Science.gov

Sample records for kepler planet candidates

  1. Kepler Discovers Earth-size Planet Candidates

    NASA Video Gallery

    NASA's Kepler mission has discovered its first Earth-size planet candidates and its first candidates in the habitable zone, a region where liquid water could exist on a planet's surface. Five of th...

  2. ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS

    SciTech Connect

    Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G.; Marcy, Geoffrey W.; Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin; Buchhave, Lars A.; Ciardi, David R.; Fabrycky, Daniel C.; Ford, Eric B.; Morehead, Robert C.; Gilliland, Ronald L.; and others

    2012-05-10

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

  3. Kepler Stars with Multiple Transiting Planet Candidates

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2012-01-01

    NASA's Kepler spacecraft was launched into an Earth-trailing heliocentric orbit in March of 2009. Kepler is designed to conduct a statistical census of planetary system properties using transit photometry. Among the most exciting early results from Kepler are target stars found to have photometric signatures that suggest the presence of more than one transiting planet. Individual transiting planets provide information on the size and orbital period distributions of exoplanets. Multiple transiting planets provide additional information on the spacing and flatness distributions of planetary systems. Results to d ate and plans for future analysis will be presented.

  4. Kepler Mission Discovers Trove of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-02-01

    NASA's Kepler discovery mission is collecting more than just pennies from heaven. Results from the first 4 months of science operations of the Kepler space telescope, announced on 2 February, include the discovery of 1235 candidate planets orbiting 997 stars in a small portion of the Milky Way galaxy examined by the telescope. Follow-up observations likely could confirm about 80% of the candidates as actual planets rather than false positives, according to researchers. This new trove of possible exoplanets could greatly expand the number of known planets outside of our solar system.

  5. Speckle Imaging of Kepler Exo-planet Transit Candidate Stars

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Horch, Elliott; Sherry, William

    2009-08-01

    The NASA Kepler mission was successfully launched on 6 March 2009 and will begin science operations near 1 May. At the present time, commissioning tests are being performed and all spacecraft and science instruments are nominal. Kepler's main science focus is to discover Earth-like exo-planets via photometric transit detection. ``Hot Jupiters" will be found by the hundreds (using current ground-based statistics) but Earth-sized planets (up to 2.5 Earth radii) will be more difficult, yet are the holy grail of the mission. To take the list of candidate transiting planets found by Kepler and move them to probable or certain exo-planet detections, a decision tree of false positive elimination will occur. While earth-sized exo-planets can not currently be confirmed from the ground, many of the false positive eliminations steps can be performed. This proposal aims to obtain high resolution speckle imaging to 1) finish the characterization of ~500 comparison sample stars in the Kepler field of view prior to any transit information as a sample to place planet host stars in context with and to 2) observe Kepler exo-planet transit candidates in order to eliminate the largest false positive contributor in any transit search - background eclipsing binary stars or faint companion stars.

  6. Identifying False Alarms in the Kepler Planet Candidate Catalog

    NASA Astrophysics Data System (ADS)

    Mullally, F.; Coughlin, Jeffery L.; Thompson, Susan E.; Christiansen, Jessie; Burke, Christopher; Clarke, Bruce D.; Haas, Michael R.

    2016-07-01

    We present a new automated method to identify instrumental features masquerading as small, long-period planets in the Kepler planet candidate catalog. These systematics, mistakenly identified as planet transits, can have a strong impact on occurrence rate calculations because they cluster in a region of parameter space where Kepler’s sensitivity to planets is poor. We compare individual transit-like events to a variety of models of real transits and systematic events and use a Bayesian information criterion to evaluate the likelihood that each event is real. We describe our technique and test its performance on simulated data. Results from this technique are incorporated in the Kepler Q1–Q17 DR24 planet candidate catalog of Coughlin et al.

  7. ON THE LOW FALSE POSITIVE PROBABILITIES OF KEPLER PLANET CANDIDATES

    SciTech Connect

    Morton, Timothy D.; Johnson, John Asher E-mail: johnjohn@astro.caltech.edu

    2011-09-10

    We present a framework to conservatively estimate the probability that any particular planet-like transit signal observed by the Kepler mission is in fact a planet, prior to any ground-based follow-up efforts. We use Monte Carlo methods based on stellar population synthesis and Galactic structure models, and report false positive probabilities (FPPs) for every Kepler Object of Interest, assuming a 20% intrinsic occurrence rate of close-in planets in the radius range 0.5 R{sub +} < R{sub p} < 20 R{sub +}. Nearly 90% of the 1235 candidates have FPP <10%, and over half have FPP <5%. This probability varies with the magnitude and Galactic latitude of the target star, and with the depth of the transit signal-deeper signals generally have higher FPPs than shallower signals. We establish that a single deep high-resolution image will be an effective follow-up tool for the shallowest (Earth-sized) transits, providing the quickest route toward probabilistically validating the smallest candidates by potentially decreasing the FPP of an Earth-sized transit around a faint star from >10% to <1%. Since Kepler has detected many more planetary signals than can be positively confirmed with ground-based follow-up efforts in the near term, these calculations will be crucial to using the ensemble of Kepler data to determine population characteristics of planetary systems. We also describe how our analysis complements the Kepler team's more detailed BLENDER false positive analysis for planet validation.

  8. CANDIDATE PLANETS IN THE HABITABLE ZONES OF KEPLER STARS

    SciTech Connect

    Gaidos, Eric

    2013-06-20

    A key goal of the Kepler mission is the discovery of Earth-size transiting planets in ''habitable zones'' where stellar irradiance maintains a temperate climate on an Earth-like planet. Robust estimates of planet radius and irradiance require accurate stellar parameters, but most Kepler systems are faint, making spectroscopy difficult and prioritization of targets desirable. The parameters of 2035 host stars were estimated by Bayesian analysis and the probabilities p{sub HZ} that 2738 candidate or confirmed planets orbit in the habitable zone were calculated. Dartmouth Stellar Evolution Program models were compared to photometry from the Kepler Input Catalog, priors for stellar mass, age, metallicity and distance, and planet transit duration. The analysis yielded probability density functions for calculating confidence intervals of planet radius and stellar irradiance, as well as p{sub HZ}. Sixty-two planets have p{sub HZ} > 0.5 and a most probable stellar irradiance within habitable zone limits. Fourteen of these have radii less than twice the Earth; the objects most resembling Earth in terms of radius and irradiance are KOIs 2626.01 and 3010.01, which orbit late K/M-type dwarf stars. The fraction of Kepler dwarf stars with Earth-size planets in the habitable zone ({eta}{sub Circled-Plus }) is 0.46, with a 95% confidence interval of 0.31-0.64. Parallaxes from the Gaia mission will reduce uncertainties by more than a factor of five and permit definitive assignments of transiting planets to the habitable zones of Kepler stars.

  9. VALFAST: Secure Probabilistic Validation of Hundreds of Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Morton, Tim; Petigura, E.; Johnson, J. A.; Howard, A.; Marcy, G. W.; Baranec, C.; Law, N. M.; Riddle, R. L.; Ciardi, D. R.; Robo-AO Team

    2014-01-01

    The scope, scale, and tremendous success of the Kepler mission has necessitated the rapid development of probabilistic validation as a new conceptual framework for analyzing transiting planet candidate signals. While several planet validation methods have been independently developed and presented in the literature, none has yet come close to addressing the entire Kepler survey. I present the results of applying VALFAST---a planet validation code based on the methodology described in Morton (2012)---to every Kepler Object of Interest. VALFAST is unique in its combination of detail, completeness, and speed. Using the transit light curve shape, realistic population simulations, and (optionally) diverse follow-up observations, it calculates the probability that a transit candidate signal is the result of a true transiting planet or any of a number of astrophysical false positive scenarios, all in just a few minutes on a laptop computer. In addition to efficiently validating the planetary nature of hundreds of new KOIs, this broad application of VALFAST also demonstrates its ability to reliably identify likely false positives. This extensive validation effort is also the first to incorporate data from all of the largest Kepler follow-up observing efforts: the CKS survey of ~1000 KOIs with Keck/HIRES, the Robo-AO survey of >1700 KOIs, and high-resolution images obtained through the Kepler Follow-up Observing Program. In addition to enabling the core science that the Kepler mission was designed for, this methodology will be critical to obtain statistical results from future surveys such as TESS and PLATO.

  10. PLANET HUNTERS: NEW KEPLER PLANET CANDIDATES FROM ANALYSIS OF QUARTER 2

    SciTech Connect

    Lintott, Chris J.; Schwamb, Megan E.; Schwainski, Kevin; and others

    2013-06-15

    We present new planet candidates identified in NASA Kepler Quarter 2 public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8 R{sub Circled-Plus }. The latter star has an additional known planet candidate with a radius of 5.05 R{sub Circled-Plus} and a period of 134.49 days, which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncataloged.

  11. Humans Need Not Apply: Robotization of Kepler Planet Candidate Vetting

    NASA Astrophysics Data System (ADS)

    Coughlin, Jeffrey; Mullally, Fergal; Thompson, Susan E.; Kepler Team

    2015-01-01

    Until now, the vast majority of Kepler planet candidate vetting has been performed by a dedicated team of humans. While human expertise has been invaluable in understanding the nuances of Kepler data, human vetting is very time-consuming and can be inconsistent. Over 20,000 threshold crossing events have been produced by the latest pipeline run on all 17 quarters of Kepler mission data, and many more artificial planet transits have been injected to estimate completeness. Given these large numbers, human vetting is no longer feasible on a reasonable time-scale, and would be difficult to characterize. We have created automated vetting programs known as "robovetters" that are specifically designed to mimic the decision-making process employed by the humans. They analyze both the light curve and pixel-level data in order to produce specific reasons for identifying false positives. We present benchmark tests on the Q1-Q16 Kepler planet catalog, which was vetted by humans, and present preliminary robovetter results based on a recent transit-search of the newly reprocessed Q1-Q17 data set.

  12. ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS

    SciTech Connect

    Lissauer, Jack J.; Jenkins, Jon M.; Borucki, William J.; Bryson, Stephen T.; Howell, Steve B.; Ragozzine, Darin; Holman, Matthew J.; Carter, Joshua A.; Fabrycky, Daniel C.; Fortney, Jonathan J.; Steffen, Jason H.; Ford, Eric B.; Shporer, Avi; Rowe, Jason F.; Quintana, Elisa V.; Caldwell, Douglas A.; Ciardi, David; Gautier, Thomas N. III; and others

    2011-11-01

    About one-third of the {approx}1200 transiting planet candidates detected in the first four months of Kepler data are members of multiple candidate systems. There are 115 target stars with two candidate transiting planets, 45 with three, 8 with four, and 1 each with five and six. We characterize the dynamical properties of these candidate multi-planet systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean-motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to be in resonance, particularly near the 2:1 resonance. We find that virtually all candidate systems are stable, as tested by numerical integrations that assume a nominal mass-radius relationship. Several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Using the observed multiplicity frequencies, we find that a single population of planetary systems that matches the higher multiplicities underpredicts the number of singly transiting systems. We provide constraints on the true multiplicity and mutual inclination distribution of the multi-candidate systems, revealing a population of systems with multiple super-Earth-size and Neptune-size planets with low to moderate mutual inclinations.

  13. Planet Hunters: Two New Confirmed Planets and the First Kepler Seven Candidate System

    NASA Astrophysics Data System (ADS)

    Schmitt, Joseph; Wang, J.; Jek, K.; Fischer, D.; Agol, E.; Hunters, Planet

    2014-01-01

    Planet Hunters has confirmed two new planets, PH3 b and PH3 c, through transit timing variations (TTVs) and discovered a seventh planet candidate KOI-351.07, marking the first Kepler seven candidate system. Since most Kepler multiple planet candidates are true planets, KOI-351.07 is the strongest proposed seventh planet candidate in any planetary system. KOI-351 is a very compact system; all candidates have periods < 1 year. . Although errors are large, the inner five planets appear to all be sub-Neptune, while the outer two are likely gas giants. In our new confirmed system PH3, both confirmed planets experience significant TTVs, with PH3 b having an amplitude of over 5 hours. Along with the third candidate in the system (KOI-1353.02), this system may be in a Laplace resonance: Pout/Pmid = Pmid/Pin = 1.91. These new discoveries add to Planet Hunters previous successes: two previously confirmed planets and ≈ 60 other planet candidates.

  14. Implications for planet formation from population inference of Kepler-planet-candidates and eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Shabram, Megan Iris

    The Kepler Space Science Mission has revolutionized our understanding of planetary system architectures, and the diversity of planet bulk densities. From Kepler, we now have a population of ˜4,700 planet candidates and ˜ 3000 eclipsing binaries with measured light curves, from which we can begin to characterize the distribution of stars and planets to tease out relationships between planet properties and host star properties in a robust statistical manner. The results of these investigations constrain proposed planet formation theories. This dissertation analyzes three particular sub-populations observed by Kepler that are well suited for hierarchical inference to characterize their population properties. First, we investigate the eccentricity distribution for a sample of short-period planet candidates from Kepler, where both the transit and occultation are observed for each system. This subsample lends a rare opportunity for tractable inference of its eccentricity distribution, exposing at least two populations within the eccentricity distribution and potential correlations of the eccentricity with host star metallicity and planet radius. Secondly, we investigate the mass-radius-eccentricity relation for a sample of near-resonant planet-pairs from Kepler. This study greatly improves upon previous research of constraining the mass-radius relation for small planets. Furthermore, we explore the period-eccentricity distribution of eclipsing binary stars from Kepler. We find that ˜ 72% of EBs below ˜ 11 days are very circularized, where as ˜ 87% of EBs above ˜ 11 days can take on a wide range in eccentricity values including some with significant eccentricities.

  15. VizieR Online Data Catalog: Properties of Kepler multi-planet candidate systems (Wang+, 2014)

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xie, J.-W.; Barclay, T.; Fischer, D. A.

    2016-05-01

    Our sample consists of bright host stars with multi-planet transiting systems from Kepler. Out of 5779 Kepler Objects of Interest (http://exoplanetarchive.ipac.caltech.edu/), we selected all the systems with a Kepler magnitude (KP) brighter than 13.5mag and with at least two planet candidates. The sample includes 343 planet candidates (see Table3) in 138 multi-planet candidate systems (see Table2) from the Kepler mission. For these systems, we used archival data from Kepler to characterize their stellar (see Table2) and orbital properties (see Table3). We used UKIRT images to calculate brightness contrast curves and to detect stellar companions around planet candidate host stars (see Table4). (3 data files).

  16. TESTING IN SITU ASSEMBLY WITH THE KEPLER PLANET CANDIDATE SAMPLE

    SciTech Connect

    Hansen, Brad M. S.; Murray, Norm E-mail: murray@cita.utoronto.ca

    2013-09-20

    We present a Monte Carlo model for the structure of low-mass (total mass <25 M{sub ⊕}) planetary systems that form by the in situ gravitational assembly of planetary embryos into final planets. Our model includes distributions of mass, eccentricity, inclination, and period spacing that are based on the simulation of a disk of 20 M{sub ⊕}, forming planets around a solar-mass star, and assuming a power-law surface density distribution that drops with distance a as ∝ a {sup –1.5}. The output of the Monte Carlo model is then subjected to the selection effects that mimic the observations of a transiting planet search such as that performed by the Kepler satellite. The resulting comparison of the output to the properties of the observed sample yields an encouraging agreement in terms of the relative frequencies of multiple-planet systems and the distribution of the mutual inclinations when moderate tidal circularization is taken into account. The broad features of the period distribution and radius distribution can also be matched within this framework, although the model underpredicts the distribution of small period ratios. This likely indicates that some dissipation is still required in the formation process. The most striking deviation between the model and observations is in the ratio of single to multiple systems in that there are roughly 50% more single-planet candidates observed than are produced in any model population. This suggests that some systems must suffer additional attrition to reduce the number of planets or increase the range of inclinations.

  17. The Kepler Q1-Q12 Planet Candidate Catalogue

    NASA Astrophysics Data System (ADS)

    Rowe, Jason; Kepler Team

    2014-01-01

    An update on the Kepler Planetary Candidate Catalogue (http://exoplanetarchive.ipac.caltech.edu/docs/Kepler_KOI_docs.html) will be presented that incorporates results of three years of nearly continuous, high precision photometry. Through a series of tests to exclude false-positives, primarily caused by eclipsing binary stars, over 900 additional planetary candidates have been discovered. Approximately 50 of the new candidates have equilibrium temperatures less than 300 K. More than 400 of the new planetary candidates have a radius less that 1.5 Rearth. A handful of the new candidates meet both criteria, roughly doubling the number of near Earth analogs.

  18. MEASUREMENTS OF STELLAR INCLINATIONS FOR KEPLER PLANET CANDIDATES

    SciTech Connect

    Hirano, Teruyuki; Taruya, Atsushi; Suto, Yasushi; Sanchis-Ojeda, Roberto; Winn, Joshua N.; Takeda, Yoichi; Narita, Norio

    2012-09-01

    We present an investigation of spin-orbit angles for planetary system candidates reported by Kepler. By combining the rotational period P{sub s} inferred from the flux variation due to starspots and the projected rotational velocity Vsin I{sub s} and stellar radius obtained by a high-resolution spectroscopy, we attempt to estimate the inclination I{sub s} of the stellar spin axis with respect to the line of sight. For transiting planetary systems, in which planetary orbits are edge-on seen from us, the stellar inclination I{sub s} can be a useful indicator of a spin-orbit alignment/misalignment. We newly conducted spectroscopic observations with Subaru/HDS for 15 Kepler Object of Interest (KOI) systems, whose light curves show periodic flux variations. Detailed analyses of their light curves and spectra revealed that some of them are binaries, or the flux variations are too coherent to be caused by starspots, and consequently we could constrain stellar inclinations I{sub s} for eight systems. Among them, KOI-262 and 280 are in good agreement with I{sub s} 90 Degree-Sign suggesting a spin-orbit alignment, while at least one system, KOI-261, shows a possible spin-orbit misalignment. We also obtain a small I{sub s} for KOI-1463, but the transiting companion seems to be a star rather than a planet. The results for KOI-257, 269, 367, and 974 are ambiguous and can be explained with either misalignments or moderate differential rotation. Since our method can be applied to any system having starspots regardless of the planet size, future observations will allow for the expansion of the parameter space in which the spin-orbit relations are investigated.

  19. Measurements of Stellar Inclinations for Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Hirano, Teruyuki; Sanchis-Ojeda, Roberto; Takeda, Yoichi; Narita, Norio; Winn, Joshua N.; Taruya, Atsushi; Suto, Yasushi

    2012-09-01

    We present an investigation of spin-orbit angles for planetary system candidates reported by Kepler. By combining the rotational period Ps inferred from the flux variation due to starspots and the projected rotational velocity Vsin Is and stellar radius obtained by a high-resolution spectroscopy, we attempt to estimate the inclination Is of the stellar spin axis with respect to the line of sight. For transiting planetary systems, in which planetary orbits are edge-on seen from us, the stellar inclination Is can be a useful indicator of a spin-orbit alignment/misalignment. We newly conducted spectroscopic observations with Subaru/HDS for 15 Kepler Object of Interest (KOI) systems, whose light curves show periodic flux variations. Detailed analyses of their light curves and spectra revealed that some of them are binaries, or the flux variations are too coherent to be caused by starspots, and consequently we could constrain stellar inclinations Is for eight systems. Among them, KOI-262 and 280 are in good agreement with Is = 90° suggesting a spin-orbit alignment, while at least one system, KOI-261, shows a possible spin-orbit misalignment. We also obtain a small Is for KOI-1463, but the transiting companion seems to be a star rather than a planet. The results for KOI-257, 269, 367, and 974 are ambiguous and can be explained with either misalignments or moderate differential rotation. Since our method can be applied to any system having starspots regardless of the planet size, future observations will allow for the expansion of the parameter space in which the spin-orbit relations are investigated.

  20. How the Sausage is Made: Kepler's False Alarms, False Positives, and Planet Candidates

    NASA Astrophysics Data System (ADS)

    Coughlin, J.

    2014-04-01

    The Kepler mission has now designated over 7,000 Kepler objects of interest (KOIs), or transit-like signatures, utilizing up to four years of data. The number of potentially habitable planet candidates (PCs) among this sample has risen significantly over time. However, starting with Kepler threshold crossing events (TCEs), there are initially about as many false alarms (FAs) detected as there are KOIs. Furthermore, due to its design, contamination from eclipsing binaries, variable stars, and other transiting planets result in a significant number of KOIs being designated as false positives (FPs). Many of these FAs and FPs occur at long orbital periods, where habitable planets are typically found. I will review the process of how an initial TCE becomes a KOI, and then is ultimately classified as a FA, FP, or PC, along with the various vetting tools employed. The understanding of this process is crucial to performing accurate statistical analyses on populations of habitable planet candidates discovered by Kepler.

  1. ON THE RELATIVE SIZES OF PLANETS WITHIN KEPLER MULTIPLE-CANDIDATE SYSTEMS

    SciTech Connect

    Ciardi, David R.; Gautier, T. N. III; Howell, Steve B.; Lissauer, Jack J.; Rowe, Jason F.

    2013-01-20

    We present a study of the relative sizes of planets within the multiple-candidate systems discovered with the Kepler mission. We have compared the size of each planet to the size of every other planet within a given planetary system after correcting the sample for detection and geometric biases. We find that for planet pairs for which one or both objects are approximately Neptune-sized or larger, the larger planet is most often the planet with the longer period. No such size-location correlation is seen for pairs of planets when both planets are smaller than Neptune. Specifically, if at least one planet in a planet pair has a radius of {approx}> 3 R {sub Circled-Plus }, 68% {+-} 6% of the planet pairs have the inner planet smaller than the outer planet, while no preferred sequential ordering of the planets is observed if both planets in a pair are smaller than {approx}< 3 R {sub Circled-Plus }.

  2. LGS-AO Imaging of Every Kepler Planet Candidate: the Robo-AO KOI Survey

    NASA Astrophysics Data System (ADS)

    Law, Nicholas Michael; Baranec, Christoph; Morton, Timothy; Ziegler, Carl; Atkinson, Dani; Riddle, Reed

    2015-08-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging, to search for blended nearby stars which may be physically associated companions and/or responsible for transit false positives. We will present the results from searching for companions around over 3,000 Kepler planet hosts in 2012-2015. We will describe our first data release covering 715 planet candidate hosts, and give a preview of ongoing results including improved statistics on the likelihood of false positive planet detections in the Kepler dataset, many new planets in multiple star systems, and new exotic multiple star systems containing Kepler planets.We will also describe the automated Robo-AO survey data reduction methods, including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for extremely large adaptive optics surveys.Our first data release covered 715 objects, searching for companions from 0.15” to 2.5” separation with contrast up to 6 magnitudes. We measured the overall nearby-star-probability for Kepler planet candidates to be 7.4+/-1.0%, and we will detail the variations in this number with stellar host parameters. We will also discuss several KOIs of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are ``coincident multiple'' systems, with several transiting planets shared between the two stars. Finally, we will discuss and update the 98%-confidence evidence from our survey that third bodies in star/planet systems produce an excess of close-in giant planets.

  3. FUNDAMENTAL PROPERTIES OF KEPLER PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY

    SciTech Connect

    Huber, Daniel; Lissauer, Jack J.; Rowe, Jason F.; Chaplin, William J.; Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans; Handberg, Rasmus; Karoff, Christoffer; Lund, Mikkel N.; Lundkvist, Mia; Gilliland, Ronald L.; Buchhave, Lars A.; Fischer, Debra A.; Basu, Sarbani; Sanchis-Ojeda, Roberto; Hekker, Saskia; Howard, Andrew W.; Isaacson, Howard; Marcy, Geoffrey W.; Latham, David W.; and others

    2013-04-20

    We have used asteroseismology to determine fundamental properties for 66 Kepler planet-candidate host stars, with typical uncertainties of 3% and 7% in radius and mass, respectively. The results include new asteroseismic solutions for four host stars with confirmed planets (Kepler-4, Kepler-14, Kepler-23 and Kepler-25) and increase the total number of Kepler host stars with asteroseismic solutions to 77. A comparison with stellar properties in the planet-candidate catalog by Batalha et al. shows that radii for subgiants and giants obtained from spectroscopic follow-up are systematically too low by up to a factor of 1.5, while the properties for unevolved stars are in good agreement. We furthermore apply asteroseismology to confirm that a large majority of cool main-sequence hosts are indeed dwarfs and not misclassified giants. Using the revised stellar properties, we recalculate the radii for 107 planet candidates in our sample, and comment on candidates for which the radii change from a previously giant-planet/brown-dwarf/stellar regime to a sub-Jupiter size or vice versa. A comparison of stellar densities from asteroseismology with densities derived from transit models in Batalha et al. assuming circular orbits shows significant disagreement for more than half of the sample due to systematics in the modeled impact parameters or due to planet candidates that may be in eccentric orbits. Finally, we investigate tentative correlations between host-star masses and planet-candidate radii, orbital periods, and multiplicity, but caution that these results may be influenced by the small sample size and detection biases.

  4. The First Uniform Kepler Q1 - Q17 Planet Candidate Catalog

    NASA Astrophysics Data System (ADS)

    Coughlin, Jeffrey

    2015-08-01

    We present an update to the Kepler planet-candidate catalog based on the entire Kepler mission dataset. This includes all 17 quarters of data, uniformly processed from pixels to planets. We discuss improvements to our planet-candidate vetting procedure, which is now completely automated and yields specific categories of false positives. For the first time, we also inject transits into all 17 quarters of data at the pixel-level and use these results to quantitatively evaluate the accuracy of our vetting procedures. Together these improvements allow us to disposition every known TCE and KOI quickly and uniformly, thus enabling accurate planet occurrence rate calculations. The current catalog is available at the Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu), and the light curves and pixel-level data are available at MAST (http://archive.stsci.edu/kepler).

  5. Validating the First Habitable-Zone Planet Candidates Identified by the NASA Kepler Mission

    NASA Astrophysics Data System (ADS)

    Charbonneau, David; Desert, Jean-Michel; Fressin, Francois; Ballard, Sarah; Borucki, William; Latham, David; Gilliland, Ronald; Seager, Sara; Knutson, Heather; Fortney, Jonathan; Brown, Timothy; Ford, Eric; Deming, Drake; Torres, Guillermo

    2011-05-01

    At the beginning of Cycle 8, the NASA Kepler Mission will have completed two years of science observations, the minimum baseline sufficient to identify candidate transiting exoplanets orbiting within the habitable-zones of Sun-like stars. The principal task that lies ahead is to reject from this sample the false positives (blends of eclipsing binaries that precisely mimic the signal of a transiting exoplanet), and to confirm the planetary nature of the remaining candidates. For planets more massive than Neptune, the direct confirmation of their planetary status can be accomplished by radial-velocity measurements. However, such planets possess primordial envelopes of hydrogen and helium that make them unsuitable to life as we know it. The most exciting candidates -- and the ones that Kepler is specifically tasked with finding -- are super-Earth and Earth-sized planets orbiting within their stellar habitable zones. Kepler has just begun to identify such planet candidates, and it will identify many more as its baseline increases throughout the coming year. While the Kepler team has developed powerful tools to weed out the impostors, Spitzer possesses the unique ability to provide the final validation of these candidates as planets, namely by measuring the depth of the transit at infrared wavelengths. By combining the infrared and optical measurements of the transit depth with models of hypothetical stellar blends, we can definitively test the stellar-blend hypothesis. We propose to observe the transits of 20 candidate habitable-zone super-Earths to be identified by the Kepler Mission. The results from this Exploration Science Program will be twofold: First, we will definitively validate the first potentially habitable planets ever identified. Second, we will determine the rate of occurrence of impostors. This rate of false positives can then be applied to the much larger sample of candidates identified by Kepler, to deduce the true rate of planetary companions.

