Science.gov

Sample records for kawerau geothermal field

  1. Interpretation of interference effects in three production wells in the Kawerau geothermal field, New Zealand

    SciTech Connect

    Stevens, Lynell; Koorey, Kevin J.

    1996-01-24

    Downhole temperature and pressure, mass flow, and enthalpy measurements on three production wells at Kawerau geothermal field are interpretted to illustrate interference effects between these wells. Feed zone locations within the wells, together with geology and chemistry are discussed. Downhole measurements are made in one well while production flow changes are made on another well to monitor pressure transient effects. The interference effects have implications for planning future production drilling.

  2. Inverse Modelling of the Kawerau Geothermal Reservoir, NZ

    SciTech Connect

    White, S.P.

    1995-01-01

    In this paper we describe an existing model of the Kawerau geothermal field and attempts to improve this model using inverse modeling techniques. A match of model results to natural state temperatures and pressures at three reference depths are presented. These are used to form and ''objective function'' to be minimized by inverse modeling.

  3. Interference Tests at Kawerau, New Zealand

    SciTech Connect

    Burnell, John G.; McGuinness, Mark J.

    1987-01-20

    Analysis of interference tests at the Kawerau geothermal field in New Zealand has indicated that the reservoir may be viewed on a coarse scale as a two-layer structure. While these layers have high permeabilities, they are in poor hydrological communication with each other. The shallower layer is modelled as a finite cylindrical reservoir. The deeper layer is modelled as a larger cylindrical reservoir with recharge from the sides. The fitted permeabilities and storativities suggest the importance of flow in fractures at Kawerau. 2 tabs., 14 figs., 8 refs.

  4. New Zealand geothermal: Wairakei -- 40 years

    SciTech Connect

    1998-09-01

    This quarterly bulletin highlights the geothermal developments in New Zealand with the following articles: A brief history of the Wairakei geothermal power project; Geothermal resources in New Zealand -- An overview; Domestic and commercial heating and bathing -- Rotorua area; Kawerau geothermal development: A case study; Timber drying at Kawerau; Geothermal greenhouses at Kawerau; Drying of fibrous crops using geothermal steam and hot water at the Taupo Lucerne Company; Prawn Park -- Taupo, New Zealand; Geothermal orchids; Miranda hot springs; and Geothermal pipeline.

  5. Reconstructing the geological and structural history of an active geothermal field: A case study from New Zealand

    NASA Astrophysics Data System (ADS)

    Milicich, S. D.; Wilson, C. J. N.; Bignall, G.; Pezaro, B.; Bardsley, C.

    2013-07-01

    The utilisation of geothermal systems benefits from an understanding of the host-rock geology, locations and controls of permeability pathways, and the nature and timing of magmatic sources providing thermal energy. Kawerau Geothermal Field in the central Taupo Volcanic Zone (TVZ) of New Zealand is currently developed for electricity generation and direct uses of high-temperature steam to ~ 200 MW electrical output. The Kawerau geothermal system is hosted in a sequence of volcanic lithologies (tuffs, lavas and intrusive bodies) and sediments that overlie faulted Mesozoic metasedimentary (greywacke) basement. Identification of lithologies in the volcanic/sedimentary sequence is challenging due to the levels of hydrothermal alteration and lithological similarities. A combination of detailed petrological investigations, consideration of the emplacement processes and greater certainty of crystallisation or eruption ages through U-Pb age determinations on zircons is used to reconstruct the depositional and faulting evolution of the rocks hosting the currently active hydrothermal system. The oldest event inferred is faulting of the greywacke along northwest-southeast orientated, dominantly strike-slip structures to generate half-grabens that were filled with sediments, incorporating two dated ignimbrites (2.38 ± 0.05 and 2.17 ± 0.05 Ma). A 1.46 ± 0.01 Ma ignimbrite was deposited relatively evenly across the field, implying that any topographic relief was subdued at that time. Subsequent deposition of ignimbrites occurred in episodes around 1.0, 0.55-0.6, and 0.32 Ma, interspersed with thin sedimentary sequences that accumulated at average rates of 0.06 mm yr- 1. Andesite lavas from a buried composite cone occur as a conformable package between units dated at 1.0 and 0.6 Ma. Bodies of coherent rhyolite occur at multiple stratigraphic levels: two magma types with associated tuffs were emplaced as domes and sills at 0.36 ± 0.03 Ma, and a third type at 0.138 ± 0.007 Ma

  6. Geothermal Field Developments in Japan

    SciTech Connect

    Hirakawa, Seiichi

    1983-12-15

    The present situation of the geothermal field developments in Japan is such that eight geothermal power stations are being operated, while there are sill many geothermal areas to be explored. Up to this day, the target of geothermal exploration has mainly been the areas by surface geological survey and the existing geothermal reservoirs are located not deeper than 1,500m depth. Recent geothermal energy development shows a trend from the study on vapor dominated of liquid dominated hydrothermal resources in shallow zones to that on hydrothermal resources in deeper zones. Exploration wells of 3,000m depth class have been drilled in Japan.

  7. Calcite sealing in a fractured geothermal reservoir: Insights from combined EBSD and chemistry mapping

    NASA Astrophysics Data System (ADS)

    McNamara, David D.; Lister, Aaron; Prior, Dave J.

    2016-09-01

    Fractures play an important role as fluid flow pathways in geothermal resources hosted in indurated greywacke basement of the Taupo Volcanic Zone, New Zealand, including the Kawerau Geothermal Field. Over time, the permeability of such geothermal reservoirs can be degraded by fracture sealing as minerals deposit out of transported geothermal fluids. Calcite is one such fracture sealing mineral. This study, for the first time, utilises combined data from electron backscatter diffraction and chemical mapping to characterise calcite vein fill morphologies, and gain insight into the mechanisms of calcite fracture sealing in the Kawerau Geothermal Field. Two calcite sealing mechanisms are identified 1) asymmetrical syntaxial growth of calcite, inferred by the presence of single, twinned, calcite crystals spanning the entire fracture width, and 2) 3D, interlocking growth of bladed vein calcite into free space as determined from chemical and crystallographic orientation mapping. This study also identifies other potential uses of combined EBSD and chemical mapping to understand geothermal field evolution including, potentially informing on levels of fluid supersaturation from the study of calcite lattice distortion, and providing information on a reservoir's history of stress, strain, and deformation through investigation of calcite crystal deformation and twinning patterns.

  8. Geothermal Pumping and Induced Seismicity in Southern California Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Weiser, D. A.; Jones, L.

    2013-12-01

    Induced earthquakes have been recognized for decades and observed in New Zealand, Switzerland, the US and elsewhere. Many factors can induce seismicity, including changes in pore pressure, temperature, volume, and chemistry. When fractured rock is injected with fluid, the effective normal stress and coefficient of friction are lowered and the rock is brought closer to failure. In this study, we examine the relationship between seismicity and geothermal pumping. We have obtained monthly injection and production data from the CA Department of Conservation for the Salton Sea Geothermal Field, Brawley Geothermal Field, and other California geothermal fields. We compare the temporal distribution of injection, production, fluid volume change (injection volume - production volume), and seismicity to determine if there are changes in the pumping rates that correspond to changes in seismicity rates. We observe a qualitative correlation between times of maximum fluid volume change and high seismicity levels, in particular, contemporaneous with the 2005 Obsidian Butte earthquake swarm. We also examine how changes in injection and production rates affect the Gutenberg-Richter b-value, earthquake depth, and focal mechanisms.

  9. Klamath Falls geothermal field, Oregon

    SciTech Connect

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  10. Reservoir engineering of Wairakei geothermal field

    SciTech Connect

    Grant, Malcom A.

    1988-01-01

    Wairakei was the first liquid dominated geothermal field exploited for major power production. As such many decisions were taken on an ad-hoc or experimental basis. In retrospect the choice of Wairakei was fortunate : with extensive shallow high permeability and major recharge it is an easy field to exploit. This lecture describes the history of the field and the contribution of reservoir engineering to field management, and describes the reservoir as it is now understood.

  11. A database for the Geysers geothermal field

    SciTech Connect

    Ripperda, M.; Bodvarsson, G.S.

    1988-10-01

    A general use menu driven software package has been developed that stores and retrieves geothermal field data and produces a large variety of graphic displays. These include, for example, production plots, cross-sections, contour plots, base maps and Horner plots. This software package has been applied to the Geysers geothermal field which has open file data for over 200 wells. The data include production histories, directional surveys, lithology logs, wellhead temperatures and pressures, digitized base maps, steam entry locations, casing diagrams, pressure transient tests, heat flow measurements and noncondensible gas concentrations. Although the software was developed for use with data from the Geysers, it can be used with data from any geothermal reservoir. 2 refs., 5 figs.

  12. Geothermal Field Development in Mexico

    SciTech Connect

    Espinosa, Hector Alonso

    1983-12-15

    Mexico is a Country characterized by its diversified means of Power Gerneration. Actual installed capacity is almost 19000 MW, of which 205 MW corresponds to Geothermal Plants, that is, 180 MW in Cerro Prieto and 25 MW of Portable Plants in Los Azufres. To date, 346 area with exploitation possibilites, are known. They are mainly distributed along the Volcanic Belt where the most prominent are, Los Azufres, La Primavera, Los Humeros, Ixtlan De Los Hervores and Los Negritos, among others. Proved reserves are 920 MW, and the accessible resource base are 4600 MW identified and 6000 MW undiscovered. The long range construction studies intends to achieve a total installed capacity of 100000 MW, by the end of this century, including 2000 MW Geothermal, through conventional and Portable Plants. It is not a definite program but a development strategy. The carrying out of a definite program, will depend upon the confirmation of Hypothesis made in previous studies, and the economic decisions related to the financial sources availability, and techologies to be used in the future as well.

  13. A database for the geysers geothermal field

    SciTech Connect

    Bodvarsson, G.S.; Cox, B.L.; Fuller, P.; Ripperda, M.; Tulinius, H.; Witherspoon, P.A.; Goldstein, N.; Flexser, S.; Pruess, K. ); Truesdell, A. )

    1989-09-01

    This document contains graphs of data collected from Geysers Geothermal Field. These graphs display data concerning wellhead pressure and degrees of super heat from 1968 to 1988 in Appendix B; injection rate and cumulative injection rate in Appendix C. 255 figs. (FSD)

  14. Cerro Prieto geothermal field: exploration during exploitation

    SciTech Connect

    Not Available

    1982-07-01

    Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. The description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field are presented. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development.

  15. Reservoir assessment of The Geysers Geothermal field

    SciTech Connect

    Thomas, R.P.; Chapman, R.H.; Dykstra, H.

    1981-01-01

    Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

  16. Optimization of injection scheduling in geothermal fields

    SciTech Connect

    Lovekin, J.

    1987-05-01

    This study discusses the application of algorithms developed in Operations Research to the optimization of brine reinjection in geothermal fields. The injection optimization problem is broken into two sub-problems: (1) choosing a configuration of injectors from an existing set of wells, and (2) allocating a total specified injection rate among chosen injectors. The allocation problem is solved first. The reservoir is idealized as a network of channels or arcs directly connecting each pair of wells in the field. Each arc in the network is considered to have some potential for thermal breakthrough. This potential is quantified by an arc-specific break-through index, b/sub ij/, based on user-specified parameters from tracer tests, field geometry, and operating considerations. The sum of b/sub ij/-values for all arcs is defined as the fieldwide breakthrough index, B. Injection is optimized by choosing injection wells and rates so as to minimize B subject to constraints on the number of injectors and the total amount of fluid to be produced and reinjected. The study presents four computer programs which employ linear or quadratic programming to solve the allocation problem. In addition, a program is presented which solves the injector configuration problem by a combination of enumeration and quadratic programming. The use of the various programs is demonstrated with reference both to hypothetical data and an actual data set from the Wairakei Geothermal Field in New Zealand.

  17. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    SciTech Connect

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  18. Pilot fruit drier for Los Azufres geothermal field, Michoacan, Mexico

    SciTech Connect

    Lund, J.W.

    1993-02-01

    Comision Federal de Electricidad (CFE) has a Division in charge of the exploration of a geothermal reservoir located in Los Azufres, State of Michoacan. At present, CFE is only using the steam of the wells and rejecting the hot water that comes off associated with the steam. Based on a trip to the Los Azufres geothermal field in December of 1992, a design for a pilot geothermal fruit drier was undertaken for CFE. The details of the geothermal field and the local fruit production are detailed.

  19. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect

    Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  20. Seismic monitoring at the Geysers Geothermal Field

    SciTech Connect

    Romero, A.E. Jr.; Kirkpatrick, A.; Majer, E.L.; Peterson, J.E. Jr.

    1994-09-01

    This report summarizes the efforts of LBL to utilize MEQ data in reservoir definition as well as in evaluating its performance. Results of the study indicate that the velocity and attenuation variations correlate with the known geology of the field. At the NW Geysers, high velocity anomalies correspond to metagraywacke and greenstone units while low velocity anomalies seem to be associated with Franciscan melanges. Low Vp/Vs and high attenuation delineate the steam reservoir suggesting undersaturation of the reservoir rocks. Ongoing monitoring of Vp/Vs may be useful in tracking the expansion of the steam zone with time. Spatial and temporal patterns of seismicity exhibit compelling correlation with geothermal exploitation. Clusters of MEQs occur beneath active injection wells and appear to shift with changing injection activities. High resolution MEQ locations hold promise for inferring fluid flow paths, especially in tracking injectate. This study has demonstrated that continuous seismic monitoring may be useful as an active reservoir management tool.

  1. Geothermal Fields on the Volcanic Axis of Mexico

    SciTech Connect

    Mercado, S.; Gonzalez, A.

    1980-12-16

    At present in Mexico, geothermal energy is receiving a great impulse due to the excellent results obtained in the Cerro Prieto geothermal field, in which a geothermoelectric plant is operated. This plant has four units of 37.5 MW each, with a total capacity of 150 MW, and under program 470 MW more by 1984. The Government Institution, Comisi6n Federal de Electricidad, is in charge of the exploration and exploitation of geothermal fields as well as construction and operation of power plants in Mexico. By this time CFE has an extensive program of exploration in the central part of Mexico, in the Eje Neovolcdnico. In this area, several fields with hydrothermal alteration are under exploration, like the Michoac6n geothermal area, where Los Azufres geothermal field is being developed. Seventeen wells have been drilled and twelve of them presented excellent results, including two dry steam wells. In other areas, such as Arar6, Cuitzeo, San Agustln del Maiz,Ixtldn de Los Hervores and Los Negritos, geological, geophysical and geochemical explorations have been accomplished, including shallow well drilling with good results. Another main geothermal area is in the State of Jalisco with an extension of 5,000 m2, where La Primavera geothermal field shows a lot of volcanic domes and has an intensive hydrothermal activity. Deep wells have been drilled, one of them with a bottom temperature of 29OOC. Other fields in this area, like San Narcos, Hervores de La Vega, La Soledad, Villa Corona, etc., have a good geothermal potential. A new geothermal area has been explored recently in the eastern part of the country named Los Humeros, Puebla. In this area studies are being made and there are plans for well drilling exploration by the beginning of 1981. Like this one, there are many other areas in the country in which 300 hydrothermal alteration zones are been classified and 100 of them are considered economically exploitable.

  2. The Geothermal Field Camp: Capacity building for geothermal energy systems in Indonesia

    NASA Astrophysics Data System (ADS)

    Moeck, I.; Sule, R.; Saptadji, N. M.; Deon, F.; Herdianita, N. R.; Jolie, E.; Suryantini, N.; Erbas, K.

    2012-04-01

    In July 2011, the first geothermal field camp was hold on Java/Indonesia near the city Bandung south of the volcanic field Tangkuban Perahu. The course was organized by the Institut Teknologie Bandung (ITB) and International Centre for Geothermal Research (ICGR) of the German Centre of Geosciences (GFZ). The purpose of the Geothermal Field Camp is to combine both field based work and laboratory analysis to ultimately better understand the data collected in field and to integrate data gained by various disciplines. The training belongs to a capacity building program for geothermal energy systems in Indonesia and initially aims to train the trainers. In a later stage, the educational personal trained by the Geothermal Field Camp shall be able to hold their individual Geothermal Field Camp. This is of special interest for Indonesia where the multitude of islands hindered a broad uniform education in geothermal energy systems. However, Indonesia hold the largest geothermal potential worldwide and educated personal is necessary to successfully develop this huge potential scattered over region in future. The interdisciplinary and integrative approach combined with field based and laboratory methodologies is the guiding principle of the Geothermal Field Camp. Tangkuban Perahu was selected because this field allows the integration of field based structural geological analysis, observation and sampling of geothermal manifestations as hot springs and sinters and ultimately of structural geology and surface geochemistry. This innovative training introduces in methods used in exploration geology to study both, fault and fracture systems and fluid chemistry to better understand the selective fluid flow along certain fractures and faults. Field geology covered the systematic measurement of faults and fractures, fault plane and fracture population analysis. In addition, field hydro-geochemistry focused on sampling techniques and field measurements onsite. Subsequent data analysis

  3. The Ahuachapan geothermal field, El Salvador: Reservoir analysis

    SciTech Connect

    Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A.; Icelandic National Energy Authority, Reykjavik; Geological Survey, Menlo Park, CA; Lawrence Berkeley Lab., CA )

    1989-08-01

    These are appendices F through I of the Ahuachapan Geothermal Field Reservoir Analysis. The volume contains: well logs, water chemistry plots, gas chemistry plots, temperature plots, and flow plots. (JEF)

  4. The Ahuachapan geothermal field, El Salvador: Reservoir analysis

    SciTech Connect

    Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A.; Icelandic National Energy Authority, Reykjavik; Geological Survey, Menlo Park, CA )

    1989-08-01

    These are appendices A thru E of the Ahuachapan geothermal field reservoir analysis. The volume contains: mineralogy contours, ionic chlorine and silicon dioxide contours, well summaries, and temperature and pressure effects. (JEF)

  5. Symposium in the field of geothermal energy

    SciTech Connect

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  6. Extremely Shallow Extensional Faulting Near Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Wei, S.; Donnellan, A.; Fielding, E. J.; Graves, R. W.; Helmberger, D. V.; Liu, Z.; Parker, J. W.; Treiman, J. A.

    2013-12-01

    side down slip. Up to 18 cm/s ground motion were observed at four seismic stations within 10 km which are modeled by northward rupture directivity with rupture speed of ~1.0-1.5 km/s. Although most energy in Brawley Seismic Zone swarms is released in deeper and larger strike-slip events, we observe surprisingly that the recent cases of surface faulting in 2005 on the Kalin fault (Rymer et al., USGS OFR 2010-1333) and 2012 preferentially involve normal fault surface slip in close proximity to geothermal fields, as did the 2006 Morelia fault case (Suárez-Vidal et al., SRL 2007). The Aug. 2012 case was the latest of three minor extensional surface ruptures, each associated with moderate seismic activity near geothermal fields. We compare this latest case, with its ~3.5 km surface break, and the two earlier examples with ~0.5 km (2005) and ~2.0 km (2006) long surface breaks with similar NE-SW to NNE-SSW orientations. All three cases had tectonic surface slip of greater than 15 cm but less than 30 cm, involved mostly normal fault slip, and occurred within extensional step-over zones between the San Andreas and Imperial faults (2005 & 2012), and between the Imperial and Cerro Prieto faults (2006).

  7. The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan.

    NASA Astrophysics Data System (ADS)

    Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh

    2015-04-01

    The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare

  8. Field-based tests of geochemical modeling codes using New Zealand hydrothermal systems

    SciTech Connect

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1994-06-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions.

  9. Field-based tests of geochemical modeling codes: New Zealand hydrothermal systems

    SciTech Connect

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1993-12-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions.

  10. Geothermal Field Near Rotorua, New Zealand

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Historical sketches show the indigenous Maori cooking with natural hot waters and steam prior to the arrival of Europeans on North Island, New Zealand. Since the 1950s, geothermal heat and steam have been exploited for both heating and electrical power generation, and some excess electrical power is exported to South Island. The geothermal development can be identified by the unique patterns of infrastructure that look like tan beads on a string in the midst of otherwise green vegetation. This one near the town of Rotorua lies within a northeast-trending line of active volcanoes (Ruapehu, Tongariro, and White Island) that are the surface result of the Pacific tectonic plate descending beneath the Australian-Indian plate. Image STS110-726-10 was taken by space shuttle crewmembers in April 2002 using a Hasselblad film camera. Image provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  11. Volume strain within The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Mossop, Antony; Segall, Paul

    1999-12-01

    During the 1970s and 1980s, The Geysers geothermal region was rapidly developed as a site of geothermal power production. The likelihood that this could cause significant strain within the reservoir, with corresponding surface displacements, led to a series of deformation monitoring surveys. In 1973, 1975, 1977, and 1980, The Geysers region was surveyed using first-order, class I, spirit leveling. In 1994, 1995, and 1996, many of the leveling control monuments were resurveyed using high-precision Global Positioning System receivers. The two survey methods are reconciled using the GEOID96 geoid model. The displacements are inverted to determine volume strain within the reservoir. For the period 1980-1994, peak volume strains in excess of 5×10-4 are imaged. There is an excellent correlation between the observed changes in reservoir steam pressures and the imaged volume strain. If reservoir pressure changes are inducing volume strain, then the reservoir quasi-static bulk modulus K must be <4.6×109 Pa. However, seismic velocities indicate a much suffer reservoir with K = 3.4 × 1010 Pa. This apparent discrepancy is shown to be consistent with predicted frequency dependence in K for fractured and water-saturated rock. Inversion of surface deformation data therefore appears to be a powerful method for imaging pressure change within the body of the reservoir. Correlation between induced seismicity at The Geysers and volume strain is observed. However, earthquake distribution does not appear to have a simple relationship with volume strain rate.

  12. Temperature distribution in the Cerro Prieto geothermal field

    SciTech Connect

    Castillo B, F.; Bermejo M, F.J.; Domiguez A, B.; Esquer P, C.A.; Navarro O, F.J.

    1981-01-01

    A series of temperature and pressure logs and flow rate measurements was compiled for each of the geothermal wells drilled to different reservoir depths between October 1979 and December 1980. Based on the valuable information obtained, a series of graphs showing the thermal characteristics of the reservoir were prepared. These graphs clearly show the temperature distribution resulting from the movement of fluids from the deep regions toward the higher zones of the reservoir, thus establishing more reliable parameters for locating new wells with better production zones. Updated information based on data from new deep wells drilled in the geothermal field is presented here. This new information does not differ much from earlier estimates and theories. However, the influence of faulting and fracturing on the hydrothermal recharge of the geothermal reservoir is seen more clearly.

  13. Structural Controls of the Tuscarora Geothermal Field, Elko County, Nevada

    NASA Astrophysics Data System (ADS)

    Dering, Gregory M.

    Detailed geologic mapping, structural analysis, and well data have been integrated to elucidate the stratigraphic framework and structural setting of the Tuscarora geothermal area. Tuscarora is an amagmatic geothermal system that lies in the northern part of the Basin and Range province, ˜15 km southeast of the Snake River Plain and ˜90 km northwest of Elko, Nevada. The Tuscarora area is dominated by late Eocene to middle Miocene volcanic and sedimentary rocks, all overlying Paleozoic metasedimentary rocks. A geothermal power plant was constructed in 2011 and currently produces 18 MWe from an ˜170°C reservoir in metasedimentary rocks at a depth of 1740 m. Analysis of drill core reveals that the subsurface geology is dominated to depths of ˜700-1000 m by intracaldera deposits of the Eocene Big Cottonwood Canyon caldera, including blocks of basement-derived megabreccia. Furthermore, the Tertiary-Paleozoic nonconformity within the geothermal field has been recognized as the margin of this Eocene caldera. Structural relations combined with geochronologic data from previous studies indicate that Tuscarora has undergone extension since the late Eocene, with significant extension in the late Miocene-Pliocene to early Pleistocene. Kinematic analysis of fault slip data reveal an east-west-trending least principal paleostress direction, which probably reflects an earlier episode of Miocene extension. Two distinct structural settings at different scales appear to control the geothermal field. The regional structural setting is a 10-km wide complexly faulted left step or relay ramp in the west-dipping range-bounding Independence-Bull Run Mountains normal fault system. Geothermal activity occurs within the step-over where sets of east- and west-dipping normal faults overlap in a northerly trending accommodation zone. The distribution of hot wells and hydrothermal surface features, including boiling springs, fumaroles, and siliceous sinter, indicate that the geothermal

  14. Volume strain within the Geysers geothermal field

    SciTech Connect

    Mossop, Antony; Segall, Paul

    1999-12-10

    During the 1970s and 1980s. The Geysers geothermal region was rapidly developed as a site of geothermal power production. The likelihood that this could cause significant strain within the reservoir, with corresponding surface displacements, led to a series of deformation monitoring surveys. In 1973, 1975, 1977, and 1980, The Geysers region was surveyed using first-order, class I, spirit leveling. In 1994, 1995, and 1996, many of the leveling control monuments were resurveyed using high-precision Global Positioning System receivers. The two survey methods are reconciled using the GEOID96 geoid model. The displacements are inverted to determine volume strain within the reservoir. For the period 1980-1994, peak volume strains in excess of 5x10{sup -4} are imaged. There is an excellent correlation between the observed changes in reservoir steam pressures and the imaged volume strain. If reservoir pressure changes are inducing volume strain, then the reservoir quasi-static bulk modulus K must be <4.6x10{sup 9} Pa. However, seismic velocities indicate a much stiffer reservoir with K=3.4x10{sup 10} Pa. This apparent discrepancy is shown to be consistent with predicted frequency dependence in K for fractured and water-saturated rock. Inversion of surface deformation data therefore appears to be a powerful method for imaging pressure change within the body of the reservoir. Correlation between induced seismicity at The Geysers and volume strain is observed. However, earthquake distribution does not appear to have a simple relationship with volume strain rate. (c) 1999 American Geophysical Union.

  15. Subsidence and uplift at Heber Geothermal field, California

    SciTech Connect

    Boardman, T.S.

    1996-01-01

    Heber Geothermal field is in the Imperial Valley near the City of Heber, California, about 3 1/2 miles north of the Mexican border. The field is at the southern end of a network of irrigated agricultural fields extending across the valley floor. The Heber geothermal system is circular, producing water of moderate temperature (360{degrees}F) and low-salinity (13,000-14,000 ppm TDS). In cross section, the geothermal system resembles a lopsided mushroom. The system has three major permeability units: capping clays form 500 to 1800 feet; a high-matrix-permeability, deltaic-sandstone outflow reservoir from 1,800 to 5,500 feet; and feeder faults and fractures in indurated sediments below 5,500 feet. The deltaic sandstones were deposited by the ancestral Colorado River. As both power plants continue operating in Heber field, the need persists to monitor subsidence and uplift. The field`s subsidence bowl is not expected to expand significantly, but some small changes are expected due to pressure changes caused by production for the SIGC binary power plant. The three SIGC injection wells, located between the production areas for the two power plants, will be managed for adequate reservoir pressure support.

  16. Structural interpretation of the Coso geothermal field. Summary report, October 1986-August 1987

    SciTech Connect

    Austin, C.F.; Moore, J.L.

    1987-09-01

    The Coso Geothermal Field, located east of the Sierra Nevada at the northern edge of the high Mojave Desert in Southern California, is an excellent example of a structurally controlled geothermal resource.

  17. Relative Contributions of Geothermal Pumping and Long-Term Earthquake Rate to Seismicity at California Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Weiser, D. A.; Jackson, D. D.

    2015-12-01

    In a tectonically active area, a definitive discrimination between geothermally-induced and tectonic earthquakes is difficult to achieve. We focus our study on California's 11 major geothermal fields: Amedee, Brawley, Casa Diablo, Coso, East Mesa, The Geysers, Heber, Litchfield, Salton Sea, Susanville, and Wendel. The Geysers geothermal field is the world's largest geothermal energy producer. California's Department of Oil Gas and Geothermal Resources provides field-wide monthly injection and production volumes for each of these sites, which allows us to study the relationship between geothermal pumping activities and seismicity. Since many of the geothermal fields began injecting and producing before nearby seismic stations were installed, we use smoothed seismicity since 1932 from the ANSS catalog as a proxy for tectonic earthquake rate. We examine both geothermal pumping and long-term earthquake rate as factors that may control earthquake rate. Rather than focusing only on the largest earthquake, which is essentially a random occurrence in time, we examine how M≥4 earthquake rate density (probability per unit area, time, and magnitude) varies for each field. We estimate relative contributions to the observed earthquake rate of M≥4 from both a long-term earthquake rate (Kagan and Jackson, 2010) and pumping activity. For each geothermal field, respective earthquake catalogs (NCEDC and SCSN) are complete above at least M3 during the test period (which we tailor to each site). We test the hypothesis that the observed earthquake rate at a geothermal site during the test period is a linear combination of the long-term seismicity and pumping rates. We use a grid search to determine the confidence interval of the weighting parameters.

  18. Heat-flow mapping at the Geysers Geothermal Field

    SciTech Connect

    Thomas, R.P.

    1986-10-31

    Pertinent data were compiled for 187 temperature-gradient holes in the vicinity of The Geysers Geothermal field. Terrain-correction techniques were applied to most of the temperature-gradient data, and a temperature-gradient map was constructed. Cutting samples from 16, deep, production wells were analyzed for thermal conductivity. From these samples, the mean thermal conductivities were determined for serpentinized ultramafic rock, greenstone, and graywacke. Then, a heat flow map was made. The temperature-gradient and heat-flow maps show that The Geysers Geothermal field is part of a very large, northwesterly-trending, thermal anomaly; the commercially productive portion of the field may be 100 km/sup 2/ in area. The rate that heat energy flows through the surface by thermal conduction is estimated at 1.79 x 10/sup 9/MJ per year. The net heat energy loss from commercial production for 1983 is estimated at 180.14 x 10/sup 9/MJ.

  19. A Reservoir Assessment of the Geysers Geothermal Field

    SciTech Connect

    Thomas, Richard P.; Chapman, Rodger H.; Dykstra, Herman; Stockton, A.D.

    1981-01-01

    Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Upon moderately dipping, fracture network. Condensed steam at the steep reservoir flank drains back to the hot water table. These flanks are defined roughly by marginally-producing geothermal wells. Field extensions are expected to be on the southeast and northwest. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably represent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resitivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. Monitoring gravity and geodetic changes with time and mapping microearthquake activity are methods that show promise for determining reservoir size, possible recharge, production lifetime, and other characteristics of the known stream field. Seismic reflection data may contribute to the efficient exploitation of the field by identifying fracture zones that serve as conduits for the steam. (DJE-2005)

  20. 3D Magnetotelluric characterization of the COSO GeothermalField

    SciTech Connect

    Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

    2005-01-01

    Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.

  1. Geothermal well stimulation - program summary and the Beowawe field experiment

    SciTech Connect

    Verity, R.V.

