Sample records for kaolins bentonites palyg

  1. Organically modified low-grade kaolin as a secondary containment material for underground storage tanks.

    PubMed

    Moon, Chul-Hwan; Lee, Jai-Young; Oh, Byung-Taek; Choi, Sang-Il

    2007-08-01

    Batch scale reactions were conducted to evaluate the efficacy of modified low-grade kaolin for the treatment of petroleum contaminants. Low-grade kaolin, which has been unvalued as material in the mining process because of its low quality for commercial products, was modified with HDTMA (hexadecyl-trimethylammonium), and its efficiency was compared with that of HDTMA-modified bentonite, which is used as a secondary containment barrier for underground storage tanks. The sorption capacity and hydraulic conductivity of both the HDTMA-modified bentonite and low-grade kaolin were investigated and showed distribution coefficients in the sorption of benzene, toluene, ethylbenzene and xylene ranging between 45.7 and 583.7 and 57.0 and 525.1, respectively. The hydraulic conductivities were 2.53 x 10(-8) and 5.62 x 10(-8) cm/s for the HDTMA-modified bentonite and low-grade kaolin, respectively. These results suggest that HDTMA-modified low-grade kaolin could be used as a hydraulic barrier against advection migration of petroleum contaminants. Simulation of the one-dimensional transport of benzene through a liner made of either one of the compounds was also performed. These results also showed that HDTMA-modified kaolin more effectively retards the transport of benzene.

  2. Kaolin

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the kaolin industry is provided. In 2000, production of kaolin was estimated to be 8.87 Mt, which is less than the amount produced in 1999. Domestic sales of kaolin decreased in 2000, with sales of kaolin for paper filler applications continuing to drop.

  3. Kaolin

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1998 Industrial Minerals Review. Activities in the kaolin industry in 1999 are reviewed. U.S. production of kaolin in 1999 was estimated to be 10.7 million st, an increase of 0.3 million st from the previous year. The paper industry is the largest user of kaolin, accounting for 59 percent of domestic sales. Company activities, announcements, and plans of interest to the kaolin industry are outlined.

  4. Kaolin

    USGS Publications Warehouse

    Virta, Robert L.

    2014-01-01

    The article reports on the market performance of kaolin in the U.S. in 2009 and presents an outlook for its 2010 performance. There was a decline in the domestic sales of kaolin from 6.74 measurement ton (Mt) to 5.2 Mt. Companies in the country engaged in kaolin production include Advanced Primary Minerals Corp., Applied Minerals Inc., and Daleco Resources Corp. The decline in world production of kaolin from 2008 to 2009 is also noted.

  5. Tough and Reinforced Polypropylene/Kaolin Composites using Modified Kaolin

    NASA Astrophysics Data System (ADS)

    Yao, J. L.; Zhu, H. X.; Qi, Y. B.; Guo, M. J.; Hu, Q.; Gao, L.

    2018-05-01

    Polypropylene (PP)/kaolin composites have been prepared by filling modified kaolin with diethylenetriaminepentaacetic acid (DTPA) into the PP matrix. The surface modification of kaolin particles effectively improves the compatibility between kaolin and PP matrix. It is conducive for uniform dispersion of inorganic particles in the matrix, and enhances the mechanical performance of the composites. Compared with plain kaolin, the mechanical properties of the modified composites exhibit higher tensile strength, bending strength, impact strength and melt index simultaneously. The DTPA modification of kaolin overall enhances the mechanical properties of PP composites. It meets the requirements in various applications, and makes the modified experiment interesting in modern teaching.

  6. Kaolin

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global kaolin industry, particularly in the U.S., as of June 2011. It claims that Georgia is the top producing state in the U.S., with a 94% share in total production. The other top producers include South Carolina, North Carolina and Florida. Kaolin is used in the manufacture of such products as electrical porcelain, pottery and sanitaryware.

  7. Kaolin

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, 22 companies mined kaolin in nine US states. Production in Georgia declined to 6.19 Mt down from 6.78 Mt in 2004. Despite the decline, Georgia remained the leading producer state followed by Alabama, South Carolina, Arkansas, Texas, Nevada, California, North Carolina and Florida. In the next year or two, domestic and export sales of kaolin for paper application are not expected to change significantly.

  8. Kaolin

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    Part of the 2006 industrial minerals review. U.S. kaolin production was an estimated 7.74 Mt in 2006, with 7.1 Mt produced by Georgia. Imports increased from 262 kt in 2005 to about 303 kt in 2006, whereas exports decreased from 3.58 Mt in 2005 to 3.54 Mt in 2006. Inexpensive Brazilian imports and a lackluster domestic paper market are expected to cause a slight reduction in kaolin sales to the U.S. paper industry.

  9. Kaolin

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Nineteen companies mined kaolin in eight states in 2012. Production, on the basis of preliminary data, was estimated to be 5.88 Mt (6.48 million st) valued at $841 million, an increase from 5.77 Mt (6.36 million st) valued at $817 million in 2011. Production in Georgia, the top producing state, increased to an estimated 5.45 Mt (6.01 million st) valued at $804 million in 2012 from 5.34 Mt (5.89 million st) valued at $781 million in 2011. Georgia accounted for 93 percent of U.S. production tonnage and nearly the entire domestic water-washed, delaminated and pigment-grade calcined kaolin production.

  10. Kaolin

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Fifteen companies mined kaolin in nine states in 2011. Production, on the basis of preliminary data, was estimated to be 5.48 Mt (6.04 million st) valued at $822 million, an increase from 5.42 Mt (5.97 million st) valued at $788 million in 2010. Production in Georgia, the top producing state, increased to an estimated 5.1 Mt (5.62 million st) valued at $790 million in 2011 from 5.05 Mt (5.57 million st) valued at $757 million in 2010. Georgia accounted for 93 percent of U.S. production tonnage and nearly the entire domestic water-washed, delaminated and pigment-grade calcined kaolin production.

  11. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  12. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  13. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  14. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  15. Performance of Kaolin Clay on the Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Abdullah, M. E.; Jaya, R. P.; Shahafuddin, M. N. A.; Yaacob, H.; Ibrahim, M. H. Wan; Nazri, F. M.; Ramli, N. I.; Mohammed, A. A.

    2018-05-01

    This paper investigates the performance of concrete pavement containing kaolin clay with their engineering properties and to determine the optimum kaolin clay content. The concrete used throughout the study was designed as grade 30 MPa strength with constant water to cement ratio of 0.49. The compressive strength, flexural strength and water absorption test was conducted in this research. The concrete mix designed with kaolin clay as cement replacement comprises at 0%, 5%, 10% and 15% by the total weight of cement. The results indicate that the strength of pavement concrete decreases as the percentage of kaolin clay increases. It also shows that the water absorption increases with the percentage of cement replacement. However, 5% kaolin clay is found to be the optimum level to replace cement in a pavement concrete.

  16. Geochemistry of Selected Kaolins from Cameroon and Nigeria

    NASA Astrophysics Data System (ADS)

    Bukalo, Nenita N.; Ekosse, Georges-Ivo E.; Odiyo, John O.; Ogola, Jason S.

    2017-12-01

    The geochemical characteristics of selected kaolins from Cameroon and Nigeria are presented, with an attempt to elucidate on their possible industrial applications by comparing them to world-known kaolin deposits. Major oxides concentrations were subjected to factor analyses in interpreting their relationships. Geochemical indices, including chemical index of alteration (CIA), chemical index of weathering (CIW) and the index of compositional variability (ICV) were computed and plotted on binary and ternary diagrams to determine the intensity of weathering of the kaolins and discriminate their different source rock types. Kaolinite was the major phase, followed by quartz, illite and goethite as minor phases. Minerals in trace phases included smectite, anatase, muscovite, gibbsite, microcline, palygorskite and calcite. Mean abundances of major oxides in wt% were: SiO2 (56.96)>Al2O3 (24.09)>Fe2O3 (3.78)>TiO2 (1.53)> K2O (1.26)> MgO (0.27)>CaO (0.20)>Na2O (0.17)>P2O5 (0.05)>MnO (0.04). The CIW versus CIA and ICV versus CIA plots showed that most of the kaolins clearly depicted extreme silicate weathering. The current applications of kaolins from Cameroon and Nigeria include ceramics and manufacturing of bricks and tiles. Low MgO, CaO, Na2O, K2O and TiO2 further position the kaolins for pharmaceutics, cosmetics, rubber and plastic applications. Thus, the studied kaolins have the potential to contribute to improved economic development of these countries.

  17. Prolonged triboluminescence in clays and other minerals

    NASA Technical Reports Server (NTRS)

    Lahav, N.; Coyne, L. M.; Lawless, J. G.

    1982-01-01

    The decay curves of various triboluminescent-excited materials were obtained, including well-crystallized and poorly crystallized kaolin, bentonite, quartz, sodium chloride, and chalk calcite. A qualitative increase in triboluminescence was observed for kaolin dipped in water or tryptophan solution compared to dry kaolin, and for frozen kaolin and montmorillonite pastes. Theoretical explanations for the tryptophan effect are discussed.

  18. Hemostatic kaolin-polyurethane foam composites for multifunctional wound dressing applications.

    PubMed

    Lundin, Jeffrey G; McGann, Christopher L; Daniels, Grant C; Streifel, Benjamin C; Wynne, James H

    2017-10-01

    There are numerous challenges associated with the acute care of traumatic limb injuries in forward military settings. A lack of immediate medical facilities necessitates that the wound dressing perform multiple tasks including exudate control, infection prevention, and physical protection of the wound for extended periods of time. Here, kaolin was incorporated into recently developed robust polyurethane (PU) hydrogel foams at 1-10wt% in an effort to impart hemostatic character. ATR-IR and gel fraction analysis demonstrated that the facile, one-pot synthesis of the PU hydrogel was unaffected by kaolin loading, as well as the use of a non-toxic catalyst, which significantly improved cytocompatibility of the materials. Kaolin was generally well dispersed throughout the PU matrix, though higher loadings exhibited minor evidence of aggregation. Kaolin-PU composites exhibited burst release of ciprofloxacin over 2h, the initial release rates of which increased with kaolin loading. Kaolin loading imparted excellent hemostatic character to the PU foams at relatively low loading levels (5wt%). This work demonstrates the simple and inexpensive synthesis of robust, hemostatic, and absorptive kaolin-PU foams that have promising potential as multifunctional wound dressing materials. Published by Elsevier B.V.

  19. Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride

    NASA Astrophysics Data System (ADS)

    Yang, Ni; Zhang, Zuo-Cai; Ma, Ning; Liu, Huan-Li; Zhan, Xue-Qing; Li, Bing; Gao, Wei; Tsai, Fang-Chang; Jiang, Tao; Chang, Chang-Jung; Chiang, Tai-Chin; Shi, Dean

    To achieve reinforcement of mechanical and thermal performances of polypropylene (PP) product, this work aimed at fabrication of surface modified kaolin (M-kaolin) filled polypropylene grafted maleic anhydride (PP-g-MAH) composites with varying contents of fillers and investigation of their mechanical and thermal properties. And the prepared PP-g-MAH/M-kaolin composites were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fracture analysis by SEM showed M-kaolin particles were well dispersed in the PP-g-MAH matrix. Mechanical behaviors were determined by tensile strength, tensile strain at break and impact strength analysis. Impact strength of PP-g-MAH/2 wt% M-kaolin composites was improved up to 30% comparing with unfilled composites. Thermostability had been found enhanced when M-kaolin added. The results revealed PP-g-MAH/M-kaolin composites showed the optimal thermal and mechanical properties when 2 wt% of M-kaolin was added.

  20. Bauxite and Kaolin Deposits of the Irwinton district, Georgia

    USGS Publications Warehouse

    Lang, Walter B.; Warren, Walter C.; Thompson, Raymond M.; Overstreet, Elizabeth F.

    1965-01-01

    The Irwinton district is in the central part of Georgia at the inner margin of the Coastal Plain province. The oldest rocks exposed in the district are crystalline rocks of the Piedmont province. They are unconformably overlain by nonmarine sedimentary strata of Late Cretaceous age, including gravel, micaceous sand, and lenses of kaolin. Bauxite has been found in a few of the kaolin lenses near the top of the sequence of these strata. During a long period prior to deposition of the over- lying marine beds of the Claiborne and Jackson Groups (middle and upper Eocene), the Upper Cretaceous strata were subjected to subaerial erosion. The bauxite deposits are considered to have formed during this period. They range in thickness from a few inches to more than 10 feet and occupy areas ranging from a few square feet to more than 5 acres. Most of the known bauxite deposits lie along the valleys of Commissioners Creek and Big Sandy Creek in Wilkinson County. The kaolin lenses are much larger than the bauxite deposits; some of the lenses underlie more than 200 acres and are more than 20 feet thick. Bauxite was discovered in the district in 1907 and was mined from 1910 to 1928. A few additional carloads of ore were shipped in 1941 and 1942, but no ore has been mined since that time. Reserves of high-grade bauxite are very small. Reserves of all grades of bauxite plus bauxitic clay may be about 400,000 long tons. The Irwinton district is the principal source of high-grade kaolin in the United States. The presence of kaolin here has been known since early colo- nial time, and it has been mined continuously since 1897. Production in 1959 was 1,940,279 short tons. The reserves of kaolin are very large but have never been adequately measured. Reserves of first and second grade kaolin may be 67 to 84 million short tons. Kaolin of lower grade is present in larger quantity.

  1. Bacterial cellulose-kaolin nanocomposites for application as biomedical wound healing materials

    NASA Astrophysics Data System (ADS)

    Wanna, Dwi; Alam, Catharina; Toivola, Diana M.; Alam, Parvez

    2013-12-01

    This short communication provides preliminary experimental details on the structure-property relationships of novel biomedical kaolin-bacterial cellulose nanocomposites. Bacterial cellulose is an effective binding agent for kaolin particles forming reticulated structures at kaolin-cellulose interfaces and entanglements when the cellulose fraction is sufficiently high. The mechanical performance of these materials hence improves with an increased fraction of bacterial cellulose, though this also causes the rate of blood clotting to decrease. These composites have combined potential as both short-term (kaolin) and long-term (bacterial cellulose) wound healing materials.

  2. Shear Strength of Stabilized Kaolin Soil Using Liquid Polymer

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Fazlina, M. I. S.; Nizam, Z. M.; Fairus, Y. M.; Hakimi, M. N. A.; Riduan, Y.; Faizal, P.

    2017-08-01

    The purpose of this research is to investigate the suitability of polymer in soil stabilization by examining its strength to withstand compressive strength. Throughout this research study, manufactured polymer was used as a chemical liquid soil stabilizer. The liquid polymer was diluted using a proposed dilution factor of 1 : 3 (1 part polymer: 3 parts distilled water) to preserve the workability of the polymer in kaolin mixture. A mold with a diameter of 50 mm and a height of 100 mm was prepared. Kaolin soil was mixed with different percentages of polymer from 10%, 15%, 20%, 25%, 30% and 35% of the mass of the kaolin clay sample. Kaolin mixtures were tested after a curing period of 3 days, 7 days, 14 days and 28 days respectively. The physical properties were determined by conducting a moisture content test and Atterberg limit test which comprise of liquid limit, plastic limit and shrinkage limit. Meanwhile, the mechanical properties of the soil shear strength were identified through an unconfined compressive strength (UCS) test. Stabilized kaolin soil showed the highest compressive strength value when it was mixed with 35% of polymer compared to other percentages that marked an increment in strength which are 45.72% (3 days), 67.57% (7 days), 81.73% (14 days) and 77.84% (28 days). Hence, the most effective percentage of liquid polymer which should be used to increase the strength of kaolin soil is 35%.

  3. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    PubMed Central

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-01-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity. PMID:26333629

  4. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  5. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies.

    PubMed

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-03

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  6. Mineralogical characteristics of Cretaceous-Tertiary kaolins of the Douala Sub-Basin, Cameroon

    NASA Astrophysics Data System (ADS)

    Bukalo, Nenita N.; Ekosse, Georges-Ivo E.; Odiyo, John O.; Ogola, Jason S.

    2018-05-01

    As a step in evaluating the quality of Cretaceous-Tertiary kaolins of the Douala Sub-Basin, their mineralogical characteristics were determined. The X-ray diffractometry technique was used to identify and quantify the mineral phases present in bulk and <2 μm fractions. Scanning electron microscopy was used to determine the micromorphology of <2 μm fractions kaolins. Thermal analyses (derivative thermal gravimetric analysis, thermal gravimetric analysis, and heat flow) were conducted to further characterise the kaolins. The main mineral phases present in the studied Cretaceous-Tertiary kaolins of the Douala Sub-Basin were kaolinite > smectite > illite, with mean values of 33.01 > 11.20 > 4.41 wt %; and 72.23 > 10.69 > 4.69 wt %, in bulk and <2 μm fractions, respectively. The kaolins, micromorphologically, consisted of pseudo-hexagonal and thin platy particles; swirl-textured particles; and books or stacks of kaolinite particles. Three main reactions occurred during heating of the kaolins: a low temperature endothermic reaction, observed between 48 and 109 °C; a second low temperature peak, observed between 223 and 285 °C; and a third endothermic peak was found between 469 and 531 °C. In addition, an exothermic reaction also occurred between 943 and 988 °C in some of the samples. The absence of primary minerals such as feldspars and micas in most of these kaolins is an indication of intensive weathering, probably due to the humid tropical climate of the region. The different morphologies suggested that these kaolins might have been transported. Therefore, a humid tropical climate was responsible for the formation of Cretaceous-Tertiary kaolins of the Douala Sub-Basin through intense weathering of surrounding volcanic and metamorphic rocks.

  7. Geology and resources of the Andersonville, Georgia, kaolin and bauxite district

    USGS Publications Warehouse

    Cofer, Harland E.; Manker, John Phillip

    1983-01-01

    The kaolin and kaolin-rich sediments of the Andersonville district were deposited in an estuary environment with restricted circulation and little tidal or longshore current influence. Micaceous kaolinitic clays were deposited during late Paleocene time on broad, shallow water flats between deeper water distributary channels in the estuarine system. During the cycle of deposition, kaolinitic sediments were temporarily exposed to weathering leading to bauxitization and further kaolinization. Subsequently, subaerial and/or subaqueous erosion planed off and redeposited some of the weathering products as organic-rich clays and silts, berthierine-bearing clays, and rarely as colluvial bauxite and sedimentary bauxitic clays. Upon resubmergence, gibbsite-rich, porous bauxite, and bauxitic clays were exposed to silica-saturated water of the estuary. Gibbsite reacted with silica to form kaolinite and resulted in the formation of the transitional (bauxitic) clays overlying the bauxite. Kaolinitic sediments transported by streams again spread over the altered and redeposited material. At the close of the kaolin depositional period movement along the Andersonville Fault Zone and related faults changed the basinal configuration, and the area of the uplifted (southern) block of the fault was exposed to weathering and bauxitization for a limited period of time. General submergence again occurred and much of the district was covered by marine and brackish water, ending the period of commercial kaolin deposition. The kaolin and bauxite deposits in the Andersonville district form a broad belt 15 kilometers wide and 22 kilometers long trending in a northwest-southeastward direction. Most of the kaolin and bauxite of commercial value occur within a narrow 10-kilometer-wide zone in the belt. The reserves of kaolin suitable for refractory and chemical use are approximately 290 million tonnes. Paramarginal resources of sandy kaolin suitable for refractory, chemical, or aluminum

  8. Use of airborne gamma-ray spectrometry for kaolin exploration

    NASA Astrophysics Data System (ADS)

    Tourlière, B.; Perrin, J.; Le Berre, P.; Pasquet, J. F.

    2003-08-01

    Airborne gamma-ray spectrometry was used to define targets with kaolin potential in the Armorican Massif of Brittany, France. This exploration method is based on the principle that kaolinite, an aluminosilicate clay mineral constituting kaolin, is formed by the hydrolysis of potash feldspar with the elimination of potassium. Therefore, potassium contrast between favourable host-rock such as a leucogranite and kaolin occurrence is likely a significant pathfinder. As the relationship between the potassium-40 recorded by an airborne gamma-ray spectrometer and total potassium is constant, such data provide us a direct measurement of the potassium content of the ground flown over. Our study tested this by calculating, for each geological unit, the difference between the measured and average potassium content calculated for a given geological formation. The study was based on (i) a recent (1998) high-definition airborne geophysical survey over the Armorican Massif undertaken on behalf of the French Government, and (ii) new geological compilation maps covering the same region. Depleted zones, where the measured potassium is less than the average potassium content calculated target areas with high potential of containing kaolin, provided that the unit was originally rich in potash feldspar. By applying this method to the entire Armorican Massif, it was possible to identify 150 potassium-depleted zones, including 115 that were subjected to rapid field checks and 36 that contained kaolin (21 new discoveries). This method, which is both safe for the environment and easy to use, is therefore a good tool for rapidly defining targets with kaolin potential at a regional scale. The method may also have possibilities in exploring for other types of deposit characterised by an enrichment or depletion in U, K and/or Th.

  9. Surface modification of calcined kaolin with toluene diisocyanate based on high energy ball milling

    NASA Astrophysics Data System (ADS)

    Yuan, Yongbing; Chen, Hongling; Lin, Jinbin; Ji, Yan

    2013-11-01

    The surface of calcined kaolin particle was modified with toluene diisocyanate (TDI) by using high energy ball milling. The prepared hybrids were characterized by FT-IR, MAS NMR, thermal analysis (TGA-DSC), static water contact angle (CA), apparent viscosity and transmission electron microscopy (TEM). FT-IR and MAS NMR spectra demonstrated that TDI molecules were chemically anchored to kaolin surface after modification. The results of thermal analysis showed that the maximum grafting ratio reached up to 446.61% when the mass ratio of TDI/kaolin was 0.5:1.0, and CA measurements revealed that the resultant hybrids exhibited strong hydrophobicity (148.82°). Apparent viscosity and TEM were employed to examine the dispersion properties of blank and modified kaolin particles in poly (dimenthylsiloxane) matrix. The results illustrated that the dispersion stability depended strongly on the grafting ratio of TDI, neither too low nor too high achieved uniform and stable dispersion, and the favorable grafting ratio was obtained when the mass ratio of TDI/kaolin was 0.2:1.0. Further modification of TDI/kaolin (mass ration of TDI/kaolin, 1.0:1.0) particles with bis(aminopropyl)-terminated-poly(dimethylsiloxane) (APS) was also investigated. TEM evidenced that the dispersion properties of the obtained TDI/APS/kaolin particles were remarkably improved in octamethyl cyclotetrasiloxane compared with the original TDI/kaolin particles.

  10. Effects of Kaolin Clay on the Mechanical Properties of Asphaltic Concrete AC14

    NASA Astrophysics Data System (ADS)

    Abdullah, M. E.; Ramadhansyah, P. J.; Rafsanjani, M. H.; Norhidayah, A. H.; Yaacob, H.; Hainin, M. R.; Warid, M. N. Mohd; Satar, M. K. I. Mohd; Aziz, Md Maniruzzaman A.; Mashros, N.

    2018-04-01

    This study investigated the effect of kaolin clay on the mechanical properties of asphaltic concrete AC14 through Marshall Stability, resilient modulus, and dynamic creep tests. Four replacement levels of kaolin clay (2%, 4%, 6%, and 8% by weight of the binder) were considered. Kaolin clay functioned as an effective filler replacement material to increase the mechanical properties of asphalt mixtures. Asphaltic concrete with 2% to 4% kaolin clay replacement level exhibited excellent performance with good stability, resilient modulus, and creep stiffness.

  11. The contribution of lateritization processes to the formation of the kaolin deposits from eastern Amazon

    NASA Astrophysics Data System (ADS)

    da Costa, Marcondes Lima; Sousa, Daniel José Lima; Angélica, Rômulo Simões

    The eastern region of the Amazon is home to the most important kaolin bauxite producing district in Brazil, referred to as the Paragominas-Capim kaolin bauxite district, which has a reserve of at least 1.0 billion tons of high-quality kaolin used in the paper coating industry. The kaolin deposits are closely related to sedimentary rocks of the Parnaíba basin and their lateritic cover. Two large deposits are already being mined: IRCC (Ipixuna) and PPSA (Paragominas). The geology of the IRCC mine is comprised of the kaolin-bearing lower unit (truncated mature laterite succession derived from the Ipixuna/Itapecuru formation) and the upper unit (immature lateritized Barreiras formation). The lower kaolin unit is characterized by a sandy facies at the bottom and a soft (ore) with flint facies at the top. It is formed by kaolinite, quartz, some iron oxi-hydroxides, mica and several accessories and heavy minerals. The <2 μm kaolinite crystallites only correspond to 41.3-58.3% of the soft kaolin, and large booklets of 15-300 μm are common. The degree of structure order of kaolinite decreases towards the flint kaolin. The chemical composition of the soft kaolin is similar to the theoretical chemical composition of kaolinite, with low iron content, and can be well correlated to most kaolin deposits in the region. The distribution pattern of chemical elements from sandy to flint kaolin (lower unit) suggests a lateritic evolution and erosive truncation. This is quite distinct from the upper unit, which has a mineralogical and chemical pathway relating it to a complete immature lateritic profile. The geological evolution of the IRCC kaolin is similar to that of other deposits in the eastern Amazon region, being comprised of: parent rocks formed in an estuarine marine and fluvio-laccustrine environment during the early Cretaceous; establishment of mature lateritization with the formation of kaolin in the Eocene; marine transgression and regression - (Pirabas and Barreiras

  12. Processed kaolin affects the probing and settling behavior of Diaphorina citri (Hemiptera: Lividae).

    PubMed

    Miranda, Marcelo P; Zanardi, Odimar Z; Tomaseto, Arthur F; Volpe, Haroldo Xl; Garcia, Rafael B; Prado, Ernesto

    2018-03-05

    Alternative methods that have the potential to reduce the entry of Diaphorina citri Kuwayama (Hemiptera: Liviidae), the major citrus pest worldwide, into commercial groves could be a viable approach for huanglongbing management. Kaolin is an aluminum silicate that when sprayed on plants forms a white particle film that interferes with host recognition by the insects. Diaphorina citri orients towards the host plants by visual and olfactory cues. The purpose of the study was to determine the effect of processed kaolin on D. citri settling (no-choice) and probing behavior [electrical penetration graph (EPG) technique] under laboratory conditions, and to study its host plant finding ability and dispersal under field conditions in the absence and presence of young shoots. Under laboratory conditions, kaolin caused an overall reduction of 40% in the number of psyllids settled on treated seedlings; furthermore, the proportion of individuals that were able to reach the phloem was 50% lower on kaolin-treated plants than on untreated plants. In the field, the plant finding ability of D. citri was disrupted on kaolin-treated trees (overall reduction of 96%), regardless of the vegetative condition, and psyllid dispersal was slower in kaolin-treated plots than in the untreated control. This study clearly demonstrates that processed kaolin interferes negatively with different aspects of the host plant finding ability of D. citri. These findings suggest that processed kaolin has a high potential to reduce huanglongbing primary infection. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. On the asymmetric adsorption of phenylalanine enantiomers by kaolin.

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Flores, J.

    1973-01-01

    The attempt is described to verify a recent report that kaolin adsorbs D- and L-phenylalanine enantiomers to different extents from aqueous solutions at both pH 5.8 and pH 2. No evidence whatsoever could be found for the differential adsorption of D- versus L-phenylalanine by kaolin from either pH 6 or pH 2 solutions.

  14. Characteristics of Thermoplastic Potato Starch/Bentonite Nanocomposite Film

    NASA Astrophysics Data System (ADS)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.; Sandu, I. G.; Wan, C. L. Mei

    2018-06-01

    The aim of this study is to investigate the effect of bentonite towards thermoplastic potato starch nanocomposite films on the mechanical, microstructure and physical properties. The nanocomposite films were prepared using bentonite nano filler (0, 1, 5, 10, 15 and 20%) through solution casting technique. Obtained result indicate that, tensile strength increased significantly with increasing bentonite content and the highest tensile strength was recorded for nanocomposite film with 20% bentonite content. Meanwhile, elongation at break increased as the bentonite content increased from 0 to 15%, however significantly decreased at 20% bentonite content due to ductile structure and anti-plasticizing effect. Besides, good dispersion between bentonite nano filler and starch matrix with slightly remaining anglomerates was evident in scanning electron microscopy (SEM) image. Overall result shows that the addition of bentonite nano filler in potato starch film significantly influenced the properties of the films.

  15. Heating-freezing effects on the orientation of kaolin clay particles

    DOE PAGES

    Jaradat, Karam A.; Darbari, Zubin; Elbakhshwan, Mohamed; ...

    2017-09-29

    The effects of temperature changes on the particle orientation of a consolidated kaolin are studied using XRD experiments. Here, two sets of equipment were utilized in this study: a benchtop equipment, and a synchrotron beamline at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory. The kaolin specimens tested in the benchtop XRD were subjected to elevated and freezing temperatures ex-situ, while those used for the NSLS-II experiment were exposed to the temperature changes in-situ. The temperatures considered in this study range from freezing (-10 °C) to elevated temperature below boiling (90 °C). The thermally-induced reorientation of claymore » mineral particles is highly dependent on the relative orientation of the clay mineral particles with respect to the applied thermal gradient. For example, kaolin samples with kaolinite particles oriented perpendicular to the thermal gradient, and to the expected thermally-induced pore water flow, experience much higher particles reorientations compared to samples with particles initially oriented parallel to the thermal gradient. Lastly, freezing kaolin preserved its microstructure as ice crystals form.« less

  16. Heating-freezing effects on the orientation of kaolin clay particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaradat, Karam A.; Darbari, Zubin; Elbakhshwan, Mohamed

    The effects of temperature changes on the particle orientation of a consolidated kaolin are studied using XRD experiments. Here, two sets of equipment were utilized in this study: a benchtop equipment, and a synchrotron beamline at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory. The kaolin specimens tested in the benchtop XRD were subjected to elevated and freezing temperatures ex-situ, while those used for the NSLS-II experiment were exposed to the temperature changes in-situ. The temperatures considered in this study range from freezing (-10 °C) to elevated temperature below boiling (90 °C). The thermally-induced reorientation of claymore » mineral particles is highly dependent on the relative orientation of the clay mineral particles with respect to the applied thermal gradient. For example, kaolin samples with kaolinite particles oriented perpendicular to the thermal gradient, and to the expected thermally-induced pore water flow, experience much higher particles reorientations compared to samples with particles initially oriented parallel to the thermal gradient. Lastly, freezing kaolin preserved its microstructure as ice crystals form.« less

  17. Bentonite modification with pillarization method using metal stannum

    NASA Astrophysics Data System (ADS)

    Widjaya, Robert R.; Juwono, Ariadne L.; Rinaldi, Nino

    2017-11-01

    Clay minerals have received considerable attention in the last years because of their environmental compatibility, low cost, high selectivity, and operational simplicity. Although clays are very useful for many application in the field of catalysis, they have main disadvantage: their lack of pore volume and spesific surface area. Porosity and stability of these materials are improved by pillaring the clay layers with SnCl4, which leads to materials known as pillared clays (PILC). This research aims were to characterize the Bentonite and Sn-Bentonite as catalysts for cracking and oligomerization. The Sn-Bentonite was prepared by pillarization method with a variation in metal ratio of 5 mmol dan 10 mmol.gr-1 of bentonit. The catalyst characterized by X-ray Diffraction, X-ray Fluorescence, Fourier Transform Infra Red, Brunauer Emmett Teller, Thermogravimetric Analysis. The results showed that the Sn-Bentonite catalyst had large basal spacing and good porous structure, and the specific surface areas increased. XRF detected the Sn in the Bentonite and TGA results showed the ability Sn-Bentonite in receiving heat. FTIR test showed two type of acidity, broansted and lewis acid. The characterized results indicated that Sn-Bentonite with metal ratio 5 mmol.gr-1 better than Sn-Bentonite with metal ratio 10 mmol.gr-1, in which there was a significant increase the basal spacings, specific surface area, and pore volume. The TGA results for Sn-Bentonite appeared to be more thermally stable than Bentonite.

  18. Fractal Approach to Erosion Threshold of Bentonites

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, X. Y.

    Bentonite has been considered as a candidate buffer material for the disposal of high-level radioactive waste (HLW) because of its low permeability, high sorption capacity, self-sealing characteristics and durability in a natural environment. Bentonite erosion caused by groundwater flow may take place at the interface of the compacted bentonite and fractured granite. Surface erosion of bentonite flocs is represented typically as an erosion threshold. Predicting the erosion threshold of bentonite flocs requires taking into account cohesion, which results from interactions between clay particles. Beyond the usual dependence on grain size, a significant correlation between erosion threshold and porosity measurements is confirmed for bentonite flocs. A fractal model for erosion threshold of bentonite flocs is proposed. Cohesion forces, the long-range van der Waals interaction between two clay particles are taken as the resource of the erosion threshold. The model verification is conducted by the comparison with experiments published in the literature. The results show that the proposed model for erosion threshold is in good agreement with the experimental data.

  19. Synthesis and characterization of mesoporous NaY zeolite from natural Blitar’s kaolin

    NASA Astrophysics Data System (ADS)

    Khalifah, S. N.; aini, Z. N.; Hayati, E. K.; Aini, N.; Prasetyo, A.

    2018-03-01

    Mesoporous NaY Zeolite has been synthesized from calcined natural Blitar’s kaolin with the addition of NaOH and CTABr surfactant as mesoporous template by hydrothermal method. Natural kaolin was calcinated with different time and temperature to change kaolin to metakaolin. X-ray diffraction data showed that mesoporous NaY zeolite was formed with impurities compound of sodalite, kaolin and quartz phases. The BET analysis resulted that the pore of NaY Zeolite belongs to mesoporous type with pore size 9,421 nm. Characterization from FTIR confirmed about the functional group of zeolites (988, 776, 663, 464 cm-1). Scanning electron microscopy characterization showed that the morphological of mesoporous NaY zeolites have uniform and crystalline particles formed.

  20. Adsorption of Acid Blue 25 dye by bentonite and surfactant modified bentonite

    NASA Astrophysics Data System (ADS)

    Jeeva, Mark; Wan Zuhairi, W. Y.

    2018-04-01

    Adsorption of Acid Blue (AB 25) from water via batch adsorption experiments onto Na-Bentonite (NB) and CTAB-modified bentonite (CTAB-Ben) was investigated. Studies concerning the factors influencing the adsorption capacities of NB and CTAB-Ben, such as initial dye concentration, adsorbent dosage, pH, contact time and temperature were investigated and discussed. The results revealed that CTAB-modified bentonite demonstrated high adsorption capacities toward acid dyes, while NB exhibited sorption capacities lower than CTAB-Ben. The maximum adsorption efficiency was found to be 50% at an AB 25 concentration of 50 mg/L, adsorbent dosage of 1.8 g/L, reaction time of 90 min and equilibrium pH of 11. The results of isotherm study fit the Langmuir and Freundlich models (R2 > 0.93) and (R2 > 0.9) respectively.

  1. Physiological Effects of Kaolin Applications in Well-irrigated and Water-stressed Walnut and Almond Trees

    PubMed Central

    ROSATI, A.; METCALF, S. G.; BUCHNER, R. P.; FULTON, A. E.; LAMPINEN, B. D.

    2006-01-01

    • Background and Aims Kaolin applications have been used to mitigate the negative effects of water and heat stress on plant physiology and productivity with variable results, ranging from increased to decreased yields and photosynthetic rates. The mechanisms of action of kaolin applications are not clear: although the increased albedo reduces leaf temperature and the consequent heat stress, it also reduces the light available for photosynthesis, possibly offsetting benefits of lower temperature. The objective of this study was to investigate which of these effects are prevalent and under which conditions. • Methods A 6 % kaolin suspension was applied on well-irrigated and water-stressed walnut (Juglans regia) and almond (Prunus dulcis) trees. Water status (i.e. stem water potential, Ψs), gas exchange (i.e. light-saturated CO2 assimilation rate, Amax; stomatal conductance, gs), leaf temperature (Tl) and physiological relationships in treated and control trees were then measured and compared. • Key Results In both species, kaolin did not affect the daily course of Ψs whereas it reduced Amax by 1–4 μmol CO2 m–2 s–1 throughout the day in all combinations of species and irrigation treatments. Kaolin did not reduce gs in any situation. Consequently, intercellular CO2 concentration (Ci) was always greater in treated trees than in controls, suggesting that the reduction of Amax with kaolin was not due to stomatal limitations. Kaolin reduced leaf temperature (Tl) by about 1–3 °C and leaf-to-air vapour pressure difference (VPDl) by about 0·1–0·7 kPa. Amax was lower at all values of gs, Tl and VPDl in kaolin-treated trees. Kaolin affected the photosynthetic response to the photosynthetically active radiation (PAR) in almond leaves: kaolin-coated leaves had similar dark respiration rates and light-saturated photosynthesis, but a higher light compensation point and lower apparent quantum yield, while the photosynthetic light-response curve saturated at

  2. Interaction processes at the concrete-bentonite interface after 13 years of FEBEX-Plug operation. Part II: Bentonite contact

    NASA Astrophysics Data System (ADS)

    Fernández, Raúl; Torres, Elena; Ruiz, Ana I.; Cuevas, Jaime; Alonso, María Cruz; García Calvo, José Luis; Rodríguez, Enrique; Turrero, María Jesús

    2017-06-01

    The in situ FEBEX experiment performed at the URL in Grimsel (Swizerland) was dismantled after 18 years of operation. Interface samples between bentonite and a shotcreted concrete plug that was constructed in a second operational phase have been studied after 13 years of interaction. Mineralogical and geochemical characterization of samples have been performed by XRD, SEM-EDX, TG and FTIR techniques in addition to determinations of major ions by chemical analysis of aqueous extracts, δ18O and δ13C stable isotopes both in concrete paste and bentonite, and exchangeable cations in bentonite. Low mineralogical alteration impact was observed in bentonite that is only affected by a few millimeters. A large accumulation of Mg was observed at the bentonite side of the interface precipitating as silicates in various forms. In addition, heterogeneous carbonation was observed at the interface, but mostly affecting the concrete side. Migration of aqueous species occurred, being the most relevant the diffusion of chloride and sulfate from bentonite to concrete, in agreement with Part I of this study. Chloride advanced more into the concrete, while sulfates reacted to form ettringite, which has an evident alteration impact at the very interface (<0.5 mm rim) within the concrete. The ionic mobility has also redistributed the exchangeable cations in bentonite, increasing the content in Ca2+ and Na+, compensated by a decrease in Mg2+. The results presented in this paper complement those presented in Part I, focusing on the alteration of concrete by the bentonite and the granite groundwater.

  3. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitompul, Johnner, E-mail: sitompul@che.itb.ac.id; Setyawan, Daru, E-mail: daru.setyawan@gmail.com; Kim, Daniel Young Joon, E-mail: daniel.kim12321@gmail.com

    2016-04-19

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were thenmore » characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.« less

  4. Mineralogical variation in the size fractions of a Ranong kaolin, southern Thailand

    NASA Astrophysics Data System (ADS)

    Pisutha-Arnond, Visut; Phuvichit, Suraphol; Leepowpanth, Quanchai

    A representative crude Ranong kaolin from the Thungkla-Ranong mine was separated into > 2 mm (granule), 2-1 mm (very coarse sand), 1-0.5 mm (coarse sand), 0.5-0.25 mm (medium sand), 0.25-0.125 mm (fine sand), 0.125-0.062 mm (very fine sand) and 62-28, 28-14, 17-7, 7-4, 4-2, 2-1 and < 1 μ m size fractions. Those size fractions were analyzed by X-ray powder diffractometry (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with attached energy dispersive X-ray spectrometer (EDX). Kaolin group minerals were differentiated by using XRD in combination with various chemical and heat treatments together with TEM, SEM and DTA. The Ranong kaolin consists predominantly of tubular halloysite, poorly crystallized kaolinite and quartz with minor amounts of mica and K-feldspars. Other trace constituents include gibbsite, tourmaline, zircon and colored impurities (i.e. extractable iron hydroxide coating on clay mineral surface). The kaolin minerals are found in all size fractions by which their contents and halloysite/kaolinite ratios increase as the particle sizes become finer. Quartz and mica are also detected in almost all size fractions. They are, however, more abundant with coarsening particle size. Gibbsite, K-feldspar and tourmaline are mainly concentrated in the fine sand to silt size fractions. Crystallinity of kaolin minerals as measured by XRD varied moderately with size. Relatively pure kaolin minerals, predominantly halloysite and kaolinite, can be obtained in the particle size below 1 or 2 μm.

  5. Enhancement of the bentonite sorption properties.

    PubMed

    Mockovciaková, Annamária; Orolínová, Zuzana; Skvarla, Jirí

    2010-08-15

    The almost monomineral fraction of bentonite rock-montmorillonite was modified by magnetic particles to enhance its sorption properties. The method of clay modification consists in the precipitation of magnetic nanoparticles, often used in preparing of ferrofluids, on the surface of clay. The influence of the synthesis temperature (20 and 85 degrees C) and the weight ratio of bentonite/iron oxides (1:1 and 5:1) on the composite materials properties were investigated. The obtained materials were characterized by the X-ray diffraction method and Mössbauer spectroscopy. Changes in the surface and pore properties of the magnetic composites were studied by the low nitrogen adsorption method and the electrokinetic measurements. The natural bentonite and magnetic composites were used in sorption experiments. The sorption of toxic metals (zinc, cadmium and nickel) from the model solutions was well described by the linearized Langmuir and Freundlich sorption model. The results show that the magnetic bentonite is better sorbent than the unmodified bentonite if the initial concentration of studied metals is very low. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Kaolin and copper-based products applications: ecotoxicology on four natural enemies.

    PubMed

    Bengochea, P; Amor, F; Saelices, R; Hernando, S; Budia, F; Adán, A; Medina, P

    2013-05-01

    Lethal and sublethal effects of kaolin clays and two copper-based products on four natural enemies found in olive orchards Anthocoris nemoralis (F.) (Hem. Anthocoridae), Chelonus inanitus (L.) (Hym. Braconidae), Chilocorus nigritus (F.) (Col. Coccinellidae) and Scutellysta cyanea Motschulsky (Hym. Pteromalidae) are described. Both kaolin and copper can be applied for controlling the olive fruit fly and the olive moth, two important pests of this crop. The products did not increase the mortality of any of the insects studied, with the exception of A. nemoralis. The sublethal effects, however, differed depending on the parameter evaluated and the insect studied. Both kaolin and coppers slightly, but significantly, reduced the life span of C. inanitus and S. cyanea. Number of eggs laid by A. nemoralis females were reduced, but not significantly compared to the controls. In the behavioural experiments, clear preference for remaining on kaolin-untreated surfaces when insects were able to choose was observed. Despite having some negative effects, the negative impact on natural enemies was lower than the impact caused by products commonly applied in this crop against the pests stated above. Therefore, both kaolin and copper can be considered as alternative products to be applied in olive orchards if an effective resistance management programme is to be developed. Furthermore, both of them are allowed in organic farming, in which the number of products that can be applied is more restricted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Production and Structural Investigation of Polyethylene Composites with Modified Kaolin

    NASA Astrophysics Data System (ADS)

    Domka, L.; Malicka, A.; Stachowiak, N.

    2008-08-01

    The study was undertaken to evaluate the effect of the filler (kaolin) modification with silane coupling agents on the properties of the polyethylene (HDPE Hostalen ACP 5831) composites. Powder mineral fillers are added to polymers to modify the properties of the latter and to reduce the cost of their production. A very important factor is the filler dispersion in the polymer matrix. Kaolin modified with 3-methacryloxypropyltrimethoxysilane and pure kaolin were characterised by surface area, pore size, water absorbing capacity, paraffin oil absorbing capacity, bulk density, scanning electron microscopy observations and X-ray diffraction measurements. Their performance was characterised by determination of the mechanical resistance upon static stretching and tearing, and their structure was observed in scanning electron microscopy images. The results were compared to those obtained for the composites with unmodified filler and pure HDPE.

  8. Bentonite toxicology and epidemiology - a review.

    PubMed

    Maxim, L Daniel; Niebo, Ron; McConnell, Ernest E

    2016-11-01

    Bentonite, a clay with numerous industrial and consumer applications, is mined and processed in many countries of the world. Its many beneficial uses also create the potential for widespread occupational and consumer exposure. The available studies on toxicity and epidemiology indicate that the principal exposure pathway of concern is inhalation of respirable dust by occupationally exposed cohorts. Bentonite itself is probably not more toxic than any other particulate not otherwise regulated and is not classified as a carcinogen by any regulatory or advisory body, but some bentonite may contain variable amounts of respirable crystalline silica, a recognized human carcinogen. Therefore, prudent management and adherence to occupational exposure limits is appropriate. This review summarizes the literature available on production, applications, exposure, toxicity, and epidemiology of bentonite and identifies data gaps and limitations.

  9. Kinetics of Adsorption of Diethylene-triaminomethylated Polyacrylamide on Dispersed Kaolin Accompanied by Flocculation.

    PubMed

    Kislenko; Verlinskaya

    1999-08-01

    The kinetics of the adsorption of diethylene-triaminomethylated polyacrylamide on kaolin dispersed in water has been investigated. An influence of the flocculation of kaolin dispersion on polymer adsorption has been found. The kinetics of particle aggregation under the influence of dissolved polymer has been studied. Polymer adsorption and particle aggregation proceed simultaneously, accompanied by a steady decrease in the amount of adsorbed polymer per unit mass of kaolin. A mathematical model of the adsorption process, consistent with the experimental data, is described. The rate constants and their ratios have been determined. Copyright 1999 Academic Press.

  10. Role of bentonite clays on cell growth.

    PubMed

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effect of sulfuric acid concentration of bentonite and calcination time of pillared bentonite

    NASA Astrophysics Data System (ADS)

    Mara, Ady; Wijaya, Karna; Trisunaryati, Wega; Mudasir

    2016-04-01

    An activation of natural clay has been developed. Activation was applied by refluxing the natural bentonite in variation of the sulfuric acid concentration and calcination time of pillared bentonite (PLC). Calcination was applied using oven in microwave 2,45 GHz. Determination of acidity was applied by measuring the amount of adsorbed ammonia and pyridine. Morphological, functional groups and chrystanility characterizations were analyzed using SEM, TEM, FTIR and XRD. Porosity was analyzed using SSA. The results showed that the greater of the concentration of sulfuric acid and calcination time was, the greater the acidity of bentonite as well as the pore diameter were. FTIR spectra showed no fundamental changes in the structure of the natural bentonite, SEM, and TEM images were showing an increase in space or field due to pillarization while the XRD patterns showed a shift to a lower peak. Optimization was obtained at a concentration of 2 M of sulfuric acid and calcination time of 20 minutes, keggin ion of 2.2 and suspension of 10 mmol, respectively each amounted to 11.7490 mmol/gram of ammonia and 2.4437 mmol/gram of pyridine with 154.6391 m2/gram for surface area, 0.130470 m3/gram of pore volume and 3.37484 nm of pore diameter.

  12. Preparation and Characterization of Ceramizable Kaolin/VMQ and Kaolin/ZB/VMQ Composites

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Qin, Y.; Pei, Y.; Huang, Z. X.

    Ceramizable silicone-based composite was prepared by using methyl vinyl silicone rubber (VMQ) as matrix, calcined Kaolin and zinc borate (ZB) as additives. This composition can form interpenetrating network structures after crosslinking, and then improve heat-resistant properties by firing in air. The results of different formulations were investigated by FTIR. TG-DTG SEM and XRD. It showed that when the temperature above 600°C. the fillers and silicon rubber started to transform from organic to inorganic and internal microstructure became denser.

  13. Engineering Characteristics of Chemically Treated Water-Repellent Kaolin

    PubMed Central

    Choi, Youngmin; Choo, Hyunwook; Yun, Tae Sup; Lee, Changho; Lee, Woojin

    2016-01-01

    Water-repellent soils have a potential as alternative construction materials that will improve conventional geotechnical structures. In this study, the potential of chemically treated water-repellent kaolin clay as a landfill cover material is explored by examining its characteristics including hydraulic and mechanical properties. In order to provide water repellency to the kaolin clay, the surface of clay particle is modified with organosilanes in concentrations (CO) ranging from 0.5% to 10% by weight. As the CO increases, the specific gravity of treated clay tends to decrease, whereas the total organic carbon content of the treated clay tends to increase. The soil-water contact angle increases with an increase in CO until CO = 2.5%, and then maintains an almost constant value (≈134.0°). Resistance to water infiltration is improved by organosilane treatment under low hydrostatic pressure. However, water infiltration resistance under high hydrostatic pressure is reduced or exacerbated to the level of untreated clay. The maximum compacted dry weight density decreases with increasing CO. As the CO increases, the small strain shear modulus increases, whereas the effect of organosilane treatment on the constrained modulus is minimal. The results indicate that water-repellent kaolin clay possesses excellent engineering characteristics for a landfill cover material. PMID:28774098

  14. Immobilization of fungal beta-glucosidase on silica gel and kaolin carriers.

    PubMed

    Karagulyan, Hakob K; Gasparyan, Vardan K; Decker, Stephen R

    2008-03-01

    Beta-glucosidase is a key enzyme in the hydrolysis of cellulose for producing feedstock glucose for various industrial processes. Reuse of enzyme through immobilization can significantly improve the economic characteristics of the process. Immobilization of the fungal beta-glucosidase by covalent binding and physical adsorption on silica gel and kaolin was conducted for consequent application of these procedures in large-scale industrial processes. Different immobilization parameters (incubation time, ionic strength, pH, enzyme/support ratio, glutaric aldehyde concentration, etc.) were evaluated for their effect on the thermal stability of the immobilized enzyme. It was shown that the immobilized enzyme activity is stable at 50 degrees C over 8 days. It has also been shown that in the case of immobilization on kaolin, approximately 95% of the initial enzyme was immobilized onto support, and loss of activity was not observed. However, covalent binding of the enzyme to silica gel brings significant loss of enzyme activity, and only 35% of activity was preserved. In the case of physical adsorption on kaolin, gradual desorption of enzyme takes place. To prevent this process, we have carried out chemical modification of the protein. As a result, after repeated washings, enzyme desorption from kaolin has been reduced from 75 to 20-25% loss.

  15. Immobilization of Fungal β-Glucosidase on Silica Gel and Kaolin Carriers

    NASA Astrophysics Data System (ADS)

    Karagulyan, Hakob K.; Gasparyan, Vardan K.; Decker, Stephen R.

    β-Glucosidase is a key enzyme in the hydrolysis of cellulose for producing feedstock glucose for various industrial processes. Reuse of enzyme through immobilization can significantly improve the economic characteristics of the process. Immobilization of the fungal β-glucosidase by covalent binding and physical adsorption on silica gel and kaolin was conducted for consequent application of these procedures in large-scale industrial processes. Different immobilization parameters (incubation time, ionic strength, pH, enzyme/support ratio, glutaric aldehyde concentration, etc.) were evaluated for their effect on the thermal stability of the immobilized enzyme. It was shown that the immobilized enzyme activity is stable at 50 °C over 8 days. It has also been shown that in the case of immobilization on kaolin, approximately 95% of the initial enzyme was immobilized onto support, and loss of activity was not observed. However, covalent binding of the enzyme to silica gel brings significant loss of enzyme activity, and only 35% of activity was preserved. In the case of physical adsorption on kaolin, gradual desorption of enzyme takes place. To prevent this process, we have carried out chemical modification of the protein. As a result, after repeated washings, enzyme desorption from kaolin has been reduced from 75 to 20-25% loss.

  16. Effects of kaolin particle films on the life span of an orb-weaver spider.

    PubMed

    Benhadi-Marín, Jacinto; Pereira, José Alberto; Santos, Sónia A P

    2016-02-01

    Araniella cucurbitina (Araneae: Araneidae) is a widespread orb-weaver spider commonly found in agroecosystems. Mineral particle films such as kaolin, due to their protective or anti-feeding action, can represent an alternative to pesticides, especially in organic farming systems, but little is known about its effects on A. cucurbitina. Therefore, we tested the effect of kaolin sprays on the life span of A. cucurbitina under laboratory conditions. Four treatments were tested encompassing different exposure routes. Thus, kaolin sprays were applied on (i) the surface, (ii) the prey (fly), (iii) the spider and (iv) both spider & prey. A control group was tested with water in each treatment. Results showed that sprays of kaolin significantly affected the survival of A. curcubitina when applications were done on the surface and on both spider & prey registering a reduction of 48% and 56%, respectively. Spiders in control obtained higher probability of reaching alive at the end of the assay than those treated with kaolin. Differences observed can be explained by the feeding behavior of the species and may depend on the consumption of the web by the spider and the ratio spider/fly for body size. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Treatment of Waste Lubricating Oil by Chemical and Adsorption Process Using Butanol and Kaolin

    NASA Astrophysics Data System (ADS)

    Riyanto; Ramadhan, B.; Wiyanti, D.

    2018-04-01

    Treatment of waste lubricating oil by chemical and adsorption process using butanol and kaolin has been done. Quality of lubricating oil after treatment was analysis using Atomic Absorption Spectrophotometer (AAS) and Gas Chromatography-Mass Spectrometry (GC-MS). The effects of the treatment of butanol, KOH, and kaolin to metals contain in waste lubricating oil treatment have been evaluated. Treatment of waste lubricating oil has been done using various kaolin weight, butanol, and KOH solution. The result of this research show metal content of Ca, Mg, Pb, Fe and Cr in waste lubricating oil before treatment are 1020.49, 367.02, 16.40, 36.76 and 1,80 ppm, respectively. The metal content of Ca, Mg, Pb, Fe and Cr in the waste lubricating oil after treatment are 0.17, 9.85, 34.07, 78.22 and 1.20 ppm, respectively. The optimum condition for treatment of waste lubricating oil using butanol, KOH, and kaolin is 30 mL, 3.0 g and 1.5 g, respectively. Chemical and adsorption method using butanol and kaolin can be used for decrease of metals contain in waste lubricating oil.

  18. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Clay (kaolin). 186.1256 Section 186.1256 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD...)(1), the ingredient is used as an indirect human food ingredient with no limitation other than...

  19. Infrared detection of the mineralogical aspects that influence the processing of calcined kaolin

    NASA Astrophysics Data System (ADS)

    Groenheide, Stefan; Guatame-Garcia, Adriana; Buxton, Mike; van der Werff, Harald

    2017-04-01

    Calcined kaolin is an industrial minerals product used in the production of paper, paint, rubber and other specialty applications. It is produced from kaolinite through a series of refinement steps and final calcination at temperatures of above 900°C, with the aim of generating a whiter and more abrasive material. The raw kaolin ore is a mixture of clay minerals, quartz and feldspars, where kaolinite is the main constituent. The optimal kaolin ores to feed the processing plant should ideally have high kaolinite abundance, be free in Fe-bearing mineralogy (to avoid influence in the colour of the product), and the kaolinite itself should be of high crystallinity (to ensure the correct abrasiveness after calcination). This work presents a case study from the kaolin deposits in the St. Austell Granite (South-West England), which are known for their high quality and world-class size. In this area, the kaolin is of primary-hydrothermal origin, with mineral associations that are related to the genetic history. The eventual depletion of the high-quality reserves is bringing now the attention to the lower grade zones, where the amount of impurities increases. As a consequence, it is critical to developing strategies that ensure the supply of high-quality ore to the processing plant. For this, it is necessary to acquire a thorough knowledge of the ore, including relative abundance of the minerals and their textural relationships. Hyperspectral images in the visible-near infrared (VNIR) and short-wave infrared (SWIR) ranges were collected from drill cores and run-off-mine (ROM) samples, obtained from one of the kaolin pits in the St. Austell area, where the kaolin quality is known to be lower than in the rest of the deposit. A series of mineral maps were generated to assess the distribution, texture and abundance of the Fe-bearing mineralogy and the other kaolin-associated minerals, as well as the variations in the crystallinity of kaolinite. The mineral maps enabled the

  20. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay.

    PubMed

    Zhu, Shu; Diamond, Scott L

    2014-12-01

    Generation of active Factor XII (FXIIa) triggers blood clotting on artificial surfaces and may also enhance intravascular thrombosis. We developed a patterned kaolin (0 to 0.3 pg/μm(2))/type 1 collagen fibril surface for controlled microfluidic clotting assays. Perfusion of whole blood (treated only with a low level of 4 μg/mL of the XIIa inhibitor, corn trypsin inhibitor) drove platelet deposition followed by fibrin formation. At venous wall shear rate (100 s(-1)), kaolin accelerated onset of fibrin formation by ~100 sec when compared to collagen alone (250 sec vs. 350 sec), with little effect on platelet deposition. Even with kaolin present, arterial wall shear rate (1000 s(-1)) delayed and suppressed fibrin formation compared to venous wall shear rate. A comparison of surfaces for extrinsic activation (tissue factor TF/collagen) versus contact activation (kaolin/collagen) that each generated equal platelet deposition at 100 s(-1) revealed: (1) TF surfaces promoted much faster fibrin onset (at 100 sec) and more endpoint fibrin at 600 sec at either 100 s(-1) or 1000 s(-1), and (2) kaolin and TF surfaces had a similar sensitivity for reduced fibrin deposition at 1000 s(-1) (compared to fibrin formed at 100 s(-1)) despite differing coagulation triggers. Anti-platelet drugs inhibiting P2Y1, P2Y12, cyclooxygenase-1 or activating IP-receptor or guanylate cyclase reduced platelet and fibrin deposition on kaolin/collagen. Since FXIIa or FXIa inhibition may offer safe antithrombotic therapy, especially for biomaterial thrombosis, these defined collagen/kaolin surfaces may prove useful in drug screening tests or in clinical diagnostic assays of blood under flow conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Synthesis of H/Bentonite and Ni/Al2O3-bentonite and its application to produce biogasoline from nyamplung seed (Calophyllum inophillum Linn) oil by catalytic hydrocracking

    NASA Astrophysics Data System (ADS)

    Marini, A. T.; Wijaya, K.; Sasongko, N. A.

    2018-03-01

    Hydrocracking process of Nyamplung (Calophyllum inophillum Linn) seed oil to produce biogasoline using H/bentonite and Ni/Al2O3-bentonite that pillared by Al2O3 as catalyst had been conducted. Bentonite was activated by acidification using HF 1% and H2SO4 0.5 M. Ni metal was impregnated into bentonite with two steps reaction; therewas intercalation with Al2O3kegging ion and Ni metal impregnation using NiCl2 metal salt. Catalysts were characterized by infrared spectrophotometer (FTIR), X-ray diffraction (XRD), X-ray fluorescence (XRF), BET, TEM and ammonia adsorption. Hydrocracking reaction was variated by Ni/Al2O3-bentonite and H/bentonite with ratio catalyst/oil 1:100. Biocrude was prepared by extraction by using ethanol 96%. Hydrocracking oil products were further analyzed by GC-MS. The results show that the acidity of bentonite by activation using HF 1% and H2SO4 0.5 M has been increased from 62.58 to 64.62 mmol/g. Impregnation process also increased the acidity of bentonite from 62.58 to 64.89 mmol/g. Activation using HF 1% and H2SO4 0.5 M, intercalation by Al2O3 and impregnation by Ni metal were increasing the crystallinity, surface area, total volume pore and average pore size of bentonite. These techniques were also causeddealumination of bentonite. The hydrocracking process successfully synthesized hydrocarbons with a number of carbon chain between C5-C20 which include bio-gasoline group compounds. Moreover, catalytic processes by H/bentonite and Ni/Al2O3-bentonite also successfully produced 39.83% and 60.37% of biogasoline yields, respectively.

  2. MEASUREMENT OF THE VISCOELASTIC PROPERTIES OF WATER-SATURATED CLAY SEDIMENTS.

    DTIC Science & Technology

    The complex shear modulus of both kaolin -water and bentonite-water mixtures has been determined in the laboratory. The method involved measuring the...range two to forty-three kHz. Dispersed sediments behaved like Newtonian liquids. Undispersed sediments, however, were viscoelastic in character, and...their shear moduli exhibited no dependence on frequency. For undispersed kaolin mixtures, a typical result is (21.6 + i 1.2) x 1,000 dynes per square

  3. Sorption kinetics and isotherm modelling of imidacloprid on bentonite and organobentonites.

    PubMed

    Jain, Shailesh K; Shakil, Najam A; Dutta, Anirban; Kumar, Jitendra; Saini, Mukesh K

    2017-05-04

    Bentonite was modified by quaternary ammonium cations viz. cetytrimethylammonium (CTA), cetylpyridinium (CP), rioctylmethylammonium (TOM) and pcholine (PTC) at 100% cation exchange capacity of bentonite and was characterized by X-ray diffraction, CHNS elemental analyser and Fourier transform infrared spectroscopy. The sorption of imidacloprid on organobentonites/bentonite was studied by batch method. Normal bentonite could adsorb imidacloprid only upto 19.31-22.18% while all organobentonites except PTC bentonite (PTCB), enhanced its adsorption by three to four times. Highest adsorption was observed in case of TOM bentonite (TOMB) (76.94-83.16%). Adsorption kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models. For normal bentonite data were best fitted to pseudo-first-order kinetic, while for organobentonites fitted to pseudo-second-order kinetics. Sorption data were analysed using Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherm models. Data were well fitted to Freundlich adsorption isotherm. Product of Freundlich adsorption constant and heterogeneity parameter (K f .1/n) was in following order: TOMB (301.87) > CTA bentonite (CTAB) (152.12) > CP bentonite (CPB) (92.58) > bentonite (27.25). Desorption study confirmed hysteresis and concentration dependence. The present study showed that the organobentonite could be a good sorbent for removal of imidacloprid from natural water sample also. Percentage adsorption and Distribution coefficient (mL g -1 ) value of different adsorbent was in following order: TOMB (74.85% and 297.54) > CTAB (55.78% and 126.15) > CPB (45.81% and 84.55) > bentonite (10.65% and 11.92).

  4. Sequential use of bentonites and solar photocatalysis to treat winery wastewater.

    PubMed

    Rodríguez, Eva; Márquez, Gracia; Carpintero, Juan Carlos; Beltrán, Fernando J; Alvarez, Pedro

    2008-12-24

    The sequential use of low-cost adsorbent bentonites and solar photocatalysis to treat winery wastewater has been studied. Three commercial sodium-bentonites (MB-M, MB-G, and MB-P) and one calcium-bentonite (Bengel) were characterized and used in this study. These clay materials were useful to totally remove turbidity (90-100%) and, to a lesser extent, color, polyphenols (PPh), and soluble chemical oxygen demand (CODS) from winery wastewater. Both surface area and cation exchange capacity (CEC) of bentonite had a positive impact on treatment efficiency. The effect of pH on turbidity removal by bentonites was studied in the 3.5-12 pH range. The bentonites were capable of greatly removing turbidity from winery wastewater at pH 3.5-5.5, but removal efficiency decreased with pH increase beyond this range. Settling characteristics (i.e., sludge volume index (SVI) and settling rate) of bentonites were also studied. Best settling properties were observed for bentonite doses around 0.5 g/L. The reuse of bentonite for winery wastewater treatment was found not to be advisable as the turbidity and PPh removal efficiencies decreased with successive uses. The resulting wastewater after bentonite treatment was exposed to solar radiation at oxic conditions in the presence of Fe(III) and Fe(III)/H2O2 catalysts. Significant reductions of COD, total organic carbon (TOC), and PPh were achieved by these solar photocatalytic processes.

  5. PES-Kaolin Mixed Matrix Membranes for Arsenic Removal from Water

    PubMed Central

    Russo, Francesca; Rezzouk, Lina

    2017-01-01

    The aim of this work was the fabrication and the characterization of mixed matrix membranes (MMMs) for arsenic (As) removal from water. Membrane separation was combined with an adsorption process by incorporating the kaolin (KT2) Algerian natural clay in polymeric membranes. The effects of casting solution composition was explored using different amounts of polyethersufone (PES) as a polymer, polyvinyl-pyrrolidone (PVP K17) and polyethylene glycol (PEG 200) as pore former agents, N-methyl pyrrolidone (NMP) as a solvent, and kaolin. Membranes were prepared by coupling Non-solvent Induced Phase Separation and Vapour Induced Phase Separation (NIPS and VIPS, respectively). The influence of the exposure time to controlled humid air and temperature was also investigated. The MMMs obtained were characterized in terms of morphology, pore size, porosity, thickness, contact angle and pure water permeability. Adsorption membrane-based tests were carried out in order to assess the applicability of the membranes produced for As removal from contaminated water. Among the investigated kaolin concentrations (ranging from 0 wt % to 5 wt %), a content of 1.25 wt % led to the MMM with the most promising performance. PMID:28974009

  6. High residue amounts of kaolin further increase photosynthesis and fruit color in 'Empire' apple

    USDA-ARS?s Scientific Manuscript database

    Kaolin (Surround WP, NovaSource, Phoenix, AZ, USA) is commonly used to reduce sunburn damage in fruit crops and to reduce heat stress on foliage. It is typically applied at rates of 3% to 6%, resulting in leaf and fruit residue levels of 1-3 g/m2. Crop modeling of the effect of kaolin on leaf/cano...

  7. Coupled THMC models for bentonite in clay repository for nuclear waste

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Li, Y.; Anguiano, H. H.

    2015-12-01

    Illitization, the transformation of smectite to illite, could compromise some beneficiary features of an engineered barrier system (EBS) that is composed primarily of bentonite and clay host rock. It is a major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC and thus significantly lower the sorption and swelling capacity of bentonite and clay rock. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present fully coupled THMC simulations of a generic nuclear waste repository in a clay formation with bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant at higher temperatures. We also compared the chemical changes and the resulting swelling stress change for two types of bentonite: Kunigel-VI and FEBEX bentonite. Higher temperatures also lead to much higher stress in the near field, caused by thermal pressurization and vapor pressure buildup in the EBS bentonite and clay host rock. Chemical changes lead to a reduction in swelling stress, which is more pronounced for Kunigel-VI bentonite than for FEBEX bentonite.

  8. Novel kaolin/polysiloxane based organic-inorganic hybrid materials: Sol-gel synthesis, characterization and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    dos Reis, Glaydson Simões; Lima, Eder Cláudio; Sampaio, Carlos Hoffmann; Rodembusch, Fabiano Severo; Petter, Carlos Otávio; Cazacliu, Bogdan Grigore; Dotto, Guillherme Luiz; Hidalgo, Gelsa Edith Navarro

    2018-04-01

    New hybrid materials using kaolin and the organosilicas methyl-polysiloxane (MK), methyl-phenyl-polysiloxane (H44), tetraethyl-ortho-silicate (TEOS) and 3-amino-propyl-triethoxysilane (APTES) were obtained by sol-gel process. These materials presented specific surfaces areas (SBET) in the range of 20-530 m2 g-1. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed remarkable differences between the kaolin and hybrid structures. Thermogravimetric analysis (TGA) revealed that the hybrid materials presented higher thermal stability when compared with their precursors. The electronic properties of the materials were also studied by Ultraviolet-Visible Diffuse Reflectance Absorption (DRUV) and Diffuse Reflectance spectroscopy (DR), where a new absorption band was observed located around 400-660 nm. In addition, these materials exhibit a decrease in DR from 30% to 70% in the blue-cyan green region and are significantly more transparent in the UV region than the kaolin, which could be useful for photocatalysis applications. These results show that the electronic structure of the final material was changed, indicating a significant interaction between the kaolin and the respective silica derivative. These findings support the main idea of the hybridization afforded by pyrolysis between kaolin and organosilica precursors. In addition, as a proof of concept, these hybrid materials were successfully employed as photocatalyst in the photoreduction of Cr(VI) to Cr(III).

  9. Bentonite Clay Adsorption Procedure for Concentrating Enteroviruses from Water.

    DTIC Science & Technology

    1992-07-01

    1 pm (nominal porosity) wool filter bags, and filter beds of sand, glass, or diatomaceous earth , did not retain clay- adsorbed virus as effectively as...number) L/ A method of adsorbing enteroviruses to bentonite clay was developed for use as a concentration technique designed to sample low levels of...bentonite within a 20 minute contact period. A minimum bentonite level of 50 mg/L was necessary to adsorb the virus and to still allow efficient

  10. Concept model of the formation process of humic acid-kaolin complexes deduced by trichloroethylene sorption experiments and various characterizations.

    PubMed

    Zhu, Xiaojing; He, Jiangtao; Su, Sihui; Zhang, Xiaoliang; Wang, Fei

    2016-05-01

    To explore the interactions between soil organic matter and minerals, humic acid (HA, as organic matter), kaolin (as a mineral component) and Ca(2+) (as metal ions) were used to prepare HA-kaolin and Ca-HA-kaolin complexes. These complexes were used in trichloroethylene (TCE) sorption experiments and various characterizations. Interactions between HA and kaolin during the formation of their complexes were confirmed by the obvious differences between the Qe (experimental sorbed TCE) and Qe_p (predicted sorbed TCE) values of all detected samples. The partition coefficient kd obtained for the different samples indicated that both the organic content (fom) and Ca(2+) could significantly impact the interactions. Based on experimental results and various characterizations, a concept model was developed. In the absence of Ca(2+), HA molecules first patched onto charged sites of kaolin surfaces, filling the pores. Subsequently, as the HA content increased and the first HA layer reached saturation, an outer layer of HA began to form, compressing the inner HA layer. As HA loading continued, the second layer reached saturation, such that an outer-third layer began to form, compressing the inner layers. In the presence of Ca(2+), which not only can promote kaolin self-aggregation but can also boost HA attachment to kaolin, HA molecules were first surrounded by kaolin. Subsequently, first and second layers formed (with inner layer compression) via the same process as described above in the absence of Ca(2+), except that the second layer continued to load rather than reach saturation, within the investigated conditions, because of enhanced HA aggregation caused by Ca(2+). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Hydraulic permeability of bentonite-polymer composites for application in landfill technology

    NASA Astrophysics Data System (ADS)

    Dehn, Hanna; Haase, Hanna; Schanz, Tom

    2015-04-01

    Bentonites are often used as barrier materials in landfill technology to prevent infiltration of leachates to the natural environment. Since decades, geoenvironmental engineering aims at improving the hydro-mechanical performance of landfill liners. Various studies on the permeability performance of geosynthetic clay liners (GCLs) show effects of non-standard liquids on behaviour of Na+-bentonite regarding its sealing capacity. With increasing concentration of chemical aggressive solutions the sealing capacity decreases (Shackelford et al. 2000). An opportunity to improve the hydraulic permeability of the bentonites is the addition of polymers. The changes in hydraulic permeability performance of polymer treated and untreated bentonites while adding chemical aggressive solutions were studied by several authors. Results obtained by Scalia et al. (2014) illustrate that an increase in permeability can be prevented by adding polymer to Na+-bentonite. On the other hand, Ashmawy et al. (2002) presented results on the incapability of several commercial bentonite-polymer-products. The objective of this study is to characterize the influence of polymer addition on hydraulic performance of Na+-bentonite systematically. Therefore, the influence of 1% polymer addition of cationic and anionic polyacrylamide on the swelling pressure and hydraulic permeability of MX 80 bentonite was investigated. Preparation of bentonite-polymer composites was conducted (1) in dry conditions and (2) using solution-intercalation method. Experiments on hydraulic permeability were carried out using distilled water as well as CaCl2-solution. References Ashmawy, A. K., El-Hajji, D., Sotelo, N. & Muhammad, N. (2002), `Hydraulic Performance of Untreated and Polymer-treated Bentonite in Inorganic Landfill Leachates', Clays and Clay Minerals 50(5), 546-552. Scalia, J., Benson, C., Bohnhoff, G., Edil, T. & Shackelford, C. (2014), 'Long-Term Hydraulic Conductivity of a Bentonite-Polymer Composite Permeated

  12. Understanding the THMC evolution of bentonite barrier — modeling an in situ test for bentonite backfilled engineered barrier system

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Xu, H.; Rutqvist, J.; Birkholzer, J. T.

