. Surface doping of nitrogen atoms on graphene via molecular precursor

    SciTech Connect

    Hong, Guo; Wu, Qi-Hui; Ren, Jianguo; Xu, Tingting; Wang, Chundong; Zhang, Wenjun; Lee, Shuit-Tong

    2013-02-04

    Surface doping can be a powerful way to modify the electronic properties of graphene with the unique potential to retain the excellent pristine properties of graphene. Here, we report an atomic surface doping method for graphene via dissociation of adsorbed precursor molecules of tetrafluorotetracyanoquinodimethane (F{sub 4}-TCNQ) induced by hydrogen plasma treatment. Significantly, the location of the dopant N atoms can be pre-determined by the location and orientation of the F{sub 4}-TCNQ molecule precursor on graphene, leading in principle to site-selective doping. Furthermore, the molecular precursor is stable under ambient conditions, satisfying an important consideration for patterning processes.

  20. Reinventing atomic magnetic simulations with spin-orbit coupling

    DOE PAGESBeta

    Perera, Meewanage Dilina N.; Eisenbach, Markus; Nicholson, Don M.; Stocks, George Malcolm; Landau, David P.

    2016-02-10

    We propose a powerful extension to the combined molecular and spin dynamics method that fully captures the coupling between the atomic and spin subsystems via spin-orbit interactions. Moreover, the foundation of this method lies in the inclusion of the local magnetic anisotropies that arise as a consequence of the lattice symmetry breaking due to phonons or crystallographic defects. By using canonical simulations of bcc iron with the system coupled to a phonon heat bath, we show that our extension enables the previously unachievable angular momentum exchange between the atomic and spin degrees of freedom.

  1. Atomic frequency standards at NICT

    NASA Astrophysics Data System (ADS)

    Ido, T.; Fujieda, M.; Hachisu, H.; Hayasaka, K.; Kajita, M.; Kojima, R.; Kumagai, M.; Locke, C.; Li, Y.; Matsubara, K.; Nogami, A.; Shiga, N.; Yamaguchi, A.; Koyama, Y.; Hosokawa, M.; Hanado, Y.

    2011-10-01

    Various activities of atomic frequency standards studied in National Institute of Information and Communications Technology (NICT) are briefly reviewed. After BIPM accepted the first cesium fountain clock in NICT as a reference to determine International Atomic Time (TAI), efforts to further reduce the uncertainty of collision shifts are ongoing. A second fountain clock using atomic molasses is being built to enable the operation with less atomic density. Single ion clock using calcium has been pursued for several years in NICT. The absolute frequency measured in 2008 has CIPM to adopt the Ca+ clock transition as a part of the list of radiation (LoR) to realize the meter. Sr lattice clock has started its operation last year. The absolute frequency agreed well with those obtained in other institutes. Study of stable cavities to stabilize clock lasers are also introduced.

  2. Dependency Ordering of Atomic Observables

    NASA Astrophysics Data System (ADS)

    Cīrulis, Jānis

    2015-12-01

    The notion of atomic observable was introduced by S.Gudder for effect test spaces in 1997. In this paper an observable is a σ-homomorphism from the Borel algebra on a line to some logic. Roughly, an observable on a logic is atomic, if it is completely determined by its restriction to one-element subsets of its point spectrum. In particular, every discrete observable is atomic. We study some elementary properties of such observables, and discuss a possible notion of functional dependency between them. Algebraically, a dependency is a certain preorder relation on the set of all atomic observables, which induces an order relation on the set of all maximal orthogonal subsets of the logic. Several properties, as well as characteristics in terms of the underlying logic, of these relations are stated.

  3. Exotic atoms: Antimatter may matter

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas J.

    2016-01-01

    The charge neutrality of the antimatter atom antihydrogen has been confirmed with unprecedented accuracy, paving the way for experiments that could simultaneously solve several of physics' biggest mysteries. See Letter p.373

  4. Contemporary Aspects of Atomic Physics

    ERIC Educational Resources Information Center

    Knott, R. G. A.