    1983-12-01

    Republic Geothermal, Inc. and its subcontractors have planned and executed laboratory studies and eight well stimulation field experiments under the Geothermal Reservoir Well Stimulation Program (GRWSP). The program, begun in February 1979, has concentrated on extending petroleum industry stimulation technology for use by the geothermal industry. The most recent experiment was in a naturally fractured Chevron well at Beowawe and involved an acid stimulation of a damaged interval which yielded a 2.3-fold increase in injectivity. Overall results to date have shown that stimulation is viable where adequate reservoirs are penetrated by wells encountering formation damage or locally tight formations. However, wells in marginal naturally fractured reservoirs have not been saved by the types of well stimulation jobs performed thus far. A recent discovery is that many wells can possibly be made outstanding producers by widening and propping compliant natural fractures. Confirmation of this constitutes unfinished business of the GRWSP, adn offers one of the greatest potential opportunities for enhancing the economics of geothermal power production.

  2. Characteristics of the Zunil Geothermal Field (Western Guatemala)

    SciTech Connect

    Bethancourt, H.R.; Dominco, E.

    1982-10-01

    The Zunil geothermal field represents the marginal, shallow expression of a vast geothermal complex buried beneath active volcanic edifices (Cerro Quemado, Volcan Santa Maria, Western Guatemala) some kilometers to the west. The area lies at the edge of a tecto-volcanic depression where some 1,000 m of Tertiary and Quaternary volcanics are underlain by a granodioritic basement. High temperature geothermal fluids (over 280/sup 0/C) reach the field from the west, upflowing along the inclined contact between the granodioritic and the overlying volcanics, and along fractures in the basement itself. A conglomeratic layer at the volcanics/basement contact, and the underlying weathered cap of the basement form the only permeable horizon of the succession; this horizon forms the local reservoir tapped by the productive wells. Its reduced thickness (around 50 m) allows for a limited fluid storage such that field production relies on external recharge along the permeable horizon and underlying fractures in the granodiorite. Production testing and simulation models indicate a fairly rapid evolution of reservoir conditions from the liquid to the steam phase, due to pressure drawdown, in its turn due to a restricted inflow. The phenomenon determines an upgrading of the fluid enthalpy, but a decline of mass output. Simulated reinjection into the reservoir proved to be an effective measure to slow down such an evolution and optimize the field exploitation.

  3. An approach for geochemical assessment of Chipilapa geothermal field

    SciTech Connect

    Nieva, D.; Verma, M.P.; Portugal, E.; Torres, V.

    1993-01-28

    It presents a systematic methodology to evaluate the reservoir characteristics of Chipilapa- Ahuachapan geothermal field through the highly diluted natural manifestations (springs and domestic wells) in its surroundings. The manifestations are classified in three main groups according to their mechanism of formation: high salinity water (HSW), medium salinity water (MSW), and Sulfated Water (SW). The reservoir temperature at Chipilapa geothermal field is around 220°C which is estimated with application of various chemical geothermometers. The isotopic studies indicate that the heating of local meteoric water with the separated steam of deep reservoir fluids is a dominating process in the formation of springs and domestic wells fluids. The process of formation of primary and secondary vapor explains the isotopic composition of fumaroles.

  4. Hydrogeologic model of the Ahuachapan geothermal field, El Salvador

    SciTech Connect

    Laky, C.; Lippmann, M.J.; Bodvarsson, G.S. ); Retana, M.; Cuellar, G. )

    1989-01-01

    A hydrogeological model of the Ahuachapan geothermal field has been developed. It considers the lithology and structural features of the area and discerns their impact on the movement of cold and hot fluids in the system. Three aquifers were identified, their zones of mixing and flow patterns were obtained on the basis of temperature and geochemical data from wells and surface manifestations. 12 refs., 9 figs.

  5. The Geysers Geothermal Field Update1990/2010

    SciTech Connect

    Brophy, P.; Lippmann, M.; Dobson, P.F.; Poux, B.

    2010-10-01

    In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, but not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible view across

  6. Recency of Faulting and Neotechtonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range

    SciTech Connect

    Steven Wesnousky; S. John Caskey; John W. Bell

    2003-02-20

    We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal development. The approach developed here during our pilot study provides an inexpensive approach to (1) better define the best locations to site geothermal wells within known geothermal fields and (2) to define the location of yet discovered geothermal fields which are not manifest at the surface by active geothermal springs. More specifically, our investigation shows that induced stress concentrations at the endpoints of normal fault ruptures appear to promote favorable conditions for hydrothermal activity in two ways. We conclude that an understanding of the spatial distribution of active faults and the past history of earthquakes on those faults be incorporated as a standard tool in geothermal exploration and in the siting of future boreholes in existing geothermal fields.

  7. Strategies and Perceptions of Students' Field Note-Taking Skills: Insights from a Geothermal Field Lesson

    ERIC Educational Resources Information Center

    Dohaney, Jacqueline; Brogt, Erik; Kennedy, Ben

    2015-01-01

    Field note-taking skills are fundamental in the geosciences but are rarely explicitly taught. In a mixed-method study of an introductory geothermal field lesson, we characterize the content and perceptions of students' note-taking skills to derive the strategies that students use in the field. We collected several data sets: observations of the…

  8. Changes in thermal activity in the Rotorua geothermal field

    SciTech Connect

    Cody, A.D. ); Lumb, J.T. )

    1992-04-01

    During a period when geothermal fluid was being withdrawn for energy use at an increasing rate, the level of natural hydrothermal activity in the Rotorua geothermal field declined in an all-time low in the mid 1980s. total heatflow from a major hot-spring area fell by almost 50 percent, springs ceased their flow, and geysers displayed abnormal behavior consistent with a low aquifer pressure. since the enforced closure of bores within 1.5 km of Pohutu Geyser, sings of recovery, including a return to normal behavior of Pohutu and Waikorohihi Geysers, a resumption of activity at Kereru Geyser, and an increase in water flow from some springs are presented in this paper.

  9. Reservoir studies of the Seltjarnarnes geothermal field, Iceland

    SciTech Connect

    Tulinius, H.; Spencer, A.L.; Bodvarsson, G.S.; Kristmannsdottir, H.; Thorsteinsson, T.; Sveinbjornsdottir, A.E.

    1986-10-01

    The Seltjarnarnes geothermal field in Iceland has been exploited for space heating for the last 16 years. A model of the field has been developed that integrates all available data. The model has been calibrated against the flow rate and pressure decline histories of the wells and the temperature and chemical changes of the produced fluids. This has allowed for the estimation of the permeability and porosity distribution of the system, and the volume of the hot reservoir. Predictions of future reservoir behavior using the model suggest small pressure and temperature changes, but a continuous increase in the salinity of the fluids produced.

  10. Gas geochemistry of the Geysers geothermal field

    SciTech Connect

    Truesdell, A.H.

    1993-04-01

    Increases in gas concentrations in Central and Southeast Geysers steam are related to the decreases in pressure caused by heavy exploitation in the 1980s. When reservoir pressures in the central parts of the field decreased, high-gas steam from undrilled reservoir margins (and possibly from underlying high-temperature zones) flowed into exploited central areas. The Northwest Geysers reservoir probably lacks high-gas marginal steam and a decline in pressure may not cause a significant increase of gas concentrations in produced steam.

  11. Using a new Geothermal Well Field as a Field Laboratory to Facilitate Comprehensive Knowledge

    NASA Astrophysics Data System (ADS)

    Neumann, K.; Dowling, C. B.

    2011-12-01

    In Fall 2010, the faculty of the Department of Geological Sciences at Ball State University (BSU) took advantage of several recently drilled monitoring wells within BSU's newly constructed ground-source geothermal well field, currently the largest in the U.S., to create an undergraduate field laboratory for hydrogeological experiments. Using the Investigative Case-Based Learning approach, upper-level undergraduate students developed research projects that would assist BSU's Facilities in evaluating and maintaining the geothermal fields. The students designed original hypotheses and explored how to test them with the available equipment within one semester. They focused on observing and measuring the potential impact of the geothermal well field on groundwater temperature and flow direction using two shallow monitoring wells in gravel (~30 ft) and eight deeper monitoring wells in limestone (~70 ft). The results will be used for comparisons when the geothermal plant goes online in Fall 2011. Undergraduate and graduate students will perform experiments throughout this initial period and continue even after the geothermal field is activated. Through the use of different assessment tools, including peer evaluation, instructors' assessment and an assessment of understanding, we determined that twenty-five percent of the class gained full comprehensive understanding. These students were able to design new experiments by assessing their semester data, integrating their knowledge from previous classes, and synthesizing new hypotheses. The majority of the class was able to further expand their understanding of the scientific process, but not to the extent as the top students.

  12. Fracture Characterization in the Astor Pass Geothermal Field, Nevada

    NASA Astrophysics Data System (ADS)

    Walsh, D. C.; Reeves, D. M.; Pohll, G.; Lyles, B. F.; Cooper, C. A.

    2011-12-01

    The Astor Pass geothermal field, near Pyramid Lake, NV, is under study as a site of potential geothermal energy production. Three wells have been completed in the graben of this typical Basin and Range geologic setting. Lithologies include a layer of unconsolidated sediment (basin fill) underlain by various tertiary volcanic units and granodiorite and metavolcanic basement rock. Characterization of fractures within the relatively impermeable rock matrix is being conducted for the three wells. Statistical analysis of fracture orientation, densities, and spacing obtained from borehole imaging logs is used to determine stress orientation and to generate a statistically equivalent Discrete Fracture Network (DFN) model. Fractures at depth are compared to fracture data collected in nearby outcrops of the same lithologic stratigraphy. Fracture geometry and density is correlated to mechanically discrete layers within the stratigraphy to test whether variations in fracturing can be attributed to variations in Young's modulus. Correlation of fracture geometry and densities with spinner flowmeter logs and distributed temperature sensor records are made in an effort to identify potential flowing fracture zones intersecting the borehole. Mean fracture aperture is obtained from open fracture counts and reservoir-scale transmissivity values (computed from a 30 day pump test) in the absence of readily available aperture data. The goal of this thorough fracture characterization is to create a physically relevant model which may be coupled with a multipurpose fluid flow and thermal simulator for investigation of geothermal reservoir behavior, particularly at the borehole scale.

  13. Hydrothermal surface alteration in the Copahue Geothermal Field (Argentina)

    SciTech Connect

    Mas, Graciela R.; Mas, Luis C.; Bengochea, Leandro

    1996-01-24

    In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Máquinas, Termas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H2SO4 by atmospheric oxidation at the water table in a steam heated environment of H2S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hidrothermal solutions and the major structures of the area are analized.

  14. A database for The Geysers geothermal field

    SciTech Connect

    Bodvarsson, G.S.; Cox, B.L.; Fuller, P.; Ripperda, M.; Tulinius, H.; Witherspoon, P.A.; Goldstein, N.; Flexser, S.; Pruess, K. ); Truesdell, A. )

    1989-09-01

    In Fiscal Year 1985-1986 the Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) began a multi-year project for SLC to organize and analyze the field data from The Geysers. In the first year, most of the work concentrated on the development of a comprehensive database for The Geysers, and conventional reservoir engineering analysis of the data. Essentially, all non-proprietary data for wells at The Geysers have been incorporated into the database, as well as proprietary data from wells located on State leases. In following years, a more detailed analysis of The Geysers data has been carried out. This report is a summary of the non- proprietary work performed in FY 1985--1986. It describes various aspects of the database and also includes: review sections on Field Development, Geology, Geophysics, Geochemistry and Reservoir Engineering. It should be emphasized that these background chapters were written in 1986, and therefore only summarize the information available at that time. The appendices contain individual plots of wellhead pressures, degree of superheat, steam flow rates, cumulative mass flows, injection rates and cumulative injection through 1988 for approximately 250 wells. All of the data contained in this report are non-proprietary, from State and non-State leases. The production/injection and heat flow data from the wells were obtained from the California State Division of Oil and gas (DOG) (courtesy of Dick Thomas). Most of the other data were obtained from SLC files in Sacramento (courtesy of Charles Priddy), or DOG files in Santa Rosa (courtesy of Ken Stelling). 159 refs., 23 figs., 3 tabs.

  15. Seismicity and coupled deformation modeling at the Coso Geothermal Field

    NASA Astrophysics Data System (ADS)

    Kaven, J. O.; Hickman, S. H.; Davatzes, N. C.

    2015-12-01

    Micro-seismicity in geothermal reservoirs, in particular in enhanced geothermal systems (EGS), is a beneficial byproduct of injection and production, as it can indicate the generation of high-permeability pathways on either pre-existing or newly generated faults and fractures. The hazard of inducing an earthquake large enough to be felt at the surface, however, is not easily avoided and has led to termination of some EGS projects. To explore the physical processes leading to permeability creation and maintenance in geothermal systems and the physics of induced earthquakes , we investigated the evolution of seismicity and the factors controlling the migration, moment release rate, and timing of seismicity in the Coso Geothermal Field (CGF). We report on seismicity in the CGF that has been relocated with high precision double-difference relocation techniques and simultaneous velocity inversions to understand hydrologic reservoir compartmentalization and the nature of subsurface boundaries to fluid flow. We find that two distinct compartments are present within the CGF, which are divided by an aseismic gap showing a relatively low Vp/Vs ratio, likely indicating lower temperatures or lower pore pressures within the gap than in the adjacent reservoir compartments. Well-located events with Mw> 3.5 tend to map onto reactivated fault structures that were revealed when imaged by the relocated micro-seismicity. We relate the temporal and spatial migration of moment release rate to the injection and production histories in the reservoir by employing a thermo-poro-elastic finite element model that takes into account the compartment boundaries defined by the seismicity. We find that pore pressure effects alone are not responsible for the migration of seismicity and that poro-elastic and thermo-elastic stress changes are needed in addition to fluid pressure effects to account for the observed moment release rates.

  16. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    SciTech Connect

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  17. The Ngatamariki Geothermal Field, NZ: Surface Manifestations - Past and Present

    SciTech Connect

    Brotheridge, J.M.A.; Browne, P.R.L.; Hochstein, M.P.

    1995-01-01

    The Ngatamariki geothermal field, located 7 km south of Orakeikorako, discharges dilute chloride-bicarbonate waters of almost neutral pH from springs mostly on the margins of the field. Rhyolite tuffs in the northwestern part of the field are weakly silicified, probably due to their having reacted with heated groundwaters. Sinter deposits are common at Ngatamariki but are mostly relict from former activity. In 1994, the natural heat loss from the field was 30 {+-} 5 MW{sub thermal}. There has been a shift of thermal activity southward over the past 60 years; the changes were recognized by comparing air photographs taken in 1941 and 1991. In 1948, a hydrothermal eruption deposited breccia around its crater, which is now occupied by a pool at 52.5 C. Another pool at 88 C, first noticed in 1993, deposits a mixture of silica and calcite.

  18. Hydrogeochemistry and reservoir model of Fuzhou geothermal field, China

    NASA Astrophysics Data System (ADS)

    Huang, H. F.; Goff, Fraser

    1986-03-01

    Fuzhou geothermal field is a low- to intermediate-temperature geothermal system consisting of meteoric water that circulates deeply along faults. The area of the field is about 9 km 2 but it is elongated in a NNW-trending direction. Fluids in the field are controlled by a series of four NNW extensional faults in Cretaceous granitic basement (Fuzhou fault zone). These faults feed warm waters into overlying permeable Quaternary sediments. The hydrothermal system consists of north and south parts whose chemical compositions are subtly different. In the northern part the system discharges sulfate/chloride waters with relatively low chloride concentrations, but in the south the system discharges chloride waters having relatively high chloride concentrations. Maximum wellhead temperatures are 97°C, which agrees with the chalcedony geothermometer in many cases. Based on the solubility of quartz, the deep-reservoir temperature cannot exceed 123 to 131°C. From heat and mass balance calculations, we conclude that the present total extracted capacity of fluid from the reservoir (20,000 tons/day) could be doubled without noticeable drawdown. We estimate the recoverable heat in the reservoir to be about 1.71 × 10 11 MJ.

  19. Water chemistry of hot waters of Umut geothermal field (SW Turkey)

    NASA Astrophysics Data System (ADS)

    Avşar, Özgür; Türe, Orkun

    2014-05-01

    Umut geothermal field is located on Menderes graben which is one of the most active geothermal regions of Turkey. In order to delineate the chemistry of the waters of Umut geothermal field, fourteen samples were taken from four wells and ten from hot springs. Discharge temperatures of the waters range from 20 to 120 °C. According to the results of chemical analyses, the waters are Na+K - HCO3 type. Cation geothermometer calculations revealed a reservoir temperature greater than 200 °C for Umut geothermal field waters. Stable isotope analyses results indicates that the waters are meteoric in origin.

  20. Fracture patterns in graywacke outcrops at The Geysers geothermal field

    SciTech Connect

    Sammis, Charles G.; Lin Ji An; Ershaghi, I.

    1991-01-01

    The Geysers geothermal field covers an area of more than 35,000 acres and represents one of the most significant steam fields in the world. The heterogeneous nature of the reservoir, its fracture network and non-sedimentary rock distinguish it from ordinary sandstone reservoirs in terms of reservoir definition and evaluation (Stockton et al. 1984). Analysis of cuttings, record of steam entries, temperature and pressure surveys and spinner logs have contributed to an understanding of the subsurface geology and rock characteristics of the Geysers. Few conventional electrical log data are available for the main body of the reservoir. It is generally believed that while the fractures are the main conducts for fluid transport through the reservoirs, tight rocks between the major fractures contain the bulk of the fluid reserves. No independent measurement of liquid and vapor saturation can be made from the existing downhole tools. Pressure depletion in The Geysers geothermal field has become a major concern to the operators and utility companies in recent years. Plans for further development activities and future field management are contingent upon accurate computer modeling and definition of the field. The primary issues in reliable characterization of The Geysers field are the role of the rock matrix in holding liquid reserves and providing pressure support, the nature of fracture network, extent of liquid saturation in the reservoirs and injection pattern strategies to maximize heat recovery. Current modeling of The Geysers field is done through the use of general purpose geothermal reservoir simulators. Approaches employed include treating the reservoir as a single porosity equivalent or a dual porosity system. These simulators include formulation to represent transport of heat, steam and water. Heterogeneities are represented by spatial variations in formation or fracture permeability-thickness product, porosity or fluid saturations. Conceptual models based on dual

  1. Origin of first cells at terrestrial, anoxic geothermal fields.

    PubMed

    Mulkidjanian, Armen Y; Bychkov, Andrew Yu; Dibrova, Daria V; Galperin, Michael Y; Koonin, Eugene V

    2012-04-01

    All cells contain much more potassium, phosphate, and transition metals than modern (or reconstructed primeval) oceans, lakes, or rivers. Cells maintain ion gradients by using sophisticated, energy-dependent membrane enzymes (membrane pumps) that are embedded in elaborate ion-tight membranes. The first cells could possess neither ion-tight membranes nor membrane pumps, so the concentrations of small inorganic molecules and ions within protocells and in their environment would equilibrate. Hence, the ion composition of modern cells might reflect the inorganic ion composition of the habitats of protocells. We attempted to reconstruct the "hatcheries" of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells. These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K(+), Zn(2+), Mn(2+), and phosphate. Thus, protocells must have evolved in habitats with a high K(+)/Na(+) ratio and relatively high concentrations of Zn, Mn, and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under the anoxic, CO(2)-dominated primordial atmosphere, the chemistry of basins at geothermal fields would resemble the internal milieu of modern cells. The precellular stages of evolution might have transpired in shallow ponds of condensed and cooled geothermal vapor that were lined with porous silicate minerals mixed with metal sulfides and enriched in K(+), Zn(2+), and phosphorous compounds. PMID:22331915

  2. Shear velocity of the Rotokawa geothermal field using ambient noise

    NASA Astrophysics Data System (ADS)

    Civilini, F.; Savage, M. K.; Townend, J.

    2014-12-01

    Ambient noise correlation is an increasingly popular seismological technique that uses the ambient seismic noise recorded at two stations to construct an empirical Green's function. Applications of this technique include determining shear velocity structure and attenuation. An advantage of ambient noise is that it does not rely on external sources of seismic energy such as local or teleseismic earthquakes. This method has been used in the geothermal industry to determine the depths at which magmatic processes occur, to distinguish between production and non-production areas, and to observe seismic velocity perturbations associated with fluid extraction. We will present a velocity model for the Rotokawa geothermal field near Taupo, New Zealand, produced from ambient noise cross correlations. Production at Rotokawa is based on the "Rotokawa A" combined cycle power station established in 1997 and the "Nga Awa Purua" triple flash power plant established in 2010. Rotokawa Joint Venture, a partnership between Mighty River Power and Tauhara North No. 2 Trust currently operates 174 MW of generation at Rotokawa. An array of short period seismometers was installed in 2008 and occupies an area of roughly 5 square kilometers around the site. Although both cultural and natural noise sources are recorded at the stations, the instrument separation distance provides a unique challenge for analyzing cross correlations produced by both signal types. The inter-station spacing is on the order of a few kilometers, so waves from cultural sources generally are not coherent from one station to the other, while the wavelength produced by natural noise is greater than the station separation. Velocity models produced from these two source types will be compared to known geological models of the site. Depending on the amount of data needed to adequately construct cross-correlations, a time-dependent model of velocity will be established and compared with geothermal production processes.

  3. Hydrogeochemistry of the Simav geothermal field, western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Gemici, Ünsal; Tarcan, Gültekin

    2002-08-01

    Thermal waters hosted by Menderes metamorphic rocks emerge along fault lineaments in the Simav geothermal area. Thermal springs and drilled wells are located in the Eynal, Çitgöl and Naşa locations, which are part of the Simav geothermal field. Studies were carried out to obtain the main chemical and physical characteristics of thermal waters. These waters are used for heating of residences and greenhouses and for balneological purposes. Bottom temperatures of the drilled wells reach 163°C with total dissolved solids around 2225 mg/kg. Surface temperatures of thermal springs vary between 51°C and 90°C. All the thermal waters belong to Na-HCO 3-SO 4 facies. The cold groundwaters are Ca-Mg-HCO 3 type. Dissolution of host rock and ion-exchange reactions in the reservoir of the geothermal system shift the Ca-Mg-HCO 3 type cold groundwaters to the Na-HCO 3-SO 4 type thermal waters. Thermal waters are oversaturated at discharge temperatures for aragonite, calcite, quartz, chalcedony, magnesite and dolomite minerals giving rise to a carbonate-rich scale. Gypsum and anhydrite minerals are undersaturated with all of the thermal waters. Boiling during ascent of the thermal fluids produces steam and liquid waters resulting in an increase of the concentrations of the constituents in discharge waters. Steam fraction, y, of the thermal waters of which temperatures are above 100°C is between 0.075 and 0.119. Reservoir pH is much lower than pH measured in the liquid phase separated at atmospheric conditions, since the latter experienced heavy loss of acid gases, mainly CO 2. Assessment of the various empirical chemical geothermometers and geochemical modelling suggest that reservoir temperatures vary between 175°C and 200°C.

  4. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan

    SciTech Connect

    Garg, S.K.; Pritchett, J.W.; Stevens, J.L.; Luu, L.; Combs, J.

    1996-11-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses, and pressure transient data for the assessment of a high temperature volcanic geothermal field. The work accomplished during Year 1 of this ongoing program is described in the present report. A brief overview of the Sumikawa Geothermal Field is given. The drilling information and downhole pressure, temperature, and spinner surveys are used to determine feedzone locations, pressures and temperatures. Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter. Finally, plans for future work are outlined.

  5. Time lapse gravity monitoring at Coso geothermal field

    NASA Astrophysics Data System (ADS)

    Woolf, Rachel Vest

    An extensive time lapse gravity data set was acquired over the Coso geothermal field near Ridgecrest, California starting in 1987, with the latest data set acquired in 2013. In this thesis I use these gravity data to obtain a better understanding of mass changes occurring within the geothermal field. Geothermal energy is produced by flashing naturally heated ground water into steam which is used to turn turbines. Brine and re-condensed steam are then re-injected into the reservoir. A percentage of the water removed from the system is lost to the process. The time lapse gravity method consists of gravity measurements taken at the same locations over time, capturing snap shots of the changing field. After careful processing, the final data are differenced to extract the change in gravity over time. This change in gravity can then be inverted to recover the change in density and therefore mass over time. The inversion process also produces information on the three dimensional locations of these mass changes. Thirty five gravity data sets were processed and a subsection were inverted with two different starting times, a sixteen point data set collected continuously between 1991 and 2005, and a thirty-eight point data set collected between 1996 and 2005. The maximum change in gravity in the 1991 data group was -350 microGal observed near station CSE2. For the 1996 data group the maximum gravity change observed over the nine year period was -248 microGal. The gravity data were then inverted using the surface inversion method. Three values of density contrast were used, -0.05 g/cm3, -0.10 g/cm3, and -0.20 g/cm3. The starting surface in 1991 was set to 2,500 ft above sea level. The changes in surfaces were then converted to mass changes. The largest total mass change recovered was -1.39x1011 kg. This mass value is of the same order of magnitude as published well production data for the field. Additionally, the gravity data produces a better understanding of the spatial

  6. Initial exploration results: COSO Geothermal Field Inyo County, California

    SciTech Connect

    Moore, J.L.; Austin, C.

    1983-09-01

    The Coso geothermal area in Inyo County, California is described. Extensive geological, geophysical, and geochemical studies of the area have been conducted making it one of the most thoroughly studied geothermal prospects in the US. The Coso geothermal system, its reservoir rocks and fractures, magmatic heat source, groundwater flow patterns, caprock or seals, and the Coso Navy Exploratory Well 75-7 are described.

  7. Development history of the Tiwi geothermal field, Philippines

    SciTech Connect

    Gambill, D.T.; Beraquit, D.B.

    1993-10-01

    Commercial production of electricity from the Tiwi geothermal system began in 1979. In 1982, Tiwi became the world`s first water-dominated system to produce more than 160 MWe. Today the field supplies about 11% of Luzon`s electricity. Initially, the reservoir was single-phase liquid with a small, shallow steam zone on the east side. Temperature reversals in the first wells showed the east to be an outflow zone. As production began, reservoir pressure declined, two-phase conditions developed, and groundwater entered the reservoir from the east. As many productions wells cooled, brine production increased and generation decreased from about 280 MWe in 1983 to about 190 MWe in 1986. Improvements to surface facilities and new wells drilled farther west raised generation to about 280 MWe by mid-1993. Separated brine was first injected into the reservoir, but this lowered steam production; injection is now outside the field.

  8. Geochemical evidence of drawdown in the Cerro Prieto geothermal field

    USGS Publications Warehouse

    Truesdell, A.H.; Manon, M.A.; Jimenez, S.M.E.; Sanchez, A.A.; Fausto, L.J.J.

    1979-01-01

    Some wells of the Cerro Prieto geothermal field have undergone changes in the chemistry of fluids produced which reflect reservoir processes. Pressure decreases due to production in the southeastern part of the field have produced both drawdown of lower chloride fluids from an overlying aquifer and boiling in the aquifer with excess steam reaching the wells. These reservoir changes are indicated by changes in fluid chloride concentrations, Na/K ratios and measured enthalpies and by comparisons of aquifer fluid temperatures and chloride concentrations calculated from enthalpy and chemical measurements. Fluid temperatures have not been greatly affected by this drawdown because heat contained in the rock was transferred to the fluid. When this heat is exhausted, fluid temperatures may drop rapidly. ?? 1979.

  9. Analysis of production data from the Krafla geothermal field, Iceland

    SciTech Connect

    Pruess, K.; Bodvarsson, G.S.; Stefansson, V.

    1983-12-01

    The analysis of flow rate and enthalpy data from several wells completed in the same two-phase zone of Krafla geothermal reservoir has yielded consistent relative permeability parameters. It is found that k/sub rl/ + k/sub rv/ = 1 over the entire range of two-phase flow conditions from immobile liquid to immobile vapor. The available data provide relative permeability parameters as a function of flowing enthalpy only. The relationship between flowing enthalpy and in-place vapor saturation remains unknown, so that the relative permeability information obtained is of limited value for quantitative modeling of geothermal reservoir performance. Numerical simulation of flow rate and enthalpy transients has yielded excellent matches to production data from well 12. However, there is little information about the reservoir which can be deduced in an unambiguous way, because the field data could be matched with a variety of rather different parameter choices. The only unambiguous piece of information obtained is that the water injected into the well during drilling and completion remains in the vicinity of the wellbore during several weeks of warmup.

  10. Geothermal injection treatment: process chemistry, field experiences, and design options

    SciTech Connect

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  11. Exploration and development of the Cerro Prieto geothermal field

    SciTech Connect

    Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-07-01

    A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of US organizations sponsored by the US Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: (1) surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; (2) the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; (3) geochemical surveys help to define zones of recharge and paths of fluid migration; and (4) reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

  12. Modeling discharge requirements for deep geothermal wells at the Cerro Prieto geothermal field, MX

    SciTech Connect

    Menzies, Anthony J.; Granados, Eduardo E.; Puente, Hector Gutierrez; Pierres, Luis Ortega

    1995-01-26

    During the mid-l980's, Comision Federal de Electricidad (CFE) drilled a number of deep wells (M-200 series) at the Cerro Prieto geothermal field, Baja California, Mexico to investigate the continuation of the geothermal reservoir to the east of the Cerro Prieto-II and III production areas. The wells encountered permeability at depths ranging from 2,800 to 4,400 m but due to the reservoir depth and the relatively cold temperatures encountered in the upper 1,000 to 2,000 m of the wells, it was not possible to discharge some of the wells. The wells at Cerro Prieto are generally discharged by injecting compressed air below the water level using 2-3/8-inch tubing installed with either a crane or workover rig. The objective of this technique is to lift sufficient water out of the well to stimulate flow from the reservoir into the wellbore. However, in the case of the M-200 series wells, the temperatures in the upper 1,000 to 2,000 m are generally below 50 C and the heat loss to the formation is therefore significant. The impact of heat loss on the stimulation process was evaluated using both a numerical model of the reservoir/wellbore system and steady-state wellbore modeling. The results from the study indicate that if a flow rate of at least 300 liters/minute can be sustained, the well can probably be successfully stimulated. This is consistent with the flow rates obtained during the successful stimulations of wells M-202 and M-203. If the flow rate is closer to 60 liters/minute, the heat loss is significant and it is unlikely that the well can be successfully discharged. These results are consistent with the unsuccessful discharge attempts in wells M-201 and M-205.

  13. Microearthquake Studies at the Salton Sea Geothermal Field

    DOE Data Explorer

    Templeton, Dennise

    2013-10-01

    The objective of this project is to detect and locate microearthquakes to aid in the characterization of reservoir fracture networks. Accurate identification and mapping of the large numbers of microearthquakes induced in EGS is one technique that provides diagnostic information when determining the location, orientation and length of underground crack systems for use in reservoir development and management applications. Conventional earthquake location techniques often are employed to locate microearthquakes. However, these techniques require labor-intensive picking of individual seismic phase onsets across a network of sensors. For this project we adapt the Matched Field Processing (MFP) technique to the elastic propagation problem in geothermal reservoirs to identify more and smaller events than traditional methods alone.