    2016-12-01

    The most common buffer material for engineered barrier system (EBS) is compacted bentonite, which features low permeability and high retardation of radionuclide transport. The safety functions of EBS bentonite include limiting transport in the near field; damping the shear movement of the host rock; preventing the sinking of canisters, limiting pressure on the canister and rock, and reducing microbial activity. To assess whether EBS bentonite can maintain these favorable features when undergoing heating from the waste package and hydration from the host rock, we need a thorough understanding of the thermal, hydrological, mechanical, and chemical evolution of bentonite under disposal conditions. The FEBEX (Full-scale Engineered Barrier EXperiment) in situ test was dismantled after 18 years' heating and hydration. The comprehensive THMC data obtained in the test provide a unique opportunity to validate coupled THMC models and deepen our understanding of the THMC evolution in bentonite. In this presentation, coupled THMC models were developed for the in situ test. Water content data obtained after dismantling and relative humidity data measured real time showed that the hydration of bentonite is slower than predicted by the typical Darcy flow model. Including Non-Darcian flow into the model however leads a significant underestimation of the relative humidity data. The reason could be that the calibration of relative permeability (and retention curve) already encompasses the nonlinear relationship between gradient and flux for bentonite, which would obviate the consideration of Non-Darcian flow in the model. THMC models that take into account the porosity and permeability changes due to mechanical processes match reasonably well all the THM data. However, they did not provide a desirable fit of the measured Cl concentration profile, further calibration of porosity/permeability changes over the course of hydration and swelling and considering thermal osmosis eventually

  13. Microstructure of bentonite in iron ore green pellets.

    PubMed

    Bhuiyan, Iftekhar U; Mouzon, Johanne; Schröppel, Birgit; Kaech, Andres; Dobryden, Illia; Forsmo, Seija P E; Hedlund, Jonas

    2014-02-01

    Sodium-activated calcium bentonite is used as a binder in iron ore pellets and is known to increase strength of both wet and dry iron ore green pellets. In this article, the microstructure of bentonite in magnetite pellets is revealed for the first time using scanning electron microscopy. The microstructure of bentonite in wet and dry iron ore pellets, as well as in distilled water, was imaged by various imaging techniques (e.g., imaging at low voltage with monochromatic and decelerated beam or low loss backscattered electrons) and cryogenic methods (i.e., high pressure freezing and plunge freezing in liquid ethane). In wet iron ore green pellets, clay tactoids (stacks of parallel primary clay platelets) were very well dispersed and formed a voluminous network occupying the space available between mineral particles. When the pellet was dried, bentonite was drawn to the contact points between the particles and formed solid bridges, which impart strength to the solid compact.

  14. Stabilization of heavy metals in soil using two organo-bentonites.

    PubMed

    Yu, Kai; Xu, Jian; Jiang, Xiaohong; Liu, Cun; McCall, Wesley; Lu, Jinlong

    2017-10-01

    Stabilization of Cu, Zn, Cd, Hg, Cr and As in soil using tetramethylammonium (TMA) and dodecyltrimethylammonium (DTMA) modified bentonites (T-Bents and D-Bents) as amendments was investigated. Toxicity characteristic leaching procedure (TCLP) was used to quantify the metal mobility after soil treatment. The structural parameters of modified bentonites, including the BET surface area, basal spacing and zeta potential were obtained as a function of the TMA and DTMA loading at 40, 80, 120, 160 and 200% of the bentonite's cation exchange capacity, respectively. The results indicated that the characteristics of the organo-bentonites fundamentally varied depending on the species and concentration of modifiers loaded on bentonite. T-Bents and D-Bents manifested distinct immobilization effectiveness towards various metals. In association with the organo-bentonite characteristics, the main interactive mechanisms for Cu, Zn and Cd proceeded via cation exchange, Hg proceeded via physical adsorption and partitioning, Cr and As proceeded via specific adsorption and electrostatic attraction, respectively. This study provided operational and mechanistic basis for optimizing the organic clay synthesis and selecting as the appropriate amendment for remediation of heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of Na+ on surface fractal dimension of compacted bentonite

    NASA Astrophysics Data System (ADS)

    Xiang, G. S.; Xu, Y. F.; Jiang, H.

    2015-05-01

    Compacted Tsukinuno bentonite was immersed into NaCl solutions of different concentrations in oedometers, and the surface fractal dimension of bentonite-saline association was measured by nitrogen adsorption isotherms. The application of the Frenkel-Halsey-Hill equation and the Neimark thermodynamic method to nitrogen adsorption isotherms indicated that the surface roughness was greater for the bentonite-saline association. The surface fractal dimension of bentonite increased in the NaCl solution with low Na+ concentration, but decreased at high Na+ concentration. This process was accompanied by the same tendency in specific surface area and microporosity with the presence of Na+ coating in the clay particles.

  16. Preparation and characterization of natural bentonite in to nanoparticles by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Sirait, Makmur; Bukit, Nurdin; Siregar, Nurdin

    2017-01-01

    The nanoparticle based on natural bentonite from Pahae village had been prepared using co-precipitation method. Bentonite was dried in the oven at 100°C during a week. Bentonite is crushed using a mortal and milled by planetary ball mill to obtain the powder form. Further, the bentonite powder is activated with chemical reaction by dissolves the 50 g bentonite to 100 ml of HCl at 10 M. The magnetic stirrer was employed to mix the solution at 300 rpm and temperature 70°C. After that, the bentonite solution is washed using distilled water until the pH is neutral. The bentonite powder is calcined at temperature of 600°C for 1 hour with fix increment 150°C. Finally, the powder is given High Energy Milling (HEM) treatment for 30 minutes to obtain the particle size. The X-ray Difractometer (XRD) and Scanning Electron Microscope (SEM) were used to characterize. From the characterization results it is reported that the average of bentonite nanoparticle size is 35.26 nm and the chemical constituents of natural bentonite Pahae are Al, Si, Ca, Fe and Ti.

  17. Influence of dispersing agents and solution conditions on the solubility of crude kaolin.

    PubMed

    Zaman, Abbas A; Mathur, Sharad

    2004-03-01

    Experiments measuring the solubility of kaolin particles in terms of the concentration of aluminum and silicon ions in supernatant were carried out as a function of the pH of the slurry over a wide range of dosages of different dispersing agents varying from 0.5 to 12 mg/(g solids). The concentrations of the metal ions in supernatant were found to be strongly affected by the type and the dosage of the dispersants and pH of the solution. In this study, the mechanism of the reaction between the dispersing agents and kaolin particles was studied and the dissolution capacities of metal ions (aluminum and silicon) were identified from kaolin particles in the absence and presence of dispersing agents. The three anionic dispersing agents used were sodium polyacrylate (Na-PAA), sodium hexametaphosphate (Na-HMP), and sodium silicate (Na-silicate), based on the industrial application of these agents and their ability to produce a stable dispersion for this purpose.

  18. Lot A2 test, THC modelling of the bentonite buffer

    NASA Astrophysics Data System (ADS)

    Itälä, Aku; Olin, Markus; Lehikoinen, Jarmo

    Finnish spent nuclear fuel is planned to be disposed of deep in the crystalline bedrock of the Olkiluoto island. In such a repository, the role of the bentonite buffer is considered to be central. The initially unsaturated bentonite emplaced around a spent-fuel canister will become fully saturated by the groundwater from the host rock. In order to assess the long-term safety of a deep repository, it is essential to determine how temperature influences the chemical stability of bentonite. The aim of this study was to achieve an improved understanding of the factors governing the thermo-hydro-chemical evolution of the bentonite buffer subject to heat generation from the disposed fuel and in contact with a highly permeable rock fracture intersecting a canister deposition hole. TOUGHREACT was used to model a test known as the long-term test of buffer material adverse-2, which was conducted at the Äspö hard rock laboratory in Sweden. The results on the evolution of cation-exchange equilibria, bentonite porewater chemistry, mineralogy, and saturation of the buffer are presented and discussed. The calculated model results show similarity to the experimental results. In particular, the spatial differences in the saturation and porewater chemistry of the bentonite buffer were clearly visible in the model.

  19. Efficacy and Mode of Action of Kaolin in the Control of Empoasca vitis and Zygina rhamni (Hemiptera: Cicadellidae) in Vineyards.

    PubMed

    Tacoli, Federico; Pavan, Francesco; Cargnus, Elena; Tilatti, Elisabetta; Pozzebon, Alberto; Zandigiacomo, Pietro

    2017-06-01

    During 2015, the influence of kaolin applications and bunch-zone leaf removal on the grapevine leafhoppers, Empoasca vitis (Göthe) and Zygina rhamni Ferrari, and their egg parasitoids (Anagrus spp.) was tested in four vineyards of northeastern Italy. The mode of action of kaolin on E. vitis nymphs was also investigated in the laboratory. In the treated plots, kaolin was applied at a rate of 2% w/v on two occasions separated by 5-6 d. In two vineyards, it was applied either on the whole canopy or the bunch zone at the beginning of the E. vitis second generation (preventive criterion), and in the other two vineyards, it was applied to the whole canopy at the peak of the E. vitis third generation (curative criterion). Both the preventive and curative kaolin applications caused a significant decrease in the populations of E. vitis and Z. rhamni nymphs. The effect of the preventive applications was persistent and was associated with reduced E. vitis leaf symptoms. Kaolin did not influence the activity of Anagrus spp. Bunch-zone leaf removal did not affect leafhopper populations. Laboratory experiments showed that inhibition of feeding was the main mode of action through which kaolin affected nymph populations. Based on these outcomes, kaolin could be a valuable alternative to synthetic insecticides in controlling grapevine leafhoppers. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Diffusion, sorption, and retardation processes of anions in bentonite and organo-bentonites for multibarrier systems

    NASA Astrophysics Data System (ADS)

    Schampera, Birgit; Dultz, Stefan

    2013-04-01

    The low permeability, high cation exchange capacity (CEC) and plasticity of bentonites favor their use in multibarrier systems of waste deposits [1]. Bentonites have a high CEC but their ability to sorb anions is very low. There is, however, need for retardation of anions and organic pollutants in many applications. Bentonites, modified with certain organic cations, have the capacity to sorb anions and non-polar organic compounds in addition to cations. Investigations on organically modified clays address a wide variety of applications including immobilization of pollutants in contaminated soils, waste water treatment and in situ placement for the protection of ground water [2]. Many experiments on anion and cation sorption of organo-clays were conducted in the batch mode which does not reflect solid-liquid ratios and material densities in barrier systems. Diffusion experiments on compacted clays allow the evaluation of transport processes and sorption of pollutants at conditions relevant for repositories. For organo-clays only few diffusion studies are published e.g. [3] measured the diffusion of tritium and [4] the diffusion of H2O in bentonite and organo-bentonites. The organic cation hexadecylpyridinium (HDPy) was added to Wyoming bentonite (MX-80) in amounts corresponding to 2-400 % of the CEC. The uptake of organic cations was determined by the C-content, XRD and IR-spectroscopy. Wettability was analyzed by the contact angle. Physical, chemical and mineralogical properties of clays were characterized. Diffusion experiments were carried out in situ in a cell attached to the ATR-unit of a FTIR-spectrometer. For H2O-diffusion the compacted organo-clays are saturated first with D2O, afterwards H2O is supplied to the surface at the top of the clay platelet. Anion-diffusion was conducted with NO3--solution instead of H2O only having characteristic IR band positions at 1350 cm-1. Three different concentrations (0.25M, 0.5M and 1M) were used. Additional batch

  1. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    PubMed

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Cure characteristics, crosslink density and degree of filler dispersion of kaolin-filled natural rubber compounds in the presence of alkanolamide

    NASA Astrophysics Data System (ADS)

    Surya, I.; Hayeemasae, N.; Ginting, M.

    2018-03-01

    The effects of alkanolamide (ALK) addition on cure characteristics, crosslink density and degree of filler dispersion of kaolin-filled natural rubber (NR) compounds were investigated. The kaolin filler was incorporated into NR compounds with a fixed loading, 30.0 phr. The ALK was prepared from Refined Bleached Deodorized Palm Stearin (RBDPS), a waste product of cooking oil production, and diethanolamine. The ALK is an oily material and added into the filled NR compounds as a rubber additive at different loadings, 0.0, 3.0, 5.0 and 7.0. The kaolin-filled NR compounds with and without ALK were vulcanized using a semi-efficient vulcanization system. It was found that ALK decreased the scorch and cure times and improved filler dispersion of the kaolin-filled NR compounds. The higher the ALK loading, the shorter were the scorch and cure times. It was also found that ALK increased the crosslink density of kaolin-filled NR compound up to 5.0 phr of loading. Due to its oily properties, The ALK acted as an internal plasticizer which decreased the minimum torque and improved the degree of kaolin dispersion in NR phases. The higher the ALK loading; the lower the minimum torque and better the filler dispersion.

  3. Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Xinghao; Cheng, Cheng; Xiao, Chengjian; Shao, Dadong; Xu, Zimu; Wang, Jiaquan; Hu, Shuheng; Li, Xiaolong; Wang, Weijuan

    2017-07-01

    Polyaniline (PANI) modified bentonite (PANI/bentonie) was synthesized by plasma induced polymerization of aniline on bentonite surface, and applied to uptake of uranium(VI) ions from aqueous solution. The as-synthesized PANI/bentonie was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Batch adsorption technique was utilized to investigate the adsorption of U(VI) on bentonite and PANI/bentonite. The adsorption of U(VI) (10 mg/L) on PANI/bentonite surface is fairly depend on solution pH, ionic strength, and temperature in solution. The modified PANI on PANI/bentonite surface significantly enhances its adsorption capability for U(VI). The presence of humic acid (HA) can sound enhance U(VI) adsorption on PANI/bentonite at pH < 6.5 because of the strong complexation, and inhibits U(VI) adsorption at pH > 6.5. According to the thermodynamic parameters, the adsorption of U(VI) on PANI/bentonite surface is a spontaneous and endothermic process. The results highlight the application of PANI/bentonite composites as candidate material for the uptake of trace U(VI) from aqueous solution.

  4. Effects of biochar on hydraulic conductivity of compacted kaolin clay.

    PubMed

    Wong, James Tsz Fung; Chen, Zhongkui; Wong, Annie Yan Yan; Ng, Charles Wang Wai; Wong, Ming Hung

    2018-03-01

    Compacted clay is widely used as capillary barriers in landfill final cover system. Recently, biochar amended clay (BAC) has been proposed as a sustainable alternative cover material. However, the effects of biochar on saturated hydraulic conductivity (k sat ) of clay with high degree of compaction is not yet understood. The present study aims to investigate the effects of biochar on k sat of compacted kaolin clay. Soil specimens were prepared by amending kaolin clay with biochar derived from peanut-shell at 0, 5 and 20% (w/w). The k sat of soil specimens was measured using a flexible water permeameter. The effects of biochar on the microstructure of the compacted clay was also investigated using MIP. Adding 5% and 20% of biochar increased the k sat of compacted kaolin clay from 1.2 × 10 -9 to 2.1 × 10 -9 and 1.3 × 10 -8 ms -1 , respectively. The increase in k sat of clay was due to the shift in pore size distribution of compacted biochar-amended clay (BAC). MIP results revealed that adding 20% of biochar shifted the dominant pore diameter of clay from 0.01-0.1 μm (meso- and macropores) to 0.1-4 μm (macropores). Results reported in this communication revealed that biochar application increased the k sat of compacted clay, and the increment was positively correlated to the biochar percentage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Alteration of bentonite when contacted with supercritical CO2

    NASA Astrophysics Data System (ADS)

    Jinseok, K.; Jo, H. Y.; Yun, S. T.

    2014-12-01

    Deep saline formations overlaid by impermeable caprocks with a high sealing capacity are attractive CO2 storage reservoirs. Shales, which consist of mainly clay minerals, are potential caprocks for the CO2 storage reservoirs. The properties of clay minerals in shales may affect the sealing capacity of shales. In this study, changes in clay minerals' properties when contacted with supercritical (SC) CO2 at various conditions were investigated. Bentonite, whichis composed of primarily montmorillonite, was used as the clay material in this study. Batch reactor tests on wet bentonite samples in the presence of SC CO2 with or without aqueous phases were conducted at high pressure (12 MPa) and moderate temperature (50 oC) conditions for a week. Results show that the bentonite samples obtained from the tests with SC CO2 had less change in porosity than those obtained from the tests without SC CO2 (vacuum-drying) at a given reaction time, indicating that the bentonite samples dried in the presence of SC CO2 maintained their structure. These results suggest that CO2 molecules can diffuse into interlayer of montmorillonite, which is a primary mineral of bentonite, and form a single CO2 molecule layer or double CO2 molecule layers. The CO2 molecules can displace water molecules in the interlayer, resulting in maintaining the interlayer spacing when dehydration occurs. Noticeable changes in reacted bentonite samples obtained from the tests with an aqueous phase (NaCl, CaCl2, or sea water) are decreases in the fraction of plagioclase and pyrite and formation of carbonate minerals (i.e., calcite and dolomite) and halite. In addition, no significant exchanges of Na or Ca on the exchangeable complex of the montmorillonite in the presence of SC CO2 occurred, resulting in no significant changes in the swelling capacity of bentonite samples after reacting with SC CO2 in the presence of aqueous phases. These results might be attributed by the CO2 molecule layer, which prevents

  6. Effects of kaolin application on light absorption and distribution, radiation use efficiency and photosynthesis of almond and walnut canopies.

    PubMed

    Rosati, Adolfo; Metcalf, Samuel G; Buchner, Richard P; Fulton, Allan E; Lampinen, Bruce D

    2007-02-01

    Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6.3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated

  7. Flocculation of kaolin and lignin by bovine blood and hemoglobin

    USDA-ARS?s Scientific Manuscript database

    Polymeric flocculants are used extensively for water purification, inhibition of soil erosion, and reduction in water leakage from unlined canals. Production of highly active, renewable polymeric flocculants to replace synthetic flocculants is a priority. Using suspensions of kaolin, flocculation ...

  8. Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance

    NASA Astrophysics Data System (ADS)

    Parolo, María E.; Pettinari, Gisela R.; Musso, Telma B.; Sánchez-Izquierdo, María P.; Fernández, Laura G.

    2014-11-01

    The organic modification of a natural bentonite was evaluated using two methods: exchanging the interlayer cations by hexadecyltrimethylammonium (HDTMA) and grafting with vinyltrimethoxysilane (VTMS) and γ-methacryloyloxy propyl trimethoxysilane (TMSPMA) on montmorillonite surface. The physicochemical characterization of all materials was made by X-ray diffraction (XRD), IR spectroscopy, thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) surface area techniques. HDTMA cations and organosilanes were intercalated into the interlayer space of montmorillonite, as deduced from the increase of the basal spacing. IR spectroscopy, TGA and BET area give evidence of successful organic modification. The studies show a decrease in the IR absorption band intensity at 3465 cm-1 with surfactant modification, and also a decrease of mass loss due to adsorbed water observed in two samples: the organoclay and functionalized bentonites, which are evidences of a lower interlayer hydrophilicity. The efficiency of aniline removal onto natural bentonite, organobentonite and functionalized bentonites from aqueous solutions was evaluated. Aniline sorption on natural bentonite was studied using batch experiments, XRD and IR spectroscopy. The hydrophobic surface of organobentonite and functionalized bentonites increased the retention capacity for nonionic organic substances such as aniline on bentonites. The sorption properties of modified bentonite, through different modification methods, enhanced the potential industrial applications of bentonites in water decontamination.

  9. Rheological study of clay-kaolin aqueous suspensions

    NASA Technical Reports Server (NTRS)

    Lapasin, R.; Lucchini, F.

    1984-01-01

    Rheological characteristics of clay-kaolin aqueous suspensions were studied by a rotational viscometer to correlate their behavior with the properties of ceramic slips for casting containing quartz, feldspars, and other nonplastic materials. In particular, the effects of the different amounts of dry materials and deflocculant (mixture 1:1 of Na2CO3 and Na2SiO3) and of temperatures on the shear-time-dependent properties of suspensions were examined.

  10. Activation of a Ca-bentonite as buffer material

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Hsing; Chen, Wen-Chuan

    2016-04-01

    Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid

  11. The mechanical and thermal characteristics of phenolic foam reinforced with kaolin powder and glass fiber fabric

    NASA Astrophysics Data System (ADS)

    Xiao, Wenya; Huang, Zhixiong; Ding, Jie

    2017-12-01

    In this work, kaolin powder and glass fiber fabric were added to PF in order to improve its thermal stability and mechanical property. Micro-structures of carbonized PF with kaolin powder were inspected by scanning electron microscopy (SEM) to demonstrate the filler’s pinning effect. SEM results illustrated modified PF had well morphology after high-temperature heat treatment. The Fourier transform infrared spectrometer (FTIR) test was carried out and found that kaolin powder only physically dispersed in PF. The compression test and thermal weight loss test were done on two groups of modified PF (Group A: add powder and fabric; Group B: add powder only). Results showed that all modified PF were better than pure PF, while foams with powder and fabric showed better mechanical characteristic and thermal stability compared with foams with powder only.

  12. Surface modification of a low cost bentonite for post-combustion CO2 capture

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Park, Dong-Wha; Ahn, Wha-Seung

    2013-10-01

    A low cost bentonite was modified with PEI (polyethylenimine) through a physical impregnation method. Bentonite in its natural state and after amine modification were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, N2 adsorption-desorption isotherms, and investigated for CO2 capture using a thermogravimetric analysis unit connected to a flow panel. The effect of adsorption temperature, PEI loading and CO2 partial pressure on the CO2 capture performance of the PEI-modified bentonite was examined. A cyclic CO2 adsorption-desorption test was also carried out to assess the stability of PEI-modified bentonite as a CO2 adsorbent. Bentonite in its natural state showed negligible CO2 uptake. After amine modification, the CO2 uptake increased significantly due to CO2 capture by amine species introduced via chemisorption. The PEI-modified bentonites showed high CO2 capture selectivity over N2, and exhibited excellent stability in cyclic CO2 adsorption-desorption runs.

  13. Effects of Kaolin Application on Light Absorption and Distribution, Radiation Use Efficiency and Photosynthesis of Almond and Walnut Canopies

    PubMed Central

    Rosati, Adolfo; Metcalf, Samuel G.; Buchner, Richard P.; Fulton, Allan E.; Lampinen, Bruce D.

    2007-01-01

    Background and Aims Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Methods Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Key Results Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6·3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on

  14. Electron paramagnetic resonance of natural and gamma-irradiated alunite and kaolin mineral powders

    NASA Astrophysics Data System (ADS)

    Koksal, F.; Koseoglu, R.; Saka, I.; Basaran, E.; Sener, F.

    2004-06-01

    Natural alunite and kaolin minerals obtained from West Anatolia were investigated by electron paramagnetic resonance (EPR) in natural and gamma-irradiated states at room temperature and at 113 K. The paramagnetic centres at ambient temperature in natural alunite were attributed to the (C) over dot H 2OH, (C) over dot O-3(-), (S) over dot O-2(-), (C) over dot O-2(-) and [AlO4 ](0) radicals. In natural kaolin, the paramagnetic centres were attributed to the (C) over dot O-3(-), (S) over dot O-2(-) (C) over dot O-2(-) and [AlO4](0) radicals. The gamma-irradiation does not produce any detectable effects on these radicals. At 113 K, the lines for (C) over dot H2OH could not be observed well, probably due to the anisotropic behaviour of the hyperfine interaction of the methylene protons, but the lines for [AlO4](0) centres were found to be perfectly observable at above 20 mW microwave power in both alunite and kaolin powders before and after gamma-irradiation. The EPR parameters of the observed paramagnetic centres were reported.

  15. Spectral characteristics of the bentonite loaded with benzyldimethyloctadecylammonium chloride, hexadecyltrimethylammonium bromide and dimethyldioctadecylammonium bromide

    NASA Astrophysics Data System (ADS)

    Majdan, Marek; Maryuk, Oksana; Gładysz-Płaska, Agnieszka; Pikus, Stanisław; Kwiatkowski, Ryszard

    2008-02-01

    The spectral characterization, including the FTIR, DRIFT (diffusive reflectance), SWAXS (small and wide angle X-ray scattering) spectra comparison of the sodium bentonite modified by BDMODA-Cl (benzyldimethyloctadecylammonium chloride), HDTMA-Br (hexadecyltrimethylammonium bromide), DDA-Br (dimethyldioctadecylammonium bromide) is presented in the paper. The FTIR spectra show the shift of C-H stretching vibrations: νsym(CH2), νasym(CH2) of surfactants methylene chains toward lower frequencies (from 2855 to 2851 cm -1 for νsym(CH2) and from 2927 to 2918 cm -1 for νansym(CH2) with the surfactant concentration in bentonite phase. The bending vibrations δH-O-H in water molecules change their positions in the direction of higher frequencies (from 1634 to 1647 cm -1) with the surfactant concentration for bentonite-BDMODA and bentonite-DDA contrary to bentonite-HDTMA, where the constant position δH-O-H is explained as the consequence of the lower concentration of the hydrogen bonded water in bentonite-HDTMA phase when compared with the remaining forms of bentonite. The DRIFT spectra reveal dramatic shift of the νSi-O stretching vibration toward higher frequencies upon intercalation of the sodium bentonite with the surfactant cations. The SWAXS spectra and SEM images of the bentonite are the evidence of somewhat different sorption mechanism of DDA-Br when compared with the BDMODA-Cl and HDTMA-Br, including remarkable external surface sorption contribution in the overall sorption.

  16. COMPATIBILITY OF BENTONITE AND DNAPLS

    EPA Science Inventory

    The compatibility of dense non-aqueous phase liquids (DNAPLs), trichloroethylene (TCE), methylene chloride (MC), and creosote with commercially available sodium bentonite pellets was evaluated using stainless steel, double-ring, falling-head permeameters. The Hydraulic conductiv...

  17. A comparative study of tissue factor and kaolin on blood coagulation assays using rotational thromboelastometry and thromboelastography.

    PubMed

    Peng, Henry T; Grodecki, Richard; Rizoli, Sandro; Shek, Pang N

    2016-01-01

    Rotational thromboelastometry (ROTEM) and thromboelastography (TEG) have been increasingly used to diagnose acute coagulopathy and guide blood transfusion. The tests are routinely performed using different triggering activators such as tissue factor and kaolin, which activate different pathways yielding different results. To optimize the global blood coagulation assays using ROTEM and TEG, we conducted a comparative study on the activation methods employing tissue factor and kaolin at different concentrations as well as standard reagents as recommended by the manufacturer of each device. Key parameter values were obtained at various assay conditions to evaluate and compare coagulation and fibrinolysis profiles of citrated whole blood collected from healthy volunteers. It was found that tissue factor reduced ROTEM clotting time and TEG R, and increased ROTEM clot formation time and TEG K in a concentration-dependent manner. In addition, tissue factor affected ROTEM alpha angle, and maximum clot firmness, especially in the absence of kaolin activation, whereas both ROTEM and TEG clot lysis (LI30, CL30, and LY30) remained unaffected. Moreover, kaolin reduced ROTEM clotting time and TEG R and K, but to a lesser extent than tissue factor, in-tem and ex-tem. Correlations in all corresponding parameters between ROTEM and TEG were observed, when the same activators were used in the assays compared with lesser correlations between standard kaolin TEG and ROTEM (INTEM/EXTEM). The two types of viscoelastic point-of-care devices provide different results, depending on the triggering reagent used to perform the assay. Optimal assay condition was obtained to reduce assay time and improve assay accuracy.

  18. Pyronin Y (basic xanthene dye)-bentonite composite: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Tabak, A.; Kaya, M.; Yilmaz, N.; Meral, K.; Onganer, Y.; Caglar, B.; Sungur, O.

    2014-02-01

    The expansion by 1.43 Angstrom of basal spacing and the shift to higher frequencies of in-plane ring vibrations of the Pyronin Y molecule at 1603 and 1527 cm-1 on the formation of Pyronin Y-bentonite composite exhibited that the dye cations might be oriented as a monolayer form in the interlamellar spacing with aromatic rings parallel to clay layers. Thermal analysis results of this composite compared to those of raw bentonite signified the different outer sphere water entities associated with the replacement of inorganic cations with organic dye cations and the gradual decomposition of the organic molecule in the interlamellar spacing. Thermo-Infrared spectra of Pyronin Y-bentonite sample up to high temperatures showed the thermal stability of the dye-clay composite as a result of the presence of π interactions. The pore structure characteristics of Pyronin Y-bentonite composite exhibited the increase in the number of mesopores during formation of the composite.

  19. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    PubMed

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Removal of heavy metals using bentonite supported nano-zero valent iron particles

    NASA Astrophysics Data System (ADS)

    Zarime, Nur Aishah; Yaacob, Wan Zuhari Wan; Jamil, Habibah

    2018-04-01

    This study reports the composite nanoscale zero-valent iron (nZVI) which was successfully synthesized using low cost natural clay (bentonite). Bentonite composite nZVI (B-nZVI) was introduced to reduce the agglomeration of nZVI particles, thus will used for heavy metals treatment. The synthesized material was analyzed using physical, mineralogy and morphology analysis such as Brunnaer-Emmett-Teller (BET) surface area, Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The batch adsorption test of Bentonite and B-nZVI with heavy metals solutions (Pb, Cu, Cd, Co, Ni and Zn) was also conducted to determine their effectiveness in removing heavy metals. Through Batch test, B-nZVI shows the highest adsorption capacity (qe= 50.25 mg/g) compared to bentonite (qe= 27.75 mg/g). This occurred because B-nZVI can reduce aggregation of nZVI, dispersed well in bentonite layers thus it can provide more sites for adsorbing heavy metals.

  1. Electrical resistivity characteristics of diesel oil-contaminated kaolin clay and a resistivity-based detection method.

    PubMed

    Liu, Zhibin; Liu, Songyu; Cai, Yi; Fang, Wei

    2015-06-01

    As the dielectric constant and conductivity of petroleum products are different from those of the pore water in soil, the electrical resistivity characteristics of oil-contaminated soil will be changed by the corresponding oil type and content. The contaminated soil specimens were manually prepared by static compaction method in the laboratory with commercial kaolin clay and diesel oil. The water content and dry density of the first group of soil specimens were controlled at 10 % and 1.58 g/cm(3). Corresponding electrical resistivities of the contaminated specimens were measured at the curing periods of 7, 14, and 28 and 90, 120, and 210 days on a modified oedometer cell with an LCR meter. Then, the electrical resistivity characteristics of diesel oil-contaminated kaolin clay were discussed. In order to realize a resistivity-based oil detection method, the other group of oil-contaminated kaolin clay specimens was also made and tested, but the initial water content, oil content, and dry density were controlled at 0~18 %, 0~18 %, 1.30~1.95 g/cm(3), respectively. Based on the test data, a resistivity-based artificial neural network (ANN) was developed. It was found that the electrical resistivity of kaolin clay decreased with the increase of oil content. Moreover, there was a good nonlinear relationship between electrical resistivity and corresponding oil content when the water content and dry density were kept constant. The decreasing velocity of the electrical resistivity of oil-contaminated kaolin clay was higher before the oil content of 12 % than after 12 %, which indicated a transition of the soil from pore water-controlled into oil-controlled electrical resistivity characteristics. Through microstructural analysis, the decrease of electrical resistivity could be explained by the increase of saturation degree together with the collapse of the electrical double layer. Environmental scanning electron microscopy (ESEM) photos indicated that the diesel oil

  2. Thermal treatment of bentonite reduces aflatoxin b1 adsorption and affects stem cell death.

    PubMed

    Nones, Janaína; Nones, Jader; Riella, Humberto Gracher; Poli, Anicleto; Trentin, Andrea Gonçalves; Kuhnen, Nivaldo Cabral

    2015-10-01

    Bentonites are clays that highly adsorb aflatoxin B1 (AFB1) and, therefore, protect human and animal cells from damage. We have recently demonstrated that bentonite protects the neural crest (NC) stem cells from the toxicity of AFB1. Its protective effects are due to the physico-chemical properties and chemical composition altered by heat treatment. The aim of this study is to prepare and characterize the natural and thermal treatments (125 to 1000 °C) of bentonite from Criciúma, Santa Catarina, Brazil and to investigate their effects in the AFB1 adsorption and in NC cell viability after challenging with AFB1. The displacement of water and mineralogical phases transformations were observed after the thermal treatments. Kaolinite disappeared at 500 °C and muscovite and montmorillonite at 1000 °C. Slight changes in morphology, chemical composition, and density of bentonite were observed. The adsorptive capacity of the bentonite particles progressively reduced with the increase in temperature. The observed alterations in the structure of bentonite suggest that the heat treatments influence its interlayer distance and also its adsorptive capacity. Therefore, bentonite, even after the thermal treatment (125 to 1000 °C), is able to increase the viability of NC stem cells previously treated with AFB1. Our results demonstrate the effectiveness of bentonite in preventing the toxic effects of AFB1. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Microwave-assisted pyrolysis of textile dyeing sludge, and migration and distribution of heavy metals.

    PubMed

    Zhang, Hedong; Gao, Zuopeng; Liu, Yang; Ran, Chunmei; Mao, Xiao; Kang, Qinhao; Ao, Wenya; Fu, Jie; Li, Jing; Liu, Guangqing; Dai, Jianjun

    2018-05-01

    This study investigated the pyrolysis characteristic of textile dyeing sludge (DS) using an auger pyrolyser under microwave irradiation at different pyrolysis temperature. The migration and distribution characteristic of heavy metals and their potential ecological risks were investigated using inductively coupled plasma mass spectrometry (ICP-MS) techniques. Temperature and additives (e.g. Ca-bentonite, kaolin and CaO) significantly affected product distribution and yields. Heavy metals showed different enrichment characteristics during pyrolysis and a great percentage of the heavy metals was retained in the sludge char (SC), depending on different temperatures and additives. CaO had a strong ability for retention of S, Pb and Ni. Ca-bentonite, kaolin and CaO had considerable ability to retain Cr at 650 ℃. Ca-bentonite and CaO had positive effects on Ni retention at 450 °C and 650 °C. As was enriched at 450 °C with addition of Ca-bentonite. Cu and Zn were enriched at 450 °C and 850 °C without additives and the corresponding residue ratios (RRs) were 88.68-100%, which indicated good stability of these heavy metals during microwave pyrolysis of DS. The heavy metal contents in SC were lower than those in the national standards (CJ/T 362-2011, China) and these heavy metals showed slight potential ecological risk to the environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Integrated mined-area reclamation and land-use planning. Volume 3C. A case study of surface mining and reclamation planning: Georgia Kaolin Company Clay Mines, Washington County, Georgia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guernsey, J L; Brown, L A; Perry, A O

    1978-02-01

    This case study examines the reclamation practices of the Georgia Kaolin's American Industrial Clay Company Division, a kaolin producer centered in Twiggs, Washington, and Wilkinson Counties, Georgia. The State of Georgia accounts for more than one-fourth of the world's kaolin production and about three-fourths of U.S. kaolin output. The mining of kaolin in Georgia illustrates the effects of mining and reclaiming lands disturbed by area surface mining. The disturbed areas are reclaimed under the rules and regulations of the Georgia Surface Mining Act of 1968. The natural conditions influencing the reclamation methodologies and techniques are markedly unique from those ofmore » other mining operations. The environmental disturbances and procedures used in reclaiming the kaolin mined lands are reviewed and implications for planners are noted.« less

  5. Bentonite Clay as a Natural Remedy: A Brief Review

    PubMed Central

    2017-01-01

    Background: From old times, the human kind has used clays, externally or internally, for maintaining body health or treating some diseases. Meanwhile there are few scientific articles reviewing the beneficial effects of clays on body function. Bentonite clay is one of the available clays in nature, used as traditional habits, and remedies in many cultures. Methods: These articles explored among 2500 scientific articles published in PubMed to sort the scientific works have been done on the effects of this clay on body function (it was about 100 articles). Results: Bentonite has a broad range of action on different parts of body. Conclusion: As traditional remedies seem to have a deep root in maintaining body health, it merits doing more research works on bentonite clay and its impacts on body function. PMID:29026782

  6. Bentonite deposits of the northern Black Hills district, Wyoming, Montana, and South Dakota

    USGS Publications Warehouse

    Knechtel, Maxwell M.; Patterson, Sam H.

    1962-01-01

    The northern Black Hills bentonite mining district includes parts of Crook County, Wyo., Carter County, Mont., and Butte County, S. Dak. Within this district, many beds of bentonite occur interspersed with sedimentary strata of Cretaceous age that have an average total thickness of about 3,000 feet and consist chiefly of marine shale, marl, and argillaceous sandstone. The bentonite beds occur in formations ranging upward from the Newcastle sandstone to the lower part of the Mitten black shale member of the Pierre shale. Tertiary (?) and Quaternary deposits of gravel, sand, and silt are present on extensive terraces, and deposits of such materials also extend along stream courses in all parts of the district. The overall geologic structure of the district is that of a broad northwestward- plunging anticline, in which the strata dip gently toward the northeast, north, and northwest. The overall structure is interrupted, however, by several subordinate folds which bring the bentonite beds to the surface repeatedly, so that large resources of bentonite are present under light overburden. The northern Black Hills district is an important source of commercial gel-forming sodium-type bentonite. During the period 1941-56 more than 5 million tons of raw bentonite was mined, most of which came from the Clay Spur bed near the top of the Mowry shale; a few thousand tons was mined from bed A in the Newcastle sandstone. Calcium-type bentonite occurs in bed B in the Mowry shale and in bed I at the base of the Mitten black shale member. Seven other beds are sufficiently thick and continuous to warrant consideration as prospective sources of bentonite for industrial use. Most of the bentonite produced is sold for use (a) as an ingredient of drilling mud; (b) for preparing metallurgical molding sand of superior dry strength; and (c) for the bonding material used in pelletizing taconite iron ore of the Lake Superior region. The results of drilling-mud and foundry-sand bonding

  7. Effect on physical properties of laterite soil with difference percentage of sodium bentonite

    NASA Astrophysics Data System (ADS)

    Kasim, Nur Aisyah; Azmi, Nor Azizah Che; Mukri, Mazidah; Noor, Siti Nur Aishah Mohd

    2017-08-01

    This research was carried out in an attempt to know the physical properties of laterite soil with the appearance of difference percentage of sodium bentonite. Lateritic soils usually develop in tropical and other regions with similar hot and humid climate, where heavy rainfall, warm temperature and well drainage lead to the formation of thick horizons of reddish lateritic soil profiles rich in iron and aluminium. When sodium predominates, a large amount of water can be absorbed in the interlayer, resulting in the remarkable swelling properties observed with hydrating sodium bentonite. There are some basic physical properties test conducted in this research which are Specific Gravity Test, pH Test, Sieve Analysis, Hydrometer Test, Shrinkage Limit and Atterberg Limit. The test will be conducted with 0%, 5%, 10%, 15% and 20% of sodium bentonite. Each test will be repeated three times for the accuracy of the result. From the physical properties test the soil properties characteristic react with the sodium bentonite can be determine. Therefore the best percentage of sodium bentonite admixture can be determined for laterite soil. The outcomes of this study give positive results due to the potential of sodium bentonite to improve the laterite soil particle.

  8. Synthesis of nanostructured titanium dioxide layer onto kaolin hollow fibre membrane via hydrothermal method for decolourisation of reactive black 5.

    PubMed

    Mohtor, Nur Hamizah; Othman, Mohd Hafiz Dzarfan; Bakar, Suriani Abu; Kurniawan, Tonni Agustiono; Dzinun, Hazlini; Norddin, Muhammad Noorul Anam Mohd; Rajis, Zanariah

    2018-05-28

    Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO 2 ) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO 2 , this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO 2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO 2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO 2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m 2 .bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Hydrothermal synthesis of free-template zeolite T from kaolin

    NASA Astrophysics Data System (ADS)

    Arshad, Sazmal E.; Yusslee, Eddy F.; Rahman, Md. Lutfor; Sarkar, Shaheen M.; Patuwan, Siti Z.

    2017-12-01

    Free-template zeolite T crystals were synthesized via hydrothermal synthesis by utilizing the activated kaolin as silica and alumina source, with the molar composition of 1 SiO2: 0.04 Al2O3: 0.26 Na2O: 0.09 K2O: 14 H2O. Observation of the formation of free-template zeolite crystals were done at temperature 90°C, 100 °C and 110 °C respectively. It was therefore determined that during the 120 h of the synthesis at 90 °C, zeolite T nucleated and formed a first competitive phase with zeolite L. As temperature increases to 100 °C, zeolite T presented itself as a major phase in the system at time 168 h. Subsequently, development of Zeolite T with second competitive phase of zeolite W was observed at temperature 110 °C. In this study, XRD and SEM instruments were used to monitor the behavior of zeolite T crystals with respect of temperature and time. By using natural resource of kaolin clay as a starting material, this paper hence aims to provide new findings in synthesis of zeolite T using low energy consumption and low production cost.

  10. Modelling Iron-Bentonite Interactions

    NASA Astrophysics Data System (ADS)

    Watson, C.; Savage, D.; Benbow, S.; Wilson, J.

    2009-04-01

    The presence of both iron canisters and bentonitic clay in some engineered barrier system (EBS) designs for the geological disposal of high-level radioactive wastes creates the potential for chemical interactions which may impact upon the long-term performance of the clay as a barrier to radionuclide migration. Flooding of potential radionuclide sorption sites on the clay by ferrous ions and conversion of clay to non-swelling sheet silicates (e.g. berthierine) are two possible outcomes deleterious to long-term performance. Laboratory experimental studies of the corrosion of iron in clay show that corrosion product layers are generally thin (< 1 µm) with magnetite, siderite, or ‘green rust' occurring depending upon temperature and ambient partial pressure of carbon dioxide. In theory, incorporation of iron into clay alteration products could act as a ‘pump' to accelerate corrosion. However, the results of laboratory experiments to characterise the products of iron-bentonite interaction are less than unequivocal. The type and amounts of solid products appear to be strong functions of time, temperature, water/clay ratio, and clay and pore fluid compositions. For example, the products of high temperature experiments (> 250 °C) are dominated by chlorite, whereas lower temperatures produce berthierine, odinite, cronstedtite, or Fe-rich smectite. Unfortunately, the inevitable short-term nature of laboratory experimental studies introduces issues of metastability and kinetics. The sequential formation in time of minerals in natural systems often produces the formation of phases not predicted by equilibrium thermodynamics. Evidence from analogous natural systems suggests that the sequence of alteration of clay by Fe-rich fluids will proceed via an Ostwald step sequence. The computer code, QPAC, has been modified to incorporate processes of nucleation, growth, precursor cannibalisation, and Ostwald ripening to address the issues of the slow growth of bentonite

  11. Kaolin-based hemostatic dressing improves hemorrhage control from a penetrating inferior vena cava injury in coagulopathic swine.

    PubMed

    Koko, Kiavash R; McCauley, Brian M; Gaughan, John P; Nolan, Ryan S; Fromer, Marc W; Hagaman, Ashleigh L R; Choron, Rachel L; Brown, Spencer A; Hazelton, Joshua P

    2017-07-01

    Retrohepatic inferior vena cava (RIVC) injuries are often lethal due to challenges in obtaining hemorrhage control. We hypothesized that packing with a new kaolin-based hemostatic dressing (Control+; Z-Medica, Wallingford, CT) would improve hemorrhage control from a penetrating RIVC injury compared with packing with standard laparotomy sponges alone. Twelve male Yorkshire pigs received a 25% exchange transfusion of blood for refrigerated normal saline to induce a hypothermic coagulopathy. A laparotomy was performed and a standardized 1.5 cm injury to the RIVC was created which was followed by temporary abdominal closure and a period of uncontrolled hemorrhage. When the mean arterial pressure reached 70% of baseline, demonstrating hemorrhagic shock, the abdomen was re-entered, and the injury was treated with perihepatic packing using standard laparotomy sponges (L; n = 6) or a new kaolin-based hemostatic dressing (K; n = 6). Animals were then resuscitated for 6 hours with crystalloid solution. The two groups were compared using the Wilcoxon rank sum test and Fisher exact test. A p value of 0.05 or less was considered statistically significant. There was no difference in the animal's temperature, heart rate, mean arterial pressure, cardiac output, and blood loss at baseline or before packing was performed (all p > 0.05). In the laparotomy sponge group, five of six pigs survived the entire study period, whereas all six pigs treated with kaolin-based D2 hemostatic dressings survived. Importantly, there was significantly less blood loss after packing with the new hemostatic kaolin-based dressing compared with packing with laparotomy sponge (651 ± 180 mL vs. 1073 ± 342 mL; p ≤ 0.05). These results demonstrate that the use of this new hemostatic kaolin-based dressing improved hemorrhage control and significantly decreased blood loss in this penetrating RIVC model. This is basic science research based on a large animal model, level V.

  12. γ-radiation induced corrosion of copper in bentonite-water systems under anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Karin Norrfors, K.; Björkbacka, Åsa; Kessler, Amanda; Wold, Susanna; Jonsson, Mats

    2018-03-01

    In this work we have experimentally studied the impact of bentonite clay on the process of radiation-induced copper corrosion in anoxic water. The motivation for this is to further develop our understanding of radiation-driven processes occurring in deep geological repositories for spent nuclear fuel where copper canisters containing the spent nuclear fuel will be embedded in compacted bentonite. Experiments on radiation-induced corrosion in the presence and absence of bentonite were performed along with experiments elucidating the impact irradiation on the Cu2+ adsorption capacity of bentonite. The experiments presented in this work show that the presence of bentonite clay has no or very little effect on the magnitude of radiation-induced corrosion of copper in anoxic aqueous systems. The absence of a protective effect similar to that observed for radiation-induced dissolution of UO2 is attributed to differences in the corrosion mechanism. This provides further support for the previously proposed mechanism where the hydroxyl radical is the key radiolytic oxidant responsible for the corrosion of copper. The radiation effect on the bentonite sorption capacity of Cu2+ (reduced capacity) is in line with what has previously been reported for other cations. The reduced cation sorption capacity is partly attributed to a loss of Al-OH sites upon irradiation.

  13. The Use of Modified Bentonite for Removal of Aromatic Organics from Contaminated Soil.

    PubMed

    Gitipour; Bowers; Bodocsi

    1997-12-15

    This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls. Copyright 1997 Academic Press.

  14. Evaluation of a novel dextran-based flocculant on treatment of dye wastewater: Effect of kaolin particles.

    PubMed

    Zhao, Chuanliang; Zheng, Huaili; Sun, Yongjun; Zhang, Shixin; Liang, Jianjun; Liu, Yongzhi; An, Yanyan

    2018-05-30

    Graft modified flocculants have recently received increasing attention in the field of water treatment as they have the combinative advantages of synthetic and natural polymeric flocculants. In this work, surface-active monomer benzyl(methacryloyloxyethyl)dimethylammonium chloride (BMDAC) was selected to graft on dextran (DX) with high molecular weight (10.3 × 10 6  g/mol) produced through enzyme-catalyzed process in order to remove dissolved dyes from wastewater. The flocculant (DAB) was fabricated by ultrasound initiated polymerization technique, and the structure characterization of FTIR, 1 H/ 12 C NMR, XRD and XPS spectrum confirmed the successful grafting. Then the Congo red (CR) removal efficiency by DAB was optimized based on the flocculation conditions, including wastewater initial pH, flocculant dosage and initial dye concentration. The effect of suspended solids on the removal of dyes was evaluated in kaolin-CR simulated wastewater. The results indicated that the optimal removal efficiency of CR was 68.1% and 88.2% in single CR and kaolin-CR flocculation system, respectively. The improvement of removal efficiency was attributed to the fact that partial CR molecules were adsorbed onto kaolin particles before flocculation, and were synergistically flocculated accompanied by kaolin particles. Finally, the flocculation mechanism was discussed by a detailed investigation of the zeta potentials, FTIR and XPS spectra of flocs, which can provide important reference for optimizing the flocculation conditions and designing novel high-performance flocculants. Copyright © 2018. Published by Elsevier B.V.

  15. Hydration products and thermokinetic properties of cement-bentonite and cement-chalk mortars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klyusov, A.A.

    1988-08-20

    Bentonite and chalk are the most popular auxiliary additives to portland cement for borehole cementation. The authors studied by physicochemical analysis methods (x-ray phase, derivatographic, and scanning and electron microscopy in combination with microdiffraction) the newly formed solid-phase composition of cement-bentonite and cement-chalk mortars (binder-additive ratio 9:1) prepared from portland cement for cold boreholes and 8% calcium chloride solution at a water-mixing ratio of 0.9. The mechanism of the influence of Ca-bentonite and chalk additives on the portland cement hydration rate was ascertained from the heat evolution rate curves. It was found that the phase compositions of the hydration productsmore » are represented in the studied systems by newly formed substances typical for portland cement. It has been noted that Ca-bentonite interacts with the calcium hydroxide of hydrated cement with the formation of hexagonal and cubic calcium hydroaluminates. Unlike Ca-bentonite, chalk does not react with portland cement at normal and reduced temperatures, does not block hydrated cement particles, which, in turn, ensures all other conditions remaining equal, a higher initial rate of hydration of cement-chalk mortar.« less

  16. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xiaoying; Chen, Zhengxian; Zhou, Rongbing

    2015-01-15

    Graphical abstract: UV–visible spectra of DFBG solution using K-nZVI (1:1) nanoparticles. (a) Before reaction; (b) during reaction; (c) after reaction. - Highlights: • Kaolin-supported Fe{sup 0} nanoparticle (K-nZVI) was synthesized. • Degradation of Direct Fast Black by K-nZVI was studied. • K-nZVI was characterized by SEM, XRD, UV and FIIR. • Degradation mechanism of Direct Fast Black was proposed. - Abstract: Calcinated kaolin supported nanoscale zero-valent iron (K-nZVI) was synthesized and used for the removal of tetrad azo-group dye-Direct Fast Black G (DFBG) from aqueous solution. The results demonstrated that after reacting for 10 min with an initial concentration ofmore » DFBG 100 mg L{sup −1} (pH 9.49), 78.60% of DFBG was removed using K-nZVI, while only 41.39% and 12.56% of DFBG were removed using nZVI and kaolin, respectively. K-nZVI with a mass ratio of nZVI nanoparticles versus kaolin at 1:1 was found to have a high degree of reactivity. Furthermore, scanning electron microscopy (SEM) confirmed that nZVI was better dispersed when kaolin was present. XRD patterns indicated that iron oxides were formed after reaction. Fourier transforms infrared spectra (FTIR) and UV–visible demonstrated that the peak in the visible light region of DFBG was degraded and new bands were observed. Kinetics studies showed that the degradation of DFBG fitted well to the pseudo first-order model. The degradation of DFBG by K-nZVI was based on its adsorption onto kaolin and iron oxides, and subsequently reduction using nZVI was proposed. A significant outcome emerged in that 99.84% of DFBG in wastewater was removed using K-nZVI after reacting for 60 min.« less

  17. Use of rubber and bentonite added fly ash as a liner material.

    PubMed

    Cokca, Erdal; Yilmaz, Zeka

    2004-01-01

    In many countries regulations require all hazardous waste disposal facilities to be lined with suitable impermeable barriers to protect against contamination. In this study, a series of laboratory tests on rubber and bentonite added fly ash were conducted. The aim of the tests was to evaluate the feasibility of utilizing fly ash, rubber and bentonite as a low hydraulic conductivity liner material. Type C fly ash was obtained from Soma thermal power plant in Turkey; rubber in pulverized form was waste from the retreading industry. To investigate the properties of rubber and bentonite added fly ash, hydraulic conductivity, leachate analysis, unconfined compression, split tensile strength, one-dimensional consolidation, swell and freeze/thaw cycle tests were performed. The overall evaluation of results have revealed that rubber and bentonite added fly ash showed good promise and a candidate for construction of a liner.

  18. Effects of Melatonin on the Cerebellum of Infant Rat Following Kaolin-Induced Hydrocephalus: a Histochemical and Immunohistochemical Study.

    PubMed

    Uyanıkgil, Yiğit; Turgut, Mehmet; Baka, Meral

    2017-02-01

    Hydrocephalus is a developmental disorder causing abnormally collected cerebrospinal fluid within the cerebral ventricles. It leads to bigger skulls and many dysfunctions related to the nervous system. Here, we addressed whether exogenous melatonin administration could reverse the clinical features of kaolin-induced hydrocephalus in infantile rats. A controlled double-blinded study was conducted in 2-week-old 45 Wistar albino rats, which were divided into three groups: Group A, the control group, received intracisternal sham injection with solely the needle insertion; group B, the hydrocephalus group, was treated with isotonic NaCl after kaolin injection; and group C, the hydrocephalus + melatonin group, was given i.p. exogenous melatonin at a dose of 0.5 mg/100 g body weight after kaolin injection. Histological and immunohistochemical analyses were performed after the induction of hydrocephalus and melatonin administration. Glial fibrillary acidic protein was stained by immunohistochemical method. TUNEL method was used to define and quantitate apoptosis in the cerebellar tissues. Statistical analysis was performed by nonparametric Kruskal-Wallis H test, and once significance was determined among means, post hoc pairwise comparisons were carried out using Mann-Whitney U test. We found that melatonin administration significantly ameliorated ratio of substantia grisea area/substantia alba area in the cerebellum of infantile rats. Histologically, there was a significant reduction in the number of cerebellar apoptotic cells after the hydrocephalus induced by kaolin (P < 0.05). Our results clearly revealed that the histopathological changes in the cerebellum were reversed by systemic melatonin administration in infantile rats with kaolin-induced hydrocephalus. Nevertheless, further studies are needed to suggest melatonin as a candidate protective drug in children with hydrocephalus.

  19. Silurian K-bentonites of the Dnestr Basin, Podolia, Ukraine

    USGS Publications Warehouse

    Huff, W.D.; Bergstrom, Stig M.; Kolata, Dennis R.

    2000-01-01

    The Dnestr Basin of Podolia, Ukraine, is an epicratonic basin consisting of neritic carbonate and calcareous mudstone facies including a nearly complete Silurian sequence ranging from late Llandovery to late Pridoli in age. The Silurian section has served as a standard for regional and interregional studies as a consequence of its well-documented macro- and microfaunal assemblages. Approximately 24 mid- to Late Silurian K-bentonites are present in this succession, and their lateral persistence has aided in establishing regional correlations. The K-bentonites range from 1 to 40 cm in thickness and occur in the Bagovitsa (late Wenlock), Malinovtsy (Ludlow) and Skala (Pridoli) Formations. Discrimination diagrams based on immobile trace elements together with rare earth element data suggest the K-bentonites had a volcanic origin in a collision margin setting related to subduction. Thickness and stratigraphic distribution considerations are consistent with a source area in the Rheic Ocean.

  20. The Influence of Sintering Method on Kaolin-Based Geopolymer Ceramics with Addition of Ultra High Molecular Weight Polyethylene as Binder

    NASA Astrophysics Data System (ADS)

    Romisuhani, A.; AlBakri, M. M.; Kamarudin, H.; Andrei, S. V.

    2017-11-01

    The influence of sintering method on kaolin-based geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene as binder were studied. Geopolymer were formed at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. 12 M of sodium hydroxide solution were mixed with sodium silicate at a ratio of 0.24 to form alkaline activator. Powder metallurgy technique were used in order to produce kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene. The samples were heated at temperature of 1200 °C with two different sintering method which are conventional method and two-step sintering method. The strength and density were tested.

  1. Diffusion of Eu(III) in compacted bentonite-effect of pH, solution concentration and humic acid.

    PubMed

    Wang, Xiangke; Chen, Yixue; Wu, Yican

    2004-06-01

    The effect of pH, Eu(III) solution concentration and humic acid on the diffusion of Eu(III) in compacted bentonite (rho(b) = 1000 +/- 30 kg/m(3)) was studied with "in-diffusion" method at an ionic strength of 0.1M NaClO(4). The results (K(d) values from the first slice and theoretical calculation, apparent and effective diffusion coefficients) derived from the new capillary method are in good agreement with the literature data under similar conditions, and fit the Fick's second law very well. The results suggest that the diffusion of Eu(III) is dependent on pH values and independent on solution concentration in our experimental conditions. Humic acid forms precipitation/complexation with Eu(III) at the surface of compacted bentonite and thus deduces the diffusion/transport of Eu(III) in compacted bentonite. The K(d) values in compacted bentonite are in most cases lower than those in powdered bentonite obtained from batch experiments. The difference between the K(d) values from powdered and compacted bentonite is a strong function of the bulk density of the bentonite. The results suggest that the content of interlaminary space plays a very important role to the diffusion, sorption and migration of Eu(III) in compacted bentonite.

  2. 21 CFR 184.1155 - Bentonite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bentonite. 184.1155 Section 184.1155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...

  3. Magnesium incorporated bentonite clay for defluoridation of drinking water.

    PubMed

    Thakre, Dilip; Rayalu, Sadhana; Kawade, Raju; Meshram, Siddharth; Subrt, J; Labhsetwar, Nitin

    2010-08-15

    Low cost bentonite clay was chemically modified using magnesium chloride in order to enhance its fluoride removal capacity. The magnesium incorporated bentonite (MB) was characterized by using XRD and SEM techniques. Batch adsorption experiments were conducted to study and optimize various operational parameters such as adsorbent dose, contact time, pH, effect of co-ions and initial fluoride concentration. It was observed that the MB works effectively over wide range of pH and showed a maximum fluoride removal capacity of 2.26 mgg(-1) at an initial fluoride concentration of 5 mg L(-1), which is much better than the unmodified bentonite. The experimental data fitted well into Langmuir adsorption isotherm and follows pseudo-first-order kinetics. Thermodynamic study suggests that fluoride adsorption on MB is reasonably spontaneous and an endothermic process. MB showed significantly high fluoride removal in synthetic water as compared to field water. Desorption study of MB suggest that almost all the loaded fluoride was desorbed ( approximately 97%) using 1M NaOH solution however maximum fluoride removal decreases from 95.47 to 73 (%) after regeneration. From the experimental results, it may be inferred that chemical modification enhances the fluoride removal efficiency of bentonite and it works as an effective adsorbent for defluoridation of water. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository.

    PubMed

    Missana, Tiziana; Alonso, Ursula; Turrero, Maria Jesús

    2003-03-01

    The possible mechanisms of colloid generation at the near field/far field interface of a radioactive repository have been investigated by means of novel column experiments simulating the granite/bentonite boundary, both in dynamic and in quasi-static water flow conditions. It has been shown that solid particles and colloids can be detached from the bulk and mobilised by the water flow. The higher the flow rate, the higher the concentration of particles found in the water, according to an erosion process. However, the gel formation and the intrinsic tactoid structure of the clay play an important role in the submicron particle generation even in the compacted clay and in a confined system. In fact, once a bentonite gel is formed, in the regions where the clay is contacted with water, clay colloids can be formed even in quasi-static flow conditions. The potential relevance of these colloids in radionuclide transport has been studied by evaluating their stability in different chemical environments. The coagulation kinetics of natural bentonite colloids was experimentally studied as a function of the ionic strength and pH, by means of time-resolved light scattering techniques. It has been shown that these colloids are very stable in low saline (approximately 1 x 10(-3) M) and alkaline (pH > or = 8) waters. Copyright 2002 Elsevier Science B.V.

  5. Clay-based matrices incorporating radioactive silts: A case study of sediments from spent fuel pool

    NASA Astrophysics Data System (ADS)

    Antonenko, Mikhail; Myshkin, Vyacheslav; Grigoriev, Alexander; Chubreev, Dmitry

    2018-03-01

    Radioactive silt sediments from uranium reactors may be effectively and safely included by ceramic compounds. The purpose of the paper is to determine the influence of composition and preparation conditions on physicochemical and mechanical properties of clay-based matrices containing radioactive silt. Clay matrices were prepared from four minerals, took from Siberian regions, as kaolin, loan, bentonite and red clay, and they included radioactive silt sediments collected from Spent Fuel Pool of a Uranium-graphite Reactor. The rate of 137Cs leaching from the matrices of different compositions was studied. The results of the studies allowed determining the optimal compositions and the preparation conditions of the matrices. It has been shown that red clay from "Zykovskaya" career (Krasnoyarsk region, Russia) is preferable for use as a matrix for incorporating the silt sediments compared to kaolin, loam and bentonite due to the maximum values tensile strength and minimal change in ultimate strength for compression after irradiation, freezing and water exposure. Nevertheless, 137Cs leaching rate of all studied composites did not exceed 10-3 g/cm2.day.

  6. White sand potentially suppresses radon emission from uranium tailings

    NASA Astrophysics Data System (ADS)

    Abdel Ghany, H. A.; El Aassy, Ibrahim E.; Ibrahim, Eman M.; Gamil, S. H.

    2018-03-01

    Uranium tailings represent a huge radioactive waste contaminant, where radon emanation is considered a major health hazard. Many trials have been conducted to minimize radon exhalation rate by using different covering materials. In the present work, three covering materials, commonly available in the local environment, (kaolin, white sand and bentonite) have been used with different thickness 10, 15, and 20 mm). 238U, 232Th, 40K and the radon exhalation rate were measured by using gamma spectrometry with a Hyper Pure Germanium (HPGe) detector and solid state nuclear track detectors (CR-39). Radon exhalation rate, calculated before and after covering, ranged from 2.80 ± 0.14 to 4.20 ± 0.21 Bq m-2 h-1, and from 0.30 ± 0.01 to 4.00 ± 0.20 Bq m-2 h-1, respectively. Also, the attenuation coefficients of different covering materials and radon emanation were calculated. The obtained results demonstrate that covering of uranium tailings by kaolin, white sand and bentonite has potentially minimized both the radon exhalation rate and the corresponding internal doses.

  7. Fire performance of fiber board coated with nano kaolin-clay film

    Treesearch

    Zhijia Liu; John F. Hunt; Zhiyong Cai

    2013-01-01

    Fiberboard is a common interior material used both in China and the United States of America. The increase in demand for interior materials has raised concerns regarding combustibility of the materials. The pyrolysis characteristics of fiber, phenolic resin (PF), and nano kaolin-clay (NK) were investigated using thermogravimetry. The fire performances of samples coated...

  8. Measuring microbial metabolism in atypical environments: Bentonite in used nuclear fuel storage.

    PubMed

    Stone, Wendy; Kroukamp, Otini; Moes, Ana; McKelvie, Jennifer; Korber, Darren R; Wolfaardt, Gideon M

    2016-01-01

    Genomics enjoys overwhelming popularity in the study of microbial ecology. However, extreme or atypical environments often limit the use of such well-established tools and consequently demand a novel approach. The bentonite clay matrix proposed for use in Deep Geological Repositories for the long-term storage of used nuclear fuel is one such challenging microbial habitat. Simple, accessible tools were developed for the study of microbial ecology and metabolic processes that occur within this habitat, since the understanding of the microbiota-niche interaction is fundamental to describing microbial impacts on engineered systems such as compacted bentonite barriers. Even when genomic tools are useful for the study of community composition, techniques to describe such microbial impacts and niche interactions should complement these. Tools optimised for assessing localised microbial activity within bentonite included: (a) the qualitative use of the resazurin-resorufin indicator system for redox localisation, (b) the use of a CaCl2 buffer for the localisation of pH, and (c) fluorometry for the localisation of precipitated sulphide. The use of the Carbon Dioxide Evolution Monitoring System was also validated for measuring microbial activity in desiccated and saturated bentonite. Finally, the buffering of highly-basic bentonite at neutral pH improved the success of isolation of microbial populations, but not DNA, from the bentonite matrix. Thus, accessible techniques were optimised for exploring microbial metabolism in the atypical environments of clay matrices and desiccated conditions. These tools have application to the applied field of used nuclear fuel management, as well as for examining the fundamental biogeochemical cycles active in sedimentary and deep geological environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Santiago, Denise Ester O.; Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T.

    2016-05-01

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.

  10. Investigation on the effect of sintering temperature on kaolin hollow fibre membrane for dye filtration.

    PubMed

    Mohtor, Nur Hamizah; Othman, Mohd Hafiz Dzarfan; Ismail, Ahmad Fauzi; Rahman, Mukhlis A; Jaafar, Juhana; Hashim, Nur Awanis

    2017-07-01

    Despite its extraordinary price, ceramic membrane can still be able to surpass polymeric membrane in the applications that require high temperature and pressure conditions, as well as harsh chemical environment. In order to alleviate the high cost of ceramic material that still becomes one of the major factors that contributes to the high production cost of ceramic membrane, various attempts have been made to use low cost ceramic materials as alternatives to well-known expensive ceramic materials such as alumina, silica, and zirconia in the fabrication of ceramic membrane. Thus, local Malaysian kaolin has been chosen as the ceramic material in this study for the preparation of kaolin hollow fibre membrane since it is inexpensive and naturally abundant in Malaysia. Due to the fact that the sintering process plays a prominent role in obtaining the desired morphology, properties, and performances of prepared ceramic membrane, the aim of this work was to study the effect of different sintering temperatures applied (ranging from 1200 to 1500 °C) in the preparation of kaolin hollow fibre membrane via dry/wet phase inversion-based spinning technique and sintering process. The morphology and properties of membrane were then characterised by SEM, AFM, FTIR, XRD, and three-point bending test, while the performances of membrane were investigated by conducting water permeation and Reactive Black 5 (RB5) dye rejection tests. From the experimental results obtained, the sintering temperature of 1400 °C could be selected as the optimum sintering temperature in preparing the kaolin hollow fibre membrane with the dense sponge-like structure of separation layer that resulted in the good mechanical strength of 70 MPa with the appreciable water permeation of 75 L/h m 2  bar and RB5 rejection of 68%.

  11. Synthesis and characterization of mangan oxide coated sand from Capkala kaolin

    NASA Astrophysics Data System (ADS)

    Destiarti, Lia; Wahyuni, Nelly; Prawatya, Yopa Eka; Sasri, Risya

    2017-03-01

    Synthesis and characterization of mangan oxide coated sand from quartz sand fraction of Capkala kaolin has been conducted. There were two methods on synthesis of Mangan Oxide Coated Sand (MOCS) from Capkala Kaolin compared in this research. Characterization of MOCS was done by using Scanning Electron Microscope/Energy Dispersive X-Ray Spectrometer (SEM/EDX) and X-Ray Diffraction (XRD). The MOCS was tested to reduce phosphate in laundry waste. The result showed that the natural sand had bigger agregates and a relatively uniform structural orientation while both MOCS had heterogen structural orientation and manganese oxide formed in cluster. Manganese in first and second methods were 1,93% and 2,63%, respectively. The XRD spectrum showed clear reflections at 22,80°, 36,04°, 37,60° and a broad band at 26,62° (SiO2). Based on XRD spectrum, it can be concluded that mineral constituents of MOCS was verified corresponding to pyrolusite (MnO2). The former MOCS could reduce almost 60% while the later could reduce 70% phosphate in laundry waste.

  12. New organophilic kaolin clays based on single-point grafted 3-aminopropyl dimethylethoxysilane.

    PubMed

    Zaharia, A; Perrin, F-X; Teodorescu, M; Radu, A-L; Iordache, T-V; Florea, A-M; Donescu, D; Sarbu, A

    2015-10-14

    In this study, the organophilization procedure of kaolin rocks with a monofunctional ethoxysilane- 3 aminopropyl dimethyl ethoxysilane (APMS) is depicted for the first time. The two-step organophilization procedure, including dimethyl sulfoxide intercalation and APMS grafting onto the inner hydroxyl surface of kaolinite (the mineral) layers was tested for three sources of kaolin rocks (KR, KC and KD) with various morphologies and kaolinite compositions. The load of APMS in the kaolinite interlayer space was higher than that of 3-aminopropyl triethoxysilane (APTS) due to the single-point grafting nature of the organophilization reaction. A higher long-distance order of kaolinite layers with low staking was obtained for the APMS, due to a more controllable organiphilization reaction. Last but not least, the solid state (29)Si-NMR tests confirmed the single-point grafting mechanism of APMS, corroborating monodentate fixation on the kaolinite hydroxyl facets, with no contribution to the bidentate or tridentate fixation as observed for APTS.

  13. Biodegradability and swelling capacity of kaolin based chitosan-g-PHEMA nanocomposite hydrogel.

    PubMed

    Pradhan, Arun Kumar; Rana, Pradeep Kumar; Sahoo, Prafulla Kumar

    2015-03-01

    Chitosan, a natural biopolymer, obtained by alkaline deacetylation of chitin, exhibits excellent biological properties such as biodegradability, immunological and antibacterial activity. Recently, there has been a growing interest in the chemical modification of chitosan in order to widen its applications. The chemical modification of chitosan has been achieved via grafting of monomer, 2-hydroxyethyl methacrylate (HEMA) in the presence of the initiator, ammonium persulfate (APS) and kaolin was added to improve the mechanical strength of the newly developed nanocomposites hydrogel. The so prepared grafted nanocomposites hydrogel was characterized by FTIR, XRD, SEM, TEM and TGA. The equilibrium water content (EWC) of the samples were measured at different pH ranges 6.5-8.0 and found optimum at pH 7.5 for biomedical applications. Further, the biodegradability of the samples was studied at different time intervals from 15 days to 1 year but, the kaolin based nanohydrogels exhibited good biodegradability. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. An evaluation of soluble cations and anions on the conductivity and rate of flocculation of kaolins

    NASA Astrophysics Data System (ADS)

    Fulton, Deborah Lee

    1998-10-01

    The focus of this project was to learn how ionic concentrations and their contributions to electric conductivity influence the flocculation behavior of kaolin/water suspensions. Sodium silicate, calcium chloride, and magnesium sulfate were used as chemical additives. The specific surface areas, particle size distributions, and methylene blue indices for two kaolins were measured. The SSA and MBI for these kaolins indicated that they possessed inherent differences in SSA and flocculation behaviors. Rheological studies were also performed. Testing included simultaneous gelation, deflocculation, and pH tests. Viscosity, pH, temperature, and chemical additive concentrations were monitored at each point. Testing was performed at 45/55 wt% solids. Effects of additions of various levels of deflocculant and flocculant to each of the kaolin/water suspensions were studied by making several suspensions from each kaolin. The concentrations of dispersant, and flocculant levels and types were varied to produce suspensions with different chemical additive "histories," but all with similar final apparent viscosities. Slurry filtrates were analyzed for conductivity, pH, temperature, and ion concentrations of (Al3+, Fe2+,3+, Ca 2+, Mg+, Na+, SO4 2--, and Cl--). Plastic properties were calculated to determine how variations in suspension histories affected conductivities, pH, and detectable ion contents of the suspensions. These analyses were performed on starting slurries which were under-, completely-, and over-deflocculated before further additions of flocculants and deflocculant were added to tune the slurries to the final, constant, target viscosity. Results showed that rates of flocculation and conductivities increased as concentrations of ions increased. By increasing conductivity correlations with increases in flocculation occurs, which yields higher rates of buildup, or RBU [1]. This is the single most important slip control property in the whitewares industry. Shear

  15. Correlation between hardness and water absorption properties of Saudi kaolin and white clay geopolymer coating

    NASA Astrophysics Data System (ADS)

    Ramasamy, Shamala; Abdullah, Mohd Mustafa Al Bakri; Huang, Yue; Hussin, Kamarudin; Wang, Jin; Shahedan, Noor Fifinatasha

    2017-09-01

    Geopolymer is an uprising technology that is being studied worldwide. Geopolymer raw materials are basically aluminosilicate source materials. However, this technology is yet to infiltrate into pipelines and coating industries which initiated our research idea. The idea of creating universal geopolymer based coating material is mainly to help oil and gas industry reduce its maintenance cost. Kaolin based geopolymer paste was coated on glass reinforced epoxy (GRE) substrates which are majorly used as pipeline material in the oil and gas industry at Saudi Arabia. Kaolin and white clay was chosen as raw material to study the possibilities of utilizing underused aluminosilicate raw materials for geopolymer coating. To obtain suitable formulation, Na2SiO3/NaOH ratio was varied from 0.40 untill 0.60 while other parameters such as solid/liquid ratio and NaOH molarity were kept constant at values as per previous works. Geopolymer coated GRE substrates were then subjected to water absorption, flexural strength and hardness test to validate our findings. Water absorption is a crucial test as for coating materials which justifies the pratical usability of the coating product. Upon testing, kaolin and white clay based geopolymer coating each shows promising properties at Na2SiO3/NaOH ratio of 0.45 and 0.50 each.