  6. Inferring Planet Occurrence Rates With a Q1-Q16 Kepler Planet Candidate Catalog Produced by a Machine Learning Classifier

    NASA Astrophysics Data System (ADS)

    Catanzarite, Joseph; Jenkins, Jon Michael; Burke, Christopher J.; McCauliff, Sean D.; Kepler Science Operations Center

    2015-01-01

    NASA's Kepler Space Telescope monitored the photometric variations of over 170,000 stars within a ~100 square degree field in the constellation Cygnus, at half-hour cadence, over its four year prime mission. The Kepler SOC (Science Operations Center) pipeline calibrates the pixels of the target apertures for each star, corrects light curves for systematic error, and detects TCEs (threshold-crossing events) that may be due to transiting planets. Finally the pipeline estimates planet parameters for all TCEs and computes quantitative diagnostics that are used by the TCERT (Threshold Crossing Event Review Team) to produce a catalog containing KOIs (Kepler Objects of Interest). KOIs are TCEs that are determined to be either likely transiting planets or astrophysical false positives such as background eclipsing binary stars. Using examples from the Q1-Q16 TCERT KOI catalog as a training set, we created a machine-learning classifier that dispositions the TCEs into categories of PC (planet candidate), AFP (astrophysical false positive) and NTP (non-transiting phenomenon). The classifier uniformly and consistently applies heuristics developed by TCERT as well as other diagnostics to the Q1-Q16 TCEs to produce a more robust and reliable catalog of planet candidates than is possible with only human classification. In this work, we estimate planet occurrence rates, based on the machine-learning-produced catalog of Kepler planet candidates. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  7. LGS-AO Imaging of Every Kepler Planet Candidate: the Robo-AO KOI Survey

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Law, Nicholas; Morton, Timothy; Ziegler, Carl; Nofi, Larissa; Atkinson, Dani; Riddle, Reed

    2015-12-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging, to search for blended nearby stars which may be physically associated companions and/or responsible for transit false positives. We will present the results from searching for companions around over 3,000 Kepler planet hosts in 2012-2015. We will describe our first data release covering 715 planet candidate hosts, and give a preview of ongoing results including improved statistics on the likelihood of false positive planet detections in the Kepler dataset, many new planets in multiple star systems, and new exotic multiple star systems containing Kepler planets. We will also describe the automated Robo-AO survey data reduction methods, including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for extremely large adaptive optics surveys. Our first data release covered 715 objects, searching for companions from 0.15” to 2.5” separation with contrast up to 6 magnitudes. We measured the overall nearby-star-probability for Kepler planet candidates to be 7.4+/-1.0%, and we will detail the variations in this number with stellar host parameters. We will also discuss plans to extend the survey to other transiting planet missions such as K2 and TESS as Robo-AO is in the process of being re-deployed to the 2.1-m telescope at Kitt Peak for 3 years and a higher-contrast Robo-AO system is being developed for the 2.2-m UH telescope on Maunakea.

  8. Vetting Kepler planet candidates in the sub-Jovian desert with multiband photometry

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.; Morehead, Robert C.; Ford, Eric B.

    2015-09-01

    We present new multiband transit photometry of three small (Rp ≲ 6 R⊕), short-period (P ≲ 6 d) Kepler planet candidates acquired with the Gran Telescopio Canarias. These observations supplement the results presented in Colón & Ford and Colón, Ford & Morehead, where we used multicolour transit photometry of five Kepler planet candidates to search for wavelength-dependent transit depths and either validate planet candidates or identify eclipsing binary false positives within our sample. In those previous studies, we provided evidence that three targets were false positives and two targets were planets. Here, we present observations that provide evidence supporting a planetary nature for Kepler Object of Interest (KOI) 439.01 and KOI 732.01, and we find that KOI 531.01, a 6 R⊕ planet candidate around an M dwarf, is likely a false positive. We also present a discussion of the purported `sub-Jovian desert' in the orbital period-planet radius plane, which cannot be easily explained by observational bias. Both KOI 439.01 and KOI 732.01 are likely planets located within the so-called desert and should be investigated with further follow-up observations. As only ˜30 of the ˜3600 currently active Kepler planet candidates are located within the sub-Jovian desert, it will be interesting to see if these candidates also survive the vetting process and fill in the gap in the period-radius plane. Confirming planets in this regime will be important for understanding planetary migration and evolution processes, and we urge additional follow-up observations of these planet candidates to confirm their nature.

  9. Planet Hunters. VI. An Independent Characterization of KOI-351 and Several Long Period Planet Candidates from the Kepler Archival Data

    NASA Astrophysics Data System (ADS)

    Schmitt, Joseph R.; Wang, Ji; Fischer, Debra A.; Jek, Kian J.; Moriarty, John C.; Boyajian, Tabetha S.; Schwamb, Megan E.; Lintott, Chris; Lynn, Stuart; Smith, Arfon M.; Parrish, Michael; Schawinski, Kevin; Simpson, Robert; LaCourse, Daryll; Omohundro, Mark R.; Winarski, Troy; Goodman, Samuel Jon; Jebson, Tony; Schwengeler, Hans Martin; Paterson, David A.; Sejpka, Johann; Terentev, Ivan; Jacobs, Tom; Alsaadi, Nawar; Bailey, Robert C.; Ginman, Tony; Granado, Pete; Vonstad Guttormsen, Kristoffer; Mallia, Franco; Papillon, Alfred L.; Rossi, Franco; Socolovsky, Miguel

    2014-08-01

    We report the discovery of 14 new transiting planet candidates in the Kepler field from the Planet Hunters citizen science program. None of these candidates overlapped with Kepler Objects of Interest (KOIs) at the time of submission. We report the discovery of one more addition to the six planet candidate system around KOI-351, making it the only seven planet candidate system from Kepler. Additionally, KOI-351 bears some resemblance to our own solar system, with the inner five planets ranging from Earth to mini-Neptune radii and the outer planets being gas giants; however, this system is very compact, with all seven planet candidates orbiting <~ 1 AU from their host star. A Hill stability test and an orbital integration of the system shows that the system is stable. Furthermore, we significantly add to the population of long period transiting planets; periods range from 124 to 904 days, eight of them more than one Earth year long. Seven of these 14 candidates reside in their host star's habitable zone. .

  10. Planet hunters. VI. An independent characterization of KOI-351 and several long period planet candidates from the Kepler archival data

    SciTech Connect

    Schmitt, Joseph R.; Wang, Ji; Fischer, Debra A.; Moriarty, John C.; Boyajian, Tabetha S.; Jek, Kian J.; LaCourse, Daryll; Omohundro, Mark R.; Winarski, Troy; Goodman, Samuel Jon; Jebson, Tony; Schwengeler, Hans Martin; Paterson, David A.; Schwamb, Megan E.; Lintott, Chris; Simpson, Robert; Lynn, Stuart; Smith, Arfon M.; Parrish, Michael; Schawinski, Kevin; and others

    2014-08-01

    We report the discovery of 14 new transiting planet candidates in the Kepler field from the Planet Hunters citizen science program. None of these candidates overlapped with Kepler Objects of Interest (KOIs) at the time of submission. We report the discovery of one more addition to the six planet candidate system around KOI-351, making it the only seven planet candidate system from Kepler. Additionally, KOI-351 bears some resemblance to our own solar system, with the inner five planets ranging from Earth to mini-Neptune radii and the outer planets being gas giants; however, this system is very compact, with all seven planet candidates orbiting ≲ 1 AU from their host star. A Hill stability test and an orbital integration of the system shows that the system is stable. Furthermore, we significantly add to the population of long period transiting planets; periods range from 124 to 904 days, eight of them more than one Earth year long. Seven of these 14 candidates reside in their host star's habitable zone.

  11. HIRES Follow-up of Planet Candidates for the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Borucki, William

    2010-08-01

    The Kepler Mission is measuring the brightnesses of 150,000 FGKM dwarfs to detect transits with a photometric precision of 20 micromags. This permits detection of transits by Earth-size and larger planets. Currently there are 163 viable planet candidates. The observations will accomplish two objectives; 1) weed out background and grazing-incidence binaries and, 2) measure planet masses, which when coupled with transit depth and stellar radii, will yield planet densities. The densities are used to distinguish rocky planets from ice giants and gas giants.

  12. Kepler's Multiple Planet Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2012-01-01

    Among the 1800 Kepler targets that have candidate planets, 20% have two or more candidate planets. While most of these objects have not yet been confirmed as true planets, several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Virtually all candidate systems are stable, as tested by numerical integrations (assuming a nominal mass-radius relationship). Statistical studies performed on these candidates reveal a great deal about the architecture of planetary systems, including the typical spacing of orbits and flatness of planetary systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to be in resonance, particularly near the 2:1 resonance. The characteristics of the confirmed Kepler multi-planet systems will also be discussed.

  13. THE DISTRIBUTION OF TRANSIT DURATIONS FOR KEPLER PLANET CANDIDATES AND IMPLICATIONS FOR THEIR ORBITAL ECCENTRICITIES

    SciTech Connect

    Moorhead, Althea V.; Ford, Eric B.; Morehead, Robert C.; Rowe, Jason; Caldwell, Douglas A.; Jenkins, Jon M.; Li Jie; Quintana, Elisa; Borucki, William J.; Bryson, Stephen T.; Koch, David G.; Lissauer, Jack J.; Batalha, Natalie M.; Fabrycky, Daniel C.; Lucas, Philip; Marcy, Geoffrey W.

    2011-11-01

    Doppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASA's Kepler mission enables astronomers to characterize the eccentricity distribution of small exoplanets. Measuring the eccentricity of individual planets is only practical in favorable cases that are amenable to complementary techniques (e.g., radial velocities, transit timing variations, occultation photometry). Yet even in the absence of individual eccentricities, it is possible to study the distribution of eccentricities based on the distribution of transit durations (relative to the maximum transit duration for a circular orbit). We analyze the transit duration distribution of Kepler planet candidates. We find that for host stars with T{sub eff} > 5100 K we cannot invert this to infer the eccentricity distribution at this time due to uncertainties and possible systematics in the host star densities. With this limitation in mind, we compare the observed transit duration distribution with models to rule out extreme distributions. If we assume a Rayleigh eccentricity distribution for Kepler planet candidates, then we find best fits with a mean eccentricity of 0.1-0.25 for host stars with T{sub eff} {<=} 5100 K. We compare the transit duration distribution for different subsets of Kepler planet candidates and discuss tentative trends with planetary radius and multiplicity. High-precision spectroscopic follow-up observations for a large sample of host stars will be required to confirm which trends are real and which are the results of systematic errors in stellar radii. Finally, we identify planet candidates that must be eccentric or have a significantly underestimated stellar radius.

  14. Planet Hunters. VIII. Characterization of 41 Long-period Exoplanet Candidates from Kepler Archival Data

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Fischer, Debra A.; Barclay, Thomas; Picard, Alyssa; Ma, Bo; Bowler, Brendan P.; Schmitt, Joseph R.; Boyajian, Tabetha S.; Jek, Kian J.; LaCourse, Daryll; Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Lintott, Chris; Schawinski, Kevin; Simister, Dean Joseph; Grégoire, Boscher; Babin, Sean P.; Poile, Trevor; Jacobs, Thomas Lee; Jebson, Tony; Omohundro, Mark R.; Schwengeler, Hans Martin; Sejpka, Johann; Terentev, Ivan A.; Gagliano, Robert; Paakkonen, Jari-Pekka; Otnes Berge, Hans Kristian; Winarski, Troy; Green, Gerald R.; Schmitt, Allan R.; Kristiansen, Martti H.; Hoekstra, Abe

    2015-12-01

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0-Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1-3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%-33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations.

  15. Inferring Planet Occurrence Rates With a Q1-Q17 Kepler Planet Candidate Catalog Produced by a Machine Learning Classifier

    NASA Astrophysics Data System (ADS)

    Catanzarite, Joseph; Jenkins, Jon Michael; McCauliff, Sean D.; Burke, Christopher; Bryson, Steve; Batalha, Natalie; Coughlin, Jeffrey; Rowe, Jason; mullally, fergal; thompson, susan; Seader, Shawn; Twicken, Joseph; Li, Jie; morris, robert; smith, jeffrey; haas, michael; christiansen, jessie; Clarke, Bruce

    2015-08-01

    NASA’s Kepler Space Telescope monitored the photometric variations of over 170,000 stars, at half-hour cadence, over its four-year prime mission. The Kepler pipeline calibrates the pixels of the target apertures for each star, produces light curves with simple aperture photometry, corrects for systematic error, and detects threshold-crossing events (TCEs) that may be due to transiting planets. The pipeline estimates planet parameters for all TCEs and computes diagnostics used by the Threshold Crossing Event Review Team (TCERT) to produce a catalog of objects that are deemed either likely transiting planet candidates or false positives.We created a training set from the Q1-Q12 and Q1-Q16 TCERT catalogs and an ensemble of synthetic transiting planets that were injected at the pixel level into all 17 quarters of data, and used it to train a random forest classifier. The classifier uniformly and consistently applies diagnostics developed by the Transiting Planet Search and Data Validation pipeline components and by TCERT to produce a robust catalog of planet candidates.The characteristics of the planet candidates detected by Kepler (planet radius and period) do not reflect the intrinsic planet population. Detection efficiency is a function of SNR, so the set of detected planet candidates is incomplete. Transit detection preferentially finds close-in planets with nearly edge-on orbits and misses planets whose orbital geometry precludes transits. Reliability of the planet candidates must also be considered, as they may be false positives. Errors in detected planet radius and in assumed star properties can also bias inference of intrinsic planet population characteristics.In this work we infer the intrinsic planet population, starting with the catalog of detected planet candidates produced by our random forest classifier, and accounting for detection biases and reliabilities as well as for radius errors in the detected population.Kepler was selected as the 10th mission

  16. Moon Radius Limits for a Habitable Zone Kepler Transiting Planet Candidate

    NASA Astrophysics Data System (ADS)

    Lewis, K.

    2014-04-01

    In addition to planets being potentially habitable bodies, moons, both inside and beyond the habitable zones of their host star may also be suitable sites for life. One promising method to detect such habitable moons is the through the transit technique, in particular using the high quality, long baseline Kepler dataset. Planets in the habitable zone of Sun-like stars tend to have long orbital periods and thus exhibit few transits within the 3.5 year Kepler mission. In addition, candidate planets are more likely to be confirmed if they are in multiple systems where planetary perturbations may make moon detection through transit timing very challenging. As a result we focus on the direct detection moon technique first described by Sartoretti and Schneider (1999), which involves searching and fitting the extra dip due to a moon in each transit light curve directly. To test this method in the presence of realistic photometric noise, we developed a Kepler light curve simulator that generates noisy light curves corresponding to physically consistent planet-moon systems. Using this program we calculate sets of unique light curve realisations for a Kepler candidate (KOI3681.01) in the habitable zone of a Sun-like star, for a grid of physically realistic moon radii and semi-major axes, and process them using our detection code. This allows us to robustly place constraints on potentially habitable terrestrial moons thus demonstrating the power of this approach.

  17. Likely Planet Candidates Identified by Machine Learning Applied to Four Years of Kepler Data

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; McCauliff, S. D.; Catanzarite, J. H.; Twicken, J. D.; Klaus, T. C.; SOC, Kepler; SO, Kepler

    2013-10-01

    Over 3,200 transiting planet candidates, 134 confirmed planets, and ~2,400 eclipsing binaries have been identified by the Kepler Science pipeline since launch in March 2009. Compiling the list of candidates is an intensive manual effort as over 18,000 transit-like signatures are identified for a run across 34 months. The vast majority are caused by artifacts that mimic transits. While the pipeline provides diagnostics that can reduce the initial list down to ~5,000 light curves, this effort can overlook valid planetary candidates. The large number of diagnostics 100) makes it difficult to examine all the information available in identifying planetary candidates. The effort required for vetting all threshold-crossing events (TCEs) takes several months by many individuals associated with the Kepler Threshold Crossing Event Review Team (TCERT). We have developed a random-forest classifier that decides whether a TCE should be called `planet candidate’, `astrophysical false positive’, or `non-transiting phenomena’. Ideally a machine learning algorithm will generate a list of candidates that approximates those generated by human review, thereby allowing the humans to focus on the most interesting cases. By using a machine learning-based auto-vetting process, we have the opportunity to identify the most important metrics and diagnostics for separating signatures of transiting planets and eclipsing binaries from instrument-induced features, thereby improving the efficiency of the manual effort. We report the results of a applying a random forest classifier to four years of Kepler data. We present characteristics of the likely planet candidates identified by the auto-vetter as well as those objects classified as astrophysical false positives (eclipsing binaries and background eclipsing binaries). We examine the auto-vetter's performance through receiver operating characteristic curves for each of three classes: planet candidate, astrophysical false positive, and

  18. Likely Planet Candidates Identified by Machine Learning Applied to Four Years of Kepler Data

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; McCauliff, S. D.; Catanzarite, J.; Twicken, J. D.; Burke, C. J.; Campbell, J.; Seader, S.

    2014-01-01

    Over 3200 transiting planet candidates, 134 confirmed planets, and ~2,400 eclipsing binaries have been identified by the Kepler Science pipeline since launch in March 2009. Compiling the list of candidates is an intensive manual effort as over 18,000 transit-like signatures are identified for a run across 34 months. The vast majority are caused by artifacts that mimic transits. While the pipeline provides diagnostics that can reduce the initial list down to ~5,000 light curves, this effort can overlook valid planetary candidates. The large number of diagnostics 100) makes it difficult to examine all the information available. The effort required for vetting all threshold-crossing events (TCEs) takes several months by many individuals associated with the Kepler Threshold Crossing Event Review Team (TCERT). We have developed a random-forest classifier that classifies each TCE as `planet candidate’, `astrophysical false positive’, or `non-transiting phenomena’. Ideally the algorithm will generate a list of candidates that approximates those generated by human review, thereby allowing the humans to focus on the most interesting cases. By using a machine learning-based auto-vetting process, we have the opportunity to identify the most important metrics and diagnostics for separating signatures of transiting planets and eclipsing binaries from instrument-induced features, thereby improving the efficiency of the manual effort. We report the results of applying a random forest classifier to four years of Kepler data. We present characteristics of the likely planet candidates identified by the auto-vetter as well as those objects classified as astrophysical false positives (eclipsing binaries and background eclipsing binaries). We examine the auto-vetter's performance through receiver operating characteristic curves for each of three classes: planet candidate, astrophysical false positive, and non-transiting phenomena. Funding for this mission is provided by NASA

  19. A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS

    SciTech Connect

    Latham, David W.; Quinn, Samuel N.; Carter, Joshua A.; Holman, Matthew J.; Rowe, Jason F.; Borucki, William J.; Bryson, Stephen T.; Howell, Steve B.; Batalha, Natalie M.; Brown, Timothy M.; Buchhave, Lars A.; Caldwell, Douglas A.; Christiansen, Jessie L.; Dunham, Edward W.; Fabrycky, Daniel C.; Ford, Eric B.; Gautier, Thomas N. III

    2011-05-10

    In this Letter, we present an overview of the rich population of systems with multiple candidate transiting planets found in the first four months of Kepler data. The census of multiples includes 115 targets that show two candidate planets, 45 with three, eight with four, and one each with five and six, for a total of 170 systems with 408 candidates. When compared to the 827 systems with only one candidate, the multiples account for 17% of the total number of systems, and one-third of all the planet candidates. We compare the characteristics of candidates found in multiples with those found in singles. False positives due to eclipsing binaries are much less common for the multiples, as expected. Singles and multiples are both dominated by planets smaller than Neptune; 69{sup +2}{sub -3}% for singles and 86{sup +2}{sub -5}% for multiples. This result, that systems with multiple transiting planets are less likely to include a transiting giant planet, suggests that close-in giant planets tend to disrupt the orbital inclinations of small planets in flat systems, or maybe even prevent the formation of such systems in the first place.

  20. High-resolution imaging of Kepler planet host candidates. A comprehensive comparison of different techniques

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Barrado, D.; Bouy, H.

    2014-06-01

    Context. The Kepler mission has discovered thousands of planet candidates. Currently, some of them have already been discarded; more than 200 have been confirmed by follow-up observations (most by radial velocity and few by other methods), and several hundreds have been validated. However, the large majority of the candidates are still awaiting for confirmation. Thus, priorities (in terms of the probability of the candidate being a real planet) must be established for subsequent radial velocity observations. Aims: The motivation of this work is to provide a set of isolated (good) host candidates to be further tested by other techniques that allow confirmation of the planet. As a complementary goal, we aim to identify close companions of the candidates that could have contaminated the light curve of the planet host due to the large pixel size of the Kepler CCD and its typical PSF of around 6 arcsec. Both goals can also provide robust statistics about the multiplicity of the Kepler hosts. Methods: We used the AstraLux North instrument located at the 2.2 m telescope in the Calar Alto Observatory (Almería, Spain) to obtain diffraction-limited images of 174 Kepler objects of interest. A sample of demoted Kepler objects of interest (with rejected planet candidates) is used as a control for comparison of multiplicity statistics. The lucky-imaging technique used in this work is compared to other adaptive optics and speckle imaging observations of Kepler planet host candidates. To that end, we define a new parameter, the blended source confidence level (BSC), to assess the probability of an object to have blended non-detected eclipsing binaries capable of producing the detected transit. Results: We find that 67.2% of the observed Kepler hosts are isolated within our detectability limits, and 32.8% have at least one visual companion at angular separations below 6 arcsec. Indeed, we find close companions (below 3 arcsec) for the 17.2% of the sample. The planet properties of

  1. Auto-Vetting Transiting Planet Candidates Identified by the Kepler Pipeline

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; McCauliff, Sean; Burke, Christopher; Seader, Shawn; Twicken, Joseph; Klaus, Todd; Sanderfer, Dwight; Srivastava, Ashok; Haas, Michael R.

    2014-04-01

    The Kepler Mission simultaneously measures the brightness of more than 150,000 stars every 29.4 minutes primarily for the purpose of transit photometry. Over the course of its 3.5-year primary mission Kepler has observed over 190,000 distinct stars, announcing 2,321 planet candidates, 2,165 eclipsing binaries, and 105 confirmed planets. As Kepler moves into its 4-year extended mission, the total number of transit-like features identified in the light curves has increased to as many as ~18,000. This number of signals has become intractable for human beings to inspect by eye in a thorough and timely fashion. To mitigate this problem we are developing machine learning approaches to perform the task of reviewing the diagnostics for each transit signal candidate to establish a preliminary list of planetary candidates ranked from most credible to least credible. Our preliminary results indicate that random forests can classify potential transiting planet signatures with an accuracy of more than 98.6% as measured by the area under a receiver-operating curve.

  2. Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems

    SciTech Connect

    Rowe, Jason F.; Bryson, Stephen T.; Lissauer, Jack J.; Jontof-Hutter, Daniel; Mullally, Fergal; Howell, Steve B.; Borucki, William J.; Haas, Michael; Huber, Daniel; Thompson, Susan E.; Quintana, Elisa; Barclay, Thomas; Still, Martin; Marcy, Geoffrey W.; Issacson, Howard; Gilliland, Ronald L.; Ford, Eric; Steffen, Jason H.; Gautier, T. N. III; and others

    2014-03-20

    The Kepler mission has discovered more than 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of those in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false positives indicates that the multiplanet systems contain very few false positive signals due to other systems not gravitationally bound to the target star. False positives in the multi-planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ∼two unidentified false positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves, ground-based spectroscopy, and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. Nonetheless, our result nearly doubles the number verified exoplanets.

  3. Validation of Kepler's Multiple Planet Candidates. III. Light Curve Analysis and Announcement of Hundreds of New Multi-planet Systems

    NASA Astrophysics Data System (ADS)

    Rowe, Jason F.; Bryson, Stephen T.; Marcy, Geoffrey W.; Lissauer, Jack J.; Jontof-Hutter, Daniel; Mullally, Fergal; Gilliland, Ronald L.; Issacson, Howard; Ford, Eric; Howell, Steve B.; Borucki, William J.; Haas, Michael; Huber, Daniel; Steffen, Jason H.; Thompson, Susan E.; Quintana, Elisa; Barclay, Thomas; Still, Martin; Fortney, Jonathan; Gautier, T. N., III; Hunter, Roger; Caldwell, Douglas A.; Ciardi, David R.; Devore, Edna; Cochran, William; Jenkins, Jon; Agol, Eric; Carter, Joshua A.; Geary, John

    2014-03-01

    The Kepler mission has discovered more than 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of those in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false positives indicates that the multiplanet systems contain very few false positive signals due to other systems not gravitationally bound to the target star. False positives in the multi-planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ~two unidentified false positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves, ground-based spectroscopy, and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. Nonetheless, our result nearly doubles the number verified exoplanets.

  4. Planet Hunters: the first two planet candidates identified by the public using the Kepler public archive data

    NASA Astrophysics Data System (ADS)

    Fischer, Debra A.; Schwamb, Megan E.; Schawinski, Kevin; Lintott, Chris; Brewer, John; Giguere, Matt; Lynn, Stuart; Parrish, Michael; Sartori, Thibault; Simpson, Robert; Smith, Arfon; Spronck, Julien; Batalha, Natalie; Rowe, Jason; Jenkins, Jon; Bryson, Steve; Prsa, Andrej; Tenenbaum, Peter; Crepp, Justin; Morton, Tim; Howard, Andrew; Beleu, Michele; Kaplan, Zachary; Vannispen, Nick; Sharzer, Charlie; Defouw, Justin; Hajduk, Agnieszka; Neal, Joe P.; Nemec, Adam; Schuepbach, Nadine; Zimmermann, Valerij

    2012-02-01

    Planet Hunters is a new citizen science project designed to engage the public in an exoplanet search using NASA Kepler public release data. In the first month after launch, users identified two new planet candidates which survived our checks for false positives. The follow-up effort included analysis of Keck HIRES spectra of the host stars, analysis of pixel centroid offsets in the Kepler data and adaptive optics imaging at Keck using NIRC2. Spectral synthesis modelling coupled with stellar evolutionary models yields a stellar density distribution, which is used to model the transit orbit. The orbital periods of the planet candidates are 9.8844 ± 0.0087 d (KIC 10905746) and 49.7696 ± 0.000 39 d (KIC 6185331), and the modelled planet radii are 2.65 and 8.05 R⊕. The involvement of citizen scientists as part of Planet Hunters is therefore shown to be a valuable and reliable tool in exoplanet detection. This publication has been made possible by the participation of more than 40 000 volunteers in the Planet Hunters project. Their contributions are individually acknowledged at .

  5. A Catalog of Transit Timing Posterior Distributions for all Kepler Planet Candidate Transit Events

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin Tyler; Becker, Juliette C.; Johnson, John Asher

    2015-12-01

    Kepler has ushered in a new era of planetary dynamics, enabling the detection of interactions between multiple planets in transiting systems for hundreds of systems. These interactions, observed as transit timing variations (TTVs), have been used to find non-transiting companions to transiting systems and to measure masses, eccentricities, and inclinations of transiting planets. Often, physical parameters are inferred by comparing the observed light curve to the result of a photodynamical model, a time-intensive process that often ignores the effects of correlated noise in the light curve. Catalogs of transit timing observations have previously neglected non-Gaussian uncertainties in the times of transit, uncertainties in the transit shape, and short cadence data. Here, I present a catalog of not only times of transit centers, but also posterior distributions on the time of transit for every planet candidate transit event in the Kepler data, developed through importance sampling of each transit. This catalog allows one to marginalize over uncertainties in the transit shape and incorporate short cadence data, the effects of correlated noise, and non-Gaussian posteriors. Our catalog will enable dynamical studies that reflect accurately the precision of Kepler and its limitations without requiring the computational power to model the light curve completely with every integration. I will also present our open-source N-body photodynamical modeling code, which integrates planetary and stellar orbits accounting for the effects of GR, tidal effects, and Doppler beaming.

  6. A Catalog of Transit Timing Posterior Distributions for all Kepler Planet Candidate Events

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin Tyler; Becker, Juliette C.; Johnson, John

    2015-08-01

    Kepler has ushered in a new era of planetary dynamics, enabling the detection of interactions between multiple planets in transiting systems for hundreds of systems. These interactions, observed as transit timing variations (TTVs), have been used to find non-transiting companions to transiting systems and to measure masses, eccentricities, and inclinations of transiting planets. Often, physical parameters are inferred by comparing the observed light curve to the result of a photodynamical model, a time-intensive process that often ignores the effects of correlated noise in the light curve. Catalogs of transit timing observations have previously neglected non-Gaussian uncertainties in the times of transit, uncertainties in the transit shape, and short cadence data. Here, we present a catalog of not only times of transit centers, but also posterior distributions on the time of transit for every planet candidate transit event in the Kepler data, developed through importance sampling of each transit. This catalog allows us to marginalize over uncertainties in the transit shape and incorporate short cadence data, the effects of correlated noise, and non-Gaussian posteriors. Our catalog will enable dynamical studies that reflect accurately the precision of Kepler and its limitations without requiring the computational power to model the light curve completely with every integration.