  14. Numerical simulation of the Mori geothermal field, JP

    SciTech Connect

    Yukihiro Sakagawa; Masahiro Takahashi; Mineyuki Hanano; Tsuneo Ishido; Nobuhiro Demboya

    1994-01-20

    A numerical study of the Mori geothermal field which consisted of a series of three-dimensional natural state modeling and history matching was carried out with porous models. Finally satisfactory fits both on temperature and pressure of the natural state and on pressure history caused by exploitation were obtained. The results indicate that the deep hot water ascends mainly through the fractures near the caldera wall and the fractures confined to some lithofaces, and some of the ascending hot water flows to the west from the caldera. A sketch of the geological structure, the way of making up the initial numerical model, the way of concluding free parameters, and results of calculations of natural state modeling and history matching for the best numerical model are presented.

  15. RAPID CASING CORROSION IN HIGH TEMPERATURE LIQUID DOMINATED GEOTHERMAL FIELDS

    SciTech Connect

    Bixley, P.F.; Wilson, D.M.

    1985-01-22

    Downhole logging and workover operations on 12-20 year old wells in several high temperature, liquid-dominated geothermal fields in New Zealand has shown that severe corrosion has commonly occurred in the production casing string where this is unprotected by larger diameter casings. To date corrosion products from only one well have been examined in detail. These indicate that corrosion attack commences at the outer casing wall and continues at a rate as great as 0.8mm/year. Rapid corrosion has been attributed to neutral or slightly acid high bicarbonate waters formed by the absorption of steam and gas into shallow aquifers not directly connected to the deeper, high chloride reservoir.

  16. Geophysical surveys in Parvati valley geothermal field, Kullu, India

    NASA Astrophysics Data System (ADS)

    Rakesh Kumar, S. B.; Singh, Mohan; Gupta, L.; Rao, G. V.

    1982-08-01

    Direct current resistivity surveys and shallow temperature measurements were carried out for geothermal exploration in a part of Parvati valley, goethermal field, Himachal Pradesh, India. At a few places, the Schlumberger soundings pointed to the presence of a relatively low-resistivity shallow layer, which probably represents fractured and jointed quartzite, saturated with hot/cold water. Wenner resistivity profiles indicate the presence of some possible shallow subsurface lateral hot water channels across the valley at Manikaran. Shallow temperature measurements show a good subsurface thermal anomaly near the confluence of the rivers Brahmaganga and Parvati. The results of the survey, together with other available geodata, suggest that an anomalous heat source does not lie beneath the study area. It is postulated that the meteoric water, originating at high elevations after heating as a result of circulation at depth, emerges at the surface in the Parvati valley as hot springs, after mixing in various proportions with near surface cold waters.

  17. Results of investigation at the Ahuachapan Geothermal Field, El Salvador

    SciTech Connect

    Fink, J.B. )

    1990-04-01

    The Ahuachapan Geothermal Field (AGF) is a 95 megawatt geothemal-sourced power-plant operated by the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) of El Salvador. During the past decade, as part of an effort to increase in situ thermal reserves in order to realize the full generation capacity of the AGF, extensive surface geophysical coverage has been obtained over the AGF and the prospective Chipilapa area to the east. The geophysical surveys were performed to determine physical property characteristics of the known reservoir and then to search for similar characteristics in the Chipilapa area. A secondary objective was to evaluate the surface recharge area in the highlands to the south of the AGF. The principal surface electrical geophysical methods used during this period were DC resistivity and magnetotellurics. Three available data sets have been reinterpreted using drillhole control to help form geophysical models of the area. The geophysical models are compared with the geologic interpretations.

  18. A reservoir engineering assessment of the San Jacinto-Tizate Geothermal Field, Nicaragua

    SciTech Connect

    Ostapenko, S.; Spektor, S.; Davila, H.; Porras, E.; Perez, M.

    1996-01-24

    More than twenty yews have passed since geothermal research and drilling took place at the geothermal fields in Nicaragua- Tbe well horn Momotombo Geothermal Field (70 We) has been generating electricity since 1983, and now a new geothermal field is under exploration. the San Jacinto-Tizate. Two reservoirs hydraulic connected were found. The shallow reservoir (270°C) at the depth of 550 - 1200 meters, and the deep one at > 1600 meters. Both of theme are water dominated reservoirs, although a two phase condition exist in the upper part of the shallow one. Different transient tests and a multi-well interference test have been carried out, very high transmissivity value were estimated around the well SJ-4 and average values for the others. A preliminar conceptual model of the geothermal system is given in this paper, as the result of the geology, geophysics, hydrology studies, drilling and reservoir evaluation.

  19. A reservoir engineering assessment of the San Jacinto-Tizate geothermal field, Nicaragua

    SciTech Connect

    Ostapenko, S.; Spektor, S.; Davila, H.; Porras, E.; Perez, M.

    1996-12-31

    More than twenty years have passed since geothermal research and drilling took place at the geothermal fields in Nicaragua. The well known Momotombo Geothermal Field (70 MWe) has been generating electricity since 1983, and now a new geothermal field is under exploration, the San Jacinto-Tizate. Two reservoirs hydraulic connected were found. The shallow reservoir (270{degrees}C) at the depth of 550 - 1200 meters, and the deep one at > 1600 meters. Both of them are water dominated reservoirs although a two phase condition exist in the upper part of the shallow one. Different transient tests and a multi-well interference test have been carried out, very high transmissivity value were estimated around the well SJ-4 and average values for the others. A preliminary conceptual model of the geothermal system is given in this paper, as the result of the geology, geophysics, hydrology studies, drilling and reservoir evaluation.

  20. The Ahuachapan geothermal field, El Salvador: Reservoir analysis

    SciTech Connect

    Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A.; Icelandic National Energy Authority, Reykjavik; Geological Survey, Menlo Park, CA; Lawrence Berkeley Lab., CA )

    1989-08-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL). This report describes the work done during the first year of the study (FY 1988--89), and includes the (1) development of geological and conceptual models of the field, (2) evaluation of the initial thermodynamic and chemical conditions and their changes during exploitation, (3) evaluation of interference test data and the observed reservoir pressure decline, and (4) the development of a natural state model for the field. The geological model of the field indicates that there are seven (7) major and five (5) minor faults that control the fluid movement in the Ahuachapan area. Some of the faults act as a barrier to flow as indicated by large temperature declines towards the north and west. Other faults act as preferential pathways to flow. The Ahuachapan Andesites provide good horizontal permeability to flow and provide most of the fluids to the wells. The underlying Older Agglomerates also contribute to well production, but considerably less than the Andesites. 84 refs.

  1. Velocity and Attenuation Structure of the Geysers Geothermal Field, California

    SciTech Connect

    Zucca, J. J.; Hutchings, L. J.; Kasameyer, P. W.

    1993-01-01

    The Geysers geothermal field is located in northern California and is one of the world's largest producers of electricity from geothermal energy. The resource consists of primarily dry steam which is produced from a low, porosity fractured graywacke. Over the last several years steam pressure at the Geysers has been dropping. Concern over decline of the resource has prompted research to understand its fundamental nature. A key issue is the distribution of fluid in the matrix of the reservoir rock. In this paper we interpret seismic compressional-wave velocity and attenuation data at the Geysers in terms of the geologic structure and fluid saturation in the reservoir. Our data consist of approximately 300 earthquakes that are of magnitude 1.2 and are distributed in depth between sea level and 2.5 km. Using compressional-wave arrival times, we invert for earthquake location, origin time, and velocity along a three-dimensional grid. Using the initial pulse width of the compressional-wave, we invert for the initial pulse width associated with the source, and the one-dimensional Q structure. We find that the velocity structure correlates with known mapped geologic units, including a velocity high that is correlated with a felsite body at depth that is known from drilling. The dry steam reservoir, which is also known from drilling, is mostly correlated with low velocity. The Q increases with depth to the top of the dry steam reservoir and decreases with depth within the reservoir. The decrease of Q with depth probably indicates that the saturation of the matrix of the reservoir rock increases with depth.

  2. Reservoir analysis of the Palinpinon geothermal field, Negros Oriental, Philippines

    SciTech Connect

    Amistoso, A.E.; Aquino, B.G.; Aunzo, Z.P.; Jordan, O.T.; Ana, F.X.M.S.; Bodvarsson, G.S.; Doughty, C.

    1993-10-01

    The Philippine National Oil Company and Lawrence Berkeley Laboratory have conducted an informal cooperative project on the reservoir evaluation of the Palinpinon geothermal field in the Philippines. The work involved the development of various numerical models of the field in order to understand the observed data. A three-dimensional porous medium model of the reservoir has been developed that matches well the observed pressure declines and enthalpy transients of the wells. Submodels representing the reservoir as a fractured porous medium were developed for the analysis of chemical transport of chlorides within the reservoir and the movement of the cold water front away from injection wells. These models indicate that the effective porosity of the reservoir varies between 1 and 7% and the effective permeability between 1 and 45 millidarcies. The numerical models were used to predict the future performance of the Palinpinon reservoir using various possible exploitation scenarios. A limited number of make-up wells were allocated to each sector of the field. When all the make-up wells had been put on line, power production gradually began to decline. The model indicates that under the assumed conditions it will not be possible to maintain the planned power production of 112.5 MWe at Palinpinon I and 80 MWe at Palinpinon II for the next 30 years, but the decline in power output will be within acceptable normal operating capacities of the plants.

  3. Natural State Model of the Nesjavellir Geothermal Field, Iceland

    SciTech Connect

    Bodvarsson, G.S.; Pruess, K.; Stefansson, V.; Steingrimsson, B.; Bjornsson, S.; Gunnarsson, A.; Gunnlaugsson, E.

    1986-01-21

    The Nesjavellir geothermal system in southern Iceland is very complex from both a thermal and hydrologic point of view. There are large pressure and temperature gradients in the wellfield and zones with drastically different pressure potentials. Thus, natural fluid flow is substantial in the system and flow patterns are complex. We have developed a two-dimensional natural state model for the Nesjavellir system that matches reasonably well the observed pressure and temperature distributions. The match with field data has allowed determination of the energy recharge to the system and the permeability distribution. Fluids recharge the system at rate of 0.02 kg/s/m with an enthalpy of 1460 kJ/kg. The permeability in the main reservoir is estimated to be in the range of 1.5 to 2.0 md, which agrees well with injection test results from individual wells. Permeabilities in shallower reservoirs are about an order of magnitude higher. Most of the main reservoir is under twephase conditions, as are shallow aquifers in the southern part of the field. The model results also suggest that the low temperatures in the shallow part of the northern region of the field may be due to the young age of the system; i.e., the system is gradually heating up. If this is the case the estimated age of the system near the wellfield is on the order of a few thousand years.

  4. Seismostatistical characterization of microseismicity observed at geothermal fields

    NASA Astrophysics Data System (ADS)

    Eto, T.; Asanuma, H.; Adachi, M.; Saeki, K.; Aoyama, K.; Ozeki, H.; Häring, M. O.

    2012-12-01

    Recently, occurrence of felt earthquakes has been recognized as one of the most critical environmental burdens associated with geothermal development. We have taken seismostatistical approach to evaluate characteristics of the microseismicity at geothermal fields to establish realtime and automated monitoring techniques of the reservoir changes and risk assessment of the felt earthquakes. In this study, we have introduced the Epidemic Type Aftershock Sequence (ETAS) model (Ogata, JASA, 1988) to statistically model the time series of occurrences and the magnitude of microseismic events from hydrothermal and EGS fields. Here maximum likelihood estimation has been employed to estimate optimum parameters of the ETAS model. We analyzed microseismic events observed at Yanaizu Nishiyama, one of the largest hydrothermal fields in Japan. In this field, four felt earthquakes with local magnitude larger than 3.0 occurred during production operation since 1996, although no clear correlation between the occurrence of the felt earthquakes and operation to the reservoir has been observed (Asanuma et al., Trans. GRC, 2011). We found that the occurrence rate of primary fluid signals, which are the events triggered by external forcing and have been interpreted to be independent from a series of aftershocks (Hainzl and Ogata, JGR, 2005), correlated to the reinjection rate (Fig. 1). However, no significant change in the other parameters in the ETAS model has been observed. We also analyzed microseismic events observed at Basel EGS site in Switzerland, where some felt earthquakes occurred during and after hydraulic stimulation. The estimated ETAS model demonstrated that there is a correlation between the occurrence rate of primary fluid signals and injection rate. We, however, found that there is limitation to fit the ETAS model to the induced seismic events and new seismostatistical model is required for microseismic reservoir monitoring.ig. 1 A relation among production

  5. Analysis of induced seismicity at The Geysers geothermal field, California

    NASA Astrophysics Data System (ADS)

    Emolo, A.; Maercklin, N.; Matrullo, E.; Orefice, A.; Amoroso, O.; Convertito, V.; Sharma, N.; Zollo, A.

    2012-12-01

    Fluid injection, steam extraction, and reservoir stimulation in geothermal systems lead to induced seismicity. While in rare cases induced events may be large enough to pose a hazard, on the other hand the microseismicity provides information on the extent and the space-time varying properties of the reservoir. Therefore, microseismic monitoring is important, both for mitigation of unwanted effects of industrial operations and for continuous assessment of reservoir conditions. Here we analyze induced seismicity at The Geysers geothermal field in California, a vapor-dominated field with the top of the main steam reservoir some 1-3 km below the surface. Commercial exploitation began in the 1960s, and the seismicity increased with increasing field development. We focus our analyses on induced seismicity recorded between August 2007 and October 2011. Our calibrated waveform database contains some 15000 events with magnitudes between 1.0 and 4.5 and recorded by the LBNL Geysers/Calpine surface seismic network. We associated all data with events from the NCEDC earthquake catalog and re-picked first arrival times. Using selected events with at least 20 high-quality P-wave picks, we determined a minimum 1-D velocity model using VELEST. A well-constrained P-velocity model shows a sharp velocity increase at 1-2 km depth (from 3 to 5 km/s) and then a gradient-like trend down to about 5 km depth, where velocities reach values of 6-7 km/s. The station corrections show coherent, relatively high, positive travel time delays in the NW zone, thus indicating a strong lateral variation of the P-wave velocities. We determined an average Vp-to-Vs ratio of 1.67, which is consistent with estimates from other authors for the same time period. The events have been relocated in the new model using a non-linear probabilistic methods. The seismicity appears spatially diffused in a 15x10 km2 area elongated in NW-SE direction, and earthquake depths range between 0 and 6 km. As in previous

  6. Gas chemistry and thermometry of the Cerro Prieto geothermal field

    SciTech Connect

    Nehring, N.L.; D'Amore, F.

    1981-01-01

    Geothermal gases at Cerro Prieto are derived from high temperature reactions within the reservoir or are introduced with recharge water. Gases collected from geothermal wells should, therefore, reflect reservoir conditions. Interpretation of gas compositions of wells indicates reservoir temperatures, controls of oxygen and sulfur fugacities, and recharge source and direction.

  7. 3D Magnetotelluic characterization of the Coso GeothermalField

    SciTech Connect

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2007-04-23

    Electrical resistivity may contribute to progress inunderstanding geothermal systems by imaging the geometry, bounds andcontrolling structures in existing production, and thereby perhapssuggesting new areas for field expansion. To these ends, a dense grid ofmagnetotelluric (MT) stations plus a single line of contiguous bipolearray profiling has been acquired over the east flank of the Cosogeothermal system. Acquiring good quality MT data in producing geothermalsystems is a challenge due to production related electromagnetic (EM)noise and, in the case of Coso, due to proximity of a regional DCintertie power transmission line. To achieve good results, a remotereference completely outside the influence of the dominant source of EMnoise must be established. Experimental results so far indicate thatemplacing a reference site in Amargosa Valley, NV, 65 miles from the DCintertie, isstill insufficient for noise cancellation much of the time.Even though the DC line EM fields are planar at this distance, theyremain coherent with the nonplanar fields in the Coso area hence remotereferencing produces incorrect responses. We have successfully unwrappedand applied MT times series from the permanent observatory at Parkfield,CA, and these appear adequate to suppress the interference of thecultural EM noise. The efficacy of this observatory is confirmed bycomparison to stations taken using an ultra-distant reference site eastof Socorro, NM. Operation of the latter reference was successful by usingfast ftp internet communication between Coso Junction and the New MexicoInstitute of Mining and Technology, using the University of Utah site asintermediary, and allowed referencing within a few hours of datadownloading at Coso. A grid of 102 MT stations was acquired over the Cosogeothermal area in 2003 and an additional 23 stations were acquired toaugment coverage in the southern flank of the first survey area in 2005.These data have been inverted to a fully three

  8. Beppu geothermal field and the Geophysical Research Station

    SciTech Connect

    Not Available

    1988-12-01

    Bathing in hot springs has always been an important part of life in Japan. There are over 2,000 spas in Japan, visited every year by over 100 million people. In spite of this interest in hot-springs, very few institutes are dedicated to research in the hot-spring sciences. In this regard, the Geophysical Research Station of Kyoto University, Beppu, is unique because of its broad range of scientific studies of geothermal phenomena. The studies include geochemical, geophysical, geological, and hydrological research on geothermal systems in their natural and modified states. The Geophysical Research Station has an ideal location on the Beppu geothermal system, one of the largest geothermal systems in Japan on the Island of Kyushu. This island is the southernmost of the four main islands of Japan, at the northeastern end of the Philippines-Kyushu volcanic arc. The Beppa geothermal system is described briefly and research projects are discussed.

  9. Downhole seismic noise measurements in the Beowawe geothermal field, Nevada

    SciTech Connect

    Rutledge, J.T.; Albright, J.N.; Batra, R.

    1985-01-01

    A downhole seismic noise study was conducted at The Geysers area of Chevron's Beowawe geothermal field. Four wells were acoustically monitored with sensors placed simultaneously downhole and at the wellhead. Analyses included the correlation of downhole to surficial noise characteristics, well-to-well data correlations for noise source location or direction, and testing for the presence of borehole acoustic coupling between downhole and wellhead receivers. Intrawell cross-correlations in cased or lined boreholes clearly indicate acoustic coupling between wellhead and downhole receivers. Mean-integrated power values calculated over three frequency intervals indicate that the coupled signal is in the frequency interval 30 to 85 Hz and is the dominant component of signal downhole. Surficial variations of noise intensity in the frequency interval 0.5 to 15 Hz show little relation to simultaneously monitored downhole noise integrity. Downhole noise measurement appears to be predominantly a function of near-borehole phenomena in lined or cased holes. Measurements in an uncased borehole showed good correlations with surficial variations. Interwell correlations of noise could not be found. Reservoir noise in the Beowawe field indicated by conventional geophysical surveys could not be corroborated. 8 refs., 4 figs.

  10. Detection of Surface Temperature Anomalies in the Coso Geothermal Field Using Thermal Infrared Remote Sensing

    NASA Astrophysics Data System (ADS)

    Coolbaugh, M.; Eneva, M.; Bjornstad, S.; Combs, J.

    2007-12-01

    We use thermal infrared (TIR) data from the spaceborne ASTER instrument to detect surface temperature anomalies in the Coso geothermal field in eastern California. The identification of such anomalies in a known geothermal area serves as an incentive to search for similar markers to areas of unknown geothermal potential. We carried out field measurements concurrently with the collection of ASTER images. The field data included reflectance, subsurface and surface temperatures, and radiosonde atmospheric profiles. We apply techniques specifically targeted to correct for thermal artifacts caused by topography, albedo, and thermal inertia. This approach has the potential to reduce data noise and to reveal thermal anomalies which are not distinguishable in the uncorrected imagery. The combination of remote sensing and field data can be used to evaluate the performance of TIR remote sensing as a cost-effective geothermal exploration tool.

  11. Discovery and geology of the Desert Peak geothermal field: a case history. Bulletin 97

    SciTech Connect

    Benoit, W.R.; Hiner, J.E.; Forest, R.T.

    1982-09-01

    A case history of the exploration, development (through 1980), and geology of the Desert Peak geothermal field is presented. Sections on geochemistry, geophysics, and temperature-gradient drilling are included.

  12. Heterogeneous surface displacement pattern at the Hatchobaru geothermal field inferred from SAR interferometry time-series

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Kazuya; Tsuji, Takeshi; Matsuoka, Toshifumi; Nishijima, Jun; Fujimitsu, Yasuhiro

    2016-02-01

    We estimated surface displacements using persistent scatterer SAR interferometry (PS-InSAR) around the Hatchobaru geothermal field, Japan, from 18 ALOS/PALSAR images acquired from July 2007 to December 2010. Generally, geothermal fields, covered with natural targets such as rocky terrain and vegetation, have been one of the difficult targets for PS-InSAR analysis. However, we applied space adaptive filtering to increase the number of pixels for measuring surface displacement. The results of our analysis demonstrate ground subsidence with decaying velocity over the observation period around the geothermal field. The spatial pattern of ground subsidence includes sharp boundaries of subsidence that can be interpreted as fault traces. We demonstrated the usefulness of PS-InSAR analysis with the space adaptive filtering to estimate surface displacements with high spatial resolution and high spatial density around a geothermal field.

  13. Identification of fluid-flow paths in the Cerro Prieto geothermal field

    SciTech Connect

    Halfman, S.E.; Lippmann, M.J.; Zelwer, R.; Howard, J.H.

    1982-05-01

    A hydrogeologic model of the Cerro Prieto geothermal field has been developed based on geophysical and lithologic well logs, downhole temperature, and well completion data from about 90 deep wells. The hot brines seem to originate in the eastern part of the field, flowing in a westward direction and rising through gaps in the shaly layers which otherwise act as partial caprocks to the geothermal resource.

  14. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    NASA Astrophysics Data System (ADS)

    Keiding, M.; Árnadóttir, T.; Jónsson, S.; Decriem, J.; Hooper, A.

    2010-07-01

    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10 cm is observed during the first 2 years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction.

  15. Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico

    SciTech Connect

    James C Witcher

    2002-07-30

    The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.

  16. Analysis of pressure transient data from the Sumikawa geothermal field

    SciTech Connect

    Ishido, T.; Kikuchi, T.; yano, Y.; Miyazaki, Y.; Nakao, S.; Hatakeyama, K.

    1992-01-01

    The permeability structure of the Sumikawa geothermal field in northern Japan has been the subject of an extensive pressure-transient testing investigation since 1986. In this paper, various pertinent data sets are presented and analyzed, including results showing reservoir heterogeneity (i.e. boundary) effects and apparent double porosity behavior. Interference tests between wells SB-3 and SD-2 (both of which have feedpoints in dacitic layers in the ''marine-volcanic complex'' formation) were carried out during 1990. The results have been interpreted to indicate the presence of a moderately high permeability ({approx} 4 darcy-meters) layer with two impermeable boundaries intersecting at a right angle. The 1988 pressure buildup data for well SN-7D are also explained by assuming two impermeable boundaries in a high transmissivity reservoir within the deep ''granodiorite'' formation. Interference tests between wells S-4 and KY-1 have suggested that a very permeable north-south channel is present in the ''altered andesite'' layer. Although the response was successfully interpreted using an ''anisotropic line-source model'' by Garg et al. (1991), a ''double porosity channel model'' seems to be particularly applicable for explaining both the short-term and long-term behavior observed in this series of tests.

  17. Earthquake monitoring at the Cerro Prieto geothermal field

    SciTech Connect

    Majer, E.L.; McEvilly, T.V.

    1980-02-01

    A three-week study in spring 1978 revealed more moderate earthquake activity (one or two events/day, M/sub L/ greater than or equal to 1) in the Cerro Prieto production zone. Plotting these events on a Wadati diagram we estimated an 0.4 Poisson's ratio for the upper 1 to 2 km of the field. The events were centered near the western edge of the production zone, near well M-6, and indicated strikeslip movement on north-south faults. To monitor the earthquake activity and propagation characteristics within the production zone, a five-station, semi-permanent array was put into operation in September 1979. The stations are closely spaced (1 to 2 km), surrounding a central station at M-6. Each station consists of a three-component 4.5-Hz geophone in a 100-m well connected to a 12-bit triggered-digital-cassette recorder. Although each station operates independently, they are interconnected via a hard-wire link to a central site. The purpose of this link is twofold: first, to allow telemetry of any selected station to the central site for visual monitoring; second, to provide an automatic daily time calibration to keep inter-station errors to less than 5 ms. The data from these stations will be used to monitor earthquake activity and wave propagation characteristics associated with fluid withdrawal and/or injection in the geothermal reservoir.

  18. Results of investigations at the Ahuachapan geothermal field, El Salvador

    SciTech Connect

    Dennis, B.; Goff, F.; Van Eeckhout, E.; Hanold, B.

    1990-04-01

    Well logging operations were performed in eight of the geothermal wells at Ahuachapan. High-temperature downhole instruments, including a temperature/rabbit, caliper, fluid velocity spinner/temperature/pressure (STP), and fluid sampler, were deployed in each well. The caliper tool was used primarily to determine if chemical deposits were present in well casings or liners and to investigate a suspected break in the casing in one well. STP logs were obtained from six of the eight wells at various flow rates ranging from 30 to 80 kg/s. A static STP log was also run with the wells shut-in to provide data to be used in the thermodynamic analysis of several production wells. The geochemical data obtained show a system configuration like that proposed by C. Laky and associates in 1989. Our data indicate recharge to the system from the volcanic highlands south of the field. Additionally, our data indicate encroachment of dilute fluids into deeper production zones because of overproduction. 17 refs., 50 figs., 10 tabs.

  19. Radon and ammonia transects across the Cerro Prieto geothermal field

    SciTech Connect

    Semprini, L.; Kruger, P.

    1981-01-01

    Radon and ammonia transects, conducted at the Cerro Prieto geothermal field, involve measurement of concentration gradients at wells along lines of structural significance in the reservoir. Analysis of four transects showed radon concentrations ranging from 0.20 to 3.60 nCi/kg and ammonia concentrations from 17.6 to 59.3 mg/l. The data showed the lower concentrations in wells of lowest enthalpy fluid and the higher concentrations in wells of highest enthalpy fluid. Linear correlation analysis of the radon-enthalpy data indicated a strong relationship, with a marked influence by the two-phase conditions of the produced fluid. It appears that after phase separation in the reservoir, radon achieves radioactive equilibrium between fluid and rock, suggesting that the phase separation occurs well within the reservoir. A two-phase mixing model based on radon-enthalpy relations allows estimation of the fluid phase temperatures in the reservoir. Correlations of ammonia concentration with fluid enthalpy suggests an equilibrium partitioning model in which enrichment of ammonia correlates with higher enthalpy vapor.

  20. Three dimensional conductivity model of the Tendaho High Enthalpy Geothermal Field, NE Ethiopia

    NASA Astrophysics Data System (ADS)

    Didana, Y. L.; Thiel, S.; Heinson, G.

    2015-01-01

    Tendaho is one of the high enthalpy geothermal fields at advanced stage of exploration which is located in the Afar Depression in north eastern Ethiopia. Six deep and shallow geothermal wells were drilled in the field between 1993 and 1998. Here we present the first 3D conductivity model of the Tendaho high enthalpy geothermal field obtained from 3D inversion of magnetotelluric (MT) data. MT data from 116 sites at 24 selected periods in the period range from 0.003 s to 1000 s were used for the 3D inversion. The 3D conductivity model reveals three main resistivity structures to a depth of 20 km. The surface conductive structure (≤ 10 Ωm and > 1 km thick) is interpreted as sediments, geothermal fluids or hydrothermally altered clay cap. The underlying high resistivity structure in the Afar Stratiod basalts is associated with the deep geothermal reservoir. At a depth > 5 km, a high conductivity is observed across the whole of the Tendaho geothermal field. This structure is inferred to be the partial melt (heat source) of the geothermal system. The most striking feature in the 3D model is a fracture zone (upflow zone) in the Afar Stratoid basalts at the Dubti area, which acts as a pathway for geothermal fluids. Targeting the inferred fracture zone by directional drilling will likely increase the permeability and temperature of the deep reservoir in the basalts. Hence, the inferred presence of a fracture zone and shallow magma reservoir suggest that there is a huge potential (with temperature exceeding 270 °C at 2 km depth) at Tendaho for conventional hydrothermal geothermal energy development.

  1. Utilization of geothermal energy in a pulp and paper mill

    SciTech Connect

    Hotson, G.W.

    1997-01-01

    The Tasman Pulp and Paper Company Ltd.`s Mill at Kawerau, New Zealand, has been utilizing geothermal energy for more than 30 years. The mill produces approximately 200,000 tonnes of kraft pulp and 400,000 tonnes of newsprint per annum. Geothermal energy produces 26% of the process steam requirements and 6% of the mill`s electrical load. The management of the mill`s energy sources is complex and ever changing, which has resulted in unique control strategies being developed over the years to improve efficiencies in the operation of the plant. Complete utilization of the geothermal resource has been the aim of the company and has led to pioneering plant and process developments.

  2. Fluid flow model of the Cerro Prieto Geothermal Field based on well log interpretation

    SciTech Connect

    Halfman, S.E.; Lippmann, M.J.; Zelwe, R.; Howard, J.H.

    1982-08-10

    The subsurface geology of the Cerro Prieto geothermal field was analyzed using geophysical and lithologic logs. The distribution of permeable and relatively impermeable units and the location of faults are shown in a geologic model of the system. By incorporating well completion data and downhole temperature profiles into the geologic model, it was possible to determine the direction of geothermal fluid flow and the role of subsurface geologic features that control this movement.

  3. Fluid flow model of the Cerro Prieto geothermal field based on well log interpretation

    SciTech Connect

    Halfman, S.E.; Lippmann, M.J.; Zelwer, R.; Howard, J.H.

    1982-10-01

    The subsurface geology of the Cerro Prieto geothermal field was analyzed using geophysical and lithologic logs. The distribution of permeable and relatively impermeable units and the location of faults are shown in a geologic model of the system. By incorporating well completion data and downhole temperature profiles into the geologic model, it was possible to determine he direction of geothermal fluid flow and the role of subsurface geologic features that control this movement.

  4. Mushroom growing project at the Los Humeros, Mexico geothermal field

    SciTech Connect

    Rangel, M.E.R.

    1998-12-01

    There are several projects of direct (non-electrical) use of geothermal energy in Mexico. Personnel of the Comision Federal de Electricidad (CFE) have experience in various of these projects, like drying of timber and fruits, space heating, food processing, etc. Taking this in consideration, CFE built the Los Humeros mushroom plant using for heat source the geothermal steam from Well H-1. The main purpose of the project was to take advantage of residual geothermal energy in a food production operation and to develop the appropriate technology. In 1992, existing installations were renovated, preparing appropriate areas for pasteurization, inoculation and production. The mushroom Pleurotus ostreatus var. florida and columbinus was used. A year later, CFE proposed the construction of improved facilities for growing edible mushrooms. New materials and equipment, as well as different operation conditions, were proposed on the basis of the experience gained in the initial project. The construction and renovation activities were completed in 1994.