  16. Oxygen and hydrogen isotope geochemistry of Cretaceous bentonites and shales from the Disturbed Belt, Montana

    NASA Astrophysics Data System (ADS)

    Eslinger, Eric V.; Yeh, Hsueh-Wen

    1986-01-01

    The mineralogy, δO 18, and δD of the <0.1 μm fraction of 22 Cretaceous bentonites and the mineralogy and δO 18 of the < 0.1 μm fraction of 14 adjacent shales collected from outcrops in the Sweetgrass Arch and Disturbed Belt, Montana, have been determined. Mixed-layer illite/smectite (I/S) is the dominant mineral in the bulk bentonite and usually the only mineral in the < 0.1 μm fraction. I/S is also the major clay mineral in the shales. The diagenetic grade in bentonite is qualitatively given by the percentage of illite layers in I/S, which varies from 2 to 25 (Sweetgrass Arch) to as high as 95 (Disturbed Belt). δO 18 of < 0.1 μm bentonite generally decreases from about +20%. to about +13%. with increasing diagenetic grade. On a plot of δD versus δO 18, data for the < 0.1 μm bentonite define a field that generally parallels, but falls on the meteoric water line side of the smectite-water line (Savin and Epstein, 1970). δO 18 of bulk bentonite is 1 to 3%. more negative than the δO 18 of the < 0.1 μm fraction, due to the presence of volcanic quartz and feldspar. δO 18 of several size fractions of clay-sized quartz separated from the bentonite varies from +11%. to +24%., and, in a given bentonite, generally increases with decreasing grain size. Among the different bentonites, the δO 18 range of the different grain sizes decreases as the percentage of illite layers in the coexisting I/S increases. The δO 18 of 0.1-0.5 μm shale quartz is generally 1 to 4%. more positive than clay-sized quartz from an adjacent bentonite, and the δO 18 of < 0.1 μm I/S concentrate of shales is generally < 1 to 4%. more negative than the < 0.1 μm I/S from an adjacent bentonite. Isotopic temperatures, interpreted to be maximum burial temperatures, range between about 160°C (shale), to about 250°C (bentonite). The isotopic data can be interpreted using the stages: 1) deposition of volcanic glassy ash containing some quartz and feldspar; 2) devitrification into mostly

  17. Evidence of ammonium ion-exchange properties of natural bentonite and application to ammonium detection.

    PubMed

    Zazoua, A; Kazane, I; Khedimallah, N; Dernane, C; Errachid, A; Jaffrezic-Renault, N

    2013-12-01

    Ammonium exchange with hybrid PVC-bentonite (mineral montmorillonite clay) thin film was revealed using FTIR spectroscopy, EDX, cyclic voltammetry and electrochemical impedance spectroscopy. The effect of ammonium exchange on the charge transfer resistance of PVC-bentonite hybrid thin film was attributed to a modification of the intersheet distance and hydration of bentonite crystals. The obtained impedimetric ammonium sensor shows a linear range of detection from 10(-4)M to 1M and a detection limit around 10(-6)M. © 2013.

  18. Concentrations of 226Ra, 232Th and 40K in industrial kaolinized granite.

    PubMed

    Todorović, Nataša; Hansman, Jan; Mrđa, Dušan; Nikolov, Jovana; Kardos, Richárd; Krmar, Miodrag

    2017-03-01

    Activity concentrations of 226 Ra, 232 Th and 4 0 K in 120 kaolinized granite samples imported in Serbia from the Motajica mine, Bosnia and Herzegovina, were measured. The 226 Ra concentration ranged from 61 to 319 Bq kg -1 , the 232 Th from 44 to 272 Bq kg -1 , and the 4 0 K from 590 to 1470 Bq kg -1 . The frequency distribution of 4 0 K concentrations was near-Gaussian, where those of 226 Ra and 232 Th were right-skewed. In 6 samples, the gamma index, I, was higher than 2, which exceeds the exemption dose criterion (0.3 mSv y -1 ). The absorbed dose rate and annual effective doses for workers in the ceramic industries in Serbia who worked with kaolinized granite were below levels of concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Uranium in mining water of kaolin open pit in Zarów (Lower Silesia); methodology of determination and genetic remarks.

    PubMed

    Chau, N D; Wyszomirski, P; Chruściel, E; Ochoński, A

    1999-11-01

    In this paper, a method of determination of uranium 238 and 234 in mining waters of Andrzej kaolin open pit in Zarów (Lower Silesia) is presented. The method is based on independent measurements of alpha and beta radiation intensities by means of a liquid scintillation spectrometer alpha/beta. The initial volume of water sample was 3 dm3, then it was diminished by chemical preparation to 6 cm3, and then 12 cm3 of scintillator was added. The lower limit of detection (for the measurement time of 8 h) for both 234U and 238U amounted to 0.02 Bq/dm3. For determination of the uranium content in ferruginous sediments precipitating from mining waters of the above-mentioned open pit, gamma ray spectrometry was used. The obtained results may be viewed as a contribution to studies on anomalous uranium concentration within this kaolin deposit. The elevated uranium content, in comparison with its average concentration in the Earth crust, is characteristic for parent rocks of Andrzej kaolin deposit, which are granitoids of Strzegom-Sobótka massif. In connection with it, the high uranium content can be observed not only in kaolin and weakly kaolinised granitoids from the deposit in question, but also in mining waters genetically related with them.

  20. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis.

    PubMed

    Zheng, Liange; Samper, Javier; Montenegro, Luis

    2011-09-25

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO(2)(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO(3)(-) and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions. Published by Elsevier B.V.

  1. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, L.; Samper, J.; Montenegro, L.

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collectedmore » after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.« less

  2. Obtainment and partial characterization of biodegradable gelatin films with tannic acid, bentonite and glycerol.

    PubMed

    Ortiz-Zarama, Maria A; Jiménez-Aparicio, Antonio R; Solorza-Feria, Javier

    2016-08-01

    Research studies concerning the overall effect of the addition of plasticizers, cross-linking and strengthening agents in gelatin film-forming mixtures are very scarce. Also, there are no studies focused on the interactions among their individual components, or showing what sort of effects they might cause all together. A gelatin film obtained from a composite consisting of tannic acid, bentonite and glycerol was evaluated. Nine gelatin films were manufactured by the casting method, using these materials, following a 2(3) factorial design with five replicates on the central point. The interactions among gelatin, tannic acid and bentonite caused a decrease in hydrogen bonds, while the polar groups of the gelatin chains were less exposed to interactions with water molecules. There was an increase in temperature and enthalpy of gelatin denaturation, due to increasing tannic acid and bentonite concentration. Tactoids were found in the gelatin films, caused mainly by bentonite polydispersion. A synergistic effect among tannic acid, bentonite and glycerol, which overall improved the measured gelatin film properties, was found. The best film formulation was that with 40, 150 and 250 g kg(-1) gelatin of tannic acid, bentonite and glycerol respectively, displaying a tensile strength of 38 MPa, an elongation at break of 136%, water vapor permeability of 1.28 × 10(-12) g (Pa s m)(-1) and solubility of 23.4%. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. The Lower Silurian Osmundsberg K-bentonite. Part I: Stratigraphic position, distribution, and palaeogeographic significance

    USGS Publications Warehouse

    Bergstrom, Stig M.; Huff, W.D.; Kolata, Dennis R.

    1998-01-01

    A large number of Lower Silurian (Llandovery) K-bentonite beds have been recorded from northwestern Europe, particularly in Baltoscandia and the British Isles, but previous attempts to trace single beds regionally have yielded inconclusive results. The present study suggests that based on its unusual thickness, stratigraphic position and trace element geochemistry, one Telychian ash bed, the Osmundsberg K-bentonite, can be recognized at many localities in Estonia, Sweden and Norway and probably also in Scotland and Northern Ireland. This bed, which is up to 115 cm thick, is in the lower-middle turriculatus Zone. The stratigraphic position, thickness variation and geographic distribution of the Osmundsberg K-bentonite are illustrated by means of 12 selected Llandovery successions in Sweden, Estonia, Norway, Denmark, Scotland and Northern Ireland. In Baltoscandia, the Osmundsberg K-bentonite shows a trend of general thickness increase in a western direction suggesting that its source area was located in the northern Iapetus region between Baltica and Laurentia. Because large-magnitude ash falls like the one that produced the Osmundsberg K-bentonite last at most a few weeks, such an ash bed may be used as a unique time-plane for a variety of regional geological and palaeontological studies.

  4. Influence of Kaolin in Fly Ash Based Geopolymer Concrete: Destructive and Non-Destructive Testing

    NASA Astrophysics Data System (ADS)

    Yahya, Z.; Abdullah, M. M. A. B.; Ramli, N. Mohd; Burduhos-Nergis, D. D.; Razak, R. Abd

    2018-06-01

    Development of geopolymer concrete is mainly to reduce the production of ordinary Portland cement (OPC) that adverse the natural effect. Fly ash is a by-product collected from electrical generating power plant which resulted from burning pulverized coal. Since fly ash is waste materials, it can be recycled for future advantages particularly as pozzolanic materials in construction industry. This study focused on the feasibility of fly ash based geopolymer concrete to which kaolin has been added. The main constituents of geopolymer production for this study were class F fly ash, sodium silicate and sodium hydroxide (NaOH) solution. The concentration of NaOH solution was fixed at 12 Molar, ratio of fly ash/alkaline activator and sodium silicate/NaOH fixed at 1.5 and 2.5, respectively. Kaolin was added in range 5% to 15% from the mass of fly ash and all the samples were cured at room temperature. Destructive and non-destructive test were performed on geopolymer concrete to evaluate the best mix proportions that yield the highest strength as well as the quality of the concrete. Compressive strength, flexural strength, rebound hammer and ultrasonic pulse velocity (UPV) result have been obtained. It shown that 5% replacement of kaolin contributed to maximum compressive strength and flexural strength of 40.4 MPa and 12.35 MPa at 28 days. These result was supported by non-destructive test for the same mix proportion.

  5. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    NASA Astrophysics Data System (ADS)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  6. Modeling of Coupled Thermo-Hydro-Mechanical-Chemical Processes for Bentonite in a Clay-rock Repository for Heat-generating Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Xu, H.; Rutqvist, J.; Zheng, L.; Birkholzer, J. T.

    2016-12-01

    Engineered Barrier Systems (EBS) that include a bentonite-based buffer are designed to isolate the high-level radioactive waste emplaced in tunnels in deep geological formations. The heat emanated from the waste can drive the moisture flow transport and induce strongly coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes within the bentonite buffer and may also impact the evolution of the excavation disturbed zone and the sealing between the buffer and walls of an emplacement tunnel The flow and contaminant transport potential along the disturbed zone can be minimized by backfilling the tunnels with bentonite, if it provides enough swelling stress when hydrated by the host rock. The swelling capability of clay minerals within the bentonite is important for sealing gaps between bentonite block, and between the EBS and the surrounding host rock. However, a high temperature could result in chemical alteration of bentonite-based buffer and backfill materials through illitization, which may compromise the function of these EBS components by reducing their plasticity and capability to swell under wetting. Therefore, an adequate THMC coupling scheme is required to understand and to predict the changes of bentonite for identifying whether EBS bentonite can sustain higher temperatures. More comprehensive links between chemistry and mechanics, taking advantage of the framework provided by a dual-structure model, named Barcelona Expansive Model (BExM), was implemented in TOUGHREACT-FLAC3D and is used to simulate the response of EBS bentonite in in clay formation for a generic case. The current work is to evaluate the chemical changes in EBS bentonite and the effects on the bentonite swelling stress under high temperature. This work sheds light on the interaction between THMC processes, evaluates the potential deterioration of EBS bentonite and supports the decision making in the design of a nuclear waste repository in light of the maximum allowance

  7. Alginate-immobilized bentonite clay: adsorption efficacy and reusability for Cu(II) removal from aqueous solution.

    PubMed

    Tan, Wei Shang; Ting, Adeline Su Yien

    2014-05-01

    This study evaluated the use of alginate-immobilized bentonite to remove Cu(II) as an alternative to mitigate clogging problems. The adsorption efficacy (under the influence of time, pH and initial Cu(II) concentration) and reusability of immobilized-bentonite (1% w/v bentonite) was tested against plain alginate beads. Results revealed that immobilized bentonite demonstrated significantly higher sorption efficacy compared to plain alginate beads with 114.70 and 94.04 mg Cu(II) adsorbed g(-1) adsorbent, respectively. Both sorbents were comparable in other aspects where sorption equilibrium was achieved within 6 h, with optimum pH between pH 4 and 5 for adsorption, displayed maximum adsorption capacity at initial Cu(II) concentrations of 400 mg l(-1), and demonstrated excellent reusability potential with desorption greater than 90% throughout three consecutive adsorption-desorption cycles. Both sorbents also conformed to Langmuir isotherm and pseudo-second order kinetic model. Immobilized bentonite is therefore recommended for use in water treatments to remove Cu(II) without clogging the system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Effect of kaolin addition on the performance of controlled low-strength material using industrial waste incineration bottom ash.

    PubMed

    Naganathan, Sivakumar; Razak, Hashim Abdul; Hamid, Siti Nadzriah Abdul

    2010-09-01

    Incineration of industrial waste produces large quantities of bottom ash which are normally sent to secured landfill, but is not a sustainable solution. Use of bottom ash in engineering applications will contribute to sustainability and generate revenue. One way of using the industrial waste incineration bottom ash is in controlled low-strength material (CLSM). Use of bottom ash in CLSM has problems related to bleeding and excessive strength development and so an additive has to be used to control bleeding and strength development. The main objective of this research is to study the effect of kaolin addition on the performance of CLSM made using industrial waste incineration bottom ash. CLSM mixes were made with bottom ash, cement, and refined kaolin. Various tests were performed on the CLSM in fresh and hardened states including compressive strength, water absorption, California bearing ratio (CBR) and the tests for concentration of leachable substances on the bleed and leachate. The compressive strength of CLSM tested ranged from 0.11 to 9.86 MPa. CBR values ranged from 6 to 46, and water absorption values from 12 to 36%. It was shown that the addition of kaolin delayed the initial setting time of CLSM mixtures, reduced bleeding, lowered the compressive strength, and increased the values of water absorption, sorption, and initial surface absorption. The CLSM tested did not have corrosivity. It was shown that the hardened CLSM was non hazardous, and the addition of kaolin increased the concentration of heavy metals and salts in the bleed and leachate.

  9. Comparing Kaolin and Pinolene to Improve Sustainable Grapevine Production during Drought

    PubMed Central

    Belfiore, Nicola; Gaiotti, Federica; Lovat, Lorenzo; Sansone, Luigi; Poni, Stefano; Tomasi, Diego

    2016-01-01

    Viticulture is widely practiced in dry regions, where the grapevine is greatly exposed to water stress. Optimizing plant water use efficiency (WUE) without affecting crop yield, grape and wine quality is crucial to limiting use of water for irrigation and to significantly improving viticulture sustainability. This study examines the use in vineyards of particle film technology (engineered kaolin) and compares it to a film-forming antitranspirant (pinolene), traditionally used to limit leaf water loss, and to an untreated control. The trial was carried out under field conditions over three growing seasons, during which moderate to very severe plant water stress (down to -1.9 MPa) was measured through stem water potential. Leaf stomatal conductance (gs) and photosynthesis rate (An) were measured during the seasons and used to compute intrinsic WUE (WUEi, defined as An/gs ratio). Leaf temperature was also recorded and compared between treatments. Bunch quantity, bunch and berry weight, sugar accumulation, anthocyanin and flavonoid contents were measured. Finally, microvinifications were performed and resultant wines subjected to sensory evaluation.Results showed that the use of kaolin increased grapevine intrinsic WUE (+18% on average as compared to unsprayed vines) without affecting berry and bunch weight and quantity, or sugar level. Anthocyanin content increased (+35%) in kaolin treatment, and the wine was judged more attractive (p-value <0.05) and slightly more appreciated (p-value < 0.1) than control. Pinolene did not increase WUEi, limiting An more than gs; grapes with this treatment contained lower sugar and anthocyanin content than control, and the obtained wine was the least appreciated. This study demonstrates that particle film technology can improve vine WUEi and wine quality at the same time, while traditional antitranspirants were not as effective for these purposes. This positive effect can be used in interaction with other already-demonstrated uses of

  10. Prevention of poison ivy and poison oak allergic contact dermatitis by quaternium-18 bentonite.

    PubMed

    Marks, J G; Fowler, J F; Sheretz, E F; Rietschel, R L

    1995-08-01

    Poison ivy and poison oak are the most common causes of allergic contact dermatitis in North America. We investigated whether a new topical lotion containing 5% quaternium-18 bentonite prevents experimentally induced poison ivy and poison oak allergic contact dermatitis. A single-blind, paired comparison, randomized, multicenter investigation was used to evaluate the effectiveness and safety of quaternium-18 bentonite lotion in preventing experimentally induced poison ivy and poison oak allergic contact dermatitis in susceptible volunteers. One hour before both forearms were patch tested with urushiol, the allergenic resin from poison ivy and poison oak, 5% quaternium-18 bentonite lotion was applied on one forearm. The test patches were removed after 4 hours and the sites interpreted for reaction 2, 5, and 8 days later. The difference in reactions between treated and untreated patch test sites was statistically analyzed. Two hundred eleven subjects with a history of allergic contact dermatitis to poison ivy and poison oak were studied. One hundred forty-four subjects had positive reactions to urushiol. The test sites pretreated with quaternium-18 bentonite lotion had absent or significantly reduced reactions to the urushiol compared with untreated control sites (p < 0.0001) on all test days. When it occurred, the reaction consistently appeared later on treated than on control sites (p < 0.0001). One occurrence of mild, transient erythema at the application site was the only side effect from the quaternium-18 bentonite lotion. Quaternium-18 bentonite lotion was effective in preventing or diminishing experimentally produced poison ivy and poison oak allergic contact dermatitis.

  11. Ordovidan K-bentonites in the Precordillera of San Juan and its tectomasmatic significance

    USGS Publications Warehouse

    Cingolani, C.A.; Huff, W.; Bergstrom, S.; Kolata, D.

    1997-01-01

    A succession of approximately 35 early Middle Ordovician K-bentonite beds are exposed in the Precordillera region near the town of Jachal, in San Juan Province (at Cerro Viejo and La Chilca sections). They occur in argillaceous limestone in the upper part of the San Juan Limestone and in the interbedded shales and mudstones at the base of the overlying Los Azules Formation. Total thickness of the K-bentonite-bearing interval is 23 m and individual beds range from 1 to 65 cm thick. An essentially Arenig-Llanvirn age for the K-bentonite succession is indicated by the presence of graptolites diagnostic of the Paraglossograptus tentaculatus Zone and conodonts indicating the Eoplacognathus suecicus Zone. The bentonites consist mainly of Rl ordered illite/smectite, characteristic of most of the lower Paleozoic K-bentonites, plus volcanogenic crystals. Similar to other K-bentonites, these probably represent the distal, glass-rich portion of fall-out ash beds derived from collision zone explosive volcanism. The geochemical data and preliminary plots on the magmatic discrimination diagram indicate the parental magma was of rhyolite to trachyandesite composition. Tectonic discrimination diagrams show the setting of Cerro Viejo ash layers as falling on the boundary between volcanic arc and within plate rocks, typical of collision margin felsic volcanic rocks. U-Pb isotope dating for two zircon fractions from one sample show a lower concordia intercept of 461, +7-10 Ma coincident with the biostratigraphic age. Thus, they have important implications for the origin and early history of the allochtonous Precordillera terrane and the Pacific margin of South America. Furthermore, they are potentially important in interpretations of the paleogeographic relations of Laurentia and Gondwana during Ordovician time. ?? 1997 Asociacio??n Geolo??gica Argentina.

  12. The effects of Bentonite and Calendula on the improvement of infantile diaper dermatitis

    PubMed Central

    Adib-Hajbaghery, Mohsen; Mahmoudi, Mansoreh; Mashaiekhi, Mahdi

    2014-01-01

    Background: Diaper dermatitis is one of the most common skin disorders of infancy and childhood. The present study aimed to compare the effects of Bentonite and Calendula on the improvement of diaper dermatitis in infants. Materials and Methods: A double-blind randomized controlled trial, which was conducted on 60 out-patient infants referred to health care centers or pediatric clinics in Khomein city and diagnosed with diaper dermatitis. Data were collected by checklist and observation, and analyzed using t-test, Chi-square, and Fisher's exact test. Results: Mean (standard error) age of the total sample was 6.55 ± 0.69 months. Totally, 93.3% of lesions in the Bentonite group started its recovery in the first 6 h, while this rate was 40% in Calendula group (P < 0.001). Furthermore, 90% of infants in the Bentonite group and 36.7% in the Calendula group were improved completely in the first 3 days (P < 0.001). Conclusion: Bentonite was effective on the improvement of diaper dermatitis, and also had faster effects compared with Calendula. PMID:25097603

  13. Preparation of immobilized glucose oxidase wafer enzyme on calcium-bentonite modified by surfactant

    NASA Astrophysics Data System (ADS)

    Widi, R. K.; Trisulo, D. C.; Budhyantoro, A.; Chrisnasari, R.

    2017-07-01

    Wafer glucose oxidase (GOx) enzymes was produced by addition of PAH (Poly-Allyamine Hydrochloride) polymer into immobilized GOx enzyme on modified-Tetramethylammonium Hydroxide (TMAH) 5%-calsium-bentonite. The use of surfactant molecul (TMAH) is to modify the surface properties and pore size distribution of the Ca-bentonite. These properties are very important to ensure GOx molecules can be bound on the Ca-bentonit surface to be immobilized. The addition of the polymer (PAH) is expected to lead the substrates to be adsorbed onto the enzyme. In this study, wafer enzymes were made in various concentration ratio (Ca-bentonite : PAH) which are 1:0, 1:1, 1:2 and 1:3. The effect of PAH (Poly-Allyamine Hydrochloride) polymer added with various ratios of concentrations can be shown from the capacitance value on LCR meter and enzyme activity using DNS method. The addition of the polymer (PAH) showed effect on the activity of GOx, it can be shown from the decreasing of capacitance value by increasing of PAH concentration.

  14. Strength characteristics of lightly solidified dredged marine clay admixed with bentonite

    NASA Astrophysics Data System (ADS)

    Ariffin, Syazwana Tajul; Chan, Chee-Ming

    2017-11-01

    Strength characteristic is a significant parameter in measuring the effect of soil improvement and effective composition of solidification. In this study, the dredged marine sediment (DMS) collected from Kuala Perlis (Malaysia) was examined to determine its strength characteristics under light cement solidification with bentonite. Dredged marine clay generally has the low shear strength and high void ratio, and consists mainly of soil particles of the fine-grained type. As a discarded geo-waste, it can be potentially treated to for reuse as a backfill material instead of being disposed of, hence reducing the negative impact on the environment. Physico-chemical parameters of the dredged sample were first determined, then solidification was carried out to improve the engineering properties by admixing ordinary Portland cement (OPC) as the binder and bentonite as a volume enhancer to the soil. The DMS was treated with the addition of 3 % and 6 % cement and bentonite within the range of 0-30 %. The specimens were cured at room temperature for 3, 7 and 14 days. The strength gain was measured by unconfined compression test and vane shear test. The laboratory test results were analyzed to establish the relationship between strength properties and solidification specifications. In summary, the strength of specimens increased with the increase of the quantity of bentonite and cement to get the effective composition of the specimen.

  15. Correlation of Mohawkian (Ordovician) K-bentonites in post-Black River rocks of Ohio, Kentucky, and Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, G.A.; Carlton, R.W.; Bergstroem, S.M.

    1992-01-01

    One to 10 K-bentonites are recognized in the Curdsville and Logana Members of the Lexington Limestone of Kentucky and southwestern Ohio and in coeval strata in west-central and northwestern Ohio and southeastern Michigan. These beds occur in the Phragmodus undatus and Amorphognathus tyaerensis conodont zones and the Orthograptus ruedemanni and Climacograptus spiniferus graptolite zones. Individual beds range in thickness from 1 mm to 30 cm and occur 16 cm to 19 m above the base of the Lexington Limestone and equivalents. Seventy-five percent of the observed K-bentonites occur in three narrow stratigraphic intervals. Some K-bentonites are traceable over parts ofmore » Ohio but insufficient data from northern Kentucky and west-central Ohio complicate regional lithostratigraphic correlation. Conodont biostratigraphy suggests that each k-bentonite complex is correlative regionally. Most conodont species range throughout all, or most, of the study interval but the ranges of Belodina compressa, Polyplacognathus ramosus, and Amorphognathus tyaerensis show only minor overlap. Preliminary correlation suggests that the oldest K- bentonite complex occurs in the interval characterized by B. compressa, the second complex in the P. Ramosus interval, and the third complex in the A. tyaerensis interval. This study provides the basis for potential correlation with coeval K-bentonites in areas outside of the study area. Also it provides an enhanced understanding of the lithostratigraphy and conodont biofacies of this complex stratigraphic interval. The K-bentonite succession also adds information on the timing of the initiation of the Sebree Trough.« less

  16. Removal of lead and zinc ions from water by low cost adsorbents.

    PubMed

    Mishra, P C; Patel, R K

    2009-08-30

    In this study, activated carbon, kaolin, bentonite, blast furnace slag and fly ash were used as adsorbent with a particle size between 100 mesh and 200 mesh to remove the lead and zinc ions from water. The concentration of the solutions prepared was in the range of 50-100 mg/L for lead and zinc for single and binary systems which are diluted as required for batch experiments. The effect of contact time, pH and adsorbent dosage on removal of lead and zinc by adsorption was investigated. The equilibrium time was found to be 30 min for activated carbon and 3h for kaolin, bentonite, blast furnace slag and fly ash. The most effective pH value for lead and zinc removal was 6 for activated carbon. pH value did not effect lead and zinc removal significantly for other adsorbents. Adsorbent doses were varied from 5 g/L to 20 g/L for both lead and zinc solutions. An increase in adsorbent doses increases the percent removal of lead and zinc. A series of isotherm studies was undertaken and the data evaluated for compliance was found to match with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanism, the kinetic models were tested, and it follows second order kinetics. Kinetic studies reveals that blast furnace slag was not effective for lead and zinc removal. The bentonite and fly ash were effective for lead and zinc removal.

  17. RADIOLOGICAL IMPACTS ASSESSMENT FOR WORKERS IN CERAMIC INDUSTRY IN SERBIA.

    PubMed

    Todorovic, Nataša; Mrda, Dušan; Hansman, Jan; Todorovic, Slavko; Nikolov, Jovana; Krmar, Miodrag

    2017-11-01

    Studies have been carried out to determine the natural radioactivity in some materials used in ceramic industry (zircon, zirkosil, Zircobit MO/S, zircon silicate, zirklonil frit, hematite, bentonite, wollastonite, raw kaolin, kaolinized granite, sileks ball, feldspar, pigment, white base serigraphic, engobe) and their associated radiation hazard. The external hazard index, Hex, values, radium equivalent activity, Raeq, total absorbed dose rates, D and annual effective dose, De were derived for all measured materials and compared with the recommended values to assess the external radiation hazards to workers who worked in ceramic industries in Serbia. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    NASA Astrophysics Data System (ADS)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  19. Preparation and Characterization of Dabco (1,4-Diazabicyclo [2.2.2]octane) modified bentonite: Application for Congo red removal

    NASA Astrophysics Data System (ADS)

    Taher, Tarmizi; Rohendi, Dedi; Mohadi, Risfidian; Lesbani, Aldes

    2018-01-01

    Natural bentonite provided from Sarolangun deposit was modified with 1,4-Diazabicyclo[2.2.2]octane (Dabco) to form a new class of porous material. Prior further modification, the natural bentonite was cleaned up and activated by NaCl to remove the impurities and increase the bentonite nature. Dabco modified bentonite (Dabco-bent) was prepared by exchanging the inorganic cation placed in the interlayer space of the montmorillonite mineral structure with the 0.01 M Dabco1+ at pH 6. The modified bentonite products were characterized using X-Ray powder diffraction and FT-IR to monitor the change of the bentonite crystallinity and function group due to the modification process. The XRD result confirmed that during the modification process, the d(001) of smectite peak at 2q around 6° was shifted. After the modification, the d(001) reflection of the montmorillonite interlayer was shifted 0.36° to the left indicating that the interlayer space of the montmorillonite has been expanded during the modification process. The FTIR spectra of Dabco modified bentonite exhibit no significantly different with the host bentonite. However, the presence of the new band at the wavenumber around 3000 and 2800 cm-1 indicates that the Dabco molecule has been successfully inserted to the bentonite molecule. The Congo red adsorption experiment was performed onto Dabco-bent product by batch technique. The experiment data described that kinetic model for Congo red adsorption onto Dabco-bent was adequately followed the second-order kinetic model and well described by Freundlich adsorption isotherm model.

  20. Potential of Kaolin-based Particle Film Barriers for Formosan Subterranean Termite (Isoptera: Rhinotermitidae) Control

    USDA-ARS?s Scientific Manuscript database

    Effects of three particle film products on Formosan subterranean termites, Coptotermes formosanus Shiraki, were evaluated in feeding, tunneling, and contact assays. The particle films, hydrophobic M96-018 and hydrophilic Surround and Surround WP are based on the inert clay mineral kaolin. In 2-week ...

  1. Effects of Radiation and Temperature on Iodide Sorption by Surfactant-Modified Bentonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choung, Sungwook; Kim, Min Kyung; Yang, Jungseok

    2014-08-04

    Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of themore » SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation (60Co) resulted in significantly (~2–10 times) lower iodide Kd values for the SMB. The results of Fourier transform infrared spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.« less

  2. N/Fe-TiO2 doped nanoparticles loaded on bentonite for increased photocatalytic activity for the degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Espenilla, Mel Bryan L.; Magyaya, Ryan Carl S.; Conato, Marlon T.

    2018-05-01

    Photocatalyst materials based on Philippine bentonite-titanium oxide composites and their ability to degrade organic pollutants is reported. Nanosized-titanium dioxide (TiO2) was synthesized by sol-gel method from titanium tetraisopropoxide. This was then incorporated in the Philippine bentonite via hydrothermal methods. In order to shift the absorbance of the TiO2 to the visible region doping was done using iron and nitrogen ions. The hydrodynamic radius of the synthesized TiO2 was analyzed using a zeta-sizer and was found to be around 70 nm. The photocatalytic efficiency of the TiO2/bentonite, N-TiO2/bentonite, Fe-TiO2/bentonite and N-Fe-TiO2/bentonite was evaluated using a photocatalytic reactor. It was found out that the N-Fe-TiO2/bentonite to be the most efficient with 22% degradation of the model pollutant after 80 minutes. FT-IR analysis was done to determine the bonding of the different components. Scanning electron microscopy and atomic force microscopy analysis was also performed to characterize the products.

  3. Co-cracking of real MSW into bio-oil over natural kaolin

    NASA Astrophysics Data System (ADS)

    Gandidi, I. M.; Susila, M. D.; Pambudi, N. A.

    2017-03-01

    Municipal solid waste (MSW) is a potential material that can be converted into bio-oil through thermal degradation process or pyrolysis. The efficiency and productivity of pyrolysis can be increased with the use of natural catalyst like kaolin. The addition of catalyst also reduces the overall cost of conversion process. In this study conversion of MSW into Bio Fuel using Pyrolysis in the presence of of natural kaolin as catalyst has been investigated for 60 min at 400°C temperature. During the process 0.5 w/w catalyst to MSW ratio was maintained. Gas chromatography-mass spectrometry (GC-MS) was used to analyse the chemical composition of bio fuel. It is found that bio-oil production increases substantially with the use of catalyst. It is observed that the production of bio-oil is 23.6 % with the use of catalyst in process, which was only 15.2 % without the use of catalyst. The hydrocarbon range distribution of oil produced through pyrolysis reveals that gasoline and diesel fuel (C5-C20) are its main constituents. The functional group detected in bio-oil by GC-MS analysis is similar to that of diesel-48 in which paraffin and olefin are major mass species.

  4. Clays, specialty

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.

  5. Dustiness behaviour of loose and compacted Bentonite and organoclay powders: What is the difference in exposure risk?

    NASA Astrophysics Data System (ADS)

    Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas

    2009-01-01

    Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil®5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil®5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil®5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil®5) as well as one (Nanofil®5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil®5), constant rate (compacted Nanofil®5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil®5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically

  6. Effects of feeding bentonite clay upon ochratoxin A-induced immunosuppression in broiler chicks.

    PubMed

    Khatoon, Aisha; Khan, Muhammad Zargham; Abidin, Zain Ul; Bhatti, Sheraz Ahmed

    2018-03-01

    A presence of mycotoxins in feed is one of the most alarming issues in the poultry feed industry. Ochratoxins, produced by several Aspergillus and Penicillium species, are important mycotoxin regarding the health status of poultry birds. Ochratoxins are further classified into to several subtypes (A, B, C, etc) depending on their chemical structures, but ochratoxin A (OTA) is considered the most important and toxic. Bentonite clay, belonging to phyllosilicates and formed from weathering of volcanic ashes, has adsorbent ability for several mycotoxins. The present study was designed to study the effects of bentonite clay upon OTA-induced immunosuppression in broiler chicks. For this, 480 day-old broiler chicks were procured from a local hatchery and then different combinations of OTA (0.15, 0.3, or 1.0 mg/kg) and bentonite clay (5, 10, and 20 g/kg) were incorporated into their feed. At 13, 30, and 42 days of age, parameters such as antibody responses to sheep red blood cells, in situ lymphoproliferative responses to mitogen (PHA-P), and in situ phagocytic activity (i.e., via carbon clearance) were determined respectively. The results indicated there was a significant reduction of total antibody and immunoglobulin titres, lymphoproliferative responses, and phagocytic potential in OTA-treated birds, suggesting clear immunosuppression by OTA in birds in a dose-dependent manner. These results were also significantly lower in all combination groups (OTA with bentonite clay), suggesting few to no effects of feeding bentonite clay upon OTA- induced alterations in different immune parameters.

  7. Preparation of Fe3O4/Bentonite Nanocomposite from Natural Iron Sand by Co-precipitation Method for Adsorbents Materials

    NASA Astrophysics Data System (ADS)

    Sebayang, Perdamean; Kurniawan, Candra; Aryanto, Didik; Arief Setiadi, Eko; Tamba, Konni; Djuhana; Sudiro, Toto

    2018-03-01

    An adsorption method is one of the effective ways to filter the heavy metals wastes in aqueous system. In this paper, the Fe3O4/bentonite nanocomposites were successfully prepared from natural iron sand by co-precipitation method. The chemical process was carried out by dissolving and hot stirring the milled iron sand and bentonite in acid solution and precipitating it by NH4OH. The sediment was then washed using distilled water to neutralize pH and dried at 100 °C for 5 hours to produce Fe3O4/bentonite powders. The samples were characterized by XRD, FTIR, BET, TEM, VSM and AAS. All samples were composed by Fe3O4 single phase with a spinnel structure and lattice parameter of 8.373 Å. The transmittance peak of FTIR curve proved that the Fe3O4 particles and bentonite had a molecular bonding. The addition of bentonite to Fe3O4 nanoparticles generally reduced the magnetic properties of Fe3O4/bentonite nanocomposites. The optimum condition of 30 wt% bentonite resulted 105.9 m2/g in surface area, 14 nm in an average particle size and 3.2 nm in pore size. It can be used as Cu and Pb adsorbent materials.

  8. Ordovician K-bentonites in the Argentine Precordillera: relations to Gondwana margin evolution

    USGS Publications Warehouse

    Huff, W.D.; Bergstrom, Stig M.; Kolata, Dennis R.; Cingolani, C.A.; Astini, R.A.

    1998-01-01

    This paper is included in the Special Publication entitled 'The proto- Andean margin of Gondwana', edited by R.J. Pankhurst and C.W. Rapela. Ordovician K-bentonites have now been recorded from >20 localities in the vicinity of the Argentine Precordillera. Most occur in the eastern thrust belts, in the San Juan Limestone and the overlying the Gualcamayo Formation, but a few ash beds are known also from the central thrust belts. The oldest occur in the middle Arenig I, victoriae lunatus graptolite (Oe. evae conodont) Zone, and the youngest in the middle Llanvirn P. elegans (P. suecicus) Zone. Mineralogical characteristics, typical of other Ordovician K-bentonites, include a matrix of illite/smectite mixed-layer clay and a typical felsic volcanic phenocryst assemblage: biotite, beta-form quartz, alkali and plagioclase feldspar, apatite, and zircon, with lesser amounts of hornblende, clinopyroxene, titanite and Fe-Ti oxides. The proportions of the mineral phases and variations in their crystal chemistry are commonly unique to individual (or small groups of) K-bentonite beds. Glass melt inclusions preserved in quartz are rhyolitic in composition. The sequence is unique in its abundance of K-bentonite beds, but a close association between the Precordillera and other Ordovician sedimentary basins cannot be established. The ash distribution is most consistent with palaeogeographical reconstructions in which early Ordovician drifting of the Precordillera occurred in proximity to one or more volcanic arcs, and with eventual collision along the Andean margin of Gondwana during the mid-Ordovician Ocloyic event of the Famatinian orogeny. The Puna-Famatina terrane northeast of the Precordillera might have served as the source of the K-bentonite ashes, possibly in concert with active arc magmatism on the Gondwana plate itself.

  9. A facile method to modify bentonite nanoclay with silane

    NASA Astrophysics Data System (ADS)

    Abeywardena, Sujani B. Y.; Perera, Srimala; Nalin de Silva, K. M.; Tissera, Nadeeka P.

    2017-07-01

    Immobilization of smectite clay onto a desirable surface has received much attention, since its nanospace can be utilized for many applications in material science. Here, we present an efficient method to functionalize surface of bentonite nanoclay (BNC) through the grafting of 3-aminotriethoxysilane (APTES). Infrared spectroscopy and elemental analysis confirmed the presence of organic chains and amine groups in modified nanoclay. XRD analysis confirmed grafting of APTES on the surface of bentonite nanoclay without intercalation. The accomplishment of the surface modification was quantitatively proved by TGA analysis. Modified BNC can covalently couple with different material surfaces, allowing its nanospace to be utilized for intercalation of cations, bio-molecules, and polymeric materials, to be used in advanced military aerospace, pharmaceuticals, and many other commercial applications.

  10. Admixing dredged marine clay with cement-bentonite for reduction of compressibility

    NASA Astrophysics Data System (ADS)

    Rahilman, Nur Nazihah Nur; Chan, Chee-Ming

    2017-11-01

    Cement-based solidification/stabilization is a method that is widely used for the treatment of dredged marine clay. The key objective for solidification/stabilization is to improve the engineering properties of the originally soft, weak material. Dredged materials are normally low in shear strength and bearing capacity while high incompressibility. In order to improve the material's properties for possible reuse, a study on the one-dimensional compressibility of lightly solidified dredged marine clay admixed with bentonite was conducted. On the other hand, due to the viscous nature, particularly the swelling property, bentonite is a popular volumising agent for backfills. In the present study, standard oedometer test was carried out to examine the compressibility of the treated sample. Complementary strength measurements were also conducted with laboratory vane shear setup on both the untreated and treated dredged marine clay. The results showed that at the same binder content, the addition of bentonite contributed significantly to the reduction of compressibility and rise in undrained shear strength. These improved properties made the otherwise discarded dredged marine soils potentially reusable for reclamation works, for instance.

  11. Nanoscale Zero-Valent Iron Decorated on Bentonite/Graphene Oxide for Removal of Copper Ions from Aqueous Solution.

    PubMed

    Shao, Jicheng; Yu, Xiaoniu; Zhou, Min; Cai, Xiaoqing; Yu, Chuang

    2018-06-04

    The removal efficiency of Cu(II) in aqueous solution by bentonite, graphene oxide (GO), and nanoscale iron decorated on bentonite (B-nZVI) and nanoscale iron decorated on bentonite/graphene oxide (GO-B-nZVI) was investigated. The results indicated that GO-B-nZVI had the best removal efficiency in different experimental environments (with time, pH, concentration of copper ions, and temperature). For 16 hours, the removal efficiency of copper ions was 82% in GO-B-nZVI, however, it was 71% in B-nZVI, 26% in bentonite, and 18% in GO. Bentonite, GO, B-nZVI, and GO-B-nZVI showed an increased removal efficiency of copper ions with the increase of pH under a certain pH range. The removal efficiency of copper ions by GO-B-nZVI first increased and then fluctuated slightly with the increase of temperature, while B-nZVI and bentonite increased and GO decreased slightly with the increase of temperature. Lorentz-Transmission Electron Microscope (TEM) images showed the nZVI particles of GO-B-nZVI dispersed evenly with diameters ranging from 10 to 86.93 nm. Scanning electron microscope (SEM) images indicated that the nanoscale iron particles were dispersed evenly on bentonite and GO with no obvious agglomeration. The q e,cal (73.37 mg·g -1 and 83.89 mg·g -1 ) was closer to the experimental value q e,exp according to the pseudo-second-order kinetic model. The q m of B-nZVI and GO-B-nZVI were 130.7 mg·g -1 and 184.5 mg·g -1 according to the Langmuir model.

  12. Corrosion of copper and authigenic sulfide mineral growth in hydrothermal bentonite experiments

    NASA Astrophysics Data System (ADS)

    Caporuscio, F. A.; Palaich, S. E. M.; Cheshire, M. C.; Jové Colón, C. F.

    2017-03-01

    The focus of this experimental work is to characterize interaction of bentonite with possible used-fuel waste container materials. Experiments were performed up to 300 °C at 150-160 bars for five to six weeks. Bentonite was saturated with a 1900 ppm K-Ca-Na-Cl-bearing water with Cu-foils. Copper rapidly degrades into chalcocite (CuS2) and minor covellite (CuS) in the presence of H2S. Chalcocite growth and corrosion pit depths were measured for four different experimental runs yielding corrosion rates between 8.8 and 116 μm/yr depending on duration of experiment, brine composition, and clay type (bentonite vs. Opalinus Clay). Results of this research show that although pit-corrosion is demonstrated on Cu substrates, experiments show that the reactions that ensue, and the formation of minerals that develop, are extraordinarily slow. This supports the use of Cu in nuclide-containment systems as a possible engineered barrier system material.

  13. Corrosion of copper and authigenic sulfide mineral growth in hydrothermal bentonite experiments

    DOE PAGES

    Caporuscio, F. A.; Palaich, Sarah E. M.; Cheshire, M. C.; ...

    2016-12-29

    The focus of this experimental paper is to characterize interaction of bentonite with possible used-fuel waste container materials. Experiments were performed up to 300 °C at 150–160 bars for five to six weeks. Bentonite was saturated with a 1900 ppm K-Ca-Na-Cl-bearing water with Cu-foils. Copper rapidly degrades into chalcocite (CuS 2) and minor covellite (CuS) in the presence of H 2S. Chalcocite growth and corrosion pit depths were measured for four different experimental runs yielding corrosion rates between 8.8 and 116 μm/yr depending on duration of experiment, brine composition, and clay type (bentonite vs. Opalinus Clay). Results of this researchmore » show that although pit-corrosion is demonstrated on Cu substrates, experiments show that the reactions that ensue, and the formation of minerals that develop, are extraordinarily slow. Finally, this supports the use of Cu in nuclide-containment systems as a possible engineered barrier system material.« less

  14. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    NASA Astrophysics Data System (ADS)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  15. Thermal properties of Bentonite Modified with 3-aminopropyltrimethoxysilane

    NASA Astrophysics Data System (ADS)

    Pramono, E.; Pratiwi, W.; Wahyuningrum, D.; Radiman, C. L.

    2018-03-01

    Chemical modifications of Bentonite (BNT) clay have been carried out by using 3-aminoprophyltrimethoxysilane (APS) in various solvent media. The degradation properties of products (BNTAPS) were characterized by thermogravimetric analysis (TGA). Samples were heated at 30 to 700°C with a heating rate 10 deg/min, and the total silane-grafted amount was determined by calculating the weight loss at 200 – 600°C. The thermogram of TGA showed that there were three main decomposition regions which are attributed to the elimination of physically adsorbed water, decomposition of silane and dehydroxylation of Bentonite. High weight loss attributed to the thermal decomposition of silane was observed between 200 to 550°C. Quantitative analysis of grafted silane results high silane loaded using a solvent with high surface energy, which indicates the type of solvent affected interaction and adsorption of APS in BNT platelets.

  16. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santiago, Denise Ester O.; Department of Chemical Engineering, University of the Philippines, Los Baños, College, Laguna 4031 Philippines; Pajarito, Bryan B.

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonitemore » decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.« less

  17. Effect Of Coir Fibres On The Compaction And Unconfined Compressive Strength Of Bentonite-Lime-Gypsum Mixture

    NASA Astrophysics Data System (ADS)

    Tilak B., Vidya; Dutta, Rakesh Kumar; Mohanty, Bijayananda

    2015-06-01

    This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite - lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.

  18. Thermal - Hydraulic Behavior of Unsaturated Bentonite and Sand-Bentonite Material as Seal for Nuclear Waste Repository: Numerical Simulation of Column Experiments

    NASA Astrophysics Data System (ADS)

    Ballarini, E.; Graupner, B.; Bauer, S.

    2015-12-01

    For deep geological repositories of high-level radioactive waste (HLRW), bentonite and sand bentonite mixtures are investigated as buffer materials to form a a sealing layer. This sealing layer surrounds the canisters and experiences an initial drying due to the heat produced by HLRW and a successive re-saturation with fluid from the host rock. These complex thermal, hydraulic and mechanical processes interact and were investigated in laboratory column experiments using MX-80 clay pellets as well as a mixture of 35% sand and 65% bentonite. The aim of this study is to both understand the individual processes taking place in the buffer materials and to identify the key physical parameters that determine the material behavior under heating and hydrating conditions. For this end, detailed and process-oriented numerical modelling was applied to the experiments, simulating heat transport, multiphase flow and mechanical effects from swelling. For both columns, the same set of parameters was assigned to the experimental set-up (i.e. insulation, heater and hydration system), while the parameters of the buffer material were adapted during model calibration. A good fit between model results and data was achieved for temperature, relative humidity, water intake and swelling pressure, thus explaining the material behavior. The key variables identified by the model are the permeability and relative permeability, the water retention curve and the thermal conductivity of the buffer material. The different hydraulic and thermal behavior of the two buffer materials observed in the laboratory observations was well reproduced by the numerical model.

  19. Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay

    NASA Astrophysics Data System (ADS)

    Mon, Alba; Samper, Javier; Montenegro, Luis; Naves, Acacia; Fernández, Jesús

    2017-02-01

    Radioactive waste disposal in deep geological repositories envisages engineered barriers such as carbon-steel canisters, compacted bentonite and concrete liners. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyper-alkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyper-alkaline plume at the concrete-clay interface. Here we present a non-isothermal multicomponent reactive transport model of the long-term (1 Ma) interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. Model results show that magnetite is the main corrosion product. Its precipitation reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The reduction of the porosity becomes especially relevant at t = 104 years. The zones affected by pore clogging at the canister-bentonite and concrete-clay interfaces at 1 Ma are approximately equal to 1 and 3.3 cm thick, respectively. The hyper-alkaline front (pH > 8.5) spreads 2.5 cm into the clay formation after 1 Ma. Our simulation results share the key features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Pore clogging at the canister-bentonite and concrete-clay interfaces; 2) Narrow alteration zones; and 3) Limited smectite dissolution after 1 Ma.

  20. Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay.

    PubMed

    Mon, Alba; Samper, Javier; Montenegro, Luis; Naves, Acacia; Fernández, Jesús

    2017-02-01

    Radioactive waste disposal in deep geological repositories envisages engineered barriers such as carbon-steel canisters, compacted bentonite and concrete liners. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyper-alkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyper-alkaline plume at the concrete-clay interface. Here we present a non-isothermal multicomponent reactive transport model of the long-term (1Ma) interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. Model results show that magnetite is the main corrosion product. Its precipitation reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The reduction of the porosity becomes especially relevant at t=10 4 years. The zones affected by pore clogging at the canister-bentonite and concrete-clay interfaces at 1Ma are approximately equal to 1 and 3.3cm thick, respectively. The hyper-alkaline front (pH>8.5) spreads 2.5cm into the clay formation after 1Ma. Our simulation results share the key features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Pore clogging at the canister-bentonite and concrete-clay interfaces; 2) Narrow alteration zones; and 3) Limited smectite dissolution after 1Ma. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Air and groundwater flow at the interface between fractured host rock and a bentonite buffer

    NASA Astrophysics Data System (ADS)

    Dessirier, B.; Jarsjo, J.; Frampton, A.

    2014-12-01

    Designs of deep geological repositories for spent nuclear fuel include several levels of confinement. The Swedish and Finnish concept KBS-3 targets for example sparsely fractured crystalline bedrock as host formation and would have the waste canisters embedded in an engineered buffer of compacted MX-80 bentonite. The host rock is a highly heterogeneous dual porosity material containing fractures and a rock matrix. Bentonite is a complex expansive porous material. Its water content and mechanical properties are interdependent. Beyond the specific physics of unsaturated flow and transport in each medium, the interface between them is critical. Detailed knowledge of the transitory two-phase flow regime, induced by the insertion of the unsaturated buffer in a saturated rock environment, is necessary to assess the performance of planned KBS-3 deposition holes. A set of numerical simulations based on the equations of two-phase flow for water and air in porous media were conducted to investigate the dynamics of air and groundwater flow near the rock/bentonite interface in the period following installation of the unsaturated bentonite buffer. We assume state of the two-phase flow parameter values for bentonite from laboratory water uptake tests and typical fracture and rock properties from the Äspö Hard rock laboratory (Sweden) gathered under several field characterization campaigns. The results point to desaturation of the rock domain as far as 10 cm away from the interface into matrix-dominated regions for up to 160 days. Similar observations were made during the Bentonite Rock Interaction Experiment (BRIE) at the Äspö HRL, with a desaturation sustained for even longer times. More than the mere time to mechanical and hydraulic equilibrium, the occurrence of sustained unsaturated conditions opens the possibility for biogeochemical processes that could be critical in the safety assessment of the planned repository.

  2. Conodont and k-bentonite stratigraphy across the Blackriveran/Trentonian (Ordovician) boundary, north-central New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie, S.A.; Bergstroem, S.M.

    1993-03-01

    Integrated conodont and K-bentonite stratigraphy at City Brook and Watertown, New York reveals a pattern that is correlatable to coeval strata in the Midcontinent. The portion of the City Brook section examined consists of upper Lowville Limestone (upper Blackriveran) unconformably overlain by King Falls Limestone (lower Trentonian). The Lowville conodont fauna is a typical Blackriveran assemblage dominated by neurodontiform (hyaline) species of Curtognathus and Erismodus in association with Belodina compressa, Drepanoistodus suberectus, Panderodus and Plectodina aculeatus. The King Falls conodont fauna is dominated by Phragmodus undatus in association with Dapsilodus cf. D. mutatus, Oistodus cf. O. venustus, Panderodus, Periodon cf.more » P. grandis and Scandodus. Blackriveran faunal elements are also present in low abundance throughout the King Falls. The King Falls fauna is present and dominant in a packstone at the top of the upper Lowville below the unconformity. This occurrence supports the idea that these faunas are to some degree facies controlled. Four K-bentonite beds are present, 3 in the Lowville and 1 in the King Falls. A 6-cm thick K-bentonite in the King Falls has the approximate stratigraphic position of the Hounsfield K-bentonite. The Watertown section examined consists of upper Lowville Limestone overlain conformably or para conformable by the Watertown Limestone. The conodont fauna in both the Lowville and Watertown is identical to the Lowville fauna from City Brook, but lacks any Trentonian faunal elements. There is a 6-cm thick K-bentonite in the Lowville in virtually the same stratigraphic position as the lowest K-bentonite in the City Brook section. The stratigraphic positions and conodont faunal patterns observed in the City Brook and Watertown sections are similar to those in coeval sections in the Midcontinent.« less

  3. Phenol hydroxylation on Al-Fe modified-bentonite: Effect of Fe loading, temperature and reaction time

    NASA Astrophysics Data System (ADS)

    Widi, R. K.; Budhyantoro, A.; Christianto, A.

    2017-11-01

    The present work reflects the study of the phenol hydroxylation reactions to synthesize hydroquinone and catechol on Al-Fe modified-bentonite. This study started with synthesizes the catalyst material based on the modified bentonite. Natural bentonite from Pacitan, Indonesia was intercalated with Cetyl-TetramethylammoniumBromida (CTMA-Br) followed by pillarization using Alumina. The pillared bentonite was then impregnated with Fe solution (0.01 M, 0.05 M, and 0.1 M). The solid material obtained was calcined at 723 K for 4 hours. All the materials were characterized using BET N2 adsorption. Their catalytic activity and selectivity were studied for phenol hydroxylation using H2O2 (30%). The reaction conditions of this reaction were as follows: ratio of phenol/H2O2 = 1:1 (molar ratio), concentration of phenol = 1 M and ratio of catalyst/phenol was 1:10. Reaction temperatures were varied at 333, 343 and 353 K. The reaction time was also varied at 3, 4 and 5 hours. The result shows that the materials have potential catalyst activity.

  4. Comparing the effects of Bentonite & Calendula on the improvement of infantile diaper dermatitis: A randomized controlled trial.

    PubMed

    Mahmoudi, Mansoreh; Adib-Hajbaghery, Mohsen; Mashaiekhi, Mahdi

    2015-12-01

    Infantile diaper dermatitis is a common, acute inflammatory reaction of the skin around diaper among infants. This study was undertaken to compare the effect of topical application of Bentonite and Calendula creams on the improvement of infantile diaper dermatitis. This double blind randomized controlled trial was undertaken on 100 patients of infantile diaper dermatitis. The 100 participants were randomly assigned into two groups of 50 each, and were prescribed the coded medicine. The mothers were trained to apply the cream and level of improvement was judged by observing the affected area on the first visit and then after three days of receiving treatment. The mean age of infants was 6.45±5.53 months in Calendula group and 7.35±6.28 months in Bentonite group. Overall, 88 per cent of lesions in the Bentonite group started improving in the first six hours while this rate was 54 per cent in Calendula group (P<0.001). The risk ratio for the improvement in the first six hours was 2.99 folds in the Bentonite group. Also, lesions in 86 per cent infants in the Bentonite group and 52 per cent in the Calendula group were completely improved in the first three days after treatment (P<0.001). Our results showed that in comparison with Calendula, Bentonite had faster healing effect and was more effective on the improvement of infantile diaper dermatitis (IRCT ID: IRCT 2012112811593N1).

  5. Comparing the effects of Bentonite & Calendula on the improvement of infantile diaper dermatitis: A randomized controlled trial

    PubMed Central

    Mahmoudi, Mansoreh; Adib-Hajbaghery, Mohsen; Mashaiekhi, Mahdi

    2015-01-01

    Background & objectives: Infantile diaper dermatitis is a common, acute inflammatory reaction of the skin around diaper among infants. This study was undertaken to compare the effect of topical application of Bentonite and Calendula creams on the improvement of infantile diaper dermatitis. Methods: This double blind randomized controlled trial was undertaken on 100 patients of infantile diaper dermatitis. The 100 participants were randomly assigned into two groups of 50 each, and were prescribed the coded medicine. The mothers were trained to apply the cream and level of improvement was judged by observing the affected area on the first visit and then after three days of receiving treatment. Results: The mean age of infants was 6.45±5.53 months in Calendula group and 7.35±6.28 months in Bentonite group. Overall, 88 per cent of lesions in the Bentonite group started improving in the first six hours while this rate was 54 per cent in Calendula group (P<0.001). The risk ratio for the improvement in the first six hours was 2.99 folds in the Bentonite group. Also, lesions in 86 per cent infants in the Bentonite group and 52 per cent in the Calendula group were completely improved in the first three days after treatment (P<0.001). Interpretation & conclusions: Our results showed that in comparison with Calendula, Bentonite had faster healing effect and was more effective on the improvement of infantile diaper dermatitis (IRCT ID: IRCT 2012112811593N1). PMID:26831423

  6. An upscaling method and a numerical analysis of swelling/shrinking processes in a compacted bentonite/sand mixture

    NASA Astrophysics Data System (ADS)

    Xie, M.; Agus, S. S.; Schanz, T.; Kolditz, O.

    2004-12-01

    This paper presents an upscaling concept of swelling/shrinking processes of a compacted bentonite/sand mixture, which also applies to swelling of porous media in general. A constitutive approach for highly compacted bentonite/sand mixture is developed accordingly. The concept is based on the diffuse double layer theory and connects microstructural properties of the bentonite as well as chemical properties of the pore fluid with swelling potential. Main factors influencing the swelling potential of bentonite, i.e. variation of water content, dry density, chemical composition of pore fluid, as well as the microstructures and the amount of swelling minerals are taken into account. According to the proposed model, porosity is divided into interparticle and interlayer porosity. Swelling is the potential of interlayer porosity increase, which reveals itself as volume change in the case of free expansion, or turns to be swelling pressure in the case of constrained swelling. The constitutive equations for swelling/shrinking are implemented in the software GeoSys/RockFlow as a new chemo-hydro-mechanical model, which is able to simulate isothermal multiphase flow in bentonite. Details of the mathematical and numerical multiphase flow formulations, as well as the code implementation are described. The proposed model is verified using experimental data of tests on a highly compacted bentonite/sand mixture. Comparison of the 1D modelling results with the experimental data evidences the capability of the proposed model to satisfactorily predict free swelling of the material under investigation. Copyright

  7. Evaluation of White Bentonite Modified by Acid Attack

    NASA Astrophysics Data System (ADS)

    Andrade, C. G. Bastos; Fermino, D. M.; Fernandes, M. G.; Valenzuela-Diaz, F. R.

    For industrial use, the smectite clays must be cleared of impurities, usually obtained by acid modification, using a high concentration solution of inorganic acid at temperatures under boiling point. In the present paper, a sample of white bentonite from Paraiba, Brazil, was modified by hydrochloric acid under moderate conditions (90°C, reaction times of 1, 6, 12, 18 and 24hours in close reactor, concentration of the aqueous solution of hydrochloric acid 1.5 M, acid solution/clay ratio of 1g/10mL). The purpose of these attacks is to reduce the concentration of impurities with minimal change in the clay minerals structure. The modified samples were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), Cation Exchange Capacity (CEC), Stereomicroscopy, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Detector (EDS). Thus, this modified bentonite tends to be a good economic and environmental alternative in manufacturing of products with high added value such as cosmetics and polymer/clay nanocomposites.

  8. Electroanalytical method for determination of lead(II) in orange and apple using kaolin modified platinum electrode.

    PubMed

    El Mhammedi, M A; Achak, M; Bakasse, M; Chtaini, A

    2009-08-01

    This paper reports on the use of platinum electrode modified with kaolin (K/Pt) and square wave voltammetry for analytical detection of trace lead(II) in pure water, orange and apple samples. The electroanalytical procedure for determination of the Pb(II) comprises two steps: the chemical accumulation of the analyte under open-circuit conditions followed by the electrochemical detection of the preconcentrated species using square wave voltammetry. The analytical performances of the extraction method has been explored by studying the incubating time, and effect of interferences due to other ions. During the preconcentration step, Pb(II) was accumulated on the surface of the kaolin. The observed detection and quantification limits in pure water were 3.6x10(-9)molL(-1) and 1.2x10(-8)molL(-1), respectively. The precision of the method was also determined; the results was 2.35% (n=5).

  9. Organophilic treatments of bentonite increase the adsorption of aflatoxin B1 and protect stem cells against cellular damage.

    PubMed

    Nones, Janaína; Nones, Jader; Poli, Anicleto; Trentin, Andrea Gonçalves; Riella, Humberto Gracher; Kuhnen, Nivaldo Cabral

    2016-09-01

    Bentonite clays exhibit high adsorptive capacity for contaminants, including aflatoxin B1 (AFB1), a mycotoxin responsible for causing severe toxicity in several species including pigs, poultry and man. Organophilic treatments is known to increase the adsorption capacity of bentonites, and the primary aim of this study was to evaluate the ability of Brazilian bentonite and two organic salts - benzalkonium chloride (BAC) and cetyltrimethylammonium bromide (CTAB) to adsorb AFB1. For this end, 2(2) factorial designs were used in order to analyze if BAC or CTAB was able to increase AFB1 adsorption when submitted in different temperature and concentration. Both BAC and CTAB treatment (at 30°C and 2% of salt concentration) were found to increase the adsorption of AFB1 significantly compared with untreated bentonite. After organophilic bentonite treatments with BAC or CTAB, a vibration of CH stretch (2850 and 2920cm(-1)) were detected. A frequency of the SiO stretch (1020 and 1090cm(-1)) was changed by intercalation of organic cation. Furthermore, the interlayer spacing of bentonite increases to 1.23nm (d001 reflection at 2θ=7.16) and 1.22 (d001 reflection at 2θ=7.22) after the addition of BAC and CTAB, respectively. Another aim of the study was to observe the effects of these two bentonite salts in neural crest stem cell cultures. The two materials that were created by organophilic treatments were not found to be toxic to stem cells. Furthermore the results indicate that the two materials tested may protect the neural crest stem cells against damage caused by AFB1. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Limits to the use of highly compacted bentonite as a deterrent for microbiologically influenced corrosion in a nuclear fuel waste repository

    NASA Astrophysics Data System (ADS)

    Stroes-Gascoyne, Simcha; Hamon, Connie J.; Maak, Peter

    Recent studies have suggested that microbial activity in highly compacted bentonite (⩾1600 kg/m 3) is severely suppressed. Therefore, it appears that the dry density of emplaced bentonite barriers in a geological repository for nuclear waste may be tailored such that a microbiologically unfavorable environment can be created adjacent to used fuel containers. This would ensure that microbiologically influenced corrosion is a negligible contributor to the overall corrosion process. However, this premise is valid only as long as the emplaced bentonite maintains a uniform high dry density (⩾1600 kg/m 3) because it has been shown that high dry density only suppresses microbial activity but not necessarily eliminates the viable microbial population in bentonite. In a repository, a reduction in the dry density of highly compacted bentonite may occur at a number of interface locations, such as placement gaps, contact regions with materials of different densities and contact points with water-carrying fractures in the rock. Experiments were carried out in our laboratory to examine the effects of a reduction in dry density (from 1600 kg/m 3 to about 1000 kg/m 3) on the recovery of microbial culturability in compacted bentonite. Results showed that upon expansion of compacted bentonite into a void, the resulting reduction in dry density stimulated or restored culturability of indigenous microbes. In a repository this would increase the possibility of in situ activity, which might be detrimental for the longevity of waste containers. Reductions in dry density, therefore, should be minimized or eliminated by adequate design and placement methods of compacted bentonite. Materials compliance models can be used to determine the required as-placed dry densities of bentonite buffer and gap fillings to achieve specific targets for long-term equilibrium dry densities for various container placement room designs. Locations where flowing fractures could be in contact with highly

  11. Sodium Bentonite-Based Fire Retardant Coatings Containing Starch

    USDA-ARS?s Scientific Manuscript database

    Sodium bentonite (SB) gel and foam coatings were tested for their ability to suppress the rate of heat increase at the surface of commercial lap siding. Starch was added to some treatments to determine whether it stabilized the coating and prevented vertical slumping. A commercial fire protection ge...

  12. Fly ash/Kaolin based geopolymer green concretes and their mechanical properties

    PubMed Central

    Okoye, F.N.; Durgaprasad, J.; Singh, N.B.

    2015-01-01

    Geopolymer concrete mixes were cast using fly ash, kaolin, sodium hydroxide, potassium hydroxide, sodium silicate and aggregates. Portland cement concrete (M30) was used as a reference sample. The effect of silica fume, temperature (40 °C, 60 °C, 80 °C, 100 °C and 120 °C), sodium and potassium hydroxides and different superplasticizers on the compressive strength are reported [1]. Maximum strength was found at 100 °C and 14 M alkali solution [1]. PMID:26693505

  13. Fly ash/Kaolin based geopolymer green concretes and their mechanical properties.

    PubMed

    Okoye, F N; Durgaprasad, J; Singh, N B

    2015-12-01

    Geopolymer concrete mixes were cast using fly ash, kaolin, sodium hydroxide, potassium hydroxide, sodium silicate and aggregates. Portland cement concrete (M30) was used as a reference sample. The effect of silica fume, temperature (40 °C, 60 °C, 80 °C, 100 °C and 120 °C), sodium and potassium hydroxides and different superplasticizers on the compressive strength are reported [1]. Maximum strength was found at 100 °C and 14 M alkali solution [1].

  14. Decreasing Ni, Cu, Cd, and Zn heavy metal magnetite-bentonite nanocomposites and adsorption isotherm study

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Zakeri Khatir, M.; Khodadadi Darban, A.; Meshkini, M.

    2018-04-01

    This present study was conducted to investigate the effect of magnetite-bentonite nanocomposite on heavy metal removal from an effluent. For this purpose, magnetite-bentonite nanocomposite was prepared through the chemical method and characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, followed by studying the effect of produced nanocomposite on the removal of Ni2+, Cu2+, Cd2+, and Zn2+ heavy metal ions. The results showed that adsorption capacity of magnetite-bentonite nanocomposites for the studied ions is in the order of Zn2+ > Cd2+ > Cu2+ > Ni2+. Adsorption isotherms were drawn for Ni2+, Cu2+, Cd2+, and Zn2+ cations and found that cations adsorption on nanocomposite fit into Langmuir model.

  15. Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay.

    PubMed

    Hebbar, Raghavendra S; Isloor, Arun M; Prabhu, Balakrishna; Inamuddin; Asiri, Abdullah M; Ismail, A F

    2018-03-16

    Functional surfaces and polymers with branched structures have a major impact on physicochemical properties and performance of membrane materials. With the aim of greener approach for enhancement of permeation, fouling resistance and detrimental heavy metal ion rejection capacity of polyetherimide membrane, novel grafting of poly (4-styrenesulfonate) brushes on low cost, natural bentonite was carried out via distillation-precipitation polymerisation method and employed as a performance modifier. It has been demonstrated that, modified bentonite clay exhibited significant improvement in the hydrophilicity, porosity, and water uptake capacity with 3 wt. % of additive dosage. SEM and AFM analysis showed the increase in macrovoides and surface roughness with increased additive concentration. Moreover, the inclusion of modified bentonite displayed an increase in permeation rate and high anti-irreversible fouling properties with reversible fouling ratio of 75.6%. The humic acid rejection study revealed that, PEM-3 membrane having rejection efficiency up to 87.6% and foulants can be easily removed by simple hydraulic cleaning. Further, nanocomposite membranes can be significantly employed for the removal of hazardous heavy metal ions with a rejection rate of 80% and its tentative mechanism was discussed. Conspicuously, bentonite clay-bearing poly (4-styrenesulfonate) brushes are having a synergistic effect on physicochemical properties of nanocomposite membrane to enhance the performance in real field applications.

  16. Nonlinear isotherm and kinetics of adsorption of copper from aqueous solutions on bentonite

    NASA Astrophysics Data System (ADS)

    Sadeghalvad, Bahareh; Khosravi, Sara; Azadmehr, Amir Reza

    2016-11-01

    Bentonite is one of the most significant of clay minerals that has been studied extensively due to its potential applications in removal of various environmental pollutants. This ability is related to its high ionic exchange capacity and high specific surface area. Copper is one of the important elements of non-ferrous metals found in industrial waste waters. In the present work, the removal of copper from aqueous solutions with Iranian bentonite (from Birjand area, southeastern Iran) used without any chemical pretreatment, was studied. The experimental results were fitted by adsorption isotherms equations with two or three parameters, which include Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Redlich-Peterson, Khan, and Toth models. The best correlation coefficient ( r 2) is 0.9879 observed for Langmuir model, maximum adsorption capacity of bentonite was 55.71 mg/g. The first-order and pseudo-second-order kinetic equations were used to describe the kinetics of adsorption. The experimental data were well fitted by the pseudo-second-order kinetics.

  17. Kaolin-based foliar reflectant and water deficit influence Malbec leaf and berry temperature, pigments, and photosynthesis

    USDA-ARS?s Scientific Manuscript database

    The effects of a kaolin-based foliar reflectant on traits of commercial interest in the red-skinned wine grape cultivar Malbec (Vitis vinifera L.) were evaluated over three growing seasons by measuring the surface temperatures of leaves and clusters, leaf-level assimilation, leaf and berry pigment c...

  18. Long term chemo-hydro-mechanical behavior of compacted soil bentonite polymer complex submitted to synthetic leachate.

    PubMed

    Razakamanantsoa, Andry Rico; Djeran-Maigre, Irini

    2016-07-01

    An experimental program is carried out to investigate the long term hydro-mechanical behavior correlated with chemical one of compacted soils with low concentration of Ca-bentonite and Ca-bentonite polymer mixture. The effect of prehydration on the hydraulic performance is compared to the polymer adding effect. All specimens are submitted to synthetic leachate (LS) under different permeation conditions. Several issues are studied: mechanical stability, hydraulic performance, chemical exchange of cations validated with microstructure observations. Scanning Electron Microscope (SEM) observations demonstrate two distinct behaviors: dispersive for Bentonite (B) and B with Polymer P1 (BP1) and flocculated for B with Polymer P2 (BP2). Direct shear tests show that bentonite adding increases the Soil (S) cohesion and decreases the friction angle. Polymer adding behaves similarly by maintaining the soil cohesion and increasing the friction angle. Hydraulic conductivity of prehydrated soil bentonite (SB) and direct permeation of polymer added soil bentonite are studied (SBP1 and SBP2). Hydraulic test duration are in range of 45days to 556days long. Prehydration allows to delay the aggressive effect of the LS in short term but seems to increase its negative effect on the hydraulic conductivity value in long term exposure. SB and SBP1 behave similarly and seem to act in the long term as a granular filler effect. SBP2 presents positive results comparing to the other mixtures: it maintains the hydraulic conductivity and the chemical resistance. Chemical analysis confirms that all specimens are subjected to Na(+) dissolution and Ca(2+) retention which are more pronounced for prehydrated specimen. The short term effect of prehydration and the positive effect of SBP2 are also confirmed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Toxicity of Aluminum Silicates Used in Hemostatic Dressings Toward Human Umbilical Veins Endothelial Cells, HeLa Cells, and RAW267.4 Mouse Macrophages

    DTIC Science & Technology

    2011-09-01

    ORIGINAL ARTICLE Toxicity of Aluminum Silicates Used in Hemostatic Dressings Toward Human Umbilical Veins Endothelial Cells, HeLa Cells, and RAW267.4...not known. Clay minerals are generally considered nontoxic to humans and have been widely used in cosmetics and as excipient in drugs and foods...Bentonite, which has a long history in pharmaceutical formulations,7 along with kaolin are listed in the US Pharmacopeia.8 The sensitivity of some human

  20. Adsorption Processes of Lead Ions on the Mixture Surface of Bentonite and Bottom Sediments.

    PubMed

    Hegedűsová, Alžbeta; Hegedűs, Ondrej; Tóth, Tomáš; Vollmannová, Alena; Andrejiová, Alena; Šlosár, Miroslav; Mezeyová, Ivana; Pernyeszi, Tímea

    2016-12-01

    The adsorption of contaminants plays an important role in the process of their elimination from a polluted environment. This work describes the issue of loading environment with lead Pb(II) and the resulting negative impact it has on plants and living organisms. It also focuses on bentonite as a natural adsorbent and on the adsorption process of Pb(II) ions on the mixture of bentonite and bottom sediment from the water reservoir in Kolíňany (SR). The equilibrium and kinetic experimental data were evaluated using Langmuir isotherm kinetic pseudo-first and pseudo-second-order rate equations the intraparticle and surface diffusion models. Langmuir isotherm model was successfully used to characterize the lead ions adsorption equilibrium on the mixture of bentonite and bottom sediment. The pseudo second-order model, the intraparticle and surface (film) diffusion models could be simultaneously fitted the experimental kinetic data.