    1972-01-01

    The approach generally used in writing undergraduate textbooks on Atomic and Nuclear Physics presents this branch as historical in nature. Describes the concepts of astrophysics, plasma physics and spectroscopy as contemporary and intriguing for modern scientists. (PS)

  5. Absorption properties of identical atoms

    SciTech Connect

    Sancho, Pedro

    2013-09-15

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions.

  6. Evaporative cooling of potassium atoms

    NASA Astrophysics Data System (ADS)

    Inouye, Shin; Kishimoto, Tetsuo; Kobayashi, Jun; Aikawa, Kiyotaka; Noda, Kai; Arae, Takuto; Ueda, Masahito

    2007-06-01

    Recent advances in manipulating interactions between ultracold atoms opened up various new possibilities. One of the major goal of the field is to produce ultracold polar molecules. By utilizing a magnetic field induced Feshbach resonance, it is possible to produce heteronuclear molecules from a degenerate gas mixture. We are setting up an experiment to produce a degenerate gas mixture of fermionic alkali atoms, lithium-6 and potassium-40. Fermionic atoms are good candidate for minimizing the expected inelastic loss at the Feshbach resonance. For keeping the system as simple as possible, we decided to use bosonic potassium (potassium-41) as a coolant, and sympathetically cool the fermionic species. We will present our experimental setup and initial results for evaporatively cooling bosonic potassium atoms.

  7. Atomic Oxygen Durability of Second Surface Silver Microsheet Glass Concentrators

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.; Mroz, Thaddeus S.

    1996-01-01

    Second surface silver microsheet glass concentrators are being developed for potential use in future solar dynamic space power systems. Traditional concentrators are aluminum honeycomb sandwich composites with either aluminum or graphite epoxy face sheets, where a reflective aluminum layer is deposited onto an organic leveling layer on the face sheet. To protect the underlying layers, a SiO2 layer is applied on top of the aluminum reflective layer. These concentrators may be vulnerable to atomic oxygen degradation due to possible atomic oxygen attack of the organic layers at defect sites in the protective and reflective coatings. A second surface microsheet glass concentrator would be inherently more atomic oxygen durable than these first surface concentrators. In addition, a second surface microsheet glass concentrator design provides a smooth optical surface and allows for silver to be used as a reflective layer, which would improve the reflectivity of the concentrator and the performance of the system. A potential threat to the performance of second surface microsheet glass concentrators is atomic oxygen attack of the underlying silver at seams and edges or at micrometeoroid and debris (MMD) impacts sites. Second surface silver microsheet glass concentrator samples were fabricated and tested for atomic oxygen durability. The samples were iteratively exposed to an atomic oxygen environment in a plasma asher. Samples were evaluated for potential degradation at fabrication seams, simulated MMD impact sites, and edges. Optical microscopy was used to evaluate atomic oxygen degradation. Reflectance was obtained for an impacted sample prior to and after atomic oxygen exposure. After an initial atomic oxygen exposure to an effective fluence of approx. 1 x 10(exp 21) atoms/cm(exp 2), oxidation of the silver at defect sites and edges was observed. Exposure to an additional approx. 1 x 10(exp 21) atoms/cm(exp 2) caused no observed increase in oxidation. Oxidation at an

  8. Absorption properties of identical atoms

    NASA Astrophysics Data System (ADS)

    Sancho, Pedro

    2013-09-01

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas.

  9. Light propagation through atomic vapours

    NASA Astrophysics Data System (ADS)

    Siddons, Paul

    2014-05-01

    This tutorial presents the theory necessary to model the propagation of light through an atomic vapour. The history of atom-light interaction theories is reviewed, and examples of resulting applications are provided. A numerical model is developed and results presented. Analytic solutions to the theory are found, based on approximations to the numerical work. These solutions are found to be in excellent agreement with experimental measurements.

