Science.gov

Sample records for katrin aasvee elviira

  1. The KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Beck, Marcus; Katrin Collaboration

    2010-01-01

    The KArlsruhe TRitium Neutrino mass experiment, KATRIN, aims to search for the mass of the electron neutrino with a sensitivity of 0.2eV/c2 (90% C.L.) and a detection limit of 0.35 eV/c2 (5σ). Both a positive or a negative result will have far reaching implications for cosmology and the standard model of particle physics and will give new input for astroparticle physics and cosmology. The major components of KATRIN are being set up at the Karlsruhe Institut of Technology in Karlsruhe, Germany, and test measurements of the individual components have started. Data taking with tritium is scheduled to start in 2012.

  2. The Katrin Experiment: Status and Outlook

    NASA Astrophysics Data System (ADS)

    Parno, D. S.

    2014-01-01

    The KATRIN experiment, presently under construction in Karlsruhe, Germany, will improve on previous laboratory limits on the neutrino mass by a factor of ten. KATRIN will use a high-activity, gaseous T2 source and a very high-resolution spectrometer to measure the shape of the high-energy tail of the tritium-decay β spectrum. The shape measurement will also be sensitive to new physics, including sterile neutrinos and Lorentz violation. This report summarizes recent progress in the experiment.

  3. Status of the neutrino mass experiment KATRIN

    SciTech Connect

    Bornschein, L.; Bornschein, B.; Sturm, M.; Roellig, M.; Priester, F.

    2015-03-15

    The most sensitive way to determine the neutrino mass scale without further assumptions is to measure the shape of a tritium beta spectrum near its kinematic end-point. Tritium is the nucleus of choice because of its low endpoint energy, superallowed decay and simple atomic structure. Within an international collaboration the Karlsruhe Tritium Neutrino experiment (KATRIN) is currently being built up at KIT. KATRIN will allow a model-independent measurement of the neutrino mass scale with an expected sensitivity of 0.2 eV/c{sup 2} (90% CL). KATRIN will use a source of ultrapure molecular tritium. This contribution presents the status of the KATRIN experiment, thereby focusing on its Calibration and Monitoring System (CMS), which is the last component being subject to research/development. After a brief overview of the KATRIN experiment in Section II the CMS is introduced in Section III. In Section IV the Beta Induced X-Ray Spectroscopy (BIXS) as method of choice to monitor the tritium activity of the KATRIN source is described and first results are presented.

  4. Status of the KATRIN Neutrino Mass Experiment

    NASA Astrophysics Data System (ADS)

    Parno, Diana; Katrin Collaboration

    2015-04-01

    The Karlsruhe Tritium Neutrino experiment (KATRIN), presently under construction in Germany, will probe the absolute mass scale of the neutrino through the kinematics of tritium beta decay, a nearly model-independent approach. To achieve the projected sensitivity of 0.2 eV at the 90% confidence level, KATRIN will use a windowless, gaseous tritium source and a large magnetic adiabatic collimation-electrostatic filter. The collaboration has now completed a second commissioning phase of the spectrometer and detector section, and construction of the tritium sections is proceeding well. We will report on the current status of the experiment and the outlook for data-taking with tritium. US participation in KATRIN is supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER41020.

  5. KATRIN: Measuring the Mass Scale of Neutrinos

    NASA Astrophysics Data System (ADS)

    Oblath, Noah; Katrin Collaboration

    2011-10-01

    Over the past decade, experiments studying neutrinos from atmospheric, solar, and reactor sources have shown conclusively that neutrinos change flavor and, as a consequence, have a small but finite mass. However, the scale of neutrino masses remains an open question that is of great importance for many areas of physics. The most direct method to measure the neutrino mass scale is still via beta decay. The talk will focus primarily on the status of the KArlsruhe TRItium Neutrino experiment (KATRIN), currently under construction. KATRIN combines an ultra-luminous molecular windowless gaseous tritium source with a high-resolution integrating spectrometer to gain sensitivity to the absolute mass scale of neutrinos. The projected sensitivity of the experiment on the neutrino mass is 0.2 eV at 90% C.L. In this talk I will discuss the status of the KATRIN experiment.

  6. Commissioning Measurements of the KATRIN Main Spectrometer

    NASA Astrophysics Data System (ADS)

    Wierman, Kevin; Katrin Collaboration

    2013-10-01

    Beginning in May 2013, the KArlsruhe TRItium Neutrino experiment (KATRIN) collaboration began measurements to commission the 10-m diameter main spectrometer. KATRIN utilizes the spectrometer to provide magnetic adiabatic collimation and electrostatic filtering designed to analyze the tritium beta decay spectrum for contributions from the neutrino mass. In order to achieve an order-of-magnitude improvement on previous neutrino mass experiments the desired sensitivity of the apparatus must be 200 meV in the decay endpoint region. Goals of the recent measurements include identification and reduction of backgrounds and determination of the spectrometer transfer function. Backgrounds have been probed by utilizing electromagnetic field configurations to explore decays in the spectrometer, Penning traps and field emission. A 148-pixel PIN diode array is employed to detect particles exiting the spectrometer, which permits angular and radial distributions of particles to be analyzed. This has allowed for high precision comparison between measurements and simulations of expected backgrounds to be investigated in order to commission the spectrometer. This work is supported by grants from the DOE Office of Nuclear Physics and the Helmholtz Association.

  7. Electron line shape of the KATRIN monitor spectrometer

    NASA Astrophysics Data System (ADS)

    Slezák, M.; Bauer, S.; Dragoun, O.; Erhard, M.; Schlösser, K.; Špalek, A.; Vénos, D.; Zbořil, M.

    2013-12-01

    Conversion electrons emitted from 83mKr implanted into a solid substrate will serve as a powerful tool for monitoring of the energy scale stability in the KATRIN neutrino experiment. An appropriate description of the conversion line shape is essential to determine the energy of the emitted electrons. It is shown that the Doniach-Šunjić line shape gives a significantly better fit to the conversion electron spectra than the previously used double Voigt model. The electron spectra were obtained with the KATRIN MAC-E filter monitor spectrometer.

  8. Focal-plane detector system for the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Amsbaugh, J. F.; Barrett, J.; Beglarian, A.; Bergmann, T.; Bichsel, H.; Bodine, L. I.; Bonn, J.; Boyd, N. M.; Burritt, T. H.; Chaoui, Z.; Chilingaryan, S.; Corona, T. J.; Doe, P. J.; Dunmore, J. A.; Enomoto, S.; Formaggio, J. A.; Fränkle, F. M.; Furse, D.; Gemmeke, H.; Glück, F.; Harms, F.; Harper, G. C.; Hartmann, J.; Howe, M. A.; Kaboth, A.; Kelsey, J.; Knauer, M.; Kopmann, A.; Leber, M. L.; Martin, E. L.; Middleman, K. J.; Myers, A. W.; Oblath, N. S.; Parno, D. S.; Peterson, D. A.; Petzold, L.; Phillips, D. G.; Renschler, P.; Robertson, R. G. H.; Schwarz, J.; Steidl, M.; Tcherniakhovski, D.; Thümmler, T.; Van Wechel, T. D.; VanDevender, B. A.; Vöcking, S.; Wall, B. L.; Wierman, K. L.; Wilkerson, J. F.; Wüstling, S.

    2015-04-01

    The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.

  9. Characterization of the KATRIN Focal Plane Detector

    NASA Astrophysics Data System (ADS)

    Bodine, Laura; Leber, Michelle; Myers, Allan; Tolich, Kazumi; Vandevender, Brent; Wall, Brandon

    2008-10-01

    The Karlsruhe Tritium Neutrino (KATRIN) Experiment is a next generation tritium beta decay experiment designed to measure directly the electron neutrino mass with a sensitivity of 0.2 eV. In the experiment, electrons from tritium decay of a gaseous source are magnetically guided through analyzing solenoidal retarding electrostatic spectrometers and detected via a focal plane detector. The focal plane detector is a 90mm diameter, 500 micron thick monolithic silicon pin-diode array with 148 pixels. The diode contacts have a titanium nitride overlayer and are connected to preamplifiers via an array of spring-loaded pogo pins. This novel connection scheme minimizes backgrounds from radioactive materials near the detector, facilitates characterization and replacement of the detector wafer, but requires a unique mounting design. The force of the pins strains the silicon, possibly altering the detector properties and performance. Results on the mechanical, thermal and electrical performance of a prototype detector under stress from pogo pin readouts will be presented.

  10. Penning Trap Searches in the KATRIN Main Spectrometer

    NASA Astrophysics Data System (ADS)

    Wierman, Kevin; Katrin Collaboration

    2015-10-01

    The Karlsruhe Tritium Neutrino Experiment (KATRIN) aims to make a precision measurement of the tritium beta decay spectrum with a projected sensitivity to neutrino mass of 200 meV. Meeting this goal requires low backgrounds in the beta decay endpoint region. In KATRIN, spatially confined charged particles represent a potential source of backgrounds and systematic errors. Trapping conditions can occur in KATRIN's 10m diameter main spectrometer due to the high magnetic and electrostatic fields required to momentum analyze the electrons. Backgrounds are generated by trapped particles due to scattering off residual gas in the spectrometer causing negative ions to be accelerated towards KATRIN's detector system. Additionally, systematic errors in the neutrino mass measurement can be caused by the electrostatic field generated by trapped electrons. To search for these conditions, the spectrometer was probed by a monoenergetic electron source to determine trapping probabilities as a function of the applied electric and magnetic fields. We acknowledge the support of the German Helmholtz Association, the German Ministry for Education and Research, the Helmholtz Alliance for Astroparticle Physics, the Grant Agency of the Czech Republic, and the US Department of Energy.

  11. Environmental gamma radiation in the KATRIN Spectrometer Hall

    NASA Astrophysics Data System (ADS)

    Kippenbrock, Luke; Katrin Collaboration

    2016-03-01

    The KATRIN (KArlsruhe TRItium Neutrino) experiment, presently undergoing final assembly in Germany, will use tritium β-decay to probe the electron antineutrino mass down to a sensitivity of 0.2 eV/c2 (90% confidence level). The experimental apparatus has been designed to limit the effect of known and predicted backgrounds near the beta endpoint energy. However, recent commissioning measurements with the main spectrometer have shown that an elusive background source still remains. In this talk, the interaction of environmental gamma radiation inside the KATRIN main spectrometer is studied as a potential background creation mechanism. Geant4 simulations of the gamma flux, derived from concrete radioassay measurements, are compared with detector background rates collected under multiple gamma radiation conditions. Funded by U.S. Department of Energy, Office of Nuclear Physics under Grant #DE-FG02-97ER41020.

  12. First tritium results of the KATRIN test experiment TRAP

    SciTech Connect

    Eichelhardt, F.; Bornschein, B.; Bornschein, L.; Kazachenko, O.; Kernert, N.; Sturm, M.

    2008-07-15

    The TRAP experiment (Tritium Argon frost Pump) has been built at the Tritium Laboratory Karlsruhe (TLK) as a test rig for the Cryogenic Pumping Section (CPS) of the Karlsruhe Tritium Neutrino Experiment (KATRIN). TRAP employs a heterogeneous layer of pre-condensed argon to adsorb hydrogen isotopes at {approx} 4.2 K This paper presents results obtained in the first three tritium experiments with TRAP. (authors)

  13. Precision high voltage divider for the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Thümmler, Th; Marx, R.; Weinheimer, Ch

    2009-10-01

    The Karlsruhe Tritium Neutrino (KATRIN) experiment aims to determine the absolute mass of the electron antineutrino from a precise measurement of the tritium β-spectrum near its endpoint at 18.6 keV with a sensitivity of 0.2 eV c-2. KATRIN uses an electrostatic retardation spectrometer of MAC-E filter type for which it is crucial to monitor high voltages of up to 35 kV with a precision and long-term stability at the ppm level. Since devices capable of this precision are not commercially available, a new high voltage divider for direct voltages of up to 35 kV has been designed, following the new concept of the standard divider for direct voltages of up to 100 kV developed at the Physikalisch-Technische Bundesanstalt (PTB)PTB is the German National Metrology Institute providing scientific and technical services.. The electrical and mechanical design of the divider, the screening procedure for the selection of the precision resistors, and the results of the investigation and calibration at the PTB are reported here. During the latter, uncertainties at the low ppm level have been deduced for the new divider, thus qualifying it for the precision measurements of the KATRIN experiment.