  1. Influence of the type of aqueous sodium silicate on the stabilization and rheology of kaolin clay suspensions

    NASA Astrophysics Data System (ADS)

    Izak, Piotr; Ogłaza, Longin; Mozgawa, Włodzimierz; Mastalska-Popławska, Joanna; Stempkowska, Agata

    2018-05-01

    To avoid agglomeration and sedimentation of grains, ceramic slurries should be modified by stabilizers in order to increase the electrostatic interactions between the dispersed particles. In this study we present the spectral analysis of aqueous sodium silicates obtained by different synthesis methods and their influence on the rheological properties of kaolin based slurries. Infrared and Raman spectra can be used to describe the structure of silicate structural units present in aqueous sodium silicates. It was confirmed that the best stabilization results possess aqueous sodium silicates of the silicate moduli of about 2 and the optimal concentration of the used fluidizer is 0.3 wt% to the kaolin clay dry mass. One of the most important conclusions is that the synthesis method of the fluidizer has no significant effect on its stabilization properties but used medium does create adequate stabilization mechanism depending on the silicate structures present in the sodium silicate solution.

  2. Dielectric characterization of Bentonite clay at various moisture contents and with mixtures of biomass in the microwave spectrum

    USDA-ARS?s Scientific Manuscript database

    This study assesses the potential for using bentonite as a microwave absorber for microwave-assisted biomass pyrolysis based on the dielectric properties. Dielectric properties of bentonite at different moisture contents were measured using a coaxial line dielectric probe and vector network analyzer...

  3. Determination of CEC value (Cation Exchange Capacity) of Bentonites from North Aceh and Bener Meriah, Aceh Province, Indonesia using three methods

    NASA Astrophysics Data System (ADS)

    Rihayat, T.; Salim, S.; Arlina, A.; Fona, Z.; Jalal, R.; Alam, P. N.; Zaimahwati; Sami, M.; Syarif, J.; Juhan, N.

    2018-03-01

    Research on determination of value CEC (Cation Exchange Capacity) Bentonite North Aceh and Bener Meriah with three methods has been studied. The purpose of this study was to determine the value of CEC bentonite North Aceh and Bener Meriah. The methods used in this research were pH equilibrium, BaCl2/MgSO4 and the adsorption of methylene blue. These three methods used to determine, compare, and calculation of the CEC value and determine the effect of particle size of bentonite on the value of the CEC. Bentonite North Aceh and Bener Meriah sieved with particle sizes of 80, 100, 150, 200, 250 mesh. The results showed that determination of the value of CEC bentonite North Aceh using BaCl2/MgSO4 with a particle size of 250 mesh is the value of the highest, reaching 79.09 meq/100 g.

  4. Prevalence of Pneumoconiosis in Cornish Kaolin Workers

    PubMed Central

    Sheers, Geoffrey

    1964-01-01

    In 1961, 553 Cornish china clay workers had been exposed to kaolin dust for periods exceeding five years, and evidence of kaolinosis was seen in 48 (9%). No kaolinosis was found in men who had been exposed for less than five years. Workers in the more heavily exposed jobs of milling, bagging, and loading showed a prevalence rising from 6% in those with between five and 15 years' exposure to 23% in those exposed for more than 15 years. Men who had been intermittently and less heavily exposed in the older, out-dated drying plants needed 25 years' exposure before reaching the highest prevalence of 17%. Massive fibrosis has been observed in two cases in the industry and also in two men who have left the industry. Six men needed anti-tuberculous chemotherapy, but none had a positive sputum. Preventive measures now include pre-employment chest examination, but the problems of dust control have not yet been satisfactorily solved. Images PMID:14180481

  5. Ball clay and bentonite deposits of the central and western Gulf of Mexico Coastal Plain, United States

    USGS Publications Warehouse

    Hosterman, John W.

    1984-01-01

    The Gulf of Mexico Coastal Plain produces approximately 85 percent of the ball clay used in the United States. The best commercial-grade clay deposits are composed of poorly crystalline kaolinite and small amounts of Md illite and (or) smectite. Sand and silt and iron oxide minerals are virtually absent, but quartz is present in the clay-size fraction. The best grade ball clays are found as lenses limited to the Wilcox Group (Paleocene and lower Eocene) and Claiborne Group (middle Eocene). Reserves of ball clay are sufficient for the present, but because of the lenticular nature of the clay bodies, close-spaced drilling, detailed sampling, mineralogic analyses, and ceramic testing are needed to prove future reserves.Approximately 11 percent of the total bentonite produced in the United States comes from the Gulf Coast region. The commercial-grade bentonites are composed primarily of smectite with little or no Md illite and kaolinite. The nonclay impurities are quartz, feldspar, muscovite, biotite, calcite, dolomite, gypsum, and heulandite. Commercial bentonites occur in the Upper Cretaceous formations in Alabama and Mississippi, in Paleocene formations in Mississippi and Tennessee, and in Eocene and Miocene formations in Texas. The demand for low-swelling bentonite of the Gulf Coastal Plain has not increased along with the demand for swelling bentonite; therefore the reserves are adequate.

  6. Tempe Waste Water Degradation Using TiO2-N/Bentonite alginate Granule Photocatalyst with Ultraviolet Light Irradiation

    NASA Astrophysics Data System (ADS)

    Khoirun Nisaa', Aldila; Wardhani, Sri; Purwonugroho, Danar; Darjito

    2018-01-01

    Tempe waste water stew has high ammonia concentration which causes odor due to polluting by anaerobic decay. Free ammonia in the waste has exceeded the limit, thus endangering the aquatic environment. This research aims to determine the activity of photocatalyst granule TiO2-N/bentonite-alginate as decomposers of compounds in the photodegradation process. Photodegradation is the decomposition process of compounds by semiconductors with light. Results expected includes the photocatalyst activity of TiO2-N/bentonite-alginate granule produced by ultraviolet rays is known based on the effect of dopant N concentration on the catalyst and the effect of photocatalytic ratio toward tempe waste water. Methods proposed in this research are activation of bentonite using H2SO4 0.8 M, TiO2-N synthesize by sonication method with urea as the source of N, then TiO2-N impregnation into bentonite. Photocatalyst in granule form synthesized with alginate was then dripped with syringe pump into 3% (w/v) CaCl2. The photocatalyst characterization will be performed using XRD. The optimum tempe waste water degradation at the concentration of TiO2-N 0.4 (g/g) bentonite is 53.66%. The ratio of photocatalyst and tempe waste water, optimum at 150 mg of photocatalyst with 25 mL of waste equal to 53.66%.

  7. Sorption equilibrium, thermodynamics and pH-indicator properties of cresyl violet dye/bentonite composite system.

    PubMed

    Georgieva, Nedyalka; Yaneva, Zvezdelina; Dermendzhieva, Diyana

    2017-09-01

    The aim of the present study was to develop cresyl violet (CV)/bentonite composite system, to investigate the equilibrium sorption of the fluorescent dye on bentonite, to determine the characteristic equilibrium and thermodynamic parameters of the system by appropriate empirical isotherm models and to assess its pH-indicator properties. The absorption characteristics of CV solutions were investigated by UV/VIS spectrophotometer. Equilibrium experiments were conducted and the experimental data were modelled by six mathematical isotherm models. The analyses of the experimental data showed that bentonite exhibited significantly high capacity - 169.92 mg/g, towards CV. The encapsulation efficiency was 85%. The Langmuir, Flory-Huggins and El-Awady models best represented the experimental results. The free Gibbs energy of adsorption (ΔG o ) was calculated on the basis of the values of the equilibrium coefficients determined by the proposed models. The values of ΔG determined by the Langmuir, Temkin and Flory-Huggins models are within the range -20 to -40 kJ/mol, which indicates that the adsorption process is spontaneous and chemisorption takes place due to charge sharing or transfer from the dye molecules to the sorbent surface as a coordinate type of bond. The investigations of the obtained CV/bentonite hybrid systems for application as pH-markers showed satisfactory results.

  8. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  9. Biochar, Bentonite and Zeolite Supplemented Feeding of Layer Chickens Alters Intestinal Microbiota and Reduces Campylobacter Load

    PubMed Central

    Prasai, Tanka P.; Walsh, Kerry B.; Bhattarai, Surya P.; Midmore, David J.; Van, Thi T. H.; Moore, Robert J.; Stanley, Dragana

    2016-01-01

    A range of feed supplements, including antibiotics, have been commonly used in poultry production to improve health and productivity. Alternative methods are needed to suppress pathogen loads and maintain productivity. As an alternative to antibiotics use, we investigated the ability of biochar, bentonite and zeolite as separate 4% feed additives, to selectively remove pathogens without reducing microbial richness and diversity in the gut. Neither biochar, bentonite nor zeolite made any significant alterations to the overall richness and diversity of intestinal bacterial community. However, reduction of some bacterial species, including some potential pathogens was detected. The microbiota of bentonite fed animals were lacking all members of the order Campylobacterales. Specifically, the following operational taxonomic units (OTUs) were absent: an OTU 100% identical to Campylobacter jejuni; an OTU 99% identical to Helicobacter pullorum; multiple Gallibacterium anatis (>97%) related OTUs; Bacteroides dorei (99%) and Clostridium aldenense (95%) related OTUs. Biochar and zeolite treatments had similar but milder effects compared to bentonite. Zeolite amended feed was also associated with significant reduction in the phylum Proteobacteria. All three additives showed potential for the control of major poultry zoonotic pathogens. PMID:27116607

  10. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.

    PubMed

    Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K

    2011-09-01

    Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.

  11. Serological Studies of Types A, B, and E Botulinal Toxins by Passive Hemagglutination and Bentonite Flocculation

    PubMed Central

    Johnson, H. M.; Brenner, K.; Angelotti, R.; Hall, H. E.

    1966-01-01

    Johnson, H. M. (Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), K. Brenner, R. Angelotti, and H. E. Hall. Serological studies of types A, B, and E botulinal toxins by passive hemagglutination and bentonite flocculation. J. Bacteriol. 91:967–974. 1966.—Formalinized sheep red blood cells (SRBC), sensitized with types A, B, and E botulinal toxoids and toxins by bis-diazotized benzidine (BDB), were tested against A, B, and E antitoxins prepared in horses and rabbits. Type B antitoxin cross-reacted with A toxoid SRBC, but the reciprocal cross-reaction was not observed. E toxin SRBC were specifically agglutinated by E antitoxin. Flocculation of antigen-sensitized bentonite particles was less sensitive in titration of antitoxin than hemagglutination. Also, reciprocal cross-reactions were observed between types A and B antitoxins. Cross-reactions in both serological tests were eliminated by titration of antitoxins in the presence of the heterologous antigens, with no inhibitory effect on the homologous antitoxins. Generally, equine antitoxins were less suitable for agglutinations, especially of antigen-sensitized bentonite particles. Types A, B, and E antitoxins were specifically inhibited by 43, 39, and 245 mouse ld50 of their respective homologous toxins in the hemagglutination-inhibition test. A, B, and E antitoxins were specifically inhibited by 500, 950, and 1,500 mouse ld50 of their respective homologous toxins in bentonite flocculation inhibitions. Formalinized SRBC sensitized with rabbit types A and B antitoxins by BDB were respectively clumped by as little as 0.75 to 1.3 mouse ld50 of A toxin and 2.3 ld50 of B toxin, whereas bentonite particles sensitized by the same antitoxins were specifically clumped by 150 ld50 of A toxin and 630 ld50 of B toxin. E antitoxin sensitization of SRBC or bentonite particles was not successful. Evidence is presented that indicates that the serological procedures are applicable to the detection of botulinal toxins

  12. Development of an analytical technique for the detection of alteration minerals formed in bentonite by reaction with alkaline solutions

    NASA Astrophysics Data System (ADS)

    Sakamoto, H.; Shibata, M.; Owada, H.; Kaneko, M.; Kuno, Y.; Asano, H.

    A multibarrier system consisting of cement-based backfill, structures and support materials, and a bentonite-based buffer material has been studied for the TRU waste disposal concept being developed in Japan, the aim being to restrict the migration of radionuclides. Concern regarding bentonite-based materials in this disposal environment relates to long-term alteration under hyper-alkaline conditions due to the presence of cementitious materials. In tests simulating the interaction between bentonite and cement, formation of secondary minerals due to alteration reactions under the conditions expected for geological disposal of TRU waste (equilibrated water with cement at low liquid/solid ratio) has not been observed, although alteration was observed under extremely hyper-alkaline conditions with high temperatures. This was considered to be due to the fact that analysis of C-S-H gel formed at the interface as a secondary mineral was difficult using XRD, because of its low crystallinity and low content. This paper describes an analytical technique for the characterization of C-S-H gel using a heavy liquid separation method which separates C-S-H gel from Kunigel V1 bentonite (bentonite produced in Japan) based on the difference in specific gravity between the crystalline minerals constituting Kunigel V1 and the secondary C-S-H gel. For development of C-S-H gel separation methods, simulated alteration samples were prepared by mixing 990 mg of unaltered Kunigel V1 and 10 mg of C-S-H gel synthesized using pure chemicals at a ratio of Ca/Si = 1.2. The simulated alteration samples were dispersed in bromoform-methanol mixtures with specific gravities ranging from 2.00 to 2.57 g/cm 3 and subjected to centrifuge separation to recover the light density fraction. Subsequent XRD analysis to identify the minerals was complemented by dissolution in 0.6 N hydrochloric acid to measure the Ca and Si contents. The primary peak (2 θ = 29.4°, Cu Kα) and secondary peaks (2 θ = 32.1

  13. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids.

    PubMed

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William

    2015-10-01

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater-bentonite-fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. The colloidal suspension (100 mg L(-1)) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10(-10) M (241)Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k(f)) of 0.01-0.02 h(-1). Am recoveries in each column were 55-60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h(-1) in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. Our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because

  14. Detecting Defects Within Soil-Bentonite Slurry Cutoff Walls Using Electrical Resistivity Methods

    NASA Astrophysics Data System (ADS)

    Aborn, L.; Jacob, R. W.; Mucelli, A.

    2016-12-01

    Installed in the subsurface, vertical cutoff walls may limit groundwater movement. The effectiveness of these walls can be undermined by defects, for example high permeability material, within the wall. An efficient way of detecting these defects in a soil-bentonite slurry cutoff wall has yet to be established. We installed an approximately 200-meter long and 7-meter deep soil-bentonite slurry cutoff wall for the purposes of research. The wall was constructed adjacent to a natural wetland, the Montandon Marsh near Lewisburg, PA. The wall is composed of soil-bentonite backfill and was designed to be a typical low permeability material. We evaluate the capability of non-invasive geophysical techniques, specifically electrical resistivity, to detect high permeability defects that are expected to have higher electrical resistivity values than the backfill material. The laboratory measured electrical resistivity of the backfill used for construction was 12.27-ohm meters. During construction, designed defects of saturated fine-grained sand bags were deployed at different positions and depths within the wall. To create larger defects multiple bags were tied together. Laboratory resistivity testing of the sand and the filled sand bags indicates values between 125-ohm meters at full saturation and 285-ohm meters at partial saturation. Post construction, we collected electrical resistivity data using a 28-channel system along the centerline of the cutoff wall, which indicated the backfill material to have a resistivity value of 15-ohm meters. The electrical resistivity profile was affected by the sidewalls of the trench, as expected, which may explain the difference between laboratory results and field measurements. To minimize the sidewalls obscuring the defects, we developed electrodes that are pushed into the backfill at different depths to collect subsurface resistivity. Different arrays and electrode spacings are being tested. Our presentation will report the most

  15. The effect of a new impregnated gauze containing bentonite and halloysite minerals on blood coagulation and wound healing.

    PubMed

    Alavi, Mehrosadat; Totonchi, Alireza; Okhovat, Mohammad Ali; Motazedian, Motahareh; Rezaei, Peyman; Atefi, Mohammad

    2014-12-01

    In recent years, a wide variety of research has been carried out in the field of novel technologies to stop severe bleeding. In several studies, coagulation properties of minerals such as zeolite, bentonite and halloysite have been proven. In this study, the effect of a new impregnated sterile gauze containing bentonite and halloysite minerals was studied on blood coagulation and wound healing rate in male Wistar rats. Initially, impregnated sterile gauze was prepared from the mixture of bentonite and halloysite minerals and petroleum jelly (Vaseline). Then, the effect of gauze was studied on the blood coagulation time and wound healing process in 40 Wistar rats. SPSS software was used for data analysis and P values less than 0.05 were considered significant. The coagulation time of 81.10 ± 2.532 s in the control group and 33.00 ± 1.214 s in the study group (bentonite-halloysite treated) were reported (P < 0.0005). Time for complete wound healing in the group, which is treated with impregnated sterile pads, was calculated approximately from 10 to 12 days. However, in the control group, there was no complete wound healing (P < 0.0005). According to the results of the present study, topical application of the bentonite-halloysite impregnated sterile gauze significantly decreases the clotting time and increase the wound healing rate.

  16. Efficiency of a borehole seal by means of pre-compacted bentonite blocks

    NASA Astrophysics Data System (ADS)

    Van Geet, M.; Volckaert, G.; Bastiaens, W.; Maes, N.; Weetjens, E.; Sillen, X.; Vallejan, B.; Gens, A.

    The backfilling and sealing of shafts and galleries is an essential part of the design of underground repositories for high-level radioactive waste. Part of the EC funded project RESEAL studied the feasibility of sealing off a borehole in plastic Boom Clay by means of pre-compacted bentonite blocks. Two bentonites, namely the FoCa and Serrata clay, have been used. Based on laboratory tests, the bentonite blocks had an initial dry density of about 1.8 g/cm 3 to obtain a swelling pressure of about 4.4 MPa, corresponding to the in situ lithostatic stress, at full saturation. The set-up was equipped with several sensors to follow-up the behaviour of the seal and the surrounding host rock during hydration. Full saturation was reached after five months and was mainly reached by natural hydration. Swelling pressure was lower than originally foreseen due to the slow reconsolidation of the host rock. Later on, the efficiency of the seal with respect to water, gas and radionuclide migration was tested. The in situ measured permeability of the seals was about 5 × 10 -13 m/s. A gas breakthrough experiment did not show any preferential gas migration through the seal. No evidences of a preferential pathway could be detected from 125I tracer test results.

  17. Simultaneous adsorption of Cu2+ and Acid fuchsin (AF) from aqueous solutions by CMC/bentonite composite.

    PubMed

    Gong, Ning; Liu, Yanping; Huang, Ruihua

    2018-04-21

    Carboxymethyl-chitosan (CMC)/bentonite composite was prepared by the method of membrane-forming, and characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques. The simultaneous adsorption of Cu 2+ and Acid fuchsin (AF) applying CMC/bentonite composite as an adsorbent in single or binary systems was investigated. The adsorption study was conducted systematically by varying the ratio of CMC to bentonite, adsorbent dosage, initial pH value, initial Cu 2+ (or AF) concentration, contact time and the interaction of two components in binary solutions. The results showed that the presence of Cu 2+ hindered the adsorption of AF, while the presence of AF almost had no influence on the adsorption of Cu 2+ in binary systems. The adsorption data of Cu 2+ and AF were both suitable for Langmuir isotherm model, and the maximum adsorption capacities of CMC/bentonite composite, according to the Langmuir isotherm model were 81.4 mg/g for Cu 2+ and 253.2 mg/g for AF at 298 K. The pseudo-second-order model could better describe the adsorption process of Cu 2+ and AF. Thermodynamic constant values illustrated that the adsorption of Cu 2+ was endothermic, while the adsorption process of AF was exothermic. Copyright © 2018. Published by Elsevier B.V.

  18. Quality characteristics of Bali sardinella (Sardinella lemuru) oil purified with bentonite as an adsorbent

    NASA Astrophysics Data System (ADS)

    Nadhiro, U.; Subekti, S.; Tjahjaningsih, W.; Patmawati

    2018-04-01

    Crude fish oil extracted from fish canning industry a low quality, therefore refining process is required to obtain feasible fish oil for food purposes. Purification of fish oil can through steps of degumming, neutralization, and bleaching by using bentonite as the adsorbent. This study aims to analyze the results of the purification process of crude fish oil by-product of canning industry of lemuru fish by using bentonite adsorbent with different concentrations. The method used was an experimental method by descriptive data analysis. The results showed that the highest yield (33.418 %) obtained from oil purification of lemuru with bentonite concentration of 6 % are classified as follows: free fatty acid content of 0.265 %, peroxide value of 6.343 mEq / kg, produce clarity 60.275 % T, 88.075 % T, 87.5 % T, 87.425 % T, 87.975 % T at a wavelength (λ) of 450 nm, 550 nm, 620 nm, 665 nm, 700 nm, para-anisidine value of 3.725 mEq / kg; and value of oxidation total of 16.41 meq / kg.

  19. Utilisation of Sand from Kaolin Washing for the Manufacture of Alkali-activated Artificial Sandstone

    NASA Astrophysics Data System (ADS)

    Vavro, Martin; Vavro, Leona; Mec, Pavel; Soucek, Kamil; Pticen, Frantisek; Reiterman, Pavel

    2017-04-01

    Sandstones represent a traditional natural stones which are widely used in Czech architecture and sculpture over a long time. Thanks to their relatively easy workability, sandstones provide a wide range of stone products and also represent a popular material for architectural and sculptural purposes. In the field of restoration of artworks, they are therefore often used for manufacturing stone statue copies originally made from the same or similar type of stone. Despite a relatively common and varied occurrence of natural sandstones, the method of the artificial stone facsimiles creation in the form of various cast elements is also often applied in restoration practice. The history of application of artificial stones in civil engineering and architecture goes back to the ancient times, i.e. to Roman antiquity and possibly up to the time of ancient Egypt. The lack of appropriate natural rock, suitable in the view of colour, grain size or texture is the main reason of manufacturing copies based on synthetic mixtures. The other reason is high financial costs to create a sculpture copy from natural materials. Mixtures made from white and/or grey cements, sands, carefully selected crushed stone or well graded natural gravels, and mineral coloring pigments or mixtures with acrylate, polyester, and epoxy resins binder are the most frequently used artificial materials for cast stone manufacturing. This paper aims to bring information about composition and properties of artificial sandstones made from alkali-activated binder mixtures based on metakaolin and granulated blast furnace slag. The filler of this artificial stone is represented by fine-grained sand generated during kaolin wet processing. Used sand is mainly formed by quartz, feldspars, micas (muscovite > biotite), residual kaolin, and to a lesser extent also by Fe oxyhydroxides ("limonite"), titanium dioxide mineral (probably anatase), and carbonate mineral unidentified in detail. Annual Czech production of this

  20. Timing of Late Cretaceous Gulf Coast volcanism and chronostratigraphic constraints on deposition of the Ripley Formation from a newly recognized bentonite bed, Pontotoc County, Mississippi

    NASA Astrophysics Data System (ADS)

    Vitale, E. J.; Gifford, J.; Platt, B. F.

    2017-12-01

    The Upper Cretaceous Ripley Formation is present throughout the Mississippi (MS) Embayment and contains local bentonite lenses related to regional volcanism. The Pontotoc bentonite is such a lens located near the town of Pontotoc, MS, that was strip-mined and has not been accessible since reclamation of the land. Recent investigations in Pontotoc County south of the Pontotoc bentonite site resulted in the discovery of a previously unknown bentonite bed. Litho- and biostratigraphy indicate that the bentonite is younger than known volcanism from MS. The purposes of the present investigation are 1) to test whether the new bentonite bed is correlative to the Pontotoc bentonite & 2) to recover volcanogenic zircons for U-Pb dating to better constrain timing of volcanism and chronostratigraphy of the Ripley Fm. Outcrops in an active sand pit in the field area expose 2.5 m of fine sand, and an upper gradational contact with an overlying 2.5 m of sandy clay, containing the bentonite bed. Two trenches were excavated through the outcrop, and in each trench a stratigraphic section was measured and bulk samples collected for zircons. Sampling began in the lower bounding sand and continued upsection in 1 m intervals, corresponding to the gradational contact with the bentonite, and 2 locations within the bentonite. The Ripley Fm. consists of 73 m of fossiliferous clay, sand, and calcareous sand beds. Recent stratigraphic revisions of the lateral facies in MS recognize a lower transitional clay facies, a limestone, marl, and calcareous sand facies, a sandy upper Ripley facies, and the formally named Chiwapa Sandstone Member. Ammonite biostratigraphy places the contact between the Chiwapa and the overlying Owl Creek/Prairie Bluff at 68.5 Ma. Unlike the mined area north of Pontotoc where the bentonite is within the Chiwapa, the bed here is directly above the Chiwapa section and its upper contact represents the Ripley Fm. / Owl Creek Fm. contact. Where the bentonite is present, it

  1. HMSPP nanocomposite and Brazilian bentonite properties after gamma radiation exposure

    NASA Astrophysics Data System (ADS)

    Fermino, D. M.; Parra, D. F.; Oliani, W. L.; Lugao, A. B.; Díaz, F. R. V.

    2013-03-01

    This work concerns the study of the mechanical and thermal behavior of the nanocomposite high melt strength polypropylene (HMSPP) (obtained at a dose of 12.5 kGy) and a bentonite clay Brazilian Paraiba (PB), which is known as "chocolate" and is used in concentrations of 5% and 10% by weight, in comparison to the American Cloisite 20A clay nanocomposites. An agent compatibilizer polypropylene-graft (PP-g-AM) was added at a 3% concentration, and the clay was dispersed using the melt intercalation technique using a twin-screw extruder. The specimens were prepared by the injection process. The mechanical behavior was evaluated by strength, flexural strength and impact tests. The thermal behavior was evaluated by the techniques of differential scanning calorimetry (DSC) and thermogravimetry (TGA). The morphology of the nanocomposites was studied with scanning electron microscopy (SEM), while the organophilic bentonite and nanocomposites were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).

  2. Contrasting respirable quartz and kaolin retention of lecithin surfactant and expression of membranolytic activity following phospholipase A2 digestion.

    PubMed

    Wallace, W E; Keane, M J; Mike, P S; Hill, C A; Vallyathan, V; Regad, E D

    1992-11-01

    Respirable-sized quartz, a well-established fibrogenic mineral dust, is compared with kaolin in erythrocyte hemolysis assays after treatment with saline dispersion of dipalmitoyl phosphatidylcholine, a primary phospholipid component of pulmonary surfactant. Both dusts are rendered inactive after treatment, but the membranolytic activity is partly to fully restored after treatment with phospholipase A2, an enzyme normally associated with cellular plasma membranes and lysosomes. Phospholipid-coated dusts were incubated for periods of 2-72 h at a series of applied enzyme concentrations, and the adsorbed lipid species and hemolytic activity were quantitated at each time for both dusts. Surfactant was lost more readily from quartz than from kaolin, with consequent more rapid restoration of mineral surface hemolytic activity for quartz. Interactions of surfactant and mineral surface functional groups responsible for the mineral-specific rate differences, and implications for determining the mineral surface bioavailability of silica and silicate dusts, are discussed.

  3. Organo-modified bentonites as new flame retardant fillers in epoxy resin nanocomposites

    NASA Astrophysics Data System (ADS)

    Benelli, Tiziana; D'Angelo, Emanuele; Mazzocchetti, Laura; Saraga, Federico; Sambri, Letizia; Franchini, Mauro Comes; Giorgini, Loris

    2016-05-01

    The present work deals with two organophilic bentonites, based on nitrogen-containing compounds: these organoclays were synthesized via an ion exchange process starting from pristine bentonite with 6-(4-butylphenyl)-1,3,5-triazine-2,4-diamine (BFTDA) and 11-amino-N-(pyridine-2yl)undecanamide (APUA) and then used for the production of epoxy-based flame retardant nanocomposites. The amount of organic modifier in the organoclays Bento-BFTDA and Bento-APUA was determined with a TGA analysis and is around 0.4mmol/g for both samples. The effect of the organoclays on a commercial epoxy resin nanocomposite's thermo-mechanical and flammability properties was investigated. Composites containing 3wt% and 5wt% of the nanofillers were prepared by solventless addition of each organoclay to the epoxy resin, followed by further addition of the hardener component. For the sake of comparison a similar nanocomposite with the plain unmodified bentonite was produced in similar condition. The nanocomposites's thermo-mechanical properties of all the produced samples were measured and they resulted slightly improved or practically unaffected. On the contrary, when the flame behaviour was assessed in the cone-calorimeter, an encouraging decrease of 17% in the peak heat released rate (pHRR) was obtained at 3wt% loading level with Bento-APUA. This is a promising result, assessing that the APUA modified organoclay might act as flame retardant.

  4. An assessment of strontium sorption onto bentonite buffer material in waste repository.

    PubMed

    Pathak, Pankaj

    2017-03-01

    In the present study, changes occurring in sorption characteristics of a representative bentonite (WIn-BT) exposed to SrCl 2 (0.001-0.1 M) under the pH range of 1-13 were investigated. Such interaction revealed a significant variation in surface charge density and binding energy of ions with respect to bentonite, and alteration in their physicochemical properties viz., specific surface area, cation exchange capacity, thermal and mechanical behaviour were observed. The distribution coefficients (k d ) calculated for sorption onto virgin (UCBT) and contaminated bentonite (CBT) indicated a greater influence of mineralogical changes occurred with variance of pH and strontium concentration. Notably, the sorption mechanism clearly elucidates the effect of structural negative charge and existence of anionic metal species onto CBT, and depicted the reason behind significant k d values at highly acidic and alkaline pH. The maximum k d of UCBT and CBT (0.001M SrCl2) were 8.99 and 2.92 L/kg, respectively, at the soil pH 8.5; whereas it was 2.37 and 1.23 L/kg at pH 1 for the CBT (0.1M SrCl2) and CBT (0.01M SrCl2) , respectively. The findings of this study can be useful to identify the physicochemical parameters of candidate buffer material and sorption reversibility in waste repository.

  5. Time evolution of the general characteristics and Cu retention capacity in an acid soil amended with a bentonite winery waste.

    PubMed

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-03-01

    The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80 Mg ha(-1)) in laboratory pots, and different times of incubation of samples were tested (one day and one, four and eight months). The addition of bentonite waste increased the pH, organic matter content and phosphorus and potassium concentrations in the soil, being stable for P and K, whereas the organic matter decreased with time. Additionally, the copper sorption capacity of the soil and the energy of the Cu bonds increased with bentonite waste additions. However, the use of this type of waste in soil presented important drawbacks for waste dosages higher than 20 Mg ha(-1), such as an excessive increase of the soil pH and an increase of copper in the soil solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Application of kaolin-based catalysts in biodiesel production via transesterification of vegetable oils in excess methanol.

    PubMed

    Dang, Tan Hiep; Chen, Bing-Hung; Lee, Duu-Jong

    2013-10-01

    Biodiesel production from transesterification of vegetable oils in excess methanol was performed by using as-prepared catalyst from low-cost kaolin clay. This effective heterogeneous catalyst was successfully prepared from natural kaolin firstly by dehydroxylation at 800°C for 10h and, subsequently, by NaOH-activation hydrothermally at 90°C for 24h and calcined again at 500°C for 6h. The as-obtained catalytic material was characterized with instruments, including FT-IR, XRD, SEM, and porosimeter (BET/BJH analysis). The as-prepared catalyst was advantageous not only for its easy preparation, but also for its cost-efficiency and superior catalysis in transesterification of vegetable oils in excess methanol to produce fatty acid methyl esters (FAMEs). Conversion efficiencies of soybean and palm oils to biodiesel over the as-prepared catalysts reached 97.0±3.0% and 95.4±3.7%, respectively, under optimal conditions. Activation energies of transesterification reactions of soybean and palm oils in excess methanol using these catalysts are 14.09 kJ/mol and 48.87 kJ/mol, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Potential of kaolin-based particle film barriers for Formosan subterranean termite (Isoptera: Rhinotermitidae) control

    USGS Publications Warehouse

    Wiltz, B.A.; Woodson, W.D.; Puterka, G.J.

    2010-01-01

    Effects of three particle film products on Formosan subterranean termites, Coptotermes formosanus Shiraki, were evaluated in feeding, tunneling, and contact assays. The particle films, hydrophobic M96-018 and hydrophilic Surround and Surround WP are based on the inert clay mineral kaolin. In 2-week long no-choice feeding tests, significant mortality occurred only with M96-018-coated wood. When a choice was provided, M96-018 and Surround were consumed at higher rates than untreated wood. Surround WP did not differ from controls in either test. In the tunneling assay termites were given the option of crossing a kaolin-sand mixture to reach an alternate food source. After 3-weeks, rates of 1% and 5% M96-018 provided an effective barrier to Formosan termite tunneling, while termites were not stopped by rates as high as 20% Surround and Surround WP. Dust treatments of all three formulations caused significant increases in mortality within 24 h, with mortality rates ranging from 72.0 - 97.3% within 72 h of treatment. The particle films were most effective when moisture levels were low, suggesting that desiccation was the mechanism for mortality. All particle films showed potential for use in above ground applications while hydrophobic M06-018 has the most potential as a soil barrier to subterranean termites.

  8. The biological costs of not reclaiming bentonite mine spoils

    Treesearch

    Carolyn Hull Sieg; Daniel W. Uresk; Richard M. Hansen

    1982-01-01

    Bentonite clay has been mined in the northern Great Plains for more than 80 years. Until the late 1960's, mine spoil materials were left in steep piles and no effort was made to restore biological productivity to these disturbed sites. As a result, unreclaimed spoils are barren and eroded. The biological costs of not reclaiming these spoils are examined in this...

  9. Strength and Permeability Evolution of Compressed Bentonite in Response to Salinity and Temperature Changes

    NASA Astrophysics Data System (ADS)

    Winnard, B. R.; Mitchell, T. M.; Browning, J.; Cuss, R. J.; Norris, S.; Meredith, P. G.

    2017-12-01

    Deep geological repositories are the preferred solution to dispose of radioactive waste; design concepts for these disposal facilities include compacted, saturated bentonite as a buffer between waste canister and host rock. Bentonite is favoured for its high swelling capacity, low permeability, and radionuclide retention properties. However, its thermo-hydro-mechanical tolerances must be thoroughly tested to ensure adequate long term performance. Climate variations are likely to induce periods of permafrost, and consequently, changes in groundwater salinity at depth. We performed laboratory experiments investigating effects of temperature and salinity change on uniaxial compressive strength (UCS), and permeability of compacted MX-80 bentonite cylinders. These specimens (moisture content = 22.9±0.1%, dry density = 1.66±0.02 g.cm-3) were compacted with deionised water, and a range of wt% NaCl, CaCl2, or KCl, to compare the effects of compaction fluid. Samples of compressed bentonite were cooled to -20 °C, and heated to 90 ºC, a possible temperature forecast for a repository dependent on factors such as geographical location, waste type, and facility design. Tests were all performed at room temperature, however in situ temperature tests are planned. The UCS of samples that experienced freeze thaw, and 40 ºC treatment failed at 6.5 MPa, with 4% strain, maintaining the same values as untreated bentonite compacted with deionised water. Samples compacted with saline solutions also yielded similar strengths, of 7 MPa, and failed at 4%. However, the 90 ºC, regardless of compaction fluid, failed at 15-18 MPa, at just 2% strain. In all experiments, the spread of strain accommodated varied inconsistently, however, peak stress was uniform. Further experiments into heterogeneity are needed to understand the responsible mechanisms. To obtain permeability, we utilised the pore pressure oscillation (PPO) technique with argon as the pore fluid. We also tested water as the pore

  10. A unique Middle Ordovician K-bentonite bed succession at Röstånga, S. Sweden

    USGS Publications Warehouse

    Bergstrom, Stig M.; Huff, Warren D.; Kolata, Dennis R.; Yost, Deborah A.; Hart, Charles P.

    1997-01-01

    An approximately 8.5 m thick sequence of upper Viruan (upper Middle Ordovician) shales, mudstones, and limestones in an outcrop at Kyrkbäcken near Röstånga in W‐central Skåne contains 19 K‐bentonite beds, several of which are as much as 40–67 cm thick. Thirteen of these beds are in the upper part of the Sularp Fm., four in the Skagen Fm., and two questionable beds in the Mossen Fm. Evidence from macrofossils, chitinozoans, and conodonts are used for biostratigraphic age assessment of the K‐bentonite succession. Regional comparison of the sequence with those at Kinnekulle (Kullatorp), Koängen, and Tommarp suggests that its total stratigraphie thickness is smaller than those at the two former sites but the thicknesses of several of the Kyrkbacken ash beds are greater than those in similar stratigraphic positions in the other successions. The K‐bentonites at Kyrkbacken have a similar clay mineralogy and major and trace element composition as other Ordovician K‐bentonites, and these data indicate that the parental magma was of felsic, probably rhyolitic composition. Based on amphibole geoba‐rometry, the magma chamber is interpreted to have been at a depth of 14–20 km. The relatively large number of unusually thick ash beds of Middle Ordovician age makes the easily accessible Kyrkbäcken outcrop unique not only in Baltoscandia but, as far as we are aware, also on the entire northern hemisphere, and only one comparable exposure is known in the southern hemisphere, namely in the Precordillera of northern Argentina.

  11. Multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) onto natural bentonite clay.

    PubMed

    Alexander, Jock Asanja; Surajudeen, Abdulsalam; Aliyu, El-Nafaty Usman; Omeiza, Aroke Umar; Zaini, Muhammad Abbas Ahmad

    2017-10-01

    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.

  12. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite.

    PubMed

    Zheng, Hong; Liu, Donghong; Zheng, Yan; Liang, Shuping; Liu, Zhe

    2009-08-15

    In this paper, the sorption characteristics of aniline on Cr-bentonite prepared using synthetic wastewater containing chromium was investigated in a batch system at 30 degrees C. The effects of relevant parameters, such as pH value of solution, adsorbent dosage and initial aniline concentration were examined. The experimental data were analyzed by the Langmuir and Freundlich, and Temkin models of sorption. The sorption isotherm data were fitted well to Langmuir isotherm and the monolayer sorption capacity was found to be 21.60 mg/g at 30 degrees C. Dubinin-Redushkevich (D-R) isotherm was applied to describe the nature of aniline uptake and it was found that it occurred chemically. The kinetic data obtained at different concentrations were analyzed using a pseudo first-order, pseudo second-order kinetic equation and intraparticle diffusion model. The experimental data fitted very well the pseudo second-order kinetic model. Intraparticle diffusion affects aniline uptake. The results indicate that there is significant potential for Cr-bentonite as an adsorbent material for aniline removal from aqueous solutions.

  13. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    PubMed

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence.

  14. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, L.; Samper, J.; Montenegro, L.

    2010-05-01

    Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed onmore » a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred

  15. Facile Fabrication of a PDMS@Stearic Acid-Kaolin Coating on Lignocellulose Composites with Superhydrophobicity and Flame Retardancy

    PubMed Central

    Wang, Zhe; Shen, Xiaoping; Qian, Temeng; Wang, Junjie; Sun, Qingfeng; Jin, Chunde

    2018-01-01

    The disadvantages such as swelling after absorbing water and flammability restrict the widespread applications of lignocellulose composites (LC). Herein, a facile and effective method to fabricate superhydrophobic surfaces with flame retardancy on LC has been investigated by coating polydimethylsiloxane (PDMS) and stearic acid (STA) modified kaolin (KL) particles. The as-prepared coatings on the LC exhibited a good repellency to water (a contact angle = 156°). Owing to the excellent flame retardancy of kaolin particles, the LC coated with PDMS@STA-KL displayed a good flame retardancy during limiting oxygen index and cone calorimeter tests. After the coating treatment, the limiting oxygen index value of the LC increased to 41.0. Cone calorimetry results indicated that the ignition time of the LC coated with PDMS@STA-KL increased by 40 s compared with that of uncoated LC. Moreover, the peak heat release rate (PHRR) and the total heat release (THR) of LC coated with PDMS@STA-KL reduced by 18.7% and 19.2% compared with those of uncoated LC, respectively. This LC coating with improved water repellency and flame retardancy can be considered as a potential alternative to protect the lignocellulose composite. PMID:29751575

  16. A batch adsorption study on bentonite clay Pertinence to transport modeling?

    NASA Astrophysics Data System (ADS)

    BOURG, I.; BOURG, A. C.; SPOSITO, G.

    2001-12-01

    Bentonite clay is often used as a component of engineered barriers for the isolation of high-level toxic wastes. This swelling clay is used for its physical (impermeability, self-healing) but also for its chemical properties, mostly a high cation exchange capacity (CEC). The adsorbed cations being temporarily immobilized, this should slow down the release of cations from the waste to the surrounding environment. In order to assess the performance of the engineered barrier, the partitioning of solutes between the liquid and solid phases needs to be quantified for use in transport models. The usual method for characterizing the adsorption is through batch adsorption experiments on dispersed suspensions of the solid, yielding an adsorption isotherm (adsorbed concentration vs. dissolved concentration). This isotherm however should be a function of various environmental variables (e.g., pH, ionic strength, concentrations of various ligands and competing adsorbents), so that extrapolation of lab data to performance assessment in the field is problematic. We present results from a study of the adsorption of cesium, strontium, cadmium and lead on dispersed suspensions of the standard BX-80 bentonite. Through a wide range of experimental parameters (pH, ionic strength, reaction time, reactor open or closed to the atmosphere, study of a range of cations of differing properties), we seek a mechanistic interpretation of the results instead of an empirical determination of adsorption parameters. Depending on the mechanisms that control the adsorption in different experimental ranges, we discuss the degree to which the partitioning coefficient (Kd) obtained in the lab can be extrapolated to a transport model through compacted bentonite in a natural environment.

  17. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids

    DOE PAGES

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; ...

    2015-07-13

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater–bentonite–fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. Themore » colloidal suspension (100 mg L –1) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10 –10 M 241Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k f) of 0.01–0.02 h –1. Am recoveries in each column were 55–60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h –1 in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. As a result, our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport

  18. Fundamental properties of monolithic bentonite buffer material formed by cold isostatic pressing for high-level radioactive waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, S.; Yamanaka, Y.; Kato, K.

    1999-07-01

    The methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction bymore » the cold isostatic pressing process (CIP) has been employed. In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: {rho}d of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured. High density ({rho}d: 1.4--2.0 Mg/m{sup 3}) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3--15 MPa) and hydraulic conductivity (0.5--1.4 x 10{sup {minus}13} m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable handling method for emplacement of the monolithic bentonite.« less

  19. Effectiveness of kaolin clay particle film in managing Helopeltis collaris (Hemiptera: Miridae), a major pest of cacao in the Philippines

    USDA-ARS?s Scientific Manuscript database

    Helopeltis collaris Stal, commonly known as cacao mirid or capsid bug is one of the major pests of cacao in Southeast Asia. Recent survey of cacao pests in the Philippines showed that cacao mirid bug is causing significant yield loss particularly in cacao growing areas in Luzon. Kaolin is a naturall...

  20. Water Migration and Swelling in Bentonite Quantified using Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Vial, A.; DiStefano, V. H.; Perfect, E.; Hale, R. E.; Anovitz, L. M.; McFarlane, J.

    2016-12-01

    Permanent disposal of radioactive waste remains a critical challenge for the nation's energy future. All disposal system concepts include interfaces between engineered systems and natural materials requiring extensive characterization. Bentonite is often used to buffer subsurface disposal systems from geologic media containing ground water. Bentonite characterization experiments were carried out using the CG-1D neutron imaging beam line at Oak Ridge National Laboratory. Dry bentonite was packed into vertically-oriented aluminum cylinders. Water was ponded on the top surface of each packed cylinder. Images were acquired at 2 min intervals using dynamic neutron radiography. The detector consisted of stacked neutron sensitive microchannel plates above a quad Timepix readout with a 28 x 28 mm2 field of view. The spatial resolution of the detector was 55 μm. Raw neutron radiographs were imported into ImageJ and normalized with respect to the initial completely dry state. The wetting process was 1-dimensional, and vertical intensity profiles were computed by averaging pixel rows. The vertical distance between the clay-water interface and the wetting front could then be determined as a function of time. Depth of water infiltration increased linearly with the square root of time, yielding a sorptivity value of 0.75 (± 0.070) mm/min0.5. Swelling occurred in the form of upward movement of clay particles into the ponded water over time. The resulting low density assemblage was discernable by normalizing the raw profiles with respect to the intensity profile immediately after ponding. The packed clay-water interface was clearly visible in the normalized profiles, and swelling was quantified as the height of the low density assemblage above the original interface. Swelling occurred as a linear function of time, at a rate of 0.054 (± 0.020) mm/min. Further experiments of this type are planned under variable temperature and pressure regimes applicable to subsurface

  1. Melatonin Attenuates Histopathological Changes in the Hippocampus of Infantile Rats with Kaolin-Induced Hydrocephalus.

    PubMed

    Turgut, Mehmet; Baka, Meral; Uyanıkgil, Yiğit

    2018-05-23

    Hydrocephalus is defined as an incapacitating neurological disorder characterized by ventricular enlargement in children, but the effects of melatonin on this hydrocephalus have not yet been fully elucidated. In the present experiment, we attempted to investigate the effects of exogenous melatonin administration on hydrocephalus-induced hippocampal changes in infantile rats. In this study, we randomly divided 45 Swiss albino rats aged 2 weeks into 3 groups: group I, the control group received a sham injection with needle insertion only; groups II and III were given kaolin injections before treatment - group II, the hydrocephalus group, was treated with an isotonic NaCl solution, and group III, the hydrocephalus plus melatonin group, was treated with 0.5 mg/100 g body weight of exogenous melatonin. Both immunohistochemical and histological analyses were performed after hydrocephalus induction and melatonin administration. Immunohistochemical staining consisted anti-glial fibrillary acidic protein staining. The TUNEL technique was used for defining quantitate apoptosis. Melatonin administration significantly attenuated chronic hydrocephalus-induced histopathological changes in the hippocampal subregions of infantile rats. Compared to hydrocephalic rats treated with saline solution, melatonin significantly decreased the number of apoptotic cells and pyknotic index values of each hippocampal subregion after the kaolin-induced hydrocephalus (p < 0.001). The present results demonstrate that the chronic hydrocephalus-induced histopathological changes in the hippocampus were partially reversible with melatonin treatment, suggesting its neuroprotective effects in infantile rats. However, these findings need to be confirmed by further experimental studies and clinical trials. © 2018 S. Karger AG, Basel.

  2. Determination of adsorptive and catalytic properties of copper, silver and iron contain titanium-pillared bentonite for the removal bisphenol A from aqueous solution

    NASA Astrophysics Data System (ADS)

    Tomul, Fatma; Turgut Basoglu, Funda; Canbay, Hale

    2016-01-01

    Ti-pillared bentonite, Cu, Ag and Fe modified Ti-pillared bentonite and Cu/Ti- and Fe/Ti-mixed pillared bentonite were synthesized using different titanium sources by direct synthesis or by modification after synthesis. The effects of synthesis conditions on the surface characteristics, pore structure and acidity of the pillared bentonites were investigated by SEM⿿EDS, XPS, XRD, N2-adsorption/desorption and FTIR analyses before and after ammonia adsorption. The results of EDS, XPS and XRD analysis confirmed that titanium, copper, silver and iron were incorporated into the bentonite structure. In the XRD patterns, the formation of delaminated structure reflecting the non-parallel distribution of the bentonite layers by pillaring with Ti, Cu/Ti and Fe/Ti-pillars was observed. XPS spectra indicated the presence of TiO2, CuO, Ag and Ag2O and Fe2O3 species depending on the source of active metals in the synthesized samples. In the FTIR spectra, an increase in the Bronsted/Lewis peak intensity was observed with the loading of copper and iron, whereas a decrease in Lewis and Bronsted acidities was observed with incorporation of silver. Adsorption studies indicated that the adsorption capacity of the sample synthesized using titanium (IV) propoxide and incorporating iron to the structure by ion exchange (Fe-PTi-PILC) were higher than those in other samples. The adsorption of BPA (bisphenol A) by all tested samples was found to fit the Langmuir isotherm. In the catalytic wet peroxide oxidation (CWPO) over PTi-PILC (prepared by titanium (IV) propoxide), Fe-PTi-PILC and Cu-PTi-PILC (prepared by copper impregnated Ti-pillared bentonite) samples, BPA values close to complete conversion were achieved within 30 min at 25 °C, pH 4 and 5 g/L mcat. CWPO results showed that increasement of pH causes a decrease the rate of oxidation. On the other hand, by the time catalyst and BPA concentration is increased, the rate of oxidation is increased as well.

  3. Simultaneous adsorption and degradation of Zn(2+) and Cu (2+) from wastewaters using nanoscale zero-valent iron impregnated with clays.

    PubMed

    Shi, Li-Na; Zhou, Yan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2013-06-01

    Clays such as kaolin, bentonite and zeolite were evaluated as support material for nanoscale zero-valent iron (nZVI) to simultaneously remove Cu(2+) and Zn(2+) from aqueous solution. Of the three supported nZVIs, bentonite-supported nZVI (B-nZVI) was most effective in the simultaneous removal of Cu(2+) and Zn(2+) from a aqueous solution containing a 100 mg/l of Cu(2+) and Zn(2+), where 92.9 % Cu(2+) and 58.3 % Zn(2+) were removed. Scanning electronic microscope (SEM) revealed that the aggregation of nZVI decreased as the proportion of bentonite increased due to the good dispersion of nZVI, while energy dispersive spectroscopy (EDS) demonstrated the deposition of copper and zinc on B-nZVI after B-nZVI reacted with Cu(2+) and Zn(2+). A kinetics study indicated that removing Cu(2+) and Zn(2+) with B-nZVI accorded with the pseudo first-order model. These suggest that simultaneous adsorption of Cu(2+)and Zn(2+) on bentonite and the degradation of Cu(2+)and Zn(2+) by nZVI on the bentonite. However, Cu(2+) removal by B-nZVI was reduced rather than adsorption, while Zn(2+) removal was main adsorption. Finally, Cu(2+), Zn(2+), Ni(2+), Pb(2+) and total Cr from various wastewaters were removed by B-nZVI, and reusability of B-nZVI with different treatment was tested, which demonstrates that B-nZVI is a potential material for the removal of heavy metals from wastewaters.

  4. UTSA-16 Growth within 3D-Printed Co-Kaolin Monoliths with High Selectivity for CO2/CH4, CO2/N2, and CO2/H2 Separation.

    PubMed

    Lawson, Shane; Al-Naddaf, Qasim; Krishnamurthy, Anirduh; Amour, Marc St; Griffin, Connor; Rownaghi, Ali A; Knox, James C; Rezaei, Fateme

    2018-06-06

    Honeycomb monoliths loaded with metal-organic frameworks (MOFs) are highly desirable adsorption contactors because of their low-pressure drop, rapid mass-transfer kinetics, and high-adsorption capacity. Moreover, three-dimensional (3D)-printing technology renders direct material modification a realistic and economic prospect. In this study, 3D printing was utilized to impregnate kaolin-based monolith with UTSA-16 metal formation precursor (Co), whereupon an internal growth was facilitated via a solvothermal synthesis approach. The cobalt weight loading in the kaolin support was varied systematically to optimize the MOF growth while retaining monolith mechanical integrity. The obtained UTSA-16 monolith with 90 wt % loading exhibited similar textural features and adsorption characteristics to its powder analogue while improving upon structural integrity. In comparison to previously developed 3D-printed UTSA-16 monoliths, the UTSA-16-kaolin monolith not only showed higher MOF loading but also higher compression stress, indicative of its robust structure. Furthermore, the 3D-printed UTSA-16-kaolin monolith displayed a comparable CO 2 adsorption capacity to the UTSA-16 powder (3.1 vs 3.5 mmol/g at 25 °C and 1 bar), which was proportional to its loading. Selectivity values of 49, 238, and 3725 were obtained for CO 2 /CH 4 , CO 2 /N 2 , and CO 2 /H 2 , respectively, demonstrating good separation potential of the 3D-printed MOF monolith for various gas mixtures, as determined by both equilibrium and dynamic adsorption measurements. Overall, this study provides a novel route for the fabrication of UTSA-16-loaded monoliths, which demonstrate both high MOF loading and mechanical integrity that could be readily applied to various CO 2 capture applications.

  5. Post examination of copper ER sensors exposed to bentonite

    NASA Astrophysics Data System (ADS)

    Kosec, Tadeja; Kranjc, Andrej; Rosborg, Bo; Legat, Andraž

    2015-04-01

    Copper corrosion in saline solutions under oxic conditions is one of concerns for the early periods of disposal of spent nuclear fuel in deep geological repositories. The main aim of the study was to investigate the corrosion behaviour of copper during this oxic period. The corrosion rate of pure copper was measured by means of thin electrical resistance (ER) sensors that were placed in a test package containing an oxic bentonite/saline groundwater environment at room temperature for a period of four years. Additionally, the corrosion rate was monitored by electrochemical impedance spectroscopy (EIS) measurements that were performed on the same ER sensors. By the end of the exposure period the corrosion rate, as estimated by both methods, had dropped to approximately 1.0 μm/year. The corrosion rate was also estimated by the examination of metallographic cross sections. The post examination tests which were used to determine the type and extent of corrosion products included different spectroscopic techniques (XRD and Raman analysis). It was confirmed that the corrosion rate obtained by means of physical (ER) and electrochemical techniques (EIS) was consistent with that estimated from the metallographic cross section analysis. The corrosion products consisted of cuprous oxide and paratacamite, which was very abundant. From the types of attack it can be concluded that the investigated samples of copper in bentonite underwent uneven general corrosion.

  6. Influence of pH, soil humic/fulvic acid, ionic strength, foreign ions and addition sequences on adsorption of Pb(II) onto GMZ bentonite.

    PubMed

    Wang, Suowei; Hu, Jun; Li, Jiaxing; Dong, Yunhui

    2009-08-15

    This work contributed to the adsorption of Pb(II) onto GMZ bentonite in the absence and presence of soil humic acid (HA)/fulvic acid (FA) using a batch technique. The influences of pH from 2 to 12, ionic strengths from 0.004M to 0.05M NaNO(3), soil HA/FA concentrations from 1.6 mg/L to 20mg/L, foreign cations (Li+, Na+, K+), anions (Cl(-), NO(3)(-)), and addition sequences on the adsorption of Pb(II) onto GMZ bentonite were tested. The adsorption isotherms of Pb(II) were determined at pH 3.6+/-0.1 and simulated with the Langmuir, Freundlich, and D-R adsorption models, respectively. The results demonstrated that the adsorption of Pb(II) onto GMZ bentonite increased with increasing pH from 2 to 6. HA was shown to enhance Pb(II) adsorption at low pH, but to reduce Pb(II) adsorption at high pH, whereas FA was shown to decrease Pb(II) adsorption at pH from 2 to 11. The results also demonstrated that the adsorption was strongly dependent on ionic strength and slightly dependent on the concentration of HA/FA. The adsorption of Pb(II) onto GMZ bentonite was dependent on foreign ions in solution. The addition sequences of bentonite/Pb(II)/HA had no effect on the adsorption of Pb(II).

  7. Incorporating Zataria multiflora Boiss. essential oil and sodium bentonite nano-clay open a new perspective to use zein films as bioactive packaging materials.

    PubMed

    Kashiri, Mahboobeh; Maghsoudlo, Yahya; Khomeiri, Morteza

    2017-10-01

    Active zein films with different levels of Zataria multiflora Boiss. essential oil were produced successfully. To enhance properties of this biopolymer for food packaging applications, sodium bentonite clay was used at two levels (2 and 4%). The results indicated that the addition of Z. multiflora Boiss. essential oil caused a reduction in tensile strength and Young's modulus and slight increase in the percent of elongation at break of the films. Maximum solubility in water and water vapor permeability was observed by incorporation of 10% Z. multiflora Boiss. essential oil in the zein matrix. Transmission electron microscopy micrographs of zein film were verified by the exfoliation of the layers of sodium bentonite clay in the zein matrix. Stronger films with lower water vapor permeability and water solubility were evident of good distribution of sodium bentonite clay in the zein matrix. According to the results, 2% sodium bentonite clay was selected for evaluation of nano active film properties. Water vapor permeability, UV light barrier, tensile strength, and Young's modulus values of active films were improved by incorporation of 2% sodium bentonite clay. The antibacterial activity of different contents of Z. multiflora Boiss. essential oil in vapor phase demonstrated that use of Z. multiflora Boiss. essential oil in the liquid phase was more effective than in vapor phase. The antibacterial zein-based films showed that active zein film with 5 and 10% Z. multiflora Boiss. essential oil had reductions of 1.68 log and 2.99 log, respectively, against Listeria monocytogenes and 1.39 and 3.07 log against Escherichia coli. Nano active zein film containing 10% Z. multiflora Boiss. essential oil and 2% sodium bentonite clay showed better antibacterial properties against L. monocytogenes (3.23 log) and E. coli (3.17 log).

  8. The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting.

    PubMed

    Jiang, Jishao; Huang, Yimei; Liu, Xueling; Huang, Hua

    2014-09-01

    The effects of additives such as apple pomace, bentonite and calcium superphosphate on swine manure composting were investigated in a self-built aerated static box (90 L) by assessing their influences on the transformation of nitrogen, carbon, phosphorous and compost maturity. The results showed that additives all prolonged the thermophilic stage in composting compared to control. Nitrogen losses amounted to 34-58% of the initial nitrogen, in which ammonia volatilization accounted for 0.3-4.6%. Calcium superphosphate was helpful in facilitating composting process as it significantly reduced the ammonia volatilization during thermophilic stage and increased the contents of total nitrogen and phosphorous in compost, but bentonite increased the ammonia volatilization and reduced the total nitrogen concentration. It suggested that calcium superphosphate is an effective additive for keeping nitrogen during swine manure composting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Experiment Study on Determination of Surface Area of Finegrained Soils by Mercury Intrusion Porosimetry

    NASA Astrophysics Data System (ADS)

    Yan, X. Q.; Zhou, C. Y.; Fang, Y. G.; Lin, L. S.

    2017-12-01

    The specific surface area (SSA) has a great influence on the physical and chemical properties of fine-grained soils. Determination of specific surface area is an important content for fine-grained soils micro-meso analysis and characteristic research. In this paper, mercury intrusion porosimetry (MIP) was adopted to determine the SSA of fine-grained soils including quartz, kaolinite, bentonite and natural Shenzhen soft clay. The test results show that the average values of SSA obtained by MIP are 0.78m2/g, 11.31m2/g, 57.28m2/g and 27.15m2/g respectively for very fine-grained quartz, kaolin, bentonite and natural Shenzhen soft clay, and that it is feasible to apply MIP to obtain the SSA of fine-grained soils through statistical analysis of 97 samples. Through discussion, it is necessary to consider the state of fine-grained soils such as pore ratio when the SSA of fine-grained soils is determined by MIP.

  10. Understanding the Alteration of Bentonite Backfill Using Coupled THMC Modeling for a Long Term Heater Test at the Grimsel Underground Research Lab

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.; Zheng, L.; Xu, H.; Rutqvist, J.

    2017-12-01

    Compacted bentonite is commonly used as backfill material in emplacement tunnels of nuclear waste repositories because of its low permeability, high swelling pressure, and retardation capacity of radionuclide. To assess whether this backfill material can maintain these favorable features when undergoing heating from the waste package and hydration from the host rock, we need a thorough understanding of the thermal, hydrological, mechanical, and chemical evolution of bentonite under disposal conditions. Dedicated field tests integrated with THMC modeling provide an effective way to deepen such understanding. Here, we present coupled THMC models for an in situ heater test which was conducted at the Grimsel Test Site in Switzerland for 18 years. The comprehensive monitoring data obtained in the test provide a unique opportunity to evaluate bentonite integrity and test coupled THMC models. We developed a modeling strategy where conceptual model complexity is increased gradually by adding/testing processes such as Non-Darcian flow, enhanced vapor diffusion, thermal osmosis and different constitutive relationships for permeability/porosity changes due to swelling. The final THMC model explains well all the THM data and the concentration profiles of conservative chemical species. Over the course of modeling the in situ test, we learned that (1) including Non-Darcian flow into the model leads to a significant underestimation of hydration rate of bentonite, (2) chemical data provide an important additional piece of information for calibrating a THM model; (3) key processes needed to reproduce the data include vapor diffusion, as well as porosity and permeability changes due to swelling and thermal osmosis; (4) the concentration profiles of cations (calcium, potassium, magnesium and sodium) were largely shaped by transport processes despite their concentration levels being affected by mineral dissolution/precipitation and cation exchange. The concentration profiles of p

  11. Interaction of human adenoviruses and coliphages with kaolinite and bentonite.

    PubMed

    Bellou, Maria I; Syngouna, Vasiliki I; Tselepi, Maria A; Kokkinos, Petros A; Paparrodopoulos, Spyros C; Vantarakis, Apostolos; Chrysikopoulos, Constantinos V

    2015-06-01

    Human adenoviruses (hAdVs) are pathogenic viruses responsible for public health problems worldwide. They have also been used as viral indicators in environmental systems. Coliphages (e.g., MS2, ΦX174) have also been studied as indicators of viral pollution in fecally contaminated water. Our objective was to evaluate the distribution of three viral fecal indicators (hAdVs, MS2, and ΦΧ174), between two different phyllosilicate clays (kaolinite and bentonite) and the aqueous phase. A series of static and dynamic experiments were conducted under two different temperatures (4, 25°C) for a time period of seven days. HAdV adsorption was examined in DNase I reaction buffer (pH=7.6, and ionic strength (IS)=1.4mM), whereas coliphage adsorption in phosphate buffered saline solution (pH=7, IS=2mM). Moreover, the effect of IS on hAdV adsorption under static conditions was evaluated. The adsorption of hAdV was assessed by real-time PCR and its infectivity was tested by cultivation methods. The coliphages MS2 and ΦΧ174 were assayed by the double-layer overlay method. The experimental results have shown that coliphage adsorption onto both kaolinite and bentonite was higher for the dynamic than the static experiments; whereas hAdV adsorption was lower under dynamic conditions. The adsorption of hAdV increased with decreasing temperature, contrary to the results obtained for the coliphages. This study examines the combined effect of temperature, agitation, clay type, and IS on hAdV adsorption onto clays. The results provide useful new information on the effective removal of viral fecal indicators (MS2, ΦX174 and hAdV) from dilute aqueous solutions by adsorption onto kaolinite and bentonite. Factors enabling enteric viruses to penetrate soils, groundwater and travel long distances within aquifers are important public health issues. Because the observed adsorption behavior of surrogate coliphages MS2 and ΦΧ174 is substantially different to that of hAdV, neither MS2 nor

  12. [Effects of various adsorbants on coagulation factors (author's transl)].

    PubMed

    Soulier, J P; Prou-Wartelle, O

    1975-01-01

    Adsorption of clotting factors by various adsorbants is studied (tricalcium phosphate, baryum sulfate or carbonate or citrate, calcium oxalate, aluminium hydroxyde and several silicate such as: kaolin, celite, bentonite, attapulgite, beidellite, asbestos). The main properties of each adsorbant are listed as well as several applications such as: selective adsorption of fibrinogen, separation between fibrinogen and factor VIII, separation of factor II from the other components of the prothrombin complex. Activation of factors XII and XI by the various silicates, as well as the activation of factor V by attapulgite are studied. Finally, the action of such adsorbants on the fibrinolytic system is summarized.

  13. Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner.

    PubMed

    Pivato, A; Raga, R

    2006-01-01

    Uncontrolled leachate emissions are one of the key factors in the environmental impact of municipal solid waste (MSW) landfills. The concentration of ammonium, given the anaerobic conditions in traditional landfills, can remain significantly high for a very long period of time, as degradation does not take place and volatilisation is not significant (the pH is not high enough to considerably shift the equilibrium towards un-ionised ammonia). Recent years have witnessed a continuous enhancement of landfill technology in order to minimize uncontrolled emissions into the environment; bottom lining systems have been improved and more attention has been devoted to the study of the attenuation of the different chemicals in leachate in case of migration through the mineral barrier. Different natural materials have been considered for use as components of landfill liners in the last years and tested in order to evaluate the performance of the different alternatives. Among those materials, bentonite is often used, coupled with other materials in two different ways: in addition to in situ soil or in geocomposite clay liner (GCL). A lab-scale test was carried out in order to further investigate the influence of bentonite on the attenuation of ammonium in leachate passing through a landfill liner. Two different tests were conducted: a standardized batch test with pulverized bentonite and a batch test with compacted bentonite. The latter was proposed in order to better simulate the real conditions in a landfill liner. The two tests produced values for the partition coefficient K(d) higher than the average measured for other natural materials usually utilized as components of landfill liners. Moreover, the two tests showed similar results, thus providing a further validation of the suitability of the standard batch test with pulverized bentonite. A thorough knowledge of attenuation processes of ammonium in landfill liners is the basis for the application of risk analysis models

  14. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock(®)).

    PubMed

    Spears, Bryan M; Mackay, Eleanor B; Yasseri, Said; Gunn, Iain D M; Waters, Kate E; Andrews, Christopher; Cole, Stephanie; De Ville, Mitzi; Kelly, Andrea; Meis, Sebastian; Moore, Alanna L; Nürnberg, Gertrud K; van Oosterhout, Frank; Pitt, Jo-Anne; Madgwick, Genevieve; Woods, Helen J; Lürling, Miquel

    2016-06-15

    Lanthanum (La) modified bentonite is being increasingly used as a geo-engineering tool for the control of phosphorus (P) release from lake bed sediments to overlying waters. However, little is known about its effectiveness in controlling P across a wide range of lake conditions or of its potential to promote rapid ecological recovery. We combined data from 18 treated lakes to examine the lake population responses in the 24 months following La-bentonite application (range of La-bentonite loads: 1.4-6.7 tonnes ha(-1)) in concentrations of surface water total phosphorus (TP; data available from 15 lakes), soluble reactive phosphorus (SRP; 14 lakes), and chlorophyll a (15 lakes), and in Secchi disk depths (15 lakes), aquatic macrophyte species numbers (6 lakes) and aquatic macrophyte maximum colonisation depths (4 lakes) across the treated lakes. Data availability varied across the lakes and variables, and in general monitoring was more frequent closer to the application dates. Median annual TP concentrations decreased significantly across the lakes, following the La-bentonite applications (from 0.08 mg L(-1) in the 24 months pre-application to 0.03 mg L(-1) in the 24 months post-application), particularly in autumn (0.08 mg L(-1) to 0.03 mg L(-1)) and winter (0.08 mg L(-1) to 0.02 mg L(-1)). Significant decreases in SRP concentrations over annual (0.019 mg L(-1) to 0.005 mg L(-1)), summer (0.018 mg L(-1) to 0.004 mg L(-1)), autumn (0.019 mg L(-1) to 0.005 mg L(-1)) and winter (0.033 mg L(-1) to 0.005 mg L(-1)) periods were also reported. P concentrations following La-bentonite application varied across the lakes and were correlated positively with dissolved organic carbon concentrations. Relatively weak, but significant responses were reported for summer chlorophyll a concentrations and Secchi disk depths following La-bentonite applications, the 75th percentile values decreasing from 119 μg L(-1) to 74 μg L(-1) and increasing from

  15. The effect of humic acid on uranyl sorption onto bentonite at trace uranium levels.

    PubMed

    Ivanov, Peter; Griffiths, Tamara; Bryan, Nick D; Bozhikov, Gospodin; Dmitriev, Serguei

    2012-11-01

    The effect of humic acid (HA) on U(VI) sorption on bentonite was studied in batch experiments at room temperature and ambient atmosphere at a (237)U(VI) concentration of 8.4 × 10(-11) M and HA concentration of 100 mg L(-1). The distribution of U(VI) between the liquid and solid phases was studied as a function of pH and ionic strength both in the absence and presence of HA. It was shown that the uranyl sorption on bentonite is strongly dependent on pH and the presence of humics, and the effect of the addition order was negligible. In the absence of HA an enhancement in the uptake with increasing pH was observed and a sharp sorption edge was found to take place between pH 3.2 and 4.2. The presence of HA slightly increases uranium(VI) sorption at low pH and curtails it at moderate pH, compared to the absence of HA. In the basic pH range for both the presence and absence of HA the sorption of uranium is significantly reduced, which could be attributed to the formation of soluble uranyl carbonate complexes. The influence of ionic strength on U(VI) and HA uptake by bentonite were investigated in the range of 0.01-1.0 M, and while there was an enhancement in the sorption of humic acid with increasing ionic strength, no significant effect of the ionic strength on the U(VI) sorption was observed in both the absence and presence of HA.

  16. Illitization within bentonite engineered barrier system in clay repositories for nuclear waste and its effect on the swelling stress: a coupled THMC modeling study

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Liu, H. H.

    2014-12-01

    Geological repositories for disposal of high-level nuclear waste generally rely on a multi-barrier system to isolate radioactive waste from the biosphere. An engineered barrier system (EBS), which comprises in many design concepts a bentonite backfill, is widely used. Clay formations have been considered as a host rock throughout the world. Illitization, the transformation of smectite to illite, could compromise some beneficiary features of EBS bentonite and clay host rock such as sorption and swelling capacity. It is the major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present a fully coupled THMC simulation study of a generic nuclear waste repository in a clay formation with a bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant under higher temperature. However, the quantity of illitization is affected by many chemical factors and therefore varies a great deal. The most important chemical factors are the concentration of K in the pore water as well as the abundance and dissolution rate of K-feldspar. For the particular case and bentonite properties studied, the reduction in swelling stress as a result of chemical changes vary from 2% up to 70% depending on chemical and temperature conditions, and key mechanical parameters. The

  17. Geological Disposal of Nuclear Waste: Investigating the Thermo-Hygro-Mechanical-Chemical (THMC) Coupled Processes at the Waste Canister- Bentonite Barrier Interface

    NASA Astrophysics Data System (ADS)

    Davies, C. W.; Davie, D. C.; Charles, D. A.

    2015-12-01

    Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion

  18. Uranium and Cesium sorption to bentonite colloids in high salinity and carbonate-rich environments: Implications for radionuclide transport

    NASA Astrophysics Data System (ADS)

    Tran, E. L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N.

    2017-12-01

    When radionuclides are leaked into the subsurface due to engineered waste disposal container failure, the ultimate barrier to migration of radionuclides into local aquifers is sorption to the surrounding rock matrix and sediments, which often includes a bentonite backfill. The extent of this sorption is dependent on pH, ionic strength, surface area availability, radionuclide concentration, surface mineral composition, and solution chemistry. Colloidal-sized bentonite particles eroded from the backfill have been shown to facilitate the transport of radionuclides sorbed to them away from their source. Thus, sorption of radionuclides such as uranium and cesium to bentonite surfaces can be both a mobilization or retardation factor. Though numerous studies have been conducted to-date on sorption of radionuclides under low ionic strength and carbonate-poor conditions, there has been little research conducted on the behavior of radionuclides in high salinities and carbonate rich conditions typical of aquifers in the vicinity of some potential nuclear repositories. This study attempts to characterize the sorption properties of U(VI) and Cs to bentonite colloids under these conditions using controlled batch experiments. Results indicated that U(VI) undergoes little to no sorption to bentonite colloids in a high-salinity (TDS= 9000 mg/L) artificial groundwater. This lack of sorption was attributed to the formation of CaUO2(CO3)22- and Ca2UO2(CO3)3 aqueous ions which stabilize the UO22+ ions in solution. In contrast, Cs exhibited greater sorption, the extent to which was influenced greatly by the matrix water's ionic strength and the colloid concentration used. Surprisingly, when both U and Cs were together, the presence of U(VI) in solution decreased Cs sorption, possibly due to the formation of stabilizing CaUO2(CO3)22- anions. The implications of this research are that rather than undergoing colloid-facilitated transport, U(VI) is expected to migrate similarly to a

  19. Precise U/Pb zircons dates of bentonites in Upper Ordovician and Lower Silurian reference sections in North America and Britain.