  7. Statistical Eclipses of Kepler Long Cadence Sub-Saturn Planet Candidates

    NASA Astrophysics Data System (ADS)

    Sheets, Holly Ann; Deming, Drake

    2015-08-01

    We present the results of our work to detect secondary eclipses of sub-Saturn planet candidates in Kepler's long cadence data and to determine their average albedo. Our method is inherently statistical in nature: we scale and combine photometric data for groups of planets to infer their average eclipse depths, and to greatly increase the signal-to-noise. We have modified our method for averaging short cadence light curves of multiple planet candidates (2014, ApJ, 794, 133), and have applied it to long cadence data. We transform the phase of the individual candidates to match a reference candidate, such that the light curves add constructively, and we account for the broadening of the eclipse due to the 30 minute cadence. In the short cadence data, we found that a group of close-in sub-Saturn candidates (1 to 6 Earth radii) was more reflective than typical hot Jupiters. With the larger number of candidates available in long cadence, we improve the resolution in radius and consider groups of candidates with radii between 1 and 2, 2 and 4, and 4 and 6 Earth radii.

  8. 100-year DASCH Light Curves of Kepler Planet-Candidate Host Stars

    NASA Astrophysics Data System (ADS)

    Tang, Sumin; Sasselov, Dimitar; Grindlay, Jonathan; Los, Edward; Servillat, Mathieu

    2013-07-01

    We present 100 year light curves of Kepler planet-candidate host stars from the Digital Access to a Sky Century at Harvard (DASCH) project. 261 out of 997 host stars have at least 10 good measurements on DASCH scans of the Harvard plates. 109 of them have at least 100 good measurements, including 70% (73 out of 104) of all host stars with g <= 13 mag, and 44% (100 out of 228) of all host stars with g <= 14 mag. Our typical photometric uncertainty is ~0.1-0.15 mag. No variation is found at 3σ level for these host stars, including 21 confirmed or candidate hot Jupiter systems which might be expected to show enhanced flares from magnetic interactions between dwarf primaries and their close and relatively massive planet companions.

  9. SETI Searches for Radio Transients from Kepler Field Planets and Astropulse Candidates

    NASA Astrophysics Data System (ADS)

    Gautam, Abhimat Krishna; Siemion, Andrew; Korpela, Eric J.; Cobb, Jeff; Lebofsky, Matt; Werthimer, Dan

    2014-06-01

    We present a search for fast radio transients in targeted observations of planet candidates in the Kepler Field and candidate Astropulse sources.Kepler Field observations were conducted in the band 1.1 and 1.9 GHz using the Green Bank Telescope in Green Bank, West Virginia and are centered on 86 stars hosting candidate planets identified by the Kepler spacecraft. These stars were chosen based on the properties of their putative planetary system thought to be conducive to the development of advanced life, including all systems known (as of May 2011) hosting a Kepler Object of Interest (KOI) with a calculated equilibrium temperature between 230 and 380 K, at least 4 KOIs or a KOI with an inferred radius < 3.0 r_earth and a period > 50 d. The Kepler Field is centered at an intermediate galactic latitude, b = 13.5°, which presents an additional opportunity to detect signals from the older population of millisecond and recycled pulsars located above the galactic plane.The Astropulse radio survey searches for brief wide-band pulses in a 2.5 MHz band centered at 1420 MHz using commensal data recorded from the Arecibo ALFA receiver. In early Astropulse analysis, 108 candidate sources were identified that passed a series of tests designed to eliminate potential sources of radio frequency interference (RFI). We have performed targeted re-observations of these sources at Arecibo over the full (1214-1536 MHz) ALFA band.We have developed a software pipeline to locate fast dispersed transients in these observations, leveraging components of the PRESTO software library. This pipeline consists of finding and removing RFI, conducting de-dispersion to remove the effects of dispersion from the interstellar medium (ISM) on the signal and identifying over- threshold events. We also perform de-dispersion at negative dispersion measures, proposed to be a potential technique for intelligent civilizations to distinguish their emission from natural sources. We carry out both a periodicity

  10. The Eccentricity Distribution of Short-period Planet Candidates Detected by Kepler in Occultation

    NASA Astrophysics Data System (ADS)

    Shabram, Megan; Demory, Brice-Olivier; Cisewski, Jessi; Ford, Eric B.; Rogers, Leslie

    2016-04-01

    We characterize the eccentricity distribution of a sample of ∼50 short-period planet candidates using transit and occultation measurements from NASA’s Kepler Mission. First, we evaluate the sensitivity of our hierarchical Bayesian modeling and test its robustness to model misspecification using simulated data. When analyzing actual data assuming a Rayleigh distribution for eccentricity, we find that the posterior mode for the dispersion parameter is σ =0.081{+/- }0.0030.014. We find that a two-component Gaussian mixture model for e cos ω and e sin ω provides a better model than either a Rayleigh or Beta distribution. Based on our favored model, we find that ∼90% of planet candidates in our sample come from a population with an eccentricity distribution characterized by a small dispersion (∼0.01), and ∼10% come from a population with a larger dispersion (∼0.22). Finally, we investigate how the eccentricity distribution correlates with selected planet and host star parameters. We find evidence that suggests systems around higher metallicity stars and planet candidates with smaller radii come from a more complex eccentricity distribution.

  11. PLANET HUNTERS. V. A CONFIRMED JUPITER-SIZE PLANET IN THE HABITABLE ZONE AND 42 PLANET CANDIDATES FROM THE KEPLER ARCHIVE DATA

    SciTech Connect

    Wang, Ji; Fischer, Debra A.; Boyajian, Tabetha S.; Schmitt, Joseph R.; Giguere, Matthew J.; Brewer, John M.; Barclay, Thomas; Schwamb, Megan E.; Lintott, Chris; Simpson, Robert; Jek, Kian J.; Hoekstra, Abe J.; Jacobs, Thomas Lee; LaCourse, Daryll; Schwengeler, Hans Martin; Smith, Arfon M.; Parrish, Michael; Lynn, Stuart; Schawinski, Kevin; and others

    2013-10-10

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R{sub PL} = 10.12 ± 0.56 R{sub ⊕}) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false-positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least 3 transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20 are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between those of Neptune and Jupiter. These detections nearly double the number of gas-giant planet candidates orbiting at habitable-zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events.

  12. Advances in the Kepler Transit Search Engine and Automated Approaches to Identifying Likely Planet Candidates in Transit Surveys

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon Michael

    2015-08-01

    Twenty years ago, no planets were known outside our own solar system. Since then, the discoveries of ~1500 exoplanets have radically altered our views of planets and planetary systems. This revolution is due in no small part to the Kepler Mission, which has discovered >1000 of these planets and >4000 planet candidates. While Kepler has shown that small rocky planets and planetary systems are quite common, the quest to find Earth’s closest cousins and characterize their atmospheres presses forward with missions such as NASA Explorer Program’s Transiting Exoplanet Survey Satellite (TESS) slated for launch in 2017 and ESA’s PLATO mission scheduled for launch in 2024.These future missions pose daunting data processing challenges in terms of the number of stars, the amount of data, and the difficulties in detecting weak signatures of transiting small planets against a roaring background. These complications include instrument noise and systematic effects as well as the intrinsic stellar variability of the subjects under scrutiny. In this paper we review recent developments in the Kepler transit search pipeline improving both the yield and reliability of detected transit signatures.Many of the phenomena in light curves that represent noise can also trigger transit detection algorithms. The Kepler Mission has expended great effort in suppressing false positives from its planetary candidate catalogs. While over 18,000 transit-like signatures can be identified for a search across 4 years of data, most of these signatures are artifacts, not planets. Vetting all such signatures historically takes several months’ effort by many individuals. We describe the application of machine learning approaches for the automated vetting and production of planet candidate catalogs. These algorithms can improve the efficiency of the human vetting effort as well as quantifying the likelihood that each candidate is truly a planet. This information is crucial for obtaining valid planet

  13. CHARACTERIZING THE COOL KEPLER OBJECTS OF INTERESTS. NEW EFFECTIVE TEMPERATURES, METALLICITIES, MASSES, AND RADII OF LOW-MASS KEPLER PLANET-CANDIDATE HOST STARS

    SciTech Connect

    Muirhead, Philip S.; Hamren, Katherine; Schlawin, Everett; Lloyd, James P.; Rojas-Ayala, Barbara; Covey, Kevin R.

    2012-05-10

    We report stellar parameters for late-K and M-type planet-candidate host stars announced by the Kepler Mission. We obtained medium-resolution, K-band spectra of 84 cool (T{sub eff} {approx}< 4400 K) Kepler Objects of Interest (KOIs) from Borucki et al. We identified one object as a giant (KOI 977); for the remaining dwarfs, we measured effective temperatures (T{sub eff}) and metallicities [M/H] using the K-band spectral indices of Rojas-Ayala et al. We determine the masses (M{sub *}) and radii (R{sub *}) of the cool KOIs by interpolation onto the Dartmouth evolutionary isochrones. The resultant stellar radii are significantly less than the values reported in the Kepler Input Catalog and, by construction, correlate better with T{sub eff}. Applying the published KOI transit parameters to our stellar radius measurements, we report new physical radii for the planet candidates. Recalculating the equilibrium temperatures of the planet-candidates assuming Earth's albedo and re-radiation fraction, we find that three of the planet-candidates are terrestrial sized with orbital semimajor axes that lie within the habitable zones of their host stars (KOI 463.01, KOI 812.03, and KOI 854.01). The stellar parameters presented in this Letter serve as a resource for prioritization of future follow-up efforts to validate and characterize the cool KOI planet candidates.

  14. PRE-SPECTROSCOPIC FALSE-POSITIVE ELIMINATION OF KEPLER PLANET CANDIDATES

    SciTech Connect

    Batalha, Natalie M.; Rowe, Jason F.; Borucki, William J.; Koch, David G.; Lissauer, Jack J.; Gilliland, Ronald L.; Jenkins, Jon J.; Caldwell, Douglas; Dunham, Edward W.; Gautier, Thomas N.; Howell, Steve B.; Latham, David W.; Marcy, Geoff W.; Prsa, Andrej

    2010-04-20

    Ten days of commissioning data (Quarter 0) and 33 days of science data (Quarter 1) yield instrumental flux time series of {approx}150,000 stars that were combed for transit events, termed threshold crossing events(TCE), each having a total detection statistic above 7.1{sigma}. TCE light curves are modeled as star+planet systems. Those returning a companion radius smaller than 2R{sub J} are assigned a Kepler Object of Interest (KOI) number. The raw flux, pixel flux, and flux-weighted centroids of every KOI are scrutinized to assess the likelihood of being an astrophysical false positive versus the likelihood of being a planetary companion. This vetting using Kepler data is referred to as data validation (DV). Herein, we describe the DV metrics and graphics used to identify viable planet candidates amongst the KOIs. Light curve modeling tests for (1) the difference in depth of the odd- versus even-numbered transits, (2) evidence of ellipsoidal variations, and (3) evidence of a secondary eclipse event at phase = 0.5. Flux-weighted centroids are used to test for signals correlated with transit events with a magnitude and direction indicative of a background eclipsing binary. Centroid time series are complimented by analysis of images taken in-transit versus out-of-transit, the difference often revealing the pixel contributing the most to the flux change during transit. Examples are shown to illustrate each test. Candidates passing DV are submitted to ground-based observers for further false-positive elimination or confirmation/characterization.

  15. Pre-spectroscopic False-positive Elimination of Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Batalha, Natalie M.; Rowe, Jason F.; Gilliland, Ronald L.; Jenkins, Jon J.; Caldwell, Douglas; Borucki, William J.; Koch, David G.; Lissauer, Jack J.; Dunham, Edward W.; Gautier, Thomas N.; Howell, Steve B.; Latham, David W.; Marcy, Geoff W.; Prsa, Andrej

    2010-04-01

    Ten days of commissioning data (Quarter 0) and 33 days of science data (Quarter 1) yield instrumental flux time series of ~150,000 stars that were combed for transit events, termed threshold crossing events(TCE), each having a total detection statistic above 7.1σ. TCE light curves are modeled as star+planet systems. Those returning a companion radius smaller than 2RJ are assigned a Kepler Object of Interest (KOI) number. The raw flux, pixel flux, and flux-weighted centroids of every KOI are scrutinized to assess the likelihood of being an astrophysical false positive versus the likelihood of being a planetary companion. This vetting using Kepler data is referred to as data validation (DV). Herein, we describe the DV metrics and graphics used to identify viable planet candidates amongst the KOIs. Light curve modeling tests for (1) the difference in depth of the odd- versus even-numbered transits, (2) evidence of ellipsoidal variations, and (3) evidence of a secondary eclipse event at phase = 0.5. Flux-weighted centroids are used to test for signals correlated with transit events with a magnitude and direction indicative of a background eclipsing binary. Centroid time series are complimented by analysis of images taken in-transit versus out-of-transit, the difference often revealing the pixel contributing the most to the flux change during transit. Examples are shown to illustrate each test. Candidates passing DV are submitted to ground-based observers for further false-positive elimination or confirmation/characterization.

  16. THE HUNT FOR EXOMOONS WITH KEPLER (HEK). II. ANALYSIS OF SEVEN VIABLE SATELLITE-HOSTING PLANET CANDIDATES

    SciTech Connect

    Kipping, D. M.; Hartman, J.; Bakos, G. A.; Buchhave, L. A.; Schmitt, A. R.; Nesvorny, D.

    2013-06-20

    From the list of 2321 transiting planet candidates announced by the Kepler Mission, we select seven targets with favorable properties for the capacity to dynamically maintain an exomoon and present a detectable signal. These seven candidates were identified through our automatic target selection (TSA) algorithm and target selection prioritization (TSP) filtering, whereby we excluded systems exhibiting significant time-correlated noise and focused on those with a single transiting planet candidate of radius less than 6 R{sub Circled-Plus }. We find no compelling evidence for an exomoon around any of the seven Kepler Objects of Interest (KOIs) but constrain the satellite-to-planet mass ratios for each. For four of the seven KOIs, we estimate a 95% upper quantile of M{sub S} /M{sub P} < 0.04, which given the radii of the candidates, likely probes down to sub-Earth masses. We also derive precise transit times and durations for each candidate and find no evidence for dynamical variations in any of the KOIs. With just a few systems analyzed thus far in the ongoing ''Hunt for Exomoons with Kepler'' (HEK) project, projections on eta-moon would be premature, but a high frequency of large moons around Super-Earths/Mini-Neptunes would be premature, but a high frequency of large moons around Super-Earths/Mini-Neptunes would appear to be incommensurable with our results so far.

  17. Validation of Kepler's multiple planet candidates. II. Refined statistical framework and descriptions of systems of special interest

    SciTech Connect

    Lissauer, Jack J.; Bryson, Stephen T.; Rowe, Jason F.; Jontof-Hutter, Daniel; Borucki, William J.; Marcy, Geoffrey W.; Kolbl, Rea; Agol, Eric; Carter, Joshua A.; Torres, Guillermo; Ford, Eric B.; Gilliland, Ronald L.; Star, Kimberly M.; Steffen, Jason H.

    2014-03-20

    We extend the statistical analysis performed by Lissauer et al. in 2012, which demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) represents true transiting planets, and we develop therefrom a procedure to validate large numbers of planet candidates in multis as bona fide exoplanets. We show that this statistical framework correctly estimates the abundance of false positives already identified around Kepler targets with multiple sets of transit-like signatures based on their abundance around targets with single sets of transit-like signatures. We estimate the number of multis that represent split systems of one or more planets orbiting each component of a binary star system. We use the high reliability rate for multis to validate more than one dozen particularly interesting multi-planet systems herein. Hundreds of additional multi-planet systems are validated in a companion paper by Rowe et al. We note that few very short period (P < 1.6 days) planets orbit within multiple transiting planet systems and discuss possible reasons for their absence. There also appears to be a shortage of planets with periods exceeding a few months in multis.

  18. Limits on Surface Gravities of Kepler Planet-candidate Host Stars from Non-detection of Solar-like Oscillations

    NASA Astrophysics Data System (ADS)

    Campante, T. L.; Chaplin, W. J.; Lund, M. N.; Huber, D.; Hekker, S.; García, R. A.; Corsaro, E.; Handberg, R.; Miglio, A.; Arentoft, T.; Basu, S.; Bedding, T. R.; Christensen-Dalsgaard, J.; Davies, G. R.; Elsworth, Y. P.; Gilliland, R. L.; Karoff, C.; Kawaler, S. D.; Kjeldsen, H.; Lundkvist, M.; Metcalfe, T. S.; Silva Aguirre, V.; Stello, D.

    2014-03-01

    We present a novel method for estimating lower-limit surface gravities (log g) of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.

  19. Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations

    SciTech Connect

    Campante, T. L.; Chaplin, W. J.; Handberg, R.; Miglio, A.; Davies, G. R.; Elsworth, Y. P.; Lund, M. N.; Arentoft, T.; Christensen-Dalsgaard, J.; Karoff, C.; Kjeldsen, H.; Lundkvist, M.; Huber, D.; Hekker, S.; García, R. A.; Basu, S.; Bedding, T. R.; Gilliland, R. L.; Kawaler, S. D.; and others

    2014-03-10

    We present a novel method for estimating lower-limit surface gravities (log g) of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.

  20. Kepler Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2015-01-01

    Kepler has vastly increased our knowledge of planets and planetary systems located close to stars. The new data shows surprising results for planetary abundances, planetary spacings and the distribution of planets on a mass-radius diagram. The implications of these results for theories of planet formation will be discussed.

  1. Identifying transiting planets candidates in Kepler data using PyKE

    NASA Astrophysics Data System (ADS)

    Gaillard, Clement; Stephens, Denise C.; Stephens, Thomas E.

    2015-01-01

    A study of M-dwarf stars has shown that there exists an abundance of planets around this star class (Muirhead, 2013). Kepler stellar data contains a vast collection of M-dwarfs that are too faint to be analyzed with regular photometry, due to the background light from neighboring stars and the undersampling of the stars' image. We used PyKE (Still & Barclay 2012), a software package for the reduction and analysis of Kepler data. This open source software project is developed and distributed by the NASA Kepler Guest Observer Office. A special PyKE package fits a PSF model to a specific image within a target pixel file in order to separate the target's light from other stars. Using this package, we were able to obtain cleaner light curves for 113 Kepler targets. This increases the probability of identifying a transiting planet and/or binary star from their light curve. I will present results for a few potential planets and describe the methodology.

  2. Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 au and validation of four planets from the Kepler multiple planet candidates

    SciTech Connect

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei; Barclay, Thomas

    2014-03-01

    The planet occurrence rate for multiple stars is important in two aspects. First, almost half of stellar systems in the solar neighborhood are multiple systems. Second, the comparison of the planet occurrence rate for multiple stars to that for single stars sheds light on the influence of stellar multiplicity on planet formation and evolution. We developed a method of distinguishing planet occurrence rates for single and multiple stars. From a sample of 138 bright (K{sub P} < 13.5) Kepler multi-planet candidate systems, we compared the stellar multiplicity rate of these planet host stars to that of field stars. Using dynamical stability analyses and archival Doppler measurements, we find that the stellar multiplicity rate of planet host stars is significantly lower than field stars for semimajor axes less than 20 AU, suggesting that planet formation and evolution are suppressed by the presence of a close-in companion star at these separations. The influence of stellar multiplicity at larger separations is uncertain because of search incompleteness due to a limited Doppler observation time baseline and a lack of high-resolution imaging observation. We calculated the planet confidence for the sample of multi-planet candidates and find that the planet confidences for KOI 82.01, KOI 115.01, KOI 282.01, and KOI 1781.02 are higher than 99.7% and thus validate the planetary nature of these four planet candidates. This sample of bright Kepler multi-planet candidates with refined stellar and orbital parameters, planet confidence estimation, and nearby stellar companion identification offers a well-characterized sample for future theoretical and observational study.

  3. A Statistical Characterization of Reflection and Refraction in the Atmospheres of sub-Saturn Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Deming, Drake; Arney, Giada; Meadows, Victoria

    2016-01-01

    We present the results of our method to detect small atmospheric signals in Kepler's close-in, sub-Saturn planet candidate light curves. We detect an average secondary eclipse for groups of super-Earth, Neptune-like, and other sub-Saturn-sized candidates by scaling and combining photometric data of the groups of candidates such that the eclipses add constructively. This greatly increases the signal-to-noise compared to combining eclipses for individual planets. We have modified our method for averaging short cadence light curves of multiple planet candidates (2014, ApJ, 794, 133), and have applied it to long cadence data, accounting for the broadening of the eclipse due to the 30 minute cadence. We then use the secondary eclipse depth to determine the average albedo for the group. In the short cadence data, we found that a group of close-in sub-Saturn candidates (1 to 6 Earth radii) was more reflective (geometric A ~ 0.22) than typical hot Jupiters (geometric A ~ 0.06 to 0.11: Demory 2014, ApJL, 789, L20). With the larger number of candidates available in long cadence, we improve the resolution in radius and consider groups of candidates with radii between 1 and 2, 2 and 4, and 4 and 6 Earth radii. We also modify our averaging technique to search for refracted light just before and after transit in the Kepler candidate light curves, as modelled by Misra and Meadows (2014, ApJL, 795, L14).

  4. Transiting Planet Candidates Beyond the Snow Line Detected by Visual Inspection of 7557 Kepler Objects of Interest

    NASA Astrophysics Data System (ADS)

    Uehara, Sho; Kawahara, Hajime; Masuda, Kento; Yamada, Shin’ya; Aizawa, Masataka

    2016-05-01

    We visually inspected the light curves of 7557 Kepler Objects of Interest (KOIs) to search for single transit events (STEs) that were possibly due to long-period giant planets. We identified 28 STEs in 24 KOIs, among which 14 events are newly reported in this paper. We estimate the radius and orbital period of the objects causing STEs by fitting the STE light curves simultaneously with the transits of the other planets in the system or with prior information on the host star density. As a result, we found that STEs in seven of those systems are consistent with Neptune- to Jupiter-sized objects of orbital periods ranging from a few to ∼20 {years}. We also estimate that ≳ 20% of the compact multi-transiting systems host cool giant planets with periods ≳ 3 {years} on the basis of their occurrence in the KOIs with multiple candidates, assuming the small mutual inclination between inner and outer planetary orbits.

  5. CHARACTERIZING THE COOL KOIs. VI. H- AND K-BAND SPECTRA OF KEPLER M DWARF PLANET-CANDIDATE HOSTS

    SciTech Connect

    Muirhead, Philip S.; Becker, Juliette; Price, Ellen M.; Thorp, Rachel; Riddle, Reed; Feiden, Gregory A.; Rojas-Ayala, Bárbara; Vanderburg, Andrew; Johnson, John Asher; Law, Nicholas M.; Baranec, Christoph; Hamren, Katherine; Schlawin, Everett; Lloyd, James P.; Covey, Kevin R.

    2014-07-01

    We present H- and K-band spectra for late-type Kepler Objects of Interest (the {sup C}ool KOIs{sup )}: low-mass stars with transiting-planet candidates discovered by NASA's Kepler Mission that are listed on the NASA Exoplanet Archive. We acquired spectra of 103 Cool KOIs and used the indices and calibrations of Rojas-Ayala et al. to determine their spectral types, stellar effective temperatures, and metallicities, significantly augmenting previously published values. We interpolate our measured effective temperatures and metallicities onto evolutionary isochrones to determine stellar masses, radii, luminosities, and distances, assuming the stars have settled onto the main sequence. As a choice of isochrones, we use a new suite of Dartmouth predictions that reliably include mid-to-late M dwarf stars. We identify five M4V stars: KOI-961 (confirmed as Kepler 42), KOI-2704, KOI-2842, KOI-4290, and the secondary component to visual binary KOI-1725, which we call KOI-1725 B. We also identify a peculiar star, KOI-3497, which has Na and Ca lines consistent with a dwarf star but CO lines consistent with a giant. Visible-wavelength adaptive optics imaging reveals two objects within a 1 arcsec diameter; however, the objects' colors are peculiar. The spectra and properties presented in this paper serve as a resource for prioritizing follow-up observations and planet validation efforts for the Cool KOIs and are all available for download online using the ''data behind the figure'' feature.

  6. Kepler's missing planets

    NASA Astrophysics Data System (ADS)

    Steffen, Jason H.

    2013-08-01

    We investigate the distributions of the orbital period ratios of adjacent planets in high-multiplicity Kepler systems (four or more planets) and low-multiplicity systems (two planets). Modelling the low-multiplicity sample as essentially equivalent to the high-multiplicity sample, but with unobserved intermediate planets, we find some evidence for an excess of planet pairs between the 2:1 and 3:1 mean-motion resonances in the low-multiplicity sample. This possible excess may be the result of strong dynamical interactions near these or other resonances or it may be a byproduct of other evolutionary events or processes such as planetary collisions. Three-planet systems show a significant excess of planets near the 2:1 mean-motion resonance that is not as prominent in either of the other samples. This observation may imply a correlation between strong dynamical interactions and observed planet number - perhaps a relationship between resonance pairs and the inclinations or orbital periods of additional planets. The period ratio distributions can also be used to identify targets to search for missing planets in the each of the samples, the presence or absence of which would have strong implications for planet formation and dynamical evolution models.

  7. A Statistical Characterization of Reflection and Refraction in the Atmospheres of sub-Saturn Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Deming, Drake; Arney, Giada; Meadows, Victoria

    2015-11-01

    We present the results of our method to detect small atmospheric signals in Kepler’s close-in, sub-Saturn planet candidate light curves. We detect an average secondary eclipse for groups of super-Earth, Neptune-like, and other sub-Saturn-sized candidates by scaling and combining photometric data of the groups of candidates such that the eclipses add constructively. This greatly increases the signal-to-noise compared to combining eclipses for individual planets. We have modified our method for averaging short cadence light curves of multiple planet candidates (2014, ApJ, 794, 133), and have applied it to long cadence data, accounting for the broadening of the eclipse due to the 30 minute cadence. We then use the secondary eclipse depth to determine the average albedo for the group. In the short cadence data, we found that a group of close-in sub-Saturn candidates (1 to 6 Earth radii) was more reflective (geometric A ~ 0.22) than typical hot Jupiters (geometric A ~ 0.06 to 0.11: Demory 2014, ApJL, 789, L20). With the larger number of candidates available in long cadence, we improve the resolution in radius and consider groups of candidates with radii between 1 and 2, 2 and 4, and 4 and 6 Earth radii. We also modify our averaging technique to search for refracted light just before and after transit in the Kepler candidate light curves, as modelled by Misra and Meadows (2014, ApJL, 795, L14).

  8. VizieR Online Data Catalog: Kepler planet host candidates imaging (Lillo-Box+, 2014)

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Barrado, D.; Bouy, H.

    2014-09-01

    We applied the lucky imaging technique to the selected targets to achieve diffraction-limited resolution. We used the AstraLux North instrument located at the 2.2m telescope at the Calar Alto Observatory (Almeria, Spain). The targets were observed along three visibility windows of the Kepler field during 2011, 2012, and 2013. The results regarding the non-isolated KOIs of observations on 2011 were published in Lillo-Box et al. (2012A&A...546A..10L, Cat. J/A+A/546/A10). In the present work, we report the results concerning the isolated candidates observed in 2011 and the new results for the 2012-2013 observing runs. (6 data files).

  9. PREDICTING PLANETS IN KEPLER MULTI-PLANET SYSTEMS

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-05-20

    We investigate whether any multi-planet systems among Kepler candidates (2011 February release) can harbor additional terrestrial-mass planets or smaller bodies. We apply the packed planetary systems hypothesis that suggests all planetary systems are filled to capacity, and use a Hill stability criterion to identify eight two-planet systems with significant gaps between the innermost and outermost planets. For each of these systems, we perform long-term numerical integrations of 10{sup 7} years to investigate the stability of 4000-8000 test particles injected into the gaps. We map out stability regions in orbital parameter space, and therefore quantify the ranges of semimajor axes and eccentricities of stable particles. Strong mean-motion resonances can add additional regions of stability in otherwise unstable parameter space. We derive simple expressions for the extent of the stability regions, which is related to quantities such as the dynamical spacing {Delta}, the separation between two planets in units of their mutual Hill radii. Our results suggest that planets with separation {Delta} < 10 are unlikely to host extensive stability regions, and that about 95 out of a total of 115 two-planet systems in the Kepler sample may have sizeable stability regions. We predict that Kepler candidate systems including KOI 433, KOI 72/Kepler-10, KOI 555, KOI 1596, KOI 904, KOI 223, KOI 1590, and KOI 139 can harbor additional planets or low-mass bodies between the inner and outer detected planets. These predicted planets may be detected by future observations.