  14. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    NASA Astrophysics Data System (ADS)

    Arenz, M.; Babutzka, M.; Bahr, M.; Barrett, J. P.; Bauer, S.; Beck, M.; Beglarian, A.; Behrens, J.; Bergmann, T.; Besserer, U.; Blümer, J.; Bodine, L. I.; Bokeloh, K.; Bonn, J.; Bornschein, B.; Bornschein, L.; Büsch, S.; Burritt, T. H.; Chilingaryan, S.; Corona, T. J.; De Viveiros, L.; Doe, P. J.; Dragoun, O.; Drexlin, G.; Dyba, S.; Ebenhöch, S.; Eitel, K.; Ellinger, E.; Enomoto, S.; Erhard, M.; Eversheim, D.; Fedkevych, M.; Felden, A.; Fischer, S.; Formaggio, J. A.; Fränkle, F.; Furse, D.; Ghilea, M.; Gil, W.; Glück, F.; Gonzalez Ureña, A.; Görhardt, S.; Groh, S.; Grohmann, S.; Grössle, R.; Gumbsheimer, R.; Hackenjos, M.; Hannen, V.; Harms, F.; Haußmann, N.; Heizmann, F.; Helbing, K.; Herz, W.; Hickford, S.; Hilk, D.; Hillen, B.; Höhn, T.; Holzapfel, B.; Hötzel, M.; Howe, M. A.; Huber, A.; Jansen, A.; Kernert, N.; Kippenbrock, L.; Kleesiek, M.; Klein, M.; Kopmann, A.; Kosmider, A.; Kovalík, A.; Krasch, B.; Kraus, M.; Krause, H.; Krause, M.; Kuckert, L.; Kuffner, B.; La Cascio, L.; Lebeda, O.; Leiber, B.; Letnev, J.; Lobashev, V. M.; Lokhov, A.; Malcherek, E.; Mark, M.; Martin, E. L.; Mertens, S.; Mirz, S.; Monreal, B.; Müller, K.; Neuberger, M.; Neumann, H.; Niemes, S.; Noe, M.; Oblath, N. S.; Off, A.; Ortjohann, H.-W.; Osipowicz, A.; Otten, E.; Parno, D. S.; Plischke, P.; Poon, A. W. P.; Prall, M.; Priester, F.; Ranitzsch, P. C.-O.; Reich, J.; Rest, O.; Robertson, R. G. H.; Röllig, M.; Rosendahl, S.; Rupp, S.; Ryšavý, M.; Schlösser, K.; Schlösser, M.; Schönung, K.; Schrank, M.; Schwarz, J.; Seiler, W.; Seitz-Moskaliuk, H.; Sentkerestiová, J.; Skasyrskaya, A.; Slezák, M.; Špalek, A.; Steidl, M.; Steinbrink, N.; Sturm, M.; Suesser, M.; Telle, H. H.; Thümmler, T.; Titov, N.; Tkachev, I.; Trost, N.; Unru, A.; Valerius, K.; Vénos, D.; Vianden, R.; Vöcking, S.; Wall, B. L.; Wandkowsky, N.; Weber, M.; Weinheimer, C.; Weiss, C.; Welte, S.; Wendel, J.; Wierman, K. L.; Wilkerson, J. F.; Winzen, D.; Wolf, J.; Wüstling, S.; Zacher, M.; Zadoroghny, S.; Zbořil, M.

    2016-04-01

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10‑11 mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.

  15. Penning discharge in the KATRIN pre-spectrometer

    NASA Astrophysics Data System (ADS)

    Fränkle, F. M.; Glück, F.; Valerius, K.; Bokeloh, K.; Beglarian, A.; Bonn, J.; Bornschein, L.; Drexlin, G.; Habermehl, F.; Leber, M. L.; Osipowicz, A.; Otten, E. W.; Steidl, M.; Thümmler, T.; Weinheimer, C.; Wilkerson, J. F.; Wolf, J.; Zadorozhny, S. V.

    2014-07-01

    The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next-generation, large-scale tritium β-decay experiment to determine the neutrino mass by investigating the kinematics of tritium β-decay with a sensitivity of 200 meV/c2 using the MAC-E filter technique. In order to reach this sensitivity a low background level of 10-2 counts per second (cps) is required. A major background concern in MAC-E filters is the presence of Penning traps. A Penning trap is a special configuration of electromagnetic fields that allows the storage of electrically charged particles. This paper describes the mechanism of Penning discharges and the corresponding measurements performed at the test setup of the KATRIN pre-spectrometer. These investigations led to the conclusion that the observed electric breakdown, strong discharges and extremely large background rates were due to discharges caused by Penning traps located at both ends of the pre-spectrometer. Furthermore, the paper describes the design of a new set of electrodes (modified ground electrodes and new ``anti-Penning'' electrodes) to successfully remove these traps. After the installation of these electrodes in the pre-spectrometer, the measurements confirmed that the strong Penning discharges disappeared. The experience gained from the pre-spectrometer was used to design the electrode system of the main spectrometer. Recent measurements with the main spectrometer showed no indications of Penning trap related backgrounds.

  16. Introduction to direct neutrino mass measurements and KATRIN

    NASA Astrophysics Data System (ADS)

    Thümmler, T.; Katrin Collaboration

    2012-08-01

    The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow β spectroscopy close to the T endpoint at 18.6 keV with unprecedented precision.

  17. An angular-selective electron source for the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Beck, M.; Bokeloh, K.; Hein, H.; Bauer, S.; Baumeister, H.; Bonn, J.; Ortjohann, H.-W.; Ostrick, B.; Rosendahl, S.; Streubel, S.; Valerius, K.; Zbořil, M.; Weinheimer, C.

    2014-11-01

    The KATRIN experiment is going to search for the average mass of the electron antineutrino with a sensitivity of 0.2 eV/c2. It uses a retardation spectrometer of MAC-E filter type to accurately measure the shape of the electron spectrum at the endpoint of tritium beta decay. In order to achieve the planned sensitivity the transmission properties of the spectrometer have to be understood with high precision for all initial conditions. For this purpose an electron source has been developed that emits single electrons at adjustable total energy and adjustable emission angle. The emission is pointlike and can be moved across the full flux tube that is imaged onto the detector. Here, we demonstrate that this novel type of electron source can be used to investigate the transmission properties of a MAC-E filter in detail.

  18. Status and commissioning of the Karlsruhe tritium neutrino experiment KATRIN

    NASA Astrophysics Data System (ADS)

    Thuemmler, Thomas; Katrin Collaboration

    2013-10-01

    Neutrino properties, and especially the determination of the neutrino rest mass, play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double β decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. Experiments based on single β decay investigate electrons close to their kinematic endpoint in order to determine the neutrino mass by a modelindependent method. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β spectroscopy close to the tritium endpoint with unprecedented precision and will reach a sensitivity of 200 meV/c2 (90% C.L.) on the neutrino mass.

  19. A broad-band FT-ICR Penning trap system for KATRIN

    NASA Astrophysics Data System (ADS)

    Ubieto-Díaz, M.; Rodríguez, D.; Lukic, S.; Nagy, Sz; Stahl, S.; Blaum, K.

    2009-12-01

    The KArlsruhe TRItium Neutrino experiment KATRIN aims at improving the upper limit of the mass of the electron antineutrino to about 0.2 eV (90% c.l.) by investigating the -decay of tritium gas molecules . The experiment is currently under construction to start first data taking in 2012. One source of systematic uncertainties in the KATRIN experiment is the formation of ion clusters when tritium decays and decay products interact with residual tritium molecules. It is essential to monitor the abundances of these clusters since they have different final state energies than tritium ions. For this purpose, a prototype of a cylindrical Penning trap has been constructed and tested at the Max-Planck-Institute for Nuclear Physics in Heidelberg, which will be installed in the KATRIN beam line. This system employs the technique of Fourier-Transform Ion-Cyclotron-Resonance in order to measure the abundances of the different stored ion species.

  20. Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment

    NASA Astrophysics Data System (ADS)

    Formaggio, J. A.; Barrett, J.

    2011-11-01

    The KArlsruhe TRItium Neutrino experiment (KATRIN) combines an ultra-luminous molecular tritium source with an integrating high-resolution spectrometer to gain sensitivity to the absolute mass scale of neutrinos. The projected sensitivity of the experiment on the electron neutrino mass is 200 meV at 90% C.L. With such unprecedented resolution, the experiment is also sensitive to physics beyond the Standard Model, particularly to the existence of additional sterile neutrinos at the eV mass scale. A recent analysis of available reactor data appears to favor the existence of such a sterile neutrino with a mass splitting of | Δmsterile | 2 ⩾ 1.5eV2 and mixing strength of sin2 2θsterile = 0.17 ± 0.08 at 95% C.L. Upcoming tritium beta decay experiments should be able to rule out or confirm the presence of the new phenomenon for a substantial fraction of the allowed parameter space.

  1. Measurement and reduction of low-level radon background in the KATRIN experiment

    SciTech Connect

    Fränkle, F. M.

    2013-08-08

    The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale experiment to determine the mass of the electron anti-neutrino by investigating the kinematics of tritium beta decay with a sensitivity of 200 meV/c{sup 2}. The measurement setup consists of a high luminosity windowless gaseous molecular tritium source (WGTS), a differential and cryogenic pumped electron transport and tritium retention section, a tandem spectrometer section (pre-spectrometer and main spectrometer) for energy analysis, followed by a detector system for counting transmitted beta decay electrons. Measurements performed at the KATRIN pre-spectrometer test setup showed that the decay of radon (Rn) atoms in the volume of the KATRIN spectrometers is a major background source. Rn atoms from low-level radon emanation of materials inside the vacuum region of the KATRIN spectrometers are able to penetrate deep into the magnetic flux tube so that the alpha decay of Rn contributes to the background. Of particular importance are electrons emitted in processes accompanying the Rn alpha decay, such as shake-off, internal conversion of excited levels in the Rn daughter atoms and Auger electrons. Lowenergy electrons (< 100 eV) directly contribute to the background in the signal region. High-energy electrons can be stored magnetically inside the volume of the spectrometer and are able to create thousands of secondary electrons via subsequent ionization processes with residual gas molecules. In order to reduce the Rn induced background different active and passive counter measures were developed and tested. This proceeding will give an overview on Rn sources within the KATRIN spectrometer, describes how Rn decays inside the spectrometer produce background events at the detector and presents different counter measures to reduce the Rn induced background.

  2. Neutrinos secretly converting to lighter particles to please both KATRIN and the cosmos

    NASA Astrophysics Data System (ADS)

    Farzan, Yasaman; Hannestad, Steen

    2016-02-01

    Within the framework of the Standard Model of particle physics and standard cosmology, observations of the Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO) set stringent bounds on the sum of the masses of neutrinos. If these bounds are satisfied, the upcoming KATRIN experiment which is designed to probe neutrino mass down to ~ 0.2 eV will observe only a null signal. We show that the bounds can be relaxed by introducing new interactions for the massive active neutrinos, making neutrino masses in the range observable by KATRIN compatible with cosmological bounds. Within this scenario, neutrinos convert to new stable light particles by resonant production of intermediate states around a temperature of T~ keV in the early Universe, leading to a much less pronounced suppression of density fluctuations compared to the standard model.