    NASA Astrophysics Data System (ADS)

    Suarez, S. E.; Brookfield, M. E.; Catlos, E. J.; Stockli, D. F.; Batchelor, R. A.

    2016-12-01

    The end of the Ordovician marks one of the greatest of the Earth's mass extinctions. One hypothesis explains this mass extinction as the result of a short-lived, major glaciation preceded by episodes of increased volcanism brought on by the Taconic orogeny. K-bentonites, weathered volcanic ash, provide evidence for increased volcanism. However, there is a lack of modern precise U-Pb dating of these ashes and some confusion in the biostratigraphy. The aim of this study is to obtain more precise U-Pb zircon ages from biostratigraphically constrained bentonites which will lead to better correlation of the Upper Ordovician and Lower Silurian relative time scales, as well as time the pulses of eruption. Zircon grains were extracted from the samples by heavy mineral separation and U-Pb dated using the Laser Ablation-Inductively Coupled Plasma-Mass Spectrometer at the University of Texas-Austin. We report here 3 precise U-Pb zircon ages from the Trenton Group, Ontario, Canada, and Dob's Linn, Scotland. The youngest age from the top of the Kirkfield Formation in Ontario is 448.0 +/- 18 Ma, which fits with existing late Ordovician stratigraphic ages. At Dob's Linn, Scotland, the site of the Ordovician/Silurian Global Boundary Stratigraphic Section and Point (GSSP), the youngest age for DL7, a bentonite 5 meters below the GSSP is 402.0 +/- 12.0 Ma, and for DL24L, a bentonite 8 meters above the GSSP is 358.2 +/- 7.9 Ma. These are Devonian ages in current timescales - the current age for the GSSP is 443.8 +/- 1.8 Ma, based on an U/Pb dates from a bentonite 1.6 meters above the GSSP at Dob's Linn. We are confident that our techniques rule out contamination and the most likely explanation is that the small zircons we analyzed either suffered Pb loss, or grew overgrowths during low grade hydrothermal metamorphism of the sediments during the intrusion of the Southern Upland Devonian granites during the Caledonian orogeny. These Devonian ages suggest that the 443.8 +/- 1.8 Ma age

  20. The effect of landfill leachate composition on organics and nitrogen removal in an activated sludge system with bentonite additive.

    PubMed

    Wiszniowski, J; Surmacz-Górska, J; Robert, D; Weber, J-V

    2007-10-01

    A pre-denitrification activated sludge system (AS) without internal recycle was used in lab-scale studies of landfill leachate treatment. A bentonite supplement at a ratio of 1:4 (mineral : biomass) was used to ensure high sludge settling levels and to serve as a micro-organisms carrier. The system was operated within different parameters such as hydraulic retention time (HRT), ammonia loading rate (ALR) or external recycle ratio, which was adapted to treat varying leachate concentrations of COD and ammonia, ranging from 1020 to 2680 mgO(2)l(-1) and 400-890 mgNH(4)-Nl(-1) respectively. The nitrification was complete and ammonia oxidation reached 99%; this was obtained while the ALR did not exceed 0.09 g NH(4)(+)-Ng(-1)MLVSS d(-1) and HRT was not lower than 1 day (in the aeration reactor). The performance of denitrification was successfully improved by controlling the external recycle rate, when the BOD(5)/N ratio in the raw leachate was 4.1. Consequently, N-removal of up to 80% was achieved. A 10-fold decrease in the denitrification rate was obtained at a BOD(5)/N ratio of 0.5. The efficiency of COD removal varied significantly from 36% to 84%. The positive effect of bentonite addition was determined and is discussed based on preliminary studies. The experiments were carried out in fill-and-draw activated sludge with bentonite; the biomass ratio was 1:2. The activated sludge with bentonite was fed with a synthetic high ammonia and organic-free medium.

  1. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    NASA Astrophysics Data System (ADS)

    Ortega, Luis Humberto

    The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste

  2. Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material.

    PubMed

    Iamareerat, Butsadee; Singh, Manisha; Sadiq, Muhammad Bilal; Anal, Anil Kumar

    2018-05-01

    Biodegradable packaging in food materials is a green technology based novel approach to replace the synthetic and conventional packaging systems. This study is aimed to formulate the biodegradable cassava starch based films incorporated with cinnamon essential oil and sodium bentonite clay nanoparticles. The films were characterized for their application as a packaging material for meatballs. The cassava starch films incorporated with sodium bentonite and cinnamon oil showed significant antibacterial potential against all test bacteria; Escherichia coli , Salmonella typhimurium and Staphylococcus aureus. Antibacterial effect of films increased significantly when the concentration of cinnamon oil was increased. The cassava starch film incorporated with 0.75% (w/w) sodium bentonite, 2% (w/w) glycerol and 2.5% (w/w) cinnamon oil was selected based on physical, mechanical and antibacterial potential to evaluate shelf life of meatballs. The meatballs stored at ambient temperature in cassava starch film incorporated with cinnamon oil and nanoclay, significantly inhibited the microbial growth till 96 h below the FDA limits (10 6  CFU/g) in foods compared to control films that exceeded above the limit within 48 h. Hence cassava starch based film incorporated with essential oils and clay nanoparticles can be an alternate approach as a packaging material for food industries to prolong the shelf life of products.

  3. Potential impact of Andrassy bentonite microbial diversity in the long-term performance of a deep nuclear waste repository

    NASA Astrophysics Data System (ADS)

    Tadza, M. Y. Mohd; Tadza, M. A. Mohd; Bag, R.; Harith, N. S. H.

    2018-01-01

    Copper and steel canning and bentonite buffer are normally forseen as the primary containment component of a deep nuclear waste repository. Distribution of microbes in subsurface environments have been found to be extensive and directly or indirectly may exert influence on waste canister corrosion and the mobility of radionuclides. The understanding of clays and microbial interaction with radionuclides will be useful in predicting the microbial impacts on the performance of the waste repositories. The present work characterizes the culture-dependent microbial diversity of Andrassy bentonite recovered from Tawau clay deposits. The evaluation of microbial populations shows the presence of a number of cultivable microbes (e.g. Staphylococcus, Micrococcus, Achromobacter, Bacillus, Paecilomyces, Trichoderma, and Fusarium). Additionally, a pigmented yeast strain Rhodotorula mucilaginosa was also recovered from the formation. Both Bacillus and Rhodotorula mucilaginosa have high tolerance towards U radiation and toxicity. The presence of Rhodotorula mucilaginosa in Andrassy bentonite might be able to change the speciation of radionuclides (e.g. uranium) in a future deep repository. However, concern over the presence of Fe (III) reduction microbes such as Bacillus also found in the formation could lead to corrosion of copper steel canister and affect the overall performance of the containment system.

  4. Solar photodegradation of a textile azo dye using synthesized ZnO/Bentonite.

    PubMed

    Boutra, B; Trari, M

    2017-03-01

    The present work is devoted to the synthesis of a new photocatalyst ZnO (7.5%)/Bentonite prepared by impregnation method and its successful application for the degradation of Solophenyl Red 3BL (SR 3BL) under solar light (∼660 W/m 2 ). The X-ray diffraction (XRD) indicates mixed phases of the nanocomposite catalyst (ZnO/Bentonite), characterized by scanning electron microscopy, X-ray fluorescence and attenuated total reflection. The optical properties confirm the presence of the Wurtzite ZnO phase with an optical gap of 3.27 eV. The catalyst dose (0.25-1 gL -1 ), pH solution (2.5-11) and initial dye concentration (5-75 mg/L) are optimized. The optimal pH (∼6.7) is close to the natural environment. The photodegradation yield increases with decreasing the SR 3BL concentration. The equilibrium is reached within 160 min and the data are well fitted by the Langmuir-Hinshelwood model; the SR 3BL disappearance obeys to a first-order kinetic with an apparent rate constant of 10 - 2 mn - 1 . The best yield of SR 3BL photodegradation (92%) is achieved for a concentration of 5 mg/L and a catalyst dose of 0.75 gL -1 at free pH.

  5. Organic contaminant removal efficiency of sodium bentonite/clay (BC) mixtures in high permeability regions utilizing reclaimed wastewater: A meso-scale study

    NASA Astrophysics Data System (ADS)

    Xiao, Yang; Li, Yunkai; Ning, Zigong; Li, Pengxiang; Yang, Peiling; Liu, Chengcheng; Liu, Zhongwei; Xu, Feipeng; Hynds, Paul Dylan

    2018-03-01

    Wastewater reclamation now represents an effective measure for sustainable water resource management in arid regions, however wastewater components (organic micropollutants) may potentially impact local ecological and/or human health. Previous studies have shown that sodium bentonite/natural clay (BC) mixes may be used to effectively reduce riverbed infiltration in regions characterized by excessively high hydraulic conductivity. Accordingly, the current study sought to investigate the contaminant removal efficiency (Re) of several BC mass ratios in simulated dry riverbeds. Results indicate that the measured Re of NH4+-N, CODcr and BOD5 increased in concurrence with an increasing sodium bentonite ratio, up to a maximum Re of 97.4% (NH4+-N), 55.2% (CODcr), and 51.5% (BOD5). The primary contaminant removal site was shown to be the infiltration-reducing (BC) layer, accounting for approximately 40%, 60%, and 70% of NH4+-N, CODcr and BOD5 removal, respectively. Conversely, the removal efficiency of NO3-N was found to be low (<15%), while total phosphorous (TP) was found to actively leach from the infiltration-reduction layer, resulting in measured TP discharges 2.4-4.8 times those of initial infiltration values. The current study provides a technical baseline for the efficacy of sodium bentonite as an effective bi-functional material in areas utilizing reclaimed water i.e. concurrent reduction of infiltration rates (Function 1) and decontamination of reclaimed wastewater infiltration/recharge (Function 2). Findings indicate that sodium bentonite-clay mixes may represent a feasible alternative for managing recharge of non-potable aquifers with reclaimed wastewater.

  6. Utilization of cross-linked chitosan/bentonite composite in the removal of methyl orange from aqueous solution.

    PubMed

    Huang, Ruihua; Liu, Qian; Zhang, Lujie; Yang, Bingchao

    2015-01-01

    A kind of biocomposite was prepared by the intercalation of chitosan in bentonite and the cross-linking reaction of chitosan with glutaraldehyde, which was referred to as cross-linked chitosan/bentonite (CCS/BT) composite. Adsorptive removal of methyl orange (MO) from aqueous solutions was investigated by batch method. The adsorption of MO onto CCS/BT composite was affected by the ratio of chitosan to BT and contact time. pH value had only a minor impact on MO adsorption in a wide pH range. Adsorption kinetics was mainly controlled by the pseudo-second-order kinetic model. The adsorption of MO onto CCS/BT composite followed the Langmuir isotherm model, and the maximum adsorption capacity of CCS/BT composite calculated by the Langmuir model was 224.8 mg/g. Experimental results indicated that this adsorbent had a potential for the removal of MO from aqueous solutions.

  7. The radiolysis and radioracemization of amino acids on clays

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Hall, H.; Chow, G.; Yi, L.; Lemmon, R. M.

    1985-01-01

    The effects of the surfaces of kaolinite and bentonite clays on the radiolysis and radioracemization of L-leucine and its hydrochloride salt have been investigated experimentally. L-leucine and its hydrochloride salt were deposited on the clays and the amino acid/clay preparations were irradiated by a Co-60 gamma-ray source which induced 2-89 percent radiolysis. The efficiency of radiolysis and radioracemization were measured using gas chromatography. Results were obtained for leucine in 0.1 M aqueous solution for comparison with the clay-deposted leucine and leucine hydrochloride. It is found that radiolysis and radioracemization in the samples occurred according to a pseudo-first-order rate law. Comparison of the specific rate constants showed that leucine and its hydrochloride salt were the most resistant to both radiolysis and radioracemization, followed by leucine and its hydrochloride salt on kaolin. Leucine and its HCl salt on bentonite, and leucine in aqueous solution were found to be the least resistant to radiolysis and radioracemization. The experimental results are intepreted with respect to the Vester-Ulbricht mechanism for the origin of optical activity.

  8. Salt Content Determination for Bentonite Mine Spoil: Saturation Extracts Versus 1:5 Extracts

    Treesearch

    Marguerite E. Voorhees; Daniel W. Uresk

    2004-01-01

    The reliability of estimating salt content in saturated extracts from 1:5 (1spoil:5water) extract levels for bentonite mine spoil was examined by regression analyses. Nine chemical variables were examined that included pH, EC, Ca++, Mg++, Na+, K+, HCO3-, SO4-, and Cl-. Ion concentrations from 1:5 extracts were estimated with high predictability for Ca++, Mg++, Na+, SO4...

  9. Safety Evaluation of New Hemostatic Agents, Smectite Granules, and Kaolin-Coated Gauze in a Vascular Injury Wound Model in Swine

    DTIC Science & Technology

    2010-02-01

    risk of using WS when compared with kaolin-coated gauze, Combat Gauze (CG); or regular gauze, Kerlix (KX) to treat an external wound with vascular...communication with combat medics implied limited use or avoidance of these agents in the field because of either painful side effects (thermal injury with QC...potential thrombogenicity of WS and CG when they are used to control external bleeding due to major vascular injury. For this purpose, a new wound model was

  10. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue.

    PubMed

    Dai, Hongjie; Huang, Yue; Huang, Huihua

    2018-04-01

    Eco-friendly polyvinyl alcohol/carboxymethyl cellulose (isolated from pineapple peel) hydrogels reinforced with graphene oxide and bentonite were prepared as efficient adsorbents for methylene blue (MB). The structure and morphology of the prepared hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). Introducing graphene oxide and bentonite into the hydrogels evidently enhanced the thermal stability, swelling ability and MB adsorption capacity. The effects of initial concentration of MB, pH, contact time and temperature on MB adsorption capacity of the prepared hydrogels were investigated. Adsorption kinetics and equilibrium adsorption isotherm fitted pseudo-second-order kinetic model and Langmuir isotherm model well, respectively. After introducing graphene oxide and bentonite into the hydrogels, the maximum adsorption capacity calculated from the Langmuir isotherm model reached 172.14 mg/g at 30 °C, obviously higher than the hydrogels prepared without these additions (83.33 mg/g). Furthermore, all the prepared hydrogels also displayed good reusability for the efficient removal of MB. Consequently, the prepared hydrogels could be served as eco-friendly, stable, efficient and reusable adsorbents for anionic dyes in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Modeling early in situ wetting of a compacted bentonite buffer installed in low permeable crystalline bedrock

    NASA Astrophysics Data System (ADS)

    Dessirier, B.; Frampton, A.; Fransson, À.; Jarsjö, J.

    2016-08-01

    The repository concept for geological disposal of spent nuclear fuel in Sweden and Finland is planned to be constructed in sparsely fractured crystalline bedrock and with an engineered bentonite buffer to embed the waste canisters. An important stage in such a deep repository is the postclosure phase following the deposition and the backfilling operations when the initially unsaturated buffer material gets hydrated by the groundwater delivered by the natural bedrock. We use numerical simulations to interpret observations on buffer wetting gathered during an in situ campaign, the Bentonite Rock Interaction Experiment, in which unsaturated bentonite columns were introduced into deposition holes in the floor of a 417 m deep tunnel at the Äspö Hard Rock Laboratory in Sweden. Our objectives are to assess the performance of state-of-the-art flow models in reproducing the buffer wetting process and to investigate to which extent dependable predictions of buffer wetting times and saturation patterns can be made based on information collected prior to buffer insertion. This would be important for preventing insertion into unsuitable bedrock environments. Field data and modeling results indicate the development of a de-saturated zone in the rock and show that in most cases, the presence or absence of fractures and flow heterogeneity are more important factors for correct wetting predictions than the total inflow. For instance, for an equal open-hole inflow value, homogeneous inflow yields much more rapid buffer wetting than cases where fractures are represented explicitly thus creating heterogeneous inflow distributions.

  12. Bentonite chemical features as proxy of late Cretaceous provenance changes: A case study from the Western Interior Basin of Canada

    NASA Astrophysics Data System (ADS)

    Fanti, Federico

    2009-05-01

    Bentonite beds are fairly common in both marine and terrestrial Upper Cretaceous (Campanian-Maastrichtian) deposits of the Western Interior Basin of western Canada and northwestern United States. A detailed stratigraphic, sedimentologic, geochemical (X-ray fluorescence), and mineralogical (X-ray diffraction) study of twenty-one bentonites from the Puskwaskau and Wapiti formations in the Grande Prairie area (west-central Alberta, Canada) is here presented. Major and trace-element concentrations from altered volcanic ashes document the presence in the study area of predominantly trachyandesitic and rhyolitic volcanogenic products, resulted from intense volcanic arc to within-plate pyroclastic activity. Concentration values of high field strength elements (HFSE) and selected large ion lithophile elements (LILE) (e.g. Nb, Zr, Th, and Y) obtained by X-ray fluorescence spectroscopy strongly support the presence of multiple volcanic sources. Integrated paleoenvironmental and geochemical criteria for provenance determination indicate a bimodal occurrence of basic and acid volcanic products interpreted as reflection of source areas characterized by different tectonic setting and magmatic composition. A comparative analysis of geochemical compositions between Grande Prairie bentonites and 30 known volcanic beds from central and southern Alberta, Manitoba and Montana 1. documents a trend toward more acidic and alkali-depleted volcanic products during the late Campanian-early Maastrichtian interval, and 2. suggests a well constrained stratigraphic and geographic subdivision of the non-marine successions of the foreland basin on the basis of geochemical characteristic of volcanic ash beds. Furthermore, geochemical "fingerprints" of several decimeter to meter thick bentonite beds have been coupled with volcanic ash subsurface signature in order to investigate their role as marker beds. This multiple-approach provides a reliable tool for basin-scale identification and correlation

  13. Laboratory determination of migration of Eu(III) in compacted bentonite-sand mixtures as buffer/backfill material for high-level waste disposal.

    PubMed

    Zhou, Lang; Zhang, Huyuan; Yan, Ming; Chen, Hang; Zhang, Ming

    2013-12-01

    For the safety assessment of geological disposal of high-level radioactive waste (HLW), the migration of Eu(III) through compacted bentonite-sand mixtures was measured under expected repository conditions. Under the evaluated conditions, advection and dispersion is the dominant migration mechanism. The role of sorption on the retardation of migration was also evaluated. The hydraulic conductivities of compacted bentonite-sand mixtures were K=2.07×10(-10)-5.23×10(-10)cm/s, The sorption and diffusion of Eu(III) were examined using a flexible wall permeameter for a solute concentration of 2.0×10(-5)mol/l. The effective diffusion coefficients and apparent diffusion coefficients of Eu(III) in compacted bentonite-sand mixtures were in the range of 1.62×10(-12)-4.87×10(-12)m(2)/s, 1.44×10(-14)-9.41×10(-14)m(2)/s, respectively, which has a very important significance to forecast the relationship between migration length of Eu(III) in buffer/backfill material and time and provide a reference for the design of buffer/backfill material for HLW disposal in China. © 2013 Elsevier Ltd. All rights reserved.

  14. Enhanced electrokinetic properties and antimicrobial activities of biodegradable chitosan/organo-bentonite composites.

    PubMed

    Cabuk, Mehmet; Alan, Yusuf; Unal, H Ibrahim

    2017-04-01

    In this study, chitosan (CS), Na + -bentonite (Na + -BNT) and chitosan/organo-bentonite (CS/O-BNT) biodegradable composites having three different compositions were investigated. Electrokinetic measurements were examined in aqueous medium by taking the effects pH, electrolytes (NaCl and BaCl 2 ), surfactants (CTAB and SDS), and temperature into account. It was noticed that the initial ζ-potential of Na + -BNT shifted from negative (ζ=-35mV) to positive region (ζ=+13mV) with increasing polycationic CS content in the composite structure as aimed. Divalent 2:1 electrolyte (BaCl 2 ) caused to shift the ζ-potentials of all the dispersions to more positive regions. While the most negative effect on ζ-potential of the composites was reached with SDS, which reduced the value of ζ-potential to -39mV for CS(1)/O-BNT composite, the most positive effect was monitored with CTAB (ζ=+40mV) for CS(3)/O-BNT composite. Further, the composites were tested against various bacterial (Gram-positive and Gram-negative) and fungal microorganisms at various concentrations and results obtained were compared with the reference antibiotics and fungicide. According to inhibition zone values accomplished, antibacterial and antifungal activities of the CS/O-BNT composites are increased with increasing CS content as proportional with their positive ζ-potential values. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Influence of the simultaneous addition of bentonite and cellulose fibers on the mechanical and barrier properties of starch composite-films.

    PubMed

    de Moraes, J Oliveira; Müller, C M O; Laurindo, J B

    2012-02-01

    The addition of nanoclay or cellulose fibers has been presented in the literature as a suitable alternative for reinforcing starch films. The aim of the present work was to evaluate the effect of the simultaneous incorporation of nanoclay (bentonite) and cellulose fibers on the mechanical and water barrier properties of the resultant composite-films. Films were prepared by casting with 3% in weight of cassava starch, using glycerol as plasticizer (0.30 g per g of starch), cellulose fibers at a concentration of 0.30 g of fibers per g of starch and nanoclay (0.05 g clay per g starch and 0.10 g clay per g starch). The addition of cellulose fibers and nanoclay increased the tensile strength of the films 8.5 times and the Young modulus 24 times but reduced the elongation capacity 14 times. The water barrier properties of the composite-films to which bentonite and cellulose fibers were added were approximately 60% inferior to those of starch films. Diffractograms showed that the nanoclay was intercalated in the polymeric matrix. These results indicate that the simultaneous addition of bentonite and cellulose fibers is a suitable alternative to increase the tensile strength of the films and decrease their water vapor permeabilities.

  16. Mechanism of smectic arrangement of montmorillonite and bentonite clay platelets incorporated in gels of poly(acrylamide) induced by the interaction with cationic surfactants.

    PubMed

    Starodoubtsev, S G; Lavrentyeva, E K; Khokhlov, A R; Allegra, G; Famulari, A; Meille, S V

    2006-01-03

    Structure transitions, induced by the interaction with the cationic surfactant cetylpyridinium chloride in nanocomposite gels of poly(acrylamide) with incorporated suspensions of the two closely related layered clays bentonite and montmorillonite, were studied. Unexpectedly, different behaviors were revealed. X-ray diffraction measurements confirm that, due to the interaction with the surfactant, initially disordered bentonite platelets arrange into highly ordered structures incorporating alternating clay platelets and surfactant bilayers. The formation of these smectic structures also in the cross-linked polymer gels, upon addition of the surfactant, is explained by the existence of preformed, poorly ordered aggregates of the clay platelets in the suspensions before the gel formation. In the case of montmorillonite, smectic ordering of the disordered platelets in the presence of the surfactant is observed only after drying the suspensions and the clay-gel composites. Rheology studies of aqueous suspensions of the two clays, in the absence of both surfactant and gel, evidence a much higher viscosity for bentonite than for montmorillonite, suggesting smaller clay-aggregate size in the latter case. Qualitatively consistent results are obtained from optical micrographs.

  17. The Effects of Flocculation on the Propagation of Ultrasound in Dilute Kaolin Slurries.

    PubMed

    Austin; Challis

    1998-10-01

    A broadband ultrasonic spectrometer has been used to measure ultrasonic attenuation and phase velocity dispersion as functions of frequency in kaolin suspensions over a range of solid volume fractions from phi = 0.01 to phi = 0.08 and over a pH range from 3 to 9. The Harker and Temple theory was used to simulate ultrasound propagation in the suspension, using measured slope viscosity, particle size, and size distribution. Simulated results for ultrasonic attenuation and phase velocity agree well with measured values. Both sets of results agree well and show that for volume fractions above phi approximately 0.05 attenuation and velocity dispersion increase for increasing floc size, whereas for volume fractions below phi approximately 0.05 attenuation and velocity dispersion both decrease. It is proposed that the mechanism for this change in behavior around phi approximately 0.05 involves changes in floc density and floc size distribution with phi and pH. Copyright 1998 Academic Press.

  18. Catalytic decolorization of azo-stuff with electro-coagulation method assisted by cobalt phosphomolybdate modified kaolin.

    PubMed

    Zhuo, Qiongfang; Ma, Hongzhu; Wang, Bo; Gu, Lin

    2007-04-02

    The new catalytic decoloration of C.I. Acid Red 3R with electro-coagulation (EC) method assisted by cobalt phosphomolybdate modified kaolin has been studied. The result showed that this process could effectively remove the C.I. Acid Red 3R contained in wastewater and its color removal efficiency could reach up to 98.3% in 7 min. The kinetics of the catalytic decolorization of Acid Red 3R was also studied. The decolorization reaction order was dependent on the initial concentration [R](0) with respect to the concentration of C.I. Acid Red 3R. At lower [R](0) the order was first, which then decreases with increasing [R](0). The operating parameters such as initial pH, current density and temperature were also investigated. A possible reaction mechanism was proposed.

  19. The effect of the natural bentonite to reduce COD in palm oil mill effluent by using a hybrid adsorption-flotation method

    NASA Astrophysics Data System (ADS)

    Dewi, Ratni; Sari, Ratna; Syafruddin

    2017-06-01

    Palm oil mill effluent is waste produced from palm oil processing activities. This waste are comingfrom condensate water, process water and hydrocyclone water. The high levels of contaminants in the palm oil mill effluent causes the waste becomes inappropriate to be discharged to water body before processing, one of the most major contaminants in wastewater is fats, oils and COD.This study investigated the effectiveness of chemically activated bentonite that serves as an alternative to reduce the COD in adsorption and floatation based palm oil effluent waste processing. Natural bentonite was activated by using nitrit acid and benzene. In the existing adsorption material to improve COD reduction capability whereas the flotation method was used to further remove residual effluent which is still remain after the adsorption process. An adsorption columns which operated in batch was used in the present study. By varying the circulation time and adsorbent treatment (activated and non-activated), it was shown that percentage of COD reduction reached 75% at the circulation time of 180 minutes for non activated adsorbent. On the other hand the percentof COD reduction in adsorption and flotation process using activated bentonite reached as high as 88% and 93% at the circulation time of 180 minutes.

  20. Preparation of alpha-alumina-supported mesoporous bentonite membranes for reverse osmosis desalination of aqueous solutions.

    PubMed

    Li, Liangxiong; Dong, Junhang; Lee, Robert

    2004-05-15

    In this study, mesoporous bentonite clay membranes approximately 2 microm thick were prepared on porous alpha-alumina substrates by a sol-gel method. Nanosized clay particles were obtained from commercial Na-bentonite powders (Wyoming) by a process of sedimentation, washing, and freeze-drying. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption were employed for membrane characterization. It was found that the content of solids, concentration of polymer binder, and pH value of the clay colloidal suspension had critical influences on membrane formation during the dip-coating process. The membranes were tested for reverse osmosis separation of a 0.1 M NaCl solution. Both water permeability and Na(+) rejection rate of the supported membranes were comparable to those of the compacted thick membranes reported in the literature. However, due to the drastically reduced membrane thickness, water permeance and flux of the supported membranes were significantly higher than those of the compacted thick membranes. It was also observed that the calcination temperature played a critical role in determining structural stability in water and desalination performance of the clay membrane.

  1. Insertion of bentonite with Organometallic [Fe3O(OOC6H5)6(H2O)3(NO3).nH2O] as Adsorbent of Congo Red

    NASA Astrophysics Data System (ADS)

    Said, Muhammad; Paluta Utami, Hasja; Hayati, Ferlina

    2018-01-01

    The adsorption of Congo red using bentonite inserted organometallic has been investigated. The insertion bentonite was characterized using FT-IR Spectrophotometer, XRD and XRF analysis. The FT-IR characterization showed the higher intensity of peak wavenumber at 470.6 cm-1 for Fe3O on the ratio 1:3. While the XRD characterization showed the shift of diffraction angle of 2θ was 5.2° and has a basal spacing of 16.8 Å. In the XRF characterization, the insertion process of organometallic occurred optimally with the percentage of metal oxide reached 71.75 %. The adsorption process of bentonite inserted organometallic compound [Fe3O(OOC6H5)6(H2O)3(NO3)·nH2O] showed the adsorption rate (k) is 0.050 min-1, the largest adsorption capacity (b) at 70°C is 4.48 mol/g, the largest adsorption energy at temperature 30°C which is 6.4 kJ/mol Organometallic compounds. The value of the enthalpy (ΔH) and entropy (ΔS) decreased with increasing concentrations of the Congo red. Effect of pH on the adsorption on at pH 3 shows the biggest of number Congo red absorbed is 19.52 mg/L for insertion of bentonite.

  2. Timing of the Blount and Martinsburg foreland basin development during the Taconic Orogeny based on the Deicke and Millbrig K-bentonite marker horizons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McVey, D.E.; Huff, W.D.

    1993-03-01

    During the Taconic Orogeny (Middle and Late Ordovician), the eastern continental margin of North America developed several foreland basins as a result of the collision of one or more island arc/microplate complexes. These collisions occurred along a subduction zone characterized by a string of explosively eruptive volcanoes which produced widespread K-bentonite beds. Volcanism coincided with the filling of thick accumulations of sediment in two of the basins: the Blount (southern Appalachians) and the Martinsburg (central Appalachians). Two prominent K-bentonites, the Deicke and Millbrig, have been correlated across the two basins in this study. These two K-bentonites are stratigraphically significant becausemore » they are excellent time lines since they represent short-term events in geologic history. The foreland basins developed by the Taconic Orogeny become successively younger to the north due to a shift in the focus of collision (Read, 1980). The Blount basin was nearly filled with sediment by the time the Martinsburg basin began to form. This coincides with previous suggestions that the Taconic Orogeny was not one climactic event but a series of events where the collisions migrated northward like the closing of a zipper. The Deicke and Millbrig K-bentonites occur within the platform carbonates of the Eggleston and Liberty Hall formations and the red bed clastic facies of the Bays formation in the Blount basin, and they occur within the slope carbonates of the New Enterprise Member of the Salona formation and the black shale and turbidite facies of the Martinsburg formation in the Martinsburg basin. This correlation establishes a more precise time framework for the formation of the two foreland basins.« less

  3. Activated carbons as potentially useful non-nutritive additives to prevent the effect of fumonisin B1 on sodium bentonite activity against chronic aflatoxicosis.

    PubMed

    Monge, María Del Pilar; Magnoli, Alejandra Paola; Bergesio, Maria Virginia; Tancredi, Nestor; Magnoli, Carina E; Chiacchiera, Stella Maris

    2016-06-01

    Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins that often co-occur in feedstuffs. The ingestion of AFB1 causes aflatoxicosis in humans and animals. Sodium bentonite (NaB), a cheap non-nutritive unselective sequestering agent incorporated in animal diets, can effectively prevent aflatoxicosis. Fumonisins are responsible for equine leukoencephalomalacia and porcine pulmonary oedema, and often have subclinical toxic effects in poultries. Fumonisin B1 and aflatoxin B1 are both strongly adsorbed in vitro on sodium bentonite. Co-adsorption studies, carried out with a weight ratio of FB1 to AFB1 that mimics the natural occurrence (200:1), showed that FB1 greatly decreases the in vitro ability of NaB to adsorb AFB1. The ability of two activated carbons to adsorb FB1 was also investigated. Both carbons showed high affinity for FB1. A complex behaviour of the FB1 adsorption isotherms with pH was observed. In vitro results suggest that under natural contamination levels of AFB1 and FB1, a mixture of activated carbon and sodium bentonite might be potentially useful for prevention of sub-acute aflatoxicosis.

  4. Government Draw Bentonite Beds: a newly identified stratigraphic marker in the Virgin Creek Member of the Pierre Shale, central South Dakota ( USA).

    USGS Publications Warehouse

    Nichols, T.C.; Chleborad, A.F.; Collins, D.S.

    1987-01-01

    A grouping of four bentonite beds, herein named the Government Draw Bentonite Beds, is identified as a stratigraphic marker within the Virgin Creek Member of the Pierre Shale. The beds are found west of Pierre, South Dakota, over an area of at least 130 mi2 (210 km2) where no other markers within the Virgin Creek Member have been identified. In this area, the Government Draw is a potential tool needed to determine the stratigraphic and structural relationships within the upper part of the Pierre Shale, heretofore little known. A better understanding of structural elements found in the Pierre Shale is needed to unravel the Late Cretaceous and younger geologic history of the area. -Authors

  5. Effects of in vitro hemodilution with crystalloids, colloids, and plasma on canine whole blood coagulation as determined by kaolin-activated thromboelastography.

    PubMed

    Morris, Bari R; deLaforcade, Armelle; Lee, Joyce; Palmisano, Joseph; Meola, Dawn; Rozanski, Elizabeth

    2016-01-01

    To investigate the effects of in vitro hemodilution with lactated Ringers solution (LRS), hetastarch (HES), and fresh frozen plasma (FFP) on whole blood coagulation in dogs as assessed by kaolin-activated thromboelastography. In vitro experimental study. University teaching hospital. Six healthy client-owned dogs. Whole blood was collected and diluted in vitro at a 33% and 67% dilution with either LRS, HES, or FFP. Kaolin-activated thromboelastography was performed on each sample as well as a control. Thromboelastographic parameters R (min), alpha (deg), K (min), and MA (mm) were measured and compared to the sample control for each dilution using mixed model methodology. Prolongation in coagulation times were seen at both dilutions with LRS and HES. There was no significant difference in R times at the 33% dilution, but R time was significantly prolonged at the 67% dilution with HES (P = 0.004). MA was significantly decreased for LRS at both dilutions (P = 0.013, P < 0.001) and more profoundly decreased for HES (P < 0.001, P = 0.006). No significant difference in any parameter was found for FFP. In vitro hemodilution of whole blood with both LRS and HES but not FFP resulted in significant effects on coagulation with HES having a more profound effect. In vivo evaluation of changes in coagulation with various resuscitation fluids is warranted and may be clinically relevant. © Veterinary Emergency and Critical Care Society 2015.

  6. Synthesis and characterization of polyurethane/bentonite nanoclay based nanocomposites using different diisocyanates: relation between mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Bocchio, Javier; Wittemberg, Víctor; Quagliano, Javier

    2017-05-01

    Polyurethanes (PUs) and polyurethane nanocomposites (PUNC) with bentonite nanoclay were prepared by the reaction of toluene-2,4-diisocyanate (TDI), dimeryl diisocyanate (DDI) and isophorone diisocyanate (IPDI) with two different polymers: hydroxyl terminated polybutadiene (HTPB) and polytetramethylene ether glycol (PTMEG), and the chains were further extended with 1,4-butanediol (1,4-BDO) to get final PUs and PUNCs. PUNCs were prepared by dispersing within the polymers a commercial and a synthesized bentonite nanoclay by mechanical dispersion. Mechanical properties showed that the addition of a small amount of nanoclay resulted in a significant increase in tensile strength and reduction in elongation at break (maximum increase of 2.3 and 5-times reduction, respectively, for a HTPB-TDI-BDO PUNCs). Thermal analysis revealed that the addition of nanoclays improved the thermal stability and increased decomposition temperature of PUNCs. We concluded that there is a positive correlation between mechanical and thermal properties as a result of nanoclay addition.

  7. Functional kaolin supported nanoscale zero-valent iron as a Fenton-like catalyst for the degradation of Direct Black G.

    PubMed

    Lin, Jiajiang; Sun, Mengqiang; Liu, Xinwen; Chen, Zuliang

    2017-10-01

    Kaolin supported nanoscale zero-valent iron (K-nZVI) is synthesized and applied as the Fenton-like oxidation catalyst to degrade a model azo dye, Direct Black G (DBG). The characterization of K-nZVI by the high resolution transmission electronmicroscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Energy Diffraction Spectrum (EDS) and X-ray diffraction (XRD) show that kaolin as a support material not only reduces the aggregation of zero-valent iron (nZVI) but also facilitates the Fenton-like oxidation by increasing the local concentration of DBG in the vicinity of nZVI. Pseudo first-order and pseudo second-order kinetic models are employed to reveal the adsorption and degradation of the DBG using K-nZVI as the catalyst. A better fit with pseudo second-order model for the adsorption process and equal excellent fits with pseudo first-order and pseudo second-order models for the degradation process are observed; the adsorption process is found to be the rate limiting step for overall reactions. The adsorption, evaluated by isotherms and thermodynamic parameters is a spontaneous and endothermic process. High-performance liquid chromatography-mass spectrometry (LC-MS) analysis was used to test degraded products in the degradation of DGB by K-nZVI. A removal mechanism based on the adsorption and degradation is proposed, including (i) prompt adsorption of DBG onto the K-nZVI surface, and (ii) oxidation of DBG by hydroxyl radicals at the K-nZVI surface. The application of K-nZVI to treat real wastewater containing azo dyes shows excellent degradation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bentonite-Clay Waste Form for the Immobilization of Cesium and Strontium from Fuel Processing Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Michael D.; Mertz, Carol J.

    2016-01-01

    The physical properties of a surrogate waste form containing cesium, strontium, rubidium, and barium sintered into bentonite clay were evaluated for several simulant feed streams: chlorinated cobalt dicarbollide/polyethylene glycol (CCD-PEG) strip solution, nitrate salt, and chloride salt feeds. We sintered bentonite clay samples with a loading of 30 mass% of cesium, strontium, rubidium, and barium to a density of approximately 3 g/cm 3. Sintering temperatures of up to 1000°C did not result in volatility of cesium. Instead, there was an increase in crystallinity of the waste form upon sintering to 1000ºC for chloride- and nitrate-salt loaded clays. The nitrate saltmore » feed produced various cesium pollucite phases, while the chloride salt feed did not produce these familiar phases. In fact, many of the x-ray diffraction peaks could not be matched to known phases. Assemblages of silicates were formed that incorporated the Sr, Rb, and Ba ions. Gas evolution during sintering to 1000°C was significant (35% weight loss for the CCD-PEG waste-loaded clay), with significant water being evolved at approximately 600°C.« less

  9. Investigation into the morphology and structure of magnetic bentonite nanocomposites with their catalytic activity

    NASA Astrophysics Data System (ADS)

    Wan, Dong; Wang, Guanghua; Li, Wenbing; Wei, Xiaobi

    2017-08-01

    Al pillared bentonite-Fe3O4 nanocomposites (Fe3O4/Al-B) with controllable Fe3O4 particle sizes and loadings were synthesized by a simple in situ oxidation-precipitation method. The obtained samples were characterized by XRD, SEM, TEM, FTIR, XPS, VSM and N2 sorption. These results suggested that Fe3O4 was chemically anchored to the bentonite sheets via Fe-O-Si bonds, resulting in the formation of secondary pore structure. Three types of structure of Fe3O4/Al-B nanocomposites were proposed at different Fe3O4 loadings, varying from 40 to 80 wt%. The catalytic activity of the Fe3O4/Al-B nanocomposites was investigated in the heterogeneous Fenton-like oxidation of rhodamine B (RhB). The 50 nm Fe3O4/Al-B nanocomposite showed enhanced degradation of RhB over the control catalyst, benefited from its greater surface area and pore volume. The highest catalytic activity was found to be at Fe3O4 loading of 60 wt%, which was attributed to the synergistic effects between both increased surface area and formed Fe-O-Si bonds. These findings offer a better understanding on structural and morphological relationships of Fe3O4/Al-B nanocomposites with their heterogeneous Fenton-like catalytic activity.

  10. Cationic polyelectrolyte induced separation of some inorganic contaminants and their mixture (zirconium silicate, kaolin, K-feldspar, zinc oxide) as well as of the paraffin oil from water.

    PubMed

    Ghimici, Luminita

    2016-03-15

    The flocculation efficiency of a cationic polyelectrolyte with quaternary ammonium salt groups in the backbone, namely PCA5 was evaluated on zirconium silicate (kreutzonit), kaolin, K- feldspar and zinc oxide (ZnO) suspensions prepared either with each pollutant or with their mixture. The effect of several parameters such as settling time, polymer dose and the pollutant type on the separation efficacy was evaluated and followed by optical density and zeta potential measurements. Except for ZnO, the interactions between PCA5 and suspended particles led to low residual turbidity values (around 4% for kreutzonit, 5% for kaolin and 8% for K-feldspar) as well as to the reduction of flocs settling time (from 1200 min to 30 min and 120 min in case of kaolinit and K-feldspar, respectively), that meant a high efficiency in their separation. The negative value of the zeta potential and flocs size measurements, at the optimum polymer dose, point to contribution from charge patch mechanism for the particles flocculation. A good efficiency of PCA5 in separation of paraffin oil (a minimum residual turbidity of 9.8%) has been also found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Bioflocculation production from lower-molecular fatty acids as a novel strategy for utilization of sludge digestion liquor.

    PubMed

    Fujita, M; Ike, M; Jang, J H; Kim, S M; Hirao, T

    2001-01-01

    We propose the bioproduction of a bioflocculant from lower-molecular fatty acids as an innovative strategy for utilizing waste sludge digestion liquor. Fundamental studies on the production, characterization and application of a novel bioflocculant were performed. Citrobactersp. TKF04 was screened out of 1,564 natural isolates as a bacterial strain capable of a bioflocculant from acetic and propionic acids. TKF04 produced the bioflocculant during the logarithmic growth in the batch cultivation, and it could be recovered from the culture supernatant by ethanol precipitation. The fed-batch cultivation with feeding of acetic acid: ammonium 10;1 (mole) to maintain pH 8.5 led to the hyper-production of the bioflocculant. The bioflocculant was found to be effective for flocculating a kaolin suspension, when added at a final concentration of 1-10 mg/l, over a wide range of pHs (2-8) and temperatures (3-95 degrees C), while the addition of cations was not required. It could flocculate a variety of inorganic and organic suspended particles including kaolin, diatomite, bentonite, activated carbon, soil and activated sludge. These indicated that the bioflocculant possesses flocculating activity comparable or superior to that of synthetic flocculants. The bioflocculation was identified as a chitosan-like biopolymer.

  12. Synthesis, characterization, and potential application of Mn2+-intercalated bentonite in fluoride removal: adsorption modeling and mechanism evaluation

    NASA Astrophysics Data System (ADS)

    Mudzielwana, Rabelani; Gitari, Wilson M.; Akinyemi, Segun A.; Msagati, Titus A. M.

    2017-12-01

    The study synthesizes a low-cost adsorbent made from Mn2+-modified bentonite clay for groundwater defluoridation. The clays were characterized using X-ray diffraction, X-ray fluorescence, scanning electron microscopy, and Fourier transform infrared techniques. The fluoride adsorption capacity of the modified clay was evaluated using batch experiments. The adsorption kinetics results showed that the optimum fluoride (F-) uptake was achieved within the 30 min' contact time. The data fitted well to pseudo-second-order of reaction kinetics indicating that adsorption of F- occurred via chemisorption. In addition, the adsorption isotherm data fitted well to Langmuir isotherm model indicating that adsorption occurred on a mono-layered surface. Maximum F- removal of 57% was achieved from groundwater with an initial F- concentration of 5.4 mg L-1 and natural pH of 8.6 using adsorbent dosage of 1 g/100 mL. Fluoride adsorption occurred through ligands and ion exchange mechanisms. The synthesized adsorbent was successfully regenerated for up to five times. The study shows that Mn2+-intercalated bentonite clay has potential for application in defluoridation of groundwater.

  13. Controlled release of isoproturon, imidacloprid, and cyromazine from alginate-bentonite-activated carbon formulations.

    PubMed

    Garrido-Herrera, F J; Gonzalez-Pradas, E; Fernandez-Pérez, M

    2006-12-27

    Different alginate-based systems of isoproturon, imidacloprid, and cyromazine have been investigated in order to obtain controlled release (CR) properties. The basic formulation [sodium alginate (1.50%), pesticide (0.30%), and water] was modified using different amounts of bentonite and activated carbon. The higher values of encapsulation efficiency corresponded to those formulations prepared with higher percentages of activated carbon, showing higher encapsulation efficiency values for isoproturon and imidacloprid than for cyromazine, which has a higher water solubility. The kinetic experiments of imidacloprid/isoproturon release in water have shown us that the release rate is higher in imidacloprid systems than in those prepared with isoproturon. Moreover, it can be deduced that the use of bentonite and/or activated carbon sorbents reduces the release rate of the isoproturon and imidacloprid in comparison with the technical product and with alginate formulation without modifying agents. The highest decrease in release rate corresponds to the formulations prepared with the highest percentage of activated carbon. The water uptake, permeability, and time taken for 50% of the active ingredient to be released into water, T50, were calculated to compare the formulations. On the basis of a parameter of an empirical equation used to fit the pesticide release data, the release of isoproturon and imidacloprid from the various formulations into water is controlled by a diffusion mechanism. The sorption capacity of the sorbents and the permeability of the formulations were the most important factors modulating pesticide release. Finally, a linear correlation of the T50 values and the content of activated carbon in formulations were obtained.

  14. A global sensitivity analysis of two-phase flow between fractured crystalline rock and bentonite with application to spent nuclear fuel disposal

    NASA Astrophysics Data System (ADS)

    Dessirier, Benoît; Frampton, Andrew; Jarsjö, Jerker

    2015-11-01

    Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to

  15. A global sensitivity analysis of two-phase flow between fractured crystalline rock and bentonite with application to spent nuclear fuel disposal.

    PubMed

    Dessirier, Benoît; Frampton, Andrew; Jarsjö, Jerker

    2015-11-01

    Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to

  16. Effects of Pulp and Na-Bentonite Amendments on the Mobility of Trace Elements, Soil Enzymes Activity and Microbial Parameters under Ex Situ Aided Phytostabilization

    PubMed Central

    Wasilkowski, Daniel; Mrozik, Agnieszka

    2017-01-01

    The objective of this study was to explore the potential use of pulp (by-product) from coffee processing and Na-bentonite (commercial product) for minimizing the environmental risk of Zn, Pb and Cd in soil collected from a former mine and zinc-lead smelter. The effects of soil amendments on the physicochemical properties of soil, the structural and functional diversity of the soil microbiome as well as soil enzymes were investigated. Moreover, biomass of Festuca arundinacea Schreb. (cultivar Asterix) and the uptake of trace elements in plant tissues were studied. The outdoor pot set contained the following soils: control soil (initial), untreated soil (without additives) with grass cultivation and soils treated (with additives) with and without plant development. All of the selected parameters were measured at the beginning of the experiment (t0), after 2 months of chemical stabilization (t2) and at the end of the aided phytostabilization process (t14). The obtained results indicated that both amendments efficiently immobilized the bioavailable fractions of Zn (87–91%) and Cd (70–83%) at t14; however, they were characterized by a lower ability to bind Pb (33–50%). Pulp and Na-bentonite drastically increased the activity of dehydrogenase (70- and 12-fold, respectively) at t14, while the activities of urease, acid and alkaline phosphatases differed significantly depending on the type of material that was added into the soil. Generally, the activities of these enzymes increased; however, the increase was greater for pulp (3.5-6-fold) than for the Na-bentonite treatment (1.3–2.2-fold) as compared to the control. Soil additives significantly influenced the composition and dynamics of the soil microbial biomass over the experiment. At the end, the contribution of microbial groups could be ordered as follows: gram negative bacteria, fungi, gram positive bacteria, actinomycetes regardless of the type of soil enrichment. Conversely, the shift in the functional

  17. Magnesium sulfate treatment for juvenile ferrets following induction of hydrocephalus with kaolin.

    PubMed

    Di Curzio, Domenico L; Turner-Brannen, Emily; Mao, Xiaoyan; Del Bigio, Marc R

    2016-04-27

    Previous work with 3-week hydrocephalic rats showed that white matter damage could be reduced by the calcium channel antagonist magnesium sulfate (MgSO4). We hypothesized that MgSO4 therapy would improve outcomes in ferrets with hydrocephalus induced with kaolin at 15 days. MRI was performed at 29 days to assess ventricle size and stratify ferrets to treatment conditions. Beginning at 31 days age, they were treated daily for 14 days with MgSO4 (9 mM/kg/day) or sham saline therapy, and then imaged again before sacrifice. Behavior was examined thrice weekly. Histological and biochemical ELISA and myelin enzyme activity assays were performed at 46 days age. Hydrocephalic ferrets exhibited some differences in weight and behavior between treatment groups. Those receiving MgSO4 weighed less, were more lethargic, and displayed reduced activity compared to those receiving saline injections. Hydrocephalic ferrets developed ventriculomegaly, which was not modified by MgSO4 treatment. Histological examination showed destruction of periventricular white matter. Glial fibrillary acidic protein content, myelin basic protein content, and myelin enzyme activity did not differ significantly between treatment groups. The hydrocephalus-associated disturbances in juvenile ferret brains are not ameliorated by MgSO4 treatment, and lethargy is a significant side effect.

  18. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    NASA Astrophysics Data System (ADS)

    Qu, Mengnan; Liu, Shanshan; He, Jinmei; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-07-01

    In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  19. Infrared Spectroscopic Study on Structural Change and Interfacial Interaction in Rubber Composites Filled with Silica-Kaolin Hybrid Fillers

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Guan, J.; Hu, H.; Gao, H.; Zhang, L.

    2016-07-01

    A series of natural rubber/styrene butadiene rubber/polybutadiene rubber composites was prepared with nanometer silica and micron kaolin by a dry modification process, mechanical compounding, and mold vulcanization. Fourier transform infrared spectroscopy and a scanning electron microscope were used to investigate the structural changes and interfacial interactions in composites. The results showed that the "seesaw" structure was formed particularly with the incorporation of silica particles in the preparation process, which would be beneficial to the dispersibility of fillers in the rubber matrix. The kaolinite platelets were generally arranged in directional alignment. Kaolinite with smaller particle size and low-defect structure was more stable in preparation, but kaolinite with larger particle size and high defect structure tended to change the crystal structure. The composite prepared in this research exhibited excellent mechanical and thermal properties.

  20. The Lower Silurian Osmundsberg K-bentonite. Part II: Mineralogy, geochemistry, chemostratigraphy and tectonomagmatic significance

    USGS Publications Warehouse

    Huff, W.D.; Bergstrom, Stig M.; Kolata, Dennis R.; Sun, H.

    1998-01-01

    The Lower Silurian Osmundsberg K-bentonite is a widespread ash bed that occurs throughout Baltoscandia and parts of northern Europe. This paper describes its characteristics at its type locality in the Province of Dalarna, Sweden. It contains mineralogical and chemical characteristics that permit its regional correlation in sections elsewhere in Sweden as well as Norway, Estonia, Denmark and Great Britain. The < 2 ??m clay fraction of the Osmundsberg bed contains abundant kaolinite in addition to randomly ordered (RO) illite/smectite (I/S). Modelling of the X-ray diffraction tracings showed the I/S consists of 18% illite and 82 % smectite. The high smectite and kaolinite content is indicative of a history with minimal burial temperatures. Analytical data from both pristine melt inclusions in primary quartz grains as well as whole rock samples can be used to constrain both the parental magma composition and the probable tectonic setting of the source volcanoes. The parental ash was dacitic to rhyolitic in composition and originated in a tectonically active collision margin setting. Whole rock chemical fingerprinting of coeval beds elsewhere in Baltoscandia produced a pronounced clustering of these samples in the Osmundsberg field of the discriminant analysis diagram. This, together with well-constrained biostratigraphic and lithostratigraphic data, provides the basis for regional correlation and supports the conclusion that the Osmundsberg K-bentonite is one of the most extensive fallout ash beds in the early Phanerozoic. The source volcano probably lay to the west of Baltica as part of the subduction complex associated with the closure of Iapetus.

  1. Removal of cyanobacteria and cyanotoxins from lake water by composites of bentonite with micelles of the cation octadecyltrimethyl ammonium (ODTMA).

    PubMed

    Sukenik, Assaf; Viner-Mozzini, Yehudit; Tavassi, Mordechay; Nir, Shlomo

    2017-09-01

    Cyanobacteria and their toxins present potential hazard to consumers of water from lakes, reservoirs and rivers, thus their removal via water treatment is essential. The capacity of nano-composites of Octadecyltrimethyl-ammonium (ODTMA) complexed with clay to remove cyanobacterial and their toxins from laboratory cultures and from lake water, was evaluated. Column filters packed with micelles of ODTMA complexed with bentonite and granulated were shown to significantly reduce the number of cyanobacteria cells or filaments and their corresponding toxins from laboratory cultures. Fluorescence measurements demonstrated that cyanobacteria cells lost their metabolic activity (photosynthesis) upon exposure to the micelle (ODTMA)-bentonite complex, or ODTMA monomers. The complex efficiently removed cyanobacteria toxins with an exceptional high removal rate of microcystins. The effectiveness of the complex in elimination of cyanobacteria was further demonstrated with lake water containing cyanobacteria and other phytoplankton species. These results and model calculations suggest that filters packed with granulated composites can secure the safety of drinking water in case of a temporary bloom event of toxic cyanobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Near-infrared reflectance spectra of mixtures of kaolin-group minerals: Use in clay mineral studies

    USGS Publications Warehouse

    Crowley, James K.; Vergo, Norma

    1988-01-01

    Near-infrared (NIR) reflectance spectra for mixtures of ordered kaolinite and ordered dickite have been found to simulate the spectral response of disordered kaolinite. The amount of octahedral vacancy disorder in nine disordered kaolinite samples was estimated by comparing the sample spectra to the spectra of reference mixtures. The resulting estimates are consistent with previously published estimates of vacancy disorder for similar kaolin minerals that were modeled from calculated X-ray diffraction patterns. The ordered kaolinite and dickite samples used in the reference mixtures were carefully selected to avoid undesirable particle size effects that could bias the spectral results.NIR spectra were also recorded for laboratory mixtures of ordered kaolinite and halloysite to assess whether the spectra could be potentially useful for determining mineral proportions in natural physical mixtures of these two clays. Although the kaolinite-halloysite proportions could only be roughly estimated from the mixture spectra, the halloysite component was evident even when halloysite was present in only minor amounts. A similar approach using NIR spectra for laboratory mixtures may have applications in other studies of natural clay mixtures.

  3. Interactions of low molecular weight aromatic acids and amino acids with goethite, kaolinite and bentonite with or without organic matter coating

    NASA Astrophysics Data System (ADS)

    Gao, Jiajia; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten

    2015-04-01

    Interaction of organic matter molecules with the soil's solid phase is a key factor influencing the stabilization of carbon in soils and thus forms a crucial aspect of the global carbon cycle. While subject of much research attention so far, we still have much to learn about such interactions at the molecular level; in particular in the light of competition between different classes of organic molecules and in the presence of previously adsorbed soil organic matter. We studied the interaction of a group of low molecular weight (LMW) aromatic acids (salicylic, syringic, vanillic and ferulic acid) and amino acids (lysine, glutamic, leucine and phenylalanine) on goethite, kaolinite and bentonite with and without previously adsorbed dissolved organic matter (DOM). For this we used batch experiments at pH = 6.0 where some of the organic compounds were positively charged (i.e. lysine) or negatively charged (i.e. glutamic and salicylic acid) while the minerals also displayed positively (i.e. goethite) or negatively charged surfaces (i.e. bentonite). We found much higher sorption of salicylic acid and lysine than other compounds. On the bare minerals we found a great variety of sorption strength, with salicylic acid strongly adsorbed, while syringic, vanillic and ferulic acid showed little or no adsorption. For the amino acids, protonated lysine showed a stronger affinity to negatively charged kaolinite and bentonite than other amino acids. While deprotonated glutamic acid showed the strongest adsorption on goethite. Leucine and phenylalanine showed hardly any adsorption on any of the minerals. When present concurrently, amino acids decreased the sorption of salicylic acid on the three types of mineral, while the presence of LMW aromatic acids increased the sorption of lysine on kaolinite and bentonite and the sorption of glutamic acid on goethite. The presence of previously adsorbed DOM reduced the sorption of salicylic acid and lysine. The results confirm that

  4. Synthesis of Al4SiC4 powders from kaolin grog, aluminum and carbon black by carbothermal reaction

    NASA Astrophysics Data System (ADS)

    Yuan, Wenjie; Yu, Chao; Deng, Chengji; Zhu, Hongxi

    2013-12-01

    In this paper, the synthesis of Al4SiC4 used as natural oxide materials by carbothermal reduction was investigated in order to explore the synthesis route with low costs. The samples were calcined by using kaolin grog, aluminum and carbon black as raw materials with the selected proportion at the temperature from 1500 to 1800 ° C for 2 hours under flow argon atmosphere. The phase composition of reaction products were determined by X-ray diffraction. The microstructure and elemental composition of different phases were observed and identified by scanning electron microscopy and energy dispersive spectroscopy. The mechanism of reaction processing was discussed. The results show that Al4SiC4 powders composed of hexagonal plate-like particulates with various sizes and the thickness of less than 20 μm are obtained when the temperature reaches 1800 °C.

  5. Phase modification and dielectric properties of a cullet-paper ash-kaolin clay-based ceramic

    NASA Astrophysics Data System (ADS)

    Samah, K. A.; Sahar, M. R.; Yusop, M.; Omar, M. F.

    2018-03-01

    Novel ceramics from waste material made of ( x) paper ash-(80 - x) cullet-20 kaolin clay (10wt% ≤ x ≤ 30wt%) were successfully synthesized using a conventional solid-state reaction technique. Energy-dispersive X-ray analysis confirmed the presence of Si, Ca, Al, and Fe in the waste material for preparing these ceramics. The influence of the cullet content on the phase structures and the dielectric properties of these ceramics were systematically investigated. The impedance spectra were verified in the range from 1 Hz to 10 MHz at room temperature. The phase of the ceramics was found to primarily consist of wollastonite (CaSiO3), along with minor phases of γ-dicalcium silicate (Ca2SiO4) and quartz (SiO2). The sample with a cullet content of 55wt% possessed the optimum wollastonite structure and exhibited good dielectric properties. An increase of the cullet content beyond 55wt% resulted in a structural change from wollastonite to dicalcium silicate, a decrease in dielectric constant, and an increase in dielectric loss. All experimental results suggested that these novel ceramics from waste are applicable for electronic devices.

  6. Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension.

    PubMed

    Scheckel, Kirk G; Luxton, Todd P; El Badawy, Amro M; Impellitteri, Christopher A; Tolaymat, Thabet M

    2010-02-15

    Assessments of the environmental fate and mobility of nanoparticles must consider the behavior of nanoparticles in relevant environmental systems that may result in speciation changes over time. Environmental conditions may act on nanoparticles to change their size, shape, and surface chemistry. Changing these basic characteristics of nanoparticles may result in a final reaction product that is significantly different than the initial nanomaterial. As such, basing long-term risk and toxicity on the initial properties of a nanomaterial may lead to erroneous conclusions if nanoparticles change upon release to the environment. The influence of aging on the speciation and chemical stability of silver and zinc oxide nanoparticles in kaolin suspensions was examined in batch reactors for up to 18 months. Silver nanoparticles remained unchanged in sodium nitrate suspensions; however, silver chloride was identified with the metallic silver nanoparticles in sodium chloride suspensions and may be attributed to an in situ silver chloride surface coating. Zinc oxide nanoparticles were rapidly converted via destabilization/dissolution mechanisms to Zn(2+) inner-sphere sorption complexes within 1 day of reaction and these sorption complexes were maintained through the 12 month aging processes. Chemical and physical alteration of nanomaterials in the environment must be examined to understand fate, mobility, and toxicology.

  7. Hydrothermal synthesis of zeolite T from kaolin using two different structure-directing agents

    NASA Astrophysics Data System (ADS)

    Arshad, Sazmal E.; Lutfor Rahman, M.; Sarkar, Shaheen M.; Yusslee, Eddy F.; Patuwan, Siti Z.

    2018-01-01

    Zeolite T was synthesized from the molar chemical composition of 1SiO2:0.04Al2O3:0.26Na2O:0.09K2O:14H2O in the form of a homogenous milky solution in the presence of the two different structure-directing agents TMAOH and TEAOH respectively. Modification of the composition of silica was undertaken using metakaolin from calcined kaolin at 750 °C for 4 h, while the molar composition of each different SDA was variated from 0.05, 0.10, 0.15, 0.20 and 0.25. The homogenous mixture was left at room temperature for 24 h before undergoing hydrothermal synthesis at 100 °C for 168 h. The synthesized samples were filtered and aged at 120 °C for 2 h and each sample was calcined at high temperatures (545 °C for TMAOH and 520 °C for TEAOH) for template removal before characterization using XRD and SEM. Crystallization of the zeolite T in its major form only took place at a molar ratio of 0.10 of TMAOH, while TEAOH showed the species evolution of zeolite T into zeolite L and W for other molar ratios.

  8. Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener.

    PubMed

    Loiola, A R; Andrade, J C R A; Sasaki, J M; da Silva, L R D

    2012-02-01

    Zeolite 4A (LTA) has been successfully synthesized by a hydrothermal method, where kaolin was used as silica and alumina source. The synthesized zeolite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser granulometry, and FTIR spectroscopy. XRD data from the Rietveld refinement method confirmed only one crystallographic phase. Zeolite A morphology was observed by SEM analysis, and it showed well-defined crystals with slightly different sizes but with the same cubic shape. Particle size distribution of the crystals was confirmed by laser granulometry, whereas FTIR spectroscopy revealed significant structural differences between the starting material and the final zeolite product used as water softener. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  10. Constraining the alteration history of a Late Cretaceous Patagonian volcaniclastic bentonite-ash-mudstone sequence using K-Ar and 40Ar/39Ar isotopes

    NASA Astrophysics Data System (ADS)

    Warr, L. N.; Hofmann, H.; van der Pluijm, B. A.

    2017-01-01

    Smectite is typically considered unsuitable for radiometric dating, as argon (40Ar) produced from decay of exchangeable potassium (40K) located in the interlayer sites can be lost during fluid-rock interaction and/or during wet sample preparation in the laboratory. However, age analysis of Late Cretaceous Argentinian bentonites and associated volcaniclastic rocks from Lago Pellegrini, Northern Patagonia, indicates that, in the case of these very low-permeability rocks, the radioactive 40Ar was retained and thus can provide information on smectite age and the timing of rock alteration. This study presents isotopic results that indicate the ash-to-bentonite conversion and alteration of the overlying tuffaceous mudstones in Northern Patagonia was complete 13-17 my after middle Campanian sedimentation when the system isotopically closed. The general absence of illite in these smectite-rich lithologies reflects the low activity of K and the low temperature (<60 °C) of the formation waters that altered the parent ash.

  11. X-ray shielding behaviour of kaolin derived mullite-barites ceramic

    NASA Astrophysics Data System (ADS)

    Ripin, A.; Mohamed, F.; Choo, T. F.; Yusof, M. R.; Hashim, S.; Ghoshal, S. K.

    2018-03-01

    Mullite-barite ceramic (MBC) is an emergent material for effective shielding of redundant ionizing radiation exposure. The composition dependent mechanical, thermal, and microstructure properties of MBC that makes MBC a high performing novel radiation shielding candidate remained unexplored. This paper examines the possibility of exploiting Malaysian kaolin (AKIM-35) and barite (BaSO4) derived ceramic (MBC) system for X-ray shielding operation. Using conventional pressing and sintering method six ceramic samples are prepared by mixing AKIM-35 with barite at varying contents (0, 10, 20, 30, 40 and 50 wt%). Synthesized pressed mixtures are calcined at 400 °C for 30 min and then sintered to 1300 °C for 120 min at a heating rate of 10 °C/min. Sintered samples are characterized via X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), lead equivalent (LE), uniformity and dose reduction analyses. XRD pattern of prepared ceramics revealed the presence of monoclinic barium alumino-silicate (BAS) and orthorhombic mullite as major shielding phases together with other minor phase of barite and hexagonal quartz (SiO2) structures. Furthermore, FESEM images of ceramics (between 0 and 30 wt%) displayed the existence of compacted monoclinic plate of BAS and acicular mullite morphology (ceramics at 40 and 50 wt%). Radiation tests displayed the capacity of ceramics (at 0 and 10 wt%) to shield the X-ray radiation emanated at tube potential range of 50-120 kV. The highest radiation attenuation is ascertained at 70 kV where the dose is reduced remarkably between 99.11% and 97.42%. Ceramics at 0 and 10 wt% demonstrated the highest lead (Pb) equivalent thickness (LE) of 0.44 mm and 0.34 mm, respectively. It is established that such MBC may contribute towards the development of shielding material against ionizing radiation in diagnostic radiology (X-ray) dose range.

  12. Edaravone reduces astrogliosis and apoptosis in young rats with kaolin-induced hydrocephalus.

    PubMed

    Garcia, Camila Araújo Bernardino; Catalão, Carlos Henrique Rocha; Machado, Hélio Rubens; Júnior, Ivair Matias; Romeiro, Thais Helena; Peixoto-Santos, José Eduardo; Santos, Marcelo Volpon; da Silva Lopes, Luiza

    2017-03-01

    We investigated the possible neuroprotective effects of the free radical scavenger edaravone in experimental hydrocephalus. Seven-day-old Wistar rats were divided into three groups: control group (C), untreated hydrocephalic (H), and hydrocephalic treated with edaravone (EH). The H and EH groups were subjected to hydrocephalus induction by 20% kaolin intracisternal injection. The edaravone (20 mg/kg) was administered daily for 14 days from the induction of hydrocephalus. All animals were daily weighed and submitted to behavioral test and assessment by magnetic resonance imaging. After 14 days, the animals were sacrificed and the brain was removed for histological, immunohistochemical, and biochemical studies. The gain weight was similar between groups from the ninth post-induction day. The open field test performance of EH group was better (p < 0.05) as compared to untreated hydrocephalic animals. Hydrocephalic animals (H and EH) showed ventricular ratio values were higher (p < 0.05), whereas magnetization transfer values were lower (p < 0.05), as compared to control animals. Astrocyte activity (glial fibrillary acidic protein) and apoptotic cells (caspase-3) of EH group were decreased on the corpus callosum (p > 0.01), germinal matrix (p > 0.05), and cerebral cortex (p > 0.05), as compared to H group. We have demonstrated that administration of edaravone for 14 consecutive days after induction of hydrocephalus reduced astrocyte activity and that it has some beneficial effects over apoptotic cell death.

  13. A newly discovered K-bentonite zone in the Lower Devonian of the Appalachian Basin; Basal Esopus and Needmore Formations (Late Pragian-Emsian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ver Straeten, C.A.

    1992-01-01

    The K-bentonite-rich interval of the Esopus Formation (eastern New York and northeastern Pennsylvania) overlies the coeval Oriskany/Glenerie/Ridgely Formations and ranges from 1 to 6.3 m in thickness. Six to seventeen soapy-feeling, yellow, tan, green, or gray clay to claystone beds (0.001 to 0.5 m-thick) interbedded with thin siltstone and chert beds (0.02--1 m-thick) characterize outcrops in eastern New York. Heavy mineral separates from these layers yield abundant uncorraded euhedral zircons and apatites, indicating that these are K-bentonites. In eastern Pennsylvania, the westernmost outcrop of the Esopus Formation displays a 2.3 m-thick massive, soapy-feeling clay to claystone-dominated interval. The presence ofmore » both coarse, highly abraded and small, fragile, pristine-appearing zircons and apatites from a 20 cm sampled interval may indicate a complex amalgamation/reworking history to the relatively thick, clay-dominated strata. Similar clay/claystone-rich strata have been found in the lower 0.15 to 1 m of the Beaverdam Member (Needmore Formation) in central Pennsylvania. Interbedded clays and claystones with or without minor siltstone beds characterize some outcrops. Other localities are clay-dominated, with minor amounts of quartz sand present in strata immediately overlying the Ridgely Sandstone. These newly discovered K-bentonite-rich strata mark a transition from shelfal orthoquartzites and carbonates to basinal black/dark gray shales similar to the overlying Middle Devonian Tioga ash interval. Deposition of ash-rich strata, associated with increased volcanic activity, coincided with subsidence of the foreland basin/relative sea level rise. These events were concurrent with a flush of siliciclastic sediments into the basin and are indicative of the onset of an early tectophase of the Devonian Acadian Orogeny.« less

  14. Isotherm modeling of organic activated bentonite and humic acid polymer used as mycotoxin adsorbents.

    PubMed

    Santos, R R; Vermeulen, S; Haritova, A; Fink-Gremmels, J

    2011-11-01

    The aim of the current study was to evaluate and compare two representative samples of different classes of adsorbents intended for use as feed additives in the prevention or reduction of the adverse effects exerted by mycotoxins, specifically ochratoxin A (OTA) and zearalenone (ZEN). The adsorbents, an organically activated bentonite (OAB) and a humic acid polymer (HAP), were tested in a common in vitro model with a pH course comparing the maximum pH changes that can be expected in the digestive system of a monogastric animal, i.e. pH 7.4 for the oral cavity, pH 3.0 for the stomach, and pH 8.4 for the intestines. In the first experiment, the concentration-dependent adsorbent capacity of OAB and HAB were tested using a fixed concentration of either mycotoxin. Thereafter, adsorption was evaluated applying different isotherms models, such as Freundlich, Langmuir, Brunauer-Emmett-Teller (BET) and Redlich-Peterson, to characterize the adsorption process as being either homo- or heterogeneous and representing either mono- or multilayer binding. At the recommended statutory level for the mycotoxins of 0.1 mg kg(-1) OTA and 0.5 mg kg(-1) ZEN, OAB showed an adsorbed capacity of >96% towards both mycotoxins, regardless of the pH. The HAP product was also able to absorb >96% of both mycotoxins at pH 3.0, but extensive desorption occurred at pH 8.4. Based on χ-square (χ(2)) values, Langmuir and Redlich-Peterson equations proved to be the best models to predict monolayer equilibrium sorption of OTA and ZEN onto the organically activated bentonite and the humic acid polymer. The applied methodology has a sufficient robustness to facilitate further comparative studies with different mycotoxin-adsorbing agents.

  15. Magnetic resonance imaging indicators of blood-brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus.

    PubMed

    Del Bigio, Marc R; Slobodian, Ili; Schellenberg, Angela E; Buist, Richard J; Kemp-Buors, Tanya L

    2011-08-11

    Hydrocephalus is associated with enlargement of cerebral ventricles. We hypothesized that magnetic resonance (MR) imaging parameters known to be influenced by tissue water content would change in parallel with ventricle size in young rats and that changes in blood-brain barrier (BBB) permeability would be detected. Hydrocephalus was induced by injection of kaolin into the cisterna magna of 4-week-old rats, which were studied 1 or 3 weeks later. MR was used to measure longitudinal and transverse relaxation times (T1 and T2) and apparent diffusion coefficients in several regions. Brain tissue water content was measured by the wet-dry weight method, and tissue density was measured in Percoll gradient columns. BBB permeability was measured by quantitative imaging of changes on T1-weighted images following injection of gadolinium diethylenetriamine penta-acetate (Gd-DTPA) tracer and microscopically by detection of fluorescent dextran conjugates. In nonhydrocephalic rats, water content decreased progressively from age 3 to 7 weeks. T1 and T2 and apparent diffusion coefficients did not exhibit parallel changes and there was no evidence of BBB permeability to tracers. The cerebral ventricles enlarged progressively in the weeks following kaolin injection. In hydrocephalic rats, the dorsal cortex was more dense and the white matter less so, indicating that the increased water content was largely confined to white matter. Hydrocephalus was associated with transient elevation of T1 in gray and white matter and persistent elevation of T2 in white matter. Changes in the apparent diffusion coefficients were significant only in white matter. Ventricle size correlated significantly with dorsal water content, T1, T2, and apparent diffusion coefficients. MR imaging showed evidence of Gd-DTPA leakage in periventricular tissue foci but not diffusely. These correlated with microscopic leak of larger dextran tracers. MR characteristics cannot be used as direct surrogates for water

  16. Application of 3D Electrical Resistivity Tomography As A Tool for Mapping Subsurface Cavities in a Kaolin Mining Site at Kankara in North Central Nigeria.