  10. Planet Detection: The Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    The search for exoplanets is one of the hottest topics in astronomy and astrophysics in the twenty-first century, capturing the public's attention as well as that of the astronomical community. This nascent field was conceived in 1989 with the discovery of a candidate planetary companion to HD114762 [35] and was born in 1995 with the discovery of the first extrasolar planet 51 Peg-b [37] orbiting a main sequence star. As of March, 2011, over 500 exoplanets have been discovered* and 106 are known to transit or cross their host star, as viewed from Earth. Of these transiting planets, 15 have been announced by the Kepler Mission, which was launched into an Earth-trailing, heliocentric orbit in March, 2009 [1,4,6,15,18,20,22,31,32,34,36,43]. In addition, over 1200 candidate transiting planets have already been detected by Kepler [5], and vigorous follow-up observations are being conducted to vet these candidates. As the false-positive rate for Kepler is expected to be quite low [39], Kepler has effectively tripled the number of known exoplanets. Moreover, Kepler will provide an unprecedented data set in terms of photometric precision, duration, contiguity, and number of stars. Kepler's primary science objective is to determine the frequency of Earth-size planets transiting their Sun-like host stars in the habitable zone, that range of orbital distances for which liquid water would pool on the surface of a terrestrial planet such as Earth, Mars, or Venus. This daunting task demands an instrument capable of measuring the light output from each of over 100,000 stars simultaneously with an unprecedented photometric precision of 20 parts per million (ppm) at 6.5-h intervals. The large number of stars is required because the probability of the geometrical alignment of planetary orbits that permit observation of transits is the ratio of the size of the star to the size of the planetary orbit. For Earth-like planets in 1-astronomical unit (AU) orbits† about sun-like stars

  11. Revision of Earth-sized Kepler Planet Candidate Properties with High Resolution Imaging by Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Star, Kimberly Michelle; Gilliland, Ronald L.

    2014-06-01

    In this paper we present the first results of our HST GO/SNAP program GO-12893 and describe how our image analysis using STScI's DrizzlePac software combined with our own empirical point spread function definition were used to re-evaluate the habitability of some of the most interesting Kepler planet candidates. We used our high resolution imaging to calibrate Kp to the F555W and F775W filters on WFC3/UVIS, and spatially resolved the stellar multiplicity of KOI-1422, KOI-2626, and KOI-3049. We found KOI-1422 to be a tight binary star system with a projected separation of 0.217’’ 90 AU). We found KOI-2626 to be a triple star system with a projected separation of 0.201’’ 110 AU) between the primary and secondary components and 0.161’’ 90 AU) between the primary and tertiary components. We found KOI-3049 to be a binary star system with a projected separation of 0.464’’ 330 AU). Using theoretical isochrones from the Dartmouth Stellar Evolution Database, we performed hierarchical fitting using our derived photometry and the synthetic photometry from the isochrones. Revised stellar parameters for the individual components of the systems show that the stars in these systems range from early-K dwarf to early-M dwarf spectral types. We report with high confidence that all three systems are bound and co-eval based on the tight isochrone fitting and false positive analysis. Using our best-fit stellar parameters from the isochrone matches, we solved for the properties of the planets in the three systems and found that the planets range in size from ~2REarth to ~4 REarth, placing them in the Super Earth/mini-Neptune range. Some planets analyzed here are potentially habitable depending on their stellar host and greenhouse effect level.

  12. Planet Detection: The Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    The search for exoplanets is one of the hottest topics in astronomy and astrophysics in the twenty-first century, capturing the public's attention as well as that of the astronomical community. This nascent field was conceived in 1989 with the discovery of a candidate planetary companion to HD114762 [35] and was born in 1995 with the discovery of the first extrasolar planet 51 Peg-b [37] orbiting a main sequence star. As of March, 2011, over 500 exoplanets have been discovered* and 106 are known to transit or cross their host star, as viewed from Earth. Of these transiting planets, 15 have been announced by the Kepler Mission, which was launched into an Earth-trailing, heliocentric orbit in March, 2009 [1,4,6,15,18,20,22,31,32,34,36,43]. In addition, over 1200 candidate transiting planets have already been detected by Kepler [5], and vigorous follow-up observations are being conducted to vet these candidates. As the false-positive rate for Kepler is expected to be quite low [39], Kepler has effectively tripled the number of known exoplanets. Moreover, Kepler will provide an unprecedented data set in terms of photometric precision, duration, contiguity, and number of stars. Kepler's primary science objective is to determine the frequency of Earth-size planets transiting their Sun-like host stars in the habitable zone, that range of orbital distances for which liquid water would pool on the surface of a terrestrial planet such as Earth, Mars, or Venus. This daunting task demands an instrument capable of measuring the light output from each of over 100,000 stars simultaneously with an unprecedented photometric precision of 20 parts per million (ppm) at 6.5-h intervals. The large number of stars is required because the probability of the geometrical alignment of planetary orbits that permit observation of transits is the ratio of the size of the star to the size of the planetary orbit. For Earth-like planets in 1-astronomical unit (AU) orbits† about sun-like stars

  13. Planet Hunters: Kepler by Eye

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Lintott, C.; Fischer, D.; Smith, A. M.; Boyajian, T. S.; Brewer, J. M.; Giguere, M. J.; Lynn, S.; Parrish, M.; Schawinski, K.; Schmitt, J.; Simpson, R.; Wang, J.

    2014-01-01

    Planet Hunters (http://www.planethunters.org), part of the Zooniverse's (http://www.zooniverse.org) collection of online citizen science projects, uses the World Wide Web to enlist the general public to identify transits in the pubic Kepler light curves. Planet Hunters utilizes human pattern recognition to identify planet transits that may be missed by automated detection algorithms looking for periodic events. Referred to as ‘crowdsourcing’ or ‘citizen science’, the combined assessment of many non-expert human classifiers with minimal training can often equal or best that of a trained expert and in many cases outperform the best machine-learning algorithm. Visitors to the Planet Hunters' website are presented with a randomly selected ~30-day light curve segment from one of Kepler’s ~160,000 target stars and are asked to draw boxes to mark the locations of visible transits in the web interface. 5-10 classifiers review each 30-day light curve segment. Since December 2010, more than 260,000 volunteers world wide have participated, contributing over 20 million classifications. We have demonstrated the success of a citizen science approach with the project’s more than 20 planet candidates, the discovery of PH1b, a transiting circumbinary planet in a quadruple star system, and the discovery of PH2-b, a confirmed Jupiter-sized planet in the habitable zone of a Sun-like star. I will provide an overview of Planet Hunters, highlighting several of project's most recent exoplanet and astrophysical discoveries. Acknowledgements: MES was supported in part by a NSF AAPF under award AST-1003258 and a American Philosophical Society Franklin Grant. We acknowledge support from NASA ADAP12-0172 grant to PI Fischer.

  14. Measurements of stellar inclinations for Kepler planet candidates. II. Candidate spin-orbit misalignments in single- and multiple-transiting systems

    SciTech Connect

    Hirano, Teruyuki; Sanchis-Ojeda, Roberto; Winn, Joshua N.; Takeda, Yoichi; Narita, Norio; Takahashi, Yasuhiro H.

    2014-03-01

    We present a test for spin-orbit alignment for the host stars of 25 candidate planetary systems detected by the Kepler spacecraft. The inclination angle of each star's rotation axis was estimated from its rotation period, rotational line broadening, and radius. The rotation periods were determined using the Kepler photometric time series. The rotational line broadening was determined from high-resolution optical spectra with the Subaru High Dispersion Spectrograph. Those same spectra were used to determine the star's photospheric parameters (effective temperature, surface gravity, metallicity), which were then interpreted with stellar-evolutionary models to determine stellar radii. We combine the new sample with the seven stars from our previous work on this subject, finding that the stars show a statistical tendency to have inclinations near 90°, in alignment with the planetary orbits. Possible spin-orbit misalignments are seen in several systems, including three multiple-planet systems (KOI-304, 988, 2261). Ideally, these systems should be scrutinized with complementary techniques, such as the Rossiter-McLaughlin effect, starspot-crossing anomalies, or asteroseismology, but the measurements will be difficult owing to the relatively faint apparent magnitudes and small transit signals in these systems.

  15. Constraining the oblateness of Kepler planets

    SciTech Connect

    Zhu, Wei; Huang, Chelsea X.; Zhou, George; Lin, D. N. C.

    2014-11-20

    We use Kepler short-cadence light curves to constrain the oblateness of planet candidates in the Kepler sample. The transits of rapidly rotating planets that are deformed in shape will lead to distortions in the ingress and egress of their light curves. We report the first tentative detection of an oblate planet outside the solar system, measuring an oblateness of 0.22{sub −0.11}{sup +0.11} for the 18 M{sub J} mass brown dwarf Kepler 39b (KOI 423.01). We also provide constraints on the oblateness of the planets (candidates) HAT-P-7b, KOI 686.01, and KOI 197.01 to be <0.067, <0.251, and <0.186, respectively. Using the Q' values from Jupiter and Saturn, we expect tidal synchronization for the spins of HAT-P-7b, KOI 686.01, and KOI 197.01, and for their rotational oblateness signatures to be undetectable in the current data. The potentially large oblateness of KOI 423.01 (Kepler 39b) suggests that the Q' value of the brown dwarf needs to be two orders of magnitude larger than that of the solar system gas giants to avoid being tidally spun down.

  16. Kepler Discovers Its First Rocky Planet

    NASA Video Gallery

    NASA's Kepler mission confirmed the discovery of its first rocky planet, named Kepler-10b. Measuring 1.4 times the size of Earth, it is the smallest planet ever discovered outside our solar system....

  17. Kepler-79's low density planets

    SciTech Connect

    Jontof-Hutter, Daniel; Lissauer, Jack J.; Rowe, Jason F.; Fabrycky, Daniel C.

    2014-04-10

    Kepler-79 (KOI-152) has four planetary candidates ranging in size from 3.5 to 7 times the size of the Earth, in a compact configuration with orbital periods near a 1:2:4:6 chain of commensurability, from 13.5 to 81.1 days. All four planets exhibit transit timing variations with periods that are consistent with the distance of each planet to resonance with its neighbors. We perform a dynamical analysis of the system based on transit timing measurements over 1282 days of Kepler photometry. Stellar parameters are obtained using a combination of spectral classification and the stellar density constraints provided by light curve analysis and orbital eccentricity solutions from our dynamical study. Our models provide tight bounds on the masses of all four transiting bodies, demonstrating that they are planets and that they orbit the same star. All four of Kepler-79's transiting planets have low densities given their sizes, which is consistent with other studies of compact multiplanet transiting systems. The largest of the four, Kepler-79 d (KOI-152.01), has the lowest bulk density yet determined among sub-Saturn mass planets.

  18. Kepler Planets: A Tale of Evaporation

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Wu, Yanqin

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ~0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R ⊕. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ~0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M ⊕ and the

  19. KEPLER PLANETS: A TALE OF EVAPORATION

    SciTech Connect

    Owen, James E.; Wu, Yanqin E-mail: wu@astro.utoronto.ca

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M

  20. A New Way to Confirm Planet Candidates

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    What was the big deal behind the Kepler news conference yesterday? Its not just that the number of confirmed planets found by Kepler has more than doubled (though thats certainly exciting news!). Whats especially interesting is the way in which these new planets were confirmed.Number of planet discoveries by year since 1995, including previous non-Kepler discoveries (blue), previous Kepler discoveries (light blue) and the newly validated Kepler planets (orange). [NASA Ames/W. Stenzel; Princeton University/T. Morton]No Need for Follow-UpBefore Kepler, the way we confirmed planet candidates was with follow-up observations. The candidate could be validated either by directly imaging (which is rare) or obtaining a large number radial-velocity measurements of the wobble of the planets host star due to the planets orbit. But once Kepler started producing planet candidates, these approaches to validation became less feasible. A lot of Kepler candidates are small and orbit faint stars, making follow-up observations difficult or impossible.This problem is what inspired the development of whats known as probabilistic validation, an analysis technique that involves assessing the likelihood that the candidates signal is caused by various false-positive scenarios. Using this technique allows astronomers to estimate the likelihood of a candidate signal being a true planet detection; if that likelihood is high enough, the planet candidate can be confirmed without the need for follow-up observations.A breakdown of the catalog of Kepler Objects of Interest. Just over half had previously been identified as false positives or confirmed as candidates. 1284 are newly validated, and another 455 have FPP of1090%. [Morton et al. 2016]Probabilistic validation has been used in the past to confirm individual planet candidates in Kepler data, but now Timothy Morton (Princeton University) and collaborators have taken this to a new level: they developed the first code thats designed to do fully

  1. Measuring Transit Signal Recovery in the Kepler Pipeline. III. Completeness of the Q1–Q17 DR24 Planet Candidate Catalogue with Important Caveats for Occurrence Rate Calculations

    NASA Astrophysics Data System (ADS)

    Christiansen, Jessie L.; Clarke, Bruce D.; Burke, Christopher J.; Jenkins, Jon M.; Bryson, Stephen T.; Coughlin, Jeffrey L.; Mullally, Fergal; Thompson, Susan E.; Twicken, Joseph D.; Batalha, Natalie M.; Haas, Michael R.; Catanzarite, Joseph; Campbell, Jennifer R.; Kamal Uddin, AKM; Zamudio, Khadeejah; Smith, Jeffrey C.; Henze, Christopher E.

    2016-09-01

    With each new version of the Kepler pipeline and resulting planet candidate catalog, an updated measurement of the underlying planet population can only be recovered with a corresponding measurement of the Kepler pipeline detection efficiency. Here we present measurements of the sensitivity of the pipeline (version 9.2) used to generate the Q1–Q17 DR24 planet candidate catalog. We measure this by injecting simulated transiting planets into the pixel-level data of 159,013 targets across the entire Kepler focal plane, and examining the recovery rate. Unlike previous versions of the Kepler pipeline, we find a strong period dependence in the measured detection efficiency, with longer (>40 day) periods having a significantly lower detectability than shorter periods, introduced in part by an incorrectly implemented veto. Consequently, the sensitivity of the 9.2 pipeline cannot be cast as a simple one-dimensional function of the signal strength of the candidate planet signal, as was possible for previous versions of the pipeline. We report on the implications for occurrence rate calculations based on the Q1–Q17 DR24 planet candidate catalog, and offer important caveats and recommendations for performing such calculations. As before, we make available the entire table of injected planet parameters and whether they were recovered by the pipeline, enabling readers to derive the pipeline detection sensitivity in the planet and/or stellar parameter space of their choice.

  2. Spectroscopy of Kepler Candidate Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Everett, Mark E.; Howell, Steve B.; Silva, David R.; Szkody, Paula

    2014-02-01

    Currently the NASA Kepler Mission has identified 3449 exoplanet candidates, one third with estimated radii R_p<2.5R_oplus and orbiting faint (m_Kep>14.5) host stars. The NASA sponsored Kepler Follow-up Program is focusing on small exoplanet candidates (R_p<2.5R_oplus) and those in habitable zone orbits. Planet radii estimates depend on estimates of host star radii. Based on spectra previously obtained at the KPNO Mayall 4-m for 220 stars with candidate exoplanets, Everett et al. (2013) have shown that many host stars are larger than originally assumed (up to factor of 2). Therefore, the exoplanet candidates they host must be larger than originally assumed, which conversely reduces the number of known Earth- sized exoplanet candidates. Determination of the frequency of such Earth-sized planets is a cornerstone Kepler mission objective and of keen general interest. These Mayall spectra were also used to confirm the Buchhave et al. (2012) result that exoplanet candidates larger than 4R_oplus in short-period orbits are preferentially associated with host stars with solar or higher metallicity, using a fainter and larger sample of stars than Buchhave et al. In short, followup Mayall optical spectroscopy is critical to confirming the detection of Earth-sized exoplanets, a Kepler cornerstone goal, as well as characterizing the relationship between host star properties and planetary system properties. Here, we propose to continue our reconnaissance survey with a focus on the smallest (most rare) exoplanet candidates orbiting the faintest Kepler host stars.

  3. A Planet Hunters Search of the Kepler TCE Inventory

    NASA Astrophysics Data System (ADS)

    Schwamb, Meg; Lintott, Chris; Fischer, Debra; Smith, Arfon; Boyajian, Tabetha; Brewer, John; Giguere, Matt; Lynn, Stuart; Schawinski, Kevin; Simpson, Rob; Wang, Ji

    2013-07-01

    NASA's Kepler spacecraft has spent the past 4 years monitoring ~160,000 stars for the signatures of transiting exoplanets. Planet Hunters (http://www.planethunters.org), part of the Zooniverse (http://www.zooniverse.org) collection of citizen science projects, uses the power of human pattern recognition via the World Wide Web to identify transits in the Kepler public data. We have demonstrated the success of a citizen science approach with the project's discoveries including PH1 b, a transiting circumbinary planet in a four star system., and over 20 previously unknown planet candidates. The Kepler team has released the list of 18,406 potential transit signals or threshold-crossing events (TCEs) identified in Quarters 1-12 (~1000 days) by their automated Transit Planet Search (TPS) algorithm. The majority of these detections found by TPS are triggered by transient events and are not valid planet candidates. To identify planetary candidates from the detected TCEs, a human review of the validation reports, generated by the Kepler pipeline for each TCE, is performed by several Kepler team members. We have undertaken an independent crowd-sourced effort to perform a systematic search of the Kepler Q1-12 TCE list. With the Internet we can obtain multiple assessments of each TCE's data validation report. Planet Hunters volunteers evaluate whether a transit is visible in the Kepler light curve folded on the expected period identified by TPS. We present the first results of this analysis.

  4. Kepler AutoRegressive Planet Search

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel Antonio; Feigelson, Eric

    2016-01-01

    The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; AR-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. The analysis procedures of the project are applied to a portion of the publicly available Kepler light curve data for the full 4-year mission duration. Tests of the methods have been made on a subset of Kepler Objects of Interest (KOI) systems, classified both as planetary `candidates' and `false positives' by the Kepler Team, as well as a random sample of unclassified systems. We find that the ARMA-type modeling successfully reduces the stellar variability, by a factor of 10 or more in active stars and by smaller factors in more quiescent stars. A typical quiescent Kepler star has an interquartile range (IQR) of ~10 e-/sec, which may improve slightly after modeling, while those with IQR ranging from 20 to 50 e-/sec, have improvements from 20% up to 70%. High activity stars (IQR exceeding 100) markedly improve. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. Our findings to date on real

  5. EXPLORING THE HABITABLE ZONE FOR KEPLER PLANETARY CANDIDATES

    SciTech Connect

    Kaltenegger, L.; Sasselov, D.

    2011-08-01

    This Letter outlines a simple approach to evaluate habitability of terrestrial planets by assuming different types of planetary atmospheres and using corresponding model calculations. Our approach can be applied for current and future candidates provided by the Kepler mission and other searches. The resulting uncertainties and changes in the number of planetary candidates in the HZ for the Kepler 2011 February data release are discussed. To first order, the HZ depends on the effective stellar flux distribution in wavelength and time, the planet albedo, and greenhouse gas effects. We provide a simple set of parameters which can be used for evaluating future planet candidates from transit searches.

  6. Fast rise of 'Neptune-size' planets (4-8 R {sub ⊕}) from P ∼ 10 to ∼250 days—statistics of Kepler planet candidates up to ∼0.75 au

    SciTech Connect

    Dong, Subo; Zhu, Zhaohuan

    2013-11-20

    We infer the period (P) and size (R{sub p} ) distribution of Kepler transiting planet candidates with R{sub p} ≥ 1 R {sub ⊕} and P < 250 days hosted by solar-type stars. The planet detection efficiency is computed by using measured noise and the observed time spans of the light curves for ∼120,000 Kepler target stars. We focus on deriving the shape of planet periods and radius distribution functions. We find that for orbital periods P > 10 days, the planet frequency dN{sub p} /dlog P for 'Neptune-size' planets (R{sub p} = 4-8 R {sub ⊕}) increases with period as ∝P {sup 0.7±0.1}. In contrast, dN{sub p} /dlog P for 'super-Earth-size' (2-4 R {sub ⊕}) as well as 'Earth-size' (1-2 R {sub ⊕}) planets are consistent with a nearly flat distribution as a function of period (∝P {sup 0.11±0.05} and ∝P {sup –0.10±0.12}, respectively), and the normalizations are remarkably similar (within a factor of ∼1.5 at 50 days). Planet size distribution evolves with period, and generally the relative fractions for big planets (∼3-10 R {sub ⊕}) increase with period. The shape of the distribution function is not sensitive to changes in the selection criteria of the sample. The implied nearly flat or rising planet frequency at long periods appears to be in disagreement with the sharp decline at ∼100 days in planet frequency for low-mass planets (planet mass m{sub p} < 30 M {sub ⊕}) recently suggested by the HARPS survey. Within 250 days, the cumulative frequencies for Earth-size and super-Earth-size planets are remarkably similar (∼28% and 25%), while Neptune-size and Jupiter-size planets are ∼7% and ∼3%, respectively. A major potential uncertainty arises from the unphysical impact parameter distribution of the candidates.

  7. PLANET HUNTERS: ASSESSING THE KEPLER INVENTORY OF SHORT-PERIOD PLANETS

    SciTech Connect

    Schwamb, Megan E.; Lintott, Chris J.; Lynn, Stuart; Smith, Arfon M.; Simpson, Robert J.; Fischer, Debra A.; Giguere, Matthew J.; Brewer, John M.; Parrish, Michael; Schawinski, Kevin

    2012-08-01

    We present the results from a search of data from the first 33.5 days of the Kepler science mission (Quarter 1) for exoplanet transits by the Planet Hunters citizen science project. Planet Hunters enlists members of the general public to visually identify transits in the publicly released Kepler light curves via the World Wide Web. Over 24,000 volunteers reviewed the Kepler Quarter 1 data set. We examine the abundance of {>=}2 R{sub Circled-Plus} planets on short-period (<15 days) orbits based on Planet Hunters detections. We present these results along with an analysis of the detection efficiency of human classifiers to identify planetary transits including a comparison to the Kepler inventory of planet candidates. Although performance drops rapidly for smaller radii, {>=}4 R{sub Circled-Plus} Planet Hunters {>=}85% efficient at identifying transit signals for planets with periods less than 15 days for the Kepler sample of target stars. Our high efficiency rate for simulated transits along with recovery of the majority of Kepler {>=}4 R{sub Circled-Plus} planets suggests that the Kepler inventory of {>=}4 R{sub Circled-Plus} short-period planets is nearly complete.

  8. DENSITY AND ECCENTRICITY OF KEPLER PLANETS

    SciTech Connect

    Wu Yanqin; Lithwick, Yoram

    2013-07-20

    We analyze the transit timing variations (TTV) obtained by the Kepler mission for 22 sub-Jovian planet pairs (19 published, 3 new) that lie close to mean motion resonances. We find that the TTV phases for most of these pairs lie close to zero, consistent with an eccentricity distribution that has a very low root-mean-squared value of e {approx} 0.01; but about a quarter of the pairs possess much higher eccentricities, up to e {approx} 0.1-0.4. For the low-eccentricity pairs, we are able to statistically remove the effect of eccentricity to obtain planet masses from TTV data. These masses, together with those measured by radial velocity, yield a best-fit mass-radius relation M {approx} 3 M{sub Circled-Plus }(R/R{sub Circled-Plus }). This corresponds to a constant surface escape velocity of {approx}20 km s{sup -1}. We separate the planets into two distinct groups: ''mid-sized'' (those greater than 3 R{sub Circled-Plus }) and 'compact' (those smaller). All mid-sized planets are found to be less dense than water and therefore must contain extensive H/He envelopes that are comparable in mass to that of their cores. We argue that these planets have been significantly sculpted by photoevaporation. Surprisingly, mid-sized planets, a minority among Kepler candidates, are discovered exclusively around stars more massive than 0.8 M{sub Sun }. The compact planets, on the other hand, are often denser than water. Combining our density measurements with those from radial velocity studies, we find that hotter compact planets tend to be denser, with the hottest ones reaching rock density. Moreover, hotter planets tend to be smaller in size. These results can be explained if the compact planets are made of rocky cores overlaid with a small amount of hydrogen, {<=}1% in mass, with water contributing little to their masses or sizes. Photoevaporation has exposed bare rocky cores in cases of the hottest planets. Our conclusion that these planets are likely not water worlds contrasts

  9. Automatic Classification of Kepler Planetary Transit Candidates

    NASA Astrophysics Data System (ADS)

    McCauliff, Sean D.; Jenkins, Jon M.; Catanzarite, Joseph; Burke, Christopher J.; Coughlin, Jeffrey L.; Twicken, Joseph D.; Tenenbaum, Peter; Seader, Shawn; Li, Jie; Cote, Miles

    2015-06-01

    In the first three years of operation, the Kepler mission found 3697 planet candidates (PCs) from a set of 18,406 transit-like features detected on more than 200,000 distinct stars. Vetting candidate signals manually by inspecting light curves and other diagnostic information is a labor intensive effort. Additionally, this classification methodology does not yield any information about the quality of PCs; all candidates are as credible as any other. The torrent of exoplanet discoveries will continue after Kepler, because a number of exoplanet surveys will have an even broader search area. This paper presents the application of machine-learning techniques to the classification of the exoplanet transit-like signals present in the Kepler light curve data. Transit-like detections are transformed into a uniform set of real-numbered attributes, the most important of which are described in this paper. Each of the known transit-like detections is assigned a class of PC; astrophysical false positive; or systematic, instrumental noise. We use a random forest algorithm to learn the mapping from attributes to classes on this training set. The random forest algorithm has been used previously to classify variable stars; this is the first time it has been used for exoplanet classification. We are able to achieve an overall error rate of 5.85% and an error rate for classifying exoplanets candidates of 2.81%.

  10. Kepler constraints on planets near hot Jupiters

    SciTech Connect

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.

    2012-05-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  11. Kepler constraints on planets near hot Jupiters

    PubMed Central

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; Quinn, Samuel N.

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2∶1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history. PMID:22566651

  12. Recent Kepler Results On Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Welsh, William F.; Orosz, Jerome A.; Carter, Joshua A.; Fabrycky, Daniel C.

    2014-04-01

    Ranked near the top of the long list of exciting discoveries made with NASA's Kepler photometer is the detection of transiting circumbinary planets. In just over a year the number of such planets went from zero to seven, including a multi-planet system with one of the planets in the habitable zone (Kepler-47). We are quickly learning to better detect and characterize these planets, including the recognition of their transit timing and duration variation ``smoking gun'' signature. Even with only a handful of such planets, some exciting trends are emerging.

  13. Planet Hunters. X. Searching for Nearby Neighbors of 75 Planet and Eclipsing Binary Candidates from the K2 Kepler extended mission

    NASA Astrophysics Data System (ADS)

    Schmitt, Joseph R.; Tokovinin, Andrei; Wang, Ji; Fischer, Debra A.; Kristiansen, Martti H.; LaCourse, Daryll M.; Gagliano, Robert; Tan, Arvin Joseff V.; Schwengeler, Hans Martin; Omohundro, Mark R.; Venner, Alexander; Terentev, Ivan; Schmitt, Allan R.; Jacobs, Thomas L.; Winarski, Troy; Sejpka, Johann; Jek, Kian J.; Boyajian, Tabetha S.; Brewer, John M.; Ishikawa, Sascha T.; Lintott, Chris; Lynn, Stuart; Schawinski, Kevin; Schwamb, Megan E.; Weiksnar, Alex

    2016-06-01

    We present high-resolution observations of a sample of 75 K2 targets from Campaigns 1–3 using speckle interferometry on the Southern Astrophysical Research (SOAR) telescope and adaptive optics imaging at the Keck II telescope. The median SOAR I-band and Keck Ks-band detection limits at 1\\prime\\prime were {{Δ }}{m}I=4.4 mag and {{Δ }}{m}{Ks}=6.1 mag, respectively. This sample includes 37 stars likely to host planets, 32 targets likely to be eclipsing binaries (EBs), and 6 other targets previously labeled as likely planetary false positives. We find nine likely physically bound companion stars within 3\\prime\\prime of three candidate transiting exoplanet host stars and six likely EBs. Six of the nine detected companions are new discoveries. One of these new discoveries, EPIC 206061524, is associated with a planet candidate. Among the EB candidates, companions were only found near the shortest period ones (P\\lt 3 days), which is in line with previous results showing high multiplicity near short-period binary stars. This high-resolution data, including both the detected companions and the limits on potential unseen companions, will be useful in future planet vetting and stellar multiplicity rate studies for planets and binaries.