  10. Exotic atoms and leptonic conservations

    SciTech Connect

    Kunselman, R.

    1990-01-01

    The major 1989 efforts have been on two aspects of experiments at TRIUMF. One effort was production of muonic hydrogen and muonic deuterium into a vacuum. We study rates relevant to muonic catalyzed fusion, and if there are found an adequate number of muons in the 2s state then we plan to measure precision energies. The second effort was to develop plans for kaonic atoms at the kaon factory. We also completed analyses from the experiments with pionic atoms at LAMPF.

  11. Atomic squeezing under collective emission

    SciTech Connect

    Yukalov, V.I.; Yukalova, E.P.

    2004-11-01

    Atomic squeezing is studied for the case of large systems of radiating atoms, when collective effects are well developed. All temporal stages are analyzed, starting with the quantum stage of spontaneous emission, passing through the coherent stage of superradiant emission, and going to the relaxation stage ending with stationary solutions. A method of governing the temporal behavior of the squeezing factor is suggested. The influence of a squeezed effective vacuum on the characteristics of collective emission is also investigated.

  12. Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz

    NASA Technical Reports Server (NTRS)

    Gratz, A. J.; Manne, S.; Hansma, P. K.

    1991-01-01

    The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.

  13. Optical nanofibres and neutral atoms

    NASA Astrophysics Data System (ADS)

    Nieddu, Thomas; Gokhroo, Vandna; Chormaic, Síle Nic

    2016-05-01

    Optical nanofibres are increasingly being used in cold atom experiments due to their versatility and the clear advantages they have when developing all-fibred systems for quantum technologies. They provide researchers with a method of overcoming the Rayleigh range for achieving high intensities in a focussed beam over a relatively long distance, and can act as a noninvasive tool for probing cold atoms. In this review article, we will briefly introduce the theory of mode propagation in an ultrathin optical fibre and highlight some of the more significant theoretical and experimental progresses to date, including the early work on atom probing, manipulation and trapping, the study of atom-dielectric surface interactions, and the more recent observation of nanofibre-mediated nonlinear optics phenomena in atomic media. The functionality of optical nanofibres in relation to the realisation of atom-photon hybrid quantum systems is also becoming more evident as some of the earlier technical challenges are surpassed and, recently, several schemes to implement optical memories have been proposed. We also discuss some possible directions where this research field may head, in particular, in relation to the use of optical nanofibres that can support higher-order modes with an associated orbital angular momentum.

  14. Transition from LEDCOP to ATOMIC

    SciTech Connect

    Magee, N. H.; Abdallah, J.; Colgan, J.; Hakel, P.; Kilcrease, D. P.; Mazevet, S.; Sherrill, M. E.; Fontes, C. J.; Zhang, H.

    2004-01-01

    This paper discusses the development of the ATOMIC code, a new low to mid Z opacity code, which will replace the current Los Alamos low Z opacity code LEDCOP. The ATOMIC code is based on the FINE code, long used by the Los Alamos group for spectral comparisons in local thermodynamic equilibrium (LTE) and for non-LTE calculations, both utilizing the extensive databases from the atomic physics suite of codes based on the work of R.D. Cowan. Many of the plasma physics packages in LEDCOP, such as line broadening and free-free absorption, are being transferred to the new ATOMIC code. A new equation of state (EOS) model is being developed to allow higher density calculations than were possible with either the FINE or LEDCOP codes. Extensive modernization for both ATOMIC and the atomic physics code suites, including conversion to Fortran 90 and parallelization, are underway to speed up the calculations and to allow the use of expanded databases for both the LTE opacity tables and the non-LTE calculations. Future plans for the code will be outlined, including considerations for new generation opacity tables.

  15. Visions of Atomic Scale Tomography

    SciTech Connect

    Kelly, T. F.; Miller, Michael K; Rajan, Krishna; Ringer, S. P.