  5. Spatial Correlation of Airborne Magnetic Anomalies with Reservoir Temperatures of Geothermal Fields, Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Ertekin, Can; Ekinci, Yunus Levent

    2013-04-01

    Geothermal areas in Western Anatolia are remarkably located throughout Büyük Menderes Graben (BMG) and Gediz Graben (GG). These E-W trending grabens have been subjected to N-E stretching since Miocene. Except for these major outcomes of the extensional forces, NE-SW oriented and relatively short grabens take place in Western Anatolia as well. Among them, BMG and GG are remarkable with topographic escarpments that reveal footwall of steeply-dipping active normal faults. They manifest themselves via numerous earthquakes and geothermal activity (fluid discharges from springs and wells). Geothermal discharges are aligned along the rims of E-W trending normal faults trending over detachment faults. Concerning BMG, geothermal manifestations extend along the northern sector of the graben. Geothermal reservoirs inside BMG are the limestone and conglomerate units within Neogene sediments and the marble-quartzite units within The Menderes Massif rocks. The main high and low enthalpy geothermal fields along BMG and their reservoir temperatures are as follows: Kızıldere (242°C), Germencik (232°C), Aydın-Ilıcabası (101°C), Yılmazköy (142°C), Salavatlı (171°C), Söke (26°C), Pamukkale (36°C), Karahayıt (59°C), Gölemezli (101°C) and Yenice (70°C). Through GG, reservoir temperatures decrease from east to west. Geothermal reservoirs inside GG are metamorphics and granodiorite of the Menderes Massif rocks. The Neogene sediments act as cap rock of the geothermal reservoirs. Geothermal fields inside the graben and their reservoir temperatures are as follows: Alaşehir (215°C), Salihli (155°C), Urganlı (85°C), Kurşunlu (135°C), Caferbey (150°C), Sart (100°C). In order to investigate the spatial correlation of magnetic anomalies and the reservoir temperatures of geothermal fields in the region, we analysed airborne magnetic data which were collected by General Directorate of Mineral Research and Exploration (MTA) of Turkey. Airborne magnetic data were taken

  6. Structural compartmentalisation of a geothermal system, the Torre Alfina field (central Italy)

    NASA Astrophysics Data System (ADS)

    Vignaroli, Gianluca; Pinton, Annamaria; De Benedetti, Arnaldo A.; Giordano, Guido; Rossetti, Federico; Soligo, Michele; Berardi, Gabriele

    2013-11-01

    Recent surging of renewed industrial interest in the exploration of low and medium enthalpy geothermal fields makes the accurate assessment of the geothermal potential essential to minimise uncertainties during both exploration and exploitation. The Torre Alfina field is a case of abandoned, but promising, geothermal field of central Italy where the roles of the internal structural setting and of the recharge areas on the hydrothermal circulation are largely unconstrained. In this paper, field structural data integrated with geomorphic lineament analysis document the occurrence of post-orogenic deformation structures controlling the compartmentalisation of the Torre Alfina geothermal field. Strike-slip and subordinate normal fault systems (with associated network fractures) cut and dislocate the internal architecture of the reservoir and prevent its hydraulic connection with Mount Cetona, considered to be the recharge area and where hydrothermal manifestation, including travertine deposition, occurs. 230Th/234U radiometric dating of superposed travertine units gives 200, 120 and 90 ka respectively, inferred to correspond to the age of the fossil hydrothermal circulation during tectonic activity. The results have been used for illustrating a new geological conceptual model for the Torre Alfina area where the geothermal system is composed of different compartments. Tectonic structures define the main boundaries between compartments, helping the understanding of why productive and non-productive wells were found in apparently similar structural settings within the Torre Alfina field.

  7. Magmatic Fluid Source of the Chingshui Geothermal Field: Evidence of Carbonate Isotope data

    NASA Astrophysics Data System (ADS)

    Song, S. R.; Lu, Y. C.; Wang, P. L.; John, C. M.; MacDonald, J.

    2015-12-01

    The Chingshui geothermal field is located at the northern tip of the Miocene Lushan Slate Formation, which was part of the Eurasian continental margin subject to the Plio-Pleistocene collision associated with the Luzon Arc. The remnant heat of the Taiwan orogeny has long been considered to drive the circulation of hydrothermal fluids in the Chingshui geothermal field. However, recent studies based on magnetic anomalies and helium isotopic ratios suggest that the heat might instead be derived from igneous bodies. By examining isotope data of calcite veins and scaling in geothermal wells, this study aimed to clarify the fluid origin and possible heat source accounting for the geothermal fluids in the Chingshui geothermal field. Carbon and oxygen isotope analyses indicate that veins from outcrops and scalings in geothermal wells have high and low d values, respectively. Data for veins in drilled cores fall in between outcrop veins and scalings values. Such an isotopic pattern could be interpreted as the mixing of two end member fluids. The clumped isotope analysis of calcite veins from the outcrops yielded precipitation temperatures of up to 232 ± 16 ℃ and a reconstructed d18O fluid value of 9.5 ‰(magmatic fluid: 6-11 ‰; metamorphic fluid: 5-28 ‰ by Taylor, 1974). The inferred d18O values of hot fluids for the vein formation are significantly different from that of meteoric water in Chingshui area (around -5.4 ‰) as well as the scaling in geothermal wells (around -7.6 ‰). Previous study of magnetotelluric image demonstrated two possible fluid reservoirs at different depths (Chen et al. 2012). Our isotope data combined with these lines of evidence suggest that the scaling in geothermal wells could be derived from fluids originating from the shallower reservoir. In contrast, the veins present at outcrops could have been formed from 18O-enriched, deeply-sourced fluids related to either metamorphic dehydration or magmatic processes.

  8. The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

    SciTech Connect

    1982-07-01

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of

  9. Preliminary investigation of scale formation and fluid chemistry at the Dixie Valley Geothermal Field, Nevada

    SciTech Connect

    Bruton, C.J.; Counce, D.; Bergfeld, D.; Goff, F.; Johnson, S.D.; Moore, J.N.; Nimz, G.

    1997-06-27

    The chemistry of geothermal, production, and injection fluids at the Dixie Valley Geothermal Field, Nevada, was characterized to address an ongoing scaling problem and to evaluate the effects of reinjection into the reservoir. Fluids generally followed mixing-dilution trends. Recharge to the Dixie Valley system apparently originates from local sources. The low-pressure brine and injection waters were saturated with respect to amorphous silica, which correlated with the ongoing scaling problem. Local shallow ground water contains about 15% geothermal brine mixed with regional recharge. The elevated Ca, Mg, and HCO{sub 3} content of this water suggests that carbonate precipitation may occur if shallow groundwater is reinjected. Downhole reservoir fluids are close to equilibrium with the latest vein mineral assemblage of wairakite-epidote-quartz-calcite. Reinjection of spent geothermal brine is predicted to affect the region near the wellbore differently than it does the region farther away.

  10. Geothermal well-field and power-plant investment-decision analysis

    SciTech Connect

    Cassel, T.A.V.; Amundsen, C.B.; Edelstein, R.H.; Blair, P.D.

    1981-05-31

    Investment decisions pertaining to hydrothermal well fields and electric power plants are analyzed. Geothermal investment decision models were developed which, when coupled to a site-specific stochastic cash flow model, estimate the conditional probability of a positive decision to invest in the development of geothermal resource areas. Quantitative decision models have been developed for each major category of investor currently involved in the hydrothermal projects. These categories include: large, diversified energy resource corporations; independently operating resource firms; investor-owned electric utilities; municipal electric utilities; state-run resource agencies; and private third-party power plant investors. The geothermal cash flow, the investment decision analysis, and an example of model application for assessing the likely development of geothermal resource areas are described. The sensitivity of this investment behavior to federal incentives and research goals is also analyzed and discussed.

  11. Geothermal Systems of the Yellowstone Caldera Field Trip Guide

    SciTech Connect

    Foley, Duncan; Neilson, Dennis L.; Nichols, Clayton R.

    1980-09-08

    Geothermal studies are proceedings on two fronts in the West Yellowstone area. High-temperature resources for the generation of electricity are being sought in the Island Park area, and lower temperatures resources for direct applications, primarily space heating, are being explored for near the town of West Yellowstone. Potential electric geothermal development in the Island Park area has been the subject of widespread publicity over fears of damage to thermal features in Yellowstone Park. At the time of writing this guide, companies have applied for geothermal leases in the Island Park area, but these leases have not yet been granted by the US Forest Service. The Senate is now discussing a bill that would regulate geothermal development in Island Park; outcome of this debate will determine the course of action on the lease applications. The Island Park area was the site of two cycles of caldera activity, with major eruptions at 2.0 and 1.2 million years ago. The US Geological Survey estimates that 16,850 x 10{sup 18} joules of energy may remain in the system. Geothermal resources suitable for direct applications are being sought in the West Yellowstone vicinity by the Montana Bureau of Mines and Geology, under funding from the US Department of Energy. West Yellowstone has a mean annual temperature of 1-2 C. Research thus far suggests that basement rocks in the vicinity are at a depth of about 600 m and are probably similar to the rocks exposed north of Hebgen Lake, where Precambrian, Paleozoic and Mesozoic rocks have been mapped. A few sites with anomalously warm water have been identified near the town. Work is continuing on this project.

  12. Reservoir engineering applications for development and exploitation of geothermal fields in the Philippines

    SciTech Connect

    Vasquez, N.C.; Sarmiento, Z.F.

    1986-07-01

    After a geothermal well is completed, several tests and downhole measurements are conducted to help evaluate the subsurface fluid and reservoir properties intersected. From these tests, a conceptual model of the well can be developed by integrating data from the various parts of the field. This paper presents the completion techniques applied in geothermal wells, as well as the role of reservoir engineering science in delineating a field for development. Monitoring techniques and other reservoir engineering aspects of a field under exploitation are also discussed, with examples from the Philippines.

  13. Session 10: The Cerro Prieto Geothermal Field, Mexico: The Experiences Gained from Its Exploration and Development

    SciTech Connect

    Lippman, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-12-01

    The Cerro Prieto case study demonstrated the value of a multidisciplinary effort for exploring and developing a geothermal field. There was no problem in recognizing the geothermal potential of the Cerro Prieto area because of the many obvious surface manifestations. However, the delineation of the geothermal reservoir at depth was not so straightforward. Wells drilled near the abundant surface manifestations only produced fluids of relatively low enthalpy. Later it was determined that these zones of high heat loss corresponded to discharge areas where faults and fractures allowed thermal fluids to leak to the surface, and not to the main geothermal reservoir. The early gravity and seismic refraction surveys provided important information on the general structure of the area. Unaware of the existence of a higher density zone of hydrothermally altered sediments capping the geothermal reservoir, CFE interpreted a basement horst in the western part of the field and hypothesized that the bounding faults were controlling the upward flow of thermal fluids. Attempting to penetrate the sedimentary column to reach the ''basement horst'', CFE discovered the {alpha} geothermal reservoir (in well M-5). The continuation of the geothermal aquifer (actually the {beta} reservoir) east of the original well field was later confirmed by a deep exploration well (M-53). The experience of Cerro Prieto showed the importance of chemical ratios, and geothermometers in general, in establishing the subsurface temperatures and fluid flow patterns. Fluid chemical and isotopic compositions have also been helpful to determine the origin of the fluids, fluid-production mechanisms and production induced effects on the reservoir.

  14. Seismic discrimination of a geothermal field: Cerro Prieto

    SciTech Connect

    Blakeslee, S.

    1984-04-01

    Extensive reprocessing of a subset of the seismic reflection data from Cerro Prieto has been performed. The formations and faults identified in the resulting seismic profile were correlated to cross-sections constructed from well log data. The production region coincides with a zone of reflection attenuation. A detailed velocity analysis reveals a lid of high velocity events rimming the reflection attenuation zone. This may prove to be a valuable discriminant for locating a geothermal resource using seismic reflection data.

  15. Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study

    SciTech Connect

    Castaneda, M.; Marquez, R.; Arellano, V.; Esquer, C.A.

    1983-12-15

    The Cerro Prieto geothermal field is a liquid-dominated geothermal reservoir of complex geological and hydrological structure. It is located at the southern end of the Salton-Mexicali trough which includes other geothermal anomalies as Heber and East Mesa. Although in 1973, the initial power plant installed capacity was 75 MW of electrical power, this amount increased to 180 MW in 1981 as field development continued. It is expected to have a generating capacity of 620 MW by the end of 1985, when two new plants will be completely in operation. Questions about field deliverability, reservoir life and ultimate recovery related to planned installations are being presently asked. Numerical modeling studies can give very valuable answers to these questions, even at the early stages in the development of a field. An effort to simulate the Cerro Prieto geothermal reservoir has been undergoing for almost two years. A joint project among Comision Federal de Electricidad (CFE), Instituto de Investigaciones Electricas (IIE) and Intercomp of Houstin, Texas, was created to perform reservoir engineering and simulation studies on this field. The final project objective is tosimulate the behavior of the old field region when production from additional wells located in the undeveloped field zones will be used for feeding the new power plants.

  16. Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.

    PubMed

    Brodsky, Emily E; Lajoie, Lia J

    2013-08-01

    Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time. PMID:23845943

  17. The Impact of Injection on Seismicity at The Geyses, CaliforniaGeothermal Field

    SciTech Connect

    Majer, Ernest L.; Peterson, John E.

    2006-09-25

    Water injection into geothermal systems has often become arequired strategy to extended and sustain production of geothermalresources. To reduce a trend of declining pressures and increasingnon-condensable gas concentrations in steam produced from The Geysers,operators have been injecting steam condensate, local rain and streamwaters, and most recently treated wastewater piped to the field fromneighboring communities. If geothermal energy is to provide a significantincrease in energy in the United States (US Department of Energy (DOE)goal is 40,000 megawatts by 2040), injection must play a larger role inthe overall strategy, i.e., enhanced geothermal systems, (EGS). Presentedin this paper are the results of monitoring microseismicity during anincrease in injection at The Geysers field in California using data froma high-density digital microearthquake array. Although seismicity hasincreased due to increased injection it has been found to be somewhatpredicable, thus implying that intelligent injection control may be ableto control large increases in seismicity.

  18. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    SciTech Connect

    Rutqvist, Jonny; Rutqvist, J.; Oldenburg, C.M.

    2008-05-15

    In this study we analyze relative contributions to the cause and mechanism of injection-induced micro-earthquakes (MEQs) at The Geysers geothermal field, California. We estimated the potential for inducing seismicity by coupled thermal-hydrological-mechanical analysis of the geothermal steam production and cold water injection to calculate changes in stress (in time and space) and investigated if those changes could induce a rock mechanical failure and associated MEQs. An important aspect of the analysis is the concept of a rock mass that is critically stressed for shear failure. This means that shear stress in the region is near the rock-mass frictional strength, and therefore very small perturbations of the stress field can trigger an MEQ. Our analysis shows that the most important cause for injection-induced MEQs at The Geysers is cooling and associated thermal-elastic shrinkage of the rock around the injected fluid that changes the stress state in such a way that mechanical failure and seismicity can be induced. Specifically, the cooling shrinkage results in unloading and associated loss of shear strength in critically shear-stressed fractures, which are then reactivated. Thus, our analysis shows that cooling-induced shear slip along fractures is the dominant mechanism of injection-induced MEQs at The Geysers.

  19. Sustainability assessment of geothermal exploitation by numerical modelling: the example of high temperature Mofete geothermal field at Campi Flegrei caldera (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Carlino, Stefano; Troiano, Antonio; Giulia Di Giuseppe, Maria; Tramelli, Anna; Troise, Claudia; Somma, Renato; De Natale, Giuseppe

    2015-04-01

    The active volcanic area of Campi Flegrei caldera has been the site of many geothermal investigations, since the early XX century. This caldera is characterised by high heat flow, with maximum value > 150 mWm-2, geothermal gradients larger than 200°Ckm-1 and diffuse magmatic gases discharge at the surface. These features encouraged an extensive campaign for geothermal investigation, started in 1939, with many drillings performed at Campanian volcanoes (Campi Flegrei and Ischia) and later at Vesuvius. Several wells aimed to the exploitation of high enthalpy geothermal energy, were drilled in the Campi Flegrei caldera, down to a maximum depth of ~3 km involving mainly two sites (Mofete and S.Vito geothermal fields) located in western and northern sector of caldera respectively. The most interesting site for geothermal exploitation was the Mofete zone, where a number of 4 productive wells were drilled and tested to produce electrical power. Based on data inferred from the productive tests it was established a potential electrical extractable power from Mofete field of at least 10MWe. More recently an empirical evaluation of the whole geothermal potential of the caldera provides a value of more than 1 GWe. The results of AGIP-ENEL exploration at Campi Flegrei highlighted the feasibility of geothermal exploitation. Here, we show for the first time the results of numerical simulations (TOUGH2 code ®) of fluids extraction and reinjection from the Mofete geothermal field, in order to produce at least 5MWe from zero emission power plant (Organic Rankine Cycle type). The simulation is aimed to understand the perturbation of the geothermal reservoir in terms of temperature, pressure change, and possible related seismicity, after different simulated time of exploitation. The modeling is mainly constrained by the data derived from geothermal exploration and productive tests performed since 1979 by AGIP-ENEL Companies. A general assessment of the maximum potential magnitude

  20. The microseismic observation in dry steam type geothermal field in Indonesia

    NASA Astrophysics Data System (ADS)

    Isroi, Alamsyah Rizki; Singarimbun, Alamta

    2016-02-01

    In this paper, we discuss about the use of micro earthquake method in monitoring of dry steam type geothermal field in Indonesia. This study takes X geothermal field, which is the pioneer of Indonesia's geothermal development. Therefore, it should be maintained for long period by doing proper production and reinjection activities. Hypocenters of microseismic events is represented movements of reinjection fluids that means it could be space where fractured zone is formed. We use Single Event Determination (SED) method to relocate the hypocenters of microseismic event during the period of January - June 2014. About 179 events of micro earthquake were recorded on that period, these micro earthquake have magnitudes in range of 0.4 to 2.1 SR. Some of them are related to reinjection fluid from injection well INJ21. The hypocenters which is related to injection fluid from INJ21 shows that fractured zones exist on there. These fractured zones is located in geothermal reservoirs based on the geological setting. Fractured zones caused by high pressure of reinjection fluid where it happens in geothermal reservoirs containing high temperature, when reinjection water contacted with high temperature reservoir, it will be a new fractured zones because of high intensity of micro earthquake events.

  1. Thermal modeling of step-out targets at the Soda Lake geothermal field, Churchill County, Nevada

    NASA Astrophysics Data System (ADS)

    Dingwall, Ryan Kenneth

    Temperature data at the Soda Lake geothermal field in the southeastern Carson Sink, Nevada, highlight an intense thermal anomaly. The geothermal field produces roughly 11 MWe from two power producing facilities which are rated to 23 MWe. The low output is attributed to the inability to locate and produce sufficient volumes of fluid at adequate temperature. Additionally, the current producing area has experienced declining production temperatures over its 40 year history. Two step-out targets adjacent to the main field have been identified that have the potential to increase production and extend the life of the field. Though shallow temperatures in the two subsidiary areas are significantly less than those found within the main anomaly, measurements in deeper wells (>1,000 m) show that temperatures viable for utilization are present. High-pass filtering of the available complete Bouguer gravity data indicates that geothermal flow is present within the shallow sediments of the two subsidiary areas. Significant faulting is observed in the seismic data in both of the subsidiary areas. These structures are highlighted in the seismic similarity attribute calculated as part of this study. One possible conceptual model for the geothermal system(s) at the step-out targets indicated upflow along these faults from depth. In order to test this hypothesis, three-dimensional computer models were constructed in order to observe the temperatures that would result from geothermal flow along the observed fault planes. Results indicate that the observed faults are viable hosts for the geothermal system(s) in the step-out areas. Subsequently, these faults are proposed as targets for future exploration focus and step-out drilling.

  2. Measured ground-surface movements, Cerro Prieto geothermal field

    SciTech Connect

    Massey, B.L.

    1981-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley, 30 kilometers southeast of Mexicali, Baja California, incurred slight deformation because of the extraction of hot water and steam, and probably, active tectonism. During 1977 to 1978, the US Geological Survey established and measured two networks of horizontal control in an effort to define both types of movement. These networks consisted of: (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from stations on an existing US Geological Survey crustal-strain network north of the international border; and (2) a local net tied to stations in the regional net and encompassing the present and planned geothermal production area. Electronic distance measuring instruments were used to measure the distances between stations in both networks in 1978, 1979 and 1981. Lines in the regional net averaged 25 km. in length and the standard deviation of an individual measurement is estimated to be approx. 0.3 part per million of line length. The local network was measured using different instrumentation and techniques. The average line length was about 5 km. and the standard deviation of an individual measurement approached 3 parts per million per line length. Ground-surface movements in the regional net, as measured by both the 1979 and 1981 resurveys, were small and did not exceed the noise level. The 1979 resurvey of the local net showed an apparent movement of 2 to 3 centimeters inward toward the center of the production area. This apparent movement was restricted to the general limits of the production area. The 1981 resurvey of the local net did not show increased movement attributable to fluid extraction.

  3. Heterogeneity of structure and stress in the Rotokawa Geothermal Field, New Zealand

    NASA Astrophysics Data System (ADS)

    McNamara, David D.; Massiot, Cécile; Lewis, Brandon; Wallis, Irene C.

    2015-02-01

    Geometric characterization of a geothermal reservoir's structures, and their relation to stress field orientation, is vital for resource development. Subsurface structure and stress field orientations of the Rotokawa Geothermal Field, New Zealand, have been studied, for the first time, using observations obtained from analysis of three acoustic borehole televiewer logs. While an overall NE-SW fracture strike exists, heterogeneity in fracture dip orientation is evident. Dominant dip direction changes from well to well due to proximity to variously oriented, graben-bounding faults. Fracture orientation heterogeneity also occurs within individual wells, where fractures clusters within certain depth intervals have antithetic dip directions to the well's dominant fracture dip direction. These patterns are consistent with expected antithetic faulting in extensional environments. A general SHmax orientation of NE-SW is determined from induced features on borehole walls. However, numerous localized azimuthal variations from this trend are evident, constituting stress field orientation heterogeneity. These variations are attributed to slip on fracture planes evidenced by changes in the azimuth of drilling-induced tensile fractures either side of a natural fracture. Correlation of observed fracture properties and patterns to well permeability indicators reveal that fractures play a role in fluid flow in the Rotokawa geothermal reservoir. Permeable zones commonly contain wide aperture fractures and high fracture densities which have a dominant NE-SW strike orientation and NW dip direction. Studies of this kind, which show strong interdependency of structure and stress field properties, are essential to understand fluid flow in geothermal reservoirs where structural permeability dominates.

  4. Prospects of development of highly mineralized high-temperature resources of the Tarumovskoye geothermal field

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2016-06-01

    The promising nature of integrated processing of high-temperature geothermal brines of the Tarumovskoye geothermal field is shown. Thermal energy of a geothermal brine can be converted to the electric power at a binary geothermal power plant (GPP) based on low-boiling working substance. The thermodynamic Rankine cycles are considered which are implemented in the GPP secondary loop at different evaporation temperatures of the working substance―isobutane. Among them, the most efficient cycle from the standpoint of attaining a maximum power is the supercritical one which is close to the so-called triangular cycle with an evaporation pressure of p e = 5.0 MPa. The used low-temperature brine is supplied from the GPP to a chemical plant, where main chemical components (lithium carbonate, burnt magnesia, calcium carbonate, and sodium chloride) are extracted from it according to the developed technology of comprehensive utilization of geothermal brines of chloride-sodium type. The waste water is delivered to the geotechnological complex and other consumers. For producing valuable inorganic materials, the electric power generated at the GPP is used. Owing to this, the total self-sufficiency of production and independence from external conditions is achieved. The advantages of the proposed geotechnological complex are the full utilization of the heat potential and the extraction of main chemical components of multiparameter geothermal resources. In this case, there is no need for reverse pumping, which eliminates the significant capital costs for building injection wells and a pumping station and the operating costs for their service. A characteristic of the modern state of the field and estimated figures of the integrated processing of high-temperature brines of well no. 6 are given, from which it follows that the proposed technology has a high efficiency. The comprehensive development of the field resources will make it possible to improve the economic structure of the

  5. Microearthquake source mechanism studies at the Geysers geothermal field

    SciTech Connect

    Kirkpatrick, A.; Romero, A. Jr.; Peterson, J. Jr.; Johnson, L.; Majer, E.

    1996-04-01

    In this paper the authors discuss moment tensors obtained from inversion of MEQ waveform data recorded at the Southeast (SE) and Northwest (NW) Geysers geothermal areas by the high-resolution seismic networks operated by Lawrence Berkeley National Laboratory (Berkeley Lab) and the Coldwater Creek Geothermal Company (now CCPA). The network in the SE Geysers consists of 13 high-frequency (4.5 Hz), digital (480 samples), three-component, telemetered stations deployed on the surface in portions of the Calpine, Unocal-NEC-Thermal (U-N-T), and Northern California Power Agency (NCPA) leases. The network in the NW Geysers is a 16-station borehole array of three-component geophones (4.5 Hz), digital at 400 samples/sec, and telemetered to a central site. One of the main objectives of Berkeley Lab`s program at the Geysers is to assess the utility of MEQ monitoring as a reservoir management tool. Discrimination of the mechanisms of these events may aid in the interpretation of MEQ occurrence patterns and their significance to reservoir processes and conditions of interest to reservoir managers. Better understanding of the types of failure deduced from source mechanism studies, and their relations to production parameters, should also lead to a better understanding of the effects of injection and withdrawal.

  6. Pressure-interference testing of the Sumikawa geothermal field

    SciTech Connect

    Garg, S.K.; Pritchett, J.W.; Ariki, K.; Kawano, Y.

    1991-01-01

    Pressure interference tests have been used to determine the permeability structure of the Sumikawa reservoir. Interference tests between wells S-4 and KY-1 have indicated the presence of a very high permeability (140 md) north-south channel in the altered andesite layer. Pressure buildup data from well SN-7D have provided indications of a high transmissivity (kh {approx} 18 darcy-meters) reservoir located in the granodiorite layer, lack of pressure response in nearby shutin Sumikawa wells implies that the reservoir penetrated by SN-7D is isolated from the shallower reservoir in the altered andesites. The ''altered andesite'' and the ''granodiorite'' formations constitute the principal geothermal aquifers at Sumikawa. Pressure interference tests (wells KY-1 and SB-2, and wells KY-2 and SB-3) have also confirmed the presence of moderately high transmissivity ({approx} 2 darcy-meters) dacitic layers in the ''marine-volcanic complex'' formation. Because of its low vertical permeability, the ''marine volcanic complex'' formation constitutes an attractive target for the reinjection of waste geothermal fluids.

  7. Workshop on CSDP data needs for the BACA geothermal field: a summary

    SciTech Connect

    Mangold, D.C.; Tsang, C.F.

    1984-06-01

    These workshop summaries discuss the data needs of the Continental Scientific Drilling Program (CSDP) community and provide an introduction to the available geological, geophysical, geochemical and reservoir engineering data of the Baca geothermal field, Valles Caldera, New Mexico. Individual abstracts have been prepared for the presentations. (ACR)

  8. Long-term Evolution of Seismicity Rates in California Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Trugman, D. T.; Shearer, P. M.; Borsa, A. A.; Fialko, Y. A.

    2015-12-01

    The temporal evolution of seismicity rates within geothermal fields provides important observational constraints on the ways in which rocks respond to natural and anthropogenic loading. We develop an iterative, regularized inversion procedure to partition the observed seismicity rate into two primary components: (1) the interaction seismicity rate due to earthquake-earthquake triggering, and (2) the time-varying background seismicity rate controlled by other time-dependent stresses, including anthropogenic forcing. We parameterize our seismicity model using an Epidemic-Type Aftershock Sequence (ETAS) framework with a background seismicity rate that varies smoothly with time. We apply our methodology to study long-term changes in seismicity rates at the Geysers and Salton Sea geothermal fields in California. At the Geysers, we find that the background seismicity rate is highly correlated with fluid injection. Seismicity at the Geysers has experienced a rate increase of approximately 50% since year 2000 and exhibits strong seasonal fluctuations, both of which can be explained by changes in fluid injection following the completion of the Santa Rosa pipeline. At the Salton Sea, the background seismicity rate has remained relatively stable since 1990, with short-term fluctuations that are not obviously modulated by fluid fluxes related to the operation of the geothermal field. The differences in the field-wide seismicity responses of the Geysers and Salton Sea to geothermal plant operation may reflect differences in in-situ reservoir conditions and local tectonics, indicating that induced seismicity may not be solely a function of fluid injection and withdrawal.

  9. Attenuation tomography using microearthquake (MEQ) data in the "A" geothermal field

    NASA Astrophysics Data System (ADS)

    Hasanah, Mia Uswatun; Nugraha, Andri Dian; Sule, Rachmat

    2013-09-01

    Attenuation is a physical parameter of rock that can reflect the geological conditions beneath the earth's surface. We conducted attenuation tomographic imaging in the "A" geothermal field by using microearthquake (MEQ) data. We applied a method of spectral fitting to invert the t* value. For the attenuation tomographic inversion, we used the initial 3-D velocity model from the previous study in the region. Our study shows that the value of Qp, Qs and Qp/Qs ratio in the geothermal field is an important parameter for interpreting the subsurface structure. The "A" geothermal field in this study lies between several active and dormant volcanoes in West Java Province, Indonesia. This geothermal field already produces electricity of more than 220 MWe. The hydraulic stimulation has been carried out from the end of 2007 until the beginning of 2008. This experiment was carried out in order to get an understanding about the orientation of weak or fractures zones in the subsurface, so that the strategy of future exploration and well targeting could be estimated. We interpreted the joint immaging result of Qp, Qs and Qp/Qs ratio with previous seismic velocities (Vp, Vs and Vp/Vs ratio) tomography result. We can see that the high attenuation value (low Q value) and low velocity anomaly structures may associated to fluid filled rock and also fault segment.

  10. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    DOE Data Explorer

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  11. Use of slim holes for reservoir evaluation at the Steamboat Hills Geothermal Field, Nevada, USA

    SciTech Connect

    Combs, Jim; Goranson, Colin

    1994-01-20

    Three slim holes were drilled at the Steamboat Hills Geothermal Field in northwestern Nevada about 15 km south of Reno. The slim holes were drilled to investigate the geologic conditions, thermal regime and productive characteristics of the geothermal system. They were completed through a geologic sequence consisting of alluvium cemented by geothermal fluids, volcaniclastic materials, and granodiorite. Numerous fractures, mostly sealed, were encountered throughout the drilled depth; however, several open fractures in the granodiorite, dipping between 65 and 90{degree}, had apertures up to 13 mm in width. The depths of the slim holes vary from 262 to 277 m with open-hole diameters of 76 mm. Pressure and temperature logs gave bottom-hole temperatures ranging from 163 to 166{degree} C. During injection testing, downhole pressures were measured using capillary tubing with a surface quartz transducer while temperatures were measured with a Kuster temperature tool located below the capillary tubing pressure chamber. No pressure increase was measured at reservoir depths in any of the three slim holes while injecting 11 kg/s of 29{degree}C water indicating a very high permeability in the geothermal reservoir. These injection test results suggested that productive geothermal fluids could be found at depths sufficient for well pumping equipment and at temperatures needed for electrical power production using binary-type conversion technology.

  12. The possibilities of utilisation of heat from Tattapani Geothermal field, India

    SciTech Connect

    Sarolkar, P.B.; Pitale, U.L.