  14. Kepler-47: A Three-Planet Circumbinary System

    NASA Astrophysics Data System (ADS)

    Welsh, William; Orosz, Jerome; Quarles, Billy; Haghighipour, Nader

    2015-12-01

    Kepler-47 is the most interesting of the known circumbinary planets. In the discovery paper by Orosz et al. (2012) two planets were detected, with periods of 49.5 and 303 days around the 7.5-day binary. In addition, a single "orphan" transit of a possible third planet was noticed. Since then, five additional transits by this planet candidate have been uncovered, leading to the unambiguous confirmation of a third transiting planet in the system. The planet has a period of 187 days, and orbits in between the previously detected planets. It lies on the inner edge of the optimistic habitable zone, while its outer sibling falls within the conservative habitable zone. The orbit of this new planet is precessing, causing its transits to become significantly deeper over the span of the Kepler observations. Although the planets are not massive enough to measurably perturb the binary, they are sufficiently massive to interact with each other and cause mild transit timing variations (TTVs). This enables our photodynamical model to estimate their masses. We find that all three planets have very low-density and are on remarkably co-planar orbits: all 4 orbits (the binary and three planets) are within ~2 degrees of one another. Thus the Kepler-47 system puts interesting constraints on circumbinary planet formation and migration scenarios.

  15. Kepler

    NASA Technical Reports Server (NTRS)

    Howell, Steve B.

    2011-01-01

    The NASA Kepler mission recently announced over 1200 exoplanet candidates. While some are common Hot Jupiters, a large number are Neptune size and smaller, transit depths suggest sizes down to the radius of Earth. The Kepler project has a fairly high confidence that most of these candidates are real exoplanets. Many analysis steps and lessons learned from Kepler light curves are used during the vetting process. This talk will cover some new results in the areas of stellar variability, solar systems with multiple planets, and how transit-like signatures are vetted for false positives, especially those indicative of small planets.

  16. Terrestrial Planet Occurrence Rates for the Kepler GK Dwarf Sample

    NASA Astrophysics Data System (ADS)

    Burke, Christopher J.; Christiansen, Jessie L.; Mullally, F.; Seader, Shawn; Huber, Daniel; Rowe, Jason F.; Coughlin, Jeffrey L.; Thompson, Susan E.; Catanzarite, Joseph; Clarke, Bruce D.; Morton, Timothy D.; Caldwell, Douglas A.; Bryson, Stephen T.; Haas, Michael R.; Batalha, Natalie M.; Jenkins, Jon M.; Tenenbaum, Peter; Twicken, Joseph D.; Li, Jie; Quintana, Elisa; Barclay, Thomas; Henze, Christopher E.; Borucki, William J.; Howell, Steve B.; Still, Martin

    2015-08-01

    We measure planet occurrence rates using the planet candidates discovered by the Q1-Q16 Kepler pipeline search. This study examines planet occurrence rates for the Kepler GK dwarf target sample for planet radii, 0.75 ≤slant {R}{{p}} ≤slant 2.5 {R}\\oplus , and orbital periods, 50 ≤slant {P}{orb} ≤slant 300 days, with an emphasis on a thorough exploration and identification of the most important sources of systematic uncertainties. Integrating over this parameter space, we measure an occurrence rate of F0 = 0.77 planets per star, with an allowed range of 0.3≤slant {F}0 ≤slant 1.9. The allowed range takes into account both statistical and systematic uncertainties, and values of F0 beyond the allowed range are significantly in disagreement with our analysis. We generally find higher planet occurrence rates and a steeper increase in planet occurrence rates toward small planets than previous studies of the Kepler GK dwarf sample. Through extrapolation, we find that the one year orbital period terrestrial planet occurrence rate {\\zeta }1.0 = 0.1, with an allowed range of 0.01≤slant {\\zeta }1.0 ≤slant 2, where {\\zeta }1.0 is defined as the number of planets per star within 20% of the {R}{{p}} and {P}{orb} of Earth. For G dwarf hosts, the {\\zeta }1.0 parameter space is a subset of the larger {η }\\oplus parameter space, thus {\\zeta }1.0 places a lower limit on {η }\\oplus for G dwarf hosts. From our analysis, we identify the leading sources of systematics impacting Kepler occurrence rate determinations as reliability of the planet candidate sample, planet radii, pipeline completeness, and stellar parameters.

  17. Kepler AutoRegressive Planet Search: Initial Results

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel; Feigelson, Eric; Jogesh Babu, G.; Bahamonde, Natalia; Bertin, Karine; Christen, Alejandra; Curé, Michel; Meza, Cristian

    2015-08-01

    The statistical analysis procedures of the Kepler AutoRegressive Planet Search (KARPS) project are applied to a portion of the publicly available Kepler light curve data for the full 4-year mission duration. Tests of the methods have been made on a subset of Kepler Objects of Interest (KOI) systems, classified both as planetary `candidates' and `false positives' by the Kepler Team, as well as a random sample of unclassified systems. We find that the ARMA-type modeling successfully reduces the stellar variability, by a factor of 10 or more in active stars and by smaller factors in more quiescent stars. A typical quiescent Kepler star has an interquartile range (IQR) of ~10 e-/sec, which may improve slightly after modeling, while those with IQR ranging from 20 to 50 e-/sec, have improvements from 20% up to 70%. High activity stars (IQR exceeding 100) markedly improve, but visual inspection of the residual series shows that significant deviations from Gaussianity remain for many of them. Although the reduction in stellar signal is encouraging, it is important to note that the transit signal is also altered in the resulting residual time series. The periodogram derived from our Transit Comb Filter (TCF) is most effective for shorter period planets with quick ingress/egress times (relative to Kepler's 29-minute sample rate). We do not expect high sensitivity to periods of hundreds of days. Our findings to date on real-data tests of the KARPS methodology will be discussed including confirmation of some Kepler Team `candidate' planets, no confirmation of some `candidate' and `false positive' sytems, and suggestions of mischosen harmonics in the Kepler Team periodograms. We also present cases of new possible planetary signals.

  18. First Multi-Planet System Discovered by Kepler

    NASA Video Gallery

    NASA's Kepler Mission has discovered the first confirmed planetary system with more than one planet transiting the same star. The announcement of the discovery of the two planets, Kepler 9b and 9c,...

  19. Robo-AO Kepler Planetary Candidate Survey. II. Adaptive Optics Imaging of 969 Kepler Exoplanet Candidate Host Stars

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Ziegler, Carl; Law, Nicholas M.; Morton, Tim; Riddle, Reed; Atkinson, Dani; Schonhut, Jessica; Crepp, Justin

    2016-07-01

    We initiated the Robo-AO Kepler Planetary Candidate Survey in 2012 to observe each Kepler exoplanet candidate host star with high angular resolution, visible light, laser adaptive optics (AOs) imaging. Our goal is to find nearby stars lying in Kepler's photometric apertures that are responsible for the relatively high probability of false-positive exoplanet detections and that cause underestimates of the size of transit radii. Our comprehensive survey will also shed light on the effects of stellar multiplicity on exoplanet properties and will identify rare exoplanetary architectures. In this second part of our ongoing survey, we observed an additional 969 Kepler planet candidate hosts and we report blended stellar companions up to {{Δ }}m≈ 6 that contribute to Kepler's measured light curves. We found 203 companions within ˜4″ of 181 of the Kepler stars, of which 141 are new discoveries. We measure the nearby star probability for this sample of Kepler planet candidate host stars to be 10.6% ± 1.1% at angular separations up to 2.″5, significantly higher than the 7.4% ± 1.0% probability discovered in our initial sample of 715 stars; we find the probability increases to 17.6% ± 1.5% out to a separation of 4.″0. The median position of Kepler Objects of Interest (KOIs) observed in this survey are 1.°1 closer to the galactic plane, which may account for some of the nearby star probability enhancement. We additionally detail 50 Keck AO images of Robo-AO observed KOIs in order to confirm 37 companions detected at a <5σ significance level and to obtain additional infrared photometry on higher significance detected companions.

  20. High-resolution multi-band imaging for validation and characterization of small Kepler planets

    SciTech Connect

    Everett, Mark E.; Silva, David R.; Barclay, Thomas; Howell, Steve B.; Ciardi, David R.; Horch, Elliott P.; Crepp, Justin R.

    2015-02-01

    High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting a total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.

  1. SOPHIE velocimetry of Kepler transit candidates

    NASA Astrophysics Data System (ADS)

    Santerne, A.; Moutou, C.; Bouchy, F.; Hébrard, G.; Deleuil, M.; Díaz, R. F.; Bonomo, A. S.; Almenara, J.-M.

    2011-10-01

    As CoRoT, the Kepler space mission found a large amount of planetary transit candidates for which radial velocity follow-up is necessary in order to establish the planetary nature and then, to characterize the mass of the transiting companion. We are following up some interesting Kepler candidates with the SOPHIE spectrograph mounted at the 1.93-m telescope in Observatoire de Haute Provence (France). More than one year after the first Kepler release, we will present the strategy used to select the most promising Kepler candidates, within reach of a detection with SOPHIE, using the experience of more than 4 years of CoRoT, SWASP and HAT radial velocity follow-up. We will also highlight the results of the first year of observations that led to the discovery of several new transiting exoplanets and help the understanding of the false positive rate of the Kepler mission.

  2. Kepler Mission: A Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Koch, David; Fonda, Mark (Technical Monitor)

    2002-01-01

    The Kepler Mission was selected by NASA as one of the next two Discovery Missions. The mission design is based on the search for Earth-size planets in the habitable zone of solar-like stars, but does not preclude the discovery of larger or smaller planets in other orbits of non-solar-like stars. An overview of the mission, the scientific goals and the anticipated results will be presented.

  3. Using Spitzer to Estimate the Kepler False Positive Rate and to Validate Kepler Candidates.

    NASA Astrophysics Data System (ADS)

    Desert, Jean-Michel; Charbonneau, D.; Fressin, F.; Torres, G.

    2012-01-01

    I present the results from an ongoing large campaign with the Spitzer Space Telescope to gather near-infrared photometric measurements of Kepler Objects of Interest (KOI). Our goals are (1) to validate the planetary status of these Kepler candidates, (2) to estimate observationally the false positive rate, and (3) to study the atmospheres of confirmed planets through measurements of their secondary eclipses. Our target list spans of wide range of candidate sizes and periods orbiting various spectral type stars. The Spitzer observations provide constraints on the possibility of astrophysical false positives resulting from stellar blends, including eclipsing binaries and hierarchical triples. The number of possible blends per star is estimated using stellar population synthesis models and observational probes of the KOI close environments from direct imaging (e.g. Adaptive Optics, Speckle images, Kepler centroids). Combining all the above information with the shape of the transit lightcurves from the Kepler photometry, we compute odd ratios for the 34 candidates we observed in order to determine their false positive probability. Our results suggest that the Kepler false positive rate in this subset of candidates is low. I finally present a new list of Kepler candidates that we were able to validate using this method. This work is based on observations made with the Spitzer, which is operated by JPL/Caltech, under a contract with NASA. Support was provided by NASA through an award issued by JPL/Caltech. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  4. Characterizing the shortest-period planets found by Kepler

    NASA Astrophysics Data System (ADS)

    Sanchis Ojeda, Roberto; Winn, Joshua N.; Rappaport, Saul A.

    2015-01-01

    It is no coincidence that the first exoplanets known to have rocky compositions, CoRoT-7b and Kepler-10b, both have orbital periods shorter than one day. Such ultra-short periods facilitate planet discovery and characterization, by enabling a large number of transits to be observed, enhancing the amplitude of the radial-velocity signal, and allowing a cleaner separation of the radial-velocity signal from the slower spurious variations due to stellar activity. We have constructed a list of 106 planet candidates with periods shorter than one day, based on an independent search of the Kepler database as well as a critical review of previously published candidates. Our survey has revealed that ultra-short-period planets are approximately as common as hot Jupiters, but are almost always smaller than 2 RE. In addition, the ultra-short-period planets tend to be found as part of compact multi-planet systems, in contrast to the 'loneliness' of hot Jupiters. I will describe our ongoing efforts to characterize this new family of planets, with a combination of stellar spectroscopy and radial-velocity monitoring using the Keck telescopes.

  5. Searching for Circumprimary and Circumbinary Planets in Kepler Data

    NASA Astrophysics Data System (ADS)

    Haghighipour, Nader

    We propose to use the currently available data from the Kepler space telescope (specifically, variations in transit and eclipse timing) to detect planets in circumprimary and circumbinary orbits in binary star systems. The detection of planets in close binary stars during the past decade and the recent success of the Kepler space telescope in detecting planets in circumbinary orbits strongly suggest that planet formation in and around binary stars is robust and planets of variety of sizes may exist in dual-star systems. Given that approximately 60% of the main and pre-main sequence stars are in binaries, many of such planet-hosting dual-stars are expected to exist which naturally leads to several fundamental questions on the formation, characteristics, frequency, and habitability of their planets. However, the small number of the currently known planets in binary star systems (only 8) does not allow for arriving at statistically meaningful answers to these questions. The success of the Kepler space telescope in identifying more than 2300 planetary candidates (of which many may be in close dual-stars) and over 2100 eclipsing binaries has provided rich grounds for searching for planet-hosting binary stars and increasing the number of their planets. We propose to use the data from quarter 0 (Q0) to quarter 6 (Q6), to identify the signature(s) of planet(s) in and around binary stars by analyzing the variations in the times of planetary transit or the eclipses of the binary. We will use the transit timing variations of the +2300 planetary candidates for detecting stellar companions to their planet-hosting stars, and the eclipse timing variations of the +2100 binary star systems to detect circumbinary planets. We have developed a powerful algorithm dubbed as QATS that allows us to analyze eclipse and transit timing variations accurately and efficiently. To properly account for the frequency of planets in binary stars systems and comparing that with the frequency of

  6. COMPOSITIONS OF HOT SUPER-EARTH ATMOSPHERES: EXPLORING KEPLER CANDIDATES

    SciTech Connect

    Miguel, Y.; Kaltenegger, L.; Fegley, B.; Schaefer, L.

    2011-12-15

    This paper outlines a simple approach to evaluate the atmospheric composition of hot rocky planets by assuming different types of planetary composition and using corresponding model calculations. To explore hot atmospheres above 1000 K, we model the vaporization of silicate magma and estimate the range of atmospheric compositions according to the planet's radius and semi-major axis for the Kepler 2011 February data release. Our results show five atmospheric types for hot, rocky super-Earth atmospheres, strongly dependent on the initial composition and the planet's distance to the star. We provide a simple set of parameters that can be used to evaluate atmospheric compositions for current and future candidates provided by the Kepler mission and other searches.

  7. ARCHITECTURE OF PLANETARY SYSTEMS BASED ON KEPLER DATA: NUMBER OF PLANETS AND COPLANARITY

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-12-20

    We investigated the underlying architecture of planetary systems by deriving the distribution of planet multiplicity (number of planets) and the distribution of orbital inclinations based on the sample of planet candidates discovered by the Kepler mission. The scope of our study included solar-like stars and planets with orbital periods less than 200 days and with radii between 1.5 and 30 Earth radii, and was based on Kepler planet candidates detected during Quarters 1-6. We created models of planetary systems with different distributions of planet multiplicity and inclinations, simulated observations of these systems by Kepler, and compared the properties of the transits of detectable objects to actual Kepler planet detections. Specifically, we compared with both the Kepler sample's transit numbers and normalized transit duration ratios in order to determine each model's goodness of fit. We did not include any constraints from radial velocity surveys. Based on our best-fit models, 75%-80% of planetary systems have one or two planets with orbital periods less than 200 days. In addition, over 85% of planets have orbital inclinations less than 3 Degree-Sign (relative to a common reference plane). This high degree of coplanarity is comparable to that seen in our solar system. These results have implications for planet formation and evolution theories. Low inclinations are consistent with planets forming in a protoplanetary disk, followed by evolution without significant and lasting perturbations from other bodies capable of increasing inclinations.

  8. A SYSTEMATIC SEARCH FOR TROJAN PLANETS IN THE KEPLER DATA

    SciTech Connect

    Janson, Markus

    2013-09-10

    Trojans are circumstellar bodies that reside in characteristic 1:1 orbital resonances with planets. While all the trojans in our solar system are small ({approx}<100 km), stable planet-size trojans may exist in extrasolar planetary systems, and the Kepler telescope constitutes a formidable tool to search for them. Here we report on a systematic search for extrasolar trojan companions to 2244 known Kepler Objects of Interest (KOIs), with epicyclic orbital characteristics similar to those of the Jovian trojan families. No convincing trojan candidates are found, despite a typical sensitivity down to Earth-size objects. This fact, however, cannot be used to stringently exclude the existence of trojans in this size range, since stable trojans need not necessarily share the same orbital plane as the planet, and thus may not transit. Following this reasoning, we note that if Earth-sized trojans exist at all, they are almost certainly both present and in principle detectable in the full set of Kepler data, although a very substantial computational effort would be required to detect them. Additionally, we also note that some of the existing KOIs could in principle be trojans themselves, with a primary planet orbiting outside of the transiting plane. A few examples are given for which this is a readily testable scenario.

  9. Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets

    NASA Astrophysics Data System (ADS)

    Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Rowe, Jason F.; Jenkins, Jon M.; Bryson, Stephen T.; Latham, David W.; Howell, Steve B.; Gautier, Thomas N., III; Batalha, Natalie M.; Rogers, Leslie; Ciardi, David; Fischer, Debra A.; Gilliland, Ronald L.; Kjeldsen, Hans; Christensen-Dalsgaard, Jørgen; Huber, Daniel; Chaplin, William J.; Basu, Sarbani; Buchhave, Lars A.; Quinn, Samuel N.; Borucki, William J.; Koch, David G.; Hunter, Roger; Caldwell, Douglas A.; Van Cleve, Jeffrey; Kolbl, Rea; Weiss, Lauren M.; Petigura, Erik; Seager, Sara; Morton, Timothy; Johnson, John Asher; Ballard, Sarah; Burke, Chris; Cochran, William D.; Endl, Michael; MacQueen, Phillip; Everett, Mark E.; Lissauer, Jack J.; Ford, Eric B.; Torres, Guillermo; Fressin, Francois; Brown, Timothy M.; Steffen, Jason H.; Charbonneau, David; Basri, Gibor S.; Sasselov, Dimitar D.; Winn, Joshua; Sanchis-Ojeda, Roberto; Christiansen, Jessie; Adams, Elisabeth; Henze, Christopher; Dupree, Andrea; Fabrycky, Daniel C.; Fortney, Jonathan J.; Tarter, Jill; Holman, Matthew J.; Tenenbaum, Peter; Shporer, Avi; Lucas, Philip W.; Welsh, William F.; Orosz, Jerome A.; Bedding, T. R.; Campante, T. L.; Davies, G. R.; Elsworth, Y.; Handberg, R.; Hekker, S.; Karoff, C.; Kawaler, S. D.; Lund, M. N.; Lundkvist, M.; Metcalfe, T. S.; Miglio, A.; Silva Aguirre, V.; Stello, D.; White, T. R.; Boss, Alan; Devore, Edna; Gould, Alan; Prsa, Andrej; Agol, Eric; Barclay, Thomas; Coughlin, Jeff; Brugamyer, Erik; Mullally, Fergal; Quintana, Elisa V.; Still, Martin; Thompson, Susan E.; Morrison, David; Twicken, Joseph D.; Désert, Jean-Michel; Carter, Josh; Crepp, Justin R.; Hébrard, Guillaume; Santerne, Alexandre; Moutou, Claire; Sobeck, Charlie; Hudgins, Douglas; Haas, Michael R.; Robertson, Paul; Lillo-Box, Jorge; Barrado, David

    2014-02-01

    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than ~2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O). Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology.

  10. Kepler-16: a transiting circumbinary planet.

    PubMed

    Doyle, Laurance R; Carter, Joshua A; Fabrycky, Daniel C; Slawson, Robert W; Howell, Steve B; Winn, Joshua N; Orosz, Jerome A; Prša, Andrej; Welsh, William F; Quinn, Samuel N; Latham, David; Torres, Guillermo; Buchhave, Lars A; Marcy, Geoffrey W; Fortney, Jonathan J; Shporer, Avi; Ford, Eric B; Lissauer, Jack J; Ragozzine, Darin; Rucker, Michael; Batalha, Natalie; Jenkins, Jon M; Borucki, William J; Koch, David; Middour, Christopher K; Hall, Jennifer R; McCauliff, Sean; Fanelli, Michael N; Quintana, Elisa V; Holman, Matthew J; Caldwell, Douglas A; Still, Martin; Stefanik, Robert P; Brown, Warren R; Esquerdo, Gilbert A; Tang, Sumin; Furesz, Gabor; Geary, John C; Berlind, Perry; Calkins, Michael L; Short, Donald R; Steffen, Jason H; Sasselov, Dimitar; Dunham, Edward W; Cochran, William D; Boss, Alan; Haas, Michael R; Buzasi, Derek; Fischer, Debra

    2011-09-16

    We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk. PMID:21921192

  11. Using Kepler Candidates to Examine the Properties of Habitable Zone Exoplanets

    NASA Astrophysics Data System (ADS)

    Adams, Arthur D.; Kane, Stephen R.

    2016-07-01

    An analysis of the currently known exoplanets in the habitable zones (HZs) of their host stars is of interest both in the wake of the NASA Kepler mission and with prospects for expanding the known planet population through future ground- and space-based projects. In this paper, we compare the empirical distributions of the properties of stellar systems with transiting planets to those with transiting HZ planets. This comparison includes two categories: confirmed/validated transiting planet systems, and Kepler planet and candidate planet systems. These two categories allow us to present quantitative analyses on both a conservative data set of known planets and a more optimistic and numerous sample of Kepler candidates. Both are subject to similar instrumental and detection biases, and are vetted against false positive detections. We examine whether the HZ distributions vary from the overall distributions in the Kepler sample with respect to planetary radius as well as stellar mass, effective temperature, and metallicity. We find that while the evidence is strongest in suggesting a difference between the size distributions of planets in the HZ and the overall size distribution, none of the statistical results provide strong empirical evidence for HZ planets or HZ planet-hosting stars being significantly different from the full Kepler sample with respect to these properties.

  12. Transiting Planet Search in the Kepler Pipeline

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.; Chandrasekaran, Hema; McCauliff, Sean D.; Caldwell, Douglas A.; Tenebaum, Peter; Li, Jie; Klaus, Todd C.; Cote, Mile T.; Middour, Christopher

    2010-01-01

    The Kepler Mission simultaneously measures the brightness of more than 160,000 stars every 29.4 minutes over a 3.5-year mission to search for transiting planets. Detecting transits is a signal-detection problem where the signal of interest is a periodic pulse train and the predominant noise source is non-white, non-stationary (1/f) type process of stellar variability. Many stars also exhibit coherent or quasi-coherent oscillations. The detection algorithm first identifies and removes strong oscillations followed by an adaptive, wavelet-based matched filter. We discuss how we obtain super-resolution detection statistics and the effectiveness of the algorithm for Kepler flight data.

  13. The period ratio distribution of Kepler's candidate multiplanet systems

    NASA Astrophysics Data System (ADS)

    Steffen, Jason H.; Hwang, Jason A.

    2015-04-01

    We calculate and analyse the distribution of period ratios observed in systems of Kepler exoplanet candidates including studies of both adjacent planet pairs and all planet pairs. These distributions account for both the geometrical bias against detecting more distant planets and the effects of incompleteness due to planets missed by the data reduction pipeline. In addition to some of the known features near first-order mean-motion resonances (MMRs), there is a significant excess of planet pairs with period ratios near 2.2. The statistical significance of this feature is assessed using Monte Carlo simulation. We also investigate the distribution of period ratios near first-order MMR and compare different quantities used to measure this distribution. We find that beyond period ratios of ˜2.5, the distribution of all period ratios follows a power law with an exponent -1.26 ± 0.05. We discuss implications that these results may have on the formation and dynamical evolution of Kepler-like planetary systems-systems of sub-Neptune/super-Earth planets with relatively short orbital periods.

  14. Passing NASA's Planet Quest Baton from Kepler to TESS

    NASA Astrophysics Data System (ADS)

    Jenkins, J.

    Kepler vaulted into the heavens on March 7, 2009, initiating NASAs search for Earth- size planets orbiting Sun-like stars in the habitable zone, where liquid water could exist on a rocky planetary surface. In the 4 years since Kepler began science operations, a flood of photometric data on upwards of 190,000 stars of unprecedented precision and continuity has provoked a watershed of 134+ confirmed or validated planets, 3200+ planetary candidates (most sub-Neptune in size and many compara- ble to or smaller than Earth), and a resounding revolution in asteroseismology and astrophysics. The most recent discoveries include Kepler-62 with 5 planets total of which 2 are in the habitable zone with radii of 1.4 and 1.7 Re. The focus of the mission is shifting towards how to rapidly vet the 18,000+ threshold crossing events produced with each transiting planet search, and towards those studies that will allow us to understand what the data are saying about the prevalence of planets in the solar neighborhood and throughout the galaxy. This talk will provide an overview of the science results from the Kepler Mission and the work ahead to derive the frequency of Earth-size planets in the habitable zone of solar-like stars from the treasure trove of Kepler data. NASAs quest for exoplanets continues with the Transiting Exoplanet Survey Satel- lite (TESS) mission, slated for launch in May 2017 by NASAs Explorer Program. TESS will conduct an all-sky transit survey to identify the 1000 best small exoplanets in the solar neighborhood for follow up observations and characterization. TESSs targets will include all F, G, K dwarfs from +4 to +12 magnitude and all M dwarfs known within ˜200 light-years. 500,000 target stars will be observed over two years with ˜500 square degrees observed continuously for a year in each hemisphere in the James Webb Space Telescopes continuously viewable zones. Since the typical TESS target star is 5 magnitudes brighter than Kepler’s and 10 times

  15. Kepler Planet-Detection Mission: Introduction and First Results

    SciTech Connect

    Borucki, William J.; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Caldwell, John; Christensen-Dalsgaard, Jorgen; Cochran, William D.; DeVore, Edna; Dunham, Edward W.; /Lowell Observ. /Harvard-Smithsonian Ctr. Astrophys.

    2010-01-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets ({approx}0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

  16. SPECTROSCOPY OF FAINT KEPLER MISSION EXOPLANET CANDIDATE HOST STARS

    SciTech Connect

    Everett, Mark E.; Silva, David R.; Howell, Steve B.; Szkody, Paula

    2013-07-10

    Stellar properties are measured for a large set of Kepler mission exoplanet candidate host stars. Most of these stars are fainter than 14th magnitude, in contrast to other spectroscopic follow-up studies. This sample includes many high-priority Earth-sized candidate planets. A set of model spectra are fitted to R {approx} 3000 optical spectra of 268 stars to improve estimates of T{sub eff}, log (g), and [Fe/H] for the dwarfs in the range 4750 {<=} T{sub eff} {<=} 7200 K. These stellar properties are used to find new stellar radii and, in turn, new radius estimates for the candidate planets. The result of improved stellar characteristics is a more accurate representation of this Kepler exoplanet sample and identification of promising candidates for more detailed study. This stellar sample, particularly among stars with T{sub eff} {approx}> 5200 K, includes a greater number of relatively evolved stars with larger radii than assumed by the mission on the basis of multi-color broadband photometry. About 26% of the modeled stars require radii to be revised upward by a factor of 1.35 or greater, and modeling of 87% of the stars suggest some increase in radius. The sample presented here also exhibits a change in the incidence of planets larger than 3-4 R{sub Circled-Plus} as a function of metallicity. Once [Fe/H] increases to {>=} - 0.05, large planets suddenly appear in the sample while smaller planets are found orbiting stars with a wider range of metallicity. The modeled stellar spectra, as well as an additional 84 stars of mostly lower effective temperatures, are made available to the community.