    2012-01-01

    A microscope, by definition, provides structural and analytical information about objects that are too small to see with the unaided eye. From the very first microscope, efforts to improve its capabilities and push them to ever-finer length scales have been pursued. In this context, it would seem that the concept of an ultimate microscope would have received much attention by now; but has it really ever been defined? Human knowledge extends to structures on a scale much finer than atoms, so it might seem that a proton-scale microscope or a quark-scale microscope would be the ultimate. However, we argue that an atomic-scale microscope is the ultimate for the following reason: the smallest building block for either synthetic structures or natural structures is the atom. Indeed, humans and nature both engineer structures with atoms, not quarks. So far as we know, all building blocks (atoms) of a given type are identical; it is the assembly of the building blocks that makes a useful structure. Thus, would a microscope that determines the position and identity of every atom in a structure with high precision and for large volumes be the ultimate microscope? We argue, yes. In this article, we consider how it could be built, and we ponder the answer to the equally important follow-on questions: who would care if it is built, and what could be achieved with it?

  16. Atom beams split by gentle persuasion

    SciTech Connect

    Pool, R.

    1994-02-25

    Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state.

  17. Changes of properties of the materials of spacecraft solar arrays under the action of atomic oxygen

    NASA Astrophysics Data System (ADS)

    Shuvalov, V. A.; Kochubei, G. S.; Priimak, A. I.; Pis'mennyi, N. I.; Tokmak, N. A.

    2007-08-01

    A procedure is developed for physical and chemical modeling and investigation of the weight, geometrical, and thermo-optical characteristics of polymer paneling materials of solar arrays and of the electric power of solar cells under the prolonged action of supersonic fluxes of atomic oxygen in orbit. The behavior of changes in the material characteristics as a function of the integral fluence of atomic oxygen is found. It is established that the electric power of solar cells is virtually invariable within the errors of measurements under irradiation by atomic oxygen flux with a fluence of no higher than 5 · 1021 cm-2.

  18. Magnetic Resonance in an Atomic Vapor Excited by a Mechanical Resonator

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Ju; Eardley, Matthew; Knappe, Svenja; Moreland, John; Hollberg, Leo; Kitching, John

    2006-12-01

    We demonstrate a direct resonant interaction between the mechanical motion of a mesoscopic resonator and the spin degrees of freedom of a sample of neutral atoms in the gas phase. This coupling, mediated by a magnetic particle attached to the tip of the miniature mechanical resonator, excites a coherent precession of the atomic spins about a static magnetic field. The novel coupled atom-resonator system may enable development of low-power, high-performance sensors, and enhance research efforts connected with the manipulation of cold atoms, quantum control, and high-resolution microscopy.

  19. Extracting chemical information from plane wave calculations by a 3D 'fuzzy atoms' analysis

    NASA Astrophysics Data System (ADS)

    Bakó, I.; Stirling, A.; Seitsonen, A. P.; Mayer, I.

    2013-03-01

    Bond order and valence indices have been calculated by the method of the three-dimensional 'fuzzy atoms' analysis, using the numerical molecular orbitals obtained from plane wave DFT calculations, i.e., without introducing any external atom-centered functions. Weight functions of both Hirshfeld and Becke types have been applied. The results are rather close to the similar 'fuzzy atoms' ones obtained by using atom-centered basis sets and agree well with the chemical expectations, stressing the power of the genuine chemical concepts.

  20. Single atom detection in ultracold quantum gases: a review of current progress

    NASA Astrophysics Data System (ADS)

    Ott, Herwig

    2016-05-01

    The recent advances in single atom detection and manipulation in experiments with ultracold quantum gases are reviewed. The discussion starts with the basic principles of trapping, cooling and detecting single ions and atoms. The realization of single atom detection in ultracold quantum gases is presented in detail and the employed methods, which are based on light scattering, electron scattering, field ionization and direct neutral particle detection are discussed. The microscopic coherent manipulation of single atoms in a quantum gas is also covered. Various examples are given in order to highlight the power of these approaches to study many-body quantum systems.