  3. Electron line shape and transmission function of the KATRIN monitor spectrometer

    NASA Astrophysics Data System (ADS)

    Slezák, M.

    2013-12-01

    Knowledge of the neutrino mass is of particular interest in modern neutrino physics. Besides the neutrinoless double beta decay and cosmological observation information about the neutrino mass is obtained from single beta decay by observing the shape of the electron spectrum near the endpoint. The KATRIN β decay experiment aims to push the limit on the effective electron antineutrino mass down to 0.2 eV/c2. To reach this sensitivity several systematic effects have to be under control. One of them is the fluctuations of the absolute energy scale, which therefore has to be continuously monitored at very high precision. This paper shortly describes KATRIN, the technique for continuous monitoring of the absolute energy scale and recent improvements in analysis of the monitoring data.

  4. Tests of by-pass diodes at cryogenic temperatures for the KATRIN magnets

    SciTech Connect

    Gil, W.; Bolz, H.; Jansen, A.; Müller, K.; Steidl, M.; Hagedorn, D.

    2014-01-27

    The Karlsruhe Tritium Neutrino experiment (KATRIN) requires a series of superconducting solenoid magnets for guiding beta-electrons from the source to the detector. By-pass diodes will operate at liquid helium temperatures to protect the superconducting magnets and bus bars in case of quenches. The operation conditions of the by-pass diodes depend on the different magnet systems of KATRIN. Therefore, different diode stacks are designed with adequate copper heat sinks assuming adiabatic conditions. The by-pass diode stacks have been submitted to cold tests both at liquid nitrogen and liquid helium temperatures for checking operation conditions. This report presents the test set up and first results of the diode characteristics at 300 K and 77 K, as well as of endurance tests of the diode stacks at constant current load at 77 K and 4.2 K.

  5. Electron line shape and transmission function of the KATRIN monitor spectrometer

    SciTech Connect

    Slezák, M.

    2013-12-30

    Knowledge of the neutrino mass is of particular interest in modern neutrino physics. Besides the neutrinoless double beta decay and cosmological observation information about the neutrino mass is obtained from single beta decay by observing the shape of the electron spectrum near the endpoint. The KATRIN β decay experiment aims to push the limit on the effective electron antineutrino mass down to 0.2 eV/c{sup 2}. To reach this sensitivity several systematic effects have to be under control. One of them is the fluctuations of the absolute energy scale, which therefore has to be continuously monitored at very high precision. This paper shortly describes KATRIN, the technique for continuous monitoring of the absolute energy scale and recent improvements in analysis of the monitoring data.

  6. 1450 m^3 at 10^-9 Pa: One of the KATRIN Challenges

    SciTech Connect

    Christian Day; R. Gumbsheimer; W. Herz; J. Wolf; J. Bonn; R. Reid; G.R. Myneni

    2006-11-12

    The KATRIN project is a challenging experiment to measure the mass of the electron neutrino directly with a sensitivity of 0.2 eV. It is a next generation tritium beta-decay experiment scaling up the size and precision of previous experiments by an order of magnitude as well as the intensity of the tritium beta source. Ultrafine spectrometric analysis of the energy distribution of the decay electrons at their very endpoint of 18.57 keV is the key to derive the neutrino mass. This is provided by a high-resolution spectrometer of unique size (10 m in diameter, 22 m in length). To avoid any negative influence from residual gas, the spectrometer vessel is designed to UHV/XHV conditions (an ultimate total pressure of below 10{sup -9} Pa and a wall outgassing rate below 10{sup -13} Pam{sup 3}/scm{sup 2}). The paper shortly describes the experimental idea behind KATRIN. The emphasis will then be given to the pumping concept for how to achieve the target parameters and to the manufacturing of the spectrometer tank. Critical issues will also be discussed (surface treatment, welding, transportation). Finally, a description of the current status and an outlook on the overall KATRIN schedule completes the paper.

  7. Gaseous source of 83mKr conversion electrons for the neutrino experiment KATRIN

    NASA Astrophysics Data System (ADS)

    Vénos, D.; Slezák, M.; Dragoun, O.; Inoyatov, A.; Lebeda, O.; Pulec, Z.; Sentkerestiová, J.; Špalek, A.

    2014-12-01

    The metastable 83mKr with short half-life of 1.83 h is intended as a space distributed source of monoenergetic electrons for energy calibration and systematic studies in the Karlsruhe tritium neutrino experiment (KATRIN). The efficient production of the parent radionuclide 83Rb at cyclotron U-120M was implemented. The release of the 83mKr from zeolite (molecular sieve), in which the parent radionuclide 83Rb (T1/2 = 86.2 d) was trapped, was studied under various conditions using the gamma spectroscopy. Residual gas analysis of ultra high vacuum over the zeolite was performed as well.

  8. Simulation of background from low-level tritium and radon emanation in the KATRIN spectrometers

    SciTech Connect

    Leiber, B.; Collaboration: KATRIN Collaboration

    2013-08-08

    The KArlsruhe TRItium Neutrino (KATRIN) experiment is a large-scale experiment for the model independent determination of the mass of electron anti-neutrinos with a sensitivity of 200 meV/c{sup 2}. It investigates the kinematics of electrons from tritium beta decay close to the endpoint of the energy spectrum at 18.6 keV. To achieve a good signal to background ratio at the endpoint, a low background rate below 10{sup −2} counts per second is required. The KATRIN setup thus consists of a high luminosity windowless gaseous tritium source (WGTS), a magnetic electron transport system with differential and cryogenic pumping for tritium retention, and electro-static retarding spectrometers (pre-spectrometer and main spectrometer) for energy analysis, followed by a segmented detector system for counting transmitted beta-electrons. A major source of background comes from magnetically trapped electrons in the main spectrometer (vacuum vessel: 1240 m{sup 3}, 10{sup −11} mbar) produced by nuclear decays in the magnetic flux tube of the spectrometer. Major contributions are expected from short-lived radon isotopes and tritium. Primary electrons, originating from these decays, can be trapped for hours, until having lost almost all their energy through inelastic scattering on residual gas particles. Depending on the initial energy of the primary electron, up to hundreds of low energetic secondary electrons can be produced. Leaving the spectrometer, these electrons will contribute to the background rate. This contribution describes results from simulations for the various background sources. Decays of {sup 219}Rn, emanating from the main vacuum pump, and tritium from the WGTS that reaches the spectrometers are expected to account for most of the background. As a result of the radon alpha decay, electrons are emitted through various processes, such as shake-off, internal conversion and the Auger deexcitations. The corresponding simulations were done using the KASSIOPEIA

  9. High-voltage monitoring with a solenoid retarding spectrometer at the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Erhard, M.; Bauer, S.; Beglarian, A.; Bergmann, T.; Bonn, J.; Drexlin, G.; Goullon, J.; Groh, S.; Glück, F.; Kleesiek, M.; Haußmann, N.; Höhn, T.; Johnston, K.; Kraus, M.; Reich, J.; Rest, O.; Schlösser, K.; Schupp, M.; Slezák, M.; Thümmler, T.; Vénos, D.; Weinheimer, C.; Wüstling, S.; Zbořil, M.

    2014-06-01

    The KATRIN experiment will measure the absolute mass scale of neutrinos with a sensitivity of mν = 200meV/c2 by means of an electrostatic spectrometer set close to the tritium β-decay endpoint at 18.6keV. Fluctuations of the energy scale must be under control within ±60mV (±3ppm). Since a precise voltage measurement in the range of tens of kV is on the edge of current technology, a nuclear standard will be deployed additionally. Parallel to the main spectrometer the same retarding potential will be applied to the monitor spectrometer to measure 17.8-keV K-conversion electrons of 83mKr. This article describes the setup of the monitor spectrometer and presents its first measurement results.

  10. Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Valerius, K.; Hein, H.; Baumeister, H.; Beck, M.; Bokeloh, K.; Bonn, J.; Glück, F.; Ortjohann, H.-W.; Ostrick, B.; Zbořil, M.; Weinheimer, Ch

    2011-01-01

    The method of direct neutrino mass determination based on the kinematics of tritium beta decay, which is adopted by the KATRIN experiment, makes use of a large, high-resolution electrostatic spectrometer with magnetic adiabatic collimation. In order to target a sensitivity on m(ν) of 0.2eV/c2, a detailed understanding of the electromagnetic properties of the electron spectrometer is essential, requiring comprehensive calibration measurements with dedicated electron sources. In this paper we report on a prototype of a photoelectron source providing a narrow energy spread and angular selectivity. Both are key properties for the characterisation of the spectrometer. The angular selectivity is achieved by applying non-parallel strong electric and magnetic fields: Directly after being created, photoelectrons are accelerated rapidly and non-adiabatically by a strong electric field before adiabatic magnetic guiding takes over.

  11. Next generation KATRIN high precision voltage divider for voltages up to 65kV

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Berendes, R.; Hochschulz, F.; Ortjohann, H.-W.; Rosendahl, S.; Thümmler, T.; Schmidt, M.; Weinheimer, C.

    2013-10-01

    The KATRIN (KArlsruhe TRItium Neutrino) experiment aims to determine the mass of the electron antineutrino with a sensitivity of 200 meV by precisely measuring the electron spectrum of the tritium beta decay. This will be done by the use of a retarding spectrometer of the MAC-E-Filter type. To achieve the desired sensitivity the stability of the retarding potential of -18.6 kV has to be monitored with a precision of 3 ppm over at least two months. Since this is not feasible with commercial devices, two ppm-class high voltage dividers were developed, following the concept of the standard divider for DC voltages of up to 100 kV of the Physikalisch-Technische Bundesanstalt (PTB). In order to reach such high accuracies different effects have to be considered. The two most important ones are the temperature dependence of resistance and leakage currents, caused by insulators or corona discharges. For the second divider improvements were made concerning the high-precision resistors and the thermal design of the divider. The improved resistors are the result of a cooperation with the manufacturer. The design improvements, the investigation and the selection of the resistors, the built-in ripple probe and the calibrations at PTB will be reported here. The latter demonstrated a stability of about 0.1 ppm/month over a period of two years.

  12. Status of the KATRIN Experiment and Prospects to Search for keV-mass Sterile Neutrinos in Tritium β-decay

    NASA Astrophysics Data System (ADS)

    Mertens, Susanne

    In this contribution the current status and future perspectives of the Karlsruhe Tritium Neutrino (KATRIN) Experiment are presented. The prime goal of this single β-decay experiment is to probe the absolute neutrino mass scale with a sensitivity of 200 meV (90% CL). We discuss first results of the recent main spectrometer commissioning measurements, successfully verifying the spectrometer's basic vacuum, transmission and background properties. We also discuss the prospects of making use of the KATRIN tritium source, to search for sterile neutrinos in the multi-keV mass range constituting a classical candidate for Warm Dark Matter. Due to the very high source luminosity, a statistical sensitivity down to active-sterile mixing angles of sin2θ < 1 . 10-7 (90% CL) could be reached.

  13. Status of the KATRIN experiment and prospects to search for keV-mass sterile neutrinos in tritium β-decay

    DOE PAGESBeta

    Mertens, Susanne

    2015-03-24

    In this contribution the current status and future perspectives of the Karlsruhe Tritium Neutrino (KATRIN) Experiment are presented. The prime goal of this single β-decay experiment is to probe the absolute neutrino mass scale with a sensitivity of 200 meV (90% CL). We discuss first results of the recent main spectrometer commissioning measurements, successfully verifying the spectrometer’s basic vacuum, transmission and background properties. We also discuss the prospects of making use of the KATRIN tritium source, to search for sterile neutrinos in the multi-keV mass range constituting a classical candidate for Warm Dark Matter. Due to the very high sourcemore » luminosity, a statistical sensitivity down to active-sterile mixing angles of sin² θ < 1 · 10⁻⁷ (90% CL) could be reached.« less

  14. Status of the KATRIN experiment and prospects to search for keV-mass sterile neutrinos in tritium β-decay

    SciTech Connect

    Mertens, Susanne

    2015-03-24

    In this contribution the current status and future perspectives of the Karlsruhe Tritium Neutrino (KATRIN) Experiment are presented. The prime goal of this single β-decay experiment is to probe the absolute neutrino mass scale with a sensitivity of 200 meV (90% CL). We discuss first results of the recent main spectrometer commissioning measurements, successfully verifying the spectrometer’s basic vacuum, transmission and background properties. We also discuss the prospects of making use of the KATRIN tritium source, to search for sterile neutrinos in the multi-keV mass range constituting a classical candidate for Warm Dark Matter. Due to the very high source luminosity, a statistical sensitivity down to active-sterile mixing angles of sin² θ < 1 · 10⁻⁷ (90% CL) could be reached.