  17. Statistical Eclipses of Kepler Neptune-like Candidates

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Deming, Drake

    2015-01-01

    We present the results of our work to detect secondary eclipses of Neptune-like planets in Kepler's long cadence data and to determine their average albedo. Our method is inherently statistical in nature: we scale and combine photometric data for groups of planets to infer their average eclipse depths, and to greatly increase the signal-to-noise. We have modified our method for averaging short cadence light curves of multiple planet candidates (ApJ, in press), and have applied it to long cadence data. We transform the phase of the individual candidates to match a reference candidate, such that the light curves add constructively, and we account for the broadening of the eclipse due to the 30 minute cadence. In the short cadence data, we found that a group of close-in sub-Saturn candidates (1 to 6 Earth radii) was more reflective than typical hot Jupiters. With the larger number of candidates available in long cadence, we expect to improve the resolution in radius, focusing on Neptune-like planets.

  18. Characterization and Validation of Transiting Planets in the Kepler and TESS Pipelines

    NASA Astrophysics Data System (ADS)

    Twicken, Joseph; Brownston, Lee; Catanzarite, Joseph; Clarke, Bruce; Cote, Miles; Girouard, Forrest; Li, Jie; McCauliff, Sean; Seader, Shawn; Tenenbaum, Peter; Wohler, Bill; Jenkins, Jon Michael; Batalha, Natalie; Bryson, Steve; Burke, Christopher; Caldwell, Douglas

    2015-08-01

    Light curves for Kepler targets are searched for transiting planet signatures in the Transiting Planet Search (TPS) component of the Science Operations Center (SOC) Processing Pipeline. Targets for which the detection threshold is exceeded are subsequently processed in the Data Validation (DV) Pipeline component. The primary functions of DV are to (1) characterize planets identified in the transiting planet search, (2) search for additional transiting planet signatures in light curves after modeled transit signatures have been removed, and (3) perform a comprehensive suite of diagnostic tests to aid in discrimination between true transiting planets and false positive detections. DV output products include extensive reports by target, one-page report summaries by planet candidate, and tabulated planet model fit and diagnostic test results. The DV products are employed by humans and automated systems to vet planet candidates identified in the pipeline. The final revision of the Kepler SOC codebase (9.3) was released in March 2015. It will be utilized to reprocess the complete Q1-Q17 data set later this year. At the same time, the SOC Pipeline codebase is being ported to support the Transiting Exoplanet Survey Satellite (TESS) Mission. TESS is expected to launch in 2017 and survey the entire sky for transiting exoplanets over a period of two years. We describe the final revision of the Kepler Data Validation component with emphasis on the diagnostic tests and reports. This revision also serves as the DV baseline for TESS. The diagnostic tests exploit the flux (i.e., light curve), centroid and pixel time series associated with each target to facilitate the determination of the true origin of each purported transiting planet signature. Candidate planet detections and DV products for Kepler are delivered to the Exoplanet Archive at the NASA Exoplanet Science Institute (NExScI). The Exoplanet Archive is located at exoplanetarchive.ipac.caltech.edu. Funding for the Kepler

  19. Animation: Kepler-11 and Six Orbiting Planets

    NASA Video Gallery

    NASA's Kepler space telescope watches a star, Kepler-11. The star appears to blink in a pattern. It dims like clockwork as six "hands" of differing size orbit around it at different rates. Kepler-1...

  20. Kepler Planet-Detection Mission: Introduction and First Results

    NASA Astrophysics Data System (ADS)

    Borucki, William J.; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Caldwell, John; Christensen-Dalsgaard, Jørgen; Cochran, William D.; DeVore, Edna; Dunham, Edward W.; Dupree, Andrea K.; Gautier, Thomas N.; Geary, John C.; Gilliland, Ronald; Gould, Alan; Howell, Steve B.; Jenkins, Jon M.; Kondo, Yoji; Latham, David W.; Marcy, Geoffrey W.; Meibom, Søren; Kjeldsen, Hans; Lissauer, Jack J.; Monet, David G.; Morrison, David; Sasselov, Dimitar; Tarter, Jill; Boss, Alan; Brownlee, Don; Owen, Toby; Buzasi, Derek; Charbonneau, David; Doyle, Laurance; Fortney, Jonathan; Ford, Eric B.; Holman, Matthew J.; Seager, Sara; Steffen, Jason H.; Welsh, William F.; Rowe, Jason; Anderson, Howard; Buchhave, Lars; Ciardi, David; Walkowicz, Lucianne; Sherry, William; Horch, Elliott; Isaacson, Howard; Everett, Mark E.; Fischer, Debra; Torres, Guillermo; Johnson, John Asher; Endl, Michael; MacQueen, Phillip; Bryson, Stephen T.; Dotson, Jessie; Haas, Michael; Kolodziejczak, Jeffrey; Van Cleve, Jeffrey; Chandrasekaran, Hema; Twicken, Joseph D.; Quintana, Elisa V.; Clarke, Bruce D.; Allen, Christopher; Li, Jie; Wu, Haley; Tenenbaum, Peter; Verner, Ekaterina; Bruhweiler, Frederick; Barnes, Jason; Prsa, Andrej

    2010-02-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

  1. Phase curves of the Kepler-11 multi-planet system

    SciTech Connect

    Gelino, Dawn M.; Kane, Stephen R.

    2014-06-01

    The Kepler mission has allowed the detection of numerous multi-planet exosystems where the planetary orbits are relatively compact. The first such system detected was Kepler-11 which has six known planets at the present time. These kinds of systems offer unique opportunities to study constraints on planetary albedos by taking advantage of both the precision timing and photometry provided by Kepler data to monitor possible phase variations. Here we present a case study of the Kepler-11 system in which we investigate the phase modulation of the system as the planets orbit the host star. We provide predictions of maximum phase modulation where the planets are simultaneously close to superior conjunction. We use corrected Kepler data for Q1-Q17 to determine the significance of these phase peaks. We find that data quarters where maximum phase peaks occur are better fit by a phase model than a 'null hypothesis' model.

  2. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2003-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  3. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2002-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  4. Kepler Planet Detection Mission: Introduction and First Results

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Lissauer, Jack J.; Morrison, David; Rowe, Jason; Bryson, Stephen T.; Dotson, Jessie; Haas,Michael; Gautier, Thomas N.

    2010-01-01

    The Kepler Mission is designed to determine the frequency of Earth-size and rocky planets in and near the habitable zone (HZ) of solar-like stars. The HZ is defined to be the region of space where a rocky planet could maintain liquid water on its surface. Kepler is the 10th competitively-selected Discovery Mission and was launched on March 6, 2009. Since completing its commissioning, Kepler has observed over 156,000 stars simultaneously and near continuously to search for planets that periodically pass in front of their host star (transit). The photometric precision is approximately 23 ppm for 50% of the 12th magnitude dwarf stars for an integration period of 6.5 hours. During the first 3 months of operation the photometer detected transit-like signatures from more than 200 stars. Careful examination shows that many of these events are false-positives such as small stars orbiting large stars or blends of target stars with eclipsing binary stars. Ground-based follow-up observations confirm the discovery of five new exoplanets with sizes between 0.37 andl.6 Jupiter radii (R(sub J)) and orbital periods ranging from 3.2 to 4.9 days. Ground-based observations with the Keck 1, Hobby-Ebberly, Hale, WIYN, MMT, Tillinghast, Shane, and Nordic Optical Telescopes are used to vet the planetary candidates and measure the masses of the putative planets. Observations of occultations and phase variations of hot, short-period planets such as HT-P-7b provide a probe of atmospheric properties. Asteroseismic analysis already shows the presence of p-mode oscillations in several stars. Such observations will be used to measure the mean stellar density and infer the stellar size and age. For stars too dim to permit asteroseismology, observations of the centroid motion of target stars will be used to measure the parallax and be combined with photometric measurements to estimate stellar sizes. Four open clusters are being observed to determine stellar rotation rates as a function of age and

  5. FIVE KEPLER TARGET STARS THAT SHOW MULTIPLE TRANSITING EXOPLANET CANDIDATES

    SciTech Connect

    Steffen, Jason H.; Batalha, Natalie M.; Borucki, William J.; Caldwell, Douglas A.; Haas, Michael J.; Jenkins, Jon M.; Koch, David; Lissauer, Jack J.; Buchhave, Lars A.; Fabrycky, Daniel C.; Fressin, Francois; Holman, Matthew J.; Latham, David W.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Moorhead, Althea V.; Fortney, Jonathan J.; Howell, Steve B.; Isaacson, Howard

    2010-12-10

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities-two near 2:1 and one just outside 5:2. We discuss the implications that multi-transiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories, as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTVs) due to gravitational interactions, though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  6. Five Kepler target stars that show multiple transiting exoplanet candidates

    SciTech Connect

    Steffen, Jason H.; Batalha, Natalie M.; Borucki, William J.; Buchhave, Lars A.; Caldwell, Douglas A.; Cochran, William D.; Endl, Michael; Fabrycky, Daniel C.; Fressin, Francois; Ford, Eric B.; Fortney, Jonathan J.; /UC, Santa Cruz, Phys. Dept. /NASA, Ames

    2010-06-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities - two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTV) due to gravitational interactions - though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  7. TRANSIT TIMING OBSERVATIONS FROM KEPLER. V. TRANSIT TIMING VARIATION CANDIDATES IN THE FIRST SIXTEEN MONTHS FROM POLYNOMIAL MODELS

    SciTech Connect

    Ford, Eric B.; Ragozzine, Darin; Holman, Matthew J.; Rowe, Jason F.; Barclay, Thomas; Borucki, William J.; Bryson, Stephen T.; Caldwell, Douglas A.; Kinemuchi, Karen; Koch, David G.; Lissauer, Jack J.; Still, Martin; Tenenbaum, Peter; Steffen, Jason H.; Batalha, Natalie M.; Fabrycky, Daniel C.; and others

    2012-09-10

    Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results of an updated transit timing variation (TTV) analysis for 1481 planet candidates based on transit times measured during the first sixteen months of Kepler observations. We present 39 strong TTV candidates based on long-term trends (2.8% of suitable data sets). We present another 136 weaker TTV candidates (9.8% of suitable data sets) based on the excess scatter of TTV measurements about a linear ephemeris. We anticipate that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We find that the occurrence rate of planet candidates that show TTVs is significantly increased ({approx}68%) for planet candidates transiting stars with multiple transiting planet candidates when compared to planet candidates transiting stars with a single transiting planet candidate.

  8. Validation of Twelve Small Kepler Transiting Planets in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Caldwell, Douglas A.; Torres, Guillermo; Kipping, David M.; Ballard, Sarah; Batalha, Natalie; Borucki, William J.; Bryson, Steve; Ciardi, David R.; Crepp, Justin R.; Everett, Mark; Fressin, Francois; Henze, Christopher; Horch, Elliott; Howard, Andrew; Howell, Steve B.; Isaacson, Howard T.; Jenkins, Jon Michael; Kolbl, Rea; Marcy, Geoffrey W.; McCauliff, Sean D.; Muirhead, Philip Steven; Newton, Elizabeth; Petigura, Erik; Twicken, Joseph D.; Quintana, Elisa V.; Barclay, Thomas

    2015-01-01

    We report on the work to validate twelve candidate-transiting planets from Kepler with orbital periods ranging from 34 to 207 days initially identified in the pipeline search of three years of Kepler data from quarters 1 to 12. The candidates were selected based on pipeline Data Validation models indicating that they are small and potentially in the habitable zone (HZ) of their parent stars. As their expected Doppler signals are too small for a direct measure of their masses, we verify their planetary nature by validating them statistically using the BLENDER technique. BLENDER simulates large numbers of false-positive scenarios and compares the resulting light curves with the Kepler photometry, taking into account additional information from the analysis of Kepler flux centroids and new follow-up observations, including high-resolution optical and NIR spectroscopy, adaptive optics imaging, and speckle imaging. For eleven of the candidates we show that the likelihood they are true planets is far greater than that of a false positive, to a 99.73% confidence level. For the twelfth candidate, the planet confidence level is about 99.2%. Using improved stellar parameters for the host stars, we derive planetary radii ranging from 1.12 to 2.73 R⊕. All twelve objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of the candidates that have been previously validated by others, our study doubles the number of known potentially rocky planets in the HZ.

  9. Robotic laser adaptive optics imaging of 715 Kepler exoplanet candidates using Robo-AO

    SciTech Connect

    Law, Nicholas M.; Ziegler, Carl; Morton, Tim; Riddle, Reed; Tendulkar, Shriharsh P.; Bui, Khanh; Dekany, Richard G.; Kulkarni, Shrinivas; Punnadi, Sujit; Baranec, Christoph; Ravichandran, Ganesh; Johnson, John Asher; Burse, Mahesh P.; Das, H. K.; Ramaprakash, A. N.

    2014-08-10

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results from the 2012 observing season, searching for stars close to 715 Kepler planet candidate hosts. We find 53 companions, 43 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for large adaptive optics surveys. Our survey is sensitive to objects from ≈0.''15 to 2.''5 separation, with magnitude differences up to Δm ≈ 6. We measure an overall nearby-star probability for Kepler planet candidates of 7.4% ± 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured planetary radius. We discuss several Kepler Objects of Interest (KOIs) of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are 'coincident multiple' systems, with several transiting planets shared between the two stars. Finally, we find 98% confidence evidence that short-period giant planets are two to three times more likely than longer-period planets to be found in wide stellar binaries.

  10. Kepler: The Search for Earth-Size Planets Begins

    NASA Video Gallery

    Since its launch in March, 2009, the Kepler Mission has announced the discovery of 9 confirmed exoplanets (or planets outside our solar system). This video explores how the team works to combine ph...

  11. NASA's Kepler Discovers Its Smallest 'Habitable Zone' Planets to Date

    NASA Video Gallery

    NASA's Kepler mission has discovered two new planetary systems that include three super-Earth-size planets in the "habitable zone," the range of distance from a star where the surface temperature o...

  12. NASA's Kepler Mission Discovers Multiple Planets Orbiting Twin Suns

    NASA Video Gallery

    NASA's Kepler mission has discovered the first transiting circumbinary system -- multiple planets orbiting two suns -- 4,900 light-years from Earth, in the constellation Cygnus, proving that more t...

  13. THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS

    SciTech Connect

    Fressin, Francois; Torres, Guillermo; Charbonneau, David; Dressing, Courtney D.; Bryson, Stephen T.; Christiansen, Jessie; Jenkins, Jon M.; Batalha, Natalie M.; Walkowicz, Lucianne M.

    2013-04-01

    The Kepler mission is uniquely suited to study the frequencies of extrasolar planets. This goal requires knowledge of the incidence of false positives such as eclipsing binaries in the background of the targets, or physically bound to them, which can mimic the photometric signal of a transiting planet. We perform numerical simulations of the Kepler targets and of physical companions or stars in the background to predict the occurrence of astrophysical false positives detectable by the mission. Using real noise level estimates, we compute the number and characteristics of detectable eclipsing pairs involving main-sequence stars and non-main-sequence stars or planets, and we quantify the fraction of those that would pass the Kepler candidate vetting procedure. By comparing their distribution with that of the Kepler Objects of Interest (KOIs) detected during the first six quarters of operation of the spacecraft, we infer the false positive rate of Kepler and study its dependence on spectral type, candidate planet size, and orbital period. We find that the global false positive rate of Kepler is 9.4%, peaking for giant planets (6-22 R{sub Circled-Plus }) at 17.7%, reaching a low of 6.7% for small Neptunes (2-4 R{sub Circled-Plus }), and increasing again for Earth-size planets (0.8-1.25 R{sub Circled-Plus }) to 12.3%. Most importantly, we also quantify and characterize the distribution and rate of occurrence of planets down to Earth size with no prior assumptions on their frequency, by subtracting from the population of actual Kepler candidates our simulated population of astrophysical false positives. We find that 16.5% {+-} 3.6% of main-sequence FGK stars have at least one planet between 0.8 and 1.25 R{sub Circled-Plus} with orbital periods up to 85 days. This result is a significant step toward the determination of eta-earth, the occurrence of Earth-like planets in the habitable zone of their parent stars. There is no significant dependence of the rates of planet

  14. HARPS-N and SOPHIE joint follow-up of Kepler close-in planetary candidates

    NASA Astrophysics Data System (ADS)

    Hebrard, Guillaume

    2015-12-01

    Radial velocity follow-up is mandatory to establish the nature of most of the transiting planet candidates detected with Kepler, then to characterize them and in particular to measure their mass and eccentricity. We started follow-up programs with the spectrograph HARPS-N that benefit from our SOPHIE observations on Kepler Objects of Interest. Our HARPS-N programs mainly aim at extending the SOPHIE results toward Kepler planetary candidates having lower masses, smaller radii, and/or fainter host stars. Up to now, they allowed the identification of several false positives and the characterization of 7 new planets, i.e. about half the number of transiting planets characterized with HARPS-N since its installation. Most of them are in parameters domain with a sparse number of known objects.

  15. Increasing the sensitivity of the Kepler legacy archive to transiting planets

    NASA Astrophysics Data System (ADS)

    Still, Martin D.

    2013-10-01

    All legacy light curves archived by the Kepler project are available to the community. They are based upon simple aperture extractions from time-tagged pixel data. We demonstrate that this photometry method works well for the bright end of the Kepler target sample yet there is enormous scope for further gains in sensitivity to planet transits of faint stars in the sample. To this end, all pixel data have been made available in the archive. Methods for the user community to optimize aperture photometry and exploit point spread function modeling are being developed. Exploiting existing Kepler planet candidates, we showcase the signal-to-noise to be gained by these methods. We argue that at the faintest end of the candidate distribution, optimization provides a factor two improvement in sensitivity to transits.These methods can provide potentially significant improvement to a number of facets of the Kepler mission: 1. Sensitivity to new planet candidates residing currently below the signal-to-noise detection threshold; 2. Characterizing known transit profiles to higher precision; 3. Identifying contamination from nearby sources and removing contamination bias from transit depths; 4. Mitigating focus and pointing systematics within the Kepler data, and 5. Allowing the direct characterization of time-dependent physical and detector biases within the image background. These methods are equally applicable to data from the upcoming TESS mission.

  16. Kepler-1647b: The Largest and Longest-period Kepler Transiting Circumbinary Planet

    NASA Astrophysics Data System (ADS)

    Kostov, Veselin B.; Orosz, Jerome A.; Welsh, William F.; Doyle, Laurance R.; Fabrycky, Daniel C.; Haghighipour, Nader; Quarles, Billy; Short, Donald R.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Gregorio, Joao; Hinse, Tobias C.; Isaacson, Howard; Jenkins, Jon M.; Jensen, Eric L. N.; Kane, Stephen; Kull, Ilya; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Mazeh, Tsevi; Müller, Tobias W. A.; Pepper, Joshua; Quinn, Samuel N.; Ragozzine, Darin; Shporer, Avi; Steffen, Jason H.; Torres, Guillermo; Windmiller, Gur; Borucki, William J.

    2016-08-01

    We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (∼1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With a radius of 1.06 ± 0.01 R Jup, it is also the largest CBP to date. The planet produced three transits in the light curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass, 1.52 ± 0.65 M Jup. The planet revolves around an 11-day period eclipsing binary consisting of two solar-mass stars on a slightly inclined, mildly eccentric (e bin = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth’s, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.

  17. Kepler-1647b: The Largest and Longest-period Kepler Transiting Circumbinary Planet

    NASA Astrophysics Data System (ADS)

    Kostov, Veselin B.; Orosz, Jerome A.; Welsh, William F.; Doyle, Laurance R.; Fabrycky, Daniel C.; Haghighipour, Nader; Quarles, Billy; Short, Donald R.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Gregorio, Joao; Hinse, Tobias C.; Isaacson, Howard; Jenkins, Jon M.; Jensen, Eric L. N.; Kane, Stephen; Kull, Ilya; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Mazeh, Tsevi; Müller, Tobias W. A.; Pepper, Joshua; Quinn, Samuel N.; Ragozzine, Darin; Shporer, Avi; Steffen, Jason H.; Torres, Guillermo; Windmiller, Gur; Borucki, William J.

    2016-08-01

    We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (˜1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With a radius of 1.06 ± 0.01 R Jup, it is also the largest CBP to date. The planet produced three transits in the light curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass, 1.52 ± 0.65 M Jup. The planet revolves around an 11-day period eclipsing binary consisting of two solar-mass stars on a slightly inclined, mildly eccentric (e bin = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth’s, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.

  18. Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates

    SciTech Connect

    Fabrycky, Daniel C.; Lissauer, Jack J.; Rowe, Jason F.; Barclay, Thomas; Batalha, Natalie; Borucki, William; Jenkins, Jon M.; Li, Jie; Morris, Robert L.; Smith, Jeffrey C.; Ragozzine, Darin; Geary, John C.; Holman, Matthew J.; Steffen, Jason H.; Agol, Eric; Ciardi, David R.; Gautier, Thomas N.; Shporer, Avi; and others

    2014-08-01

    We report on the orbital architectures of Kepler systems having multiple-planet candidates identified in the analysis of data from the first six quarters of Kepler data and reported by Batalha et al. (2013). These data show 899 transiting planet candidates in 365 multiple-planet systems and provide a powerful means to study the statistical properties of planetary systems. Using a generic mass-radius relationship, we find that only two pairs of planets in these candidate systems (out of 761 pairs total) appear to be on Hill-unstable orbits, indicating ∼96% of the candidate planetary systems are correctly interpreted as true systems. We find that planet pairs show little statistical preference to be near mean-motion resonances. We identify an asymmetry in the distribution of period ratios near first-order resonances (e.g., 2:1, 3:2), with an excess of planet pairs lying wide of resonance and relatively few lying narrow of resonance. Finally, based upon the transit duration ratios of adjacent planets in each system, we find that the interior planet tends to have a smaller transit impact parameter than the exterior planet does. This finding suggests that the mode of the mutual inclinations of planetary orbital planes is in the range 1.°0-2.°2, for the packed systems of small planets probed by these observations.

  19. Architecture of Kepler's Multi-transiting Systems. II. New Investigations with Twice as Many Candidates

    NASA Astrophysics Data System (ADS)

    Fabrycky, Daniel C.; Lissauer, Jack J.; Ragozzine, Darin; Rowe, Jason F.; Steffen, Jason H.; Agol, Eric; Barclay, Thomas; Batalha, Natalie; Borucki, William; Ciardi, David R.; Ford, Eric B.; Gautier, Thomas N.; Geary, John C.; Holman, Matthew J.; Jenkins, Jon M.; Li, Jie; Morehead, Robert C.; Morris, Robert L.; Shporer, Avi; Smith, Jeffrey C.; Still, Martin; Van Cleve, Jeffrey

    2014-08-01

    We report on the orbital architectures of Kepler systems having multiple-planet candidates identified in the analysis of data from the first six quarters of Kepler data and reported by Batalha et al. (2013). These data show 899 transiting planet candidates in 365 multiple-planet systems and provide a powerful means to study the statistical properties of planetary systems. Using a generic mass-radius relationship, we find that only two pairs of planets in these candidate systems (out of 761 pairs total) appear to be on Hill-unstable orbits, indicating ~96% of the candidate planetary systems are correctly interpreted as true systems. We find that planet pairs show little statistical preference to be near mean-motion resonances. We identify an asymmetry in the distribution of period ratios near first-order resonances (e.g., 2:1, 3:2), with an excess of planet pairs lying wide of resonance and relatively few lying narrow of resonance. Finally, based upon the transit duration ratios of adjacent planets in each system, we find that the interior planet tends to have a smaller transit impact parameter than the exterior planet does. This finding suggests that the mode of the mutual inclinations of planetary orbital planes is in the range 1.°0-2.°2, for the packed systems of small planets probed by these observations.

  20. A survey for very short-period planets in the Kepler data

    SciTech Connect

    Jackson, Brian; Stark, Christopher C.; Chambers, John; Adams, Elisabeth R.; Deming, Drake

    2013-12-20

    We conducted a search for very short-period transiting objects in the publicly available Kepler data set. Our preliminary survey has revealed four planetary candidates, all with orbital periods less than 12 hr. We have analyzed the data for these candidates using photometric models that include transit light curves, ellipsoidal variations, and secondary eclipses to constrain the candidates' radii, masses, and effective temperatures. Even with masses of only a few Earth masses, the candidates' short periods mean that they may induce stellar radial velocity signals (a few m s{sup –1}) detectable by currently operating facilities. The origins of such short-period planets are unclear, but we discuss the possibility that they may be the remnants of disrupted hot Jupiters. Whatever their origins, if confirmed as planets, these candidates would be among the shortest-period planets ever discovered. Such planets would be particularly amenable to discovery by the planned TESS mission.

  1. Increasing the sensitivity of the Kepler legacy archive to transiting planets

    NASA Astrophysics Data System (ADS)

    Still, Martin D.

    2014-01-01

    All legacy light curves archived by the Kepler project are available to the community. They are based upon simple aperture extractions from time-tagged pixel data. We demonstrate that this photometry method works well for the bright end of the Kepler target sample yet there is enormous scope for further gains in sensitivity to planet transits of faint stars in the sample. To this end, all pixel data have been made available in the archive. Methods for the user community to optimize aperture photometry and exploit point spread function modeling are being developed. Exploiting existing Kepler planet candidates, we showcase the signal-to-noise to be gained by these methods. We argue that at the faintest end of the candidate distribution, optimization provides a factor two improvement in sensitivity to transits, reaching the signal-to-noise promised by the eight year mission, curtailed by reaction wheel failure after four years. These methods can provide potentially significant improvement to a number of facets of the Kepler mission: 1. Sensitivity to new planet candidates residing currently below the signal-to-noise detection threshold; 2. Characterizing known transit profiles to higher precision; 3. Identifying contamination from nearby sources and removing contamination bias from transit depths; 4. Mitigating focus and pointing systematics within the Kepler data, and 5. Allowing the direct characterization of time-dependent physical and detector biases within the image background. With exisiting focal plane calibrations, the number of targets that currently benefit from optimized photometry is relatively small, limited to sources of magnitude Kp > 16. However, with additional refinement of the focal plane calibration, improvement in light curve quality for objects 14 < Kp < 16 can be anticipated, impacting 50% of the Kepler target sample. These methods are equally applicable to data from the upcoming TESS mission and are potentially a critical component to the

  2. Confirming The Planetary Nature Of Kepler Transit Candidates Orbiting Pulsating Stars With Light Travel Time Measurements

    NASA Astrophysics Data System (ADS)

    Christiansen, Jessie; Rowe, J. F.; Mullally, F.; Kepler Science Team

    2011-01-01

    The first extrasolar planets were found orbiting pulsars, and were detected via the changes in the arrival time of the pulses caused by the gravitational effect of the planets on the pulsar. Planets orbiting pulsating stars, such as delta Scuti/gamma Doradus stars, will distort the arrival times of maximum light in the light curves of these stars in the same fashion. We investigate the possibility of detecting this phenomenon in Kepler light curves, and constrain the mass limits that could be set on transiting companions. This method would provide an independent test of the planetary nature of Kepler transiting candidates. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  3. The California-Kepler Survey: Precise Planet Radii and Metallicities

    NASA Astrophysics Data System (ADS)

    Howard, Andrew; Marcy, G. W.; Johnson, J. A.; Morton, T. D.; Isaacson, H.

    2012-01-01

    For the small subset of sub-Neptune-size planets with well-measured masses and radii, bulk density varies by an order of magnitude, owing to great diversity in composition and atmospheric content. The ensemble of small planets discovered by Kepler have a radius distribution that rises steeply with decreasing size, with close-in sub-Neptune-size planets being an order of magnitude more common than hot Jupiters. However, the detailed structure of the planet radius distribution remains partially veiled by poorly known stellar properties from the Kepler Input Catalog (KIC). Correlations of planet properties with stellar properties are similarly out of focus or unknown. To measure these crucial properties, our team is compiling a new catalog of stellar parameters for the Kepler planet hosts based on LTE modeling of high-resolution Keck-HIRES spectra. I will present initial results from this catalog. We expect detailed structure of the planet radius distribution to emerge, including deviations from a power-law model that suggest common planet sizes and preferred formation scenarios. It will also shed light on the variations of planet occurrence with orbital distance and stellar mass/metallicity, offering important clues for the formation of small worlds.