    NASA Astrophysics Data System (ADS)

    Eshimiakhe, D.; Jimoh, R.

    2017-12-01

    A Kaolin mining site at Dajin Gwanma in north central Nigeria was investigated to determine the possibility of using 3D ERT to detect subsurface voids created due to mining of kaolin deposit and to perhaps suggest areas prone to subsidence. This study was undertaken on conceptual resistivity model that subsurface voids characterized by higher or lower resistivity than the host, depending on weather the void is in-filled water or not. The data collection was carried out with Terrameter SAS 4000 and ES 464 electrode selector equipment. Dipole-dipole configuration at electrode spacing of 5m was used to acquire the data along parallel profiles laid at equal interval in the study area. While the acquired data along each profile were inverted with 2D algorithm, a script file was created to collate the 2D data set into a 3D format and subsequently inverted using 3D algorithm. A volumetric resistivity model block of the study area was also created using the voxler 4 software. The results show that the voids are characterized by high resistivity (950Ωm-2500Ωm) at depth of between 0-4m and low resistivity (10Ωm-100Ωm) at a depth of 5-30m indicating both air-filled and water-filled voids respectively. The study shows that the voids increase in dimension with depth in NW-SE direction, suggesting that the voids are trending most probably along vertical bedrock joints. It also suggest that voids may overtime grow large enough that the overlying top soil can no longer bridge it, leading to its collapse.

  17. Tensile, swelling and morphological properties of bentonite-filled acrylonitrile butadiene rubber composites

    NASA Astrophysics Data System (ADS)

    Lotfi, Muhamad Nadhli Amin; Ismail, Hanafi; Othman, Nadras

    2017-10-01

    Tensile, swelling and morphological properties of bentonite filled acrylonitrile butadiene rubber (NBR/Bt) composites were studied. The experiments were conducted at room temperature by using two rolled mill, universal testing machine (INSTRON), and American Standard Testing Method (ASTM) D471 for compounding, tensile testing, and swelling test, respectively. Results obtained indicated that a better tensile strength, elongation at break and tensile modulus were recorded as compared to the pure NBR particularly up to 90 phr of Bt loading. However, swelling (%) exhibited the opposite trend where the liquid uptake by the composites was indirectly proportional with the increasing of Bt loading. Scanning electron microscopy (SEM) used on the tensile fractured surface of the NBR/Bt composites have shown that the fillers were well embedded in the NBR matrix, for Bt loading up to 90 phr. The agglomeration of fillers occurred for Bt loading exceeding 90 phr.

  18. Effect of extrusion rate on morphology of Kaolin/PolyEtherSulfone (PESf) membrane precursor

    NASA Astrophysics Data System (ADS)

    Misaran, M. S.; Sarbatly, R.; Bono, A.; Rahman, M. M.

    2016-11-01

    This study aims to investigate the influence of apparent viscosity induced by spinneret geometry and extrusion rate on morphology of Kaolin/PESf hollow fiber membranes. Different extrusion rates at two different rheology properties were introduced on a straight and conical spinneret resulting in various shear rates. The hollow fiber membrane precursors were spun using the wet spinning method to decouple the effect of shear and elongation stress due to gravity stretched drawing. The morphology of the spun hollow fiber was observed under Scanning Electron Microscope (SEM) and the overall porosity were measured using mercury intrusion porosimeter. Shear rate and apparent viscosity at the tip of the spinneret annulus were simulated using a computational fluid dynamics package; solidworks floworks. Simulation data shows that extrusion rate increment increases the shear rate at the spinneret wall which in turn reduce the apparent viscosity; consistent with a non Newtonian shear thinning fluid behavior. Thus, the outer finger-like region grows as the shear rate increases. Also, overall porosity of hollow fiber membrane decreases with extrusion rate increment which is caused by better molecular orientation; resulting in denser hollow fiber membrane. Thin outer finger-like region is achieved at low shear experience of 109.55 s-1 via a straight spinneret. Increasing the extrusion rate; thus shear rate will cause outer finger-like region growth which is not desirable in a separation process.

  19. Luminescence induced by dehydration of kaolin - Association with electron-spin-active centers and with surface activity for dehydration-polymerization of glycine

    NASA Technical Reports Server (NTRS)

    Coyne, L.; Hovatter, W.; Sweeney, M.

    1983-01-01

    Experimental data concerning emission of light upon dehydration as a function of preheating and pre-gamma-irradiation are correlated with reported studies of electron-spin resonance (ESR) activity after similar pretreatments. The effect of these pretreatments on the kaolin-promoted incorporation of glycine into peptide oligomers in a wet/cold, hot/dry fluctuating environment is compared to their effect on the ESR and luminescent signals. The existence of spectroscopically active centers appears to be loosely anticorrelated with reaction yield; these yields are increased by increasing the overall energy content of the material. It is concluded that some part of the chemical yield is produced by a mechanism involving intrinsic, excited electronic states of the clay crystal lattice. These states may be derived from thermally, interfacially, and/or mechanically induced charge reorganization within interspersed energy levels in the band structure of the material.

  20. Americium, Cesium, and Plutonium Colloid-Facilitated Transport in a Groundwater/Bentonite/Fracture Fill Material System: Column Experiments and Model Results

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Boukhalfa, H.; Reimus, P. W.

    2014-12-01

    The objective of this study was to investigate and quantify the effects of desorption kinetics and colloid transport on radionuclides with different sorption affinities. We focused on quantifying transport mechanisms important for upscaling in time and distance. This will help determine the long-term fate and transport of radionuclides to aid in risk assessments. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model crystalline rock repository system because the system has been thoroughly studied and field experiments involving radionuclides have already been conducted. Working on this system provides a unique opportunity to compare lab experiments with field-scale observations. Weathered fracture fill material (FFM) and bentonite used as backfill at the GTS were characterized (e.g., BET, SEM/EDS, QXRD), and batch and breakthrough column experiments were conducted. Solutions were prepared in synthetic groundwaters that matched the natural water chemistry. FFM samples were crushed, rinsed, sieved (150-355 μm), and equilibrated with synthetic groundwater. Bentonite was crushed, sodium-saturated, equilibrated with synthetic groundwater, and settled to yield a stable suspension. Suspensions were equilibrated with Am, Cs, or Pu. All experiments were conducted with Teflon®materials to limit sorption to system components. After radionuclide/colloid injections reached stability, radionuclide-free solutions were injected to observe the desorption and release behavior. Aliquots of effluent were measured for pH, colloid concentration, and total and dissolved radionuclides. Unanalyzed effluent from the first column was then injected through a second column of fresh material. The process was repeated for a third column and the results of all three breakthrough curves were modeled with a multi-site/multi-rate MATLAB code to elucidate the sorption rate coefficients and binding site densities of the bentonite colloids and

  1. Diffusion of 99-technetium in compacted bentonite under aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Večerník, P.; Jedináková-Křížová, V.

    2006-01-01

    The main aim of this study was to investigate diffusion of technetium 99Tc under different conditions. Because technetium represents one of the most dangerous fission products due to its very long halftime and high mobility in aerobic conditions diffusion experiments of technetium (as 99TcO 4 - anion) in Czech bentonite from Rokle locality have been carried out. For performance and evaluation of experiments the through-diffusion method was chosen and apparent (Da) and effective (De) diffusion coefficients were evaluated. The effects of particle mesh-size, dry bulk density and aerobic or anaerobic conditions on diffusion were studied. In the presence of oxygen, technetium occurs in oxidation state VII, as an anion, soluble and mobile in the environment. However, under reducing conditions it occurs in a lower oxidation states, mainly as insoluble oxides or hydroxides. Aerobic experiments were carried out under laboratory conditions and anaerobic experiments were performed in a nitrogen atmosphere in a glove box, to simulate the real underground conditions.

  2. Analysis and optimization of flocculation activity and turbidity reduction in kaolin suspension using pectin as a biopolymer flocculant.

    PubMed

    Ho, Y C; Norli, I; Alkarkhi, Abbas F M; Morad, N

    2009-01-01

    The performance of pectin in turbidity reduction and the optimum condition were determined using Response Surface Methodology (RSM). The effect of pH, cation's concentration, and pectin's dosage on flocculating activity and turbidity reduction was investigated at three levels and optimized by using Box-Behnken Design (BBD). Coagulation and flocculation process were assessed with a standard jar test procedure with rapid and slow mixing of a kaolin suspension (aluminium silicate), at 150 rpm and 30 rpm, respectively, in which a cation e.g. Al(3+), acts as coagulant, and pectin acts as the flocculant. In this research, all factors exhibited significant effect on flocculating activity and turbidity reduction. The experimental data and model predictions well agreed. From the 3D response surface graph, maximum flocculating activity and turbidity reduction are in the region of pH greater than 3, cation concentration greater than 0.5 mM, and pectin dosage greater than 20 mg/L, using synthetic turbid wastewater within the range. The flocculating activity for pectin and turbidity reduction in wastewater is at 99%.

  3. Bentonite Clay Evolution at Elevated Pressures and Temperatures: An experimental study for generic nuclear repositories

    NASA Astrophysics Data System (ADS)

    Caporuscio, F. A.; Cheshire, M.; McCarney, M.

    2012-12-01

    The Used Fuel Disposition Campaign is presently engaged in looking at various generic repository options for disposal of used fuel. Of interest are the disposal of high heat load canisters ,which may allow for a reduced repository footprint. The focus of this experimental work is to characterize Engineered Barrier Systems (EBS) conditions in repositories. Clay minerals - as backfill or buffer materials - are critical to the performance of the EBS. Experiments were performed in Dickson cells at 150 bar and sequentially stepped from 125 oC to 300 oC over a period of ~1 month. An unprocessed bentonite from Colony, Wyoming was used as the buffer material in each experiment. An K-Ca-Na-Cl-rich brine (replicating deep Stripa groundwater) was used at a 9:1 water:rock ratio. The baseline experiment contained brine + clay, while three other experiments contained metals that could be used as waste form canisters (brine +clay+304SS, brine+clay+316SS, brine+clay+Cu). All experiments were buffered at the Mt-Fe oxygen fugacity univarient line. As experiment temperature increased and time progressed, pH, K and Ca ion concentrations dropped, while Si, Na, and SO4 concentrations increased. Silicon was liberated into the fluid phase (>1000 ppm) and precipitated during the quenching of the experiment. The precipitated silica transformed to cristobalite as cooling progressed. Potassium was mobilized and exchanged with interlayer Na, transitioning the clay from Na-montmorillonite to K-smectite. Though illitization was not observed in these experiments, its formation may be kinetically limited and longer-term experiments are underway to evaluate the equilibrium point in this reaction. Clinoptilolite present in the starting bentonite mixture is unstable above 150 oC. Hence, the zeolite broke down at high temperatures but recrystallized as the quench event occurred. This was borne out in SEM images that showed clinoptilolite as a very late stage growth mineral. Both experimental runs

  4. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils.

    PubMed

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Liu, Weitao; Liang, Xuefeng; Wang, Lin

    2016-01-15

    A pot trial was conducted to assess the effectiveness of sepiolite, bentonite, and phosphate on the immobilization remediation of cadmium (Cd)-contaminated soils using a set of variables, namely, physiological traits, sequential extraction procedure, plant growth and Cd concentration, and soil enzymatic activities and microbial population. Results showed that superoxide dismutase and peroxidase activities in the leaves of Oryza sativa L. and catalase activities in soils were stimulated after applying the amendments. However, soluble protein contents in leaves and urease and invertase activities in soils were reduced from 7.1% to 31.7%, 1.0%-23.3%, and 21.1%-62.5%, respectively, compared with the control. Results of the sequence extraction procedures revealed that the exchangeable fraction of Cd in soils was mostly converted into carbonated-associated forms. The water soluble plus exchangeable fraction (SE) of Cd in soil decreased when treated with single and compound materials of sepiolite, bentonite and phosphate, which resulted in 13.2%-69.2% reduction compared with that of CK (control test). The amendments led to decreased Cd concentrations in roots, stems, leaves, brown rice, and rice hull by 16.2%-54.5%, 16.6%-42.8%, 19.6%-59.6%, 5.0%-68.2%, and 6.2%-20.4%, respectively. Higher bacterial and actinomycete amount indicated that remediation measures improved soil environmental quality. Composite amendments could be more efficiently used for the stabilization remediation of Cd contaminated soils with low Cd uptake and translocation in the plants and available contents of Cd in soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites

    USGS Publications Warehouse

    Christidis, G.E.; Blum, A.E.; Eberl, D.D.

    2006-01-01

    The influence of layer charge and charge distribution of dioctahedral smectites on the rheological and swelling properties of bentonites is examined. Layer charge and charge distribution were determined by XRD using the LayerCharge program [Christidis, G.E., Eberl, D.D., 2003. Determination of layer charge characteristics of smectites. Clays Clay Miner. 51, 644-655.]. The rheological properties were determined, after sodium exchange using the optimum amount of Na2CO3, from free swelling tests. Rheological properties were determined using 6.42% suspensions according to industrial practice. In smectites with layer charges of - 0.425 to - 0.470 per half formula unit (phfu), layer charge is inversely correlated with free swelling, viscosity, gel strength, yield strength and thixotropic behaviour. In these smectites, the rheological properties are directly associated with the proportion of low charge layers. By contrast, in low charge and high charge smectites there is no systematic relation between layer charge or the proportion of low charge layers and rheological properties. However, low charge smectites yield more viscous suspensions and swell more than high charge smectites. The rheological properties of bentonites also are affected by the proportion of tetrahedral charge (i.e. beidellitic charge), by the existence of fine-grained minerals having clay size, such as opal-CT and to a lesser degree by the ionic strength and the pH of the suspension. A new method for classification of smectites according to the layer charge based on the XRD characteristics of smecites is proposed, that also is consistent with variations in rheological properties. In this classification scheme the term smectites with intermediate layer charge is proposed. ?? 2006 Elsevier B.V. All rights reserved.

  6. The combination of activated natural zeolite-bentonite to reduce Fe and Cu in refined bleached palm oil (RBPO) by using atomic absorption spectrophotometer method

    NASA Astrophysics Data System (ADS)

    Zakwan; Raja, PM; Giyanto

    2018-02-01

    Indonesia is one of the crude palm oil (CPO) production country in the world. As many products are derivated from the CPO, the quality must be increased continuously. One of the things that influence the quality of palm oil is the Fe and Cu content. The objective of this research was to reduce Fe and Cu content in Refined Bleached Palm Oil (RBPO). In processing CPO or Refined Bleachead Palm Oil (RBPO) may be contaminated by Fe and Cu from metal tank and pipe in the factory. The zeolite and bentonite was activated by maceration method using hydrochloric acid (0,1 N). Four batch reactions consisting of refined palm oil (RPO), activated natural zeolite-bentonite (ANZB) was bleached by heating and stirring them at about 105°C and 1200 rpm for 30 minutes. The results showed that all combinations of ANZB can reduce the Fe content. Thereafter, the optimal combination of ANZB was obtained in K1, K2 and K4 with Cu content 0.02 ppm. In the future, it is needed to study on the reduction of the Fe and Cu content in palm oil with the other adsorbent.

  7. The Performance of Four Different Mineral Liners on the Transportation of Chlorinated Phenolic Compounds to Groundwater in Landfills

    PubMed Central

    Adar, Elanur; Bilgili, Mehmet Sinan

    2015-01-01

    The aim of this study was to investigate the efficiency of four different mineral liners (clay, bentonite, kaoline, and zeolite) which could be utilized to prevent the transport of phenolic compounds to groundwater through alternative liner systems. Four laboratory-scale HDPE reactors with 80 cm height and 40 cm inner diameter were operated for a period of 180 days. Results indicated that the transport of mono- or dichlorophenols is significantly prevented by the liner systems used, while the transport of highly chlorinated phenolic compounds cannot be prevented by the landfill liner system effectively. Highly chlorinated phenolic compounds in groundwater can be found in higher concentrations than the leachate, as a result of the degradation and transformation of these compounds. Thus, the analysis of highly chlorinated phenolic compounds such as 2,4,6-TCP, 2,3,6-TCP, 3,4,5-TCP, and PCP is of great significance for the studies to be conducted on the contamination of groundwater around landfills. PMID:26759828

  8. Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles.

    PubMed

    Binks, Bernard P; Clint, John H; Whitby, Catherine P

    2005-06-07

    A study of the rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles is described. Concentrated emulsions were prepared and diluted at constant particle concentration to investigate the effect of drop volume fraction on the viscosity and viscoelastic response of the emulsions. The influence of the structure of the hydrophobic clay particles in the oil has also been studied by using oils in which the clay swells to very different extents. Emulsions prepared from isopropyl myristate, in which the particles do not swell, are increasingly flocculated as the drop volume fraction increases and the viscosity of the emulsions increases accordingly. The concentrated emulsions are viscoelastic and the elastic storage and viscous loss moduli also increase with increasing drop volume fraction. Emulsions prepared from toluene, in which the clay particles swell to form tactoids, are highly structured due to the formation of an integrated network of clay tactoids and drops, and the moduli of the emulsions are significantly larger than those of the emulsions prepared from isopropyl myristate.

  9. Smart Natural Fiber Reinforced Plastic (NFRP) Composites Based On Recycled Polypropylene in The Presence Kaolin

    NASA Astrophysics Data System (ADS)

    Suharty, N. S.; Ismail, H.; Diharjo, K.; Handayani, D. S.; Lestari, W. A.

    2017-07-01

    Composites contain double filler material which act as reinforcement and flame retardants of recycled polypropylene (rPP)/kaolin(Kao)/palm oil empty bunch fiber (PEBF) have been succesfully prepared. The composites were synthesized through reactively solution method, using coupling agent PP-g-AA and compatibilizer DVB. The effect of double filler [Kao/PEBF] were investigated flexural strength (FS), inflammability, and morphology. Mechanical testing result in accordance to ASTM D790, the FS of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was 48% higher than that of rPP matrix. Moreover, flexural modulus (FM) was significantly improved by 56% as compared to that of rPP matrix. The scanning electron images (SEM) shown good dispersion of [Ka/PEBF] and good filler-matrix interaction. The inflammability testing result which is tested using ASTM D635, showed that the flame resistance of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was improve by increasing of time to ignition (TTI) about 857% and burning rate (BR) decreasing to 66% compared to the raw material rPP matrix. In the same time, the addition of 20% (w/w) PEBF as a second filler to form rPP/DVB/PP-g-AA/Kao+ZB/PEBF composites (F5) is able to increase: the FS by 17.5%, the FM by 19%, the TTI by 7.6% and the BR by 3.7% compared to the composite without PEBF (F2).

  10. Application of mixed based membrane technology from component materials bintaro, zeolite and bentonite to reduction of songket waste liquid cloth

    NASA Astrophysics Data System (ADS)

    Dahlan, Muhammad Hatta; Saleh, Abdullah; Asip, Faisol; Makmun, Akbar; Defi

    2017-11-01

    Application of membrane technology based on clay mixture, Activated Carbon from Bintaro, Zeolite and Bentonit to process the waste water of Songket cloth is Palembang traditionally cloth. The applied research is into the superior field of industrial and household waste processing with membrane ceramic technology. The objective of this research is to design the liquid waste separation tool of jumputan cloth using better and simpler ceramic membrane so that it can help the artisans of Palembang songket or songket in processing the waste in accordance with the standard of environmental quality standard (BML) and Pergub Sumsel no. 16 in 2005. The specific target to be achieved can decrease the waste of cloth jumputan in accordance with applicable environmental quality standards the method used in achieving the objectives of this study using 2 processes namely the adsorption process using activated carbon and the separation process using a ceramic membrane based on the composition of the mixture. The activated carbon from bintaro seeds is expected to decrease the concentration of liquid waste of Songket cloth. Bintaro seeds are non-edible fruits where the composition contains organic ingredients that can absorb because contains dyes and filler metals. The process of membranization in the processing is expected to decrease the concentration of waste better and clear water that can be used as recycled water for household use. With the composition of a mixture of clay-based materials: zeolite, bentonit, activated carbon from bintaro seeds are expected Find the solution and get the novelty value in the form of patent in this research

  11. Synthesis of mullite (3Al2O32SiO2) from local kaolin for radiation shielding

    NASA Astrophysics Data System (ADS)

    Ripin, Azuhar; Mohamed, Faizal; Aman, Asyraf

    2018-04-01

    Raw kaolin from Kota Tinggi, Johor was used in this study to produce ceramic mullite (3Al2O22SiO2) for radiation shielding materials. In this work, an attempt was made to study the potential of local minerals to be used as a shielding barrier for diagnostic radiology radiation facilities in hospitals and medical centers throughout Malaysia. The conventional ceramic processing route was employed in the study using different pressing strength and sintering time. The obtained samples were characterized using X-ray diffractometer (XRD) for phase identification of each of the samples. The lead equivalent (LE) test was carried out using 15.05 mCi Cobalt-57 with gamma energy of 122 keV to compute the abilities of the mullite ceramic samples to attenuate the radiation. XRD patterns of prepared ceramics revealed the presence of orthorhombic mullite, hexagonal quartz and orthorhombic sillimanite structures. Furthermore, the radiation test displayed the ability of ceramics to shield of 70 % of gamma radiation at the distance of 60 cm from the radiation source. The highest lead equivalent thickness is 1.0 mm Pb and the lowest is about 0.06 mm Pb. From the result, it is shown that the ceramic has the potential to use as a shielding barrier in diagnostic radiology facilities due to the ability of reducing the radiation dose up to 70 % from its initial value.

  12. Development of clay liquid detergent for Islamic cleansing and the stability study.

    PubMed

    Angkatavanich, J; Dahlan, W; Nimmannit, U; Sriprasert, V; Sulongkood, N

    2009-04-01

    Clay liquid detergents (CLDs) were developed for cleansing religiously-prohibited dirt ('najis') according to Islamic law. Four types of clay were selected: marl, kaolin, bentonite and veegum. After product development trials, five CLD formulations with varying combinations of clays were qualified for stability testing. Three exaggerated temperature conditions were considered: 4 degrees C for 24 h, 50 degrees C for 7 days, and 40 degrees C for 1 month. The CLDs were also evaluated at 30, 60 and 90 days after production, while being stored at room temperature (RT30, RT60 and RT90). Physical and chemical characteristics including pH, colour, viscosity, surface tension, foam tests and sensory liking scores were evaluated. Our results showed that the kaolin-based formula, F2, had an optimal pH (closest to skin pH) of 5.08. The other formulas ranged from pH 6 to 8. Colour shades of the CLDs ranged from white, to creamy white, to mildly greenish-white. The foaming properties of the CLDs, the means +/- SD of foam heights at 0 and 5 min, using the Ross-Miles test, were 19.13 +/- 0.25 to 20.88 +/- 0.45 cm at RT90 and were comparable with those of commercial detergents. Foam stability of all CLDs was high, as shown from the foam heights between 0 and 5 min being not significantly different (P > 0.05). The surface tensions, means +/- SD, of CLD solutions were between 27.94 +/- 0.08 and 28.72 +/- 0.04 mN m(-1), which were slightly better than the surface tension of 29.08 +/- 0.04 mN m(-1) for sodium lauryl sulphate. There was a weak negative relationship between surface activity and foam height, based on the pooled data of the CLDs (R(2) = 0.209, P < 0.01). The viscosity of four CLDs ranged from 16 317 to 49 036 mPa s. In conclusion, CLDs can be formulated with good stability. F2 (kaolin-based, with a white, creamy texture) was the best CLD formula. It had the highest surface activity, moderate lathering and pleasant physical appearance.

  13. Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory

    DOE PAGES

    Garitte, B.; Shao, H.; Wang, X. R.; ...

    2017-01-09

    Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less

  14. Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garitte, B.; Shao, H.; Wang, X. R.

    Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less

  15. Evaluation of the ability of calcite, bentonite and barite to enhance oil dispersion under arctic conditions.

    PubMed

    Jézéquel, Ronan; Receveur, Justine; Nedwed, Tim; Le Floch, Stéphane

    2018-02-01

    A test program was conducted at laboratory and pilot scale to assess the ability of clays used in drilling mud (calcite, bentonite and barite) to create oil-mineral aggregates and disperse crude oil under arctic conditions. Laboratory tests were performed in order to determine the most efficient conditions (type of clay, MOR (Mineral/Oil Ratio), mixing energy) for OMA (Oil Mineral Aggregate) formation. The dispersion rates of four crude oils were assessed at two salinities. Dispersion was characterized in terms of oil concentration in the water column and median OMA size. Calcite appeared to be the best candidate at a MOR of 2:5. High mixing energy was required to initiate OMA formation and low energy was then necessary to prevent the OMAs from resurfacing. Oil dispersion using Corexit 9500 was compared with oil dispersion using mineral fines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus.

    PubMed

    Di Curzio, Domenico L; Buist, Richard J; Del Bigio, Marc R

    2013-10-01

    Hydrocephalus is a neurological condition characterized by altered cerebrospinal fluid (CSF) flow with enlargement of ventricular cavities in the brain. A reliable model of hydrocephalus in gyrencephalic mammals is necessary to test preclinical hypotheses. Our objective was to characterize the behavioral, structural, and histological changes in juvenile ferrets following induction of hydrocephalus. Fourteen-day old ferrets were given an injection of kaolin (aluminum silicate) into the cisterna magna. Two days later and repeated weekly until 56 days of age, magnetic resonance (MR) imaging was used to assess ventricle size. Behavior was examined thrice weekly. Compared to age-matched saline-injected controls, severely hydrocephalic ferrets weighed significantly less, their postures were impaired, and they were hyperactive prior to extreme debilitation. They developed significant ventriculomegaly and displayed white matter destruction. Reactive astroglia and microglia detected by glial fibrillary acidic protein (GFAP) and Iba-1 immunostaining were apparent in white matter, cortex, and hippocampus. There was a hydrocephalus-related increase in activated caspase 3 labeling of apoptotic cells (7.0 vs. 15.5%) and a reduction in Ki67 labeling of proliferating cells (23.3 vs. 5.9%) in the subventricular zone (SVZ). Reduced Olig2 immunolabeling suggests a depletion of glial precursors. GFAP content was elevated. Myelin basic protein (MBP) quantitation and myelin biochemical enzyme activity showed early maturational increases. Where white matter was not destroyed, the remaining axons developed myelin similar to the controls. In conclusion, the hydrocephalus-induced periventricular disturbances may involve developmental impairments in cell proliferation and glial precursor cell populations. The ferret should prove useful for testing hypotheses about white matter damage and protection in the immature hydrocephalic brain. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Poly(acrylic acid) modifying bentonite with in-situ polymerization for removing lead ions.

    PubMed

    He, Y F; Zhang, L; Yan, D Z; Liu, S L; Wang, H; Li, H R; Wang, R M

    2012-01-01

    In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5-60 min), initial concentration of metal ions (200-1,000 mg/L) and adsorbent dosage (0.04-0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).

  18. Effect of kaolin silver complex on the control of populations of Brettanomyces and acetic acid bacteria in wine.

    PubMed

    Izquierdo-Cañas, P M; López-Martín, R; García-Romero, E; González-Arenzana, L; Mínguez-Sanz, S; Chatonnet, P; Palacios-García, A; Puig-Pujol, A

    2018-05-01

    In this work, the effects of kaolin silver complex (KAgC) have been evaluated to replace the use of SO 2 for the control of spoilage microorganisms in the winemaking process. The results showed that KAgC at a dose of 1 g/L provided effective control against the development of B. bruxellensis and acetic acid bacteria. In wines artificially contaminated with an initial population of B. bruxellensis at 10 4 CFU/mL, a concentration proven to produce off flavors in wine, only residual populations of the contaminating yeast remained after 24 days of contact with the additive. Populations of acetic bacteria inoculated into wine at concentrations of 10 2 and 10 4  CFU/mL were reduced to negligible levels after 72 h of treatment with KAgC. The antimicrobial effect of KAgC against B. bruxellensis and acetic bacteria was also demonstrated in a wine naturally contaminated by these microorganisms, decreasing their population in a similar way to a chitosan treatment. Related to this effect, wines with KAgC showed lower concentrations of acetic acid and 4-ethyl phenol than wines without KAgC. The silver concentration from KAgC that remained in the finished wines was below the legal limits. These results demonstrated the effectiveness of KAgC to reduce spoilage microorganisms in winemaking.

  19. Engineered clay-shredded tyre mixtures as barrier materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Tabbaa, A.; Aravinthan, T.

    1997-12-31

    An engineered clay consisting of kaolin and bentonite was mixed with shredded tyre in various weight percentages and examined for use as a constituent in a landfill liner. The clay-tyre mixtures properties in terms of compaction, unconfined compressive strength, permeability to water and paraffin, leachability, stress-strain behaviour, free swell behaviour and swelling pressure were investigated. The results show that the dry density and strength reduced with the addition of tyre and also with increased tyre content but that good interaction was developed between the clay and tyre. The strain at failure increased showing reinforcing effect of the tyre. The permeabilitymore » to paraffin was considerably reduced compared to that to water due to the presence of the tyre which caused high swelling pressures to develop. The leachability results indicate initial high concentrations leaching out of the soil-tyre mixtures which will be subjected to dilution in the environment. This work adds evidence to the potential advantages of using soil-tyre mixtures as a landfill liner material.« less

  20. Granular Formulations of Steinernema carpocapsae (strain All) (Nematoda: Rhabditida) with Improved Shelf Life

    PubMed Central

    Connick, W. J.; Nickle, W. R.; Williams, K. S.; Vinyard, B. T.

    1994-01-01

    Shelf life (nematode survival) of Steinernema carpocapsae (strain All) nematodes at 21 C in "Pesta" granules, made by a pasta-like process, was increased from 8 to 26 weeks by incorporating low concentrations of formaldehyde. Pesta samples containing an average of 427,000 nematodes/g were prepared with wheat flour (semolina or bread flour), kaolin, bentonite, peat moss, nematode slurry, and formaldehyde (0-1.4% w/w) and were dried to a water content of 23.6-26.9%. Nematodes emerged from Pesta (S. carpocapsae) granules when placed in water or on moist filter paper. Incorporation of 0.2% w/w formaldehyde (nominal; 0.05% by analysis) was optimum for increasing nematode survival in semolina-based Pesta, and also inhibited fungal growth on the granules. Bread flour Pesta samples prepared by formaldehyde addition to the nematode slurry prior to dough preparation, rather than by addition to a mixture of dry ingredients, had longer shelf life. Nematodes recovered from granules made with 0.2% formaldehyde and stored 20 weeks at 21 C caused 100% mortality of wax moth (Galleria mellonella) larvae. PMID:19279903

  1. Nature and regional significance of unconformities associated with the Middle Ordovician Hagan K-bentonite complex in the North American midcontinent

    USGS Publications Warehouse

    Kolata, Dennis R.; Huff, W.D.; Bergstrom, Stig M.

    1998-01-01

    Stratal patterns of the Middle Ordovician Hagan K-bentonite complex and associated rocks show that the Black River-Trenton unconformity in the North American midcontinent formed through the complex interplay of eustasy, sediment accumulation rates, siliciclastic influx, bathymetry, seawater chemistry, and perhaps local tectonic uplift. The unconformity is diachronous and is an amalgamated surface that resulted from local late Turinian lowstand exposure followed by regional early Chatfieldian transgressive drowning and sediment starvation. The duration of the unconformity is greatest in southern Wisconsin, northern Illinois, and northern Indiana, where the Deicke and Millbrig K-bentonite Beds converge at the unconformity. On the basis of published isotopic ages for the Deicke and Millbrig beds, it is possible that in these regions erosion and non-deposition spanned a period of as much as 3.2 m.y. Two broad coeval depositional settings are recognized within the North American midcontinent during early Chatfieldian time. 1) An inner shelf, subtidal facies of fossiliferous shale (Spechts Ferry Shale Member and Ion Shale Member of the Decorah Formation) and argillaceous lime mudstone and skeletal wackestone (Guttenberg and Kings Lake Limestone Members) extended from the Canadian shield and Transcontinental arch southeastward through Minnesota, Wisconsin, Iowa, and Missouri. 2) A seaward, relatively deep subtidal, sediment-starved, middle shelf extended eastward from the Mississippi Valley region to the Taconian foreland basins in the central and southern Appalachians and southward through the pericratonic Arkoma and Black Warrior basins. In the inner shelf region, the Black River-Trenton unconformity is a composite of at least two prominent hardground omission surfaces, one at the top of the Castlewood and Carimona Limestone Members and the other at the top of the Guttenberg and Kings Lake Limestone Members, both merging to a single surface in the middle shelf region

  2. The investigation of the effect of thermal treatment on bentonites from Turkey with Fourier transform infrared and solid state nuclear magnetic resonance spectroscopic methods.

    PubMed

    Erdoğan Alver, Burcu; Alver, Ozgür

    2012-08-01

    There is a great deal of interest in the building industry in burned clays for production of building materials. Therefore, the effect of heat treatment on natural bentonite from Turkey was investigated by Fourier transform infrared (FT-IR) between the region of 4000-400cm(-1) and (29)Si, (27)Al magic angle spinning nuclear magnetic resonance (MAS NMR) measurement techniques at various temperatures between 200 and 700°C for 2h. The structural changes were also investigated upon heat treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. A comparative study on the effects of barite, ilmenite and bentonite on four suspension feeding bivalves.

    PubMed

    Strachan, Maia F; Kingston, Paul F

    2012-10-01

    The impact of drilling mud components on the filtration activity and survival of bivalve molluscs was investigated by exposing them to suspensions of 'standard' barite, finely milled barite, ilmenite and bentonite in sea water. Introduction of the components stimulated filtration activity in all four bivalves. In addition, the introduction of standard barite and ilmenite both had lethal effects, with none of the bivalves surviving the full duration of the experiments. In-vivo observations of the gill surfaces provided direct evidence of physical damage caused by the administration of barite and ilmenite. A marked difference between filtration activity and survival of animals dosed with 'standard' barite and 'fine' barite suggests that the observed effects were primarily caused by physical interference with gill function. The results also suggest that the use of fine barite in offshore drilling may provide a more favourable environmental impact profile than the use of ilmenite. Copyright © 2012. Published by Elsevier Ltd.

  4. Adsorptive removal of Congo red from aqueous solutions using crosslinked chitosan and crosslinked chitosan immobilized bentonite.

    PubMed

    Huang, Ruihua; Zhang, Lujie; Hu, Pan; Wang, Jing

    2016-05-01

    Batch experiments were executed to investigate the removal of Congo red (CR) from aqueous solutions using the crosslinked chitosan (CCS) and crosslinked chitosan immobilized bentonite (CCS/BT composite). The CCS and CCS/BT composite were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. The removal of CR was examined as a function of pH value of CR solution, contact time, and inorganic sodium salt and ionic strength. The equilibrium data of CCS and CCS/BT composite agreed well with the Langmuir model. The adsorption capacities of CCS and CCS/BT composite at 298K and natural pH value were 405 and 500 mg/g, respectively. The kinetic data correlated well with the pseudo-second-order model. The adsorption of CR onto the CCS was mainly controlled by chemisorption while the adsorption of CR onto the CCS/BT composite was controlled by chemisorption and the electrostatic attraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Incorporation of bentonite clay in cassava starch films for the reduction of water vapor permeability.

    PubMed

    Monteiro, M K S; Oliveira, V R L; Santos, F K G; Barros Neto, E L; Leite, R H L; Aroucha, E M M; Silva, R R; Silva, K N O

    2018-03-01

    Complete factorial planning 2 3 was applied to identify the influence of the cassava starch(A), glycerol(B) and modified clay(C) content on the water vapor permeability(WVP) of the cassava starch films with the addition of bentonite clay as a filler, its surface was modified by ion exchange from cetyltrimethyl ammonium bromide. The films were characterized by X-ray diffraction(XRD), fourier transform by infrared radiation(FTIR), atomic force microscopy(AFM) and scanning electron microscopy(SEM). The factorial analysis suggested a mathematical model thats predicting the optimal condition of the minimization of WVP. The influence of each individual factor and interaction in the WVP was investigated by Pareto graph, response surface and the optimization was established by the desirability function. The sequence of the degree of statistical significance of the investigated effects on the WVP observed in the Pareto graph was C>B>A>BC>AC. Interactions AB, BC and AC showed that the modified clay was the factor of greater significance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Qing, Yan; Wu, Yiqiang

    2015-03-04

    Rheological and filtration characteristics of drilling fluids are considered as two critical aspects to ensure the success of a drilling operation. This research demonstrates the effectiveness of cellulose nanoparticles (CNPs), including microfibrillated cellulose (MFC) and cellulose nanocrystals (CNCs) in enhancing the rheological and filtration performances of bentonite (BT) water-based drilling fluids (WDFs). CNCs were isolated from MFC through sulfuric acid hydrolysis. In comparison with MFC, the resultant CNCs had much smaller dimensions, more negative surface charge, higher stability in aqueous solutions, lower viscosity, and less evident shear thinning behavior. These differences resulted in the distinctive microstructures between MFC/BT- and CNC/BT-WDFs. A typical "core-shell" structure was created in CNC/BT-WDFs due to the strong surface interactions among BT layers, CNCs, and immobilized water molecules. However, a similar structure was not formed in MFC/BT-WDFs. As a result, CNC/BT-WDFs had superior rheological properties, higher temperature stability, less fluid loss volume, and thinner filter cakes than BT and MFC/BT-WDFs. Moreover, the presence of polyanionic cellulose (PAC) further improved the rheological and filtration performances of CNC/BT-WDFs, suggesting a synergistic effect between PAC and CNCs.

  7. Improving Efficacy of Beauveria bassiana against Stored Grain Beetles with a Synergistic Co-Formulant

    PubMed Central

    Storm, Clare; Scoates, Freya; Nunn, Adam; Potin, Olivier; Dillon, Aoife

    2016-01-01

    The potential of a dry powder co-formulant, kaolin, to improve the control of storage beetles by the entomopathogenic fungus Beauveria bassiana, isolate IMI389521, was investigated. The response of Oryzaephilus surinamensis adults to the fungus when applied to wheat at 1 × 1010 conidia per kg with and without kaolin at 1.74 g per kg wheat was assessed. Addition of kaolin increased control from 46% to 88% at day 7 and from 81% to 99% at day 14 post-treatment. Following this the dose response of O. surinamensis and Tribolium confusum to both kaolin and the fungus was investigated. Synergistic effects were evident against O. surinamensis at ≥0.96 g of kaolin per kg of wheat when combined with the fungus at all concentrations tested. For T. confusum, adult mortality did not exceed 55%, however, the larvae were extremely susceptible with almost complete suppression of adult emergence at the lowest fungal rate tested even without the addition of kaolin. Finally, the dose response of Sitophilus granarius to the fungus at 15 and 25 °C, with and without kaolin at 1 g per kg of wheat, was examined. Improvements in efficacy were achieved by including kaolin at every fungal rate tested and by increasing the temperature. Kaolin by itself was not effective, only when combined with the fungus was an effect observed, indicating that kaolin was having a synergistic effect on the fungus. PMID:27571107

  8. Characterization of a bioflocculant produced by Citrobacter sp. TKF04 from acetic and propionic acids.

    PubMed

    Fujita, M; Ike, M; Tachibana, S; Kitada, G; Kim, S M; Inoue, Z

    2000-01-01

    A bacterial strain, TKF04, capable of producing a bioflocculant from acetic and/or propionic acids was isolated from a biofilm formed in inside a kitchen drain. It was identified as a Citrobacter based on its morphological and physiological characteristics and the partial sequences of its 16S rRNA. TKF04 produced the bioflocculant during the logarithmic phase of growth, and the optimum temperature and pH for the bioflocculant production were 30 degrees C and 7.2-10.0, respectively. It could utilize some organic acids and sugars for its growth as the sole carbon sources when yeast extract was supplemented; however, only acetate and propionate were found to be good substrates for the bioflocculant production. The crude bioflocculant could be recovered from the supernatant of the culture broth by ethanol precipitation and dialysis against deionized water. It was found to be effective for flocculation of a kaolin suspension, when added at a final concentration of 1-10 mg/l, over a wide range of pHs (2-8) and temperatures (approximately 3-95 degrees C), while the co-presence of cations (Na+, K+, Ca2+, Mg2+, Fe2+, Al3+ or Fe3+) did not enhance the flocculating activity. It could efficiently flocculate a variety of inorganic and organic suspended particles, including kaolin, diatomite, bentonite, activated carbon, soil and activated sludge. It contained glucosamine as the major component, and the molecular weight was estimated to be between 232 and 440 kDa by gel filtration. The observation that the flocculating activity was completely lost following chitinase treatment and its analysis with a Fourier transform infrared spectrometer suggested that the bioflocculant is a biopolymer structurally-similar to chitin or chitosan.

  9. Acid activation of upper Eocene Ca-bentonite for soybean oil clarification.

    PubMed

    Chakroun, Salima; Herchi, Mongi; Mechti, Wafa; Gaied, Mohamed Essghaier

    2017-10-01

    In central Tunisia, many upper Eocene outcrops supply smectitic claystone which are characterized by several analytical techniques (calcimetry, XRD, SediGraph, chemical analysis, surface area, etc.). Beidellite is the main mineral detected by the XRD method. Representative raw samples M1, taken from Henchir Souar (Zaghouan, Tunisia), were acid activated in order to improve their physicochemical properties. This study consists in optimizing the activation conditions with HCl 3 N by varying the following parameters: time (2, 4, and 6 h) and temperature (25, 50, 75, and 90 °C). The characterization by XRD and chemical analysis was carried out on the samples (M1, activated for 2 and 6 h at 75 °C), showing a structural modification of the clay by reduction of intensity reflection 001 order of smectite and dissolution of metal ions (Al 3+ , Fe 3+ , and Mg 2+ ) from clay structure. Optimum condition for soybean oil clarification is obtained using a variety of amount raw clays (0.5, 0.75, and 1%). Thus, the best clarification yield is given at 0.75% of clay, showing a capacity of about 55%. Various forms of activated materials were used with a 75% proportion to leach soybean oil. Results were compared with commercial bentonite (Tonsil) having surface area (378 m 2 /g). The activated sample M1 during 4 h at 75 °C possesses a decolorizing capacity of about 85% greater than the oil treated by Tonsil in laboratory (58%).

  10. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou

    2015-11-11

    Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications.

  11. Fire retardancy assessment of polypropylene composite filed with nano clay prepared from Iraqi bentonite

    NASA Astrophysics Data System (ADS)

    Kareem Salih, Watheq

    2018-05-01

    Fire retardants have an extraordinary importance because of their role in saving the people, property and reducing the damages and minimizing the dangers resulting from fires and burning of polymeric composites which are used in different civil and industrial fields. The work in this paper can be divided into two main stages. In first one nano-clay was manufactured from Iraqi bentonite and it was characterized using AFM, XRD, XRF, SEM, and BET. The AFM test showed the particle size of prepared nano clay was about 99.25 nm. In the second stage, polypropylene/nano clay composites at three low loading percents (0%,2%,4%,6%) were formulated via twin screw extruder. The fire retardancy tests included burning rate according to ASTM:D-635 and maximum flame height of flame according to ASTM:D-3014. Besides, the mechanical tests and thermal behavior of prepared samples were investigated. The results showed that (4%) of nano-clay had the maximum fire retardancy and while at (2%) loading, the maximum value of tensile strength and Yong modulus were obtained. The maximum heat of fusion was recorded for 6% nano clay sample. The final results assessment confirmed on the possibility of using low loadings of prepared nano clay to improve the fire retardancy, mechanical and thermal properties successfully.

  12. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  13. [Study on the kinetics of organo-clay removing red tide organisms].

    PubMed

    Wu, Ping; Yu, Zhi-ming

    2007-07-01

    The kinetics of red tide organisms (Heterosigma akashiwo and Scrippsiella trochoidea) coagulation with clays modified by dialkyl-polyoxyethenyl quaternary ammonium compound (DPQAC) was studied using spectrophotometer and fluorometry, and the effects of different kinds and concentrations of clays, the second component DPQAC added in clays and pH on the coagulation rate were examined. When using spectrophotometer, the coagulation kinetics of red tide organism coagulation with organo-clays is well fit for the bimolecular reaction model; while using fluorometry, it is fit for the hyperbola model much better. Moreover, the results also prove that using fluorometry can avoid the great change of permeance efficiency caused by clays' sedimentation when using spectrophotometer, which has availably avoided the influence of clays' sedimentation and reflected the essential of algal coagulation and sedimentation well and truly. The results of two studying methods show that the coagulation rate is more rapid in the system of kaolin than in that of bentonite; increasing the concentration of clays and DPQAC and increasing pH all can accelerate coagulation, and among those increasing the concentration of DPQAC is the most efficient way of increasing the removal efficiency and coagulation rate.

  14. Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Hongshan, ZHU; Shengxia, DUAN; Lei, CHEN; Ahmed, ALSAEDI; Tasawar, HAYAT; Jiaxing, LI

    2017-11-01

    Fabrication of reusable adsorbents with satisfactory adsorption capacity and using environment-friendly preparation processes is required for the environment-related applications. In this study, acrylic acid (AA) was grafted onto bentonite (BT) to generate an AA-graft-BT (AA-g-BT) composite using a plasma-induced grafting technique considered to be an environment-friendly method. The as-prepared composite was characterized by scanning electron microscopy, x-ray powder diffraction, thermal gravity analysis, Fourier transform infrared spectroscopy and Barrett-Emmett-Teller analysis, demonstrating the successful grafting of AA onto BT. In addition, the removal of uranium(VI) (U(VI)) from contaminated aqueous solutions was examined using the as-prepared composite. The influencing factors, including contact time, pH value, ionic strength, temperature, and initial concentration, for the removal of U(VI) were investigated by batch experiments. The experimental process fitted best with the pseudo-second-order kinetic and the Langmuir models. Moreover, thermodynamic investigation revealed a spontaneous and endothermic process. Compared with previous adsorbents, AA-g-BT has potential practical applications in treating U(VI)-contaminated solutions.

  15. Fabrication and characterization of fine ceramic based on alumina, bentonite, and glass bead

    NASA Astrophysics Data System (ADS)

    Sebayang, P.; Nurdina; Simbolon, S.; Kurniawan, C.; Yunus, M.; Setiadi, E. A.; Sitorus, Z.

    2018-03-01

    Fabrication of fine ceramics based on alumina, bentonite and glass bead has been carried out by powder metallurgy. The preparation of powder has been performed using High Energy Milling (HEM) with wet milling process and using toluene as medium for 2 hours. The powder milling result was dried in oven at 100 °C for 24 hours. After that, the powder was compacted into pellet by using hydraulic press with 80 kgf/cm2 pressure at room temperature. Then, the pellet was sintered at 900 °C for 4 hours. Materials characterization such as physical properties (true density, bulk density, porosity, and water absorption), average particle diameter, hardness, microstructure and phase were measured by Archimedes method, Particle Size Analyzer (PSA), Hardness Vickers (HV), Scanning Electron Microscope (SEM-EDX) and X-Ray Diffraction (XRD). From the result, the optimum condition is sample D (with addition of 30 wt.% γ-Al2O3) with sintering temperature of 900 °C for 4 hours. At this condition, these properties were measured: average particle diameter of 4.27 μm, true density of 2.32 g/cm3, porosity of 5.57%, water absorption of 2.46%, bulk density of 2.39 g/cm3, and hardness of 632 HV. The fine ceramic has four phases with albite (Al2NaO8Si3) and quartz (SiO2) as dominant phases and corundum (Al2O3) and nepheline (AlNaO4Si) as minor phases.

  16. Immobilization of methylene blue onto bentonite and its application in the extraction of mercury (II).

    PubMed

    Hassanien, Mohamed M; Abou-El-Sherbini, Khaled S; Al-Muaikel, Nayef S

    2010-06-15

    Methylene blue was immobilized onto bentonite (BNT). The modified clay (MB-BNT) was used to extract Hg(2+) at pH 6.0 yielding Hg-MB-BNT. BNT, MB-BNT and Hg-MB-BNT were characterized by X-ray diffractometry, infrared spectra, and elemental and thermogravimetric analyses. MB is suggested to be intercalated into the major phase of BNT; montmorillonite mineral (MMT), lying parallel to the aluminosilicate layers, with a capacity of 36 mequiv./100g. MB-BNT shows good stability in 0.1-1M hydrochloric or nitric acids, ammonium hydroxide, and concentrated Na(+), K(+) or NH(4)(+) chlorides or iodides. It shows good selectivity towards Hg(2+) with an extraction capacity of 37 mequiv./100g in the presence of I(-) giving rise to a ratio of MB/Hg(2+)/I(-) 1:1:3 in the clay phase. Extracted Hg(2+) could be quantitatively recovered by ammonia buffer at pH 8.5. MB-BNT was successfully applied to recover Hg(2+) from spiked natural water and cinnabar mineral samples using the optimum conditions; pH 6.0, time of stirring 10 min and 10 mL of 0.05 M NH(4)Cl/NH(4)OH at pH 8.5 as eluent. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Long-term diffusion of U(VI) in bentonite: Dependence on density

    DOE PAGES

    Joseph, Claudia; Mibus, Jens; Trepte, Paul; ...

    2016-10-12

    As a contribution to the safety assessment of nuclear waste repositories, U(VI) diffusion through the potential buffer material MX-80 bentonite was investigated at three clay dry densities over six years. Synthetic MX-80 model pore water was used as background electrolyte. Speciation calculations showed that Ca 2UO 2(CO 3) 3(aq) was the main U(VI) species. The in- and out-diffusion of U(VI) was investigated separately. U(VI) diffused about 3 mm, 1.5 mm, and 1 mm into the clay plug at ρ = 1.3, 1.6, and 1.9 g/cm 3, respectively. No through-diffusion of the U(VI) tracer was observed. However, leaching of natural uraniummore » contained in the clay occurred and uranium was detected in all receiving reservoirs. As expected, the effective and apparent diffusion coefficients, D e and D a, decreased with increasing dry density. The D a values for the out-diffusion of natural U(VI) were in good agreement with previously determined values. Surprisingly, D a values for the in-diffusion of U(VI) were about two orders of magnitude lower than values obtained in short-term in-diffusion experiments reported in the literature. Some potential reasons for this behavior that were evaluated are changes of the U(VI) speciation within the clay (precipitation, reduction) or changes of the clay porosity and pore connectivity with time. By applying Archie's law and the extended Archie's law, it was estimated that a significantly smaller effective porosity must be present for the long-term in-diffusion of U(VI). Finally, the results suggest that long-term studies of key transport phenomena may reveal additional processes that can directly impact long-term repository safety assessments.« less

  18. Negligible effects of tryptophan on the aflatoxin adsorption of sodium bentonite.

    PubMed

    Magnoli, A P; Copia, P; Monge, M P; Magnoli, C E; Dalcero, A M; Chiacchiera, S M

    2014-01-01

    The main objective of this study was to determine if the competitive adsorption of tryptophan (Trp) and aflatoxin B₁ (AFB₁) could potentially affect the ability of a sodium bentonite (NaB) to prevent aflatoxicosis in monogastric animals. The adsorption of Trp and AFB₁ on this adsorbent is fast and could be operating on the same time-scale making competition feasible. In vitro competitive adsorption experiments under simulated gastrointestinal conditions were performed. A high affinity of the clay for Trp and NaB was observed. The effect of an excess of KCl to mimic the ionic strength of the physiological conditions were also investigated. A six-times decrease in the Trp surface excess at saturation was observed. A similar behaviour was previously found for AFB₁ adsorption. Taking into account the amount of Trp adsorbed by the clay and the usual adsorbent supplementation level in diets, a decrease in Trp bioavailability is not expected to occur. Tryptophan adsorption isotherms on NaB were 'S'-shaped and were adjusted by the Frumkin-Fowler-Guggenheim model. The reversibility of the adsorption processes was investigated in order to check a potential decrease in the ability of NaB to protect birds against chronic aflatoxicoses. Adsorption processes were completely reversible for Trp, while almost irreversible for AFB₁. In spite of the high affinity of the NaB for Trp, probably due to the reversible character of Trp adsorption, no changes in the AFB₁ adsorption isotherm were observed when an excess of the amino acid was added to the adsorption medium. As a consequence of the preferential and irreversible AFB₁ adsorption and the reversible weak binding of Trp to the NaB, no changes in the aflatoxin sorption ability of the clay are expected to occur in the gastrointestinal tract of birds.

  19. Adsorptive removal of Lead from water by the effective and reusable magnetic cellulose nanocomposite beads entrapping activated bentonite.

    PubMed

    Luo, Xiaogang; Lei, Xiaojuan; Xie, Xiuping; Yu, Bo; Cai, Ning; Yu, Faquan

    2016-10-20

    Many efforts have been driven to decontaminate the drinking water, and the development of efficient adsorbents with the advantages of cost-effectiveness and operating convenience for the removal of Pb(2+) from water is a major challenge. This work was aimed to explore the possibility of using cellulose-based adsorbents for efficient adsorption of Pb(2+). The millimeter-scale magnetic cellulose-based nanocomposite beads were fabricated via an optimal extrusion dropping technology by blending cellulose with the carboxyl-functionalized magnetite nanoparticles and acid-activated bentonite in NaOH/urea aqueous solution, and then they had been tested to evaluate the effectiveness in the removal of Pb(2+) from water. The effects of contact time, initial heavy metal ion concentrations, adsorption isotherms and solution pH on the sorption behavior were studied. The thermodynamic parameters (ΔG, ΔH and ΔS) indicated that the adsorption processes were feasible, spontaneous, endothermic and mainly controlled by chemical mechanisms. The reusability of the adsorbent was also studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Experiments on the origins of optical activity. [in amino acids

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Flores, J. J.

    1975-01-01

    An investigation was conducted concerning the asymmetric adsorption of phenylalanine enantiomers by kaolin. No preferential adsorption of either phenylalanine enantiomer could be detected and there was no resolution of the racemic phenylalanine by kaolin. The attempted asymmetric polymerization of aspartic acid by kaolin is also discussed along with a strontium-90 bremsstrahlung radiolysis of leucine.

  1. Multi-dimensional transport modelling of corrosive agents through a bentonite buffer in a Canadian deep geological repository.

    PubMed

    Briggs, Scott; McKelvie, Jennifer; Sleep, Brent; Krol, Magdalena

    2017-12-01

    The use of a deep geological repository (DGR) for the long-term disposal of used nuclear fuel is an approach currently being investigated by several agencies worldwide, including Canada's Nuclear Waste Management Organization (NWMO). Within the DGR, used nuclear fuel will be placed in copper-coated steel containers and surrounded by a bentonite clay buffer. While copper is generally thermodynamically stable, corrosion can occur due to the presence of sulphide under anaerobic conditions. As such, understanding transport of sulphide through the engineered barrier system to the used fuel container is an important consideration in DGR design. In this study, a three-dimensional (3D) model of sulphide transport in a DGR was developed. The numerical model is implemented using COMSOL Multiphysics, a commercial finite element software package. Previous sulphide transport models of the NWMO repository used a simplified one-dimensional system. This work illustrates the importance of 3D modelling to capture non-uniform effects, as results showed locations of maximum sulphide flux are 1.7 times higher than the average flux to the used fuel container. Copyright © 2017. Published by Elsevier B.V.

  2. Studies on a complex mechanism for the activation of plasminogen by kaolin and by chloroform: the participation of Hageman factor and additional cofactors

    PubMed Central

    Ogston, Derek; Ogston, C. Marie; Ratnoff, Oscar D.; Forbes, Charles D.

    1969-01-01

    As demonstrated by others, fibrinolytic activity was generated in diluted, acidified normal plasma exposed to kaolin, a process requiring Hageman factor (Factor XII). Generation was impaired by adsorbing plasma with glass or similar agents under conditions which did not deplete its content of Hageman factor or plasminogen. The defect could be repaired by addition of a noneuglobulin fraction of plasma or an agent or agents eluted from diatomaceous earth which had been exposed to normal plasma. The restorative agent, tentatively called Hageman factor-cofactor, was partially purified by chromatography and had an apparent molecular weight of approximately 165,000. It could be distinguished from plasma thromboplastin antecedent (Factor XI) and plasma kallikrein, other substrates of Hageman factor, and from the streptokinase-activated pro-activator of plasminogen. Evidence is presented that an additional component may be needed for the generation of fibrinolytic activity in mixtures containing Hageman factor, HF-cofactor, and plasminogen. The long-recognized generation of plasmin activity in chloroform-treated euglobulin fractions of plasma was found to be dependent upon the presence of Hageman factor. Whether chloroform activation of plasminogen requires Hageman factor-cofactor was not determined, but glass-adsorbed plasma, containing Hageman factor and plasminogen, did not generate appreciable fibrinolytic or caseinolytic activity. These studies emphasize the complex nature of the mechanisms which lead to the generation of plasmin in human plasma. PMID:4241814

  3. Cation dependence, pH tolerance, and dosage requirement of a bioflocculant produced by Bacillus spp. UPMB13: flocculation performance optimization through kaolin assays.

    PubMed

    Zulkeflee, Zufarzaana; Aris, Ahmad Zaharin; Shamsuddin, Zulkifli H; Yusoff, Mohd Kamil

    2012-01-01

    A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na⁺, Ca²⁺, and Mg²⁺, while Fe²⁺ and Al³⁺ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P < 0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl₂ and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.

  4. Behavioral and electroantennogram responses of plum curculio, Conotrachelus nenuphar, to selected noxious plant extracts and insecticides

    PubMed Central

    Gӧkçe, A.; Stelinski, L. L.; Nortman, D. R.; Bryan, W. W.; Whalon, M. E.

    2014-01-01

    Abstract Behavioral and electroantennogram responses of plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), adults were tested for several methanolic plant extracts and organically approved insecticides. Plant extracts were evaluated for their potential as antifeedants or oviposition deterrents. These extract responses were also compared to those elicited by the non-neurotoxic, organic irritant-insecticide kaolin clay. Both sexes of plum curculio exhibited antennal response as measured by electroantennogram, which ranged from 0.2 to 1.1 mV, to plant extracts and the organic irritant/insecticide, with the greatest response to the extract of rough cocklebur, Xanthium strumarium L. (1.1 mV). No choice tests were conducted to compare feeding and oviposition by plum curculio on untreated apples or on apples treated with one of the extracts or the insecticide. The insecticide pyrethrum and extracts of X. strumarium and greater burdock, Arctium lappa L., significantly reduced feeding. Also, pyrethrum , A. lappa, Humulus lupulus L. (common hop), X. strumarium, and Verbascum songaricum Schrenk extracts completely inhibited egg deposition. In no-choice assays, the effects of kaolin clay with incorporated plant extracts on plum curculio feeding and oviposition were monitored as complementary tests. A. lappa-kaolin, H. lupulus –kaolin, and X. strumarium-kaolin mixtures significantly reduced the feeding of plum curculio compared to the control or kaolin clay alone. Each of the plant extract-kaolin mixtures evaluated, with the exception of Bifora radians Bieberstein (wild bishop), completely inhibited plum curculio oviposition as compared to controls. PMID:25368046

  5. Size and structure evolution of kaolin-Al(OH)3 flocs in the electroflocculation process: a study using static light scattering.

    PubMed

    Harif, T; Adin, A

    2011-11-15

    Electroflocculation (EF) is gaining recognition as an alternative process to conventional coagulation/flocculation. The electrical current applied in EF that generates the active coagulant species creates a unique chemical/physical environment in which competing redox reactions occur, primarily water electrolysis. This causes a transient rise in pH, due to cathodic formation of hydroxyl ions, which, in turn, causes a continuous shift in coagulation/flocculation mechanisms throughout the process. This highly impacts the formation of a sweep floc regime that relies on precipitation of metal hydroxide and its growth into floc. The size and structural evolution of kaolin-Al(OH)(3) flocs was examined using static light scattering techniques, in aim of elucidating kinetic aspects of the process. An EF cell was operated in batch mode and comprised of two concentric electrodes - a stainless steel cathode (inner electrode) and an aluminum anode (outer electrode). The cell was run at constant current between 0.042A and 0.22A, and analyses performed at pre-determined time intervals. The results demonstrate that EF is able to generate a range of flocs, exhibiting different growth rates and structural characteristics, depending on the conditions of operation. Growth patterns were sigmoidal and a linear correlation between growth rate and current applied was observed. The dependency of growth rate on current can be related to initial pH and aluminum dosing, with a stronger dependency apparent for initial optimal sweep floc regime. All flocs exhibited a fragile nature and undergo compaction and structural fluctuations during growth. This is the first time size and structural evolution of flocs formed in the EF process is reported. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Control of Scaphoideus titanus with Natural Products in Organic Vineyards

    PubMed Central

    Tacoli, Federico; Mori, Nicola; Cargnus, Elena; Da Vià, Sarah; Zandigiacomo, Pietro; Duso, Carlo; Pavan, Francesco

    2017-01-01

    The leafhopper Scaphoideus titanus is the vector of ‘Candidatus Phytoplasma vitis’, the causal agent of Flavescence dorée (FD) a key disease for European viticulture. In organic vineyards, the control of S. titanus relies mostly on the use of pyrethrins that have suboptimal efficacy. During 2016, three field trials were conducted to evaluate the efficacy of kaolin, orange oil, insecticidal soap and spinosad against S. titanus nymphs, in comparison with pyrethrins. The activity of kaolin was evaluated also in the laboratory. In all field trials, kaolin had an efficacy against nymphs comparable to pyrethrins, while the other products were not effective. Laboratory results confirmed that kaolin increased nymph mortality. In organic vineyards, kaolin and pyrethrins are valuable tools in the management of FD. Nevertheless, their efficacy is lower compared to that of the synthetic insecticides used in conventional viticulture. Therefore, further research should be conducted in order to identify alternatives to synthetic insecticides for S. titanus control in the context of organic viticulture. PMID:29258165

  7. Influence of bentonite in polymer membranes for effective treatment of car wash effluent to protect the ecosystem.

    PubMed

    Kiran, S Aditya; Arthanareeswaran, G; Thuyavan, Y Lukka; Ismail, A F

    2015-11-01

    In this study, modified polyethersulfone (PES) and cellulose acetate (CA) membranes were used in the treatment of car wash effluent using ultrafiltration. Hydrophilic sulfonated poly ether ether ketone (SPEEK) and bentonite as nanoclay were used as additives for the PES and CA membrane modification. Performances of modified membranes were compared with commercial PES membrane with 10kDa molecular weight cut off (MWCO). The influencing parameters like stirrer speed (250-750rpm) and transmembrane pressure (100-600kPa) (TMP) were varied and their effects were studied as a function of flux. In the treatment of car wash effluent, a higher permeate flux of 52.3L/m(2)h was obtained for modified CA membrane at TMP of 400kPa and stirrer speed of 750rpm. In comparison with modified PES membrane and commercial PES membrane, modified CA membranes showed better performance in terms of flux and flux recovery ratio. The highest COD removal (60%) was obtained for modified CA membrane and a lowest COD removal (47%) was observed for commercial PES membrane. The modified membranes were better at removing COD, turbidity and maintained more stable flux than commercial PES membrane, suggesting they will provide better economic performance in car wash effluent reclamation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Rational Practices to Manage Boll Weevils Colonization and Population Growth on Family Farms in the Semiárido Region of Brazil

    PubMed Central

    Neves, Robério C. S.; Colares, Felipe; Torres, Jorge B.; Santos, Roberta L.; Bastos, Cristina S.

    2014-01-01

    Because boll weevil, Anthonomus grandis Boh. develops partially protected inside cotton fruiting structures, once they become established in a field, they are difficult to control, even with nearly continuous insecticide spray. During two cotton-growing seasons in the Semiárido region of Pernambuco State, Brazil, we tested the use of kaolin sprays to disrupt plant colonization through visual cue interference, combined with removal of fallen fruiting bodies to restrain boll weevil population growth after colonization. Kaolin spray under non-choice trials resulted in 2.2×, 4.4×, and 8.6× fewer weevils, oviposition and feeding punctures on kaolin-treated plants, respectively, despite demonstrating no statistical differences for colonization and population growth. Early season sprays in 2010 occurred during a period of rainfall, and hence, under our fixed spraying schedule no significant differences in boll weevil colonization were detected. In 2011, when kaolin sprays were not washed out by rain, delayed boll weevil colonization and reduction on attacked fruiting bodies were observed in eight out of 12 evaluations, and kaolin-treated plots had 2.7× fewer damaged fruiting bodies compared to untreated plots. Adoption of simple measures such as removal of fallen fruiting bodies and prompt reapplication of kaolin sprays after rainfall show promise in reducing boll weevil infestation. PMID:26462942

  9. Rational Practices to Manage Boll Weevils Colonization and Population Growth on Family Farms in the Semiárido Region of Brazil.

    PubMed

    Neves, Robério C S; Colares, Felipe; Torres, Jorge B; Santos, Roberta L; Bastos, Cristina S

    2014-10-31

    Because boll weevil, Anthonomus grandis Boh. develops partially protected inside cotton fruiting structures, once they become established in a field, they are difficult to control, even with nearly continuous insecticide spray. During two cotton-growing seasons in the Semiárido region of Pernambuco State, Brazil, we tested the use of kaolin sprays to disrupt plant colonization through visual cue interference, combined with removal of fallen fruiting bodies to restrain boll weevil population growth after colonization. Kaolin spray under non-choice trials resulted in 2.2×, 4.4×, and 8.6× fewer weevils, oviposition and feeding punctures on kaolin-treated plants, respectively, despite demonstrating no statistical differences for colonization and population growth. Early season sprays in 2010 occurred during a period of rainfall, and hence, under our fixed spraying schedule no significant differences in boll weevil colonization were detected. In 2011, when kaolin sprays were not washed out by rain, delayed boll weevil colonization and reduction on attacked fruiting bodies were observed in eight out of 12 evaluations, and kaolin-treated plots had 2.7× fewer damaged fruiting bodies compared to untreated plots. Adoption of simple measures such as removal of fallen fruiting bodies and prompt reapplication of kaolin sprays after rainfall show promise in reducing boll weevil infestation.

  10. Role of Ca-bentonite to improve the humification, enzymatic activities, nutrient transformation and end product quality during sewage sludge composting.

    PubMed

    Awasthi, Mukesh Kumar; Awasthi, Sanjeev Kumar; Wang, Quan; Awasthi, Mrigendra Kumar; Zhao, Junchao; Chen, Hongyu; Ren, Xiuna; Wang, Meijing; Zhang, Zengqiang

    2018-04-10

    This study was aimed to examine the response of Ca-bentonite (CB) amendment to improve the sewage sludge (SS) composting along with wheat straw (WS) as bulking agent. Five treatments (SS + WS) were mixed with or without blending of discrepant concentration of CB (2%, 4%, 6%, and 10%), respectively, and without CB added treatment applied as the control. The results showed that compared to control and 2%CB blended treatments, while the 6-10%CB -amended treatment indicated maximum enzymatic activities with the composting progress and highest organic matter degradation and loss. The amendment of 6-10%CB increased the humic acid, HA/FA ratio, DON, NH 4 + -N, NO 3 and DOC but reduced the fulvic acids content and the maturity period by 2 weeks as compared to control. In addition, maturity parameters also confirmed that the highest seed germination was observed with the 10%CB applied compost followed by 6%CB, 4%CB and 2%CB applied treatments, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Inhibition of lymphocyte proliferation and antibody production in vitro by silica, talc, bentonite or Corynebacterium parvum: involvement of peroxidative processes.

    PubMed

    Hoffeld, J T

    1983-05-01

    This study was undertaken to determine whether and by what means particles which induce granulomata in vivo can affect murine spleen lymphoproliferative and antibody responses in vitro. Particles of silica, talc, Bentonite or C. parvum cells inhibited lipopolysaccharide- or concanavalin A-stimulated proliferation and sheep red blood cell-induced antibody response in vitro. The inhibition required at least 48 hours exposure of the cells to the particles. The late onset of inhibition and its reproducibility at different cell or mitogen concentrations implicated particle-induced injury to both phagocytes and lymphocytes. Either alpha-tocopherol or 2-mercaptoethanol prevented the particle-induced inhibition of spleen cell responses. alpha-Tocopherol and 2-mercaptoethanol have in common the capacity to protect cells against membrane lipid peroxidation. The inhibitory peroxidative process(es) implicated by these studies are most likely attributable to: (a) stimulation of oxidative metabolism of phagocytic cells by particles; and (b) iron-catalyzed peroxidation directly by the particles. These data may be relevant in understanding the pathogenesis of and devising therapeutic approaches toward various granulomatous conditions.

  12. Design, testing and emplacement of sand-bentonite for the construction of a gas-permeable seal test (gast)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teodori, Sven-Peter; Ruedi, Jorg; Reinhold, Matthias

    2013-07-01

    The main aim of a gas-permeable seal is to increase the gas transport capacity of the backfilled underground structures without compromising the radionuclide retention capacity of the engineered barrier system or the host rock. Such a seal, proposed by NAGRA as part of the 'Engineered Gas Transport System' in a L/ILW repository, considers specially designed backfill and sealing materials such as sand/bentonite (S/B) mixtures with a bentonite content of 20- 30%. NAGRA's RD and D plan foresees demonstrating the construction and performance of repository seals and improving the understanding and the database for reliably predicting water and gas transport throughmore » these systems. The fluid flow and gas transport properties of these backfills have been determined at the laboratory scale and through modelling the maximum gas pressures in the near field of a repository system and the gas flow rates have been evaluated. Within this context, the Gas-permeable Seal Test (GAST) was constructed at Grimsel Test Site (GTS) to validate the effective functioning of gas-permeable seals at realistic scale. The intrinsic permeability of such seals should be in the order of 10-18 m2. Because the construction of S/B seals is not common practice for construction companies, a stepwise approach was followed to evaluate different construction and quality assurance methods. As a first step, an investigation campaign with simple tests in the laboratory and in the field followed by 1:1 scale pre-tests at GTS was performed. Through this gradual increase of the degree of complexity, practical experience was gained and confidence in the methods and procedures to be used was built, which allowed reliably producing and working with S/B mixtures at a realistic scale. During the whole pre-testing phase, a quality assurance (QA) programme for S/B mixtures was developed and different methods were assessed. They helped to evaluate and choose appropriate emplacement techniques and methodologies

  13. Respiratory Disease Related Mortality and Morbidity on an Island of Greece Exposed to Perlite and Bentonite Mining Dust

    PubMed Central

    Sampatakakis, Stefanos; Linos, Athena; Papadimitriou, Eleni; Petralias, Athanasios; Dalma, Archontoula; Papasaranti, Eirini Saranti; Christoforidou, Eleni; Stoltidis, Melina

    2013-01-01

    A morbidity and mortality study took place, focused on Milos Island, where perlite and bentonite mining sites are located. Official data concerning number and cause of deaths, regarding specific respiratory diseases and the total of respiratory diseases, for both Milos Island and the Cyclades Prefecture were used. Standardized Mortality Ratios (SMRs) were computed, adjusted specifically for age, gender and calendar year. Tests of linear trend were performed. By means of a predefined questionnaire, the morbidity rates of specific respiratory diseases in Milos, were compared to those of the municipality of Oinofita, an industrial region. Chi-square analysis was used and the confounding factors of age, gender and smoking were taken into account, by estimating binary logistic regression models. The SMRs for Pneumonia and Chronic Obstructive Pulmonary Disease (COPD) were found elevated for both genders, although they did not reach statistical significance. For the total of respiratory diseases, a statistically significant SMR was identified regarding the decade 1989–1998. The morbidity study revealed elevated and statistically significant Odds Ratios (ORs), associated with allergic rhinitis, pneumonia, COPD and bronchiectasis. An elevated OR was also identified for asthma. After controlling for age, gender and smoking, the ORs were statistically significant and towards the same direction. PMID:24129114

  14. Respiratory disease related mortality and morbidity on an island of Greece exposed to perlite and bentonite mining dust.