  15. An online FT-ICR Penning-trap mass spectrometer for the DPS2-F section of the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Heck, M.; Ascher, P.; Cakirli, R. B.; Golzke, H.; Rodríguez, D.; Stahl, S.; Ubieto-Díaz, M.; Blaum, K.

    2014-09-01

    Two Fourier-transform ion-cyclotron resonance (FT-ICR) Penning-trap mass spectrometers will be installed in the pumping section of the KArlsruhe TRItium Neutrino (KATRIN) experiment. This experiment aims at determining the electron anti-neutrino mass m(νebar) with a sensitivity of 0.2 eV (90% C.L.) by high-resolution tritium β-spectroscopy. The tritium source creates various types of ions, which have to be reduced in order to reach the required low background level. The purpose of the FT-ICR mass spectrometers is the identification of the ion flux components as well as their abundance. Furthermore, the pumping efficiency of the differential pumping section DPS2-F can be determined since these Penning traps will be installed one at the entrance and one at the exit. In this paper the operation of the FT-ICR system is described. Experimental results are presented concerning the cryogenic broad-band amplifier system for the FT-ICR detection as well as the characterisation of the mass spectrometer with respect to, e.g., noise density and detection limit.

  16. Predicting Mothers' Reports of Children's Mental Health Three Years after Hurricane Katrin.

    PubMed

    Lowe, Sarah R; Godoy, Leandra; Rhodes, Jean E; Carter, Alice S

    2013-01-01

    This study explored pathways through which hurricane-related stressors affected the psychological functioning of elementary school aged children who survived Hurricane Katrina. Participants included 184 mothers from the New Orleans area who completed assessments one year pre-disaster (Time 1), and one and three years post-disaster (Time 2 and Time 3, respectively). Mothers rated their children's behavior problems at Time 3 only (n = 251 children; 53.0% male; Mean age: 10.19 years, SD = 1.68 years). A path analytic model indicated that hurricane-related stressors were associated with increased maternal psychological distress and school mobility in the first post-disaster year, which were associated with higher child internalizing and externalizing symptoms three years post-disaster. Mediation analysis indicated that hurricane-related stressors were associated with child symptoms indirectly, through their impact on maternal psychological distress. Findings underscore the importance of interventions that boost maternal and child mental health and support children through post-disaster school transitions. PMID:23471125

  17. Validation of 3D Code KATRIN For Fast Neutron Fluence Calculation of VVER-1000 Reactor Pressure Vessel by Ex-Vessel Measurements and Surveillance Specimens Results

    NASA Astrophysics Data System (ADS)

    Dzhalandinov, A.; Tsofin, V.; Kochkin, V.; Panferov, P.; Timofeev, A.; Reshetnikov, A.; Makhotin, D.; Erak, D.; Voloschenko, A.

    2016-02-01

    Usually the synthesis of two-dimensional and one-dimensional discrete ordinate calculations is used to evaluate neutron fluence on VVER-1000 reactor pressure vessel (RPV) for prognosis of radiation embrittlement. But there are some cases when this approach is not applicable. For example the latest projects of VVER-1000 have upgraded surveillance program. Containers with surveillance specimens are located on the inner surface of RPV with fast neutron flux maximum. Therefore, the synthesis approach is not suitable enough for calculation of local disturbance of neutron field in RPV inner surface behind the surveillance specimens because of their complicated and heterogeneous structure. In some cases the VVER-1000 core loading consists of fuel assemblies with different fuel height and the applicability of synthesis approach is also ambiguous for these fuel cycles. Also, the synthesis approach is not enough correct for the neutron fluence estimation at the RPV area above core top. Because of these reasons only the 3D neutron transport codes seem to be satisfactory for calculation of neutron fluence on the VVER-1000 RPV. The direct 3D calculations are also recommended by modern regulations.

  18. Detector-related backgrounds in the Karlsruhe Tritium Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Leber, Michelle; Katrin Collaboration

    2011-12-01

    The Karlsruhe Tritium Neutrino Experiment, or KATRIN, is a next generation tritium beta decay experiment to directly measure neutrino mass with an expected sensitivity of 0.2 eV [KATRIN Design Report 2004 see http://www-ik.fzk.de/~katrin/]. Neutrino mass does not fit into the Standard Model, and determining this mass may set the scale of new physics. To achieve this level of sensitivity, backgrounds in the experiment must be minimized. A complete Geant4 [Agostinelli S et al. 2003 Nuclear Instr. Methods A 506 250-303 Allison J et al. 2006 IEEE Transactions on Nuclear Science53 No. 1 270-8] simulation of KATRIN's focal plane detector and surrounding region is being developed. These simulations will help guide the design and selection of shielding and detector construction materials to reduce backgrounds from cosmic rays and natural radioactivity.

  19. 76 FR 72713 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ...). Inventors: Katrin D. Mayer, Bruno Bezerril D. Andrade, F. Alan Sher, and Daniel L. Barber (NIAID... inventions listed below are owned by an agency of the U.S. Government and are available for licensing in the U.S. in accordance with 35 U.S.C. 207 to achieve expeditious commercialization of results...

  20. A GLIMPSE INTO THE EYE OF THE EMERGENCY RESPONSE AT EPA KATRINA AND RITA

    EPA Science Inventory

    This presentation was given at the Texas Environmental Health Association Annual Meeting in Round Rock, TX on October 12, 2005. The keynote address was focused on the conditions after Katrins, organizing response, field response, EPA's role in emergency response, what is EPA doi...

  1. Monte Carlo calculations of the intrinsic detector backgrounds for the Karlsruhe Tritium Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Leber, Michelle L.

    The Karlsruhe Tritium Neutrino Experiment (KATRIN) aims to measure the absolute neutrino mass, an open question in neutrino physics. KATRIN exploits the fact that the beta-decay spectral shape near the endpoint depends on the neutrino mass. Using a gaseous tritium source and a precise electrostatic spectrometer, KATRIN will measure the integral beta-decay spectrum in a silicon detector. KATRIN strives for a sensitivity of 0.2 eV (90% CL) to the neutrino mass, ten times better than the current limit. A measurement at this level of sensitivity has broad implications for cosmology and particle physics. To maximize sensitivity to the small beta-decay signal, the KATRIN silicon detector must have minimal intrinsic backgrounds. The background goal for the detector is less than 10-3 counts per second (1 mHz) in the region of interest near the 18.6 keV signal. In this dissertation, we present estimates of the detector background rate calculated with a custom Geant4-based Monte Carlo simulation. The simulation includes a detailed description of the detector system and attributes of the intrinsic background sources, natural radioactivity and cosmic rays. We identified the largest background sources, optimized the detector region design to minimize the background rate, and performed measurements to confirm the simulation results. In particular, we have measured the radiation field from radioactivity in all objects in the detector laboratory using a germanium detector. The simulated germanium detector rate agrees within 5% of the measured rate. In addition, various calibration spectra measured with silicon and germanium detectors are within 7% of the simulated spectra. The results from our simulations indicate that we should observe a background of [2.54 +/- 0.11(stat.) +0.36-0.35 (sys.)]mHz at the nominal magnetic field of 3 T and zero post acceleration. The largest background sources are radiation from the laboratory environment and cosmic-ray photons. Utilizing 20 kV of

  2. Moving to atomic tritium for neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Kazkaz, Kareem; Project8 Collaboration

    2016-03-01

    For direct measurements of the neutrino mass, the tritium-based experiments Mainz and Troitsk have provided the most sensitive measurements to date, with upper limits near 2200 meV. The KATRIN experiment, beginning its first science run in 2016, also uses tritium as its source and has an anticipated ultimate sensitivity of 200 meV. The largest single systematic effect limiting the mass sensitivity beyond KATRIN is the energy sharing between the emitted beta particle and the resulting T-3He molecule. It therefore behooves all future tritium-based experiments to use atomic, rather than molecular, tritium. In this presentation we will outline experimental considerations of atomic tritium: production, purification, inhibiting recombination, and cooling. We will discuss these considerations within the context of Project8, a tritium-based, cyclotron radiation emission spectroscopy neutrino mass measurement with an ultimate target sensitivity of 50 meV. Prepared by LLNL under Contract DE-AC52-07NA27344.

  3. Performance of a TiN-coated monolithic silicon pin-diode array under mechanical stress

    NASA Astrophysics Data System (ADS)

    VanDevender, B. A.; Bodine, L. I.; Myers, A. W.; Amsbaugh, J. F.; Howe, M. A.; Leber, M. L.; Robertson, R. G. H.; Tolich, K.; Van Wechel, T. D.; Wall, B. L.

    2012-05-01

    The Karlsruhe Tritium Neutrino Experiment (KATRIN) will detect tritium β-decay electrons that pass through its electromagnetic spectrometer with a highly segmented monolithic silicon pin-diode focal-plane detector (FPD). This pin-diode array will be on a single piece of 500-μm-thick silicon, with contact between titanium nitride (TiN)-coated detector pixels and front-end electronics made by spring-loaded pogo pins. The pogo pins will exert a total force of up to 50 N on the detector, deforming it and resulting in mechanical stress up to 50 MPa in the silicon bulk. We have evaluated a prototype pin-diode array with a pogo-pin connection scheme similar to the KATRIN FPD. We find that pogo pins make good electrical contact to TiN and observe no effects on detector resolution or reverse-bias leakage current which can be attributed to mechanical stress.

  4. Testing molecular effects for tritium-based neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Parno, Diana; Bodine, Laura; Robertson, R. G. Hamish

    2015-10-01

    The upcoming KATRIN experiment will use the kinematics of tritium beta decay to probe the neutrino mass. The tritium source is molecular, however, and one of KATRIN's largest expected systematic uncertainties arises from the population of molecular final states following beta decay. To study this uncertainty, the Tritium Recoil-Ion Mass Spectrometer will measure the dissociation probability of the daughter molecule following beta decay, addressing a discrepancy between modern, high-precision theoretical calculations and two mass spectrometry measurements from the 1950s. We will describe the novel measurement technique and the commissioning of the experiment. This research is supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER41020.

  5. Direct neutrino mass experiments and exotic charged current interactions

    NASA Astrophysics Data System (ADS)

    Ludl, Patrick Otto; Rodejohann, Werner

    2016-06-01

    We study the effect of exotic charged current interactions on the electron energy spectrum in tritium decay, focussing on the KATRIN experiment and a possible modified setup that has access to the full spectrum. Both sub-eV and keV neutrino masses are considered. We perform a fully relativistic calculation and take all possible new interactions into account, demonstrating the possible sizable distortions in the energy spectrum.

  6. Exact relativistic {beta} decay endpoint spectrum

    SciTech Connect

    Masood, S. S.; Nasri, S.; Schechter, J.; Tortola, M. A.; Valle, J. W. F.

    2007-10-15

    The exact relativistic form for the {beta} decay endpoint spectrum is derived and presented in a simple factorized form. We show that our exact formula can be well approximated to yield the endpoint form used in the fit method of the KATRIN Collaboration. We also discuss the three-neutrino case and how information from neutrino oscillation experiments may be useful in analyzing future {beta} decay endpoint experiments.