    1996-12-31

    The Tattapani Geothermal field produces + 1800 1pm thermal water of 100{degrees}C from five production wells. The hot water production can sustain electricity production of 300 kWe by using a binary cycle power plant. The heat energy of effluent water from power plant can be utilized for direct heat utilization on horticulture, aquaculture, cold storage, silviculture etc; to augment the economics of the power plant be spot can be developed as a centre for tourist attraction by constructing botanical park, greenhouse, geyser show and crocodile farm. The direct heat utilization shemes can be planned in cascading order to achieve maximum utility of thermal water. Additional deep drilling is essential for optimum commercial utilization of the Geothermal energy. The direct heat utilisation shemes along with binary cycle power plant may help in development of the geothermal energy and boosting the economy of this region.

  13. A U Th calcite isochron age from an active geothermal field in New Zealand

    NASA Astrophysics Data System (ADS)

    Grimes, Stephen; Rickard, David; Hawkesworth, Chris; van Calsteren, Peter; Browne, Patrick

    1998-05-01

    We report here the first U-Th disequilibrium age for a hydrothermal mineral from an active geothermal system in New Zealand. Vein calcite recovered from a depth of 389 m in Well Thm-1 at the Tauhara geothermal field has an age of 99±44 ka BP. This age was determined using a leachate-leachate isochron technique on four silicate containing sub-samples of calcite from a single vein. Although the error on this isochron age is considerable, it is significantly younger than the earlier estimated age of ˜200 ka BP for the onset of activity at the Tauhara system and probably records the date of brecciation and veining, which may be associated with volcanic activity at the adjacent dacitic Tauhara Volcanic Complex. These results demonstrate that hydrothermal vein calcite can now be dated directly, and opens the way for more detailed studies of the evolution of the New Zealand geothermal systems.

  14. 3-D analysis and interpretation of magnetotelluric data from the Aluto-Langano geothermal field, Ethiopia

    NASA Astrophysics Data System (ADS)

    Samrock, F.; Kuvshinov, A.; Bakker, J.; Jackson, A.; Fisseha, S.

    2015-09-01

    The Main Ethiopian Rift Valley encompasses a number of volcanoes, which are known to be actively deforming with reoccurring periods of uplift and setting. One of the regions where temporal changes take place is the Aluto volcanic complex. It hosts a productive geothermal field and the only currently operating geothermal power plant of Ethiopia. We carried out magnetotelluric (MT) measurements in early 2012 in order to identify the source of unrest. Broad-band MT data (0.001-1000 s) have been acquired at 46 sites covering the expanse of the Aluto volcanic complex with an average site spacing of 1 km. Based on this MT data it is possible to map the bulk electrical resistivity of the subsurface down to depths of several kilometres. Resistivity is a crucial geophysical parameter in geothermal exploration as hydrothermal and magmatic reservoirs are typically related to low resistive zones, which can be easily sensed by MT. Thus by mapping the electrical conductivity one can identify and analyse geothermal systems with respect to their temperature, extent and potential for production of energy. 3-D inversions of the observed MT data from Aluto reveal the typical electrical conductivity distribution of a high-enthalpy geothermal system, which is mainly governed by the hydrothermal alteration mineralogy. The recovered 3-D conductivity models provide no evidence for an active deep magmatic system under Aluto. Forward modelling of the tippers rather suggest that occurrence of melt is predominantly at lower crustal depths along an off-axis fault zone a few tens of kilometres west of the central rift axis. The absence of an active magmatic system implies that the deforming source is most likely situated within the shallow hydrothermal system of the Aluto-Langano geothermal field.

  15. Brine treatment test for reinjection on Cerro Prieto geothermal field

    SciTech Connect

    Hurtado, R.; Mercado, S.; Gamino, H. )

    1989-01-01

    Reinjection of disposal brine from the Cerro Prieto Geothermal Power Plant System is attractive mainly because, on top of solving the brine disposal problem, it may significantly contribute to extend the reservoir useful lifetime, through thermal and hydraulic recharge. Because the high concentration of colloidal silica in the disposal brine, laboratory and pilot plant tests were conducted in order to develop the brine treatment process. Addition of 20-40 mg/1 lime to flashed and aged brine for 10-20 minutes yields a clarified brine relatively low in suspended solids (10-30 mg/1) when the over flow rate is 38.5 1/min-m/sup 2/. 1.1 mills/kWh was the estimated cost for treatment of 800 kg/s of separated brine from the Cerro Prieto I power station.

  16. Small-Scale Geothermal Power Plant Field Verification Projects: Preprint

    SciTech Connect

    Kutscher, C.

    2001-07-03

    In the spring of 2000, the National Renewable Energy Laboratory issued a Request for Proposal for the construction of small-scale (300 kilowatt [kW] to 1 megawatt [MW]) geothermal power plants in the western United States. Five projects were selected for funding. Of these five, subcontracts have been completed for three, and preliminary design work is being conducted. The three projects currently under contract represent a variety of concepts and locations: a 1-MW evaporatively enhanced, air-cooled binary-cycle plant in Nevada; a 1-MW water-cooled Kalina-cycle plant in New Mexico; and a 750-kW low-temperature flash plant in Utah. All three also incorporate direct heating: onion dehydration, heating for a fish hatchery, and greenhouse heating, respectively. These projects are expected to begin operation between April 2002 and September 2003. In each case, detailed data on performance and costs will be taken over a 3-year period.

  17. Open Questions on the Origin of Life at Anoxic Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Mulkidjanian, Armen Y.; Bychkov, Andrew Yu.; Dibrova, Daria V.; Galperin, Michael Y.; Koonin, Eugene V.

    2012-10-01

    We have recently reconstructed the `hatcheries' of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells (Mulkidjanian et al. Proc Natl Acad Sci U S A 109:E821-830, 2012). These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K+, Zn2+, Mn2+, and phosphate. Thus, protocells must have evolved in habitats with a high K+/Na+ ratio and relatively high concentrations of Zn, Mn and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under an anoxic, CO2-dominated atmosphere, the ionic composition of pools of cool, condensed vapor at anoxic geothermal fields would resemble the internal milieu of modern cells. Such pools would be lined with porous silicate minerals mixed with metal sulfides and enriched in K+ ions and phosphorous compounds. Here we address some questions that have appeared in print after the publication of our anoxic geothermal field scenario. We argue that anoxic geothermal fields, which were identified as likely cradles of life by using a top-down approach and phylogenomics analysis, could provide geochemical conditions similar to those which were suggested as most conducive for the emergence of life by the chemists who pursuit the complementary bottom-up strategy.

  18. Initial Measurements of Petrophysical Properties on Rocks from the Los Azufres, Mexico, Geothermal Field

    SciTech Connect

    Contreras, E.; Iglesias, E.; Razo, E.

    1986-01-21

    Petrophysical properties of geothermal reservoir rocks are valuable information for many activities, including reservoir characterization, modeling, field test analysis and planning of exploitation techniques. Petrophysical data of rocks from geothermal reservoirs located in volcanic areas is in general very scarce. In particular, no petrophysical data of rocks from the Los Azufres geothermal field area has ever been published. This work presents the results of initial petrophysical studies on outcrop rocks and drill core samples from the Los Azufres geothermal field. These studies are the first part of an ongoing experimental program intended to establish a data-base about physical properties of the Los Azufres rocks, in support of the many reservoir engineering activities which require of such information. The experimental work carried out consisted of laboratory measurements of density, porosity, permeability, compressibility, thermal conductivity, thermal expansion, electrical resistivity and sonic wave velocities. Some of the experiments were aimed at investigation of the effects of temperature, pressure, saturation and other parameters on the physical properties of rocks.

  19. Geological control on the reservoir characteristics of Olkaria West Geothermal Field, Kenya

    SciTech Connect

    Omenda, Peter A.

    1994-01-20

    The reservoir of the West Olkaria Geothermal Field is hosted within tuffs and the reservoir fluid is characterized by higher concentrations of reservoir CO{sub 2} (10,000-100,000 mg/kg) but lower chloride concentrations of about 200 mg/kg than the East and North East Fields. The West Field is in the outflow and main recharge area of the Olkaria geothermal system. Permeability is generally low in the West Field and its distribution is strongly controlled by the structures. Fault zones show higher permeability with wells drilled within the structures havin larger total mass outputs. However, N-S and NW-SE faults are mainly channels for cold water downflow into the reservoir. Well feeder zones occur mostly at lava-tuff contacts; within fractured lava flows and at the contacts of intrusives and host rocks.

  20. Open Questions on the Origin of Life at Anoxic Geothermal Fields

    PubMed Central

    Mulkidjanian, Armen Y.; Bychkov, Andrew Yu.; Dibrova, Daria V.; Galperin, Michael Y.; Koonin, Eugene V.

    2014-01-01

    We have recently reconstructed the ‘hatcheries’ of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells (Mulkidjanian et al.: Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA 2012, 109:E821–830). These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K+, Zn2+, Mn2+, and phosphate. Thus, protocells must have evolved in habitats with a high K+/Na+ ratio and relatively high concentrations of Zn, Mn and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under anoxic, CO2-dominated atmosphere, the ionic composition of pools of cool, condensed vapor at anoxic geothermal fields would resemble the internal milieu of modern cells. Such pools would be lined with porous silicate minerals mixed with metal sulfides and enriched in K+ ions and phosphorous compounds. Here we address some questions that have appeared in print after the publication of our anoxic geothermal field scenario. We argue that anoxic geothermal fields, which were identified as likely cradles of life by using a top-down approach and phylogenomics analysis as a tool, could provide geochemical conditions similar to those which were suggested as most conducive for the emergence of life by the chemists who pursuit the complementary bottom-up strategy. PMID:23132762

  1. Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada; relations between surface phenomena and the geothermal reservoir

    USGS Publications Warehouse

    Bergfeld, D.; Goff, F.; Janik, C.J.

    2001-01-01

    In the later part of the 1990s, a large die-off of desert shrubs occurred over an approximately 1 km2 area in the northwestern section of the Dixie Valley (DV) geothermal field. This paper reports results from accumulation-chamber measurements of soil CO2 flux from locations in the dead zone and stable isotope and chemical data on fluids from fumaroles, shallow wells, and geothermal production wells within and adjacent to the dead zone. A cumulative probability plot shows three types of flux sites within the dead zone: Locations with a normal background CO2 flux (7 g m-2 day-1); moderate flux sites displaying "excess" geothermal flux; and high flux sites near young vents and fumaroles. A maximum CO2 flux of 570 g m-2 day-1 was measured at a location adjacent to a fumarole. Using statistical methods appropriate for lognormally distributed populations of data, estimates of the geothermal flux range from 7.5 t day-1 from a 0.14-km2 site near the Stillwater Fault to 0.1 t day-1 from a 0.01 -km2 location of steaming ground on the valley floor. Anomalous CO2 flux is positively correlated with shallow temperature anomalies. The anomalous flux associated with the entire dead zone area declined about 35% over a 6-month period. The decline was most notable at a hot zone located on an alluvial fan and in the SG located on the valley floor. Gas geochemistry indicates that older established fumaroles along the Stillwater Fault and a 2-year-old vent in the lower section of the dead zone discharge a mixture of geothermal gases and air or gases from air-saturated meteoric water (ASMW). Stable isotope data indicate that steam from the smaller fumaroles is produced by ??? 100??C boiling of these mixed fluids and reservoir fluid. Steam from the Senator fumarole (SF) and from shallow wells penetrating the dead zone are probably derived by 140??C to 160??C boiling of reservoir fluid. Carbon-13 isotope data suggest that the reservoir CO2 is produced mainly by thermal decarbonation of

  2. Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia

    SciTech Connect

    Finsterle, Stefan; Kiryukhin, A.V.; Asaulova, N.P.; Finsterle, S.

    2008-04-01

    A three-dimensional numerical model of the Pauzhetsky geothermal field has been developed based on a conceptual hydrogeological model of the system. It extends over a 13.6-km2 area and includes three layers: (1) a base layer with inflow; (2) a geothermal reservoir; and (3) an upper layer with discharge and recharge/infiltration areas. Using the computer program iTOUGH2 (Finsterle, 2004), the model is calibrated to a total of 13,675 calibration points, combining natural-state and 1960-2006 exploitation data. The principal model parameters identified and estimated by inverse modeling include the fracture permeability and fracture porosity of the geothermal reservoir, the initial natural upflow rate, the base-layer porosity, and the permeabilities of the infiltration zones. Heat and mass balances derived from the calibrated model helped identify the sources of the geothermal reserves in the field. With the addition of five makeup wells, simulation forecasts for the 2007-2032 period predict a sustainable average steam production of 29 kg/s, which is sufficient to maintain the generation of 6.8 MWe at the Pauzhetsky power plant.

  3. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    SciTech Connect

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-07-01

    The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field.

  4. Did stresses from the Cerro Prieto Geothermal Field influence the El Mayor-Cucapah rupture sequence?

    NASA Astrophysics Data System (ADS)

    Trugman, Daniel T.; Borsa, Adrian A.; Sandwell, David T.

    2014-12-01

    The Mw 7.2 El Mayor-Cucapah (EMC) earthquake ruptured a complex fault system in northern Baja California that was previously considered inactive. The Cerro Prieto Geothermal Field (CPGF), site of the world's second largest geothermal power plant, is located approximately 15 km to the northeast of the EMC hypocenter. We investigate whether anthropogenic fluid extraction at the CPGF caused a significant perturbation to the stress field in the EMC rupture zone. We use Advanced Land Observing Satellite interferometric synthetic aperture radar data to develop a laterally heterogeneous model of fluid extraction at the CPGF and estimate that this extraction generates positive Coulomb stressing rates of order 15 kPa/yr near the EMC hypocenter, a value which exceeds the local tectonic stressing rate. Although we cannot definitively conclude that production at the CPGF triggered the EMC earthquake, its influence on the local stress field is substantial and should not be neglected in local seismic hazard assessments.

  5. Reservoir simulation studies: Wairakei Geothermal Field, New Zealand. Final report

    SciTech Connect

    Pritchett, J.W.; Rice, L.F.; Garg, S.K.

    1980-01-01

    Numerical reservoir simulation techniques were used to perform a history-match of the Wairakei geothermal system in New Zealand. First, a one-dimensional (vertical) model was chosen; realistic stratigraphy was incorporated and the known production history was imposed. The effects of surface and deep recharge were included. Good matches were obtained, both for the reservoir pressure decline history and changes in average discharge enthalpy with time. Next, multidimensional effects were incorporated by treating with a two-dimensional vertical section. Again, good history matches were obtained, although computed late-time discharge enthalpies were slightly high. It is believed that this disparity arises from inherently three-dimensional effects. Predictive calculations using the two-dimensional model suggest that continued future production will cause little additional reservoir pressure drop, but that thermal degradation will occur. Finally, ground subsidence data at Wairakei was examined. It was concluded that traditional elastic pore-collapse models based on classical soil-mechanics concepts are inadequate to explain the observed surface deformation. It is speculated that the measured subsidence may be due to structural effects such as aseismic slippage of a buried reservoir boundary fault.

  6. Sustainable energy development and water supply security in Kamojang Geothermal Field: The Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    Sofyan, Y.; Nishijima, J.; Fujimitsu, Y.

    2014-12-01

    The Kamojang Geothermal Field (KGF) is a typical vapor dominated hydrothermal system in West Java, Indonesia. This geothermal field is the oldest exploited geothermal field in Indonesia. From 1983 to 2005, more than 160 million tons of steam have been exploited from the KGF and more than 30 million tons of water were injected into the reservoir system. The injected water come from condensed water, local river and ground water. Sustainable production in the geothermal energy development is the ability of the production system applied to sustain the stable production level over long times and to manage the mass balance between production, injection and natural recharge in the geothermal reservoir during exploitation. Mass balance in the reservoir system can be monitored by using time lapse gravity monitoring. Mass variation of hydrodynamic in the reservoir of KGF from 1999 to 2005 is about -3.34 Mt/year while is about -3.78 Mt/year from 1999 to 2008. Another period between 2009 and 2010, mass variation decreased about -8.24 Mt. According to the history of production and injection, natural recharge to the KGF's reservoir is estimated at about 2.77 Mt/year from 1999 to 2005 and 2.75 Mt/year from 1999 to 2008. Between 2009 and 2010, KGF has a bigger mass deficiency rate throughout 200 MWe maintain production. Large amount of fresh water is needed for sustainable geothermal energy production, while the domestic water supply need is also increased. Natural recharge, about 50% of injected water, cooling system, drilling and other production activities in KGF spend large amounts of fresh water. Water consumption for local people around KGF is about 1.46 MT/year. The water volume around KGF of total runoff is the range between dry season 0.07 MT/month and rainy season 4.4 MT/month. The water demands for sustainable geothermal production of KGF and for local people's consumption will increase in the future. Integrated planning between the energy and water sectors in KGF

  7. Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry

    SciTech Connect

    Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. ); Medina, V. . Unidad de Desarollo Geotermico)

    1991-07-01

    The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

  8. Session 18: Geothermal Well Stimulation - Program Summary and the Beowawe Field Experiment

    SciTech Connect

    Verity, R.V.

    1983-12-01

    Republic Geothermal, Inc. and its subcontractors have planned and executed laboratory studies and eight well stimulation field experiments under the Geothermal Reservoir Well Stimulation Program (GRWSP). The program, begun in February 1979, has concentrated on extending petroleum industry stimulation technology for use by the geothermal industry. The most recent experiment was in a naturally fractured Chevron well at Beowawe and involved an acid stimulation of a damaged interval which yielded a 2.3-fold increase in injectivity. Overall results to date have shown that stimulation is viable where adequate reservoirs are penetrated by wells encountering formation damage or locally tight formations. However, wells in marginal naturally fractured reservoirs have not been saved by the types of well stimulation jobs performed thus far. A recent discovery is that many wells can possibly be made outstanding producers by widening and propping compliant natural fractures. Confirmation of this constitutes unfinished business of the GRWSP, and offers one of the greatest potential opportunities for enhancing the economics of geothermal power production.

  9. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    SciTech Connect

    Haukwa, C.; Bodvarsson, G.S.; Lippmann, M.J.; Mainieri, A.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model a two-dimensional exploitation model was developed. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.

  10. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    SciTech Connect

    Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J. ); Mainieri, A. )

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260[degrees]C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km[sup 2], with temperatures exceeding 220[degrees]C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.

  11. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    SciTech Connect

    Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J.; Mainieri, A.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260{degrees}C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220{degrees}C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.

  12. Geology and geothermal origin of Grant Canyon and Bacon Flat Oil Fields, Railroad Valley, Nevada

    SciTech Connect

    Hulen, J.B. ); Goff, F. ); Ross, J.R. ); Bortz, L.C. ); Bereskin, S.R. )

    1994-04-01

    Eastern Nevada's Grant Canyon and Bacon Flat oil fields show strong evidence of formation in a still-active, moderate-temperature geothermal system. Modern manifestations of this system include unusually elevated oil-reservoir temperature at shallow depth, 116-122[degrees]C at 1.1-1.6 km, and dilute Na-HCO[sub 3]Cl thermal waters directly associated with hot oil. Hydrogen and oxygen isotopic compositions indicate that these thermal waters are meteoric in origin, but were probably recharged prior to the Holocene (before 10 ka). The waters apparently ascended to oil-reservoir elevations after deep heating in response to the normal regional thermal gradient; there is no evidence for a modern magmatic heat source. The beginning of oil-reservoir evolution at both fields is recorded by late-stage, fracture-filling quartz in the vuggy, brecciated, Paleozoic dolostone reservoir rocks. Oil and aqueous solutions were trapped as fluid inclusions in the quartz at temperatures comparable to those now prevailing in the reservoirs. Present day and fluid-inclusion temperatures define essentially coincident isothermal profiles through and beneath the oil-reservoir interval, a phenomenon consistent with near-constant convective heat transfer since inception of the geothermal system. Some basin and range oil fields have arisen as valuable byproducts of actively circulating geothermal systems and blending this concept into current exploration stratigies could hasten discovery of the 100 mbbl fields many geologists believe remain to be found in this region. 100 refs., 13 figs., 5 tabs.

  13. Fracture mapping in geothermal fields with long-offset induction logging

    SciTech Connect

    Wilt, M.; Takasugi, Shinji; Uchida, Toshihiro

    1997-12-31

    The mapping of producing fractures in a geothermal field is an important technical objective in field development. Locating, orienting, and assessing producing fractures can guide drilling programs and optimize the placement of production and injection wells. A long-offset multicomponent borehole induction resistivity tool capable of surviving the high temperatures encountered in geothermal wells has recently been developed in a NEDO project, {open_quotes}Deep-Seated Geothermal Reservoirs,{close_quotes} and tested in a high temperature environment. Several characteristics of this device make it ideal for detecting producing fractures. Whereas commercial induction logging devices have source-receiver separations of 1 m, this device has multiple sensors with separations up to 8 m, allowing for deeper penetration and the ability to straddle fracture-induced washout zones in boreholes. The three-component measurements also make it possible to map the strike and inclination of nearby fractures and other three-dimensional structures. This, in turn, allows for accurate projection of these structures into the space between wells. In this paper, we describe the design of the tool and show results of a performance test carried out in an oil-field steam flood. Data from vertical sensors are compared to conventional logging results and indicate the recent formation of a low-resistivity zone associated with high temperatures due to steam flood breakthrough. Horizontal field data indicate that the high-temperature zone is irregular in the vicinity of the borehole and more pronounced closest to the steam injector.

  14. A summary of modeling studies of the Nesjavellir geothermal field, Iceland

    SciTech Connect

    Bodvarsson, G.S.; Bjornsson, S.; Gunnarsson, A.; Gunnlaugsson, E.; Sigurdsson,, O. Stefansson, V.; Steingrimsson, B.

    1988-01-01

    The Nesjavellir geothermal field in Iceland is being developed to provide the capital city of Reykjavik and surrounding areas with hot water for space heating. In the last few years, many wells have been drilled at the site and various geothermal studies have been conducted. The main upflow to the system is underneath the nearby Hengill volcano, and the natural recharge rate and enthalpy are estimated to be 65 kg/s and 1850 kJ/kg, respectively. An extensive vapor zone is believed to be present in the upflow region. Permeabilities and porosities of the system range between 1 and 50 md and 1 and 10 percent, respectively. In this paper, the characteristics of the Nesjavellir field are described and a three-dimensional numerical model of the resource in discussed. 15 refs., 11 figs., 1 tab.

  15. Field trip guide to the Valles Caldera and its geothermal systems

    SciTech Connect

    Goff, F.E.; Bolivar, S.L.

    1983-12-01

    This field trip guide has been compiled from extensive field trips led at Los Alamos National Laboratory during the past six years. The original version of this guide was designed to augment a workshop on the Valles Caldera for the Continental Scientific Drilling Program (CSDP). This workshop was held at Los Alamos, New Mexico, 5-7 October 1982. More stops were added to this guide to display the volcanic and geothermal features at the Valles Caldera. The trip covers about 90 miles (one way) and takes two days to complete; however, those who wish to compress the trip into one day are advised to use the designated stops listed in the Introduction. Valles Caldera and vicinity comprise both one of the most exciting geothermal areas in the United States and one of the best preserved Quaternary caldera complexes in the world.

  16. Slope stability analysis of landslide in Wayang Windu Geothermal Field, Pangalengan, West Java Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Yuhendar, A. H.; Wusqa, U.; Kartiko, R. D.; Raya, N. R.; Misbahudin

    2016-05-01

    Large-scale landslide occurred in Margamukti village, Pangalengan, Bandung Regency, West Java Province, Indonesia. The landslide damaged geothermal gas pipeline along 300 m in Wayang Windu Geothermal Field. Based on field observation, landslide occured in rotational sliding movement. Laboratory analysis were conducted to obtain the characteristics of the soil. Based on the condition of the landslide in this area, the Factor of Safety can be simulated by the soil mechanics approach. Factor of safety analysis based on soil cohesion and internal friction angle was conducted using manual sensitivity analysis for back analysis. The analysis resulted soil cohesion in critical condition (FS<1) is 6.01 kPa. This value is smaller than cohesion of undisturbed slope soil sample. Water from rainfall is the most important instability factors in research area. Because it decreases cohesion in soils and increases weight and pore water pressure in granular media.

  17. Fluid inclusions in minerals from the geothermal fields of Tuscany, Italy

    USGS Publications Warehouse

    Belkin, H.; de Vivo, B.; Gianelli, G.; Lattanzi, P.

    1985-01-01

    A reconnaissance study on fluid inclusions from the geothermal fields of Tuscany indicates that the hydrothermal minerals were formed by fluids which were, at least in part, boiling. Four types of aqueous inclusions were recognized: (A) two-phase (liquid + vapor) liquid rich, (B) two-phase (vapor + liquid) vapor rich, (C) polyphase hypersaline liquid rich and (D) three phase-H2O liquid + CO2 liquid + CO2-rich vapor. Freezing and heating microthermometric determinations are reported for 230 inclusions from samples from six wells. It is suggested that boiling of an originally homogeneous, moderately saline, CO2-bearing liquid phase produced a residual hypersaline brine and a CO2-rich vapor phase. There are indications of a temperature decrease in the geothermal field of Larderello, especially in its peripheral zones. ?? 1985.

  18. Fracture mapping in geothermal fields with long-offset induction logging

    SciTech Connect

    Wilt, M.; Takasugi, Shinji; Uchida, Toshihiro; Kasameyer, P.; Lee, Ki Ha; Lippmann, M.

    1997-01-01

    The mapping of producing fractures in a geothermal field is an important technical objective in field development. Locating, orientating, and assessing producing fractures can guide drilling programs and optimize the placement of production and injection wells. A long-offset multicomponent borehole induction resistivity tool capable of surviving the high temperatures encountered in geothermal wells has recently been developed and tested in a high temperature environment. Several characteristics of this device make it ideal for detecting producing fractures. Whereas commercial induction logging devices have strong source-receiver separations of 1 m, this device has multiple sensors with separation of 8 m, allowing for deeper penetrations and the ability to straddle fracture-induced washout zones in boreholes. The three-component measurements also make it possible to map the strike and inclination of nearby fractures and other three-dimensional structures. This in turn allows for accurate projection of these structures into the space between wells.

  19. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect

    Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  20. Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site

    SciTech Connect

    Murphy, R.W.; Domingo, N.

    1982-05-01

    Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

  1. Spectral reflectance analysis of hydrothermal alteration in drill chips from two geothermal fields, Nevada

    NASA Astrophysics Data System (ADS)

    Lamb, A. K.; Calvin, W. M.

    2010-12-01

    We surveyed drill chips with a lab spectrometer in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions, 0.35-2.5 μm, to evaluate hydrothermal alteration mineralogy of samples from two known geothermal fields in western Nevada. Rock is fractured into small pieces or “chips” during drilling and stored in trays by depth interval. The drill chips are used to determine subsurface properties such as lithology, structure, and alteration. Accurately determining alteration mineralogy in the geothermal reservoir is important for indicating thermal fluids (usually associated with fluid pathways such as faults) and the highest temperature of alteration. Hydrothermal minerals, including carbonates, iron oxides, hydroxides, sheet silicates, and sulfates, are especially diagnostic in the VNIR-SWIR region.. The strength of reflectance spectroscopy is that it is rapid and accurate for differentiating temperature-sensitive minerals that are not visually unique. We examined drill chips from two western Nevada geothermal fields: Hawthorne (two wells) and Steamboat Springs (three wells) using an ASD lab spectrometer with very high resolution. The Steamboat Hills geothermal field has produced electricity since 1988 and is well studied, and is believed to be a combination of extensional tectonics and magmatic origin. Bedrocks are Cretaceous granodiorite intruding into older metasediments. Hot springs and other surface expressions occur over an area of about 2.6 km2. In contrast, the Hawthorne geothermal reservoir is a ‘blind’ system with no surface expressions such as hot springs or geysers. The geothermal field is situated in a range front fault zone in an extensional area, and is contained in Mesozoic mixed granite and meta-volcanics. We collected spectra at each interval in the chip trays. Interval length varied between 10’ and 30’. - Endmember analysis and mineral identification were performed -using standard analysis approaches used to map mineralogy

  2. Body and Surface-wave ambient noise seismic interferometry in the Salton Sea Geothermal Field, California

    NASA Astrophysics Data System (ADS)

    Sabey, L.; Hole, J. A.; Han, L.; Stock, J. M.; Fuis, G. S.

    2013-12-01

    Seismic reflection and refraction data were acquired as a part of the Salton Seismic Imaging Project in March 2011. Alongside traditional explosive source recording, a dense array of 486 seismometers across the Salton Sea Geothermal Field and Brawley Seismic Zone recorded 135 hours of natural noise sources. The geothermal field is located within the Imperial Valley in Southern California and is bordered by the southern end of the Salton Sea. There is abundant microseismicity recorded in the area, including over 100-recorded earthquakes, wave action, geothermal pumping operations, a railroad, and two highways. Volcanism associated with rifting processes provides a prolific heat source to the system marking the Salton Sea Geothermal Field as one of the largest and hottest geothermal fields in California. Seismic interferometry is a technique that uses continuous recordings of natural noise to create a 'virtual source' by cross-correlation of receiver pairs followed by stacking. This method has been highly successful for surface waves and a few previous studies have shown evidence of body waves and reflections. As anticipated the abundant tectonic and induced noise sources within our study area produced visible surface and body waves. Inclusion of the earthquakes with normalized amplitudes improved overall data quality. The virtual shots from our data our compare well to our twelve explosive shots at near offsets. The highest quality virtual source gathers are produced near anthropogenic noise sources. In particular, one large geothermal plant acted as a sufficiently strong point source producing a gather similar to what we would see from an explosive source. Surface waves recorded on 4.5-Hz geophones were retrievable from 1-6Hz after cross-correlation and stacking. Up to 30km of body waves were also observed in the 25-30Hz range. Future studies will include surface wave dispersion analysis and attempt body wave reflection imaging. The 100-meter spacing of our

  3. Decline Curve Analysis of Production Data from the Geysers Geothermal Field

    SciTech Connect

    Ripperda, M.; Bodvarsson, G.S.

    1987-01-20

    Production data for over two hundred wells at The Geysers geothermal field were compiled and analysed. Decline curves for groups of wells with 5, 10, and 40 acre spacing are presented and compared to curves published previously by Budd (1972) and Dykstra (1981). Decline curves for several individual wells and leases are discussed to illustrate the effects of well spacing and location, as well as the heterogeneous nature of the reservoir. 6 figs., 1 tab., 10 refs.

  4. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan. Final report, May 1, 1995--November 30, 1997

    SciTech Connect

    Garg, S.K.; Combs, J.; Pritchett, J.W.

    1997-07-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses and pressure transient data for the assessment of a high temperature volcanic geothermal field. This comprehensive report describes the work accomplished during FY 1993-1996. A brief review of the geological and geophysical surveys at the Sumikawa Geothermal Field is presented (Section 2). Chemical data, consisting of analyses of steam and water from Sumikawa wells, are described and interpreted to indicate compositions and temperatures of reservoir fluids (Section 3). The drilling information and downhole pressure, temperature and spinner surveys are used to determine feedzone locations, pressures and temperatures (Section 4). Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter (Section 5). New interpretations of pressure transient data from several wells are discussed (Section 6). The available data have been synthesized to formulate a conceptual model for the Sumikawa Geothermal Field (Section 7).