    PubMed

    Sampatakakis, Stefanos; Linos, Athena; Papadimitriou, Eleni; Petralias, Athanasios; Dalma, Archontoula; Papasaranti, Eirini Saranti; Christoforidou, Eleni; Stoltidis, Melina

    2013-10-14

    A morbidity and mortality study took place, focused on Milos Island, where perlite and bentonite mining sites are located. Official data concerning number and cause of deaths, regarding specific respiratory diseases and the total of respiratory diseases, for both Milos Island and the Cyclades Prefecture were used. Standardized Mortality Ratios (SMRs) were computed, adjusted specifically for age, gender and calendar year. Tests of linear trend were performed. By means of a predefined questionnaire, the morbidity rates of specific respiratory diseases in Milos, were compared to those of the municipality of Oinofita, an industrial region. Chi-square analysis was used and the confounding factors of age, gender and smoking were taken into account, by estimating binary logistic regression models. The SMRs for Pneumonia and Chronic Obstructive Pulmonary Disease (COPD) were found elevated for both genders, although they did not reach statistical significance. For the total of respiratory diseases, a statistically significant SMR was identified regarding the decade 1989-1998. The morbidity study revealed elevated and statistically significant Odds Ratios (ORs), associated with allergic rhinitis, pneumonia, COPD and bronchiectasis. An elevated OR was also identified for asthma. After controlling for age, gender and smoking, the ORs were statistically significant and towards the same direction.

  15. Behavioral and electroantennogram responses of plum curculio, Conotrachelus nenuphar, to selected noxious plant extracts and insecticides.

    PubMed

    Gӧkçe, A; Stelinski, L L; Nortman, D R; Bryan, W W; Whalon, M E

    2014-01-01

    Behavioral and electroantennogram responses of plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), adults were tested for several methanolic plant extracts and organically approved insecticides. Plant extracts were evaluated for their potential as antifeedants or oviposition deterrents. These extract responses were also compared to those elicited by the non-neurotoxic, organic irritant-insecticide kaolin clay. Both sexes of plum curculio exhibited antennal response as measured by electroantennogram, which ranged from 0.2 to 1.1 mV, to plant extracts and the organic irritant/insecticide, with the greatest response to the extract of rough cocklebur, Xanthium strumarium L. (1.1 mV). No choice tests were conducted to compare feeding and oviposition by plum curculio on untreated apples or on apples treated with one of the extracts or the insecticide. The insecticide pyrethrum and extracts of X. strumarium and greater burdock, Arctium lappa L., significantly reduced feeding. Also, pyrethrum, A. lappa, Humulus lupulus L. (common hop), X. strumarium, and Verbascum songaricum Schrenk extracts completely inhibited egg deposition. In no-choice assays, the effects of kaolin clay with incorporated plant extracts on plum curculio feeding and oviposition were monitored as complementary tests. A. lappa-kaolin, H. lupulus-kaolin, and X. strumarium-kaolin mixtures significantly reduced the feeding of plum curculio compared to the control or kaolin clay alone. Each of the plant extract-kaolin mixtures evaluated, with the exception of Bifora radians Bieberstein (wild bishop), completely inhibited plum curculio oviposition as compared to controls. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  16. Toxic metal immobilization in contaminated sediment using bentonite- and kaolinite-supported nano zero-valent iron

    NASA Astrophysics Data System (ADS)

    Tomašević, D. D.; Kozma, G.; Kerkez, Dj. V.; Dalmacija, B. D.; Dalmacija, M. B.; Bečelić-Tomin, M. R.; Kukovecz, Á.; Kónya, Z.; Rončević, S.

    2014-08-01

    The objective of this study was to investigate the possibility of using supported nanoscale zero-valent iron with bentonite and kaolinite for immobilization of As, Pb and Zn in contaminated sediment from the Nadela river basin (Serbia). Assessment of the sediment quality based on the pseudo-total metal content (As, Pb and Zn) according to the corresponding Serbian standards shows its severe contamination, such that it requires disposal in special reservoirs and, if possible, remediation. A microwave-assisted sequential extraction procedure was employed to assess potential metal mobility and risk to the aquatic environment. According to these results, As showed lower risk to the environment than Pb and Zn, which both represent higher risk to the environment. The contaminated sediment, irrespective of the different speciation of the treated metals, was subjected to the same treatment. Semi-dynamic leaching test, based on leachability index and effective diffusion coefficients, was conducted for As-, Pb- and Zn-contaminated sediments in order to assess the long-term leaching behaviour. In order to simulate "worst case" leaching conditions, the test was modified using acetic and humic acid solution as leachants instead of deionized water. A diffusion-based model was used to elucidate the controlling leaching mechanisms; in the majority of samples, the controlling leaching mechanism appeared to be diffusion. Three different single-step leaching tests were applied to evaluate the extraction potential of examined metals. Generally, the test results indicated that the treated sediment is safe for disposal and could even be considered for "controlled utilization".

  17. Effects of polyaluminum chloride and lanthanum-modified bentonite on the growth rates of three Cylindrospermopsis raciborskii strains

    PubMed Central

    van Oosterhout, Frank; Becker, Vanessa; Attayde, José Luiz; Lürling, Miquel

    2018-01-01

    In tropical and subtropical lakes, eutrophication often leads to nuisance blooms of Cylindrospermopsis raciborskii. In laboratory experiments, we tested the combined effects of flocculant polyaluminum chloride (PAC) and lanthanum-modified bentonite (LMB) on the sinking and growth rates of three C. raciborskii strains. We tested the hypothesis that the combination of PAC and LMB would (1) effectively sink C. raciborskii in a test tube experiment and (2) impair C. raciborskii growth, irrespective of the biomass of the inoculum (bloom) and the strain in the growth experiment. We tested the recommended (LMB1) and a three-times higher dose of LMB (LMB3). The combined addition of PAC and LMB enhanced the sedimentation of all C. raciborskii strains. Moreover, both the PAC and LMB doses decreased the phosphate concentration. PAC and LMB1 decreased the growth rate of all strains, but the efficacy depended on the biomass and strain. The combined addition of PAC and LMB3 inhibited the growth of all strains independently of the biomass and strain. We conclude that a low dose of PAC in combination with the recommended dose of LMB decreases C. raciborskii blooms and that the efficiency of the technique depends on the biomass of the bloom. A higher dose of LMB is needed to obtain a more efficient control of C. raciborskii blooms. PMID:29614118

  18. Effects of polyaluminum chloride and lanthanum-modified bentonite on the growth rates of three Cylindrospermopsis raciborskii strains.

    PubMed

    Araújo, Fabiana; van Oosterhout, Frank; Becker, Vanessa; Attayde, José Luiz; Lürling, Miquel

    2018-01-01

    In tropical and subtropical lakes, eutrophication often leads to nuisance blooms of Cylindrospermopsis raciborskii. In laboratory experiments, we tested the combined effects of flocculant polyaluminum chloride (PAC) and lanthanum-modified bentonite (LMB) on the sinking and growth rates of three C. raciborskii strains. We tested the hypothesis that the combination of PAC and LMB would (1) effectively sink C. raciborskii in a test tube experiment and (2) impair C. raciborskii growth, irrespective of the biomass of the inoculum (bloom) and the strain in the growth experiment. We tested the recommended (LMB1) and a three-times higher dose of LMB (LMB3). The combined addition of PAC and LMB enhanced the sedimentation of all C. raciborskii strains. Moreover, both the PAC and LMB doses decreased the phosphate concentration. PAC and LMB1 decreased the growth rate of all strains, but the efficacy depended on the biomass and strain. The combined addition of PAC and LMB3 inhibited the growth of all strains independently of the biomass and strain. We conclude that a low dose of PAC in combination with the recommended dose of LMB decreases C. raciborskii blooms and that the efficiency of the technique depends on the biomass of the bloom. A higher dose of LMB is needed to obtain a more efficient control of C. raciborskii blooms.

  19. In Situ Immobilization of Heavy-Metal Contaminated Soil

    DTIC Science & Technology

    1988-06-01

    Scavenging DH 524 Molecules DH 565 DH 566 Natural Materials Clays Slurry BEN 125 Bentonite 325 Bentonite HPM 20 Microfine Bentonite Attasorb LVM Satintone...HPM 20 Microfine Bentonite are sodium- montmorillonite clays of different particle sizes and purities. Na- montmorillonite clay is a three-layered...a powder of 325 Mesh and has a purity of 90 percent. - -PM 20 Microfine Bentonite (Reference 24). This is a microfine clay having a purity of 99.75

  20. Characterization of refractory brick based on local raw material from Lampung Province - Indonesia

    NASA Astrophysics Data System (ADS)

    Amin, Muhammad; Suryana, Yayat I.; Isnugroho, Kusno; Aji, Bramantyo B.; Birawidha, David C.; Hendronursito, Yusup

    2018-04-01

    Refractories are non-metallic inorganic materials that are difficult to melt at high temperatures and used in high-temperature casting industries. Refractories are classified into their constituent mineral feed stocks, refractories having typical plot properties commonly called fire bricks. In the manufacture of refractory bricks that exist in the market during the use of mangrove materials derived from abroad that is from China. In this research the refractory brick materials used are quartz sand, feldspart, kaolin, bentonite, and ball clay. All materials come from local Lampung Province - Indonesia. The experiment, there are 7 kinds of experimental composition, made of plot shape with size 230 mm, 65 mm in thickness, 114 mm height mould using manual press machine with 10 tons power and burning at 1400°C for 5 hours. Refractory brick product is done by physical test in the form of porosity, specific gravity, compressive strength and XRF and SEM characteristics. The result of XRF characteristic of refractory brick composition of 1 to 5 compared to the refractory brick type SK 34 in the market and the result of composition 1 is a composition close to refractory brick composition type SK 34 namely SiO2 is 54.21 %, Al2O3 is 25.38 % and test Physical of Bulk density is 2.25 g/cm3, porosity is 18.98 % and compressive strength is 325 kg/cm2.

  1. 75 FR 13717 - Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition to List the Southern...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ...-12) attributed to sedimentation, channelization, impoundment, sand and gravel mining, and chemical..., and/or sedimentation from headwater kaolin mines (Hartfield and Jones 1990, pp. 22-24). The kaolin mines that were the suspected source of sedimentation in the Buttahatchee have since been stabilized...

  2. Evaluation of acute toxicity and intestinal transit time of Olax scandens Roxb. leaves.

    PubMed

    Naik, Raghavendra; Acharya, Rabinarayan; Nariya, Mukesh B; Borkar, Sneha D

    2015-01-01

    Olax scandens Roxb. is a shrub or small tree found throughout tropical India. Fruits and leaves of this plant are used for medicinal and food purpose. Traditionally, leaves of O. scandens are used as vegetable in constipation. To evaluate the acute toxicity and intestinal transit time of O. scandens leaves on experimental animals. Acute oral toxicity study for sample was carried out following OECD guidelines. Evaluation of intestinal transit time was carried out in the dose of 1300 mg/kg by adopting Kaolin expulsion test and latency of the onset of kaolin expulsion in fecal matter in mice. The results show that the test drug is not likely to produce any toxicity in higher dose. In kaolin expulsion test, the drug produced mild increase in intestinal motility in mice proved by fast clearance of kaolin pellet in comparison to control group. The leaves of O. scandens are safe at higher dose and showed mild laxative activity in the dose of 1300 mg/kg body weight of mice.

  3. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Anel A.; Shimaoka, Takayuki

    2008-12-15

    This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used formore » this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m{sup 3}. Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10{sup -10} cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable.« less

  4. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material.

    PubMed

    Roberts, Anel A; Shimaoka, Takayuki

    2008-12-01

    This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used for this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m(3). Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10(-10)cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable.

  5. Fixed-bed operation for manganese removal from water using chitosan/bentonite/MnO composite beads.

    PubMed

    Muliwa, Anthony M; Leswifi, Taile Y; Maity, Arjun; Ochieng, Aoyi; Onyango, Maurice S

    2018-04-24

    In the present study, a new composite adsorbent, chitosan/bentonite/manganese oxide (CBMnO) beads, cross-linked with tetraethyl-ortho-silicate (TEOS) was applied in a fixed-bed column for the removal of Mn (II) from water. The adsorbent was characterised by scanning electron microscopy (SEM), Fourier transform infra-red (FT-IR), N 2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS) techniques, and moreover the point of zero charge (pH pzc ) was determined. The extend of Mn (II) breakthrough behaviour was investigated by varying bed mass, flow rate and influent concentration, and by using real environmental water samples. The dynamics of the column showed great dependency of breakthrough curves on the process conditions. The breakthrough time (t b ), bed exhaustion time (t s ), bed capacity (q e ) and the overall bed efficiency (R%) increased with an increase in bed mass, but decreased with the increase in both influent flow rate and concentration. Non-linear regression suggested that the Thomas model effectively described the breakthrough curves while large-scale column performance could be estimated by the bed depth service time (BDST) model. Experiments with environmental water revealed that coexisting ions had little impact on Mn (II) removal, and it was possible to achieve 6.0 mg/g breakthrough capacity (q b ), 4.0 L total treated water and 651 bed volumes processed with an initial concentration of 38.5 mg/L and 5.0 g bed mass. The exhausted bed could be regenerated with 0.001 M nitric acid solution within 1 h, and the sorbent could be reused twice without any significant loss of capacity. The findings advocate that CBMnO composite beads can provide an efficient scavenging pathway for Mn (II) in polluted water.

  6. Reactive Transport Modeling and Changes in Porosity at Reactive Interfaces in a HLW repository in Clay

    NASA Astrophysics Data System (ADS)

    Samper, J.; Mon, A.; Montenegro, L.; Naves, A.; Fernández, J.

    2016-12-01

    High-level radioactive waste disposal in a deep geological repository is based on a multibarrier concept which combines natural barriers such as the geological formation and artificial barriers such as metallic containers, bentonite and concrete buffers and sealing materials. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyperalkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyperalkaline plume at the concrete-clay interface. Here we present a nonisothermal reactive transport model of the long-term interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. This problem involves large pH changes with a hyperalkaline high-pH plume, complex mineral dissolution/precipitation patterns, cation exchange reactions and proton surface complexation. These reactions lead to large changes in porosity which can even lead to pore clogging. Model results show that magnetite, the main corrosion product, precipitates and reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The zones affected by pore clogging at the canister-bentonite, bentonite-concrete and concrete-clay interfaces at 1 Ma are equal to 10, 25 and 25 mm thick, respectively. The results of our simulations share many of the features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Narrow alteration zones; and 2) Pore clogging at the canister-bentonite, bentonite-concrete and concrete

  7. Sensitivity of the activated partial thromboplastin time, the dilute Russell's viper venom time, and the kaolin clotting time for the detection of the lupus anticoagulant: a direct comparison using plasma dilutions.

    PubMed

    Martin, B A; Branch, D W; Rodgers, G M

    1996-01-01

    Increasing dilutions of lupus anticoagulant (LA) plasmas from twelve patients were used to directly compare the sensitivity of four tests for LA. The tests evaluated were the modified Bell and Alton activated partial thromboplastin time (APTT), an APTT using a commercially prepared partial thromboplastin (Platelin LS APTT), a modified dilute Russell's viper venom time (DRVVT), and a modified kaolin clotting time (KCT). LAs were detected in all twelve plasmas by each of three tests and eleven of twelve plasmas in a fourth test when undiluted patient plasma was used. Repeating the tests after diluting the LA plasmas with normal platelet-free plasma (PFP) showed that the KCT was the most sensitive test for LA, detecting eleven of twelve LAs at a dilution of 10% patient plasma and ten of twelve LAs at a dilution of 5% patient plasma. The modified Bell and Alton APTT and the modified DRVVT had similar sensitivities at a patient plasma concentration of 10%, detecting seven of twelve and eight of twelve LAs, respectively. The Platelin LS APTT detected only four of twelve LAs at a patient plasma concentration of 10%. Our results indicate that the modified KCT is a sensitive method for the detection of LAs. The modified Bell and Alton APTT and the DRVVT were less sensitive.

  8. Using Activated Clotting Time to Estimate Intraoperative Aprotinin Concentration

    PubMed Central

    Iwata, Yusuke; Okamura, Toru; Zurakowski, David; Jonas, Richard A.

    2010-01-01

    Background Use of aprotinin during cardiopulmonary bypass may be associated with renal dysfunction due to renal excretion of excess drug. We hypothesized that the difference between standard celite activated clotting time (ACT), which is prolonged by aprotinin and kaolin ACT, could provide an estimate of aprotinin blood level. Methods Fresh porcine blood was collected from six donor pigs and heparinized. Blood was stored at 4°C, rewarmed and aprotinin was added: 0, 100, 200, and 400 kallikrein inhibitor units/ml. Specimens were incubated at 37°C. Two pairs of ACT tubes (one celite and one kaolin) were measured at 37°C and 20°C using two HEMOCRON 401 machines. A generalized estimating equation (GEE) statistical approach was used to estimate actual aprotinin from differences in celite and kaolin ACT. Result There was a significant relationship of the form y = exp(a+bx) between aprotinin concentration and difference between celite and kaolin ACT at both 37°C (R2 = 0.858) and 20°C (R2 = 0.743). Conclusion The time difference between celite and kaolin ACT may be a simple and inexpensive method for measuring the blood level of aprotinin during cardiopulmonary bypass. This technique may improve patient-specific dosing of aprotinin and reduce the risk of postoperative renal complications. PMID:20093334

  9. Laboratory investigation of TerraZyme as a soil stabilizer

    NASA Astrophysics Data System (ADS)

    Yusoff, Siti Aimi Nadia Mohd; Azmi, Mastura; Ramli, Harris; Bakar, Ismail; Wijeyesekera, D. C.; Zainorabidin, Adnan

    2017-10-01

    In this study, a laboratory investigation was conducted to examine the performance of TerraZyme on different soil types. Laterite and kaolin were treated with 2% and 5% TerraZyme to determine changes in the soils' geotechnical properties. The obtained results were analysed and investigated in terms of compaction, Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR). The changes in geotechnical properties of the stabilised and unstabilised soils were monitored after curing periods of 0, 7, 15, 21 and 30 days. Changes in compaction properties, UCS and CBR were observed. It was found that laterite with 5% TerraZyme gave a higher maximum dry density (MDD) and decreased the optimum moisture content (OMC). For kaolin, a different TerraZyme percentage did not show any effect on both MDD and OMC. For strength properties, it was found that 2% TerraZyme showed the greatest change in UCS over a 30-day curing period. The CBR value of stabilised kaolin with 2% TerraZyme gave a higher CBR value than the kaolin treated with 5% TerraZyme. It was also found that laterite treated with TerraZyme gave a higher CBR value. Lastly, it can be concluded that TerraZyme is not suitable for stabilising kaolin; TerraZyme requires a cohesive soil to achieve a better performance.

  10. Optimizing adsorption of blue pigment from wastewater by nano-porous modified Na-bentonite using spectrophotometry based on response surface method

    NASA Astrophysics Data System (ADS)

    Moradi, Neshat; Salem, Shiva; Salem, Amin

    2018-03-01

    This work highlighted the effective activation of bentonite paste to produce nano-porous powder for removal of cationic dye from wastewater. The effects of activation parameters such as soda and moisture contents, ageing time and temperature were analyzed using response surface methodology (RSM). The significance of independent variables and their interactions were tested by blending the obtained powders with wastewater and then the adsorption was evaluated, spectrophotometrically. The experiments were carried out by preparation of pastes according to response surface methodology and central composite design, which is the standard method, was used to evaluate the effects and interactions of four factors on the treatment efficiency. RSM was demonstrated as an appropriate approach for optimization of alkali activation. The optimal conditions obtained from the desirable responses were 5.0 wt% soda and 45.0 wt% moisture, respectively in which the powder activation was carried out at 150 °C. In order to well understand the role of nano-structured material on dye removal, the adsorbents were characterized through X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer-Emmett-Teller surface area measurement. Finally, the analysis clearly demonstrates that the dye removal onto prepared adsorbent is well fitted with Langmuir isotherm compared to the other isotherm models. The low cost of material and facile process support the further development for commercial application purpose.

  11. Evaluation on simultaneous removal of particles and off-flavors using population balance for application of powdered activated carbon in dissolved air flotation process.

    PubMed

    Kwak, D H; Yoo, S J; Lee, E J; Lee, J W

    2010-01-01

    Most of the water treatment plants applying the DAF process are faced with off-flavors control problems. For simultaneous control of particles of impurities and dissolved organics that cause pungent taste and odor in water, an effective method would be the simple application of powdered activated carbon (PAC) in the DAF process. A series of experiments were carried out to explore the feasibility for simultaneous removal of kaolin particles and organic compounds that produce off-flavors (2-MIB and geosmin). In addition, the flotation efficiency of kaolin and PAC particles adsorbing organics in the DAF process was evaluated by employing the population balance theory. The removal efficiency of 2-MIB and geosmin under the treatment condition with kaolin particles for simultaneous treatment was lower than that of the individual treatment. The decrease in the removal efficiency was probably caused by 2-MIB and geosmin remaining in the PAC particle in the treated water of DAF after bubble flotation. Simulation results obtained by the population balance model indicate, that the initial collision-attachment efficiency of PAC particles was lower than that of kaolin particles.

  12. Improving the thermal and physical properties of fire clay refractory bricks by added magnesia

    NASA Astrophysics Data System (ADS)

    Ibrahim, Sarmad I.; Ali, Nahedh M.; Abood, Tamara W.

    2018-05-01

    In this study, the Local natural Iraqi rocks kaolin with the addition of different proportions of MgO along with its effects on the physical and thermal properties of the prepared refractories were investigated. kaolin/MgO mixture was milled and classified into various size fractions, the kaolin (less than 105 µm) and MgO (less than 50µm). The specimens were mixed from kaolin and MgO in range M1 (95+5)%, M2 (90+10) %, M3(85+15)% and M4(80+20)% respectively. The green specimens were shaped by the semi-dry method using a hydraulic press and a molding pressure of (5)Ton with addition of (9-12) %wt. of pva solution ratio. After molding and drying, the specimens were fired at (1100, 1200 and 1300)°C. Physical properties (density, porosity, Water Absorption) and thermal properties (thermal conductivity) were measured for all the prepared samples. The results showed that the porosity was increased and the density was decreased, such increase &decrease affected on to the thermal properties for refractory.

  13. Safety evaluation of new hemostatic agents, smectite granules, and kaolin-coated gauze in a vascular injury wound model in swine.

    PubMed

    Kheirabadi, Bijan S; Mace, James E; Terrazas, Irasema B; Fedyk, Chriselda G; Estep, J Scot; Dubick, Michael A; Blackbourne, Lorne H

    2010-02-01

    In 2007, a potent procoagulant mineral called WoundStat (WS), consisting of smectite granules, received clearance from the Food and Drug Administration for marketing in the United States for temporary treatment of external hemorrhage. Previously, we found that microscopic WS particles remained in the injured vessels that were treated, despite seemingly adequate wound debridement. Thus, we investigated the thromboembolic risk of using WS when compared with kaolin-coated gauze, Combat Gauze (CG); or regular gauze, Kerlix (KX) to treat an external wound with vascular injuries in pigs. The right common carotid artery and external jugular vein of pigs were isolated and sharply transected (50%). After 30 seconds of free bleeding, the neck wounds were packed with WS, CG, or KX and compressed until hemostasis was achieved (n = 8 per group). Wounds were debrided after 2 hours, and vascular injuries were primarily repaired with suture. Blood flow was restored after infusing 1 L of crystalloid (no heparin or aspirin) and the wounds were closed. Two hours later, computed tomographic angiography was performed, and the wounds were reopened to harvest the vessels. The brains and lungs were recovered for gross and microscopic examination after euthanasia. No differences were found in baseline measurements. Thrombelastography showed similar hypercoagulability of the final blood samples when compared with baselines in all groups. All vessels treated with KX or CG were patent and had no thrombus or blood clot in their lumen. In contrast, seven of eight carotid arteries and six of eight jugular veins treated with WS developed large occlusive red thrombi and had no flow. Small clots and WS residues were also found in the lungs of two pigs. Histologically, significant endothelial and transmural damage was seen in WS-treated vessels with luminal thrombi and embedded WS residues. WS granules caused endothelial injury and significant transmural damage to the vessels that render them

  14. A pilot study of the use of kaolin-impregnated gauze (Combat Gauze) for packing high-grade hepatic injuries in a hypothermic coagulopathic swine model.

    PubMed

    Sena, Matthew J; Douglas, Geoffrey; Gerlach, Travis; Grayson, J Kevin; Pichakron, Kullada O; Zierold, Dustin

    2013-08-01

    Severe hepatic injuries may be highly lethal, and perihepatic packing remains the mainstay of treatment. This is not always successful, particularly in the setting of hypothermia and coagulopathy. Kaolin-impregnated Combat Gauze (CG) is an effective hemostatic dressing used primarily to treat external wounds. The objective of this study was to determine the ability of CG to control severe hemorrhage in hypothermic, coagulopathic swine with a high-grade hepatic injury. Anesthetized animals underwent splenectomy and were cooled to 32°C while undergoing a 60% exchange transfusion with Hextend. A grade V liver injury was created in the left middle hepatic lobe. Animals were allowed to freely bleed for 30 s and then randomized to treatment with CG or plain gauze laparotomy pads (PG) applied to the injury site. Animals were then resuscitated with warmed Hextend. There was no difference between groups in preinjury hemodynamic or laboratory values. Animals packed with CG had less blood loss when compared with standard packing (CG = 25 mL/kg versus PG = 58 mL/kg, P = 0.05). There was a trend towards lower hetastarch resuscitation requirements in the CG group (CG = 7 mL/kg versus PG = 44 mL/kg, P = 0.06) but no statistically significant difference in mortality (CG = 13% versus PG = 50%, P = 0.11). Histology of the injury sites revealed more adherent clot in the CG group, but no inflammation, tissue necrosis, or residual material. In pigs with severe hepatic injury, Combat Gauze reduced blood loss and resuscitation requirements when compared with plain laparotomy pads. Combat Gauze may be safe and effective for use on severe liver injuries. Published by Elsevier Inc.

  15. Colloidal behavior of aqueous montmorillonite suspensions in the presence of non-ionic polymer

    NASA Astrophysics Data System (ADS)

    Gareche, M.; Azri, N.; Allal, A.; Zeraibi, N.

    2015-04-01

    In this paper we characterized at first, the rheological behavior of the bentonite suspensions and the aqueous solutions of polyethylene oxide (PEO), then we were investigated the influence of this polymer in a water-based drilling fluid model (6% of bentonite suspension). The objective is to exhibit how the non ionic polymer with molecular weight 6×103 g/mol. of varying concentration mass (0.7%, 1%, 2% et 3%) significantly alter the rheological properties (yield stress, viscosity, loss and elastic modulus) of the bentonite suspensions. The rheological measurements made in simple shear and in dynamic on the mixture (water-bentonite-PEO), showed rheological properties of bentonite suspensions both in the presence and absence of non-ionic polymer. The PEO presents an affinity for the bentonite particles slowing down their kinetic aggregation. The analysis by X-rays diffraction also allowed understanding the structure of this mixture. It had revealed the intercalation between of the clay platelets on one hand, and the links bridges assured by the chains of polymer between bentonite particles beyond a critical concentration in PEO on the other hand. The Herschel- Bulkley rheological model is used for the correlation of our experimental results.

  16. Experimental study of clay-hydrocarbon interactions relevant to the biodegradation of the Deepwater Horizon oil from the Gulf of Mexico.

    PubMed

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M

    2016-11-01

    Adding clay to marine oil pollution represents a promising approach to enhance bacterial hydrocarbon degradation in nutrient poor waters. In this study, three types of regionally available clays (Ca-bentonite, Fuller's Earth and kaolin) were tested to stimulate the biodegradation of source and weathered oil collected from the Deepwater Horizon spill. The weathered oil showed little biodegradation prior to experimentation and was extensively degraded by bacteria in the laboratory in a similar way as the alkane-rich source oil. For both oils, the addition of natural clay-flakes showed minor enhancement of oil biodegradation compared to the non-clay bearing control, but the clay-oil films did limit evaporation. Only alkanes of a molecular weight (MW) > 420 showed significant reduction by enhanced biodegradation following natural clay treatment. In contrast, all fertilized clay flakes showed major bacterial degradation of the oil, with a 6-10 times reduction in alkane content, and an up to 8 fold increase in the rate of O2 consumption. Compared to the control, such treatment showed particular reduction of longer chained alkanes (MW > 226). The application of natural and fertilized clay flakes also showed selective reduction of PAHs, mainly in the MW range of 200-300, but without significant change in the toxicity indices measured. These results imply that a large variety of clays may be used to boost oil biodegradation by aiding attachment of fertilizing nutrients to the oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Usability of Particle Film Technology and Water Holding Materials to Improve Drought Tolerance in Gossypium hirsutum L. Plants

    NASA Astrophysics Data System (ADS)

    Roy, K.; Zwieniecki, M.

    2017-12-01

    Cotton (Gossypium hirsutum L.) is relatively drought resistant and thus is planted widely in many semi-arid and arid parts of the world, many of which are usually deprived of modern water management technologies. Since the productivity of cotton plants depends on water availability, we carried out the present research aiming at testing two different low cost and arid-environment friendly water efficient techniques: application of particle film technology on leaves to reduce the transpiration rate (kaolin dust), and use of organic material to improve the soil water holding capacity (cotton wool). In details, kaolin (3% and 5%; weight:volume) mixed in water was sprayed on the upper surface of the leaves of young plants, and small amounts of cotton wool (0.1%, 0.3% and 0.5%; weight:weight) were mixed into the soils. The study showed that kaolin spray was useful as a transpiration reducing agent only if plants have adequate water in the soil (well irrigated) but not under water stress conditions. In addition, mixing a small amount of cotton wool into the soil can significantly increase the amount of water available to the plants, and extend the benefit of kaolin application on plants.

  18. Argillization by descending acid at Steamboat Springs, Nevada

    USGS Publications Warehouse

    Schoen, Robert; White, Donald E.; Hemley, J.J.

    1974-01-01

    Steamboat Springs, Nevada, an area of present-day hot springs, clearly illustrates the genetic dependence of some kaolin deposits on hot-spring activity. Andesite, granodiorite and arkosic sediments are locally altered at the land surface to siliceous residues consisting of primary quartz and anatase, plus opal from primary silicates. These siliceous residues commonly exhibit the textural and structural features of their unaltered equivalents. Beneath the siliceous residues, kaolin and alunite replace primary silicates and fill open spaces, forming a blanketlike deposit. Beneath the kaolin-alunite zone, montmorillonite, commonly accompanied by pyrite, replaces the primary silicates. On the ground surface, the same alteration mineral zones can be traced outward from the siliceous residue; however, hematite rather than pyrite accompanies montmorillonite.Chemical analysis indicates that sulfuric acid is the active altering agent. The acid forms from hydrogen sulfide that exsolves from deep thermal water, rises above the water table and is oxidized by sulfur-oxidizing bacteria living near the ground surface. This acid dissolves in precipitation or condensed water vapor and percolates downward destroying most of the primary minerals producing a siliceous residue. Coincidence of the water table with the downward transition from siliceous residue to kaolin-alunite signifies decreasing hydrogen metasomatism because of dilution of descending acid by ground water.In hot-spring areas, beds of siliceous sinter deposited at the surface by hypogene thermal water look, superficially, like areas of surficial acid alteration. Features diagnostic of a surficial alteration are the relict rock structures of a siliceous residue and a kaolin-alunite zone immediately beneath.

  19. Nanocomposite of exfoliated bentonite/g-C3N4/Ag3PO4 for enhanced visible-light photocatalytic decomposition of Rhodamine B.

    PubMed

    Ma, Jianfeng; Huang, Daiqin; Zhang, Wenyi; Zou, Jing; Kong, Yong; Zhu, Jianxi; Komarneni, Sridhar

    2016-11-01

    Novel visible-light-driven heterojunction photocatalyst comprising exfoliated bentonite, g-C3N4 and Ag3PO4 (EB/g-C3N4/Ag3PO4) was synthesized by a facile and green method. The composites EB/g-C3N4/Ag3PO4 were characterized by X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectroscopy, UV-Vis diffuse reflectance spectroscopy and the Brunauer, Emmett, and Teller (BET) surface area method. Under visible light irradiation, EB/g-C3N4/Ag3PO4 composites displayed much higher photocatalytic activity than that of either pure g-C3N4 or pure Ag3PO4 in the degradation of Rhodamine B (RhB). Among the hybrid photocatalysts, EB/g-C3N4/Ag3PO4 composite containing 20 wt% Ag3PO4 exhibited the highest photocatalytic activity for the decolorization of RhB. Under the visible-light irradiation, the RhB dye was completely decolorized in less than 60 min. The enhanced photocatalytic performance is attributed to the stable structure, enlarged surface area, strong adsorbability, strong light absorption ability, and high-efficiency separation rate of photoinduced electron-hole pairs. Our finding paves a way to design highly efficient and stable visible-light-induced photocatalysts for practical applications in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Improvement of Expansive Soils Using Chemical Stabilizers

    NASA Astrophysics Data System (ADS)

    Ikizler, S. B.; Senol, A.; Khosrowshahi, S. K.; Hatipoğlu, M.

    2014-12-01

    The aim of this study is to investigate the effect of two chemical stabilizers on the swelling potential of expansive soil. A high plasticity sodium bentonite was used as the expansive soil. The additive materials including fly ash (FA) and lime (L) were evaluated as potential stabilizers to decrease the swelling pressure of bentonite. Depending on the type of additive materials, they were blended with bentonite in different percentages to assess the optimum state and approch the maximum swell pressure reduction. According to the results of swell pressure test, both fly ash and lime reduce the swelling potential of bentonite but the maximum improvement occurs using bentonite-lime mixture while the swelling pressure reduction approaches to 49%. The results reveal a significant reduction of swelling potential of expansive soil using chemical stabilizers. Keywords: Expansive soil; swell pressure; chemical stabilization; fly ash; lime

  1. Effects of a Calcium Bentonite Clay in Diets Containing Aflatoxin when Measuring Liver Residues of Aflatoxin B₁ in Starter Broiler Chicks.

    PubMed

    Fowler, Justin; Li, Wei; Bailey, Christopher

    2015-08-26

    Research has shown success using clay-based binders to adsorb aflatoxin in animal feeds; however, no adsorbent has been approved for the prevention or treatment of aflatoxicosis. In this study, growth and relative organ weights were evaluated along with a residue analysis for aflatoxin B₁ in liver tissue collected from broiler chickens consuming dietary aflatoxin (0, 600, 1200, and 1800 µg/kg) both with and without 0.2% of a calcium bentonite clay additive (TX4). After one week, only the combined measure of a broiler productivity index was significantly affected by 1800 µg/kg aflatoxin. However, once birds had consumed treatment diets for two weeks, body weights and relative kidney weights were affected by the lowest concentration. Then, during the third week, body weights, feed conversion, and the productivity index were affected by the 600 µg/kg level. Results also showed that 0.2% TX4 was effective at reducing the accumulation of aflatoxin B₁ residues in the liver and improving livability in birds fed aflatoxin. The time required to clear all residues from the liver was less than one week. With evidence that the liver's ability to process aflatoxin becomes relatively efficient within three weeks, this would imply that an alternative strategy for handling aflatoxin contamination in feed could be to allow a short, punctuated exposure to a higher level, so long as that exposure is followed by at least a week of a withdrawal period on a clean diet free of aflatoxin.

  2. A systematic investigation into the extraction of aluminum from coal spoil through kaolinite.

    PubMed

    Qiao, X C; Si, P; Yu, J G

    2008-11-15

    This research has applied kaolin and active carbon (AC) to the investigation of the recovery of aluminum from coal spoil (CS). The kaolin, AC-containing kaolin mixture, and CS have been calcined at 500, 600, 700, 800, and 900 degrees C for 15, 30, 60, and 120 min. The transformation of kaolinite and aluminum extraction that occurred in each calcined sample have been characterized using XRD, TG, IR, and hydrochloric acid leaching methods. The dehydroxylation of kaolinite and the decomposition of metakaolin were influenced by thermal treatment temperature and time. The metakaolin had kept a portion of OH- in its structure until it was calcined at a temperature of 800 degrees C. Under 60 min treatment, new SiO2 phase was able to be formed at 500 degrees C, kaolinite was totally converted to metakaolin at 600 degrees C, and the SiO2 rejoined the reaction at 800 degrees C. The decompositions of CS were similar to those of kaolin mixture containing 20 wt % AC (MKC). The combustion of combustible matter accelerated the decomposition of kaolinite in the CS and MKC. Higher AC content led to lower aluminum extraction. The treatment at 600 degrees C was optimal for both CS and MKC.

  3. Dispersion of phyllosilicates in aqueous suspensions: role of the nature and amount of surfactant.

    PubMed

    Houta, Nadia; Lecomte-Nana, Gisèle-Laure; Tessier-Doyen, Nicolas; Peyratout, Claire

    2014-07-01

    The present work aims at investigating the effect of pH values and additives on the dispersion of two 1:1 dioctahedral phyllosilicates in the presence of water. Two model clays are used for this purpose, BIP kaolin and NZCC halloysite, presenting the same surface chemistry but different morphologies. The effect of sodium hexametaphosphate, sodium silicate and sodium carbonate is discussed. Kaolin and halloysite powders were first characterized using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. Subsequently, suspensions containing 8 mass% of each clay were prepared with or without additives. Experimental measurements regarding the pH values, the zeta potential and the rheological behavior were performed to determine the most suitable additive. Results show that the conformation of halloysite particles changes regarding pH values of suspensions and is strongly related to the surface charges of these particles. At their natural pH values, halloysite and kaolin suspensions exhibit zeta potentials equal to -50 and -20 mV respectively. This trend indicates that halloysite-based suspensions are well dispersed compared to kaolin-based suspensions. Sodium hexametaphosphate is the most suitable dispersant for both clays. The rheological characterization regarding further applications in casting process indicates a shear-thinning behavior for all studied compositions. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Highly efficient inactivation of bacteria found in drinking water using chitosan-bentonite composites: Modelling and breakthrough curve analysis.

    PubMed

    Motshekga, Sarah C; Ray, Suprakas Sinha

    2017-03-15

    Disinfection of bacterially-contaminated drinking water requires a robust and effective technique and can be achieved by using an appropriate disinfectant material. The advanced use of nanomaterials is observed as an alternative and effective way for the disinfection process and water treatment as a whole. Hence, the inactivation of Escherichia coli (E. coli) using chitosan-Bentonite (Cts-Bent) composites was studied in a fixed bed column. Cts-Bent composites were synthesized using in situ cross-linking method using Bent-supported silver and zinc oxide nanoparticles. These composites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The effect of the composite bed mass, initial concentration of bacteria, and flow rate on the bacterial inactivation was investigated. The characterization results revealed that the composites were successfully prepared and confirmed the presence of both silver and zinc oxide nanoparticles in the chitosan matrix. The growth curves of E. coli were expressed as breakthrough curves, based on the logistic, Gompertz, and Boltzmann models. The breakthrough time and processed volume of treated water at breakthrough were used as performance indicators, which revealed that the composites performed best at low bacterial concentration and flow rate and with substantial bed mass. The chitosan composites were found to be highly effective, which was demonstrated when no bacteria were observed in the effluent sample within the first 27 h of analysing river water. All the models were suitable for adequately describing and reproducing the experimental data with a sigmoidal pattern. Therefore, the prepared composite is showing potential to work as a disinfectant and provide an alternative solution for water disinfection; hence this study should propel further research of the same or similar materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Determining pre-eruptive compositions of late Paleozoic magma from kaolinized volcanic ashes: Analysis of glass inclusions in quartz microphenocrysts from tonsteins

    NASA Astrophysics Data System (ADS)

    Webster, James D.; Congdon, Roger D.; Lyons, Paul C.

    1995-02-01

    Glass inclusions in quartz microphenocrysts were analyzed for major and minor elements by electron microprobe and H, Li, Be, B, Rb, Sr, Y, Nb, Mo, Sn, Cs, Ce, Th, and U by ion microprobe. The phenocrysts and inclusions occur as fresh relicts in about eleven strongly kaolinized, air-fall volcanic ash units (tonsteins) that outcrop in five states located in the central Appalachian basin; the ashes were erupted during the Pennsylvanian. Even though the whole-rock tonstein samples are extremely altered, the glass trapped in quartz microphenocrysts preserves pre-eruptive melt compositions, and, consequently, the inclusions are useful for determining compositions of source magmas and identifying geochemical trends indicative of magmatic evolution. Interpretation of inclusion compositions indicates the strongly altered tonsteins were derived from potassium-enriched, metaluminous to mildly peraluminous magma(s). The tonsteins can be divided into two groups on the basis of trapped melt compositions: older tonsteins that have inclusions with high Sr and normative quartz contents and comparatively low concentrations of U, Th, Rb, Y, Cs, Nb, F, and Cl (±Be) and younger tonsteins whose inclusions contain low Sr and normative quartz and high concentrations of U, Th, Rb, Y, Cs, Nb, F, and Cl (±Be). In general, as concentrations of Sr decreased, the magmatic abundances of Rb, Y, Cs, Nb, U, Th, Cl, and F (±Be) increased. The associated magma or magmas were highly evolved, volatile enriched, and contained Rb, Nb, and Y abundances characteristic of continental within-plate granites; compositions ranged from high-silica rhyolite to topaz rhyolite. Pre-eruptive volatile abundances in the source magma(s) were generally high but also highly variable. Chlorine contents of melt(s) ranged from 0.02-0.23 wt%, and F ranged from 0.01-0.7 wt%. Concentrations of H 2O in melt(s) ranged from 1.6-6.5 wt%. The high pre-eruptive H 2O contents are consistent with large eruptive volumes indicating

  6. Removal of phenols from water accompanied with synthesis of organobentonite in one-step process.

    PubMed

    Ma, Jianfeng; Zhu, Lizhong

    2007-08-01

    A novel technology of wastewater treatment was proposed based on simultaneously synthesis of organobentonite and removal of organic pollutants such as phenols from water in one-step, which resulted that both surfactants and organic pollutants were removed from water by bentonite. The effects of contact time, pH and inorganic salt on the removal of phenols were investigated. Kinetic results showed that phenols and cetyltrimethylammonium bromide (CTMAB) could be removed by bentonite in 25 min. The removal efficiencies were achieved at 69%, 92% and 99%, respectively, for phenol, p-nitrophenol and beta-naphthol at the initial amount of CTMAB at about 120% cation exchange capacity of bentonite. Better dispersion property and more rapid bentonite sedimentation were observed in the process. The results indicated that the one-step process is an efficient, simple and low cost technology for removal of organic pollutants and cationic surfactants from water. The proposed technology made it possible that bentonite was applied as sorbent for wastewater treatment in industrial scale.

  7. Impact of clay mineral on air oxidation of PAH-contaminated soils.

    PubMed

    Biache, Coralie; Kouadio, Olivier; Lorgeoux, Catherine; Faure, Pierre

    2014-09-01

    This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.

  8. Evaluation of the endotoxin binding efficiency of clay minerals using the Limulus Amebocyte lysate test: an in vitro study

    PubMed Central

    2014-01-01

    Endotoxins are part of the cell wall of Gram-negative bacteria. They are potent immune stimulators and can lead to death if present in high concentrations. Feed additives, which bind endotoxins in the gastrointestinal tract of animals, could help to prevent their negative impact. The objective of our study was to determine the potential of a bentonite (Bentonite 1), a sodium bentonite (Bentonite 2), a chemically treated smectite (Organoclay 1) and a modified attapulgite (Organoclay 2) to bind endotoxins in vitro. Polymyxin B served as positive control. The kinetic chromogenic Limulus Amebocyte lysate test was adapted to measure endotoxin activity. Firstly, a single sorption experiment (10 endotoxin units/mL (EU/mL)) was performed. Polymyxin B and organoclays showed 100% binding efficiency. Secondly, the adsorption efficiency of sorbents in aqueous solution with increasing endotoxin concentrations (2,450 – 51,700 EU/mL) was investigated. Organoclay 1 (0.1%) showed a good binding efficiency in aqueous solution (average 81%), whereas Bentonite 1 (0.1%) obtained a lower binding efficiency (21-54%). The following absorbent capacities were calculated in highest endotoxin concentration: 5.59 mg/g (Organoclay 1) > 3.97 mg/g (Polymyxin B) > 2.58mg/g (Organoclay 2) > 1.55 mg/g (Bentonite 1) > 1.23 mg/g (Bentonite 2). Thirdly, a sorption experiment in artificial intestinal fluid was conducted. Especially for organoclays, which are known to be unspecific adsorbents, the endotoxin binding capacity was significantly reduced. In contrast, Bentonite 1 showed comparable results in artificial intestinal fluid and aqueous solution. Based on the results of this in vitro study, the effect of promising clay minerals will be investigated in in vivo trials. PMID:24383578

  9. Highly Active Ice Nuclei from Tree Leaf Litters Retain Activity for Decades

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Hill, T. C. J.

    2015-12-01

    Biogenic ice nuclei (IN) studied since the 1960s were first observed in tree leaf litters, in a few bacteria species and later in fungi and lichens. Recently, viable IN bacteria in precipitation have been used as a metric of their possible role in precipitation formation. Although bacterial IN activity is deactivated by a variety of common environmental stresses, we present data showing that IN found in a potpourri of decayed plant leaves, bacteria, molds and fungi etc. in plant litters are exceptionally stable and active over decades while in storage. As such, their atmospheric IN potential is worthy of further study due to their environmental persistence. In August 1970 litter collected in a grove of deciduous trees near Red Deer, AB, Canada was tested for IN (drop freezing technique). The sample initiated ice at -4C with 109 IN per gram of litter active at -10C. A few kilograms were stored in a plastic bag and tested every few years for IN content; the IN activity remained essentially unchanged over 40 years. In 2011, litter collected in the same grove had the same IN activity as the sample tested over the intervening 40 years. Boiling a gram sample of this litter in 100 grams of water deactivated 99 % of the IN activity down to -13C. None of 88 different bacteria cultures several of which appeared to Pseudomonads (common IN producing bacteria) from the fresh litter produced any active IN. A sample of the litter was placed on the top of a 15 cm column of laboratory grade kaolin and water dripped onto the litter. Ten days later the water reached the bottom of the column. The kaolin was dried and tested for IN. The prior essentially IN free kaolin now exhibited IN activity at -4C with 105 IN active at -10C. The litter exposed kaolin retained the IN activity for 25 years. Baking the kaolin removed the active IN. This suggests that IN activity attributed to kaolin particles sometimes seen at the nucleus of snow crystals could be of biological origin.

  10. Development and characterization of clay facial mask containing turmeric extract solid dispersion.

    PubMed

    Pan-On, Suchiwa; Rujivipat, Soravoot; Ounaroon, Anan; Tiyaboonchai, Waree

    2018-04-01

    To develop clay facial mask containing turmeric extract solid dispersion (TESD) for enhancing curcumin water solubility and permeability and to determine suitable clay based facial mask. The TESD were prepared by solvent and melting solvent method with various TE to polyvinylpyrrolidone (PVP) K30 mass ratios. The physicochemical properties, water solubility, and permeability were examined. The effects of clay types on physical stability of TESD, water adsorption, and curcumin adsorption capacity were evaluated. The TESD prepared by solvent method with a TE to PVP K30 mass ratio of 1:2 showed physically stable, dry powders, when mixed with clay. When TESD was dissolved in water, the obtained TESD micelles showed spherical shape with mean size of ∼100 nm resulting in a substantial enhancement of curcumin water solubility, ∼5 mg/ml. Bentonite (Bent) and mica (M) showed the highest water adsorption capacity. The TESD's color was altered when mixed with Bent, titanium dioxide (TiO 2 ) and zinc oxide (ZnO) indicating curcumin instability. Talcum (Talc) showed the greatest curcumin adsorption followed by M and kaolin (K), respectively. Consequently, in vitro permeation studies of the TESD mixed with Talc showed lowest curcumin permeation, while TESD mixed with M or K showed similar permeation profile as free TESD solutions. The developed TESD-based clay facial mask showed lower curcumin permeation as compared to those formulations with Tween 80. The water solubility and permeability of curcumin in clay based facial mask could be improved using solid dispersion technique and suitable clay base composed of K, M, and Talc.

  11. Use of vertical temperature gradients for prediction of tidal flat sediment characteristics

    USGS Publications Warehouse

    Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei

    2012-01-01

    Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.

  12. Fate of nano- and microplastic in freshwater systems: A modeling study.

    PubMed

    Besseling, Ellen; Quik, Joris T K; Sun, Muzhi; Koelmans, Albert A

    2017-01-01

    Riverine transport to the marine environment is an important pathway for microplastic. However, information on fate and transport of nano- and microplastic in freshwater systems is lacking. Here we present scenario studies on the fate and transport of nano-to millimetre sized spherical particles like microbeads (100 nm-10 mm) with a state of the art spatiotemporally resolved hydrological model. The model accounts for advective transport, homo- and heteroaggregation, sedimentation-resuspension, polymer degradation, presence of biofilm and burial. Literature data were used to parameterize the model and additionally the attachment efficiency for heteroaggregation was determined experimentally. The attachment efficiency ranged from 0.004 to 0.2 for 70 nm and 1050 nm polystyrene particles aggregating with kaolin or bentonite clays in natural freshwater. Modeled effects of polymer density (1-1.5 kg/L) and biofilm formation were not large, due to the fact that variations in polymer density are largely overwhelmed by excess mass of suspended solids that form heteroaggregates with microplastic. Particle size had a dramatic effect on the modeled fate and retention of microplastic and on the positioning of the accumulation hot spots in the sediment along the river. Remarkably, retention was lowest (18-25%) for intermediate sized particles of about 5 μm, which implies that the smaller submicron particles as well as larger micro- and millimetre sized plastic are preferentially retained. Our results suggest that river hydrodynamics affect microplastic size distributions with profound implications for emissions to marine systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The effect of sintering time on recycled magnesia brick from kiln of the cement plant

    NASA Astrophysics Data System (ADS)

    Aji, B. B.; Rosalina, D.; Azhar; Amin, M.

    2018-01-01

    This research aim was to investigate the effect of sintering time on reuse waste of magnesia brick from the rotary kiln of the cement plant. Reuse of the magnesia brick was carried out by mixed the kaolin as the binder. Spent refractory was used as aggregate with the composition of 85% spent refractory and 15% kaolin clay, respectively. The reuse brick then was molded with the size of 5x5x5 cm using hydraulic press under a load of 10 tons in order to forms green body. Green body then dried and sintered at 1200 °C with time variation of 2 hours, 4 hours, 6 hours, 8 hours and 10 hours, respectively. Thus, for comparison reuse brick was tested to its apparent porosity, the bulk density, and Cold Crushing Strength (CCS). The effect of kaolin addition as binder was also discussed.

  14. Influence of heteroaggregation processes between intrinsic colloids and carrier colloids on cerium(III) mobility through fractured carbonate rocks.

    PubMed

    Tran, Emily; Klein Ben-David, Ofra; Teutch, Nadya; Weisbrod, Noam

    2016-09-01

    Colloid facilitated transport of radionuclides has been implicated as a major transport vector for leaked nuclear waste in the subsurface. Sorption of radionuclides onto mobile carrier colloids such as bentonite and humic acid often accelerates their transport through saturated rock fractures. Here, we employ column studies to investigate the impact of intrinsic, bentonite and humic acid colloids on the transport and recovery of Ce(III) through a fractured chalk core. Ce(III) recovery where either bentonite or humic colloids were added was 7.7-26.9% Ce for all experiments. Greater Ce(III) recovery was observed when both types of carrier colloids were present (25.4-37.4%). When only bentonite colloids were present, Ce(III) appeared to be fractionated between chemical sorption to the bentonite colloid surfaces and heteroaggregation of bentonite colloids with intrinsic carbonate colloids, precipitated naturally in solution. However, scanning electron microscope (SEM) images and colloid stability experiments reveal that in suspensions of humic acid colloids, colloid-facilitated Ce(III) migration results only from the latter attachment mechanism rather than from chemical sorption. This observed heteroaggregation of different colloid types may be an important factor to consider when predicting potential mobility of leaked radionuclides from geological repositories for spent fuel located in carbonate rocks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M.A.; Khan, S.A.

    Sorption studies of cesium, strontium, and cobalt (Cs, Sr, and Co) on bentonite under various experimental conditions, such as contact time, pH, sorbent and sorbate concentration, and temperature, have been performed. The sorption data for all these metals have been interpreted in terms of Freundlich, Langmuir, and Dubinin-Radushkevich equations. Thermodynamics parameters, such as heat of sorption {Delta}H{degrees}, free energy change {Delta}G{degrees}, and entropy change {Delta}S{degrees}, for the sorption of these metals on bentonite have been calculated. The value of {Delta}H{degrees} shows that the sorption of Cs was exothermic, while the sorption of Sr and Co on bentonite were endothermic inmore » nature. The value of {Delta}G{degrees} for their sorption was negative, showing the spontaneity of the process. The maximum loading capacity of Cs, Sr, and Co were 75.5, 22, and 27.5 meq, respectively, for 100 g of bentonite. The mean free energy E of Cs, Sr, and Co sorption on bentonite was 14.5, 9, and 7.7 kJ/mol, respectively. The value of E indicates that ion exchange may be the predominant mode of sorption for these radionuclides. The desorption studies with 0.01 M CaCl{sub 2} and groundwater at low-metal loading on bentonite showed that about 95% of Cs, 85-90% of Sr, and 97% of Co were irreversibly sorbed. Bentonite could be effectively used for the decontamination of wastewater effluent containing low concentrations of radioactive nuclides of Cs, Sr, and Co. 16 refs., 7 figs., 3 tabs.« less

  16. K-Ar dating and delta O-18-delta D characterization of nanometric illite from Ordovician K-bentonites of the Appalachians: illitization and the Acadian-Alleghenian tectonic activity

    USGS Publications Warehouse

    Clauer, Norbert; Fallick, Anthony E.; Eberl, Dennis D.; Honty, Miroslav; Huff, Warren D.; Auberti, Amelie

    2013-01-01

    Nanometric (2 diagram that illitization occurred in all fractions by simultaneous nucleation and crystal growth, except for one sample. In that sample, a period of growth without nucleation was detected on top of the nucleation and growth episode. The K-Ar ages organize into two isochrons, the first at 319.9 ± 2.0 Ma with an initial 40Ar/36Ar ratio of 271 ± 66 Ma, and the second at 284.9 ± 1.2 Ma with an initial 40Ar/36Ar ratio of 310 ± 44. One data point above the older isochron and three between the two isochrons suggest a detrital contamination for the former separate and a possible further generation of nanoparticles for the three others. The samples with the older crystallization age consist of illite and illite-rich mixed-layers, and those with the younger age contain smectite-rich mixed-layers without illite, or illite-enriched illite-smectite mixed-layers. The K-Ar ages fit the age trends published previously for similar K-bentonites with regional age patterns between 240 and 270 Ma in the southwestern region, between 270 and 300 Ma in the central zone and the southern Appalachians, and between 315 and 370 Ma in the northernmost. Each of the two generations of illite crystals yields very consistent δ18O (V-SMOW) values at 17 ± 1‰ for the older and at 21 ± 1‰ for the younger. If crystallization temperatures of the nanometric illite were between 100 and 200 °C, as suggested by microthermometric determinations, the hydrothermal fluids had δ18O values of 4 ± 1‰ in the Dalton district and of 8 ± 1‰ in the Lafayette, Trenton, and Dirtseller districts at 100 °C, and of 11 ± 1 and 15 ± 1‰ in the same locations at 200 °C, probably because the water-rock isotope exchanges at elevated temperature occurred in rock-dominated systems. The δ18O of the fluids remained unchanged during local crystal growth, but varied depending on the geographic location of the samples and timing of illitization. The δD (V-SMOW) values of the different size

  17. Oil biodegradation: Interactions of artificial marine snow, clay particles, oil and Corexit.

    PubMed

    Rahsepar, Shokouh; Langenhoff, Alette A M; Smit, Martijn P J; van Eenennaam, Justine S; Murk, Albertinka J; Rijnaarts, Huub H M

    2017-12-15

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study is to explore the effect of these interactions on biodegradation of oil in the water. Laboratory experiments were performed, analyzing respiration and n-alkane and BTEX biodegradation in multiple conditions containing Corexit, alginate particles as marine snow, and kaolin clay. Two oil degrading bacterial pure cultures were added, Pseudomonas putida F1 and Rhodococcus qingshengii TUHH-12. Results show that the presence of alginate particles enhances oil biodegradation. The presence of Corexit alone or in combination with alginate particles and/or kaolin clay, hampers oil biodegradation. Kaolin clay and Corexit have a synergistic effect in increasing BTEX concentrations in the water and cause delay in oil biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Influence of nano-material on the expansive and shrinkage soil behavior

    NASA Astrophysics Data System (ADS)

    Taha, Mohd Raihan; Taha, Omer Muhie Eldeen

    2012-10-01

    This paper presents an experimental study performed on four types of soils mixed with three types of nano-material of different percentages. The expansion and shrinkage tests were conducted to investigate the effect of three type of nano-materials (nano-clay, nano-alumina, and nano-copper) additive on repressing strains in compacted residual soil mixed with different ratios of bentonite (S1 = 0 % bentonite, S2 = 5 % bentonite, S3 = 10 % bentonite, and S4 = 20 % bentonite). The soil specimens were compacted under the condition of maximum dry unit weight and optimum water content ( w opt) using standard compaction test. The physical and mechanical results of the treated samples were determined. The untreated soil values were used as control points for comparison purposes. It was found that with the addition of optimum percentage of nano-material, both the swell strain and shrinkage strain reduced. The results show that nano-material decreases the development of desiccation cracks on the surface of compacted samples without decrease in the hydraulic conductivity.

  19. Deflocculation of clay suspensions using sodium polyacrylates

    NASA Technical Reports Server (NTRS)

    Jedlicka, P.

    1984-01-01

    Rheological properties of elutriated kaolin suspensions deflocculated by Na polyacrylate (DAC 3 and DAC 4) were studied and compared to those deflocculated by the conventional Na2CO3 water and glass and imported Dispex N40. The deflocculating effect of Na polyacrylate was comparable to that of Dispex N40. The optimum amounts of Na polyacrylate were determined for suspensions based on 5-type kaolin. The Na polyacrylate can be successfully used for decreasing the water content of ceramic slips for casting and spray drying.

  20. Long-term geochemical evolution of the near field repository: Insights from reactive transport modelling and experimental evidences

    NASA Astrophysics Data System (ADS)

    Arcos, David; Grandia, Fidel; Domènech, Cristina; Fernández, Ana M.; Villar, María V.; Muurinen, Arto; Carlsson, Torbjörn; Sellin, Patrik; Hernán, Pedro

    2008-12-01

    The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept. In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral

  1. Long-term geochemical evolution of the near field repository: insights from reactive transport modelling and experimental evidences.

    PubMed

    Arcos, David; Grandia, Fidel; Domènech, Cristina; Fernández, Ana M; Villar, María V; Muurinen, Arto; Carlsson, Torbjörn; Sellin, Patrik; Hernán, Pedro

    2008-12-12

    The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept. In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral

  2. Efficacy of adsorbents (bentonite and diatomaceous earth) and turmeric (Curcuma longa) in alleviating the toxic effects of aflatoxin in chicks.

    PubMed

    Dos Anjos, F R; Ledoux, D R; Rottinghaus, G E; Chimonyo, M

    2015-01-01

    A study was conducted to determine the efficacy of bentonite clay (BC), diatomaceous earth (DE) and turmeric powder (TUM) in alleviating the toxic effects of aflatoxin B1 (AFB1). A total of 250 Ross-308 d-old male broiler chicks were assigned to 10 dietary treatments (5 replicates of 5 chicks) from hatch to d 21. Dietary treatments were: basal diet; basal diet plus AFB1 (2 mg) or BC (0.75%), or DE (0.75%), or TUM (200 mg/kg curcuminoids) and different combinations of AFB1, BC, DE and TUM. Feed intake (FI), body weight gain (BWG) and feed gain (FG) of the birds fed on BC or DE separately were not different from control birds. Birds fed on TUM only had similar FI and FG but lower BWG than control chicks. Aflatoxin B1 reduced FI, BWG and serum concentrations of glucose, albumin, total protein calcium, but increased FG and relative liver and kidney weights. Chicks fed on the combination of AFB1 and BC had similar FI and FG to control chicks. Chicks fed on the combination of DE and AFB1 had lower FI (23.1%) and BWG (28.6%) compared with control chicks. Chicks fed on the combination of TUM and AFB1 also had decreased FI (26.2 %) and BWG (31%) compared with control chicks. Chicks fed on the combination of AFB1, BC and TUM consumed significantly higher amounts of feed compared with chicks fed on only AF, but gained less when compared with control diet chicks. Chicks fed on the combination of AFB1, DE and TUM diet had poorer growth performance than those fed on AFB1 alone. None of the combination diets reduced the severity of liver lesions.

  3. Effects of combined lime and fly ash stabilization on the elastic moduli of montmorillonitic soils : final report.

    DOT National Transportation Integrated Search

    1988-04-01

    A laboratory study using bentonite to simulate the montmorillonite component of soils common to Louisiana was undertaken to evaluate the effects of combined lime and fly ash additions on stabilization reactions. Samples containing bentonite (75 weigh...

  4. Rapid Assessment of Remedial Effectiveness and Rebound in Fractured Bedrock

    DTIC Science & Technology

    2017-10-01

    Permanent 5-inch diameter steel casing was then installed to a depth of 58.3 ft-bgs, and pressure-grouted in place using cement /bentonite grout. Once the...collected from 64 feet to 78 feet bgs. A 2-inch stainless steel well, screened from 64 to 74 feet bgs, was installed within the borehole. A filter pack was...installed from 63.5 ft to 74.5 ft bgs, and the remainder of the borehole was sealed with a bentonite seal and cement /bentonite grout. Therefore

  5. 40 CFR 264.314 - Special requirements for bulk and containerized liquids.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., smectites, Fuller's earth, bentonite, calcium bentonite, montmorillonite, calcined montmorillonite.../hydroxides, alumina, lime, silica (sand), diatomaceous earth; perlite (volcanic glass); expanded volcanic... contain, hazardous waste; and (2) Placement in such owner or operator's landfill will not present a risk...

  6. 40 CFR 264.314 - Special requirements for bulk and containerized liquids.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., smectites, Fuller's earth, bentonite, calcium bentonite, montmorillonite, calcined montmorillonite.../hydroxides, alumina, lime, silica (sand), diatomaceous earth; perlite (volcanic glass); expanded volcanic... contain, hazardous waste; and (2) Placement in such owner or operator's landfill will not present a risk...

  7. 40 CFR 264.314 - Special requirements for bulk and containerized liquids.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., smectites, Fuller's earth, bentonite, calcium bentonite, montmorillonite, calcined montmorillonite.../hydroxides, alumina, lime, silica (sand), diatomaceous earth; perlite (volcanic glass); expanded volcanic... contain, hazardous waste; and (2) Placement in such owner or operator's landfill will not present a risk...

  8. 40 CFR 265.314 - Special requirements for bulk and containerized liquids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon (e.g., aluminosilicates, clays, smectites, Fuller's earth, bentonite, calcium bentonite... charcoal/activated carbon); or (ii) High molecular weight synthetic polymers (e.g., polyethylene, high..., polyisobutylene, ground synthetic rubber, cross-linked allylstyrene and tertiary butyl copolymers). This does not...

  9. Establishing ecological reference conditions and tracking post-application effectiveness of lanthanum-saturated bentonite clay (Phoslock®) for reducing phosphorus in aquatic systems: an applied paleolimnological approach.

    PubMed

    Moos, M T; Taffs, K H; Longstaff, B J; Ginn, B K

    2014-08-01

    Innovative management strategies for nutrient enrichment of freshwater are important in the face of this increasing global problem, however many strategies are not assessed over long enough time periods to establish effectiveness. Paleolimnological techniques using diatoms as biological indicators were utilized to establish ecological reference conditions, environmental variation, and the effectiveness of lanthanum-saturated bentonite clay (brand name: Phoslock(®)) applied to reduce water column phosphorus (P) concentrations in four waterbodies in Ontario, Canada, and eastern Australia. In sediment cores from the two Canadian sites, there were short-lived changes to diatom assemblages, relative to inferred background conditions, and a temporary reduction in both measured and diatom-inferred total phosphorus (TP) before returning to pre-application conditions (particularly in the urban stormwater management pond which has a high flushing rate and responds rapidly to precipitation and surface run-off). The two Australian sites (a sewage treatment pond and a shallow recreational lake), recorded no reduction in diatom-inferred TP. Based on our pre-application environmental reconstruction, changes to the diatom assemblages and diatom-inferred TP appeared to be driven by larger, climatic factors. While laboratory tests involving this product showed sharp reductions in water column TP, management strategies require detailed information on pre-application environmental conditions and variations in order to accurately assess the effectiveness of new technologies for lake management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Textile dye degradation using nano zero valent iron: A review.

    PubMed

    Raman, Chandra Devi; Kanmani, S

    2016-07-15

    Water soluble unfixed dyes and inorganic salts are the major pollutants in textile dyeing industry wastewater. Existing treatment methods fail to degrade textile dyes and have limitations too. The inadequate treatment of textile dyeing wastewater is a major concern when effluent is directly discharged into the nearby environment. Long term disposal threatens the environment, which needs reclamation. This article reviews the current knowledge of nano zero valent iron (nZVI) technique in the degradation of textile dyes. The application of nZVI on textile dye degradation is receiving great attention in the recent years because nZVI particles are highly reactive towards the pollutant, less toxic, and economical. The nZVI particles aggregate quickly with respect to time and the addition of supports such as resin, nickel, zinc, bentonite, biopolymer, kaolin, rectorite, nickel-montmorillonite, bamboo, cellulose, biochar, graphene, and clinoptilolite enhanced the stability of iron nanoparticles. Inclusion of supports may in turn introduce additional toxic pollutants, hence green supports are recommended. The majority of investigations concluded dye color removal as textile dye compound removal, which is not factual. Very few studies monitored the removal of total organic carbon and observed the products formed. The results revealed that partial mineralization of the textile dye compound was achieved. Instead of stand alone technique, nZVI can be integrated with other suitable technique to achieve complete degradation of textile dye and also to treat multiple pollutants in the real textile dyeing wastewater. It is highly recommended to perform more bench-scale and pilot-scale studies to apply this technique to the textile effluent contaminated sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Emerging integrated nanoclay-facilitated drug delivery system for papillary thyroid cancer therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Long, Mei; Huang, Peng; Yang, Huaming; Chang, Shi; Hu, Yuehua; Tang, Aidong; Mao, Linfeng

    2016-09-01

    Nanoclay can be incorporated into emerging dual functional drug delivery systems (DDSs) to promote efficiency in drug delivery and reduce the toxicity of doxorubicin (DOX) used for thyroid cancer treatment. This paper reports the expansion of the basal spacing of kaolinite nanoclay was expanded from 0.72 nm to 0.85 nm, which could provide sufficiently spacious site for hosting doxorubicin molecules and controlling the diffusion rate. A targeted design for papillary thyroid cancer cells was achieved by introducing KI, which is consumed by the sodium-iodide symporter (NIS). As indicated by MTT assays, confocal laser scanning microscopy and bio-TEM observations, methoxy-intercalated kaolinite (KaolinMeOH) exhibited negligible cytotoxicity against papillary thyroid cancer cells. By contrast, DOX-KaolinMeOH showed dose-dependent therapeutic effects in vitro, and KI@DOX-KaolinMeOH was found to act as a powerful targeted therapeutic drug. Furthermore, active and passive targeting strategies played a role in the accumulation of the drug molecules, as verified by an in vivo bio-distribution analysis.

  12. Heterogeneous precipitation of silver nanoparticles on kaolinite plates

    NASA Astrophysics Data System (ADS)

    Cabal, B.; Torrecillas, R.; Malpartida, F.; Moya, J. S.

    2010-11-01

    Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.

  13. Thermal expansion of ceramic samples containing natural zeolite

    NASA Astrophysics Data System (ADS)

    Sunitrová, Ivana; Trník, Anton

    2017-07-01

    In this study the thermal expansion of ceramic samples made from natural zeolite is investigated. Samples are prepared from the two most commonly used materials in ceramic industry (kaolin and illite). The first material is Sedlec kaolin from Czech Republic, which contains more than 90 mass% of mineral kaolinite. The second one is an illitic clay from Tokaj area in Hungary, which contains about 80 mass% of mineral illite. Varying amount of the clay (0 % - 50 %) by a natural zeolite from Nižný Hrabovec (Slovak Republic), containing clinoptilolite as major mineral phase is replaced. The measurements are performed on cylindrical samples with a diameter 14 mm and a length about 35 mm by a horizontal push - rod dilatometer. Samples made from pure kaolin, illite and zeolite are also subjected to this analysis. The temperature regime consists from linear heating rate of 5 °C/min from 30 °C to 1100 °C. The results show that the relative shrinkage of ceramic samples increases with amount of zeolite in samples.

  14. The viscous to brittle transition in eruptions of clay suspensions

    NASA Astrophysics Data System (ADS)

    Schmid, Diana; Scheu, Bettina; Wadsworth, Fabian B.; Kennedy, Ben; Jolly, Art; Dingwell, Donald B.

    2017-04-01

    The research is motivated by the early 2013 activity of White Island, New Zealand, which was characterized by frequent small phreatic activity through a fine grained mud rich shallow crater lake. Field observations demonstrate that the small eruptions were driven by bubble-burst events. Additionally, during the ongoing eruption, water vigorously evaporated, causing a shift in rheology of the crater lake liquid-solid suspension. Yet, the effect of water content on the eruptive behaviour of clay-bearing liquid suspensions is poorly understood. Here we investigate the influence of the solid to water ratio of the clay material erupted on the eruption characteristics. Kaolin was used as an analogue for the clay and was mixed with water in different proportions. We conducted experiments with different kaolin/water mixtures held at 120°C, in which they were decompressed from 2-4 bars to ambient conditions in a few milliseconds. During an experimental eruption, the velocity of the ejected material decreased, resulting in shifts in behaviour. Based on our experimental observations we established five different regimes that depend on the particle velocity relative to the gas velocity, and on the kaolin to water ratio of the mixture. In all experiments and for all kaolin to water ratios, regime 1 is one in which particles are ejected rapidly in an expanding high velocity gas jet. In the liquid-dominated system (low kaolin to water ratios), the jet phase evolves to the ejection of elongate fluidal structures (regime 2) and then to discrete droplets (regime 3) as the ejection velocity wanes. Contrastingly, in the solid-dominated system, the jet phase (regime 1) transitions to a mixed solid-fluid structures (regime 4) and then to individual angular ejecta (regime 5). On the basis of high speed image analysis, we establish a phase diagram separating these regimes based on kaolin/water mixing rations and the ejecta velocities observed. The dominant transition between fluidal and

  15. Impact of particulate sediment, bentonite and barite (oil-drilling waste) on net fluxes of oxygen and nitrogen in Arctic-boreal sponges.