  4. On the Nature of Small Planets around the Coolest Kepler Stars

    NASA Astrophysics Data System (ADS)

    Gaidos, Eric; Fischer, Debra A.; Mann, Andrew W.; Lépine, Sébastien

    2012-02-01

    We constrain the densities of Earth- to Neptune-size planets around very cool (Te = 3660-4660 K) Kepler stars by comparing 1202 Keck/HIRES radial velocity measurements of 150 nearby stars to a model based on Kepler candidate planet radii and a power-law mass-radius relation. Our analysis is based on the presumption that the planet populations around the two sets of stars are the same. The model can reproduce the observed distribution of radial velocity variation over a range of parameter values, but, for the expected level of Doppler systematic error, the highest Kolmogorov-Smirnov probabilities occur for a power-law index α ≈ 4, indicating that rocky-metal planets dominate the planet population in this size range. A single population of gas-rich, low-density planets with α = 2 is ruled out unless our Doppler errors are >=5 m s-1, i.e., much larger than expected based on observations and stellar chromospheric emission. If small planets are a mix of γ rocky planets (α = 3.85) and 1 - γ gas-rich planets (α = 2), then γ > 0.5 unless Doppler errors are >=4 m s-1. Our comparison also suggests that Kepler's detection efficiency relative to ideal calculations is less than unity. One possible source of incompleteness is target stars that are misclassified subgiants or giants, for which the transits of small planets would be impossible to detect. Our results are robust to systematic effects, and plausible errors in the estimated radii of Kepler stars have only moderate impact. Some data were obtained at the W. M. Keck Observatory, which is operated by the California Institute of Technology, the University of California, and NASA, and made possible by the financial support of the W. M. Keck Foundation.

  5. ON THE NATURE OF SMALL PLANETS AROUND THE COOLEST KEPLER STARS

    SciTech Connect

    Gaidos, Eric; Fischer, Debra A.; Mann, Andrew W.; Lepine, Sebastien

    2012-02-10

    We constrain the densities of Earth- to Neptune-size planets around very cool (T{sub e} = 3660-4660 K) Kepler stars by comparing 1202 Keck/HIRES radial velocity measurements of 150 nearby stars to a model based on Kepler candidate planet radii and a power-law mass-radius relation. Our analysis is based on the presumption that the planet populations around the two sets of stars are the same. The model can reproduce the observed distribution of radial velocity variation over a range of parameter values, but, for the expected level of Doppler systematic error, the highest Kolmogorov-Smirnov probabilities occur for a power-law index {alpha} Almost-Equal-To 4, indicating that rocky-metal planets dominate the planet population in this size range. A single population of gas-rich, low-density planets with {alpha} = 2 is ruled out unless our Doppler errors are {>=}5 m s{sup -1}, i.e., much larger than expected based on observations and stellar chromospheric emission. If small planets are a mix of {gamma} rocky planets ({alpha} = 3.85) and 1 - {gamma} gas-rich planets ({alpha} = 2), then {gamma} > 0.5 unless Doppler errors are {>=}4 m s{sup -1}. Our comparison also suggests that Kepler's detection efficiency relative to ideal calculations is less than unity. One possible source of incompleteness is target stars that are misclassified subgiants or giants, for which the transits of small planets would be impossible to detect. Our results are robust to systematic effects, and plausible errors in the estimated radii of Kepler stars have only moderate impact.

  6. Very low density planets around Kepler-51 revealed with transit timing variations and an anomaly similar to a planet-planet eclipse event

    SciTech Connect

    Masuda, Kento

    2014-03-01

    We present an analysis of the transit timing variations (TTVs) in the multi-transiting planetary system around Kepler-51 (KOI-620). This system consists of two confirmed transiting planets, Kepler-51b (P {sub b} = 45.2 days) and Kepler-51c (P {sub c} = 85.3 days), and one transiting planet candidate KOI-620.02 (P {sub 02} = 130.2 days), which lie close to a 1: 2: 3 resonance chain. Our analysis shows that their TTVs are consistently explained by the three-planet model, and constrains their masses as M{sub b}=2.1{sub −0.8}{sup +1.5} M{sub ⊕} (Kepler-51b), M {sub c} = 4.0 ± 0.4 M {sub ⊕} (Kepler-51c), and M {sub 02} = 7.6 ± 1.1 M {sub ⊕} (KOI-620.02), thus confirming KOI-620.02 as a planet in this system. The masses inferred from the TTVs are rather small compared to the planetary radii based on the stellar density and planet-to-star radius ratios determined from the transit light curves. Combining these estimates, we find that all three planets in this system have densities among the lowest determined, ρ {sub p} ≲ 0.05 g cm{sup –3}. With this feature, the Kepler-51 system serves as another example of low-density compact multi-transiting planetary systems. We also identify a curious feature in the archived Kepler light curve during the double transit of Kepler-51b and KOI-620.02, which could be explained by their overlapping on the stellar disk (a planet-planet eclipse). If this is really the case, the sky-plane inclination of KOI-620.02's orbit relative to that of Kepler-51b is given by ΔΩ=−25.3{sub −6.8}{sup +6.2} deg, implying significant misalignment of their orbital planes. This interpretation, however, seems unlikely because such an event that is consistent with all of the observations is found to be exceedingly rare.

  7. Planets in Wide Binaries from Kepler: Ages, Stability and Evolution of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Weisenburger, Kolby L.; West, Andrew A.; Janes, Kenneth; Dhital, Saurav

    2014-06-01

    Using the Kepler Input Catalog and the fourth U.S. Naval Observatory CCD Astrograph Catalog, we have identified 1509 common proper motion (CPM) binaries in the Kepler field of view, of which a small subset host planet candidates, or Kepler Objects of Interest (KOIs). We have verified the fidelity of the CPM pairs using a Galactic model and follow-up astrometric observations. We present 73 KOIs distributed over 58 CPM pairs and highlight the first wide binary system (separation > 1000 AU) where both stellar components host at least one KOI. Because our binary sample was initially targeted for a gyrochronology analysis, we also present measurements of stellar rotation periods and preliminary estimates of stellar (and planetary) ages. We use these extrapolated planetary ages to investigate longterm planet stability in wide binaries and test potential formation and evolution scenarios of these dynamically complex systems.

  8. Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations

    SciTech Connect

    Steffen, Jason H.; Fabrycky, Daniel C.; Ford, Eric B.; Carter, Joshua A.; Fressin, Francois; Holman, Matthew J.; Lissauer, Jack J.; Rowe, Jason F.; Ragozzine, Darin; Welsh, William F.; Borucki, William J.; /NASA, Ames /UC, Santa Barbara

    2012-01-01

    We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anticorrelations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems, Kepler-25, Kepler-26, Kepler-27 and Kepler-28, containing eight planets and one additional planet candidate.

  9. FORMING CIRCUMBINARY PLANETS: N-BODY SIMULATIONS OF KEPLER-34

    SciTech Connect

    Lines, S.; Leinhardt, Z. M.; Paardekooper, S.; Baruteau, C.; Thebault, P.

    2014-02-10

    Observations of circumbinary planets orbiting very close to the central stars have shown that planet formation may occur in a very hostile environment, where the gravitational pull from the binary should be very strong on the primordial protoplanetary disk. Elevated impact velocities and orbit crossings from eccentricity oscillations are the primary contributors to high energy, potentially destructive collisions that inhibit the growth of aspiring planets. In this work, we conduct high-resolution, inter-particle gravity enabled N-body simulations to investigate the feasibility of planetesimal growth in the Kepler-34 system. We improve upon previous work by including planetesimal disk self-gravity and an extensive collision model to accurately handle inter-planetesimal interactions. We find that super-catastrophic erosion events are the dominant mechanism up to and including the orbital radius of Kepler-34(AB)b, making in situ growth unlikely. It is more plausible that Kepler-34(AB)b migrated from a region beyond 1.5 AU. Based on the conclusions that we have made for Kepler-34, it seems likely that all of the currently known circumbinary planets have also migrated significantly from their formation location with the possible exception of Kepler-47(AB)c.

  10. They are small worlds after all: revised properties of Kepler M dwarf stars and their planets

    NASA Astrophysics Data System (ADS)

    Gaidos, E.; Mann, A. W.; Kraus, A. L.; Ireland, M.

    2016-04-01

    We classified the reddest (r - J > 2.2) stars observed by the NASA Kepler mission into main-sequence dwarf or evolved giant stars and determined the properties of 4216 M dwarfs based on a comparison of available photometry with that of nearby calibrator stars, as well as available proper motions and spectra. We revised the properties of candidate transiting planets using the stellar parameters, high-resolution imaging to identify companion stars, and, in the case of binaries, fitting light curves to identify the likely planet host. In 49 of 54 systems, we validated the primary as the host star. We inferred the intrinsic distribution of M dwarf planets using the method of iterative Monte Carlo simulation. We compared several models of planet orbital geometry and clustering and found that one where planets are exponentially distributed and almost precisely coplanar best describes the distribution of multiplanet systems. We determined that Kepler M dwarfs host an average of 2.2 ± 0.3 planets with radii of 1-4 R⊕ and orbital periods of 1.5-180 d. The radius distribution peaks at ˜1.2 R⊕ and is essentially zero at 4 R⊕, although we identify three giant planet candidates other than the previously confirmed Kepler-45b. There is suggestive but not significant evidence that the radius distribution varies with orbital period. The distribution with logarithmic orbital period is flat except for a decline for orbits less than a few days. 12 candidate planets, including two Jupiter-size objects, experience an irradiance below the threshold level for a runaway greenhouse on an Earth-like planet and are thus in a `habitable zone'.

  11. Increasing the Sensitivity of the Kepler Legacy Archive to Habitable Zone Planets and Earth Analogs

    NASA Astrophysics Data System (ADS)

    Still, M.

    2014-04-01

    All legacy light curves archived by the Kepler project are available to the community. They are based upon simple aperture extractions from time-tagged pixel data. We demonstrate that this photometry method works well for the bright end of the Kepler target sample yet there is enormous scope for further gains in sensitivity to planet transits of faint stars in the sample. To this end, all pixel data have been made available in the archive. Methods for the user community to optimize aperture photometry and exploit point spread function modeling are being developed. Exploiting existing Kepler planet candidates, we showcase the signal-to-noise to be gained by these methods. We argue that at the faintest end of the candidate distribution, optimization provides a factor two improvement in sensitivity to transits, reaching beyond the signal-to-noise promised by the eight year mission, curtailed by reaction wheel failure after four years. These methods can provide potentially significant improvement to a number of facets of the Kepler mission: 1. Sensitivity to new planet candidates residing currently below the signal-to-noise detection threshold; 2. Characterizing known transit profiles to higher precision; 3. Identifying contamination from nearby sources and removing contamination bias from transit depths; 4. Mitigating focus and pointing systematics within the Kepler data, and 5. Allowing the direct characterization of time-dependent physical and detector biases within the image background. With exisiting focal plane calibrations, the number of targets that currently benefit from optimized photometry is relatively small, limited to sources of magnitude Kp > 16. However, with additional refinement of the focal plane calibration, improvement in light curve quality for objects 14 < Kp < 16 can be anticipated, impacting 50% of the Kepler target sample. These methods are equally applicable to data from the upcoming TESS mission and are potentially a critical component to

  12. PREDICTING A THIRD PLANET IN THE KEPLER-47 CIRCUMBINARY SYSTEM

    SciTech Connect

    Hinse, Tobias C.; Haghighipour, Nader; Kostov, Veselin B.; Goździewski, Krzysztof

    2015-01-20

    We have studied the possibility that a third circumbinary planet in the Kepler-47 planetary system is the source of the single unexplained transiting event reported during the discovery of these planets. We applied the MEGNO technique to identify regions in the phase space where a third planet can maintain quasi-periodic orbits, and assessed the long-term stability of the three-planet system by integrating the entire five bodies (binary + planets) for 10 Myr. We identified several stable regions between the two known planets as well as a region beyond the orbit of Kepler-47c where the orbit of the third planet could be stable. To constrain the orbit of this planet, we used the measured duration of the unexplained transit event (∼4.15 hr) and compared that with the transit duration of the third planet in an ensemble of stable orbits. To remove the degeneracy among the orbits with similar transit durations, we considered the planet to be in a circular orbit and calculated its period analytically. The latter places an upper limit of 424 days on the orbital period of the third planet. Our analysis suggests that if the unexplained transit event detected during the discovery of the Kepler-47 circumbinary system is due to a planetary object, this planet will be in a low eccentricity orbit with a semi-major axis smaller than 1.24 AU. Further constraining of the mass and orbital elements of this planet requires a re-analysis of the entire currently available data, including those obtained post-announcement of the discovery of this system. We present details of our methodology and discuss the implication of the results.

  13. Revised Masses and Densities of the Planets around Kepler-10

    NASA Astrophysics Data System (ADS)

    Weiss, Lauren M.; Rogers, Leslie A.; Isaacson, Howard T.; Agol, Eric; Marcy, Geoffrey W.; Rowe, Jason F.; Kipping, David; Fulton, Benjamin J.; Lissauer, Jack J.; Howard, Andrew W.; Fabrycky, Daniel

    2016-03-01

    Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b, and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c. Using 220 radial velocities (RVs), including 72 precise RVs from Keck-HIRES of which 20 are new from 2014 to 2015, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that Kepler-10b ({R}{{p}}=1.47 {R}\\oplus ) has mass 3.72\\quad +/- \\quad 0.42\\quad {M}\\oplus and density 6.46\\quad +/- \\quad 0.73\\quad {{g}} {{cm}}-3. Modeling the interior of Kepler-10b as an iron core overlaid with a silicate mantle, we find that the iron core constitutes 0.17 ± 0.11 of the planet mass. For Kepler-10c ({R}{{p}}=2.35 {R}\\oplus ) we measure mass 13.98\\quad +/- \\quad 1.79\\quad {M}\\oplus and density 5.94\\quad +/- \\quad 0.76\\quad {{g}} {{cm}}-3, significantly lower than the mass computed in Dumusque et al. (17.2+/- 1.9 {M}\\oplus ). Our mass measurement of Kepler-10c rules out a pure stony-iron composition. Internal compositional modeling reveals that at least 10% of the radius of Kepler-10c is a volatile envelope composed of hydrogen-helium (0.2% of the mass, 16% of the radius) or super-ionic water (28% of the mass, 29% of the radius). However, we note that analysis of only HIRES data yields a higher mass for planet b and a lower mass for planet c than does analysis of the HARPS-N data alone, with the mass estimates for Kepler-10 c being formally inconsistent at the 3σ level. Moreover, dividing the data for each instrument into two parts also leads to somewhat inconsistent measurements for the mass of planet c derived from each observatory. Together, this suggests that time-correlated noise is present and that the uncertainties in the masses of the planets (especially planet c) likely

  14. Spacing of Kepler Planets: Sculpting by Dynamical Instability

    NASA Astrophysics Data System (ADS)

    Pu, Bonan; Wu, Yanqin

    2015-07-01

    We study the orbital architecture of multi-planet systems detected by the Kepler transit mission using N-body simulations, focusing on the orbital spacing between adjacent planets in systems showing four or more transiting planets. We find that the observed spacings are tightly clustered around 12 mutual Hill radii, when transit geometry and sensitivity limits are accounted for. In comparison, dynamical integrations reveal that the minimum spacing required for systems of similar masses to survive dynamical instability for as long as 1 billion yr is ∼10 if all orbits are circular and coplanar and ∼12 if planetary orbits have eccentricities of ∼0.02 (a value suggested by studies of planet transit-time variations). This apparent coincidence, between the observed spacing and the theoretical stability threshold, leads us to propose that typical planetary systems were formed with even tighter spacing, but most, except for the widest ones, have undergone dynamical instability, and are pared down to a more anemic version of their former selves, with fewer planets and larger spacings. So while the high-multiple systems (five or more transiting planets) are primordial systems that remain stable, the single or double planetary systems, abundantly discovered by the Kepler mission, may be the descendants of more closely packed high-multiple systems. If this hypothesis is correct, we infer that the formation environment of Kepler systems should be more dissipative than that of the terrestrial planets.

  15. THEY MIGHT BE GIANTS: LUMINOSITY CLASS, PLANET OCCURRENCE, AND PLANET-METALLICITY RELATION OF THE COOLEST KEPLER TARGET STARS

    SciTech Connect

    Mann, Andrew W.; Hilton, Eric J.; Gaidos, Eric; Lepine, Sebastien

    2012-07-01

    We estimate the stellar parameters of late K- and early M-type Kepler target stars. We obtain medium-resolution visible spectra of 382 stars with K{sub P} - J > 2 ({approx_equal}K5 and later spectral type). We determine luminosity class by comparing the strength of gravity-sensitive indices (CaH, K I, Ca II, and Na I) to their strength in a sample of stars of known luminosity class. We find that giants constitute 96% {+-} 1% of the bright (K{sub P} < 14) Kepler target stars, and 7% {+-} 3% of dim (K{sub P} > 14) stars, significantly higher than fractions based on the stellar parameters quoted in the Kepler Input Catalog (KIC). The KIC effective temperatures are systematically (110{sup +15}{sub -35} K) higher than temperatures we determine from fitting our spectra to PHOENIX stellar models. Through Monte Carlo simulations of the Kepler exoplanet candidate population, we find a planet occurrence of 0.36 {+-} 0.08 when giant stars are properly removed, somewhat higher than when a KIC log g > 4 criterion is used (0.27 {+-} 0.05). Last, we show that there is no significant difference in g - r color (a probe of metallicity) between late-type Kepler stars with transiting Earth-to-Neptune-size exoplanet candidates and dwarf stars with no detected transits. We show that a previous claimed offset between these two populations is most likely an artifact of including a large number of misidentified giants.

  16. Refining Mass Measurements of Kepler Planets with Keck/HIRES.

    NASA Astrophysics Data System (ADS)

    Isaacson, Howard T.; Marcy, Geoffrey W.; Howard, Andrew

    2015-12-01

    We present improved radial velocity mass measurements from Keck/HIRES for exoplanets detected by NASA’s Kepler Mission. Since Kepler’s launch 6 years ago, ~30 planetary systems have been monitored with radial velocities, resulting in measured masses for many planets between 1.0 and 4.0 Earth radii. The resulting planet masses have been used to determine the transition between planets with a rocky interior and those with a lower density interior which requiring significant H/He atmospheres. We provide updated masses and densities for those planets published in Marcy et al (2014) based on two additional observing seasons with HIRES of the Kepler field. These radial velocities also reveal non-transiting planets in systems with previously found transiting planets. One such system has a non-transiting planet with a period between two transiting planets, providing a constraint on the co-planarity of the system. Finally, we provide an updated mass-radius relation, showing the distinction between planets that must have a substantial iron-silicate interior, and those requiring significant contributions from volatiles such as hydrogen and helium.

  17. Prevalence and Properties of Planets from Kepler and K2

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew; Crossfield, Ian; Beichman, Charles; Sinukoff, Evan

    2015-12-01

    Discoveries from the prime Kepler mission demonstrated that small planets (< 3 Earth-radii) are common outcomes of planet formation around G, K, and M stars. While Kepler detected many such planets, all but a handful orbit faint, distant stars, which are not amenable to precise follow up measurements. NASA's K2 mission has the potential to increase the number of known small, transiting planets around bright stars by an order of magnitude. I will present the latest results from my team's efforts to detect, confirm, and characterize planets using the K2 mission. I will highlight some of the progress and remaining challenges involved with generating denoised K2 photometry and with detecting planets in the presence of severe instrument systematics. Among our recent discoveries are the K2-3 and K2-21 planetary systems: M dwarfs hosting multiple transiting Earth-size planets with low equilibrium temperatures. These systems offer a convenient laboratory for studying the bulk composition and atmospheric properties of small planets receiving low levels of stellar irradiation, where processes such as mass loss by photo-evaporation could play a weaker role.

  18. TESTING THE METAL OF LATE-TYPE KEPLER PLANET HOSTS WITH IRON-CLAD METHODS

    SciTech Connect

    Mann, Andrew W.; Hilton, Eric J.; Gaidos, Eric; Kraus, Adam

    2013-06-10

    It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6{sigma} confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 solar. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of planet accretion, rather than insufficient solids to form a core.

  19. Kepler-108: A Mutually Inclined Giant Planet System

    NASA Astrophysics Data System (ADS)

    Mills, Sean M.; Fabrycky, Daniel

    2016-06-01

    The vast majority of well studied giant-planet systems, including the Solar System, are nearly coplanar which implies dissipation within a primordial gas disk. However, intrinsic instability may lead to planet-planet scattering, which often produces non-coplanar, eccentric orbits. Planet scattering theories have been developed to explain observed high eccentricity systems and possibly hot Jupiters; thus far their predictions for mutual inclination (I) have barely been tested. Here we characterize a highly mutually-inclined (I ~ 15-60 degrees), moderately eccentric (e > 0.1) giant planet system: Kepler-108. This system consists of two Saturn mass planets with periods of ~49 and ~190 days around a star with a wide (~300 AU) binary companion in an orbital configuration inconsistent with a purely disk migration origin.

  20. THE NEPTUNE-SIZED CIRCUMBINARY PLANET KEPLER-38b

    SciTech Connect

    Orosz, Jerome A.; Welsh, William F.; Short, Donald R.; Windmiller, Gur; Carter, Joshua A.; Torres, Guillermo; Geary, John C.; Brugamyer, Erik; Cochran, William D.; Endl, Michael; MacQueen, Phillip; Buchhave, Lars A.; Ford, Eric B.; Agol, Eric; Barclay, Thomas; Caldwell, Douglas A.; Clarke, Bruce D.; Doyle, Laurance R.; Fabrycky, Daniel C.; Haghighipour, Nader; and others

    2012-10-20

    We discuss the discovery and characterization of the circumbinary planet Kepler-38b. The stellar binary is single-lined, with a period of 18.8 days, and consists of a moderately evolved main-sequence star (M{sub A} = 0.949 {+-} 0.059 M {sub Sun} and R{sub A} = 1.757 {+-} 0.034 R {sub Sun }) paired with a low-mass star (M{sub B} = 0.249 {+-} 0.010 M {sub Sun} and R{sub B} = 0.2724 {+-} 0.0053 R {sub Sun }) in a mildly eccentric (e = 0.103) orbit. A total of eight transits due to a circumbinary planet crossing the primary star were identified in the Kepler light curve (using Kepler Quarters 1-11), from which a planetary period of 105.595 {+-} 0.053 days can be established. A photometric dynamical model fit to the radial velocity curve and Kepler light curve yields a planetary radius of 4.35 {+-} 0.11 R {sub Circled-Plus }, or equivalently 1.12 {+-} 0.03 R {sub Nep}. Since the planet is not sufficiently massive to observably alter the orbit of the binary from Keplerian motion, we can only place an upper limit on the mass of the planet of 122 M {sub Circled-Plus} (7.11 M {sub Nep} or equivalently 0.384 M {sub Jup}) at 95% confidence. This upper limit should decrease as more Kepler data become available.

  1. PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA

    SciTech Connect

    Batalha, Natalie M.; Rowe, Jason F.; Burke, Christopher J.; Caldwell, Douglas A.; Mullally, Fergal; Thompson, Susan E.; Barclay, Thomas; Dupree, Andrea K.; Latham, David W.; Quinn, Samuel N.; Ragozzine, Darin; Fabrycky, Daniel C.; Fortney, Jonathan J.; Ford, Eric B.; Gilliland, Ronald L.; Isaacson, Howard; Marcy, Geoffrey W.; and others

    2013-02-15

    New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft. Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the candidates. Ephemerides (transit epoch, T {sub 0}, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R {sub P}/R {sub *}), reduced semimajor axis (d/R {sub *}), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2 R {sub Circled-Plus} compared to 53% for candidates larger than 2 R {sub Circled-Plus }) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete. Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness. The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the habitable zone are forthcoming if, indeed, such planets are abundant.

  2. Kepler-9: a system of multiple planets transiting a Sun-like star, confirmed by timing variations.

    PubMed

    Holman, Matthew J; Fabrycky, Daniel C; Ragozzine, Darin; Ford, Eric B; Steffen, Jason H; Welsh, William F; Lissauer, Jack J; Latham, David W; Marcy, Geoffrey W; Walkowicz, Lucianne M; Batalha, Natalie M; Jenkins, Jon M; Rowe, Jason F; Cochran, William D; Fressin, Francois; Torres, Guillermo; Buchhave, Lars A; Sasselov, Dimitar D; Borucki, William J; Koch, David G; Basri, Gibor; Brown, Timothy M; Caldwell, Douglas A; Charbonneau, David; Dunham, Edward W; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Howell, Steve B; Ciardi, David R; Endl, Michael; Fischer, Debra; Fürész, Gábor; Hartman, Joel D; Isaacson, Howard; Johnson, John A; MacQueen, Phillip J; Moorhead, Althea V; Morehead, Robert C; Orosz, Jerome A

    2010-10-01

    The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.2- and 38.9-day periods are presently increasing and decreasing at respective average rates of 4 and 39 minutes per orbit; in addition, the transit times of the inner body display an alternating variation of smaller amplitude. These signatures are characteristic of gravitational interaction of two planets near a 2:1 orbital resonance. Six radial-velocity observations show that these two planets are the most massive objects orbiting close to the star and substantially improve the estimates of their masses. After removing the signal of the two confirmed giant planets, we identified an additional transiting super-Earth-size planet candidate with a period of 1.6 days. PMID:20798283

  3. A study of the shortest-period planets found with Kepler

    SciTech Connect

    Sanchis-Ojeda, Roberto; Rappaport, Saul; Winn, Joshua N.; Kotson, Michael C.; Levine, Alan; Mellah, Ileyk El E-mail: sar@mit.edu E-mail: ileyk@apc.univ-paris7.fr

    2014-05-20

    We present the results of a survey aimed at discovering and studying transiting planets with orbital periods shorter than one day (ultra-short-period, or USP, planets), using data from the Kepler spacecraft. We computed Fourier transforms of the photometric time series for all 200,000 target stars, and detected transit signals based on the presence of regularly spaced sharp peaks in the Fourier spectrum. We present a list of 106 USP candidates, of which 18 have not previously been described in the literature. This list of candidates increases the number of planet candidates with orbital periods shorter than about six hours from two to seven. In addition, among the objects we studied, there are 26 USP candidates that had been previously reported in the literature which do not pass our various tests. All 106 of our candidates have passed several standard tests to rule out false positives due to eclipsing stellar systems. A low false positive rate is also implied by the relatively high fraction of candidates for which more than one transiting planet signal was detected. By assuming these multi-transit candidates represent coplanar multi-planet systems, we are able to infer that the USP planets are typically accompanied by other planets with periods in the range 1-50 days, in contrast with hot Jupiters which very rarely have companions in that same period range. Another clear pattern is that almost all USP planets are smaller than 2 R {sub ⊕}, possibly because gas giants in very tight orbits would lose their atmospheres by photoevaporation when subject to extremely strong stellar irradiation. Based on our survey statistics, USP planets exist around approximately (0.51 ± 0.07)% of G-dwarf stars, and (0.83 ± 0.18)% of K-dwarf stars.

  4. A Study of the Shortest-period Planets Found with Kepler

    NASA Astrophysics Data System (ADS)

    Sanchis-Ojeda, Roberto; Rappaport, Saul; Winn, Joshua N.; Kotson, Michael C.; Levine, Alan; El Mellah, Ileyk

    2014-05-01

    We present the results of a survey aimed at discovering and studying transiting planets with orbital periods shorter than one day (ultra-short-period, or USP, planets), using data from the Kepler spacecraft. We computed Fourier transforms of the photometric time series for all 200,000 target stars, and detected transit signals based on the presence of regularly spaced sharp peaks in the Fourier spectrum. We present a list of 106 USP candidates, of which 18 have not previously been described in the literature. This list of candidates increases the number of planet candidates with orbital periods shorter than about six hours from two to seven. In addition, among the objects we studied, there are 26 USP candidates that had been previously reported in the literature which do not pass our various tests. All 106 of our candidates have passed several standard tests to rule out false positives due to eclipsing stellar systems. A low false positive rate is also implied by the relatively high fraction of candidates for which more than one transiting planet signal was detected. By assuming these multi-transit candidates represent coplanar multi-planet systems, we are able to infer that the USP planets are typically accompanied by other planets with periods in the range 1-50 days, in contrast with hot Jupiters which very rarely have companions in that same period range. Another clear pattern is that almost all USP planets are smaller than 2 R ⊕, possibly because gas giants in very tight orbits would lose their atmospheres by photoevaporation when subject to extremely strong stellar irradiation. Based on our survey statistics, USP planets exist around approximately (0.51 ± 0.07)% of G-dwarf stars, and (0.83 ± 0.18)% of K-dwarf stars.