  5. Microearthquake Study of the Salton Sea Geothermal Field, California: Evidence of Stress Triggering - Masters Thesis

    SciTech Connect

    Holland, Austin Adams

    2002-02-01

    A digital network of 24 seismograph stations was operated from September 15, 1987 to September 30, 1988, by Lawrence Livermore National Laboratory and Unocal as part of the Salton Sea Scientific Drilling Project to study seismicity related to tectonics and geothermal activity near the drilling site. More than 2001 microearthquakes were relocated in this study in order to image any pervasive structures that may exist within the Salton Sea geothermal field. First, detailed velocity models were obtained through standard 1-D inversion techniques. These velocity models were then used to relocate events using both single event methods and Double-Differencing, a joint hypocenter location method. An anisotropic velocity model was built from anisotropy estimates obtained from well logs within the study area. During the study period, the Superstition wills sequence occurred with two moderate earthquakes of MS 6.2 and MS 6.6. These moderate earthquakes caused a rotation of the stress field as observed from the inversion of first motion data from microearthquakes at the Salton Sea geothermal field. Coulomb failure analysis also indicates that microearthquakes occurring after the Superstition Hills sequence are located within a region of stress increase suggesting stress triggering caused by the moderate earthquakes.

  6. Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia

    NASA Astrophysics Data System (ADS)

    Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.

    2014-05-01

    Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is

  7. Open questions on the origin of life at anoxic geothermal fields.

    PubMed

    Mulkidjanian, Armen Y; Bychkov, Andrew Yu; Dibrova, Daria V; Galperin, Michael Y; Koonin, Eugene V

    2012-10-01

    We have recently reconstructed the 'hatcheries' of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells (Mulkidjanian et al. Proc Natl Acad Sci U S A 109:E821-830, 2012). These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K⁺, Zn²⁺, Mn²⁺, and phosphate. Thus, protocells must have evolved in habitats with a high K⁺/Na⁺ ratio and relatively high concentrations of Zn, Mn and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under an anoxic, CO₂-dominated atmosphere, the ionic composition of pools of cool, condensed vapor at anoxic geothermal fields would resemble the internal milieu of modern cells. Such pools would be lined with porous silicate minerals mixed with metal sulfides and enriched in K⁺ ions and phosphorous compounds. Here we address some questions that have appeared in print after the publication of our anoxic geothermal field scenario. We argue that anoxic geothermal fields, which were identified as likely cradles of life by using a top-down approach and phylogenomics analysis, could provide geochemical conditions similar to those which were suggested as most conducive for the emergence of life by the chemists who pursuit the complementary bottom-up strategy. PMID:23132762

  8. Imaging the deep source of the Rotorua and Waimangu geothermal fields, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Heise, W.; Caldwell, T. G.; Bertrand, E. A.; Hill, G. J.; Bennie, S. L.; Palmer, N. G.

    2016-03-01

    Magnetotelluric data were recorded in a 45 × 10 km band crossing the Rotorua and Waimangu geothermal fields in the northern part of the Taupo Volcanic Zone in the central North Island of New Zealand. 3-D inverse modelling of these data show that beneath the low resistivity areas marking the near surface geothermal fields, localised electrically conductive zones are present in the crust below about 2.5 and 3.5 km depth at Rotorua and Waimangu, respectively. At increasing depth these conductive zones broaden and appear to merge with a larger conductive zone at 8 km depth situated between the geothermal systems. At Rotorua the top of the conductive zone is situated directly beneath the area of greatest surface heat and gas discharge. At Waimangu the uppermost part of the deeper conductive zone is situated beneath the western part of Lake Rotomahana, also an area of intense surface thermal activity and high heat flux. The localised conductive zones are interpreted to be high temperature (quasi-magmatic) fluids rising from a broader zone of partial melt at deeper levels.

  9. Durability of various cements in a well of the Cerro Prieto geothermal field

    SciTech Connect

    Krause, Ralph F., Jr.; Kukacka, Larry E.

    1982-10-08

    The durability of each of 16 different cements was evaluated by both room temperature compressive strength and water permeability measurements, following various periods of treatment of the cements in flowing geothermal fluid of the Cerro Prieto field of Mexico. Some of these cements were selected through a Department of Energy program to develop improved cements for geothermal well completion while the others were contributed by several other institutions interested in the tests. Two types of specimens of the cements were used in the tests: (a) 50 mm cubes which were precured 1 da in molds under water in an autoclave at 200 C and 20 MPa and (b) cement slurries which were prepared and cast in sandstone cups at the field. Federal de Electricidad a set of both types of specimens was installed in baskets which were placed 700 m downhole a well at 214 C, and an identical set of specimens was installed in special aboveground vessels near the wellhead. Following periods of 1 da. 3 mo, 6 mo. and 12 mo, specimens were withdrawn from the geothermal treatment and divided evenly between the Instituto de Investigaciones Electricas and the National Bureau of Standards for property measurements. This paper gives the downhole results by the latter laboratory. Final values will be published when the results of both laboratories are collated and reviewed.

  10. A joint geophysical analysis of the Coso geothermal field, south-eastern California

    NASA Astrophysics Data System (ADS)

    Wamalwa, Antony M.; Mickus, Kevin L.; Serpa, Laura F.; Doser, Diane I.

    2013-01-01

    Three-dimensional density models derived from gravity data and two-dimensional resistivity models derived from magnetotelluric data collected in the vicinity of the Coso geothermal field are analyzed in order to determine the source region of the geothermal field. The derived models show zones of both low resistivity and low density at and below 6 km depth in the Devils Kitchen and the Coso Hot Springs areas. These zones agree with seismic reflection and tomography results which found a high amplitude reflector at 5 km and low velocities zones below 5 km. We interpret the density and resistivity zones to indicate the presence of cooling magmatic material that provides the heat for the shallower geothermal system in these regions. A zone marked by high resistivity and low density was found to lie directly above the interpreted partially melted region extending to within 1 km depth below the surface in the reservoir region where it is capped by a low resistivity clay zone. In addition, the density models indicate that the high density bodies occurring under volcanic outcrops may be mafic intrusions.

  11. Two-phase flow measurement by chemical tracer technique for Uenotai geothermal field in Japan

    SciTech Connect

    Sato, Tatsuya; Osato, Kazumi; Hirtz, P.

    1996-12-31

    A tracer flow-test (TFT) survey of three production wells was performed in February, 1996, for Akita Geothermal Energy Co., Ltd. (AGECO) at the Uenotai geothermal field in the Akita prefecture of northern Honshu, Japan. The survey was conducted as a demonstration test of the chemical tracer method for two-phase flow measurement. Although the tracer method has been in commercial use for about 4 years this was the first time the technique had been applied on wells with mixing runs of less than 12 meters. The tracers were injected through the wing valve on the side of the wellheads to maximize the tracer dispersion through the 9 meters of pipeline available before sample collection. The three wells tested had steam fractions at the wellhead of 38 to 99.4 % by weight and total flow rates of 31.5 to 51.5 tons/hr. Based on the test results the chemical tracer method is considered accurate under the conditions experienced at the Uenotai geothermal field and has been adopted for routine flow rate and enthalpy monitoring.

  12. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    SciTech Connect

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  13. Plant adaptation to extreme environments: the example of Cistus salviifolius of an active geothermal alteration field.

    PubMed

    Bartoli, Giacomo; Bottega, Stefania; Forino, Laura M C; Ciccarelli, Daniela; Spanò, Carmelina

    2014-02-01

    Cistus salviifolius is able to colonise one of the most extreme active geothermal alteration fields in terms of both soil acidity and hot temperatures. The analyses of morpho-functional and physiological characters, investigated in leaves of plants growing around fumaroles (G leaves) and in leaves developed by the same plants after transfer into growth chamber under controlled conditions (C leaves) evidenced the main adaptive traits developed by this pioneer plant in a stressful environment. These traits involved leaf shape and thickness, mesophyll compactness, stomatal and trichome densities, chloroplast size. Changes of functional and physiological traits concerned dry matter content, peroxide and lipid peroxidation, leaf area, relative water and pigment contents. A higher reducing power and antioxidant enzymatic activity were typical of G leaves. Though the high levels of stress parameters, G leaves showed stress-induced specific morphogenic and physiological responses putatively involved in their surviving in active geothermal habitats. PMID:24581804

  14. Gas Geothermometry Based on CO Content--Application in Italian Geothermal Fields

    SciTech Connect

    D'Amore, F.; Fancelli, R.; Saracco, L.; Truesdell, A.H.

    1987-01-20

    This paper discusses gas chemical equilibria in geothermal reservoirs involving the species CO{sub 2}, CH{sub 4}, CO, H{sub 2}S, H{sub 2}, and H{sub 2}O. A set of equations is developed correlating ratios of gas to CO{sub 2} with temperature, steam fraction, and CO{sub 2} partial pressure in the reservoir. A method for solving the set of nonlinear equations is proposed. These equations do not involve discharge gas/total H{sub 2}O ratios and may therefore be used for fumaroles and hot-spring fluids. Applications to fumarole and well-discharge fluid compositions in Italian geothermal fields show good correlations between temperatures calculated with this method and the temperatures measured in the reservoir (between 140° to 330°C). 5 tabs., 1 fig., 19 refs.

  15. Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data

    SciTech Connect

    Counce, D; Dunlap, C; Goff, F; Huebner, M; Janik, C; Johnson, S; Nimz, G

    1999-08-16

    Chemical and isotopic analyses of Dixie Valley regional waters indicate several distinct groups ranging in recharge age from Pleistocene (<20 ka) to recent (<50a). Valley groundwater is older than water from perennial springs and artesian wells in adjacent ranges, with Clan Alpine range (east) much younger (most <50a) than Stillwater range (west; most >1000a). Geothermal field fluids ({approximately}12-14 ka) appear derived from water similar in composition to non-thermal groundwater observed today in valley artesian wells (also -14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the ranges, more extensive interaction with deep-seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

  16. Sustainable development of geothermal fields in the Pannonian Basin - A case study

    SciTech Connect

    Panu, Dumitru; Mitrofan, Horia; Serbu, Viorel

    1996-01-24

    As suggested by the discusssion of Barker, 1988, on the influence of flow dimension on the late-time behaviour of the generalized line source solution, it was inferred that observed long term reservoir pressure decline was an outcome of the 1D (linear) flow geometry, indicated by well tests. The detrimental effects of the reservoir pressure decline can be partly mitigated by taking advantage of the two-phase flow which occurs when methane, originally dissolved in the geothermal brine, is released within the well bore. Sustainable artesiar withdrawal scenarios for existing geothermal fields are devised, based on an accurate prediction of bottomhole pressure decline trends and an adequate selection of the diameter and length of the production tubing. Overall analysis and forecast are performed by an integrated reservoir & well bore simulator.

  17. Fluid flow in the Rotorua geothermal field derived from isotopic and chemical data

    SciTech Connect

    Stewart, M.K.; Lyon, G.L.; Robinson, B.W. ); Glover, R.B. )

    1992-04-01

    A wide variety of isotopic and chemical measurements on geothermal fluids from shallow wells at Rotorua have given the following interpretations: The Rotorua field comprises one geothermal system; a primary upflow of (outgassed) alkali chloride water extends from northeast Whakarewarewa to Ngapuna and under Lake Rotorua (east side of the system). At the southern end a secondary upflow discharges dilute alkali chloride water; a second major upflow at Kuirau-Ohinmutu discharges chloride-bicarbonate waters formed by dilution of the primary water and reaction with rock; boiling primary water flows from the eastern upflow zone under confining sediments into aquifers in Rotorua Rhyolite containing chloride-bicarbonate waters in the central region; tritium-bearing groundwater penetrates from overlying aquifers in the sediment into the saddle area between the rhyolite domes or along the crest of the southern rhyolite dome and flows northeast into the northern dome.

  18. Mercury in freshwater fish and clams from the Cerro Prieto geothermal field of Baja California, Mexico

    SciTech Connect

    Gutierrez-Galindo, E.A.; Munoz, G.F.; Flores, A.A.

    1988-08-01

    Several reports have expressed concern about the potential toxicity hazards and environmental contamination of mercury emissions from geothermal fields in Hawaii, New Zealand, Iceland, California and Mexico. Inorganic mercury discharged from the sources may accumulate in the sediments of rivers or lakes and, after microbiological methylation may become concentrated in the edible tissue of fish. This study involves assessment of geothermal mercury pollution arising from Cerro Prieto. For this purpose the fish Tilapia mossambica and the clam Corbicula fluminea were collected from the freshwater courses of the Mexicali Valley. Reports indicated that in 1982, 13 t of T. mossambica were destinated for human consumption. A further aim was to provide base line data and information relevant to the level of mercury contamination for the Mexicali Valley.

  19. Supercritical heat exchanger field test (SHEFT), I. Field performance data on shell-and-tube heat exchangers in geothermal service

    SciTech Connect

    Silvester, L.F.; Beaulaurier, L.O.; Mirk, K.F.; Fulton, R.L.

    1981-06-01

    Field performance data on shell-and-tube heat exchangers in geothermal service are presented. The test data were taken for geothermal brine on the tube side and hydrocarbon on the shell side in counterflow for six primary heat exchangers, and for hydrocarbon on the shell side and cooling water on the tube side for the condenser. Test data were for heating isobutane, 1 90/10 isobutane/isopentane mixture, and a 80/20 isobutane/isopentane mixture at supercritical conditions in the vicinity of their critical pressure and temperature, and for condensing the same fluids. The test data were used in a preliminary data analysis to determine the reported heat exchanger performance parameters.

  20. Reservoir Characterization around Geothermal Field, West Java, Indonesia Derived from 4-D Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Verdhora Ry, Rexha; Nugraha, A. D.

    2016-01-01

    Observation of micro-seismic events induced by intensive geothermal exploitation in a particular geothermal field, located in West Java region, Indonesia was used to detect the fracture and permeability zone. Using local monitoring seismometer network, tomographic inversions were conducted for the three-dimensional Vp, Vs, and Vp/Vs structure of the reservoir for January - December 2007, January - December 2008, and January - December 2009. First, hypocenters location was relocated using joint hypocenter determination (JHD) method in purpose to estimate best location. Then, seismic tomographic inversions were conducted using delay time tomography for dataset of every year respectively. The travel times passing through the three-dimensional velocity model were calculated using ray tracing pseudo-bending method. Norm and gradient damping were added to constrain blocks without ray and to produce smooth solution model. The inversion algorithm was developed in Matlab environment. Our tomographic inversion results from 3-years of observations indicate the presence of low Vp, low Vs, and low Vp/Vs ratio at depths of about 1 - 3 km below sea level. These features were interpreted may be related to steam-saturated rock in the reservoir area of this geothermal field. The locations of the reservoir area were supported by the data of well- trajectory, where the zones of high Vp/Vs were observed around the injection wells and the zones of low Vp/Vs were observed around the production wells. The extensive low Vp/Vs anomaly that occupies the reservoir is getting stronger during the 3-years study period. This is probably attributed to depletion of pore liquid water in the reservoir and replacement with steam. Continuous monitoring of Vp, Vs, and Vp/Vs is an effective tool for geothermal reservoir characterization and depletion monitoring and can potentially provide information in parts of the reservoir which have not been drilled.

  1. Origin of rainwater acidity near the Los Azufres geothermal field, Mexico

    USGS Publications Warehouse

    Verma, M.P.; Quijano, J.L.; Johnson, Chad; Gerardo, J.Y.; Arellano, V.

    2000-01-01

    The chemical and isotopic compositions of rainwater were monitored at Los Azufres geothermal field (88 MWe) and its surroundings during May - September 1995, which is the rainy season. Samples were collected from eight sites: three within the field, three in its surroundings and two sufficiently far from the field such that they have no geothermal input. The concentrations of Cl-, SO42- and NO3- were measured in about 350 samples and found to be generally <5 ppm. Chloride concentrations remained constant with time, but sulfate and nitrate concentrations decreased, which suggests a nearby industrial source for the sulfate and nitrate. A mixing model for Cl-, SO42- and ??34S also suggests an industrial source for the rainwater sulfur. The determination of pH was found to be necessary, but is not sufficient to characterize rainwater acidity. The Gran titration method was used to determine alkalinity with respect to equivalence point of H2CO3(*). Values of alkalinity were found to range from 10-4 to 10-6 eq/L, and were negative only for some samples from Vivero and Guadalajara. Thus, SO42- and NO3- are in general not in acidic form (i.e. balanced by Na+, Ca2+, etc. rather than H+). Sulfate ??34S values were about -1.5??? in Los Azufres and its surroundings, and in Morelia, but differed from the value of -0.2??? for Guadalajara. The ??34S values for H2S from the Los Azufres geothermal wells are in the range -3.4 to 0.0???. The ??34S ranges for the natural and anthropogenic sources for environmental sulfur overlap, making it difficult to differentiate between the contribution of different sources. However, a similarity of values of ??34S at Los Azufres and Morelia (85 km distant) suggest a regional source of sulfate that is not associated with geothermal emissions from Los Azufres. (C) 2000 Published by Elsevier Science Ltd on behalf of CNR.The chemical compositions of rainwater were analyzed at Los Azufres geothermal field in Spain from May-September 1995. The

  2. Laboratory measurements on reservoir rocks from The Geysers geothermal field

    SciTech Connect

    Boitnott, G.N.

    1995-01-26

    A suite of laboratory measurements have been conducted on Geysers metagraywacke and metashale recovered from a drilled depth of 2599 to 2602 meters in NEGU-17. The tests have been designed to constrain the mechanical and water-storage properties of the matrix material. Various measurements have been made at a variety of pressures and at varying degrees of saturation. Both compressional and shear velocities exhibit relatively little change with effective confining pressure. In all of the samples, water saturation causes an increase in the compressional velocity. In some samples, saturation results in a moderate decrease in shear velocity greater in magnitude than would be expected based on the slight increase in bulk density. It is found that the effect of saturation on the velocities can be quantitatively modeled through a modification of Biot-Gassmann theory to include weakening of the shear modulus with saturation. The decrease is attributed to chemo-mechanical weakening caused by the presence of water. The degree of frame weakening of the shear modulus is variable between samples, and appears correlated with petrographic features of the cores. Two related models are presented through which we can study the importance of saturation effects on field-scale velocity variations. The model results indicate that the saturation effects within the matrix are significant and may contribute to previously observed field anomalies. The results help to define ways in which we may be able to separate the effects of variations in rock properties, caused by phenomena such as degree of fracturing, from similar effects caused by variations in matrix saturation. The need for both compressional and shear velocity data in order to interpret field anomalies is illustrated through comparisons of model results with the field observations.

  3. Structural control is a strategy for exploitation well at Kamojang Geothermal Field, West Java, Indonesia

    SciTech Connect

    Hantono, Djoko; Mulyono, Agus; Hasibuan, Aidil

    1996-01-24

    Kamojang Geothermal Field is one of the best geothermal field in the world, explored since 1918. The field lies 33 km south-east Bandung, West Java. It is located in the centre of a volcanic chain which has progressively grown from WSW to ENE. Three tectonic activities have created current Kamojang structures. Firstly, the circular collapse of Pangkalan, 2 km in diameter whch occupies the central part of the Kamojang field; secondly, NE -SW flults of tensional and lateral origin, are parallel to the magmatic axis; and last, 5 km wide graben is a major expression of NW-SE tensional faults. The faults, having N60 strike in the southeastern part of the field have been identified as a very important structures related to the main target of reservoir Kamojang field. Even if the faults and fractures have been altered in the upper part of the surface and form non permeable seals, the bottom sections may still be highly permeable. Therefore for development drilling one must consider the deep structures instead of just shallow expressions and alteration. Geological correlations between the several wells drilled up to date shows evidence that the structures correspond to the surface features as described above. Case study of well Kamojang denote that the structure identified as Citepus fault is founded in the depth of about 1400 m to 1700 m. v. d

  4. Structural control is a strategy for exploitation well at Kamojang Geothermal Field, West Java, Indonesia

    SciTech Connect

    Hantono, D.; Mulyono, A.; Hasibuan, A.

    1996-12-31

    Kamojang Geothermal Field is one of the best geothermal field in the world, explored since 1918. The field lies 33 km south-east Bandung, West Java. It is located in the center of a volcanic chain which has progressively grown from WSW to ENE. Three tectonic activities have created current Kamojang structures. Firstly, the circular collapse of Pangkalan, 2 km in diameter which occupies the central part of the Kamojang field; secondly, NE-SW flults of tensional and lateral origin, are parallel to the magmatic axis; and last, 5 km wide graben is a major expression of NW-SE tensional faults. The faults, having N60 strike in the southeastern part of the field have been identified as a very important structures related to the main target of reservoir Kamoiang field. Even if the faults and fractures have been altered in the upper part of the surface and form non permeable seals, the bottom sections may still be highly permeable. Therefore for development drilling one must consider the deep structures instead of just shallow expressions and alteration. Geological correlations between the several wells drilled up to date shows evidence that the structures correspond to the surface features as described above. Case study of well Kamojang denote that the structure identified as Citepus fault is founded in the depth of about 1400 m to 1700 m. v. d.

  5. NEDO'S project on geothermal reservoir engineering -- a reservoir engineering study of the Kirishima field, Japan

    SciTech Connect

    Kitamura, H.; Ishido, T.; Miyazaki, S.; Abe, I.; Nobumoto, R.

    1988-01-01

    In order to promote the development of geothermal energy resources, it is important to understand and (to the extent possible) to alleviate potential risks associated with each proposed development project. Further, it is essential to estimate the generation capacity of the reservoir prior to full-scale commitment so that the power plant design may be intelligently formulated. Starting in 1984, the New Energy Development Organization (NEDO) in Japan undertook a four-year program to develop technical methods for the evaluation of potential geothermal resources and for the prediction of production capacity and the appropriate level of electrical generation to be anticipated. NEDO’s general approach to theoretical reservoir evaluation is described, as is the schedule and progress along the four-year program toward its four main goals: development of reservoir simulators, drilling of observation wells in two model fields (the Sumikawa field in northern Honshu and the Kirishima field in southern Kyushu), well tests in the model fields, and reservoir simulation with natural-state and production calculation for both fields. The remainder of the paper describes some results obtained from the well testing program in the Kirishima field and ongoing studies of it.

  6. Flow rate decline and pressure transient in the Larderello geothermal field

    SciTech Connect

    Neri, Guiseppe

    1988-01-01

    The production history of most of the Larderello wells, both the older ones and the recent ones, that we have produced at constant pressure, is characterised by a rapid initial decline. In this study such a decline is interpreted as the consequence of an original flow regime of the “depletion” type being followed by a “diffusion” type regime. Such an interpretation, which does prove consistent with the phenomenology of the geothermal field, was suggested by the results of the analyses of the well-closure tests carried out in the North zone of Larderello and in the Travale field.

  7. Seismicity and deformation in the Coso Geothermal field from 2000 to 2012

    NASA Astrophysics Data System (ADS)

    Kaven, J. Ole; Hickman, Stephen H.; Davatzes, Nicholas C.

    2015-04-01

    Induced micro-seismicity in geothermal reservoirs, in particular in enhanced geothermal systems (EGS), is an intended byproduct of injection and production, as it often indicates the generation of permeability pathways on either pre-existing or newly generated faults and fractures. The hazard of inducing an earthquake large enough to cause damage to surface structures, however, is not easily avoided and has led to termination of geothermal projects. To explore the physical processes leading to damaging earthquakes, we investigate the evolution of seismicity and the factors controlling the migration, moment release rate, and structure within the seismicity in the Coso Geothermal Field (CGF). The CGF has been in production since the 1980s and includes both naturally occurring geothermal resources and portions of the reservoir that are EGS projects. We report on seismicity in the CGF that has been relocated with high precision double-difference relocation and simultaneous velocity inversion to understand the reservoir compartmentalization, in particular, where boundaries to flow exist both vertically and horizontally. We also calculate moment magnitudes (Mw) from the initial displacement pulse of the seismograms to relate moment directly to the deformation. We find that two distinct compartments form the CGF, which are divided by an aseismic gap that also shows a relatively low Vp/Vs ratio. Further, we find that events with Mw> 3.5 tend to map onto larger fault structures that are imaged by the relocated seismicity. We relate the temporal and spatial migration of moment release rate to the injection and production records in the reservoir by employing a thermo-poro-elastic finite element model in which the compartment boundaries are defined by the seismicity. We find that pore pressure effects alone are not responsible for the migration of seismicity and that poro-elastic and thermo-elastic strain changes can account for more of the observed moment release rate than

  8. Magma energy: the ultimate heat source for geothermal fields

    SciTech Connect

    Hardee, H.C.

    1982-07-01

    A scientific feasibility study, funded by DOE/Basic Energy Sciences, of extracting energy directly from buried magma sources is discussed. This study has examined the problems of locating and drilling into the magma and then extracting useful quantities of energy from the magma. Theoretical calculations with supporting laboratory and field measurements have been used to show that there are no theoretical or physical barriers that prevent the direct extraction of energy from magma. As a result of this study it has been concluded that magma energy utilization is scientifically feasible.

  9. Analysis and interpretation of stress indicators in deviated wells of the Coso Geothermal Field

    NASA Astrophysics Data System (ADS)

    Schoenball, Martin; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2016-04-01

    Characterizing the tectonic stress field is an integral part for the development of hydrothermal systems, especially enhanced geothermal systems (EGS). With a known stress field, critically stressed faults can be identified. Faults that are critically oriented with respect to the in-situ stress field exhibit a high tendency for slip, and thus are likely candidates for reactivation during the creation of an EGS. Reactivated faults are known to serve as dominant fluid pathways during hydrothermal circulation and the characteristics of this process determine the potential for damaging earthquakes; should extensive portions of well-oriented, large features be reactivated. As part of the FORGE initiative at the West Flank of the Coso Geothermal Field, we analyze a large set of image logs obtained from wells distributed across the geothermal field for details about the stress state revealed by indicators such as borehole breakouts and drilling-induced tensile fractures. Previous stress analyses at Coso have ignored deviated well sections, since their interpretation for the orientation of the stress tensor is non-unique with respect to varying stress magnitudes. Using interpreted borehole-induced structures, we perform a grid search over all possible Andersonian stress states and find a best fitting vertical stress tensor for each stress state characterized by principal stress magnitudes. By including deviated well sections and recently drilled wells, we considerably expand the suite of stress measurements in the Coso Geothermal Field. Along individual wells, this analysis also reveals local meter length-scale deviations from the best-fitting mean stress orientation. While most wells show consistent horizontal principal stress orientations with standard deviations of about 10°, other wells show large standard deviations on the order of 25°. Several regions have logged well trajectories with lateral spacing below 1 km. This enables us to trace changes of the stress

  10. Detailed microearthquake studies at the Cerro Prieto geothermal field

    SciTech Connect

    Majer, E.L.; McEvilly, T.V.

    1981-01-01

    There appears to be an increase in seismic activity within the Cerro Prieto production zone since early 1978. The microearthquake activity is now more or less constant at a rate of 2 to 3 events per day. The b-values within the field are significantly higher inside the production zone than are those for events on faults outside of the production region. The earthquakes seem to be controlled by the Hidalgo fault, although slight clustering was observed in the center of the main production region. The earthquakes within the production zone may reflect the reservoir dynamics associated with heat and mass withdrawal. Mechanisms such as volume change, thermal stresses and weakening of materials associated with boiling (i.e., phase changes, dissolution) may all be responsible for the increased seismic activity. Although a small reinjection program has started, the pressure drawdown conditions existing within the field would imply that increased pore pressure resulting from the injection activities is not responsible for the increased seismic activity.

  11. The Ahuachapan geothermal field, El Salvador: Exploitation model, performance predictions, economic analysis

    SciTech Connect

    Ripperda, M.; Bodvarsson, G.S.; Lippmann, M.J.; Witherspoon, P.A.; Goranson, C.

    1991-05-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL) with funding from the US Agency for International Development (USAID). This report describes the work done during the second year of the study (FY89--90). The first year's report included (1) the development of geological and conceptual models of the field, (2) the evaluation of the reservoir's initial thermodynamic and chemical conditions and their changes during exploitation, (3) the evaluation of interference test data and the observed reservoir pressure decline and (4) the development of a natural state model for the field. In the present report the results of reservoir engineering studies to evaluate different production-injection scenarios for the Ahuachapan geothermal field are discussed. The purpose of the work was to evaluate possible reservoir management options to enhance as well as to maintain the productivity of the field during a 30-year period (1990--2020). The ultimate objective was to determine the feasibility of increasing the electrical power output at Ahuachapan from the current level of about 50 MW{sub e} to the total installed capacity of 95 MW{sub e}. 20 refs., 75 figs., 10 tabs.

  12. Preliminary isotopic studies of fluids from the Cerro Prieto geothermal field

    USGS Publications Warehouse

    Truesdell, A.H.; Rye, R.O.; Pearson, F.J., Jr.; Olson, E.R.; Nehring, N.L.; Whelan, J.F.; Huebner, M.A.; Coplen, T.B.

    1979-01-01

    Preliminary isotopic studies of Cerro Prieto geothermal fluids and earlier studies of Mexicali Valley ground waters suggest local recharge of the geothermal system from the area immediately to the west. Oxygen isotope exchange of water with reservoir rock minerals at temperatures increasing with depth has produced fluids with oxygen-18 contents increasing with depth, and pressure drawdown in the southeastern part of the field has allowed lower oxygen-18 fluids to invade the production aquifer from above. The contents of tritium and carbon-14 in the fluid suggest only that the age of the fluid is between 50 and 10,000 years. The isotopic compositions of carbon and sulfur are consistent with a magmatic origin of these elements but a mixed sedimentary-organic origin appears more likely for carbon and is also possible for sulfur. Investigations of the isotopic compositions of geothermal and cold ground waters continue and are being expanded as fluids become available and as separation and analysis methods are improved. ?? 1979.

  13. Evidence of Formation Scaling Occurred in the Chingshui Geothermal Field, Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, Y.-C.; Song, S.-R.; Liu, C.-M.

    2012-04-01

    Taiwan is located at the margin of young orogenic belt which the Philippine Sea plate collides with Asian continental margin. It is characteristic that the geothermal outcrops and hot springs are widely distributed in this island and has great potential to explore and develop the geothermal heat for power plant. A 3-Mw pilot power plant, therefore, was constructed in 1981 in the Chingshui area, northeastern Taiwan. However, due to rapid decline of power generation from 1.2 MWe to 0.2 MWe and shortage of economic efficiency, this plant was terminated in 1993. Most of the engineers and researchers considered the important reason for termination may be resulted from carbonate scaling, based on the findings of calcite deposits inside well pipe. A production well with the depth 1,500 m has been drilled into the reservoir of slate host rocks and raises 200 m cores between 600 m to 800 m in depth. Many calcite or aragonite minerals filled up the fractures, veins and open cracks have been found in the cores. Meanwhile, surface survey on outcrops shows that there are many quartz veins occurred in slate formation, but a few or no calcite veins. Those lines of evidence strongly suggest that the formation scaling rather than carbonate precipitations inside the wells termination of power plant have been occurred in the Chingshui geothermal field.