    PubMed

    Fang, James K H; Rooks, Christine A; Krogness, Cathinka M; Kutti, Tina; Hoffmann, Friederike; Bannister, Raymond J

    2018-07-01

    To meet the increasing global energy demand, expanding exploration for oil and gas reserves as well as associated drilling activities are expected in the Arctic-boreal region where sponge aggregations contribute to up to 90% of benthic biomass. These deep-water sponges along with their microbial endobionts play key roles in the nitrogen cycling in Arctic-boreal ecosystems. This study aimed to investigate the effects of drilling discharges and associated sediment resuspension events on net fluxes of oxygen, ammonium, nitrate and nitrite in three common deep-water sponge species in the form of explants. Sponges were exposed to suspended bentonite and barite, the primary particulate compounds in drilling waste, as well as suspended natural sediment particles for a period of 33 days (on average 10 mg L -1 for 12 h day -1 ). The exposure period was followed by a pollution abatement period for a further 33 days. No sponge mortality was observed during the experiment. However, exposure to these particles, especially to barite, led to reduced oxygen consumption by up to 33% that was linearly correlated with reduced nitrite/nitrate release by the sponges. The changes in net fluxes were accompanied by decreased tissue oxygenation by up to 54% within the sponges. These findings reveal the effects of fine particles on sponge metabolic processes by reducing aerobic respiration and microbial nitrification, and possibly by favouring anaerobic processes such as microbial denitrification. Most of the sponge responses recovered to their control levels upon the pollution abatement period, but the effects caused by barite may not be reversible. Our findings provide the first insight into the ecological consequences of oil and gas drilling activities on sponge-mediated nitrogen cycling in the Arctic-boreal region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Used Fuel Disposal in Crystalline Rocks. FY15 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng

    2015-08-20

    The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. Chapter headings are as follows: Fuel matrix degradation model and its integration with performance assessments, Investigation of thermal effects on the chemical behavior of clays, Investigation of uranium diffusion and retardation in bentonite, Long-term diffusion of U(VI) in bentonite: dependence on density, Sorption and desorption of plutonium by bentonite, Dissolution of plutonium intrinsic colloids in the presence of clay and asmore » a function of temperature, Laboratory investigation of colloid-facilitated transport of cesium by bentonite colloids in a crystalline rock system, Development and demonstration of discrete fracture network model, Fracture continuum model and its comparison with discrete fracture network model.« less

  17. DECOVALEX-THMC Task D: Long-Term Permeability/Porosity Changes inthe EDZ and Near Field due to THM and THC Processes in Volcanic andCrystaline-Bentonite Systems, Status Report October 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, J.; Rutqvist, J.; Sonnenthal, E.

    The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The name DECOVALEXstands for DEvelopment of COupled models and their VALidation againstExperiments. The general goal of this project is to encouragemultidisciplinary interactive and cooperative research on modelingcoupled processes in geologic formations in support of the performanceassessment for underground storage of radioactive waste. Three multi-yearproject stages of DECOVALEX have been completed in the past decade,mainly focusing on coupled thermal-hydrological-mechanicalprocesses.Currently, a fourth three-year project stage of DECOVALEX isunder way, referred to as DECOVALEX-THMC. THMC stands for Thermal,Hydrological, Mechanical, and Chemical processes.more » The new project stageaims at expanding the traditional geomechanical scope of the previousDECOVALEX project stages by incorporating geochemical processes importantfor repository performance. The U.S. Department of Energy (DOE) leadsTask D of the new DECOVALEX phase, entitled "Long-termPermeability/Porosity Changes in the EDZ and Near Field due to THC andTHM Processes for Volcanic and Crystalline-Bentonite Systems." In itsleadership role for Task D, DOE coordinates and sets the direction forthe cooperative research activities of the international research teamsengaged in Task D.« less

  18. Effect of Solid to Liquid Ratio on Heavy Metal Removal by Geopolymer-Based Adsorbent

    NASA Astrophysics Data System (ADS)

    Ariffin, N.; Abdullah, M. M. A. B.; Arif Zainol, M. R. R. Mohd; Baltatu, M. S.; Jamaludin, L.

    2018-06-01

    Microstructure of three-dimensional aluminosilicate which similar to zeolite cause geopolymer based adsorbent accepted in the treatment of wastewater. This paper presents an investigation on the copper removal from the wastewater by varying the solid to liquid ratio in the fly ash, kaolin and sludge-based geopolymer adsorbent. The adsorption test was conducted to study the efficiency of the adsorbent and the copper concentration was examined by using Atomic Adsorption Spectrometry (AAS). The optimum solid to liquid ratio with the highest percentage removal were 1.0, 0.5 and 0.8 for fly ash-based geopolymer, kaolin-based geopolymer and sludge-based geopolymer adsorbent.

  19. Intrinsic and Carrier Colloid-facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Tran, E. L.; Klein-BenDavid, O.; Teutsch, N.

    2015-12-01

    Geological disposal of high-level radioactive waste is the long term solution for the disposal of long lived radionuclides and spent fuel. However, some radionuclides might be released from these repositories into the subsurface as a result of leakage, which ultimately make their way into groundwater. Engineered bentonite barriers around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their source to the groundwater. However, colloidal-sized mobile bentonite particles ("carrier" colloids) originating from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. As lanthanides are generally accepted to have the same chemical behaviors as their more toxic actinide counterparts, lanthanides are considered an acceptable substitute for research on radionuclide transportation. This study aims to evaluate the transport behaviors of lanthanides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative the Negev desert, Israel. The migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide) using a flow system constructed around a naturally fractured chalk core. Results suggest that mobility of Ce as a solute is negligible. In experiments conducted without bentonite colloids, the 1% of the Ce that was recovered migrated as "intrinsic" colloids in the form of carbonate precipitates. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and precipitate colloids were injected. This indicates that lanthanides are essentially immobile in chalk as a solute but may be mobile as carbonate precipitates. Bentonite colloids, however, markedly increase the mobility of lanthanides through fractured chalk matrices.

  20. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  1. Physicochemical of pillared clays prepared by several metal oxides

    NASA Astrophysics Data System (ADS)

    Rinaldi, Nino; Kristiani, Anis

    2017-03-01

    Natural clays could be modified by the pillarization method, called as Pillared Clays (PILCs). PILCs have been known as porous materials that can be used for many applications, one of the fields is catalysis. PILCs as two dimensional materials are interesting because their structures and textural properties can be controlled by using a metal oxide as the pillar. Different metal oxide used as the pillar causes different properties results of pillared clays. Usually, natural smectite clays/bentonites are used as a raw material. Therefore, a series of bentonite pillared by metal oxides was prepared through pillarization method. Variation of metals pillared into bentonite are aluminium, chromium, zirconium, and ferro. The physicochemical properties of catalysts were characterized by using X-ray Diffraction (XRD), Thermo Gravimetric Analysis (TGA), Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) analysis, and Fourier transform infrared spectroscopy (FTIR) measurement. Noteworthy characterization results showed that different metals pillared into bentonite affected physical and chemical properties, i.e. basal spacing, surface area, pore size distribution, thermal stability and acidity.

  2. Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis.

    PubMed

    Dai, Leilei; Fan, Liangliang; Liu, Yuhuan; Ruan, Roger; Wang, Yunpu; Zhou, Yue; Zhao, Yunfeng; Yu, Zhenting

    2017-02-01

    In this study, production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis combining the advantages of in-situ and ex-situ catalysis was performed. The effects of catalyst and pyrolysis temperature on product fractional yields and bio-oil chemical compositions were investigated. From the perspective of bio-oil yield, the optimal pyrolysis temperature was 550°C. The use of catalysts reduced the water content, and the addition of bentonite increased the bio-oil yield. Up to 84.16wt.% selectivity of hydrocarbons in the bio-oil was obtained in the co-catalytic process. In addition, the co-catalytic process can reduce the proportion of oxygenates in the bio-oil to 15.84wt.% and eliminate the N-containing compounds completely. The addition of bentonite enhanced the BET surface area of bio-char. In addition, the bio-char removal efficiency of Cd 2+ from soapstock pyrolysis in presence of bentonite was 27.4wt.% higher than without bentonite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia magna

    PubMed Central

    Schür, Christoph; Jarsén, Åsa; Gorokhova, Elena

    2016-01-01

    Concerns are being raised that microplastic pollution can have detrimental effects on the feeding of aquatic invertebrates, including zooplankton. Both small plastic fragments (microplastics, MPs) produced by degradation of larger plastic waste (secondary MPs; SMPs) and microscopic plastic spheres used in cosmetic products and industry (primary MPs; PMPs) are ubiquitously present in the environment. However, despite the fact that most environmental MPs consist of weathered plastic debris with irregular shape and broad size distribution, experimental studies of organism responses to MP exposure have largely used uniformly sized spherical PMPs. Therefore, effects observed for PMPs in such experiments may not be representative for MP-effects in situ. Moreover, invertebrate filter-feeders are generally well adapted to the presence of refractory material in seston, which questions the potential of MPs at environmentally relevant concentrations to measurably affect digestion in these organisms. Here, we compared responses to MPs (PMPs and SMPs) and naturally occurring particles (kaolin clay) using the cladoceran Daphnia magna as a model organism. We manipulated food levels (0.4 and 9 μg C mL-1) and MP or kaolin contribution to the feeding suspension (<1 to 74%) and evaluated effects of MPs and kaolin on food uptake, growth, reproductive capacity of the daphnids, and maternal effects on offspring survival and feeding. Exposure to SMPs caused elevated mortality, increased inter-brood period and decreased reproduction albeit only at high MP levels in the feeding suspension (74% by particle count). No such effects were observed in either PMP or kaolin treatments. In daphnids exposed to any particle type at the low algal concentration, individual growth decreased by ~15%. By contrast, positive growth response to all particle types was observed at the high algal concentration with 17%, 54% and 40% increase for kaolin, PMP and SMP, respectively. When test particles comprised

  4. Environmental Assessment of Selected Cone Penetrometer Grouts and a Tracer

    DTIC Science & Technology

    1993-08-01

    Bentonite Clay ............ ...................... A2 Attapulgite Clay ................................... A22 Microfine Portland Cement...and the tracer are a. Bentonite clay. b. Attapulgite clay. c. Microfine portland cement. d. Joosten grout (calcium silicate grout). e. Urethane grout. f...Inc., on an attapulgite clay product (trade name: Zeogel). " Microfine portland cement. Information was obtained for two micro- fine portland cements

  5. Mycobacterium abscessus Displays Fitness for Fomite Transmission

    PubMed Central

    Caceres, Silvia M.; Honda, Jennifer R.; Davidson, Rebecca M.; Epperson, L. Elaine; Strong, Michael; Chan, Edward D.; Nick, Jerry A.

    2017-01-01

    ABSTRACT Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium (NTM) increasingly reported in soft tissue infections and chronic lung diseases, including cystic fibrosis. The environmental source of M. abscessus has not been definitively identified, but NTM have been detected in soil and water. To determine the potential of soil-derived M. abscessus as an infectious source, we explored the association, growth, and survival of M. abscessus with defined mineral particulates, including kaolin, halloysite, and silicone dioxide, and house dust as possible M. abscessus fomites. M. abscessus physically associated with particulates, and the growth of M. abscessus was enhanced in the presence of both kaolin and house dust. M. abscessus survived desiccation for 2 weeks but was not viable after 3 weeks. The rate of decline of M. abscessus viability during desiccation was reduced in the presence of house dust. The evidence for enhanced growth and survival of M. abscessus during alternating growth and drying periods suggests that dissemination could occur when in wet or dry environments. These studies are important to understand environmental survival and acquisition of NTM. IMPORTANCE The environmental source of pulmonary Mycobacterium abscessus infections is not known. Fomites are nonliving carriers of infectious agents and may contribute to acquisition of M. abscessus. This study provides evidence that M. abscessus growth is enhanced in the presence of particulates, using kaolin, an abundant natural clay mineral, and house dust as experimental fomites. Moreover, M. abscessus survived desiccation for up to 2 weeks in the presence of house dust, kaolin, and several chemically defined mineral particulates; mycobacterial viability during extended periods of dessication was enhanced by the presence of house dust. The growth characteristics of M. abscessus with particulates suggest that a fomite mechanism of transmission may contribute to M. abscessus

  6. Development of formulations of biological agents for management of root rot of lettuce and cucumber.

    PubMed

    Amer, G A; Utkhede, R S

    2000-09-01

    The effect of various carrier formulations of Bacillus subtilis and Pseudomonas putida were tested on germination, growth, and yield of lettuce and cucumber crops in the presence of Pythium aphanidermatum and Fusarium oxysporum f.sp. cucurbitacearum, respectively. Survival of B. subtilis and P. putida in various carriers under refrigeration (about 0 degree C) and at room temperature (about 22 degrees C) was also studied. In all carrier formulations, B. subtilis strain BACT-0 survived up to 45 days. After 45 days of storage at room temperature (about 22 degrees C), populations B. subtilis strain BACT-0 were significantly higher in vermiculite, kaolin, and bacterial broth carriers compared with other carriers. Populations of P. putida were significantly higher in vermiculite, peat moss, wheat bran, and bacterial broth than in other carriers when stored either under refrigeration (about 0 degree C) or at room temperature (about 22 degrees C) for 15 or 45 days. Germination of lettuce seed was not affected in vermiculite, talc, kaolin, and peat moss carriers, but germination was significantly reduced in alginate and bacterial broth carriers of B. subtilis compared to the non-treated control. Germination of cucumber seed was not affected by any of the carriers. Significantly higher fresh lettuce and root weights were observed in vermiculite and kaolin carriers of B. subtilis compared with P. aphanidermatum-inoculated control plants. Lettuce treated with vermiculite, and kaolin carriers of B. subtilis, or non-inoculated control lettuce plants had significantly lower root rot ratings than talc, peat moss, bacterial broth, and P. aphanidermatum-inoculated control plants. Growth and yield of cucumber plants were significantly higher in vermiculite-based carrier of P. putida than the other carriers and Fusarium oxysporum f.sp. cucurbitacearum-inoculated plants.

  7. Saponin and non-saponin fractions of red ginseng ameliorate cisplatin-induced pica in rats.

    PubMed

    Sathyanath, Rekha; Hanumantha Rao, Balaji Raghavendran; Kim, Hyeong-Geug; Cho, Jung-Hyo; Son, Chang-Gue

    2013-08-01

    Nausea and vomiting are considered as the foremost unpleasant side effects of chemotherapy experienced by 20-90% of cancer patients. In the present study, the effects of Korean Panax ginseng C.A. Meyer (Araliaceae) (RG), ginseng saponin (GS) and non-saponin (GNS) on cisplatin (CP)-induced pica and gastric damage in rats were investigated. Rats were treated with RG (25, 50, 100 mg/kg b.wt.), GS (5 and 10 mg/kg 100 mg/kg b.wt.) and GNS (50 and 100 mg/kg b.wt.) before or after a single intraperitoneal injection of CP (6 mg/kg b.wt.). Kaolin together with normal food intake, normal food alone, body weight, histological examination of stomach and small intestine were used as indices of CP-induced pica in rats. Pre-treatment with RG (50 and 100 mg/kg b.wt.) attenuated CP-induced kaolin intake at 24 h. CP-induced kaolin intake decreased upon post-treatment of rats with RG (50 and 100 mg/kg b.wt.) at 48 h. The incidence of body weight reduction at 48 and 72 h diminished in rats post-treated with RG (50 mg/kg b.wt.). Pre-treatment with GS (5 and 10 mg/kg b.wt.) and GNS (50 and 100 mg/kg b.wt.) attenuated CP-induced kaolin intake while normal food intake was not improved in 24 and 48 h. The gastro-protective effects of RG, GS and GNS were further confirmed by histopathological (damage in glandular portion and villi with dilated appearance) findings. The study indicates that both the red GS and GNS improve feeding behavior against CP-induced pica in rats.

  8. Manufacture and optimization of low-cost tubular ceramic supports for membrane filtration: application to algal solution concentration.

    PubMed

    Issaoui, Mansour; Limousy, Lionel; Lebeau, Bénédicte; Bouaziz, Jamel; Fourati, Mohieddine

    2017-04-01

    Low-cost tubular macroporous supports for ceramic membranes were elaborated using the extrusion method, followed by curing, debinding, and sintering processes, from a powder mixture containing kaolin, starch, and sand. The obtained substrates were characterized using mercury intrusion porosimetry, water absorption test, water permeability, scanning electron microscopy, and three-point bending test to evaluate the effects of the additives on the relevant characteristics. According to experimental results, adding the starch ratio to the kaolin powder shows a notable impact on the membrane porosity and consequently on the water permeability of the tubular supports, whereas their mechanical strength decreased compared to those prepared from kaolin alone. It has been shown that the addition of an appropriate amount of starch to the ceramic paste leads to obtaining membrane supports with the desired porosity. Indeed, the water permeability increased significantly from 20 to 612 L h -1  m -2  bar -1 for samples without and with 20 wt% of starch, respectively, as well as the open porosity, the apparent porosity, and the pore size distribution. The bending strength decreased slightly and reached about 4 MPa for samples with the highest starch amounts. On the other hand, the incorporation of sand in a mixture of kaolin + 10 wt% starch increased the mechanical strength and the water permeability. The samples containing 3 wt% of sand exhibited a bending strength four times higher than the supports without sand; the water permeability measured was about 221 L h -1  m -2  bar -1 . These elaborated tubular supports for membrane are found to be suitable for solution concentration; they were applied for algal solution and are also easily cleaned by water.

  9. Rational Selection of Tailored Amendment Mixtures and Composites for In Situ Remediation of Contaminated Sediments

    DTIC Science & Technology

    2008-12-01

    Certification Program GAC granular activated carbon HGR sulfur impregnated activated carbon MCA Menzie Cura and Associates MRM Minimum Required...determination of iodine number was followed. The materials tested were granular activated carbon (GAC), alumina powder, ATS, apatite, bentonite, barite...materials tested were granular activated carbon (GAC), alumina powder, ATS, apatite, bentonite, barite, ConSep 20 and 42%, and ATC. The Iodine Number

  10. 21 CFR 310.545 - Drug products containing certain active ingredients offered over-the-counter (OTC) for certain uses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Iodine Iron ox bile Johnswort Juniper Kaolin, colloidal Knotgrass Lactic acid Lactose Lavender compound... Hydrastis canadensis Inositol Iodine Isoleucine Juniper, potassium extract Karaya gum Kelp Lactose Lecithin...

  11. 21 CFR 310.545 - Drug products containing certain active ingredients offered over-the-counter (OTC) for certain uses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Iodine Iron ox bile Johnswort Juniper Kaolin, colloidal Knotgrass Lactic acid Lactose Lavender compound... Hydrastis canadensis Inositol Iodine Isoleucine Juniper, potassium extract Karaya gum Kelp Lactose Lecithin...

  12. Immobilization of dextranase from Chaetomium erraticum.

    PubMed

    Erhardt, Frank Alwin; Jördening, Hans-Joachim

    2007-09-30

    In order to facilitate the Co-Immobilization of dextransucrase and dextranase, various techniques for the immobilization of industrial endo-dextranase from Chaetomium erraticum (Novozymes A/S) were researched. Adsorption isotherms at various pH-values have been determined for bentonite (Montmorillonite), hydroxyapatite and Streamline DEAE. Using bentonite and hydroxyapatite, highest activity loads (12,000 Ug(-1); 2900 Ug(-1), respectively) can be achieved without a significant change of the apparent Michaelis-Menten constant K(M). For successful adsorption, enzyme to bentonite ratios greater than 0.4 (w/w) have to be used as lower ratios lead to 90% enzyme inactivation due to bentonite contact. In addition, covalent linkage using the activated oxiran carriers Eupergit C and Eupergit C250L as well as linkage with aminopropyl silica via metaperiodate activation of glycosyl moiety of dextranase are discussed. This is also the first report probing the structure of a matrix containing dextranase by use of substrate species with different molecular weights. From this we can observe a relationship between the porosity of Eupergit and dextran dependent activity. For the reactor concept using Co-Immobilisates, hydroxyapatite will be preferred to Eupergit because of its higher specific activity and dispersity.

  13. Colloid facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam

    2015-04-01

    Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of

  14. Amino Acid Interaction with and Adsorption on Clays: FT-IR and Mössbauer Spectroscopy and X-ray Diffractometry Investigations

    NASA Astrophysics Data System (ADS)

    Benetoli, Luís O. B.; de Souza, Cláudio M. D.; da Silva, Klébson L.; de Souza, Ivan G.; de Santana, Henrique; Paesano, Andrea; da Costa, Antonio C. S.; Zaia, Cássia Thaïs B. V.; Zaia, Dimas A. M.

    2007-12-01

    In the present paper, the adsorption of amino acids (Ala, Met, Gln, Cys, Asp, Lys, His) on clays (bentonite, kaolinite) was studied at different pH (3.00, 6.00, 8.00). The amino acids were dissolved in seawater, which contains the major elements. There were two main findings in this study. First, amino acids with a charged R group (Asp, Lys, His) and Cys were adsorbed on clays more than Ala, Met and Gln (uncharged R groups). However, 74% of the amino acids in the proteins of modern organisms have uncharged R groups. These results raise some questions about the role of minerals in providing a prebiotic concentration mechanism for amino acids. Several mechanisms are also discussed that could produce peptide with a greater proportion of amino acids with uncharged R groups. Second, Cys could play an important role in prebiotic chemistry besides participating in the structure of peptides/proteins. The FT-IR spectra showed that the adsorption of amino acids on the clays occurs through the amine group. However, the Cys/clay interaction occurs through the sulfhydryl and amine groups. X-ray diffractometry showed that pH affects the bentonite interlayer, and at pH 3.00 the expansion of Cys/bentonite was greater than that of the samples of ethylene glycol/bentonite saturated with Mg. The Mössbauer spectrum for the sample with absorbed Cys showed a large increase (˜20%) in ferrous ions. This means that Cys was able to partially reduce iron present in bentonite. This result is similar to that which occurs with aconitase where the ferric ions are reduced to Fe 2.5.

  15. Removal of trace nonylphenol from water in the coexistence of suspended inorganic particles and NOMs by using a cellulose-based flocculant.

    PubMed

    Yang, Zhen; Ren, Kexin; Guibal, Eric; Jia, Shuying; Shen, Jiachun; Zhang, Xuntong; Yang, Weiben

    2016-10-01

    A flocculation method was used for the removal of trace nonylphenol (NP) from synthetic surface water containing natural organic matters (humic acid, HA) and suspended inorganic particles (kaolin). A polymeric flocculant (CMCND), with enhanced cationic property and unique switchable hydrophobic/hydrophilic characteristic, was specially designed for this application. CMCND showed a high efficiency for trace NP removal, turbidity and UV254 abatements: under optimized conditions (pH: 4; T: 35 °C; dosage: 40 mg/L), the removal of NP reached up to 79%. By using dosage-pH flocculation diagrams and correlation analyses as tools, kaolin and HA were found to exert synergistic effects on NP removal, with the aid of CMCND; the synergistic effect of HA is higher due to π-π stacking. Zeta potential-dosage profiles clearly demonstrated charge neutralization predominated at pH 4, due to the strong cationic groups in the flocculant. Floc size monitoring displayed that the delayed phase transformation process (from hydrophilicity to hydrophobicity) of CMCND at 35 °C enhanced NP removal. In addition, spectral analyses clarified the interactions among CMCND, NP, kaolin and HA: charge attraction and hydrophobic interaction between CMCND and NP played the key roles. The findings are of significance for removing endocrine-disrupting chemicals in environmental remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Density, Viability Conidia And Symptoms of Metarhizium anisopliae infection on Oryctes rhinoceros larvae

    NASA Astrophysics Data System (ADS)

    Indriyanti, D. R.; Putri, R. I. P.; Widiyaningrum, P.; Herlina, L.

    2017-04-01

    M. anisopliae is parasitic fungus on insect pests; it is used as a biocontrol agent. M. anisopliae can be propagated on maize or rice substrate. M. anisopliae is currently sold in the form of kaolin powder formulations. Before it is used to check the density, viability and pathogenicity of M. anisopliae. However the problem is the kaolin powder very soft, so it difficult to distinguish between kaolin and conidia. This article gives information on how to calculate conidia density, viability and symptoms of M. anisopliae infection on Oryctes rhinoceros larvae. The study was conducted in the laboratory to determine the density and viability. The pathogenicity testing was done using pots. The Pot is containing soil substrate mixed with M. Anispoliae and ten tails O. Rhinoceros larvae per pot. The results showed that the density of M. anisopliae conidia was 1.81 x 108 conidia mL-1 and the viability was 94% within 24 hours. The larval mortality began to emerge in the 1st week, and all larvae died at the sixth week. The symptom of M. anisopliae infection on Oryctes rhinoceros larvae, there was a black spot on the larval integument. The larvae movements become slow and poor appetite; it will die within 3-7 days. The larvae die hard, and the white hyphae grow on the body surface that turns green.

  17. Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystis aeruginosa removal

    NASA Astrophysics Data System (ADS)

    Sun, Pengfei; Hui, Cai; Bai, Naling; Yang, Shengmao; Wan, Li; Zhang, Qichun; Zhao, Yuhua

    2015-12-01

    In the present work, a novel bioflocculant, EPS-1, was prepared and used to flocculate the kaolin suspension and Microcystis aeruginosa. We focused on the characteristics and flocculation performance of EPS-1, especially with regard to its protein components. An important attribute of EPS-1 was its protein content, with 18 protein types identified that occupied a total content of 31.70% in the EPS-1. Moreover, the flocculating activity of these protein components was estimated to be no less than 33.93%. Additionally, polysaccharides that occupied 57.12% of the total EPS-1 content consisted of four monosaccharides: maltose, D-xylose, mannose, and D-fructose. In addition, carbonyl, amino, and hydroxyl groups were identified as the main functional groups. Three main elements, namely C1s, N1s, and O1s, were present in EPS-1 with relative atomic percentages of 62.63%, 24.91%, and 10.5%, respectively. Zeta potential analysis indicated that charge neutralization contributed to kaolin flocculation, but was not involved in M. aeruginosa flocculation. The flocculation conditions of EPS-1 were optimized, and the maximum flocculating efficiencies were 93.34% within 2 min for kaolin suspension and 87.98% within 10 min for M. aeruginosa. These results suggest that EPS-1 could be an alternative to chemical flocculants for treating wastewaters and cyanobacterium-polluted freshwater.

  18. Broadband electromagnetic analysis of compacted kaolin

    NASA Astrophysics Data System (ADS)

    Bore, Thierry; Wagner, Norman; Cai, Caifang; Scheuermann, Alexander

    2017-01-01

    The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz-3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification.

  19. Effect of low levels of aflatoxin B₁ on performance, biochemical parameters, and aflatoxin B₁ in broiler liver tissues in the presence of monensin and sodium bentonite.

    PubMed

    Magnoli, A P; Monge, M P; Miazzo, R D; Cavaglieri, L R; Magnoli, C E; Merkis, C I; Cristofolini, A L; Dalcero, A M; Chiacchiera, S M

    2011-01-01

    Aflatoxins (AF) are a major problem in broiler production and are significant economic and public health burdens worldwide. A commercial sodium bentonite (Na-B) adsorbent was used to prevent the effect of AF [50 µg of aflatoxin B₁ (AFB₁)/kg of feed] in broiler productivity, biochemical parameters, macroscopic and microscopic liver changes, and AFB₁ liver residues. The influence of Na-B (0.3%) and monensin (MON, 100 mg/kg), alone or in combination, was investigated in depth. The dietary treatments were as follows: treatment (T) 1: basal diet (B); T2: B + MON; T3: B + Na-B; T4: B + Na-B + MON; T5: B + AFB₁; T6: B + AFB₁ + Na-B + MON; T7: B + AFB₁ + MON; T8: B + AFB₁ + Na-B. Birds were fed dietary treatments for 28 d (d 18 to 46). No significant differences (P < 0.05) were observed among treatments with respect to broiler performance, biochemical parameters, or relative liver weights. With the exception of T8, all livers showed histopathological alterations, with accumulation of fat vacuoles. The normal appearance of livers from T8 showed the protective effect of Na-B against aflatoxicosis. The residual AFB₁ levels in livers from T5 to T8 ranged from 0.2 to 1.0 ng/g and were higher in livers from T6 (P < 0.05). Results of this study indicate a competition between AFB₁ and MON for adsorption sites on Na-B when feed contains low levels of the toxin, indicating a nonselective adsorption capacity of this particular Na-B. In addition, significant levels of AFB₁ in livers indicate that this determination is an important technique not only for diagnosis of aflatoxicosis in broilers, but also for quality control of avian products.

  20. Using Frozen Barriers for Containment of Contaminants

    DTIC Science & Technology

    2017-09-21

    barriers are constructed of grout slurry and plastic or steel sheet pilings. Circumferential barriers can be used to completely enclose a source of...2.1.1 Slurry walls A soil-bentonite slurry trench cutoff wall (slurry wall) is excavated and backfilled with grout, cement , or soil-bentonite...installation requires a mixing area, and there is a substantial amount of excavation and the need to dispose of spoil. The advantages of cement -based

  1. Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis.

    PubMed

    Reddy, K R; Xu, C Y; Chinthamreddy, S

    2001-06-29

    Electrokinetic remediation of metal-contaminated soils is strongly affected by soil-type and chemical species of contaminants. This paper investigates the speciation and extent of migration of heavy metals in soils during electrokinetic remediation. Laboratory electrokinetic experiments were conducted using two diverse soils, kaolin and glacial till, contaminated with chromium as either Cr(III) or Cr(VI). Initial total chromium concentrations were maintained at 1000mg/kg. In addition, Ni(II) and Cd(II) were used in concentrations of 500 and 250mg/kg, respectively. The contaminated soils were subjected to a voltage gradient of 1 VDC/cm for over 200h. The extent of migration of contaminants after the electric potential application was determined. Sequential extractions were performed on the contaminated soils before and after electrokinetic treatment to provide an understanding of the distribution of the contaminants in the soils. The initial speciation of contaminants was found to depend on the soil composition as well as the type and amounts of different contaminants present. When the initial form of chromium was Cr(III), exchangeable and soluble fractions of Cr, Ni, and Cd ranged from 10 to 65% in kaolin; however, these fractions ranged from 0 to 4% in glacial till. When the initial form of chromium was Cr(VI), the exchangeable and soluble fractions of Cr, Ni and Cd ranged from 66 to 80% in kaolin. In glacial till, however, the exchangeable and soluble fraction for Cr was 38% and Ni and Cd fractions were 2 and 10%, respectively. The remainder of the contaminants existed as the complex and precipitate fractions. During electrokinetic remediation, Cr(VI) migrated towards the anode, whereas Cr(III), Ni(II) and Cd(II) migrated towards the cathode. The speciation of contaminants after electrokinetic treatment showed that significant change in exchangeable and soluble fractions occurred. In kaolin, exchangeable and soluble Cr(III), Ni(II), and Cd(II) decreased near the

  2. Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of water column lanthanum data from 16 case study lakes.

    PubMed

    Spears, Bryan M; Lürling, Miquel; Yasseri, Said; Castro-Castellon, Ana T; Gibbs, Max; Meis, Sebastian; McDonald, Claire; McIntosh, John; Sleep, Darren; Van Oosterhout, Frank

    2013-10-01

    Phoslock(®) is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La concentrations associated with the use of Phoslock(®) across 16 case study lakes. Impact-recovery trajectories associated with total lanthanum (TLa) and filterable La (FLa) concentrations in surface and bottom waters were quantified over a period of up to 60 months following Phoslock(®) application. Both surface and bottom water TLa and FLa concentrations were <0.001 mg L(-1) in all lakes prior to the application of Phoslock(®). The effects of Phoslock(®) application were evident in the post-application maximum TLa and FLa concentrations reported for surface waters between 0.026 mg L(-1)-2.30 mg L(-1) and 0.002 mg L(-1) to 0.14 mg L(-1), respectively. Results of generalised additive modelling indicated that recovery trajectories for TLa and FLa in surface and bottom waters in lakes were represented by 2nd order decay relationships, with time, and that recovery reached an end-point between 3 and 12 months post-application. Recovery in bottom water was slower (11-12 months) than surface waters (3-8 months), most probably as a result of variation in physicochemical conditions of the receiving waters and associated effects on product settling rates and processes relating to the disturbance of bed sediments. CHEAQS PRO modelling was also undertaken on 11 of the treated lakes in order to predict concentrations of La(3+) ions and the potential for negative ecological impacts. This modelling indicated that the concentrations of La(3+) ions will be very low (<0.0004 mg L(-1)) in lakes of moderately low to high alkalinity (>0.8 mEq L(-1)), but higher (up to 0.12 mg L(-1)) in lakes characterised by very low alkalinity. The effects of elevated La(3+) concentrations following

  3. The Mohawkian Chronostratigraphic Problem: building a reliable timescale by combining biostratigraphy, chemostratigraphy, and tephrochronology

    NASA Astrophysics Data System (ADS)

    Sell, B. K.; Sadler, P.; Leslie, S.; Mitchell, C.; Samson, S. D.

    2011-12-01

    The abundant exposures of Mohawkian (late Sandbian to early Katian) sedimentary rocks in eastern North America have been well-studied for insights into the Taconic orogeny and potential petroleum sources. Considerable information has been published toward establishing the sequence stratigraphic architecture, biozones for conodonts, graptolites and chitinozoans, chemostratigraphic correlations and a tephrochronologic framework. And yet, correlation remains difficult. Problems arise from complex sedimentary facies changes across the Laurentian margin and associated provincalism of the faunas. The difficulties are exacerbated by some imprecise usage of bentonite names, the short time spans of key stratigraphic sections, and a paucity of sections with muliple kinds of information. Also, linking so many taxon range end, ash-fall, and stable isotope excursion events into a coherent stratigraphic sequence is a daunting numerical problem. It falls into the notorious "NP-Complete" category because the number of possible solutions grows so fast as the number of events increases. "Simulated annealing" is one of the algorithms developed for such problems. We adopt it to solve the stratigraphic sequencing problem as a constrained optimization (CONOP). Nevertheless, to realize the full potential, more bentonite charactization and dating is needed in sections with detailed range charts for fossil species. CONOP works best with the individual taxon ranges, not the derived biozone boundaries. We examine the potential resolving power of CONOP in the context of a re-evaluation of bentonite correlations and newly acquired CA-TIMS U-Pb zircon dates from sections with rich biostratigraphic data. In particular we use 206Pb/238U zircon dates from two bentonites in the Womble Shale at the Katian Global Stratotype Section and Point (452.8 ± 0.2 and 453.5 ± 0.3 Ma, weighted mean with 2σ internal error) to compare various correlations with other dated bentonites in eastern North America

  4. Design of bituminous surface mixes with high skid resistance.

    DOT National Transportation Integrated Search

    1974-01-01

    The Virginia Highway Research Council has proposed a study of the skid resistance of bituminous surfaces incorporating relatively hard and expensive aggregates. The hardness of the aggregates to be used aluminum oxide (Exolon) and calcined kaolin -- ...

  5. Water oxidation catalyzed by the tetranuclear Mn complex [Mn(IV)4O5(terpy)4(H2O)2](ClO4)6.

    PubMed

    Gao, Yunlong; Crabtree, Robert H; Brudvig, Gary W

    2012-04-02

    The tetranuclear manganese complex [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) (1; terpy = 2,2':6',2″-terpyridine) gives catalytic water oxidation in aqueous solution, as determined by electrochemistry and GC-MS. Complex 1 also exhibits catalytic water oxidation when adsorbed on kaolin clay, with Ce(IV) as the primary oxidant. The redox intermediates of complex 1 adsorbed on kaolin clay upon addition of Ce(IV) have been characterized by using diffuse reflectance UV/visible and EPR spectroscopy. One of the products in the reaction on kaolin clay is Mn(III), as determined by parallel-mode EPR spectroscopic studies. When 1 is oxidized in aqueous solution with Ce(IV), the reaction intermediates are unstable and decompose to form Mn(II), detected by EPR spectroscopy, and MnO(2). DFT calculations show that the oxygen in the mono-μ-oxo bridge, rather than Mn(IV), is oxidized after an electron is removed from the Mn(IV,IV,IV,IV) tetramer. On the basis of the calculations, the formation of O(2) is proposed to occur by reaction of water with an electrophilic manganese-bound oxyl radical species, (•)O-Mn(2)(IV/IV), produced during the oxidation of the tetramer. This study demonstrates that [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) may be relevant for understanding the role of the Mn tetramer in photosystem II.

  6. Housing and dustbathing effects on northern fowl mites (Ornithonyssus sylviarum) and chicken body lice (Menacanthus stramineus) on hens.

    PubMed

    Martin, C D; Mullens, B A

    2012-09-01

    Hen housing (cage or cage-free) did not impact overall abundances of northern fowl mites, Ornithonyssus sylviarum (Canestrini & Fanzago) (Acari: Macronyssidae), or chicken body lice, Menacanthus stramineus (Nitzsch) (Phthiraptera: Menoponidae). Cage-free hens received a dustbox with sand plus diatomaceous earth (DE), kaolin clay or sulphur. Weekly use varied from none to 100% of hens; 73% of hens used the dustbox at least once. Ectoparasite populations on dustbathing hens (users) were compared with those on non-user cage-free and caged hens. All materials reduced ectoparasites on user hens by 80-100% after 1 week of dustbox use. Diatomaceous earth and kaolin failed to reduce ectoparasites on non-user hens, and ectoparasites on user hens recovered after dustbox removal. A sulphur dustbox eliminated mites from all hens (including non-users) within 2-4 weeks. Residual sulphur controlled mites until the end of the experiment (up to 9 weeks), even after the dustbox was removed. Louse populations on hens using the sulphur dustbox were reduced in 1-2 weeks. Residual sulphur effects were less evident in lice, but the use of a sulphur dustbox by a higher proportion of hens extended louse control to all hens. This is the first experimental study to show that bird dustbathing in naturally and widely available dust materials (particularly kaolin) can suppress ectoparasites and thus the behaviour is probably adaptive. © 2012 The Authors. Medical and Veterinary Entomology © 2012 The Royal Entomological Society.

  7. A Proposed Formulary Based on the Identification of Medications Determined by Diagnoses/Problems in a Troop Medical Clinic During Calendar Year 1983

    DTIC Science & Technology

    1984-08-01

    Simethicone (MYLANTA) Liquid and Tablets Aluminum Hydroxide, Magnesium Trisilicate and Sodium Bicarbonate (GAVISCON) Tablets 56:08 ANTI-DIARRHEAL AGENTS...Diphenoxylate HCl and Atropine Sulfate (LOMOTIL) Tablets Kaolin and Pectin (KAOPECTATE) Suspension 56:10 ANTI-FLATULANTS Simethicone (MYLICON) Tablets

  8. Preparation and Properties of a Novel Semi-IPN Slow-Release Fertilizer with the Function of Water Retention.

    PubMed

    Xiang, Yang; Ru, Xudong; Shi, Jinguo; Song, Jiang; Zhao, Haidong; Liu, Yaqing; Guo, Dongdong; Lu, Xin

    2017-12-20

    A new semi-interpenetrating polymer network (semi-IPN) slow-release fertilizer (SISRF) with water absorbency, based on the kaolin-g-poly(acrylic acid-co-acrylic amide) (kaolin-g-P(AA-co-AM)) network and linear urea-formaldehyde oligomers (UF), was prepared by solution polymerization. Nutrients phosphorus and potassium were supplied by adding dipotassium hydrogen phosphate during the preparation process. The structure and properties of SISRF were characterized by various characterization methods. SISRF showed excellent water absorbency of 68 g g -1 in tap water. The slow-release behavior of nutrients and water-retention capacity of SISRF were also measured. Meanwhile, the swelling kinetics was well described by a pseudo-second-order kinetics model. Results suggested the formation of SISRF with simultaneously good slow-release and water-retention capacity, which was expected to apply in modern agriculture and horticulture.

  9. THE NATURE OF SERUM ANTITRYPSIN

    PubMed Central

    Jobling, James W.; Petersen, William

    1914-01-01

    1. The ferment-inhibiting action of the serum is due to the presence of compounds of the unsaturated fatty acids. 2. These fatty acid compounds may be removed from the serum by means of chloroform or ether. 3. Soaps prepared by saponifying the chloroform or ether extracts inhibit the action of trypsin. 4. The anti-enzyme action of the serum can be removed by filtering acid serum through kaolin, and can in part be restored by extracting the kaolin. 5. The decrease in strength of anti-enzyme in old sera is probably due to the action of the serum lipase. 6. Iodin, potassium iodide, or hydrogen peroxide remove the inhibiting action of the serum. 7. Soaps of the unsaturated fatty acids lose their ferment-inhibiting action when heated with serum at 70° C. PMID:19867786

  10. Potential removal of organic loads from petroleum wastewater and its effect on the corrosion behavior of municipal networks.

    PubMed

    El-Shamy, A M; Abdelfattah, Ibrahim; Elshafey, Ola I; Shehata, M F

    2018-05-09

    A potential and cost-effective treatment method utilizing thermally activated bentonite was evaluated for the treatment of highly loaded real petroleum processing wastewater (COD = 4500 mg/L) in order to reduce its COD and improve the corrosion properties. A save discharging COD limit of the treated effluent (800 mg/L) is achieved by using 6 g/L of calcinated bentonite after reaching the steady state (1 h of shaking) at pH 5. The durability of bentonite is proved. The corrosion behavior of the treated wastewater was investigated for mild steel by using electrochemical and weight loss measurements. The results proved that the corrosion rate of the wastewater was slightly reduced after the treatment process. More improvement of the corrosion resistance was achieved by adding sodium hexa-meta-phosphate (SHMP) corrosion inhibitor to the treated water. Tri-methyl ammonium bromide (CTAB) biocide was also added before discharging into municipal networks. Copyright © 2018. Published by Elsevier Ltd.

  11. Influence of γ-radiation on the reactivity of montmorillonite towards H 2O 2

    NASA Astrophysics Data System (ADS)

    Holmboe, Michael; Jonsson, Mats; Wold, Susanna

    2012-02-01

    Compacted and water saturated bentonite will be used as an engineered barrier in deep geological repositories for radioactive waste in many countries. Due to the high dose rate of ionizing radiation outside the canisters holding the nuclear waste, radiolysis of the interlayer and pore water in the compacted bentonite is unavoidable. Upon reaction with the oxidizing and reducing species formed by water radiolysis (OH •, e -(aq), H •, H 2O 2, H 2, HO 2•, H 3O +), the overall redox properties in the bentonite barrier may change. In this study the influence of γ-radiation on the structural Fe(II)/Fe Tot ratio in montmorillonite and its reactivity towards hydrogen peroxide (H 2O 2) was investigated in parallel experiments. The results show that under anoxic conditions the structural Fe(II)/Fe Tot ratio of dispersed Montmorillonite increased from ≤3 to 25-30% after γ-doses comparable to repository conditions. Furthermore, a strong correlation between the structural Fe(II)/Fe Tot ratio and the H 2O 2 decomposition rate in montmorillonite dispersions was found. This correlation was further verified in experiments with consecutive H 2O 2 additions, since the structural Fe(II)/Fe Tot ratio was seen to decrease concordantly. This work shows that the structural iron in montmorillonite could be a sink for one of the major oxidants formed upon water radiolysis in the bentonite barrier, H 2O 2.

  12. Dissolved organic matter effects on the performance of a barrier to polycyclic aromatic hydrocarbon transport by groundwater

    NASA Astrophysics Data System (ADS)

    Moon, Jung-Won; Goltz, Mark N.; Ahn, Kyu-Hong; Park, Jae-Woo

    2003-02-01

    In order to contain the movement of organic contaminants in groundwater, a subsurface sorption barrier consisting of sand or clay minerals coated with a cationic surfactant has been proposed. The effectiveness of such a sorption barrier might be affected by the presence of dissolved organic matter (DOM) in the groundwater. To study the impact of DOM on barrier performance, a series of batch experiments were performed by measuring naphthalene and phenanthrene sorption onto sand coated with cetylpyridinium chloride (CPC) and bentonite coated with hexadecyltrimethylammonium bromide (HDTMA) in the presence of various concentrations of DOM. The overall soil-water distribution coefficient ( K*) of naphthalene and phenanthrene onto CPC-coated sand decreased with increasing DOM concentration, whereas the K* of the compounds onto HDTMA-coated bentonite slightly increased with increasing DOM concentration. To describe the overall distribution of polycyclic aromatic hydrocarbons (PAHs) in the systems, a competitive multiphase sorption (CMS) model was developed and compared with an overall mechanistic sorption (OMS) model. The modeling studies showed that while the OMS model did not explain the CPC-coated sand experimental results, a model that included competitive sorption between DOM and PAH did. The experimental results and the modeling study indicated that there was no apparent competition between DOM and PAH in the HDTMA-coated bentonite system, and indicated that in groundwater systems with high DOM, a barrier using HDTMA-coated bentonite might be more effective.

  13. Clay/Polyaniline Hybrid through Diazonium Chemistry: Conductive Nanofiller with Unusual Effects on Interfacial Properties of Epoxy Nanocomposites.

    PubMed

    Jlassi, Khouloud; Chandran, Sarath; Poothanari, Mohammed A; Benna-Zayani, Mémia; Thomas, Sabu; Chehimi, Mohamed M

    2016-04-12

    The concept of conductive network structure in thermoset matrix without sacrificing the inherent mechanical properties of thermoset polymer (e.g., epoxy) is investigated here using "hairy" bentonite fillers. The latter were prepared through the in situ polymerization of aniline in the presence of 4-diphenylamine diazonium (DPA)-modified bentonite (B-DPA) resulting in a highly exfoliated bentonite-DPA/polyaniline (B-DPA/PANI). The nanocomposite filler was mixed with diglycidyl ether of bisphenol A (DGEBA), and the curing agent (4,4'-diaminodiphenylsulfone) (DDS) at high temperature in order to obtain nanocomposites through the conventional melt mixing technique. The role of B-DPA in the modification of the interface between epoxy and B-DPA/polyaniline (B-DPA/PANI) is investigated and compared with the filler B/PANI prepared without any diazonium modification of the bentonite. Synergistic improvement in dielectric properties and mechanical properties points to the fact that the DPA aryl groups from the diazonium precursor significantly modify the interface by acting as an efficient stress transfer medium. In DPA-containing nanocomposites, unique fibril formation was observed on the fracture surface. Moreover, dramatic improvement (210-220%) in fracture toughness of epoxy composite was obtained with B-DPA/PANI filler as compared to the weak improvement of 20-30% noted in the case of the B/PANI filler. This work shows that the DPA diazonium salt has an important effect on the improvement of the interfacial properties and adhesion of DGEBA and clay/PANI nanofillers.

  14. A molecular investigation of adsorption onto mineral pigments

    NASA Astrophysics Data System (ADS)

    Ninness, Brian J.

    Pigment suspensions are important in several processes such as ceramics, paints, inks, and coatings. In the wet state, pigments are combined with a variety of chemical species such as polymers, surfactants, and polyelectrolytes which produce a complex colloidal system. The adsorption, desorption, and redistribution of these species at the pigment-aqueous solution interface can have an impact on the behavior in both the wet state or its final dried state. The goal of this work is to establish a molecular picture of the adsorption properties of these pigmented systems. A novel in situ infrared technique has been developed which allows the detection of adsorbed surface species on pigment particles in an aqueous environment. The technique involves the use of a polymeric binder to anchor the colloidal pigment particles to the surface of an internal reflection element (IRE). The binder only weakly perturbs about 25% of the reactive surface sites (hydroxyl groups) on silica. The reaction of succinic anhydride with an aminosilanized silica surface has been quantified using this technique. The adsorption dynamics of the cationic surfactant cetyltrimethylammonium bromide (C16TAB) at the TiO2-aqueous solution interface has been investigated using Fourier transform infrared-attenuated total reflection spectroscopy (FTIR-ATR) and electrokinetic analysis. At low bulk concentrations, C16TAB is shown to adsorb as isolated islands with a "defective" bilayer structure. Anionic probe molecules are shown to effectively "tune" the adsorbed surfactant microstructure. The results indicate that the structure of the adsorbed surfactant layer, and not the amount of adsorbed surfactant, dictates the subsequent adsorption behavior of the system. Atomic Layer Deposition is used to deposit a TiO2 layer onto the surfaces of silica and kaolin pigments. The process involves the cyclic reaction sequence of the vapors of TiCl4 and H2O. Three complete deposition cycles are needed before the surfaces

  15. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOEpatents

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  16. Aqueous biphasic extraction process with pH and particle control

    DOEpatents

    Chaiko, David J.; Mensah-Biney, R.

    1995-01-01

    A process for aqueous biphasic extraction of metallic oxides and the like from substances containing silica. Control of media pH enables efficient and effective partition of mixture components. The inventive method may be employed to remove excess silica from kaolin clay.

  17. ASSESSING THE REMOVAL OF INORGANIC COLLOIDS AND CRYPTOSPORIDIUM PARVUM FROM DRINKING WATER

    EPA Science Inventory

    A new batch device that simulates the conditions in water and wastewater treatment plant and enables the study of low-concentration feeds is described. The application of this appartus to the monitoring of the contaminants is demonstrated, using kaolin particles and Cryptosporidi...

  18. Anti-flammable properties of cotton fabrics using eco friendly inorganic materials by layering self-assisted processing

    USDA-ARS?s Scientific Manuscript database

    A flame retardant surface has been prepared by the layer-by layer assemblies of branched polyethylenimine (BPEI), kaolin, urea, diammonium phosphate (dibasic) on cotton fabrics. Four different kinds of cotton fabrics (print cloth, mercerized print cloth, mercerized twill, and fleece) were prepared ...

  19. Sprayable low density ablator and application process

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Hill, W. E.; Simpson, W. G.; Carter, J. M.; Brown, E. L.; King, H. M.; Schuerer, P. H.; Webb, D. D. (Inventor)

    1978-01-01

    A sprayable, low density ablative composition is described consisting esentially of: (1) 100 parts by weight of a mixture of 25-65% by weight of phenolic microballoons, 0-20% by weight of glass microballoons, 4-10% by weight of glass fibers, 25-45% by weight of an epoxy-modified polyurethane resin, 2-4% by weight of a bentonite dispersing aid, and 1-2% by weight of an alcohol activator for the bentonite; (2) 1-10 parts by weight of an aromatic amine curing agent; and (3) 200-400 parts by weight of a solvent.

  20. A comparative analysis of selected wastewater pretreatment processes in food industry

    NASA Astrophysics Data System (ADS)

    Jaszczyszyn, Katarzyna; Góra, Wojciech; Dymaczewski, Zbysław; Borowiak, Robert

    2018-02-01

    The article presents a comparative analysis of the classical coagulation with the iron sulphate and adsorption on bentonite for the pretreatment of wastewater in the food industry. As a result of the studies, chemical oxygen demand (COD) and total nitrogen (TN) reduction were found to be comparable in both technologies, and a 29% higher total phosphorus removal efficiency by the coagulation was observed. After the coagulation and adsorption processes, a significant difference between mineral and organic fraction in the sludge was found (49% and 51% for bentonite and 28% and 72% for iron sulphate, respectively).

  1. Preparation and characterization of photoactive composite kaolinite/TiO(2).

    PubMed

    Mamulová Kutláková, K; Tokarský, J; Kovář, P; Vojtěšková, S; Kovářová, A; Smetana, B; Kukutschová, J; Čapková, P; Matějka, V

    2011-04-15

    Preparation of nanocomposite kaolinite/TiO(2), using hydrolysis of titanyl sulfate in the presence of kaolin was addressed. A variable (kaolin)/(titanyl sulfate) ratio has been used in order to achieve the desired TiO(2) content in prepared nanocomposites. Calcination of the composites at 600 °C led to the transformation of the kaolinite to metakaolinite and to origination of metakaolinite/TiO(2) composites. The prepared samples were investigated using X-ray fluorescence spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetry and diffuse reflectance spectroscopy in the UV-VIS region. Structural ordering of TiO(2) on the kaolinite particle surface was modeled using empirical force field atomistic simulations in the Material Studio modeling environment. Photodegradation activity of the composites prepared was evaluated by the discoloration of Acid Orange 7 aqueous solution. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. X-ray texture analysis of paper coating pigments and the correlation with chemical composition analysis

    NASA Astrophysics Data System (ADS)

    Roine, J.; Tenho, M.; Murtomaa, M.; Lehto, V.-P.; Kansanaho, R.

    2007-10-01

    The present research experiments the applicability of x-ray texture analysis in investigating the properties of paper coatings. The preferred orientations of kaolin, talc, ground calcium carbonate, and precipitated calcium carbonate particles used in four different paper coatings were determined qualitatively based on the measured crystal orientation data. The extent of the orientation, namely, the degree of the texture of each pigment, was characterized quantitatively using a single parameter. As a result, the effect of paper calendering is clearly seen as an increase on the degree of texture of the coating pigments. The effect of calendering on the preferred orientation of kaolin was also evident in an independent energy dispersive spectrometer analysis on micrometer scale and an electron spectroscopy for chemical analysis on nanometer scale. Thus, the present work proves x-ray texture analysis to be a potential research tool for characterizing the properties of paper coating layers.

  3. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert L. Lee; Junghan Dong

    2004-06-03

    This final report of ''Modified Reverse Osmosis System for Treatment of Produced Water,'' DOE project No. DE-FC26-00BC15326 describes work performed in the third year of the project. Several good results were obtained, which are documented in this report. The compacted bentonite membranes were replaced by supported bentonite membranes, which exhibited the same salt rejection capability. Unfortunately, it also inherited the clay expansion problem due to water invasion into the interlayer spaces of the compacted bentonite membranes. We noted that the supported bentonite membrane developed in the project was the first of its kind reported in the literature. An {alpha}-alumina-supported MFI-typemore » zeolite membrane synthesized by in-situ crystallization was fabricated and tested. Unlike the bentonite clay membranes, the zeolite membranes maintained stability and high salt rejection rate even for a highly saline solution. Actual produced brines from gas and oil fields were then tested. For gas fields producing brine, the 18,300 ppm TDS (total dissolved solids) in the produced brine was reduced to 3060 ppm, an 83.3% rejection rate of 15,240 ppm salt rejection. For oilfield brine, while the TDS was reduced from 181,600 ppm to 148,900 ppm, an 18% rejection rate of 32,700 ppm reduction, the zeolite membrane was stable. Preliminary results show the dissolved organics, mainly hydrocarbons, did not affect the salt rejection. However, the rejection of organics was inconclusive at this point. Finally, the by-product of this project, the {alpha}-alumina-supported Pt-Co/Na Y catalytic zeolite membrane was developed and demonstrated for overcoming the two-step limitation of nonoxidation methane (CH{sub 4}) conversion to higher hydrocarbons (C{sub 2+}) and hydrogen (H{sub 2}). Detailed experiments to obtain quantitative results of H{sub 2} generation for various conditions are now being conducted. Technology transfer efforts included five manuscripts submitted to peer

  4. [Presence of inhibitors of activated partial thromboplastin time (TTPA). Clinical repercussion in obstetric patients].

    PubMed

    Bustos, H H; Huber, R; Baptista, H; Izquierdo, H; Sánchez Contreras, J

    1992-01-01

    Partial thromboplastin time, activated with kaolin (TTPA) is a qualitative test used to find defects of some factor of intrinsic via of coagulation or to rule out the presence of some circulating inhibitor. The lupus anticoagulant (LA) is part of a group of several auto-antibody with pathogenic potential in several branches of medicine, mainly rheumatology, hematology and gyneco-obstetrics. In this last area the LA has been associated with different obstetrical repercussions. The purpose of this study was to determine the main obstetrical events associated with patients with circulating anticoagulants identified by TTPA with kaolin. Ninety six patients were included in cases-control study. Group I (n = 48) cases and Group II (n = 48) controls, were selected from the same population and information source. The cases were included when presenting prolongation of more than 4 seconds of TTPA activated with kaolin regarding a control with lack of correction with normal plasma. A registration sheet for data captation, was designed specially for this study. The comparability of both groups was established, as there were no differences (significant) among the variable considered as basal. The group of cases presented with a greater frequency of habitual abortion, neonatal death and thrombotic phenomena. This relationship of autoimmunological pictures with recurrent fetal loss and thromboembolic incidents has been consistently described in literature. To this respect, several immunological abnormalities. Including positive anticardiolipin antibodies and VDRL falsely positive. The incidence, in this country of these entities, is unknown. These observations show the need of a methodologic superation.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Aqueous biphasic extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1995-05-02

    A process for aqueous biphasic extraction of metallic oxides and the like from substances containing silica. Control of media pH enables efficient and effective partition of mixture components. The inventive method may be employed to remove excess silica from kaolin clay. 2 figs.

  6. Innovative layer-by-layer processing for flame retardant behavior of cotton fabric

    USDA-ARS?s Scientific Manuscript database

    Flame retardant behavior has been prepared by the layer-by layer assemblies of kaolin/casein with inorganic chemicals on cotton fabrics. Three different kinds of cotton fabrics (print cloth, mercerized print cloth, and mercerized twill fabric) were prepared with solutions of mixture of BPEI, urea, ...

  7. 7 CFR 205.605 - Nonagricultural (nonorganic) substances allowed as ingredients in or on processed products...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... by the oxidation of D-glucose with bromine water is prohibited. Kaolin. L-Malic acid (CAS # 97-67-6... in accordance with any restrictions specified in this section. (a) Nonsynthetics allowed: Acids (Alginic; Citric—produced by microbial fermentation of carbohydrate substances; and Lactic). Agar-agar...

  8. 7 CFR 205.605 - Nonagricultural (nonorganic) substances allowed as ingredients in or on processed products...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... by the oxidation of D-glucose with bromine water is prohibited. Kaolin. L-Malic acid (CAS # 97-67-6... in accordance with any restrictions specified in this section. (a) Nonsynthetics allowed: Acids (Alginic; Citric—produced by microbial fermentation of carbohydrate substances; and Lactic). Agar-agar...

  9. Kaolin clay protects fish from columnaris disease

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease, caused by the bacterial pathogen Flavobacterium columnare, continues to be a major problem worldwide in cultured freshwater finfish. Despite the far-reaching negative impacts of columnaris disease, safe and efficacious preventatives and curatives for this disease remain limited....

  10. Using kaolin clay to combat columnaris disease

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease, caused by the bacterial pathogen Flavobacterium columnare, continues to be a major problem in cultured freshwater finfish. Despite the far-reaching negative impacts of columnaris disease, safe and effective preventatives and curatives for this disease remain limited. In the pre...

  11. Removal of Chromium from Soils Cultivated with Maize (Zea Mays) After the Addition of Natural Minerals as Soil Amendments.

    PubMed

    Μolla, A; Ioannou, Z; Mollas, S; Skoufogianni, E; Dimirkou, A

    2017-03-01

    The efficiency of natural minerals, i.e. zeolite, bentonite and goethite, regarding the retention of chromium, from maize was examined. Specifically, 1.0 kg of soil, 1.0 g of soil amendment and either 50 mg L -1 Cr(III) or 1 mg L -1 Cr(VI) were added in plant pots. Then, seeds of maize were cultivated. Each treatment was repeated three times. The statistical results of the experiments were analyzed by LSD test. Cr(III) addition in soil has shown that zeolite was the only amendment that increased the dry weight. Zeolite and bentonite reduced significantly the total chromium in plants after the addition of 50 mg L -1 Cr(III). The addition of Cr(VI) in soil has shown that bentonite was the only amendment that increased the dry weight of biomass and the plants' height. All soil amendments reduced to zero the total chromium concentration measured to plants after the addition of 1 mg L -1 Cr(VI).

  12. Retention-oxidation-adsorption process for emergent treatment of organic liquid spills.

    PubMed

    Liu, Xianjun; Li, Yu; Zhang, Xingwang; Lei, Lecheng

    2011-11-15

    The feasibility and effectiveness of retention-oxidation-adsorption process (ROA) for the elimination of organic contaminants induced by chemical accidents were investigated in this study. Organobentonites (DTMA-, TTA-, CTMA- and OTMA-bentonite), potassium ferrate (Fe(VI)), ozone and granular activated carbon (GAC) were used as rapid and efficient materials in the treatment and recovery of organic liquid spills. Results indicated that the retention capacities of organobentonites (especially CTMA-bentonite) were much higher than that of natural bentonite towards the chosen organic compounds. Additionally, pH, oxidant dosage, initial concentration of contaminant and chemical structure had significant influences on the effectiveness of the oxidation process. In a pilot-scale experiment, the ferrate/GAC (F/G) and ozone/GAC (O/G) processes made a comparatively good performance in the treatment of wastewater containing aniline or nitrobenzene, with the removal efficiencies of the contaminants greater than 80%. Overall, the ROA process showed a high efficiency and steady operation in the removal of hazardous organic liquids and subsequent clean up of the contaminated site. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  13. Steeply dipping heaving bedrock, Colorado: Part 2 - Mineralogical and engineering properties

    USGS Publications Warehouse

    Noe, D.C.; Higgins, J.D.; Olsen, H.W.

    2007-01-01

    This paper describes the mineralogical and engineering properties of steeply dipping, differentially heaving bedrock, which has caused severe damage near the Denver area. Several field sites in heave-prone areas have been characterized using high sample densities, numerous testing methodologies, and thousands of sample tests. Hydrometer testing shows that the strata range from siltstone to claystone (33 to 66 percent clay) with occasional bentonite seams (53 to 98 percent clay mixed with calcite). From X-ray diffraction analyses, the claystone contains varying proportions of illite-smectite and discrete (pure) smectite, and the bentonite contains discrete smectite. Accessory minerals include pyrite, gypsum, calcite, and oxidized iron compounds. The dominant exchangeable cation is Ca2+, except where gypsum is prevalent, and Mg2+ and Na1+ are elevated. Scanning electron microscope analyses show that the clay fabric is deformed and porous and that pyrite is absent within the weathered zone. Unified Soil Classification for the claystone varies from CL to CH, and the bentonite is CH to MH. Average moisture content values are 17 percent for claystone and 32 percent for bentonite, and these are typically 0 to 5 percent lower than the plastic limit. Swell-consolidation and suction testing shows a full range of swelling potentials from low to very high. These findings confirm that type I (bed-parallel, symmetrical to asymmetrical) heave features are strongly associated with changes in bedrock composition and mineralogy. Composition changes are not necessarily a factor for type II (bed-parallel to bed-oblique, strongly asymmetrical) heave features, which are associated with movements along subsurface shear zones.

  14. Hydraulic Conductivity of Geosynthetic Clay Liners to Low-Level Radioactive Waste Leachate

    DOE PAGES

    Tian, Kuo; Benson, Craig H.; Likos, William J.

    2016-04-25

    Hydraulic conductivity was evaluated for eight commercially available geosynthetic clay liners (GCLs) permeated with leachate characteristic of low-level radioactive waste (LLW) disposal facilities operated by the U.S. Department of Energy (DOE). Two of the GCLs (CS and GS) contained conventional sodium bentonite (Na-B). The others contained a bentonite–polymer mixture (CPL, CPH, GPL1, GPL2, and GPH) or bentonite–polymer composite (BPC). All GCLs (except GPL2 and GPH) were permeated directly with two synthetic LLW leachates that are essentially identical, except one has no radionuclides (nonradioactive synthetic leachate, or NSL) and the other has radionuclides (radioactive synthetic leachate, or RSL). Hydraulic conductivities tomore » RSL and NSL were identical. For the CS and GS GCLs, the hydraulic conductivity gradually increased by a factor of 5–25 because divalent cations in the leachate replaced native sodium cations bound to the bentonite. The CPL, GPL1, and GPL2 GCLs with low polymer loading (1.2–3.3%) had hydraulic conductivities similar to the conventional GCLs. In contrast, hydraulic conductivity of the CPH, GPH, and BPC GCLs with high polymer loading (≥5%) to RSL or NSL was comparable to, or lower than, the hydraulic conductivity to deionized water. Permeation with leachate reduced the swell index of the bentonite in all of the GCLs. A conceptual model featuring pore blocking by polymer hydrogel is proposed to explain why the hydraulic conductivity of bentonite–polymer GCLs to LLW leachates remains low even though the leachate inhibits bentonite swelling.« less

  15. Evaluation of soils for use as liner materials: a soil chemistry approach.

    PubMed

    DeSutter, Tom M; Pierzynski, Gary M

    2005-01-01

    Movement of NH(4)(+) below animal waste lagoons is generally a function of the whole-lagoon seepage rate, soil mineralogy, cations in the lagoon liquor, and selectivity for NH(4)(+) on the soil-exchange sites. Binary exchange reactions (Ca(2+)-K(+), Ca(2+)-NH(4)(+), and K(+)-NH(4)(+)) were conducted on two soils from the Great Plains and with combinations of these soils with bentonite or zeolite added. Binary exchanges were used to predict ternary exchanges Ca(2+)-K(+)-NH(4)(+) following the Rothmund-Kornfeld approach and Gaines-Thomas convention. Potassium and NH(4)(+) were preferred over Ca(2+), and K(+) was preferred over NH(4)(+) in all soils and soils with amendments. Generally, the addition of bentonite did not change cation selectivity over the native soils, whereas the addition of zeolite did. The Rothmund-Kornfeld approach worked well for predicting equivalent fractions of cations on the exchanger phase when only ternary-solution phase compositions were known. Actual swine- and cattle-lagoon solution compositions and the Rothmund-Kornfeld approach were used to project that native soils are predicted to retain 53 and 23%, respectively, of the downward-moving NH(4)(+) on their exchange sites. Additions of bentonite or zeolite to soils under swine lagoons may only slightly improve the equivalent fraction of NH(4)(+) on the exchange sites. Although additions of bentonite or zeolite may not help increase the NH(4)(+) selectivity of a liner material, increases in the overall cation exchange capacity (CEC) of a soil will ultimately decrease the amount of soil needed to adsorb downward-moving NH(4)(+).

  16. Hydraulic Conductivity of Geosynthetic Clay Liners to Low-Level Radioactive Waste Leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Kuo; Benson, Craig H.; Likos, William J.

    Hydraulic conductivity was evaluated for eight commercially available geosynthetic clay liners (GCLs) permeated with leachate characteristic of low-level radioactive waste (LLW) disposal facilities operated by the U.S. Department of Energy (DOE). Two of the GCLs (CS and GS) contained conventional sodium bentonite (Na-B). The others contained a bentonite–polymer mixture (CPL, CPH, GPL1, GPL2, and GPH) or bentonite–polymer composite (BPC). All GCLs (except GPL2 and GPH) were permeated directly with two synthetic LLW leachates that are essentially identical, except one has no radionuclides (nonradioactive synthetic leachate, or NSL) and the other has radionuclides (radioactive synthetic leachate, or RSL). Hydraulic conductivities tomore » RSL and NSL were identical. For the CS and GS GCLs, the hydraulic conductivity gradually increased by a factor of 5–25 because divalent cations in the leachate replaced native sodium cations bound to the bentonite. The CPL, GPL1, and GPL2 GCLs with low polymer loading (1.2–3.3%) had hydraulic conductivities similar to the conventional GCLs. In contrast, hydraulic conductivity of the CPH, GPH, and BPC GCLs with high polymer loading (≥5%) to RSL or NSL was comparable to, or lower than, the hydraulic conductivity to deionized water. Permeation with leachate reduced the swell index of the bentonite in all of the GCLs. A conceptual model featuring pore blocking by polymer hydrogel is proposed to explain why the hydraulic conductivity of bentonite–polymer GCLs to LLW leachates remains low even though the leachate inhibits bentonite swelling.« less

  17. Death of a Female Prostitute Due to Intestinal Obstruction by an Unknown Substance.

    PubMed

    Dokoupil, Marek; Marecová, Klára; Handlos, Petr; Březina, Petr

    2018-05-16

    A young adult black female, known to be a prostitute and suspected of smuggling narcotics, was found dead in her apartment in a state of early decomposition. Oval-shaped gray-white masses of exogenous origin protruded from the anus. The autopsy showed dilatation of the folds of the large intestine, which were almost completely filled with these oval-shaped gray-white masses of foreign material. The uterus was enlarged with multiple large leiomyomas. Toxicological tests of blood and the foreign material revealed no toxicologically relevant substances. Kaolin was detected in a sample of the foreign material from the large intestine. The immediate cause of death was intestinal obstruction due to the formation of a kaolin bezoar with simultaneous compression of the large intestine by the enlarged myomatous uterus. Subsequent revelation of a habit the deceased had brought from her native country led to the conclusion that this exotic custom was responsible for her death. © 2018 American Academy of Forensic Sciences.

  18. Kaolinosis in a cotton mill worker.

    PubMed

    Levin, J L; Frank, A L; Williams, M G; McConnell, W; Suzuki, Y; Dodson, R F

    1996-02-01

    A 62-year-old white male employed for 43 years in the polishing room of a cotton textile mill was admitted to a tertiary care center with progressive dyspnea and productive cough that had not responded to therapy for tuberculosis. In spite of aggressive antibiotic therapy and respiratory support, the patient died as a consequence of respiratory failure. Small rounded and irregular opacities had been noted on the chest radiograph. Review of job-site spirometry demonstrated a worsening restrictive pattern over a 4-year period prior to his death. Additional occupational history revealed long-term exposure to kaolin in the polishing room, and pathologic examination of lung tissue confirmed extensive fibrosis and substantial quantities of kaolin. Kaolinosis is a disease typically found among individuals involved in mining or processing this material rather than in user industries. This case illustrates the importance of obtaining a complete occupational history in reaching a diagnosis. The clinicopathologic aspects of kaolinosis are also reviewed.

  19. Recombinant protein expression of Moringa oleifera lectin in methylotrophic yeast as active coagulant for sustainable high turbid water treatment.

    PubMed

    Abd Wahid, Muhamad Azhar; Megat Mohd Noor, Megat Johari; Goto, Masafumi; Sugiura, Norio; Othman, Nor'azizi; Zakaria, Zuriati; Ahmad Mohammed, Thamer; Jusoh, Ahmad; Hara, Hirofumi

    2017-08-01

    The natural coagulant Moringa oleifera lectin (MoL) as cationic protein is a promising candidate in coagulation process of water treatment plant. Introducing the gene encoding MoL into a host, Pichia pastoris, to secrete soluble recombinant protein is assessed in this study. Initial screening using PCR confirmed the insertion of MoL gene, and SDS-PAGE analysis detected the MoL protein at 8 kDa. Cultured optimization showed the highest MoL protein at 520 mg/L was observed at 28 °C for 144 h of culturing by induction in 1% methanol. Approximately, 0.40 mg/mL of recombinant MoL protein showed 95 ± 2% turbidity removal of 1% kaolin suspension. In 0.1% kaolin suspension, the concentration of MoL at 10 μg/mL exhibits the highest turbidity reduction at 68 ± 1%. Thus, recombinant MoL protein from P. pastoris is an effective coagulant for water treatment.

  20. Biodegradation of diesel by mixed bacteria immobilized onto a hybrid support of peat moss and additives: a batch experiment.

    PubMed

    Lee, Young-Chul; Shin, Hyun-Jae; Ahn, Yeonghee; Shin, Min-Chul; Lee, Myungjin; Yang, Ji-Won

    2010-11-15

    We report microbial cell immobilization onto a hybrid support of peat moss for diesel biodegradation. Three strains isolated from a site contaminated with diesel oil were used in this study: Acinetobacter sp., Gordonia sp., and Rhodococcus sp. To increase not only diesel adsorption but also diesel biodegradation, additives such as zeolite, bentonite, chitosan, and alginate were tested. In this study, a peat moss, bentonite, and alginate (2/2.9/0.1 g, w/w/w) hybrid support (PBA) was the best support matrix, considering both diesel physical adsorption capacity and mixed microbial immobilization. Copyright © 2010 Elsevier B.V. All rights reserved.