  7. Unique forbidden beta decays and neutrino mass

    NASA Astrophysics Data System (ADS)

    Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-01

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  8. Statistical criteria for search of heavy neutrino in tritium spectrum

    NASA Astrophysics Data System (ADS)

    Lokhov, Alexey; Tkachov, Fyodor

    2016-05-01

    The method of quasi-optimal weights is applied to constructing (quasi-)optimal criteria for search of heavy (4th generation) neutrino contribution in experimental β-decay spectra. Various approaches to searching for anomalous contributions in spectra are discussed. In particular the tritium β-decay spectrum (for instance, in Troitsk-v-mass, Mainz Neutrino Mass and KATRIN experiments) is analyzed using the derived special criteria. The power functions constructed for each criteria show the efficiency of the derived quasi-optimal criteria as statistical instruments for detecting the anomalous contributions in the spectra. The overall sensitivity of the criteria is estimated.

  9. Direct Neutrino Mass Searches

    NASA Astrophysics Data System (ADS)

    VanDevender, B. A.

    2009-12-01

    Neutrino flavor oscillation experiments have demonstrated that the three Standard Model neutrino flavor eigenstates are mixed with three mass eigenstates whose mass eigenvalues are nondegenerate. The oscillation experiments measure the differences between the squares of the mass eigenvalues but tell us nothing about their absolute values. The unknown absolute neutrino mass scale has important implications in particle physics and cosmology. Beta decay endpoint measurements are presented as a model-independent method to measure the absolute neutrino mass. The Karlsruhe Tritium Neutrino Experiment (KATRIN) is explored in detail.

  10. Unique forbidden beta decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-28

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  11. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  12. Direct neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Thümmler, T.

    2011-07-01

    The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.

  13. Progress with the MPIK/UW-PTMS in Heidelberg

    NASA Astrophysics Data System (ADS)

    Diehl, Christoph; Blaum, Klaus; Höcker, Martin; Ketter, Jochen; Pinegar, David B.; Streubel, Sebastian; Van Dyck, Robert S.

    2011-07-01

    The precise determination of the 3He/3H mass ratio, and hence the tritium β-decay endpoint energy E 0, is of relevance for the measurement of the electron anti-neutrino mass performed by the Karlsruhe Tritium Neutrino experiment (KATRIN). By determining this ratio to an uncertainty of 1 part in 1011, systematic errors of E 0 can be checked in the data analysis of KATRIN. To reach this precision, a Penning Trap Mass Spectrometer was constructed at the University of Washington and has been transferred to the Max Planck Institute for Nuclear Physics in Heidelberg at the end of 2008. Since then it is called MPIK/UW-PTMS. Special design features are the utilization of an external ion source and a double trap configuration. The external Penning ion source efficiently ionizes the helium and tritium gas and can give superior elimination of unwanted ion species compared to the previously utilized in-trap-ionization by electrons from a field-emission point. The design as a double Penning trap allows a faster measurement procedure. This should help to avoid problems resulting from long-term drifts in the experimental conditions. Additionally, the laboratory in Heidelberg was carefully prepared to have very stable environmental conditions. Experimental challenges and the first Heidelberg results with the new spectrometer are presented.

  14. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  15. Supercomputing Sheds Light on the Dark Universe

    SciTech Connect

    Salman Habib

    2012-11-15

    At Argonne National Laboratory, scientists are using supercomputers to shed light on one of the great mysteries in science today, the Dark Universe. With Mira, a petascale supercomputer at the Argonne Leadership Computing Facility, a team led by physicists Salman Habib and Katrin Heitmann will run the largest, most complex simulation of the universe ever attempted. By contrasting the results from Mira with state-of-the-art telescope surveys, the scientists hope to gain new insights into the distribution of matter in the universe, advancing future investigations of dark energy and dark matter into a new realm. The team's research was named a finalist for the 2012 Gordon Bell Prize, an award recognizing outstanding achievement in high-performance computing.

  16. Prospects for cosmic neutrino detection in tritium experiments in the case of hierarchical neutrino masses

    SciTech Connect

    Blennow, Mattias

    2008-06-01

    We discuss the effects of neutrino mixing and the neutrino mass hierarchy when considering the capture of the cosmic neutrino background (CNB) on radioactive nuclei. The implications of mixing and hierarchy at future generations of tritium decay experiments are considered. We find that the CNB should be detectable at these experiments provided that the resolution for the kinetic energy of the outgoing electron can be pushed to a few 0.01 eV for the scenario with inverted neutrino mass hierarchy, about an order of magnitude better than that of the upcoming KATRIN experiment. Another order of magnitude improvement is needed in the case of normal neutrino mass hierarchy. We also note that mixing effects generally make the prospects for CNB detection worse due to an increased maximum energy of the normal beta decay background.

  17. Kamstrup's wow-effect: re-examined and expanded

    NASA Astrophysics Data System (ADS)

    King, Elizabeth M.; Dickmann, Ellyn M.; Johnson, Barbara Z.

    2016-03-01

    This review examines Anna Katrine Kamstrup's article "The wow-effect in science teacher education; technology; sociomateriality." In the discussion below we explore three key areas of her ethnographic research. First, we reconsider Kamstrup's article through the lens of technology as a pedagogical choice and philosophy. This is followed by our discussion of aspects of her study within the context of a basic understanding that entry-level pre-service teachers need to fully understand both the process of learning and scientific principles as these are important foundational factors in determining whether or not the wow-effect will occur as expected. Finally, our review team presents multiple areas in Kamstrup's article as potential points for further elaboration.

  18. Changes to Irradiation Conditions of VVER-1000 Surveillance Specimens Resulting from Fuel Assemblies with Greater Fuel Height

    NASA Astrophysics Data System (ADS)

    Panferov, Pavel; Kochkin, Viacheslav; Erak, Dmitry; Makhotin, Denis; Reshetnikov, Alexandr; Timofeev, Andrey

    2016-02-01

    The goal of the work was to obtain experimental data on the influence of newtype fuel assemblies with higher fuel rods on the irradiation conditions of surveillance specimens installed on the baffe of VVER-1000. For this purpose, two surveillance sets with container assemblies of the same design irradiated in reactors with different fuel assemblies in the core were investigated. Measurements of neutron dosimeters from these sets and retrospective measurements of 54Mn activity accumulated in each irradiated specimen allow a detailed distribution of the fast neutron flux in the containers to be obtained. Neutron calculations have been done using 3D discrete ordinate code KATRIN. On the basis of the obtained results, a change of the lead factor due to newtype fuel assemblies was evaluated for all types of VVER-1000 container assemblies.

  19. Absolute mass of neutrinos and the first unique forbidden {beta} decay of {sup 187}Re

    SciTech Connect

    Dvornicky, Rastislav; Simkovic, Fedor; Muto, Kazuo; Faessler, Amand

    2011-04-15

    The planned rhenium {beta}-decay experiment, called the ''Microcalorimeter Arrays for a Rhenium Experiment'' (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which will take commissioning data in 2011 and will proceed for 5 years. We present the energy distribution of emitted electrons for the first unique forbidden {beta} decay of {sup 187}Re. It is found that the p-wave emission of electron dominates over the s wave. By assuming mixing of three neutrinos, the Kurie function for the rhenium {beta} decay is derived. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed {beta} decay of {sup 3}H.

  20. Investigation of durability of optical coatings in highly purified tritium gas

    SciTech Connect

    Fischer, S.; Schoenung, K.; Bornschein, B.; Rolli, R.; Schaefer, V.; Sturm, M.

    2015-03-15

    Anti-reflection coated windows are part of Raman spectroscopy systems for tritium analytics in the KATRIN experiment and fusion-related applications. Damages of such windows were observed after three months of expo-sure to highly purified tritium gas in the LOOPINO facility. In this work, the origin of the damages was investigated, identified and eliminated. Coating samples manufactured by various physical vapor deposition methods have been tested for durability by exposure to pure tritium gas and subsequent visual inspection. Electron beam deposited coatings showed indications for damage after 17 days of tritium exposure in contrast to samples manufactured by ion assisted deposition or sputtering. An improved coating layout of the sample cell is presented for reliable long-term monitoring of tritium gas using Raman spectroscopy. (authors)

  1. Post service examination of turbomolecular pumps after stress testing with Kg-scale tritium throughput

    SciTech Connect

    Priester, F.; Roelling, M.

    2015-03-15

    Turbomolecular pumps (TMP) will be used with large amounts of tritium in future fusion machines like ITER, DEMO and in the KATRIN Experiment. In this work, a stress test of a large, magnetically levitated TMP (Leybold MAG W2800) with a tritium throughput of 1.1 kg over 384 days of operation was performed at TLK. After this, the pump was dismantled and the tritium uptake in several parts was deter-mined. Especially the non-metallic parts of the pump have absorbed large amounts of tritium and are most likely responsible for the observed pollution of the process gas. The total tritium uptake of the TMP was estimated with 0.1-1.1 TBq. No radiation-induced damages were found on the inner parts of the pump. The TMP showed no signs of functional limitations during the 384 days of operation. (authors)

  2. SDAV Viz July Progress Update: LANL

    SciTech Connect

    Sewell, Christopher Meyer

    2012-07-30

    SDAV Viz July Progress Update: (1) VPIC (Vector Particle in Cell) Kinetic Plasma Simulation Code - (a) Implemented first version of an in-situ adapter based on Paraview CoProcessing Library, (b) Three pipelines: vtkDataSetMapper, vtkContourFilter, vtkPistonContour, (c) Next, resolve issue at boundaries of processor domains; add more advanced viz/analysis pipelines; (2) Halo finding/merger trees - (a) Summer student Wathsala W. from University of Utah is working on data-parallel halo finder algorithm using PISTON, (b) Timo Bremer (LLNL), Valerio Pascucci (Utah), George Zagaris (Kitware), and LANL people are interested in using merger trees for tracking the evolution of halos in cosmo simulations; discussed possible overlap with work by Salman Habib and Katrin Heitmann (Argonne) during their visit to LANL 7/11; (3) PISTON integration in ParaView - Now available from ParaView github.

  3. The Absolute Mass of Neutrino and the First Unique Forbidden β-DECAY of 187Re

    NASA Astrophysics Data System (ADS)

    Dvornický, Rastislav; Šimkovic, Fedor; Muto, Kazuo

    2011-10-01

    The planned rhenium β-decay experiment MARE might probe the absolute mass scale of neutrinos with the same sensitivity as the tritium β-decay experiment KATRIN, which will start data taking in 2011 and will proceed for five years. We present the energy distribution of emitted electrons for the first unique forbidden β-decay of 187Re. It is found that the p-wave emission of electron dominates over the s-wave. By assuming mixing of three neutrinos the Kurie function for the rhenium β-decay is derived. It is shown that the Kurie plot near the endpoint is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed βof 3H.

  4. Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey

    SciTech Connect

    Thomas, Shaun A.; Abdalla, Filipe B.; Lahav, Ofer

    2010-07-16

    We present a new limit of (95% CL) on the sum of the neutrino masses assuming a flat {Lambda}CDM cosmology. This relaxes slightly to and when quasinonlinear scales are removed and w{ne}-1, respectively. These are derived from a new photometric catalogue of over 700 000 luminous red galaxies (MegaZ DR7) with a volume of 3.3 (Gpc h{sup -1}){sup 3} and redshift range 0.45KATRIN, are unlikely to obtain a detection.

  5. Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium β-decay

    NASA Astrophysics Data System (ADS)

    Lokhov, Alexey V.; Titov, Nikita A.