  14. Relationship between water chemistry and sediment mineralogy in the Cerro Prieto geothermal field: a preliminary report

    SciTech Connect

    Valette-Silver, J.N.; Thompson, J.M.; Ball, J.W.

    1981-01-01

    The chemical compositions of waters collected from the Cerro Prieto geothermal production wells and hydrothermal emanations are different. Compared to the Cerro Prieto well waters, the surficial waters generally contain significantly less potassium, slightly less calcium and chloride, and significantly more magnesium and sulfate. In comparison to the unaltered sediments, the changes in the mineralogy of the altered sediments appear to be controlled by the type of emanation (well, spring, mud pot, geyser, fumarole, or cold pool). However, an increase in quartz and potassium feldspar percentages seems to be characteristic of the majority of the sediments in contact with geothermal fluids. Preliminary attempts to model the chemical processes occurring in the Cerro Prieto geothermal field using chemical equilibrium calculations are reported. For this purpose the chemical compositions of thermal waters (well and surficial emanation) were used as input data to make calculations with SOLMNEQ and WATEQ2 computer programs. Then the theoretical mineral composition of altered sediments was predicted and compared to the mineralogy actually observed in the solid samples.

  15. Well log interpretation of certain geothermal fields in the Imperial Valley, California

    SciTech Connect

    Ershaghi, I.; Abdassah, D.

    1984-03-01

    This study reviews the wireline log responses of some geothermal fields in the Imperial Valley, California. The fields under study include the Heber, the East Mesa, the Brawley, and the Westmoreland. The well logs used in the study did not include all the wireline surveys obtained by the operators. The selected well logs obtained under special arrangements with the operators were chosen to maintain the anonymity of specific well locations but are only representative of each area. Analysis of the well logs indicates that on an individual field basis, the well logs are excellent for correlation purposes. The presence of extremely saline fluids in some fields precludes the monitoring of Q/sub v/ (cation exchange capacity per unit volume) profile for detection of hydrothermally altered zones. The producing sections in all the fields are characterized by low porosity and high resistivity.

  16. Distributed Acoustic Sensing Technology in a Magmatic Geothermal Field - First Results From a Survey in Iceland

    NASA Astrophysics Data System (ADS)

    Reinsch, Thomas; Jousset, Philippe; Henninges, Jan; Blanck, Hanna

    2016-04-01

    Seismic methods are particularly suited for investigating the Earth's subsurface. Compared to surface-measurements , wellbore measurements can be used to acquire more detailed information about rock properties and possible fluid pathways within a geothermal reservoir. For high temperature geothermal wells, however, ambient temperatures are often far above the operating temperature range of conventional geophones. One way to overcome this limitation is the application of fiber optic sensor systems, where only the passive optical fiber is subjected to downhole conditions. Their applicability is thus determined by the operating temperature range of the optical fiber. Choosing appropriate fibers, such sensor systems can be operated at temperatures far above 200°C. Along an optical fiber, the distributed acoustic sensing technology (DAS) can be used to acquire acoustic signals with a high spatial and temporal resolution. Previous experiments have shown that the DAS technology is well suited for active seismic measurements. Within the framework of the EC funded project IMAGE, a fiber optic cable was deployed in a newly drilled geothermal well (RN-34) within the Reykjanes geothermal field, Iceland. Additionally, a >15 km fiber optic cable, already available at the surface, was connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed at the wellhead as well as along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fiber optic data to conventional seismic records from a dense seismic network deployed on the Reykjanes in the course of the IMAGE project. Here, first results from the seismic survey will be presented.

  17. Laboratory and field testing of improved geothermal rock bits

    SciTech Connect

    Hendrickson, R.R.; Jones, A.H.; Winzenried, R.W.; Maish, A.B.

    1980-07-01

    The development and testing of 222 mm (8-3/4 inch) unsealed, insert type, medium hard formation, high-temperature bits are described. The new bits were fabricated by substituting improved materials in critical bit components. These materials were selected on bases of their high temperature properties, machinability, and heat treatment response. Program objectives required that both machining and heat treating could be accomplished with existing rock bit production equipment. Two types of experimental bits were subjected to laboratory air drilling tests at 250/sup 0/C (482/sup 0/F) in cast iron. These tests indicated field testing could be conducted without danger to the hole, and that bearing wear would be substantially reduced. Six additional experimental bits, and eight conventional bits were then subjected to air drilling a 240/sup 0/C (464/sup 0/F) in Francisan Graywacke at The Geysers, CA. The materials selected improved roller wear by 200%, friction-pin wear by 150%, and lug wear by 150%. Geysers drilling performances compared directly to conventional bits indicate that in-gage drilling life was increased by 70%. All bits at The Geysers are subjected to reaming out-of-gage hole prior to drilling. Under these conditions the experimental bits showed a 30% increase in usable hole over the conventional bits. These tests demonstrated a potential well cost reduction of 4 to 8%. Savings of 12% are considered possible with drilling procedures optimized for the experimental bits.

  18. Discovering new events beyond the catalogue—application of empirical matched field processing to Salton Sea geothermal field seismicity

    NASA Astrophysics Data System (ADS)

    Wang, Jingbo; Templeton, Dennise C.; Harris, David B.

    2015-10-01

    Using empirical matched field processing (MFP), we compare 4 yr of continuous seismic data to a set of 195 master templates from within an active geothermal field and identify over 140 per cent more events than were identified using traditional detection and location techniques alone. In managed underground reservoirs, a substantial fraction of seismic events can be excluded from the official catalogue due to an inability to clearly identify seismic-phase onsets. Empirical MFP can improve the effectiveness of current seismic detection and location methodologies by using conventionally located events with higher signal-to-noise ratios as master events to define wavefield templates that could then be used to map normally discarded indistinct seismicity. Since MFP does not require picking, it can be carried out automatically and rapidly once suitable templates are defined. In this application, we extend MFP by constructing local-distance empirical master templates using Southern California Earthquake Data Center archived waveform data of events originating within the Salton Sea Geothermal Field. We compare the empirical templates to continuous seismic data collected between 1 January 2008 and 31 December 2011. The empirical MFP method successfully identifies 6249 additional events, while the original catalogue reported 4352 events. The majority of these new events are lower-magnitude events with magnitudes between M0.2-M0.8. The increased spatial-temporal resolution of the microseismicity map within the geothermal field illustrates how empirical MFP, when combined with conventional methods, can significantly improve seismic network detection capabilities, which can aid in long-term sustainability and monitoring of managed underground reservoirs.

  19. 3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System

    SciTech Connect

    Mallan, R; Wilt, M; Kirkendall, B; Kasameyer, P

    2002-05-29

    Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series of three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of

  20. Tectonic Evolution of Chingshui Geothermal Field Inferred from Evidence of Quartz and Calcite Veins

    NASA Astrophysics Data System (ADS)

    Lu, Y. C.; Song, S. R.; Wang, P. L.; Liu, C. M.; Yeh, E. C.

    2014-12-01

    The Chingshui geothermal field is located in the valley of Chingshui stream, where is about 27 km SW of Ilan, northeastern Taiwan. It is a tectonically complex area occurred by the Philippine Plate subducting beneath the Eurasian plate in the south with Okinawa Trough opening in the Ilan Plain. Owing to complicated geological structure, the heat source of Chingshui geothermal field is still controversial. For understanding hot fluid sources and tectonic evolution, this study focuses on field survey of veins and scaling in the Chingshui geothermal field, and the results inferred from the data of SEM, XRD, carbon and oxygen isotope, and Uranium-thorium dating. The Chingshui hot fluid contains both high concentrations of SiO­2 and HCO3-, therefore, temperature and pressure both drop when the hot fluids inject into shallower fractures, and calcite and quartz both could be precipitated with competition or simultaneously. In Chilukeng River, many euhedral quartz crystals occurred in large damage zone of Xioananao fault that indicated the temperature drop played the dominated role when the hot fluids injected into the shallow. It inferred that the quartz crystal precipitated under compression stress, evidenced by the Xioananao thrust fault with no surface rupture. Whiles, there are gouges in normal fault with abundant calcite or calcite with quartz veins cropped out in the confluence of Chingshui River and Chilukeng River. The results indicate that those veins occurred in more recent period by U-Th dating data, because of degassing CO2 occurred in open fractures by normal faulting or the stress changing from compression to extension. The standard oxygen isotopes range from 1.29 to 20.73 permil of SMOW and the clumped isotope of Δ47 outcrop is 0.385 in calcite veins, suggest that the highest temperature of thermal fulids with calcite precipitations is 222℃±9℃ by calibrated equation of Passey and Henkes 2012. Meanwhile, it also indicates that the oxygen isotope of

  1. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field

    SciTech Connect

    Williams, Alan E.; Copp, John F.

    1991-01-01

    Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

  2. Status of non-electric use of geothermal energy in the Southern Negros geothermal field in the Philippines

    SciTech Connect

    Chua, S.E.; Abito, G.F.

    1994-07-01

    A 1-MWt multi-crop drying facility using low-enthalpy waste geothermal heat is installed within the vicinity of the Southern Negros Geothermal Project (January, 1994). The plant is envisioned to demonstrate the direct use of geothermal resources for agro-industrial purposes and at the same time, provide major benefits by raising the quality of the agro-industrial products to meet higher standards. The development and design of the heat exchangers that supply the heat and the dryer used in the facility is presented. The process flow and the dryer parameters in the drying of coconut meat and other crops have been determined. The initial design of the dryers target the dehydration of coconut meat and other crops using boxes and trays.

  3. Hydrology of the Greater Tongonan Geothermal system, Philippines and its implications to field exploitation

    SciTech Connect

    Seastres, J.S. Jr.; Salonga, N.D.; Saw, V.S.

    1996-12-31

    The Greater Tongonan Geothermal Field will be operating a total of 694 MWe by July 1997. The field has produced steam for the 112.5 MWe Tongonan I power plant since June 1983. With massive fluid withdrawal starting July 1996, a pre-commissioning hydrology was constructed to assess its implications to field exploitation. Pressure drawdown centered at well 106 in Mahiao was induced by fluid withdrawal at Tongonan-I production field. This drawdown will be accelerated by major steam withdrawal (734 kg/s) upon commissioning of power plants at Mahiao, Sambaloran and Malitbog sectors. To resolve this concern, fluid injection will be conducted at the periphery of Mahiao to provide recharge of reheated reinjection fluids in the reservoir. At Mahanagdong, the acidic fluid breakthrough will unlikely occur since the acidic zone north of this sector is not hydrologically well-connected to the main neutral-pH reservoir as indicated by pressure profiles.

  4. Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors

    SciTech Connect

    Asperger, R.G.

    1982-08-01

    A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12 refs.)

  5. A Geologic, Hyrologic and Geochemical Model of the Serrazzano Zone of the Larderello Geothermal Field

    SciTech Connect

    Calorie, C.; Celati, R.; D'Amore, F.; Squarci, P.; Truesdell, A.

    1980-12-16

    The large number of nonproductive wells lying along the northern and western margins of the Larderello field have indicated some boundaries of the productive area but have also prevented us, so far, from fully understanding the pheiomena controlling the behavior of the geothermal system in these areas. In 1980 ENEL re-opened some wells that had been shut-in immediately after drilling, thus offering us the possibility to complete the geochemical picture by means of numerous samplings of steam, gas and water in both productive and nonproductive wells. Some recent physical parameters measured in nonproductive and abandoned wells also helped in further defining the hydrogeological and thermal situation.

  6. Movement of geothermal fluid in the Cerro Prieto field as determined from well log and reservoir engineering data

    SciTech Connect

    Halfman, S.E.; Lippmann, M.J.; Zelwer, R.

    1982-01-01

    A hydrogeologic model of the Cerro Prieto geothermal field in its undisturbed state, developed on the basis of well log and reservoir engineering data, is discussed. According to this model, geothermal fluid enters the field from the east through a deep (>10,000 ft) sandstone aquifer which is overlain by a thick shale unit which locally prevents the upward migration of the fluid. As it flows westward, the fluid gradually rises through faults and sandy gaps in the shale unit. Eventually, some of the fluid leaks to the surface in the western part of the field, while the rest mixes with surrounding colder waters.

  7. S-wave Anisotropy and Crack Distribution at the Coso Geothermal Field, California

    NASA Astrophysics Data System (ADS)

    Vlahovic, G.; Elkibbi, M.; Rial, J. A.

    2001-05-01

    The Coso geothermal area is located along the eastern front of Sierra Nevada, in the southwestern Basin and Range Province. Seismic activity averaging more than 20 microearthquakes per day is the result of both regional tectonics and geothermal production activity [Malin, 1994]. Microseismicity is monitored by the Coso Digital Downhole Seismic Network (CDDSN) recording at 2 ms sampling rate. Continuous operation of the CDDSN since 1990 created a data set of exceptional richness and continuity. We used data accumulated from January 1999 through June 2000 for the study of S wave anisotropy and crack distribution. Understanding the faults and associated fracture system in Coso is fundamental for efficient long-term energy extraction and micro-tectonic models of the area. Strike of cracks in the shear-wave window of each station was determined by plotting rose diagrams of the fast shear-wave polarization directions. Each rose diagram has a clear dominant polarization direction, interpreted as the direction of the local fracture system. Three dominant strike groups were observed: 0 - 20 NE, 40 - 60 NE and 20 - 40 NW. These results are consistent with subsurface crack directions determined by Lou and Rial [1997], and with photographically and magnetically mapped alignments on the surface [Moore and Erskine, 1990], as well as with deep borehole observations. Four stations centered in the geothermal production area were selected for detailed study of variation of arrival time delays between fast and slow shear-waves and changes of polarization of leading shear-wave with time. Preliminary results suggest that for one station in the northeast end of the geothermal field, there is an increase in number of secondary fractures with strike from 10 NW to 30 NE in the data from January to June of 2000, relative to data from January to June of 1999. Statistical significance and reasons for such a change will be further studied, although it is interesting to note that this station

  8. The Rotorua geothermal field, New Zealand; Its physical setting, hydrology, and response to exploitation

    SciTech Connect

    Allis, R.G.; Lumb, J.T. )

    1992-04-01

    This paper discusses the Rotorua geothermal field which contains New Zealand's only area of geyser activity that has not been significantly affected by power developments. Geophysical and geochemical investigations of the field indicate that it has an area of 18-28 km{sup 2} at about 500 m depth, and a natural heat flux of 430 {plus minus} 30 MW. About a third of its area and over half its heat and mass flux occur beneath the southern end of Lake Rotorua. Aquifer pressure beneath much of Rotorua City is controlled by the lake level, and is uniform due to high permeability in the rhyolitic host rocks. Pressure in the high temperature zone in the south east of the field is about 1.5 bar higher than the rhyolite, and is controlled by the elevation of the main discharges in the geyser area. Although significant natural changes in the geyser activity at Rotorua have occurred historically, the progressive decline of spring and geyser outflows observed since about 1970 was caused by increasing withdrawal from wells tapping geothermal fluids at up to 300 m depth beneath Rotorua City.

  9. Structural and sedimentological study of the Cerro Prieto geothermal field, Baja California, Mexico

    SciTech Connect

    Vonder Haar, S.

    1981-06-01

    Geophysical and lithologic well logs from over fifty wells have been qualitatively and quantitatively analyzed using both manual and computer interpretation techniques. These logs were studied to make stratigraphic correlations throughout the Cerro Prieto field and to interpret the deltaic depositional environment of the field's lithologic units. Dipmeter and seismic data were of great value in making stratigraphic interpretations and extrapolations. Cross sections were constructed to illustrate lithofacies variations throughout the geothermal field. In turn, these sections were used to construct a three-dimensional model of the Cerro Prieto geothermal reservoir. Petrographic microscopy, scanning electron microscopy, and x-ray diffraction analyses of well-bore cuttings and cores were utilized to determine the degree and distribution of hydrothermal alteration by fluids at temperatures up to 350{sup 0}C, the origins of dissolution porosity, and the relative degree of fracture versus dissolution porosity. The results of these analyses were confirmed by log-derived determinations of formation fluid properties, porosity, and petrophysical properties and by studies of Cerro Prieto cores conducted under in-situ conditions. The results of this research were integrated into the Cerro Prieto reservoir model.

  10. Method and apparatus for determining vertical heat flux of geothermal field

    DOEpatents

    Poppendiek, Heinz F.

    1982-01-01

    A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.

  11. Volatile behavior and trace metal transport in the magmatic-geothermal system at Pūtauaki (Mt. Edgecumbe), New Zealand

    NASA Astrophysics Data System (ADS)

    Norling, B.; Rowe, M. C.; Chambefort, I.; Tepley, F. J.; Morrow, S.

    2016-05-01

    The present-day hydrothermal system beneath the Kawerau Geothermal Field, in the Taupo Volcanic Zone, New Zealand, is likely heated from the Pūtauaki (Mt. Edgecumbe) magma system. The aim of this work, as an analog for present day processes, is to identify whether or not earlier erupted Pūtauaki magmas show evidence for volatile exsolution. This may have led to the transfer of volatile components from the magmatic to hydrothermal systems. To accomplish this, minerals and melt inclusions from volcanic products were analyzed for abundances of volatile and ore-forming elements (S, Cl, Li, Cu, Sn, Mo, W, Sb, As, and Tl). The variations in abundance of these elements were used to assess magma evolution and volatile exsolution or fluxing in the magma system. Melt inclusions suggest the evolution of Pūtauaki andesite-dacite magmas is predominantly driven by crystallization processes resulting in rhyodacite-rhyolite glass compositions (although textural and geochemical evidence still indicate a role for magma mixing). Measured mineral-melt partition coefficients for trace metals of interest indicates that, with the exception of Tl in biotite, analyzed metals are all incompatible in Pūtauaki crystallization products. Excluding Li and Cu, other volatile and ore metals recorded in melt inclusions behave incompatibly, with concentrations increasing during evolution from rhyodacitic to rhyolitic melt compositions. Li and Cu appear to have increased mobility likely resulting from diffusive exchange post-crystallization, and may be related to late volatile fluxing. Although S and Cl concentrations decrease with melt evolution, no mineralogical evidence exists to indicate the exsolution and mobility of ore-forming metals from the magma at the time of crystallization. This observation cannot rule out the potential for post-crystallization volatile exsolution and ore-forming metal mobilization, which may only be recorded as diffusive re-equilibration of more rapidly diffusing

  12. Trace element hydrochemistry indicating water contamination in and around the Yangbajing geothermal field, Tibet, China.

    PubMed

    Guo, Qinghai; Wang, Yanxin

    2009-10-01

    Thirty-eight water samples were collected at Yangbajing to investigate the water contamination resulting from natural geothermal water discharge and anthropogenic geothermal wastewater drainage. The results indicate that snow or snow melting waters, Yangbajing River waters and cold groundwaters are free from geothermal water-related contamination, whereas Zangbo river waters are contaminated by geothermal wastewaters. Moreover, there may exist geothermal springs under the riverbed of a tributary stream of Zangbo River as shown by its Cd, Li, Mo and Pb concentrations. The efforts made in this study show trace element hydrochemistry can well indicate water quality degradation related to geothermal water exploitation. PMID:19582360

  13. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry

    USGS Publications Warehouse

    Massonnet, D.; Holzer, T.; Vadon, H.

    1997-01-01

    Interferometric combination of pairs of synthetic aperture radar (SAR) images acquired by the ERS-1 satellite maps the deformation field associated with the activity of the East Mesa geothermal plant, located in southern California. SAR interferometry is applied to this flat area without the need of a digital terrain model. Several combinations are used to ascertain the nature of the phenomenon. Short term interferograms reveal surface phase changes on agricultural fields similar to what had been observed previously with SEASAT radar data. Long term (2 years) interferograms allow the study of land subsidence and improve prior knowledge of the displacement field, and agree with existing, sparse levelling data. This example illustrates the power of the interferometric technique for deriving accurate industrial intelligence as well as its potential for legal action, in cases involving environmental damages. Copyright 1997 by the American Geophysical Union.

  14. Anomalously High Geothermal Gradients in the Buckman Well Field, Santa Fe County, New Mexico

    NASA Astrophysics Data System (ADS)

    Pollack, A.; Munda, R.; Farrell, T. F.; Kelley, S. A.; Frost, J.; Jiracek, G. R.

    2013-12-01

    Temperature as a function of depth was measured in ten wells in the Santa Fe, NM area as part of the Summer of Applied Geophysics Experience (SAGE) program. Eight of the wells are within 5.5 km of the city's Buckman municipal well field and two wells are at La Tierra, 16.5 km to the SE. Geothermal gradients increase from east to west towards the Buckman area, from 20°C/km at La Tierra to 76°C/km at Buckman. Within the Buckman well field, two wells on its eastern side were determined to have temperature gradients of 32°C/km and 42°C/km. Only 300 m west, the geothermal gradient sharply increases, and measured gradients reach 76 °C/km (well number SF4A), 62°C/km (SF4B), and 68°C/km (SF3A) in three shallow (<100 m) monitoring drill holes. Both local and regional causes may explain the geothermal anomaly. The short spatial wavelength of the horizontal gradient increase argues for a localized source. The unusually high gradients in three of the wells may be associated with fault-controlled, effective shallow-source, warm water upflow or with lateral flow in a shallow aquifer. On the regional level, the east to west increase in temperature gradients can be explained by deep circulating groundwater flow in the Espanola Basin and upwelling near the Rio Grande. Another possible explanation comes from gravity data gathered by SAGE over several years that shows a local NW-striking structural high in the area that could force localized convective upflow. Regional aeromag maps indicate magnetic lows exactly underneath the anomalous wells. These may be interpreted as buried volcanic plugs beneath the Buckman well field, acting as conduits for upwelling warmer waters. They may also indicate hydrothermally altered rock beneath the surface. A more nontraditional cause of the sharp thermal anomaly is also possible. The geothermal gradient anomaly coincides with the dramatic discovery by InSAR in 1993-2000 of localized ground subsidence due to excessive water well pumping

  15. Arsenic speciation and transport associated with the release of spent geothermal fluids in Mutnovsky field (Kamchatka, Russia)

    SciTech Connect

    Ilgen, Anastasia G.; Rychagov, Sergey N.; Trainor, Thomas P.

    2011-09-20

    The use of geothermal fluids for the production of electricity poses a risk of contaminating surface waters when spent fluids are discharged into (near) surface environments. Arsenic (As) in particular is a common component in geothermal fluids and leads to a degradation of water quality when present in mobile and bioavailable forms. We have examined changes in arsenic speciation caused by quick transition from high temperature reducing conditions to surface conditions, retention mechanisms, and the extent of transport associated with the release of spent geothermal fluids at the Dachny geothermal fields (Mutnovsky geothermal region), Kamchatka, Russia -- a high temperature field used for electricity production. In the spent fluids, the arsenic concentration reaches 9 ppm, while in natural hot springs expressed in the vicinity of the field, the As concentration is typically below 10 ppb. The aqueous phase arsenic speciation was determined using Liquid Chromatography (LC) coupled to an Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The arsenic speciation in the bottom sediments (< 65 {mu}m fraction) of the local surface waters was analyzed using X-ray Absorption Spectroscopy (XAS). Arsenic in the geothermal source fluids is predominantly found as As(III), while a mixture of As(III)/As(V) is found in the water and sediment of the Falshivaia River downstream from the power plant. The extent of elevated arsenic concentrations in water is limited by adsorption to the bottom sediment and dilution, as determined using Cl{sup -} from the deep well fluids as a tracer. Analysis of the Extended X-ray Absorption Fine Structure (EXAFS) spectra shows that sediment phase arsenic is associated with both Al- and Fe-rich phases with a bi-dentate corner sharing local geometry. The geothermal waste fluids released in the surface water create a localized area of arsenic contamination. The extent of transport of dissolved As is limited to {approx}7 km downstream from the source

  16. Repetitive precision gravity studies at the Cerro Prieto and Heber geothermal fields

    SciTech Connect

    Grannell, R.B.

    1982-09-01

    To study subsidence and mass removal, a precise gravity network was established on 60 permanent monuments in the Cerro Prieto geothermal field in early 1978, and repeated annually through early 1981; the survey was tied to two bedrock sites outside the limits of the current production zone. The looping technique of station occupation was utilized, in which occupation of the base was followed by occupation of several stations, followed by a return to the base. Use of two LaCoste and Romberg gravity meters, and replication of values within loops as well as entire loops, enhanced precision such that the median standard deviations of the base-to-station differences, reduced to observed gravity values, ranged from 7 to 15 microgals for individual surveys. The smaller values were obtained as field and data reduction techniques were improved and experience was gained. A similar survey was initiated in the Heber area just north of the Mexican border in early 1980. It too was established on permanent monuments, was tied to bedrock stations outside the geothermal area, and used multiple repetitions of values with two meters to achieve high precision.

  17. Icelandic basaltic geothermal field: A natural analog for nuclear waste isolation in basalt

    SciTech Connect

    Ulmer, G.C.; Grandstaff, D.E. . Dept. of Geology)

    1984-11-21

    Analog studies of Icelandic geothermal fields have shown that the design of nuclear waste repositories in basalt can benefit by comparison to the data base already available from the development of these geothermal fields. A high degree of similarity exists between these two systems: their petrology, groundwater geochemistry, mineral solubilities, hydrologic parameters, temperature ranges, water-rock redox equilibria, hydrothermal pH values, and secondary mineralogies all show considerable overlap in the range of values. The experimentally-simulated hydrothermal studies of the basaltic nuclear waste repository rocks have, at this time, produced a data base that receives a strong confirmation from the Icelandic analog. Furthermore, the Icelandic analog should eventually be employed to extrapolate into higher and lower temperatures, into longer time-base chemical comparisons, and into more realistic mineral deposition studies, than have been possible in the laboratory evaluations of the nuclear waste repository designs. This eventual use of the Icelandic analog will require cooperative work with the Icelandic Geological Survey. 46 refs., 4 figs., 2 tabs.

  18. Interpretation of radon concentration in the Serrazzano zone of the Larderello geothermal field

    SciTech Connect

    Semprini, L.; Kruger, P.; D'Amore, F.

    1982-01-01

    Wellhead concentrations of radon were made at 22 wells in the south-west region of the Larderello geothermal fields by two analytical methods, a field measurement and a laboratory measurement. The radon concentrations were correlated with average specific volume of superheated steam for each well estimated from available thermodynamic parameters of the reservoir. The correlation was improved by adjusting the specific volume of steam by a mass steam saturation value calculated at the boiling front from chemical fluid composition for each well by a method developed by D'Amore and Celati. A compressible flow model for radon transport developed by Sakakura et al. was also tested. The results confirm that radon behavior in geothermal systems is characterized by thermodynamic conditions in the reservoir. In the Serrazzano zone, abnormally high values of radon concentration with respect to estimated specific volume in four of the 22 wells were observed in an area of proposed low permeability. The high values may also result from higher emanating power or lower porosity in this zone. A cross-section normal to the zone of low permeability between the two basins shows a similar radon profile as noted in a Geysers production zone. A comparison of these data with the set obtained in 1976 by D'Amore shows relatively constant radon concentration despite several wells having large variations in gas/steam ratios.

  19. Fluid-inclusion evidence for previous higher temperatures in the miravalles geothermal field, Costa Rica

    USGS Publications Warehouse

    Bargar, K.E.; Fournier, R.O.

    1988-01-01

    Heating and freezing data were obtained for liquid-rich secondary fluid inclusions in magmatic quartz, hydrothermal calcite and hydrothermal quartz crystals from 19 sampled depths in eight production drill holes (PGM-1, 2, 3, 5, 10, 11, 12 and 15) of the Miravalles geothermal field in northwestern Costa Rica. Homogenization temperatures for 386 fluid inclusions range from near the present measured temperatures to as much as 70??C higher than the maximum measured well temperature of about 240??C. Melting-point temperature measurements for 76 fluid inclusions suggest a calculated salinity range of about 0.2-1.9 wt% NaCl equivalent. Calculated salinities as high as 3.1-4.0 wt% NaCl equivalent for 20 fluid inclusions from the lower part of drill hole PGM-15 (the deepest drill hole) indicate that higher salinity water probably was present in the deeper part of the Miravalles geothermal field at the time these fluid inclusions were formed. ?? 1988.

  20. Geochemical analysis of fluid mineral relations in the Tiwi Geothermal Field, Philippines

    SciTech Connect

    Bruton, C.J.; Moore, J.N.; Powell, T.S.

    1997-01-01

    Geochemical modeling simulations are being used to examine the source of the reservoir fluids in the Tiwi geothermal field and to evaluate the chemical and physical processes responsible for producing observed vein parageneses. Such information can be used to trace the evolution of the Tiwi geothermal field through time. The React geochemical modeling code was used to simulate the effects of isothermal and isoenthalpic boiling, conductive cooling and heating, and incorporation of condensed steam, on fluids from the Matalibong area. Predicted mineral stabilities were used to identify mineral indicators for each process. Calcite and anhydrite precipitation were favored by conductive heating, while illite precipitation was favored when condensed steam was added to the reservoir fluid. Reconstructed downhole fluids from borehole Mat-25 are acidic and are consistent with the presence of illite as the latest alteration mineral in veins. The processes of isothermal and isoenthalpic boiling could be differentiated from conductive cooling by the presence of epidote and/or calcite during boiling, and illite during cooling. Both boiling and cooling favored precipitation of quartz, K-feldspar, wairakite, and pyrite. Ratios of Na, Cl, and Br in waters from the Matalibong are relative to seawater indicate a significant component of seawater in reservoir fluids.

  1. Microearthquakes at the puhagan geothermal field, Philippines — A case of induced seismicity

    NASA Astrophysics Data System (ADS)

    Bromley, C. J.; Pearson, C. F.; Rigor, D. M.; PNOC-EDC

    1987-04-01

    The Puhagan area in Southern Negros is the only known Philippine geothermal field where there is a clear correlation between increased levels of local seismicity, and the development and early production phases of a geothermal power project. During commissioning of the Palinpinon I power plant in May 1983, a large increase in the microseismic event rate, occasionally exceeding 100 events per day, was noted. This seismic activity is characterized by swarms of events lasting from several hours to a month, separated by long periods of reduced activity. The largest events have local magnitudes of 2.4. Because the swarms appear to be triggered by both reinjection and production of fluids, it is difficult to relate them to a single triggering mechanism. An epicenter study was conducted during July to October 1983, using a simplified joint determination algorithm modified for a uniform velocity structure. The vast majority of the hypocenters occur in a narrow zone with a WNW lineation in the production sector of the field (correlating with a known fault trace) with very little activity in the reinjection sector (1 km to the north). First motions suggest activity has been induced on several non-parallel faults in the area, however, a majority of the events are consistent with normal faulting or oblique slip on steeply dipping NW-SE-trending planes.

  2. Continuous on-line steam quality monitoring system of the Bacman Geothermal Production Field, Philippines

    SciTech Connect

    Solis, R.P.; Chavez, F.C.; Garcia, S.E.

    1997-12-31

    In any operating geothermal power plant, steam quality is one of the most important parameters being monitored. In the Bacon-Manito Geothermal Production Field (BGPF), an online steam quality monitoring system have been installed in two operating power plants which provides an accurate, efficient and continuous real-time data which is more responsive to the various requirements of the field operation. The system utilizes sodium as an indicator of steam purity. Sodium concentration is read by the flame photometer located at the interface after aspirating a sample of the condensed steam through a continuous condensate sampler. The condensate has been degassed through a condensate-NCG separator. The flame photometer analog signal is then converted by a voltage-to-current converter/transmitter and relayed to the processor which is located at the control center through electrical cable to give a digital sodium concentration read-out at the control panel. The system features a high and high-high sodium level alarm, a continuous strip-chart recorder and a central computer for data capture, retrieval, and processing for further interpretation. Safety devices, such as the flame-off indicator at the control center and the automatic fuel cut-off device along the fuel line, are incorporated in the system.

  3. Laboratory measurements of reservoir rock from the Geysers geothermal field, California

    USGS Publications Warehouse

    Lockner, D.A.; Summers, R.; Moore, D.; Byerlee, J.D.

    1982-01-01

    Rock samples taken from two outcrops, as well as rare cores from three well bores at the Geysers geothermal field, California, were tested at temperatures and pressures similar to those found in the geothermal field. Both intact and 30?? sawcut cylinders were deformed at confining pressures of 200-1000 bars, pore pressure of 30 bars and temperatures of 150?? and 240??C. Thin-section and X-ray analysis revealed that some borehole samples had undergone extensive alteration and recrystallization. Constant strain rate tests of 10-4 and 10-6 per sec gave a coefficient of friction of 0.68. Due to the highly fractured nature of the rocks taken from the production zone, intact samples were rarely 50% stronger than the frictional strength. This result suggests that the Geysers reservoir can support shear stresses only as large as its frictional shear strength. Velocity of p-waves (6.2 km/sec) was measured on one sample. Acoustic emission and sliding on a sawcut were related to changes in pore pressure. b-values computed from the acoustic emissions generated during fluid injection were typically about 0.55. An unusually high b-value (approximately 1.3) observed during sudden injection of water into the sample may have been related to thermal cracking. ?? 1982.

  4. Thermal-hydrodynamic-chemical (THC) modeling based on geothermal field data

    SciTech Connect

    Kiryukhin, Alexey; Xu, Tianfu; Pruess, Karsten; Apps, John; Slovtsov, Igor

    2002-01-01

    Data on fluid chemistry and rock mineralogy are evaluated for a number of geothermal fields located in the volcanic arc of Japan and Kamchatka, Russia, Common chemical characteristics are identified and used to define scenarios for detailed numerical modeling of coupled thermal hydrodynamic chemical (THC) processes. The following scenarios of parental geothermal fluid upflow were studied: (1) single-phase conditions, 260 C at the bottom ( Ogiri type); (2) two-phase conditions, 300 C at the bottom ( Hatchobaru type); and (3) heat pipe conditions, 260 C at the bottom ( Matsukawa type). THC modeling for the single-phase upflow scenario shows wairakite, quartz, K-feld spar and chlorite formed as the principal secondary minerals in the production zone, and illite-smectite formed below 230 C. THC modeling of the two-phase upflow shows that quartz, K-feldspar (microcline), wairakite and calcite precipitate in the model as principal secondary minerals in the production zone. THC modeling of heat pipe conditions shows no significant secondary deposition of minerals (quartz, K-feldspar, zeolites) in the production zone. The influence of thermodynamic and kinetic parameters of chemical interaction, and of mass fluxes on mineral phase changes, was found to be significant, depending on the upflow regime. It was found that no parental geothermal fluid inflow is needed for zeolite precipitation, which occurs above 140 C in saturated andesite, provided that the porosity is greater than 0.001. In contrast, quartz and K-feldspar precipitation may result in a significant porosity reduction over a hundred-year time scale under mass flux conditions, and complete fracture sealing will occur given sufficient time under either single-phase or two-phase upflow scenarios. A heat pipe scenario shows no significant porosity reduction due to lack of secondary mineral phase deposition.

  5. PNAS Plus: Origin of first cells at terrestrial, anoxic geothermal fields

    NASA Astrophysics Data System (ADS)

    Mulkidjanian, Armen Y.; Bychkov, Andrew Yu.; Dibrova, Daria V.; Galperin, Michael Y.; Koonin, Eugene V.

    2012-04-01

    All cells contain much more potassium, phosphate, and transition metals than modern (or reconstructed primeval) oceans, lakes, or rivers. Cells maintain ion gradients by using sophisticated, energy-dependent membrane enzymes (membrane pumps) that are embedded in elaborate ion-tight membranes. The first cells could possess neither ion-tight membranes nor membrane pumps, so the concentrations of small inorganic molecules and ions within protocells and in their environment would equilibrate. Hence, the ion composition of modern cells might reflect the inorganic ion composition of the habitats of protocells. We attempted to reconstruct the "hatcheries" of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells. These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K+, Zn2+, Mn2+, and phosphate. Thus, protocells must have evolved in habitats with a high K+/Na+ ratio and relatively high concentrations of Zn, Mn, and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under the anoxic, CO2-dominated primordial atmosphere, the chemistry of basins at geothermal fields would resemble the internal milieu of modern cells. The precellular stages of evolution might have transpired in shallow ponds of condensed and cooled geothermal vapor that were lined with porous silicate minerals mixed with metal sulfides and enriched in K+, Zn2+, and phosphorous compounds.

  6. The Bulalo geothermal field, Philippines: Reservoir characteristics and response to production

    SciTech Connect

    Clemente, W.C.; Villadolid-Abrigo, F.L.

    1993-10-01

    The Bulalo geothermal field has been operating since 1979, and currently has 330 MWe of installed capacity. The field is associated with a 0.5 Ma dacite dome on the southeastern flank of the Late Pliocene to Quaternary Mt. Makiling stratovolcano. The reservoir occurs within pre-Makiling andesite flows and pyroclastic rocks capped by the volcanic products of Mt. Makiling. Initially, the reservoir was liquid-dominated with a two-phase zone overlying the neutral-pH liquid. Exploitation has resulted in an enlargement of the two-phase zone, return to the reservoir of separated waste liquid that has been injected, scaling in the wellbores and rock formation, and influx of cooler groundwaters. Return of injected waters to the reservoir and scaling have been the major reservoir management concerns. These have been mitigated effectively by relocating injection wells farther away from the production area and by dissolving scale from wells with an acid treatment.

  7. Hydrogeology of the Owego-Apalachin Elementary School Geothermal Fields, Tioga County, New York

    USGS Publications Warehouse

    Williams, John H.; Kappel, William M.

    2015-01-01

    The specific conductance of the saline water from the shallower fractured zone in the southwest field was about 16,000 microsiemens per centimeter at 25 degrees Celsius (μS/cm at 25°C), and that from the fractured zone in the northeast field was about 65,000 μS/cm at 25°C. The saline waters were characterized by a chemical composition similar to that of deep formation brines collected from oil and gas wells in the Appalachian Basin. About 40 percent of the geothermal wells discharged methane gas to land surface during and (or) following drilling. Sandstone beds at depths of 348 to 378 ft bls are the likely source of the methane gas, which was determined to be early thermogenic in origin.

  8. Pre-exploitation state of the Ahuachapán geothermal field, El Salvador

    USGS Publications Warehouse

    Aunzo, Z.; Laky, C.; Steingrimsson, B.; Bodvarsson, G.S.; Lippmann, M.J.; Truesdell, A.H.; Escobar, C.; Quintanilla, A.; Cuellar, G.

    1991-01-01

    The lithology and structural features of the Ahuachapán geothermal area and their impact on the movement of cold and hot fluids within the system are described, as well as the development and evaluation of the natural state model of the field. Four major lithologic units are present in Ahuachapán and three major aquifers have been identified; flow patterns and zones of fluid mixing were located on the basis of temperature and geochemical data from wells and surface manifestations. Geologic structures control the heat and fluid recharge and the flow within the reservoir. Modeling studies suggest, in agreement with field data, an overall average transmissivity of 25–35 darcy-meters, and indicate that the system is recharged by waters with temperatures greater than 250°C. The total thermal throughflow for the Ahuachapán reservoir in the unexploited state is estimated to be about 250 MWt.

  9. Compilation of gas geochemistry and isotopic analyses from The Geysers geothermal field: 1978-1991

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Janik, Cathy; Fahlquist, Lynne; Johnson, Linda S.

    1999-01-01

    We present 45 chemical and isotopic analyses from well discharges at The Geysers geothermal field and summarize the most notable geochemical trends. H2 and H2S concentrations are highest in the Southeast Geysers, where steam samples have δD and δ18O values that reflect replenishment by meteoric water. In the Northwest Geysers, samples are enriched in gas/steam, CO2, CH4, and N2/Ar relative to the rest of the field, and contain steam that is elevated in δD and δ18O, most likely due to substantial contributions from Franciscan-derived fluids. The δ13C of CO2, trends in CH4 vs. N2, and abundance of NH3 indicate that the bulk of the non-condensable gases are derived from thermal breakdown of organic materials in Franciscan meta-sediments.

  10. Earthquake swarm activity highlights crustal faulting associated with the Waimangu-Rotomahana-Mt Tarawera geothermal field, Taupo Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Bannister, Stephen; Sherburn, Steven; Bourguignon, Sandra

    2016-03-01

    The Waimangu-Rotomahana-Mt.Tarawera geothermal field (WRTGF) in the Taupo Volcanic Zone, New Zealand, experiences frequent but sporadic earthquake swarms with durations of less than 1 day. Here we examine detailed locations of the seismic activity using precise double-difference relative location techniques. We utilize a combination of cross-correlation-derived arrival times and catalogue-based arrival times from 582 earthquakes recorded in the area between 2004 and 2015 for the relocation analysis. The new earthquake locations highlight a ~ 6 km long NE-SW lineation, which we infer to represent a sub-surface fault that extends along the northern side of Waimangu geothermal system and the north-western end of Lake Rotomahana. We suggest that this structural feature acts as a permeable pathway for aqueous fluid and CO2 release up to the surface geothermal field and Lake Rotomahana, from a deeper magmatic source.

  11. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Jarpre, S.

    2012-04-01

    Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir

  12. An Experiment to Test Geophysical Methods For Monitoring Fluid Re-Injection at the Wairakei Geothermal Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Jiracek, G. R.; Bowles-Martinez, E.; Feucht, D. W.; Ryan, J.; Caldwell, T. G.; Bannister, S. C.; Bertrand, T.; Bennie, S.; Bourguignon, S.

    2010-12-01

    The National Science Foundation (NSF) is supporting US students to participate in GNS Science’s geothermal research program supported by the New Zealand Government. The NSF international program aims to quick-start a new generation of geothermal-oriented US geophysics students who will be poised to be active participants and leaders in US geothermal energy development. This year’s project evaluated joint passive seismic and magnetotelluric (MT) field measurements to determine three-dimensional (3-D) reservoir characteristics during fluid withdrawal and re-injection. A preliminary test of the ability to achieve repeatable MT data in high noise locations was carried out in the Wairakei geothermal field using a 14-site base-line MT survey and repeat occupations at four sites. Different data processing schemes identified MT frequency bands where impedance phase tensor data were most sensitive to known variables such as daily solar source variations, wind, and drilling operations. Other frequency bands were identified where good MT repeatability will allow further tests. A streamlined method was developed for visualizing 3-D earthquake focal mechanisms resulting from production changes in geothermal reservoirs. The computer program allows spatial sorting of seismic events and thus subsurface fracture identification.

  13. Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region

    NASA Astrophysics Data System (ADS)

    McGuire, Jeffrey J.; Lohman, Rowena B.; Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.

    2015-04-01

    The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from hours to a

  14. Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field

    SciTech Connect

    Dick Benoit; David Blackwell; Joe Moore; Colin Goranson

    2005-10-27

    temperatures of 270 to 310 oF), intermediate (elevation 2800 to 3700 ft and temperatures 270 to 320 oF ) and deep (elevations < 1000 ft and temperatures 323 to 337 oF) components. In the south part of the field, near Phipps #2 the shallow and deep components are present. In the central part of the field, near OH-1 the shallow and intermediate components are present and presumably the deep component is also present. In the north part of the field, the intermediate and deep components are present. Most or all of the fractures in the core have dips between 45 degrees and vertical and no strong stratigraphic control on the resource has yet been demonstrated. Conceptually, the Lake City geothermal resource seems to be located along the north-south trending range front in a relatively wide zone of fractured rock. The individual fractures do not seem to be associated with any readily identifiable fault. In fact, no major hydraulically conductive faults were identified by the core drilling.

  15. Salton Sea Geothermal Field, Imperial Valley, California as a site for continental scientific drilling. [Abstract only

    SciTech Connect

    Elders, W.A.; Cohen, L.H.

    1983-03-01

    The Salton Trough, where seafloor spreading systems of the East Pacific Rise transition into the San Andreas transform fault system, is the site of such continental rifting and basin formation today. The largest thermal anomaly in the trough, the Salton Sea Geothermal Field (SSGF), is of interest to both thermal regimes and mineral resources investigators. At this site, temperatures >350/sup 0/C and metal-rich brines with 250,000 mg/L TDS have been encountered at <2 km depth. Republic Geothermal Inc. will drill a new well to 3.7 km in the SSGF early in 1983; we propose add-on experiments in it. If funded, we will obtain selective water and core samples and a large-diameter casing installed to 3.7 km will permit later deepening. In Phase 2, the well would be continuously cored to 5.5 km and be available for scientific studies until July 1985. The deepened well would encounter hydrothermal regimes of temperature and pressure never before sampled.

  16. Relocation hypocenter of microearthquake using Markov Chain simulation: Case study on geothermal field

    NASA Astrophysics Data System (ADS)

    Adu, Nurlia; Indriati Retno, P.; Suharsono

    2016-02-01

    Monitoring of micro seismic activity in the geothermal field is useful to know the fracture controllers in the geothermal reservoir area. However, in determining the point of micro earthquake, hypocenters still contain inherent uncertainties due to several factors such as mismatches velocity model used by the actual subsurface conditions. For that reason, hypocenter relocation by Markov Chain method is used, to simulate the hypocenter point spatially based opportunities transition containing the principle of conditional probability. The purpose of this relocation is to improve the models of the hypocenter so that the interpretation of the subsurface structure is better. From the result of the relocation of using Markov Chain identified fault structures trending below the surface of the northeast-southwest (NE-SW) with approximately N38°E. This structure is suspected as the continuity of the structure in the surface. The depth of the hypocenter is located 758 m above mean sea level more than 800 m below mean sea level.

  17. Estimation of deepwater temperature and hydrogeochemistry of springs in the Takab geothermal field, West Azerbaijan, Iran.

    PubMed

    Sharifi, Reza; Moore, Farid; Mohammadi, Zargham; Keshavarzi, Behnam

    2016-01-01

    Chemical analyses of water samples from 19 hot and cold springs are used to characterize Takab geothermal field, west of Iran. The springs are divided into two main groups based on temperature, host rock, total dissolved solids (TDS), and major and minor elements. TDS, electrical conductivity (EC), Cl(-), and SO4 (2-) concentrations of hot springs are all higher than in cold springs. Higher TDS in hot springs probably reflect longer circulation and residence time. The high Si, B, and Sr contents in thermal waters are probably the result of extended water-rock interaction and reflect flow paths and residence time. Binary, ternary, and Giggenbach diagrams were used to understand the deeper mixing conditions and locations of springs in the model system. It is believed that the springs are heated either by mixing of deep geothermal fluid with cold groundwater or low conductive heat flow. Mixing ratios are evaluated using Cl, Na, and B concentrations and a mass balance approach. Calculated quartz and chalcedony geothermometer give lower reservoir temperatures than cation geothermometers. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 62 and 90 °C. The δ(18)O and δD (δ(2)H) are used to trace and determine the origin and movement of water. Both hot and cold waters plot close to the local meteoric line, indicating local meteoric origin. PMID:26733417

  18. The hydrological model of the Mahanagdong sector, Greater Tongonan Geothermal Field, Philippines

    SciTech Connect

    Herras, E.B.; Licup, A.C. Jr.; Vicedo, R.O.

    1996-12-31

    The Mahanagdong sector of the Greater Tongonan Geothermal Field is committed to supply 180 MWe of steam by mid-1997. An updated hydrological model was constructed based on available geoscientific and reservoir engineering data from a total of 34 wells drilled in the area. The Mahanagdong; resource is derived from a fracture-controlled and volcano hosted geothermal system characterized by neutral to slightly alkali-chloride fluids with reservoir temperatures exceeding 295{degrees}C. A major upflow region was identified in the vicinity of MG-3D, MG-14D and MG-5D. Isochemical contours indicate outflowing fluids with temperatures of 270-275{degrees}C to the south and west. Its southwesterly flow is restricted by the intersection of the impermeable Mahanagdong Claystone near MG-10D, which delimits the southern part of the resource. Low temperature (<200{degrees}C), shallow inflows are evident at the west near MG-4D and MG-17D wells which act as a cold recharge in this sector.

  19. Reactive geothermal transport simulation to study the formation mechanism of impermeable barrier between acidic and neutral fluid zones in the Onikobe geothermal field, Japan

    SciTech Connect

    Todaka, Noritumi; Akasaka, Chitosi; Xu, Tianfu; Pruess, Karsten

    2003-03-06

    Two types of fluids are encountered in the Onikobe geothermal reservoir (Japan): One is neutral and the other is acidic. It is hypothesized that acidic fluid might be upwelling along a fault zone from magma and that an impermeable barrier might be present between the acidic and neutral fluid zones. To test such a conceptual model and to study the geochemical behavior due to mixing of the two fluids, reactive geothermal transport simulations under both natural and production conditions were carried out using the code TOUGHREACT. Results indicate Mn-rich smectite precipitates near the mixing front. Precipitation of sphalerite and galena occurs in a similar region as the Mn-rich smectite. Precipitation of these minerals depends on pH and temperature. In addition, quartz, pyrite, and calcite precipitate in the shallow zone resulting in further development of caprock. The changes in porosity and permeability due to precipitation of Mn-rich smectite are small compared with that of quartz, calcite, and pyrite. However, the smectite precipitation is likely to fill open fractures and to form an impermeable barrier between acidic and neutral fluid regions. The simulated mineral assemblage is generally consistent with observations in the Onikobe field. The numerical simulations described here provide useful insight into geochemical behavior and formation of impermeable barriers from fluid mixing. The method presented in this paper may be useful in fundamental analysis of hydrothermal systems and in the exploration of geothermal reservoirs, including chemical evolution, mineral alteration, mineral scaling, and changes in porosity and permeability.

  20. Reactive geothermal transport simulations to study the formation mechanism of an impermeable barrier between acidic and neutral fluid zones in the Onikobe Geothermal Field, Japan

    NASA Astrophysics Data System (ADS)

    Todaka, Norifumi; Akasaka, Chitoshi; Xu, Tianfu; Pruess, Karsten

    2004-05-01

    Two types of fluids are encountered in the Onikobe geothermal reservoir (Japan): one is neutral and the other is acidic. It is hypothesized that acidic fluid might be upwelling along a fault zone from magma and that an impermeable barrier might be present between the acidic and neutral fluid zones. To test such a conceptual model and to study the geochemical behavior due to mixing of the two fluids, reactive geothermal transport simulations under both natural and production conditions were carried out using the code TOUGHREACT. Results indicate Mn-rich smectite precipitates near the mixing front. Precipitation of sphalerite and galena occurs in a similar region as the Mn-rich smectite. Precipitation of these minerals depends on pH and temperature. In addition, quartz, pyrite, and calcite precipitate in the shallow zone resulting in further development of caprock. The changes in porosity and permeability due to precipitation of Mn-rich smectite are small compared with that of quartz, calcite, and pyrite. However, the smectite precipitation is likely to fill open fractures and to form an impermeable barrier between acidic and neutral fluid regions. The simulated mineral assemblage is generally consistent with observations in the Onikobe field. The numerical simulations described here provide useful insight into geochemical behavior and formation of impermeable barriers from fluid mixing. The method presented in this paper may be useful in fundamental analysis of hydrothermal systems and in the exploration of geothermal reservoirs, including chemical evolution, mineral alteration, mineral scaling, and changes in porosity and permeability.

  1. Geothermal district G1

    SciTech Connect

    Not Available

    1988-12-01

    Geothermal District G1 includes 37 northeastern California counties and six geothermal fields: Lake City, Susanville, Litchfield, Wendel, Amedee, and Casa Diablo. Electrical generation from geothermal resources occurs in three of the fields: Wendel, Amedee, and Casa Diablo. Low-temperature geothermal projects are underway throughout the district and are described in a road log format. The ten projects described are located at Big Bend, Glass Mountain, Bieber, Alturas, Cedarville, Lake City, Honey Lake Valley, Greenville, and in Sierra and Mono Counties.

  2. CNCC Craig Campus Geothermal Project: 82-well closed loop GHP well field to provide geothermal energy as a common utilitiy for a new community college campus

    SciTech Connect

    Chevron Energy Solutions; Matt Rush; Scott Shulda

    2011-01-03

    Colorado Northwestern Community College (CNCC) is working collaboratively with recipient vendor Chevron Energy Solutions, an energy services company (ESCO), to develop an innovative GHP project at the new CNCC Campus constructed in 2010/2011 in Craig, Colorado. The purpose of the CNCC Craig Campus Geothermal Program scope was to utilize an energy performance contracting approach to develop a geothermal system with a shared closed-loop field providing geothermal energy to each building's GHP mechanical system. Additional benefits to the project include promoting good jobs and clean energy while reducing operating costs for the college. The project has demonstrated that GHP technology is viable for new construction using the energy performance contracting model. The project also enabled the project team to evaluate several options to give the College a best value proposition for not only the initial design and construction costs but build high performance facilities that will save the College for many years to come. The design involved comparing the economic feasibility of GHP by comparing its cost to that of traditional HVAC systems via energy model, financial life cycle cost analysis of energy savings and capital cost, and finally by evaluating the compatibility of the mechanical design for GHP compared to traditional HVAC design. The project shows that GHP system design can be incorporated into the design of new commercial buildings if the design teams, architect, contractor, and owner coordinate carefully during the early phases of design. The public also benefits because the new CNCC campus is a center of education for the much of Northwestern Colorado, and students in K-12 programs (Science Spree 2010) through the CNCC two-year degree programs are already integrating geothermal and GHP technology. One of the greatest challenges met during this program was coordination of multiple engineering and development stakeholders. The leadership of Principle Investigator

  3. Paleomagnetic Reorientation of Structural Elements in Drill Cores: an example from Tolhuaca Geothermal Field

    NASA Astrophysics Data System (ADS)

    Perez-Flores, P.; Veloso, E. E.; Cembrano, J. M.; Sánchez, P.; Iriarte, S.; Lohmar, S.

    2013-12-01

    Reorientation of mesoscopic faults, veins and fractures recovered from drilling is critical to construct reliable structural models that can account for their architecture and deformation regime. However, oriented cores are expensive and time consuming to drill. Some techniques achieve reorientation by introducing tools into the borehole. Problems arise when boreholes are unstable or collapse. One alternative technique allowing reorientation is to obtain reliable paleomagnetic vectors to reorient each core piece after drilling. Here, we present stable and reliable remnant magnetic vectors calculated from the Tol-1 core to analyze the geometry of the fracture network and its relationship to regional tectonic. Tol-1 core is a vertical, 1073 m deep geothermal well, drilled at the Tolhuaca Geothermal Field in the Southern Volcanic Zone of the Andes by MRP Geothermal Chile Ltda (formerly GGE Chile SpA) in 2009. The core consists of basaltic/andesitic volcanic rocks with subordinate pyroclastic/volcaniclastic units, with probable Pleistocene age. Fault planes with slickenlines and mineral fiber kinematic indicators are common in the upper 700 m of the core. Calcite, quartz and calcite-quartz veins are recognized along of entire core, whereas epidote-quartz and calcite-epidote veins occur in the last 350 m, minor chlorite, anhydrite and clay-minerals are present. Orientations of structural features in the core were measured with a goniometer using the core's axis and a false north for each piece; hence, orientation data has a false strike but a real dip. To achieve total reorientation of the pieces, we collected 200 standard-size paleomagnetic specimens, ensuring that at least four of them were recovered from continuous pieces. Thermal (up to 700°C) and alternating field demagnetization (up to 90mT on steps of 2mT) methods were used to isolate a stable remnant magnetization (RM) vector, and each technique yielded similar results. RM vectors were recovered between 0 to 25

  4. Internal structure of fault zones in geothermal reservoirs: Examples from palaeogeothermal fields and potential host rocks

    NASA Astrophysics Data System (ADS)

    Leonie Philipp, Sonja; Reyer, Dorothea; Meier, Silke; Bauer, Johanna F.; Afşar, Filiz

    2014-05-01

    Fault zones commonly have great effects on fluid transport in geothermal reservoirs. During fault slip all the pores and small fractures that meet with the slip plane become interconnected so that the inner part of the fault, the fault core, consisting of breccia or gouge, may suddenly develop a very high permeability. This is evidenced, for example by networks of mineral veins in deeply eroded fault zones in palaeogeothermal fields. Inactive faults, however, may have low permeabilities and even act as flow barriers. In natural and man-made geothermal reservoirs, the orientation of fault zones in relation to the current stress field and their internal structure needs be known as accurately as possible. One reason is that the activity of the fault zone depends on its angle to the principal stress directions. Another reason is that the outer part of a fault zone, the damage zone, comprises numerous fractures of various sizes. Here we present field examples of faults, and associated joints and mineral veins, in palaeogeothermal fields, and potential host rocks for man-made geothermal reservoirs, respectively. We studied several localities of different stratigraphies, lithologies and tectonic settings: (1) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); (2) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone, limestone and granite) in the Upper Rhine Graben; and (3) 74 fault zones in two coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (1) and (2) are outcrop analogues of geothermal reservoir horizons, (3) represent palaeogeothermal fields with mineral veins. The field studies in the Northwest German Basin (1) show pronounced differences between normal-fault zones in carbonate and clastic rocks. In carbonate rocks clear damage zones occur that are

  5. Addendum to material selection guidelines for geothermal energy-utilization systems. Part I. Extension of the field experience data base. Part II. Proceedings of the geothermal engineering and materials (GEM) program conference (San Diego, CA, 6-8 October 1982)

    SciTech Connect

    Smith, C.S.; Ellis, P.F. II

    1983-05-01

    The extension of the field experience data base includes the following: key corrosive species, updated field experiences, corrosion of secondary loop components or geothermal binary power plants, and suitability of conventional water-source heat pump evaporator materials for geothermal heat pump service. Twenty-four conference papers are included. Three were abstracted previously for EDB. Separate abstracts were prepared for twenty-one. (MHR)

  6. Hydrogeochemistry of the thermal waters from the Yenice Geothermal Field (Denizli Basin, Southwestern Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Alçiçek, Hülya; Bülbül, Ali; Alçiçek, Mehmet Cihat

    2016-01-01

    The chemical and isotopic properties of thermal waters (Kamara and Çizmeli) and cold springs from the Yenice Geothermal Field (YGF), in southwestern Anatolia, Turkey are investigated in order to establish a conceptual hydrogeochemical-hydrogeological model. These thermal waters derive from Menderes metamorphic rocks and emerge along normal faults; they are commonly used for heating of greenhouses and bathing facilities. Discharge temperatures of thermal waters are 32 °C to 57 °C (mean 51 °C) for Kamara and 35 °C to 68 °C (mean 47 °C) for Çizmeli, whereas deep groundwaters are 15 °C to 20.1 °C (mean 17 °C) and shallow groundwaters are 12 to 16 °C (mean 15 °C). Kamara and Çizmeli thermal waters are mostly of Na-Ca-HCO3-SO4 type, whereas deep groundwaters are Ca-Mg-HCO3 and Mg-Ca-HCO3 types and shallow groundwaters are mainly Mg-Ca-SO4-HCO3 and Ca-Mg-HCO3 types. In the reservoir of the geothermal system, dissolution of host rock and ion-exchange reactions changes thermal water types. High correlation in some ionic ratios (e.g. Na vs. Cl, K vs. Cl, HCO3 vs. Cl) and high concentrations of some minor elements (e.g., As, Sr, B, Cl, F) in thermal waters likely derive from enhanced water-rock interaction. Water samples from YGF have not reached complete chemical re-equilibrium, possibly as a result mixing with groundwater during upward flow. Geothermal reservoir temperatures are calculated as 89-102 °C for Kamara and 87-102 °C for Çizmeli fields, based on the retrograde and prograde solubilities of anhydrite and chalcedony. Based on the isotope and chemical data, a conceptual hydrogeochemical-hydrogeological model of the YGF has been constructed. Very negative δ18O and δ2H isotopic ratios (Kamara: mean of - 8.43‰ and - 56.9‰, respectively and Çizmeli: mean of - 7.96‰ and - 53.7‰, respectively) and low tritium values (< 1 TU) reflect a deep circulation pathway and a meteoric origin. Subsequent heating by conduction in the high geothermal gradient

  7. The dependence of permeability on effective stress for an injection test in the Higashi-Hachimantai Geothermal Field

    USGS Publications Warehouse

    Nathenson, M.

    2000-01-01

    A simple inverse-power relation for the influence of effective stress on permeability is used to explain the flow behavior during an injection test at the Higashi-Hachimantai geothermal field, Japan. The new analytical expression successfully models data from the experiment involving high-pressure injection and monitoring at an observation well.

  8. Guidebook to Geothermal Finance

    SciTech Connect

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  9. Geothermal Field Development in the European Community Objectives, Achievements and Problem Areas

    SciTech Connect

    Ungemach, Pierre

    1983-12-15

    Achievements and problem areas are reviewed with respect to various engineering implications of geothermal field development in the European Community (EC). Current and furture development goals address three resource settings. (a) low enthalpy sources (30-150{degrees}C), an outlook common to all Member states as a result of hot water aquifers flowing in large sedimentary units with normal heat flow, widespread thoughout the EC; (b) high enthalpy sources (<150{degrees}C) in areas of high heat flow which, as a consequence of the geodynamics of the Eurasian plate, are limited to Central and South-West Italy and to Eastern Greece; (c) hot dry rocks (HDR), whose potential for Europe, and also the difficulties in implementing the heat mining concept, are enormous. A large scale experiment conducted at medium depth in Cornwall (UK) proves encouraging though. It has provided the right sort of scientific inputs to the understanding of the mechanics of anisotropic brittle basement rocks.

  10. Seismic reflection survey in the geothermal field of the Rotorua Caldera, New Zealand

    SciTech Connect

    Lamarche, G. )

    1992-04-01

    This paper discusses a seismic reflection survey conducted in the southern part of the Rotorua geothermal field (New Zealand). Geological structures were interpreted along the two profiles to a depth of about 300 m. A seismic image of the Mamaku Ignimbrite is obtained and appears to show normal faulting. Depth of the top of the Mamaku Ignimbrite corroborates data from boreholes. Thickness of the Ignimbrite sheet may reach 280 m near Rotorua City. It is suggested that the Rotorua caldera boundary is not a single fault but a fault zone consisting of at least 4 faults. The displacement on any one fault is no greater than 30 m. The near surface cold-warm thermal boundary, at the northern boundary of the Whakarewarewa thermal area, is also shown in the seismic section.