    2016-07-01

    Data analysis of the next-generation effective antineutrino mass measurement experiment KATRIN requires reliable knowledge of systematic corrections. In particular, the width of the daughter molecular ion excitation spectrum rovibrational band should be known with better than 1% precision. Very precise ab initio quantum calculations exist, and we compare them with the well-known tritium molecule parameters within the framework of a phenomenological model. The rovibrational band width with accuracy of a few percent is interpreted as a result of the zero-point atomic oscillation in the harmonic potential. The Morse interatomic potential is used to investigate the impact of anharmonic atomic oscillations. The calculated corrections cannot account for the difference between the ab initio quantum calculations and the phenomenological model.

  6. Progress at the Penning Trap Mass Spectrometer ``THe-Trap''

    NASA Astrophysics Data System (ADS)

    Hoecker, Martin; Eronen, Tommi; Ketter, Jochen; Streubel, Sebastian; Blaum, Klaus; van Dyck, Robert S.

    2012-03-01

    In 2008, the ``University of Washington Penning-Trap Mass Spectrometer'' (UW-PTMS), originally designed and built by the Van Dyck group, was moved to the Max-Planck-Insitute for Nuclear Physics in Heidelberg, Germany. It was set up in a dedicated laboratory that meets both the radiation-safety requirements, and the environment-stabilization demands for a high-precision measurement of the tritium/helium-3 mass ratio. Our goal is to measure this mass ratio with a relative uncertainty of 10-11, which would be more than an order of magnitude better than the previous best measurement. It would decrease the uncertainty in the tritium beta decay Q-value (an important parameter in the ongoing search for the neutrino mass by experiments such as KATRIN) by the same factor. In order to emphasize the specialization of our experiment with regard to Tritium and ^3Helium, it was renamed to ``THe-Trap''. THe-Trap features a double Penning-trap for rapid ion exchange, an external ion source to minimize trap contamination, a novel Zener-based voltage source, and active as well as passive stabilization of temperature, pressure and the magnetic field of the superconducting magnet. An overview of the project and a report on the recent progress will be given.

  7. Dead layer on silicon p-i-n diode charged-particle detectors

    SciTech Connect

    Wall, B. L.; Amsbaugh, John F.; Beglarian, A.; Bergmann, T.; Bichsel, H. C.; Bodine, L. I.; Boyd, N. M.; Burritt, Tom H.; Chaoui, Z.; Corona, T. J.; Doe, Peter J.; Enomoto, S.; Harms, F.; Harper, Gregory; Howe, M. A.; Martin, E. L.; Parno, D. S.; Peterson, David; Petzold, Linda; Renschler, R.; Robertson, R. G. H.; Schwarz, J.; Steidl, M.; Van Wechel, T. D.; VanDevender, Brent A.; Wustling, S.; Wierman, K. J.; Wilkerson, J. F.

    2014-04-21

    Abstract Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon p-i-n diode used in the KATRIN neutrinomass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra to the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the "dead" layer evidently escapes by discussion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored.

  8. Direct nuclear probes of neutrino mass

    NASA Astrophysics Data System (ADS)

    Parno, Diana

    2016-03-01

    Neutrinos have non-zero mass, as demonstrated by an extensive experimental program in neutrino oscillations. The absolute mass scale of neutrinos, however, remains elusive. In this talk, I will review past and future laboratory-based efforts to measure the neutrino mass directly, with minimal model dependence, through the endpoint kinematics of nuclear beta decays. The KATRIN collaboration expects to begin taking data on tritium within the next year; the Project 8 collaboration has recently demonstrated an important proof-of-principle milestone for a new tritium-based concept; and three collaborations---ECHo, HOLMES, and NuMECS---are making substantial progress toward a competitive holmium-based measurement. I will discuss some of the technical and scientific challenges faced by each approach, and give an update on the current status of the field. I gratefully acknowledge support from the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER41020.

  9. Probing the Absolute Mass Scale of Neutrinos

    SciTech Connect

    Prof. Joseph A. Formaggio

    2011-10-12

    The experimental efforts of the Neutrino Physics Group at MIT center primarily around the exploration of neutrino mass and its significance within the context of nuclear physics, particle physics, and cosmology. The group has played a prominent role in the Sudbury Neutrino Observatory, a neutrino experiment dedicated to measure neutrino oscillations from 8B neutrinos created in the sun. The group is now focusing its efforts in the measurement of the neutrino mass directly via the use of tritium beta decay. The MIT group has primary responsibilities in the Karlsruhe Tritium Neutrino mass experiment, expected to begin data taking by 2013. Specifically, the MIT group is responsible for the design and development of the global Monte Carlo framework to be used by the KATRIN collaboration, as well as responsibilities directly associated with the construction of the focal plane detector. In addition, the MIT group is sponsoring a new research endeavor for neutrino mass measurements, known as Project 8, to push beyond the limitations of current neutrino mass experiments.

  10. Towards high-precision measurement of the Tritium - He-3 mass difference

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Redshaw, Matthew; Victoria, Juliette; Myers, Edmund

    2004-05-01

    An independent measurement of the mass difference of ^3He-^3T provides an important check of systematic errors in tritium beta-decay experiments that set limits to the electron anti-neutrino mass [1]. Using the precision Penning trap system developed at MIT but recently relocated to Florida State University [2], and the simultaneous two-ion cyclotron frequency measurement technique recently developed at MIT [3], we aim to measure this mass difference to better than 30 meV/c^2, more than an order of magnitude improvement over previous measurements [4,5]. Problems being addressed include producing single T^+ ions in the trap without spoiling the vacuum with ^3He, and the extension of the MIT techniques to ions of lighter mass. [1] KATRIN: http://iklau1.fzk.de/tritium [2] See abstract by Redshaw et al. [3] S. Rainville, J.K. Thompson, and D.E. Pritchard, Science 303, 334 (2004). [4] R.S. Van Dyck, D.L. Farnham, and P.B. Schwinberg, PRL 70, 2888 (1993). [5] G. Audi, A.H. Wapstra, and C. Thibault, Nuclear Physics A729, 337 (2003).

  11. Advanced data extraction infrastructure: Web based system for management of time series data

    NASA Astrophysics Data System (ADS)

    Chilingaryan, S.; Beglarian, A.; Kopmann, A.; Vöcking, S.

    2010-04-01

    During operation of high energy physics experiments a big amount of slow control data is recorded. It is necessary to examine all collected data checking the integrity and validity of measurements. With growing maturity of AJAX technologies it becomes possible to construct sophisticated interfaces using web technologies only. Our solution for handling time series, generally slow control data, has a modular architecture: backend system for data analysis and preparation, a web service interface for data access and a fast AJAX web display. In order to provide fast interactive access the time series are aggregated over time slices of few predefined lengths. The aggregated values are stored in the temporary caching database and, then, are used to create generalizing data plots. These plots may include indication of data quality and are generated within few hundreds of milliseconds even if very high data rates are involved. The extensible export subsystem provides data in multiple formats including CSV, Excel, ROOT, and TDMS. The search engine can be used to find periods of time where indications of selected sensors are falling into the specified ranges. Utilization of the caching database allows performing most of such lookups within a second. Based on this functionality a web interface facilitating fast (Google-maps style) navigation through the data has been implemented. The solution is at the moment used by several slow control systems at Test Facility for Fusion Magnets (TOSKA) and Karlsruhe Tritium Neutrino (KATRIN).

  12. Light sterile neutrino sensitivity of 163Ho experiments

    NASA Astrophysics Data System (ADS)

    Gastaldo, L.; Giunti, C.; Zavanin, E. M.

    2016-06-01

    We explore the sensitivity of 163Ho electron capture experiments to neutrino masses in the standard framework of three-neutrino mixing and in the framework of 3+1 neutrino mixing with a sterile neutrino which mixes with the three standard active neutrinos, as indicated by the anomalies found in short-baseline neutrino oscillations experiments. We calculate the sensitivity to neutrino masses and mixing for different values of the energy resolution of the detectors, of the unresolved pileup fraction and of the total statistics of events, considering the expected values of these parameters in the two planned stages of the ECHo project (ECHo-1k and ECHo-1M). We show that an extension of the ECHo-1M experiment with the possibility to collect 1016 events will be competitive with the KATRIN experiment. This statistics will allow to explore part of the 3+1 mixing parameter space indicated by the global analysis of short-baseline neutrino oscillation experiments. In order to cover all the allowed region, a statistics of about 1017 events will be needed.

  13. Upper bound of 0.28 eV on neutrino masses from the largest photometric redshift survey.

    PubMed

    Thomas, Shaun A; Abdalla, Filipe B; Lahav, Ofer

    2010-07-16

    We present a new limit of ∑m(v) ≤ 0.28 (95% CL) on the sum of the neutrino masses assuming a flat ΛCDM cosmology. This relaxes slightly to ∑m(ν) ≤ 0.34 and ∑m(v) ≤ 0.47 when quasinonlinear scales are removed and w≠ -1, respectively. These are derived from a new photometric catalogue of over 700,000 luminous red galaxies (MegaZ DR7) with a volume of 3.3  (Gpc h(-1))(3) and redshift range 0.45 < z < 0.65. The data are combined with WMAP 5-year CMB, baryon acoustic oscillations, supernovae, and a Hubble Space Telescope prior on h. When combined with WMAP these data are as constraining as adding all supernovae and baryon oscillation data available. The upper limit is one of the tightest constraints on the neutrino from cosmology or particle physics. Further, if these bounds hold, they all predict that current-to-next generation neutrino experiments, such as KATRIN, are unlikely to obtain a detection. PMID:20867754

  14. Assessment of molecular effects on neutrino mass measurements from tritium β decay

    NASA Astrophysics Data System (ADS)

    Bodine, L. I.; Parno, D. Â. S.; Robertson, R. Â. G. Â. H.

    2015-03-01

    The β decay of molecular tritium currently provides the highest sensitivity in laboratory-based neutrino mass measurements. The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will improve the sensitivity to 0.2 eV, making a percent-level quantitative understanding of molecular effects essential. The modern theoretical calculations available for neutrino mass experiments agree with spectroscopic data. Moreover, when neutrino mass experiments performed in the 1980s with gaseous tritium are reevaluated using these modern calculations, the extracted neutrino mass squared values are consistent with zero instead of being significantly negative. However, the calculated molecular final-state branching ratios are in conflict with dissociation experiments performed in the 1950s. We reexamine the theory of the final-state spectrum of molecular-tritium decay and its effect on the determination of the neutrino mass, with an emphasis on the role of the vibrational- and rotational-state distribution in the ground electronic state. General features can be reproduced quantitatively from considerations of kinematics and zero-point motion. We summarize the status of validation efforts and suggest means for resolving the apparent discrepancy in dissociation rates.

  15. High-accuracy mass spectrometry for fundamental studies.

    PubMed

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions. PMID:20530821

  16. On the Proof of Dark Matter, the Law of Gravity, and the Mass of Neutrinos

    NASA Astrophysics Data System (ADS)

    Angus, Garry W.; Shan, Huan Yuan; Zhao, Hong Sheng; Famaey, Benoit

    2007-01-01

    We develop a new method to predict the density associated with weak-lensing maps of (un)relaxed clusters in a range of theories interpolating between general relativity (GR) and modified Newtonian dynamics (MOND). We apply it to fit the lensing map of the Bullet merging cluster 1E 0657-56, in order to constrain more robustly the nature and amount of collisionless matter in clusters beyond the usual assumption of spherical equilibrium (Pointecouteau & Silk) and the validity of GR on cluster scales (Clowe et al.). Strengthening the proposal of previous authors, we show that the Bullet Cluster is dominated by a collisionless-most probably nonbaryonic-component in GR as well as in MOND, a result consistent with the dynamics of many X-ray clusters. Our findings add to the number of known pathologies for a purely baryonic MOND, including its inability to fit the latest data from the Wilkinson Microwave Anisotropy Probe. A plausible resolution of all these issues and standard issues of cold dark matter (CDM) with galaxy rotation curves is the ``marriage'' of MOND with ordinary hot neutrinos of 2 eV. This prediction is just within the GR-independent maximum of neutrino mass from current β-decay experiments and will be falsifiable by the Karlsruhe Tritium Neutrino (KATRIN) experiment by 2009. Issues of consistency with strong-lensing arcs and the large relative velocity of the two clusters comprising the Bullet Cluster are also addressed.

  17. Forbidden unique beta-decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2013-12-30

    The measurement of the electron spectrum in beta-decays provides a robust direct determination of the values of neutrino masses. The planned rhenium beta-decay experiment, called the “Microcalorimeter Arrays for a Rhenium Experiment” (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which is expected to collect data in a near future. In this contribution we discuss the spectrum of emitted electrons close to the end point in the case of the first unique forbidden beta-decay of {sup 79}Se, {sup 107}Pd and {sup 187}Re. It is found that the p{sub 3/2}-wave emission dominates over the s{sub 1/2}-wave. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed beta-decay of {sup 3}H.

  18. Measurement of Turbulent Water Vapor Fluxes from Lightweight Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Thomas, R. M.; Ramanathan, V.; Nguyen, H.; Lehmann*, K.

    2010-12-01

    wind tunnel investigations and the outcomes from test flights planned for September 2010 at a marine location are discussed. Acknowledgments We would like to acknowledge the significant contributions to this system made by the late Katrin Lehmann whose life was tragically cut short by a hiking accident. Katrin was responsible for the initial design, construction and programming of the UAS elements, and in doing so laid solid foundations for the system. We are indebted to NOAA, for funding this project through the research grant NOAA NA17RJ1231. Thank you also to Mike Marston of NASA, the BAE systems crew Phillip Corcoran and Rafael Gaytan, and Mike Rizen of UCSD Physics workshop for their mission roles. We would also like to thank NSF for long term support of the C4 UAS Program.

  19. Small neutrino masses from gravitational θ -term

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Funcke, Lena

    2016-06-01

    We present how a neutrino condensate and small neutrino masses emerge from a topological formulation of gravitational anomaly. We first recapitulate how a gravitational θ -term leads to the emergence of a new bound neutrino state analogous to the η' meson of QCD. Then we show the consequent formation of a neutrino vacuum condensate, which effectively generates small neutrino masses. Afterwards we outline numerous phenomenological consequences of our neutrino mass generation model. The cosmological neutrino mass bound vanishes since we predict the neutrinos to be massless until the phase transition in the late Universe, T ˜meV . Coherent radiation of new light particles in the neutrino sector can be detected in prospective precision experiments. Deviations from an equal flavor rate due to enhanced neutrino decays in extraterrestrial neutrino fluxes can be observed in future IceCube data. These neutrino decays may also necessitate modified analyses of the original neutrino spectra of the supernova SN 1987A. The current cosmological neutrino background only consists of the lightest neutrinos, which, due to enhanced neutrino-neutrino interactions, either bind up, form a superfluid, or completely annihilate into massless bosons. Strongly coupled relic neutrinos could provide a contribution to cold dark matter in the late Universe, together with the new proposed particles and topological defects, which may have formed during neutrino condensation. These enhanced interactions could also be a source of relic neutrino clustering in our Galaxy, which possibly makes the overdense cosmic neutrino background detectable in the KATRIN experiment. The neutrino condensate provides a mass for the hypothetical B -L gauge boson, leading to a gravity-competing force detectable in short-distance measurements. Prospective measurements of the polarization intensities of gravitational waves can falsify our neutrino mass generation model.

  20. PREFACE: Beyond Kyoto - the necessary road

    NASA Astrophysics Data System (ADS)

    Margrethe Basse, Ellen

    2009-03-01

    Project Manager Henrik Dalgaard for his excellent editorial services and to stud.mag. Nanna Katrine Lüders Kaalund for her practical assistance with the proceedings. The European Commission under the Regional Development Fund has funded the conference and the publication of the proceedings.

  1. Search for the Cosmic Neutrino Background

    NASA Astrophysics Data System (ADS)

    Faessler, A.; Hodak, R.; Kovalenko, S.; Simkovic, F.

    2015-02-01

    One expects three Cosmic Backgrounds: (1) The Cosmic Microwave Background (CMB) originated 380000 years after the Big Bang (BB). (2) The Neutrino Background decoupled about one second after the BB, while (3) the Cosmic Gravitational Wave Background created by the inflationary expansion decoupled directly after the BB. Only the Cosmic Microwave Background (CMB) has been detected and is well studied. Its spectrum follows Planck's black body radiation formula and shows a remarkable constant temperature of T0γ ≈ 2.7 K independent of the direction. The present photon density is about 370 photons per cm3. The size of the hot spots, which deviates only in the fifth decimal of the temperature from the average value, tells us, that the universe is flat. About 380 000 years after the Big Bang at a temperature of T0γ = 3000 K already in the matter dominated era the electrons combine with the protons and 4He and the photons move freely in the neutral universe and form the CMB. So the temperature and distribution of the photons give us information of the universe 380 000 years after the Big Bang. The Cosmic Neutrino Background (CνB) decoupled from matter already one second after the BB at a temperature of about 1010 K. Today their temperature is ~ 1.95 K and the average density is 56 electron-neutrinos and the total density of all neutrinos about 336 per cm3. Measurement of these neutrinos is an extremely challenging experimental problem which can hardly be solved with the present technologies. On the other hand it represents a tempting opportunity to check one of the key elements of the Big Bang Cosmology and to probe the early stages of the universe. The search for the CνB with the induced beta decay νe+3H → 3He + e- using KATRIN (KArlsruhe TRItium Neutrino experiment) is the topic of this contribution.

  2. Quantitative comparisons of numerical models of brittle deformation

    NASA Astrophysics Data System (ADS)

    Buiter, S.

    2009-04-01

    Numerical modelling of brittle deformation in the uppermost crust can be challenging owing to the requirement of an accurate pressure calculation, the ability to achieve post-yield deformation and localisation, and the choice of rheology (plasticity law). One way to approach these issues is to conduct model comparisons that can evaluate the effects of different implementations of brittle behaviour in crustal deformation models. We present a comparison of three brittle shortening experiments for fourteen different numerical codes, which use finite element, finite difference, boundary element and distinct element techniques. Our aim is to constrain and quantify the variability among models in order to improve our understanding of causes leading to differences between model results. Our first experiment of translation of a stable sand-like wedge serves as a reference that allows for testing against analytical solutions (e.g., taper angle, root-mean-square velocity and gravitational rate of work). The next two experiments investigate an unstable wedge in a sandbox-like setup which deforms by inward translation of a mobile wall. All models accommodate shortening by in-sequence formation of forward shear zones. We analyse the location, dip angle and spacing of thrusts in detail as previous comparisons have shown that these can be highly variable in numerical and analogue models of crustal shortening and extension. We find that an accurate implementation of boundary friction is important for our models. Our results are encouraging in the overall agreement in their dynamic evolution, but show at the same time the effort that is needed to understand shear zone evolution. GeoMod2008 Team: Markus Albertz, Michele Cooke, Susan Ellis, Taras Gerya, Luke Hodkinson, Kristin Hughes, Katrin Huhn, Boris Kaus, Walter Landry, Bertrand Maillot, Christophe Pascal, Anton Popov, Guido Schreurs, Christopher Beaumont, Tony Crook, Mario Del Castello and Yves Leroy

  3. The effect of broadleaf woodland on aluminium speciation in stream water in an acid-sensitive area in the UK.

    PubMed

    Ryan, Jennifer L; Lynam, Philippa; Heal, Kate V; Palmer, Sheila M

    2012-11-15

    Acidification can result in the mobilisation and release of toxic inorganic monomeric aluminium (Al) species from soils into aquatic ecosystems. Although it is well-established that conifer trees enhance acidic atmospheric deposition and exacerbate soil and water acidification, the effect of broad-leaved woodland on soil and water acidification is less clear. This study investigated the effect of broadleaf woodland cover on the acid-base chemistry and Al species present in stream water, and processes controlling these in the acid-sensitive area around Loch Katrine, in the central Highlands, Scotland, UK, where broadleaf woodland expansion is occurring. A nested sampling approach was used to identify 22 stream sampling locations, in sub-catchments of 3.2-61 ha area and 0-45% broadleaf woodland cover. In addition, soils sampled from 68 locations were analysed to assess the influence of: (i) broadleaf woodland cover on soil characteristics and (ii) soil characteristics on stream water chemistry. Stream water pH was negatively correlated with sub-catchment % woodland cover, indicating that woodland cover is enhancing stream water acidification. Concentrations of all stream water Al species (monomeric total, organic and inorganic) were positively correlated with % woodland cover, although not significantly, but were below levels that are toxic to fish. Soil depth, O horizon depth and soil chemistry, particularly of the A horizon, appeared to be the dominant controls on stream water chemistry rather than woodland cover. There were significant differences in soil acid-base chemistry, with significantly lower O horizon pH and A horizon base saturation and higher A horizon exchangeable Al in the wooded catchments compared to the control. This is evidence that the mobile anion effect is already occurring in the study catchments and suggests that stream water acidification arising from broadleaf woodland expansion could occur, especially where tree density is high and acid

  4. Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils

    NASA Astrophysics Data System (ADS)

    Sedy, Katrin; Freudenschuss, Alexandra; Zethner, Gehard; Spiegel, Heide; Franko, Uwe; Gründling, Ralf; Xaver Hölzl, Franz; Preinstorfer, Claudia; Haslmayr, Hans Peter; Formayer, Herbert

    2014-05-01

    Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils. The project funded by the Klima- und Energiefonds, Austrian Climate Research Programme, 4th call Authors: Katrin Sedy, Alexandra Freudenschuss, Gerhard Zethner (Environment Agency Austria), Heide Spiegel (Austrian Agency for Health and Food Safety), Uwe Franko, Ralf Gründling (Helmholtz Centre for Environmental Research) Climate change will affect plant productivity due to weather extremes. However, adverse effects could be diminished and satisfying production levels may be maintained with proper soil conditions. To sustain and optimize the potential of agricultural land for plant productivity it will be necessary to focus on preserving and increasing soil organic carbon (SOC). Carbon sequestration in agricultural soils is strongly influenced by management practice. The present management is affected by management practices that tend to speed up carbon loss. Crop rotation, soil cultivation and the management of crop residues are very important measures to influence carbon dynamics and soil fertility. For the future it will be crucial to focus on practical measures to optimize SOC and to improve soil structure. To predict SOC turnover the existing humus balance model the application of the "Carbon Candy Balance" was verified by results from Austrian long term field experiments and field data of selected farms. Thus the main aim of the project is to generate a carbon balancing tool box that can be applied in different agricultural production regions to assess humus dynamics due to agricultural management practices. The toolbox will allow the selection of specific regional input parameters for calculating the C-balance at field level. However farmers or other interested user can also apply their own field data to receive the result of C-dynamics under certain management practises within the next 100 years. At regional level the impact of predefined changes in agricultural management

  5. PREFACE: Preface

    NASA Astrophysics Data System (ADS)

    Angelova, Maia; Zakrzewski, Wojciech

    2011-03-01

    the meeting was that all plenary talks presented the state-of-the-art and were at the same time educational and exciting, promoting the multidisciplinary aspects of the research, and thus were inspirational for young scientists considering work in these fields. The plenary talks, each lasting 1 hour, were given by distinguished world experts and some young 'rising stars': Richard Ward, Ulf Leonhardt, Jens Eisert, Michael Berry, Shahn Majid, Arndt von Haeseler, Michio Jimbo, Katrin Wendland, Raymond Goldstein, Mark Trodden, Maria Vozmediano and Giulio Chiribella. The public lecture was given by Francesco Iachello and was open to participants and other people from the Newcastle-Durham region. In addition, talks of 30 minutes duration each and including more technical content, were given in four parallel sessions. Each parallel session had a designated time for informal interaction with the speakers, discussions of new directions of research and for forming new collaborations. The poster session, in a room where posters were exhibited for the duration of the conference, was easily accessible, and had a friendly and relaxed atmosphere, encouraging discussions of work and exchanges of new ideas. To secure a high quality scientific programme, all contributions were reviewed. Another interesting feature of the conference was the Open Forum on the Friday afternoon, which was lively and well attended. It took the form of a question and answer session with a panel chaired by Allan Solomon, with the following members: Gerald Goldin, Jean-Pierre Gazeau, Mark Trodden and Giulio Chiribella. The focus was on new directions of research, novel applications and the further development of group theory, education, training and career opportunities for young researchers. The participants were asked to submit questions in advance; examples are: "What is the role of symmetries and conservation principles in deducing underlying physics from experimental data?" and "What are the most

  6. Characterization of residuals from ice particles and droplets sampled in mid-latitude natural and aviation-influenced cirrus and in tropical deep convective cloud systems during ML-CIRRUS and ACRIDICON

    NASA Astrophysics Data System (ADS)

    Mertes, Stephan; Kästner, Udo; Schulz, Christiane; Klimach, Thomas; Krüger, Mira; Schneider, Johannes

    2015-04-01

    Airborne sampling of cloud particles inside different cirrus cloud types and inside deep convective clouds was conducted during the HALO missions ML-CIRRUS over Europe in March/April 2014 and ACRIDICON over Amazonia in September 2014. ML-CIRRUS aims at the investigation of the for-mation, evolution, microphysical state and radiative effects of different natural and aviation-induced cirrus clouds in the mid-latitudes. The main objectives of ACRIDICON are the microphysical vertical profiling, vertical aerosol transport and the cloud processing of aerosol particles (compari-son in- and outflow) of tropical deep convective cloud systems in clean and polluted air masses and over forested and deforested regions. The hydrometeors (drops and ice particles) are sampled by a counterflow virtual impactor (CVI) which has to be installed in the front part of the upper fuselage of the HALO aircraft. Such an intake position implies a size dependent abundance of cloud particles with respect to ambient conditions that was studied by particle trajectory simulations (Katrin Witte, HALO Technical Note 2008-003-A). On the other hand, this sampling location avoids that large ice crystals which could potentially bias the cloud particle sampling by shattering and break-up at the inlet shroud and tip enter the inlet. Both aspects as well as the flight conditions of HALO were taken into account for an optimized CVI design for HALO (HALO-CVI). Interstitial particles are pre-segregated and the condensed phase is evaporated/sublimated by the CVI, such that the residuals from cloud droplets and ice particles (CDR and IPR) can be microphysically and chemically analyzed by respective aerosol sensors located in the cabin. Although an even more comprehensive characterization of CDR and IPR was carried out, we like to report on the following measurements of certain aerosol properties. Particle number concentra-tion and size distribution are measured by a condensation particle counter (CPC) and an

  7. EDITORIAL: Focus on Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Morfill, G. E.; Kong, M. G.; Zimmermann, J. L.

    2009-11-01

    -pressure microwave plasmas in an N2 and O2 gas mixture M K Singh, A Ogino and M Nagatsu Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma H J Lee, C H Shon, Y S Kim, S Kim, G C Kim and M G Kong The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air A Helmke, D Hoffmeister, N Mertens, S Emmert, J Schuette and W Vioel Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet D L Bayliss, J L Walsh, G Shama, F Iza and M G Kong The effect of low-temperature plasma on bacteria as observed by repeated AFM imaging René Pompl, Ferdinand Jamitzky, Tetsuji Shimizu, Bernd Steffes, Wolfram Bunk, Hans-Ulrich Schmidt, Matthias Georgi, Katrin Ramrath, Wilhelm Stolz, Robert W Stark, Takuya Urayama, Shuitsu Fujii and Gregor Eugen Morfill Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure Mi Hee Lee, Bong Joo Park, Soo Chang Jin, Dohyun Kim, Inho Han, Jungsung Kim, Soon O Hyun, Kie-Hyung Chung and Jong-Chul Park Cell permeabilization using a non-thermal plasma M Leduc, D Guay, R L Leask and S Coulombe Physical and biological mechanisms of direct plasma interaction with living tissue Danil Dobrynin, Gregory Fridman, Gary Friedman and Alexander Fridman Nosocomial infections-a new approach towards preventive medicine using plasmas G E Morfill, T Shimizu, B Steffes and H-U Schmidt Generation and transport mechanisms of chemical species by a post-discharge flow for inactivation of bacteria Takehiko Sato, Shiroh Ochiai and Takuya Urayama Low pressure plasma discharges for the sterilization and decontamination of surfaces F Rossi, O Kylián, H Rauscher, M Hasiwa and D Gilliland Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding S P Kuo, O Tarasenko, J Chang, S Popovic, C Y Chen, H W Fan, A Scott, M Lahiani, P Alusta, J D Drake and M Nikolic A two

  8. EDITORIAL: Focus on Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Morfill, G. E.; Kong, M. G.; Zimmermann, J. L.

    2009-11-01

    -pressure microwave plasmas in an N2 and O2 gas mixture M K Singh, A Ogino and M Nagatsu Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma H J Lee, C H Shon, Y S Kim, S Kim, G C Kim and M G Kong The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air A Helmke, D Hoffmeister, N Mertens, S Emmert, J Schuette and W Vioel Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet D L Bayliss, J L Walsh, G Shama, F Iza and M G Kong The effect of low-temperature plasma on bacteria as observed by repeated AFM imaging René Pompl, Ferdinand Jamitzky, Tetsuji Shimizu, Bernd Steffes, Wolfram Bunk, Hans-Ulrich Schmidt, Matthias Georgi, Katrin Ramrath, Wilhelm Stolz, Robert W Stark, Takuya Urayama, Shuitsu Fujii and Gregor Eugen Morfill Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure Mi Hee Lee, Bong Joo Park, Soo Chang Jin, Dohyun Kim, Inho Han, Jungsung Kim, Soon O Hyun, Kie-Hyung Chung and Jong-Chul Park Cell permeabilization using a non-thermal plasma M Leduc, D Guay, R L Leask and S Coulombe Physical and biological mechanisms of direct plasma interaction with living tissue Danil Dobrynin, Gregory Fridman, Gary Friedman and Alexander Fridman Nosocomial infections-a new approach towards preventive medicine using plasmas G E Morfill, T Shimizu, B Steffes and H-U Schmidt Generation and transport mechanisms of chemical species by a post-discharge flow for inactivation of bacteria Takehiko Sato, Shiroh Ochiai and Takuya Urayama Low pressure plasma discharges for the sterilization and decontamination of surfaces F Rossi, O Kylián, H Rauscher, M Hasiwa and D Gilliland Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding S P Kuo, O Tarasenko, J Chang, S Popovic, C Y Chen, H W Fan, A Scott, M Lahiani, P Alusta, J D Drake and M Nikolic A two

  9. PREFACE: The IARU International Scientific Congress on Climate Change: Global Risks, Challenges and Decisions (10-12 March, Copenhagen, Denmark)

    NASA Astrophysics Data System (ADS)

    2009-01-01

    revitalization of ecosystem services Key Message 6: Meeting the Challenge To achieve the societal transformation required to meet the climate change challenge, we must overcome a number of significant constraints and seize critical opportunities These include reducing inertia in social and economic systems; building on a growing public desire for governments to act on climate change; removing implicit and explicit subsidies; reducing the influence of vested interests that increase emissions and reduce resilience; enabling the shifts from ineffective governance and weak institutions to innovative leadership in government, the private sector and civil society; and engaging society in the transition to norms and practices that foster sustainability The editors of the volume are all the session chairs: Professor Agus Sari Dr Aled Jones Science Manager Anders Viksø-Nielsen Dr Andreas Barkman Professor Anette Reenberg Professor Ann Henderson-Sellers Professor Anthony J McMichael Dr Anthony Patt Dr Bette Otto-Bliesner Dr Cameron Hepburn Dr Carlos Nobre Dr Carol Turley Dr Chris Hope Professor Chris Turney Professor Claus Felby Professor Coleen Vogel Professor Dale Jamieson Professor Daniel M Kammen Senior Scientist Detlef F Sprinz Professor Diana Ürge-Vorsatz Professor Dorthe Dahl-Jensen PhD Fatima Denton Director Generel Frances Seymour Dr Frank Jotzo Professor Harold Mooney Director Henrik Bindslev Mr Jamie Pittock Professor Jacquie Burgess Dr James E Hansen Professor Jiahua Pan Dr Jill Jäger Professor Jim Skea Professor Johan Rockström Dr John Christensen Professor John Mitchell Professor John R Porter Professor Joyeeta Gupta Professor Jørgen E Olesen Professor Karen O'Brien Dr Kazuhiko Takeuchi Dr Katrine Krogh Andersen Professor Keith Paustian Professor Ken Caldeira Professor Kevin Anderson Dr Koko Warner Professor Konrad Steffen Professor Liping Zhou Professor Louise Fresco Professor Maria Carmen Lemos Professor Mark Ashton Dr Mark Stafford-Smith Dr Martin Claussen Dr Martin

  10. EDITORIAL: Focus on Iron-Based Superconductors FOCUS ON IRON-BASED SUPERCONDUCTORS

    NASA Astrophysics Data System (ADS)

    Hosono, Hideo; Ren, Zhi-An

    2009-02-01

    Elastic theory for the vortex-lattice melting in iron-based high-Tc superconductors Q-H Chen, Q-M Nie, J-P Lv and T-C Au Yeung Electronic properties of LaO1-xFxFeAs in the normal state probed by NMR/NQR H-J Grafe, G Lang, F Hammerath, D Paar, K Manthey, K Koch, H Rosner, N J Curro, G Behr, J Werner, N Leps, R Klingeler, H-H Klauss, F J Litterst and B Büchner AFe2As2 (A = Ca, Sr, Ba, Eu) and SrFe2-xTMxAs2 (TM = Mn, Co, Ni): crystal structure, charge doping, magnetism and superconductivity Deepa Kasinathan, Alim Ormeci, Katrin Koch, Ulrich Burkhardt, Walter Schnelle, Andreas Leithe-Jasper and Helge Rosner Impurity states in a family of antiferromagnetic iron arsenides Qiang Han and Z D Wang Coherence-incoherence crossover in the normal state of iron oxypnictides and importance of Hund's rule coupling K Haule and G Kotliar Electronic structure of heavily electron-doped BaFe1.7Co0.3As2 studied by angle-resolved photoemission Y Sekiba, T Sato, K Nakayama, K Terashima, P Richard, J H Bowen, H Ding, Y-M Xu, L J Li, G H Cao, Z-A Xu and T Takahashi Absorption and photoemission spectroscopy of rare-earth oxypnictides T Kroll, F Roth, A Koitzsch, R Kraus, D R Batchelor, J Werner, G Behr, B Büchner and M Knupfer Superconductivity in LnFePO (Ln = La, Pr and Nd) single crystals R E Baumbach, J J Hamlin, L Shu, D A Zocco, N M Crisosto and M B Maple Unconventional pairing originating from disconnected Fermi surfaces in the iron-based superconductor Kazuhiko Kuroki, Seiichiro Onari, Ryotaro Arita, Hidetomo Usui, Yukio Tanaka, Hiroshi Kontani and Hideo Aoki Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides S Graser, T A Maier, P J Hirschfeld and D J Scalapino Investigation of superconducting gap structure in TbFeAsO0.9F0.1 using point contact Andreev reflection K A Yates, K Morrison, J A Rodgers, G B S Penny, J-W G Bos, J P Attfield and L F Cohen Competition of magnetism and superconductivity in underdoped (Ba1-xKx)Fe2As2 Marianne Rotter, Marcus