  5. The Robo-AO KOI Survey: Laser Adaptive Optics Imaging of Every Kepler Exoplanet Candidate

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed L.

    2016-01-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that pollute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present approximately 3300 high resolution observations of Kepler planetary hosts from 2012-2015, with ~500 observed nearby stars. We measure an overall nearby star probability rate of 16.2±0.8%. With this large dataset, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host. We then use these clues for insight into the formation and evolution of these exotic systems. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting in the habitable zone.

  6. KEPLER-10 c: A 2.2 EARTH RADIUS TRANSITING PLANET IN A MULTIPLE SYSTEM

    SciTech Connect

    Fressin, Francois; Torres, Guillermo; Desert, Jean-Michel; Charbonneau, David; Holman, Matthew J.; Batalha, Natalie M.; Fortney, Jonathan J.; Fabrycky, Daniel C.; Rowe, Jason F.; Allen, Christopher; Borucki, William J.; Bryson, Stephen T.; Henze, Christopher E.; Brown, Timothy M.; Ciardi, David R.; Deming, Drake; Dunham, Edward W.; Gautier III, Thomas N.

    2011-11-01

    The Kepler mission has recently announced the discovery of Kepler-10 b, the smallest exoplanet discovered to date and the first rocky planet found by the spacecraft. A second, 45 day period transit-like signal present in the photometry from the first eight months of data could not be confirmed as being caused by a planet at the time of that announcement. Here we apply the light curve modeling technique known as BLENDER to explore the possibility that the signal might be due to an astrophysical false positive (blend). To aid in this analysis we report the observation of two transits with the Spitzer Space Telescope at 4.5 {mu}m. When combined, they yield a transit depth of 344 {+-} 85 ppm that is consistent with the depth in the Kepler passband (376 {+-} 9 ppm, ignoring limb darkening), which rules out blends with an eclipsing binary of a significantly different color than the target. Using these observations along with other constraints from high-resolution imaging and spectroscopy, we are able to exclude the vast majority of possible false positives. We assess the likelihood of the remaining blends, and arrive conservatively at a false alarm rate of 1.6 x 10{sup -5} that is small enough to validate the candidate as a planet (designated Kepler-10 c) with a very high level of confidence. The radius of this object is measured to be R{sub p} = 2.227{sup +0.052}{sub -0.057} R{sub +} (in which the error includes the uncertainty in the stellar properties), but currently available radial-velocity measurements only place an upper limit on its mass of about 20 M{sub +}. Kepler-10 c represents another example (with Kepler-9 d and Kepler-11 g) of statistical 'validation' of a transiting exoplanet, as opposed to the usual 'confirmation' that can take place when the Doppler signal is detected or transit timing variations are measured. It is anticipated that many of Kepler's smaller candidates will receive a similar treatment since dynamical confirmation may be difficult or

  7. PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER

    SciTech Connect

    Howard, Andrew W.; Marcy, Geoffrey W.; Bryson, Stephen T.; Rowe, Jason F.; Borucki, William J.; Koch, David G.; Lissauer, Jack J.; Jenkins, Jon M.; Van Cleve, Jeffrey; Caldwell, Douglas A.; Dunham, Edward W.; Gautier, Thomas N.; Latham, David W.; Torres, Guillermo; Brown, Timothy M.; Gilliland, Ronald L.; Buchhave, Lars A.; Christensen-Dalsgaard, Jorgen; and others

    2012-08-01

    We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the 1235 planets (formally 'planet candidates') from the Kepler mission that include a nearly complete set of detected planets as small as 2 R{sub Circled-Plus }. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R{sub p}, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for the geometric probability of transit, R{sub *}/a. We consider first Kepler target stars within the 'solar subset' having T{sub eff} = 4100-6100 K, log g 4.0-4.9, and Kepler magnitude Kp < 15 mag, i.e., bright, main-sequence GK stars. We include only those stars having photometric noise low enough to permit detection of planets down to 2 R{sub Circled-Plus }. We count planets in small domains of R{sub p} and P and divide by the included target stars to calculate planet occurrence in each domain. The resulting occurrence of planets varies by more than three orders of magnitude in the radius-orbital period plane and increases substantially down to the smallest radius (2 R{sub Circled-Plus }) and out to the longest orbital period (50 days, {approx}0.25 AU) in our study. For P < 50 days, the distribution of planet radii is given by a power law, df/dlog R = k{sub R}R{sup {alpha}} with k{sub R} = 2.9{sup +0.5}{sub -0.4}, {alpha} = -1.92 {+-} 0.11, and R {identical_to} R{sub p}/R{sub Circled-Plus }. This rapid increase in planet occurrence with decreasing planet size agrees with the prediction of core-accretion formation but disagrees with population synthesis models that predict a desert at super-Earth and Neptune sizes for close-in orbits. Planets with orbital periods shorter than 2 days are extremely rare; for R{sub p} > 2 R{sub Circled-Plus} we measure an occurrence of less than 0

  8. OBJECTS IN KEPLER'S MIRROR MAY BE LARGER THAN THEY APPEAR: BIAS AND SELECTION EFFECTS IN TRANSITING PLANET SURVEYS

    SciTech Connect

    Gaidos, Eric; Mann, Andrew W.

    2013-01-01

    Statistical analyses of large surveys for transiting planets such as the Kepler mission must account for systematic errors and biases. Transit detection depends not only on the planet's radius and orbital period, but also on host star properties. Thus, a sample of stars with transiting planets may not accurately represent the target population. Moreover, targets are selected using criteria such as a limiting apparent magnitude. These selection effects, combined with uncertainties in stellar radius, lead to biases in the properties of transiting planets and their host stars. We quantify possible biases in the Kepler survey. First, Eddington bias produced by a steep planet radius distribution and uncertainties in stellar radius results in a 15%-20% overestimate of planet occurrence. Second, the magnitude limit of the Kepler target catalog induces Malmquist bias toward large, more luminous stars and underestimation of the radii of about one-third of candidate planets, especially those larger than Neptune. Third, because metal-poor stars are smaller, stars with detected planets will be very slightly (<0.02 dex) more metal-poor than the target average. Fourth, uncertainties in stellar radii produce correlated errors in planet radius and stellar irradiation. A previous finding, that highly irradiated giants are more likely to have 'inflated' radii, remains significant, even accounting for this effect. In contrast, transit depth is negatively correlated with stellar metallicity even in the absence of any intrinsic correlation, and a previous claim of a negative correlation between giant planet transit depth and stellar metallicity is probably an artifact.

  9. Detailed Abundances of Stars with Small Planets Discovered by Kepler

    NASA Astrophysics Data System (ADS)

    Schuler, Simon C.; Vaz, Zachary A.; Katime Santrich, Orlando J.; Cunha, Katia M. L.; Smith, Verne V.; King, Jeremy R.; Ghezzi, Luan; Howell, Steve B.; Teske, Johanna

    2016-01-01

    We present newly derived stellar parameters and the detailed abundances of 19 elements of seven stars with small planets discovered by NASA's Kepler Mission. Each star save one has at least one planet with a radius less than 2 REarth, suggesting a primarily rocky composition. The stellar parameters and abundances are derived from high signal-to-noise ratio, high-resolution echelle spectroscopy obtained with the 10-m Keck I telescope and HIRES spectrometer using standard spectroscopic techniques. We compare the abundances to those of a general Galactic disk population and investigate possible abundance trends with condensation temperature of the elements.S.C.S. acknowledges support provided by grant NNX12AD19G to S.C.S. from the National Aeronautics and Space Administration as part of the Kepler Participating Scientist Program.

  10. Kepler 453 b—The 10th Kepler Transiting Circumbinary Planet

    NASA Astrophysics Data System (ADS)

    Welsh, William F.; Orosz, Jerome A.; Short, Donald R.; Cochran, William D.; Endl, Michael; Brugamyer, Erik; Haghighipour, Nader; Buchhave, Lars A.; Doyle, Laurance R.; Fabrycky, Daniel C.; Hinse, Tobias Cornelius; Kane, Stephen R.; Kostov, Veselin; Mazeh, Tsevi; Mills, Sean M.; Müller, Tobias W. A.; Quarles, Billy; Quinn, Samuel N.; Ragozzine, Darin; Shporer, Avi; Steffen, Jason H.; Tal-Or, Lev; Torres, Guillermo; Windmiller, Gur; Borucki, William J.

    2015-08-01

    We present the discovery of Kepler-453 b, a 6.2 {R}\\oplus planet in a low-eccentricity, 240.5 day orbit about an eclipsing binary. The binary itself consists of a 0.94 and 0.195 {M}⊙ pair of stars with an orbital period of 27.32 days. The plane of the planet's orbit is rapidly precessing, and its inclination only becomes sufficiently aligned with the primary star in the latter portion of the Kepler data. Thus three transits are present in the second half of the light curve, but none of the three conjunctions that occurred during the first half of the light curve produced observable transits. The precession period is ˜103 years, and during that cycle, transits are visible only ˜8.9% of the time. This has the important implication that for every system like Kepler-453 that we detect, there are ˜11.5 circumbinary systems that exist but are not currently exhibiting transits. The planet's mass is too small to noticeably perturb the binary, and consequently its mass is not measurable with these data; however, our photodynamical model places a 1σ upper limit of 16 {M}\\oplus . With a period 8.8 times that of the binary, the planet is well outside the dynamical instability zone. It does, however, lie within the habitable zone of the binary, making it the third of 10 Kepler circumbinary planets to do so. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  11. The Kepler Mission: Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William; Likins, B.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    Detecting extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The difficulties encountered with direct imaging of Earth-size planets from space are expected to be resolved in the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). This method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. Its capabilities and strengths are presented.

  12. A Pan-STARRS 1 study of the relationship between wide binarity and planet occurrence in the Kepler field

    NASA Astrophysics Data System (ADS)

    Deacon, N. R.; Kraus, A. L.; Mann, A. W.; Magnier, E. A.; Chambers, K. C.; Wainscoat, R. J.; Tonry, J. L.; Kaiser, N.; Waters, C.; Flewelling, H.; Hodapp, K. W.; Burgett, W. S.

    2016-02-01

    The NASA Kepler mission has revolutionized time-domain astronomy and has massively expanded the number of known extrasolar planets. However, the effect of wide multiplicity on exoplanet occurrence has not been tested with this data set. We present a sample of 401 wide multiple systems containing at least one Kepler target star. Our method uses Pan-STARRS 1 and archival data to produce an accurate proper motion catalogue of the Kepler field. Combined with Pan-STARRS 1 SED fits and archival proper motions for bright stars, we use a newly developed probabilistic algorithm to identify likely wide binary pairs which are not chance associations. As byproducts of this we present stellar SED templates in the Pan-STARRS 1 photometric system and conversions from this system to Kepler magnitudes. We find that Kepler target stars in our binary sample with separations above 6 arcsec are no more or less likely to be identified as confirmed or candidate planet hosts than a weighted comparison sample of Kepler targets of similar brightness and spectral type. Therefore we find no evidence that binaries with projected separations greater than 3000 au affect the occurrence rate of planets with P < 300 d around FGK stars.

  13. Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data

    SciTech Connect

    Batalha, Natalie M.; Rowe, Jason F.; Bryson, Stephen T.; Barclay, Thomas; Burke, Christopher J.; Caldwell, Douglas A.; Christiansen, Jessie L.; Mullally, Fergal; Thompson, Susan E.; Brown, Timothy M.; Dupree, Andrea K.; /Harvard-Smithsonian Ctr. Astrophys. /UC, Santa Cruz

    2012-02-01

    New transiting planet candidates are identified in sixteen months (May 2009 - September 2010) of data from the Kepler spacecraft. Nearly five thousand periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1091 viable new planet candidates, bringing the total count up to over 2,300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multiquarter photo-center offsets derived from difference image analysis which identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the new candidates. Ephemerides (transit epoch, T{sub 0}, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R{sub P}/R{sub {star}}), reduced semi-major axis (d/R{sub {star}}), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (197% for candidates smaller than 2R{sub {circle_plus}} compared to 52% for candidates larger than 2R{sub {circle_plus}}) and those at longer orbital periods (123% for candidates outside of 50 day orbits versus 85% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from thirteen months (Quarter 1 - Quarter 5) to sixteen months (Quarter 1 - Quarter 6). This demonstrates the benefit of continued development of pipeline analysis software. The fraction of all host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the Habitable Zone are forthcoming if, indeed, such planets are abundant.

  14. Validation of 12 Small Kepler Transiting Planets in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Torres, Guillermo; Kipping, David M.; Fressin, Francois; Caldwell, Douglas A.; Twicken, Joseph D.; Ballard, Sarah; Batalha, Natalie M.; Bryson, Stephen T.; Ciardi, David R.; Henze, Christopher E.; Howell, Steve B.; Isaacson, Howard T.; Jenkins, Jon M.; Muirhead, Philip S.; Newton, Elisabeth R.; Petigura, Erik A.; Barclay, Thomas; Borucki, William J.; Crepp, Justin R.; Everett, Mark E.; Horch, Elliott P.; Howard, Andrew W.; Kolbl, Rea; Marcy, Geoffrey W.; McCauliff, Sean; Quintana, Elisa V.

    2015-02-01

    We present an investigation of 12 candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. Few of these objects are known. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented with new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For 11 of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false positive, to a confidence level of 99.73% (3σ) or higher. For KOI-4427.01 the confidence level is about 99.2% (2.6σ). With our accurate characterization of the GKM host stars, the derived planetary radii range from 1.1 to 2.7 R ⊕. All 12 objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of them that have been previously validated by others, our study doubles the number of known rocky planets in the HZ. KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most similar to the Earth discovered to date when considering their size and incident flux jointly.

  15. Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Merin, Bruno; Ribas, Alvaro; Bouy, Herve; Bryden, Geoffrey; Stapelfeldt, Karl R.; Padgett, Deborah

    2015-01-01

    Dust in debris disks is produced by colliding or evaporating planetesimals, which are remnants of the planet formation process. Warm dust disks, known by their emission at ≤24 μm, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any one of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in beta Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around eta Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission.

  16. Finding False Positives Planet Candidates Due To Background Eclipsing Binaries in K2

    NASA Astrophysics Data System (ADS)

    Mullally, Fergal; Thompson, Susan E.; Coughlin, Jeffrey; DAVE team

    2016-06-01

    We adapt the difference image centroid approach, used for finding background eclipsing binaries, to vet K2 planet candidates. Difference image centroids were used with great success to vet planet candidates in the original Kepler mission, where the source of a transit could be identified by subtracting images of out-of-transit cadences from in-transit cadences. To account for K2's roll pattern, we reconstruct out-of-transit images from cadences that are nearby in both time and spacecraft roll angle. We describe the method and discuss some K2 planet candidates which this method suggests are false positives.

  17. HOW NOT TO BUILD TATOOINE: THE DIFFICULTY OF IN SITU FORMATION OF CIRCUMBINARY PLANETS KEPLER 16b, KEPLER 34b, AND KEPLER 35b

    SciTech Connect

    Paardekooper, Sijme-Jan; Baruteau, Clement; Leinhardt, Zoee M.; Thebault, Philippe

    2012-07-20

    We study planetesimal evolution in circumbinary disks, focusing on the three systems Kepler 16, 34, and 35 where planets have been discovered recently. We show that for circumbinary planetesimals, in addition to secular forcing, eccentricities evolve on a dynamical timescale, which leads to orbital crossings even in the presence of gas drag. This makes the current locations of the circumbinary Kepler planets hostile to planetesimal accretion. We then present results from simulations including planetesimal formation and dust accretion, and show that even in the most favorable case of 100% efficient dust accretion, in situ growth starting from planetesimals smaller than {approx}10 km is difficult for Kepler 16b, Kepler 34b, and Kepler 35b. These planets were likely assembled further out in the disk, and migrated inward to their current location.

  18. Eccentricity from Transit Photometry: Small Planets in Kepler Multi-planet Systems Have Low Eccentricities

    NASA Astrophysics Data System (ADS)

    Van Eylen, Vincent; Albrecht, Simon

    2015-08-01

    Solar system planets move on almost circular orbits. In strong contrast, many massive gas giant exoplanets travel on highly elliptical orbits, whereas the shape of the orbits of smaller, more terrestrial, exoplanets remained largely elusive. Knowing the eccentricity distribution in systems of small planets would be important as it holds information about the planet's formation and evolution, and influences its habitability. We make these measurements using photometry from the Kepler satellite and utilizing a method relying on Kepler's second law, which relates the duration of a planetary transit to its orbital eccentricity, if the stellar density is known. Our sample consists of 28 bright stars with precise asteroseismic density measurements. These stars host 74 planets with an average radius of 2.6 R⊕. We find that the eccentricity of planets in Kepler multi-planet systems is low and can be described by a Rayleigh distribution with σ = 0.049 ± 0.013. This is in full agreement with solar system eccentricities, but in contrast to the eccentricity distributions previously derived for exoplanets from radial velocity studies. Our findings are helpful in identifying which planets are habitable because the location of the habitable zone depends on eccentricity, and to determine occurrence rates inferred for these planets because planets on circular orbits are less likely to transit. For measuring eccentricity it is crucial to detect and remove Transit Timing Variations (TTVs), and we present some previously unreported TTVs. Finally transit durations help distinguish between false positives and true planets and we use our measurements to confirm six new exoplanets.

  19. A Survey for Very Short-Period Planets in the Kepler Data

    NASA Astrophysics Data System (ADS)

    Jackson, Brian K.; Stark, C. C.; Adams, E. R.; Endl, M.; Arras, P.; Boss, A.; Deming, D.

    2013-10-01

    Most gas giant exoplanets with orbital periods less than or equal to a few days are unstable against tidal decay and may be tidally disrupted before their host stars leave the main sequence. These gas giants may contain rocky and icy solid cores, and tidal disruption of the gas giants could strand these cores near their progenitors’ Roche limits (in orbital periods of a few to several hours). Whatever their origins, such short-period objects will evade the Kepler mission's transit search because it is focused on periods > 0.5 days. Motivated by these considerations, we conducted a search for very short-period transiting objects in the publicly available Kepler dataset. Our preliminary survey has revealed about a dozen planetary candidates, with periods ranging from 3.3 to 10 hours. We have analyzed the data for these candidates using photometric models that include transit light curves, as well as ellipsoidal variations and secondary eclipses, to constrain the candidates’ radii, masses, and brightness temperatures. Even with masses of only a few Earth masses, the candidates’ short periods mean they may induce stellar radial velocity signals 10 m/s) detectable by currently operating facilities. In this presentation, we will describe our survey, constraints from Kepler photometry, and plans for follow-up observations. If confirmed, these planets would be among the shortest-period planets ever discovered, and if common, such planets would be particularly amenable to discovery by the planned TESS mission, which is specifically designed to find short-period rocky planets.

  20. Low False Positive Rate of Kepler Candidates Estimated From A Combination Of Spitzer And Follow-Up Observations

    NASA Astrophysics Data System (ADS)

    Désert, Jean-Michel; Charbonneau, David; Torres, Guillermo; Fressin, François; Ballard, Sarah; Bryson, Stephen T.; Knutson, Heather A.; Batalha, Natalie M.; Borucki, William J.; Brown, Timothy M.; Deming, Drake; Ford, Eric B.; Fortney, Jonathan J.; Gilliland, Ronald L.; Latham, David W.; Seager, Sara

    2015-05-01

    NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) among the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not investigated

  1. Two Earth-sized planets orbiting Kepler-20.

    PubMed

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2012-02-01

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere. PMID:22186831

  2. Kepler AutoRegressive Planet Search: Motivation & Methodology

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel; Feigelson, Eric; Jogesh Babu, G.; Bahamonde, Natalia; Bertin, Karine; Christen, Alejandra; Curé, Michel; Meza, Cristian

    2015-08-01

    The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Auto-Regressive Moving-Average (ARMA) models, Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH), and related models are flexible, phenomenological methods used with great success to model stochastic temporal behaviors in many fields of study, particularly econometrics. Powerful statistical methods are implemented in the public statistical software environment R and its many packages. Modeling involves maximum likelihood fitting, model selection, and residual analysis. These techniques provide a useful framework to model stellar variability and are used in KARPS with the objective of reducing stellar noise to enhance opportunities to find as-yet-undiscovered planets. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; ARMA-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. We apply the procedures to simulated Kepler-like time series with known stellar and planetary signals to evaluate the effectiveness of the KARPS procedures. The ARMA-type modeling is effective at reducing stellar noise, but also reduces and transforms the transit signal into ingress/egress spikes. A periodogram based on the TCF is constructed to concentrate the signal

  3. Modeling Kepler Transit Light Curves as False Positives: Rejection of Blend Scenarios for Kepler-9, and Validation of Kepler-9 d, a Super-Earth-Size Planet in a Multiple System

    NASA Technical Reports Server (NTRS)

    Torres, Guillermo; Fressin, Francois; Batalha, Natalie M.; Borucki, William J.; Brown, Timothy M.; Bryson, Stephen T.; Buchhave, Lars A.; Charbonneau, David; Ciardi, David R.; Dunham, Edward W.; Fabrycky, Daniel C.; Ford, Eric B.; Gauthier, Thomas N., III; Gilliland, Ronald L.; Holman, Matthew J.; Howell, Steve B.; Isaacson, Howard; Jenkins, Jon M.; Koch, David G.; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Monet, David G.; Prsa, Andrej; Quinn, Samuel N.

    2011-01-01

    Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive we describe a procedure (BLENDER) to model the photometry in terms of a blend rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9 (KIC 3323887), a target harboring two previously confirmed Saturn-size planets (Kepler-9 b and Kepler-9 c) showing transit timing variations, and an additional shallower signal with a 1.59 day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals and provide independent validation of their planetary nature. For the shallower signal, we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency, we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9 d) in a multiple system, rather than a false positive. The radius is determined to be 1.64(exp)(sub-14),R, and current spectroscopic observations are as yet insufficient to establish its mass.

  4. MODELING KEPLER TRANSIT LIGHT CURVES AS FALSE POSITIVES: REJECTION OF BLEND SCENARIOS FOR KEPLER-9, AND VALIDATION OF KEPLER-9 d, A SUPER-EARTH-SIZE PLANET IN A MULTIPLE SYSTEM

    SciTech Connect

    Torres, Guillermo; Fressin, Francois; Charbonneau, David; Fabrycky, Daniel C.; Holman, Matthew J.; Latham, David W.; Batalha, Natalie M.; Borucki, William J.; Bryson, Stephen T.; Koch, David G.; Brown, Timothy M.; Buchhave, Lars A.; Ciardi, David R.; Ford, Eric B.; Gautier, Thomas N. III; Howell, Steve B.; Isaacson, Howard; Jenkins, Jon M.

    2011-01-20

    Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive, we describe a procedure (BLENDER) to model the photometry in terms of a 'blend' rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9 (KIC 3323887), a target harboring two previously confirmed Saturn-size planets (Kepler-9 b and Kepler-9 c) showing transit timing variations, and an additional shallower signal with a 1.59 day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals and provide independent validation of their planetary nature. For the shallower signal, we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency, we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9 d) in a multiple system, rather than a false positive. The radius is determined to be 1.64{sup +0.19}{sub -0.14} R{sub +}, and current spectroscopic observations are as yet insufficient to establish its mass.

  5. AN ULTRACOOL STAR'S CANDIDATE PLANET

    SciTech Connect

    Pravdo, Steven H.; Shaklan, Stuart B. E-mail: stuart.shaklan@jpl.nasa.gov

    2009-07-20

    We report here the discovery of the first planet around an ultracool dwarf star. It is also the first extrasolar giant planet astrometrically discovered around a main-sequence star. The statistical significance of the detection is shown in two ways. First, there is a 2 x 10{sup -8} probability that the astrometric motion fits a parallax-and-proper-motion-only model. Second, periodogram analysis shows a false alarm probability of 3 x 10{sup -5} that the discovered period is randomly generated. The planetary mass is M {sub 2} = 6.4 (+2.6,-3.1) Jupiter-masses (M {sub J}), and the orbital period is P = 0.744 (+0.013,-0.008) yr in the most likely model. In less likely models, companion masses that are higher than the 13 M {sub J} planetary mass limit are ruled out by past radial velocity (RV) measurements unless the system RV is more than twice the current upper limits and the near-periastron orbital phase was never observed. This new planetary system is remarkable, in part, because its star, VB 10, is near the lower mass limit for a star. Our astrometric observations provide a dynamical mass measurement and will in time allow us to confront the theoretical models of formation and evolution of such systems and their members. We thus add to the diversity of planetary systems and to the small number of known M-dwarf planets. Planets such as VB 10b could be the most numerous type of planets because M stars comprise >70% of all stars. To date they have remained hidden since the dominant RV planet-discovery technique is relatively insensitive to these dim, red systems.

  6. KEPLER-7b: A TRANSITING PLANET WITH UNUSUALLY LOW DENSITY

    SciTech Connect

    Latham, David W.; Buchhave, Lars A.; Furesz, Gabor; Geary, John C.; Borucki, William J.; Koch, David G.; Lissauer, Jack J.; Rowe, Jason F.; Brown, Timothy M.; Basri, Gibor; Batalha, Natalie M.; Caldwell, Douglas A.; Jenkins, Jon M.; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N.; Howell, Steve B.; Marcy, Geoffrey W.; Monet, David G.

    2010-04-20

    We report on the discovery and confirmation of Kepler-7b, a transiting planet with unusually low density. The mass is less than half that of Jupiter, M {sub P} = 0.43 M {sub J}, but the radius is 50% larger, R {sub P} = 1.48 R {sub J}. The resulting density, {rho}{sub P} = 0.17 g cm{sup -3}, is the second lowest reported so far for an extrasolar planet. The orbital period is fairly long, P = 4.886 days, and the host star is not much hotter than the Sun, T {sub eff} = 6000 K. However, it is more massive and considerably larger than the Sun, M {sub *} = 1.35 M {sub sun} and R {sub *} = 1.84 R {sub sun}, and must be near the end of its life on the main sequence.

  7. χ2 Discriminators for Transiting Planet Detection in Kepler Data

    NASA Astrophysics Data System (ADS)

    Seader, Shawn; Tenenbaum, P.; Jenkins, J.

    2012-10-01

    The Kepler Mission continuously observes a host of target stars in a 115 square-degree field of view to discover Earth-like planets transiting Sun-like stars through analysis of photometric data. The Kepler Science Operations Center at NASA Ames Research Center processes the data with the Science Processing Pipeline, which is composed of several modules including the Transiting Planet Search (TPS). To search for transit signatures, TPS employs a bank of wavelet-based matched filters that form a grid on a three dimensional parameter space of transit duration, period, and epoch. Owing to non-stationary and non-Gaussian noise, uncorrected systematics, and poorly mitigated noise events of either astrophysical or non-astrophysical nature, large spurious Threshold Crossing Events (TCE’s) can be produced by the matched filtering performed in TPS. These false alarms waste resources as they propagate through the remainder of the Pipeline, and so a method to discriminate against them is crucial in maintaining the desired sensitivity to true events. Here we describe four separate χ2 tests which represent a novel application of the formalism developed by Allen for false alarm mitigation in searches for gravitational waves. The basic idea behind these vetoes is to break up the matched filter output into several contributions and compare each contribution with what is expected under the assumption that a true signal is present in the data. Vetoes can then be constructed which, under certain assumptions, have been shown to be χ2 distributed with expectation values that are independent of whether or not a true signal is present, thereby making them useful discriminators. The four different ways of breaking up the output and forming χ2 vetoes illustrated here, allow discrimination against different classes of false alarms. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA’s Science Mission Directorate.

  8. PLANET-PLANET ECLIPSE AND THE ROSSITER-McLAUGHLIN EFFECT OF A MULTIPLE TRANSITING SYSTEM: JOINT ANALYSIS OF THE SUBARU SPECTROSCOPY AND THE KEPLER PHOTOMETRY

    SciTech Connect

    Hirano, Teruyuki; Masuda, Kento; Suto, Yasushi; Narita, Norio; Takahashi, Yasuhiro H.; Takeda, Yoichi; Aoki, Wako; Tamura, Motohide; Sato, Bun'ei

    2012-11-10

    We report a joint analysis of the Rossiter-McLaughlin (RM) effect with Subaru and the Kepler photometry for the Kepler Object of Interest (KOI) 94 system. The system is comprised of four transiting planet candidates with orbital periods of 22.3 (KOI-94.01), 10.4 (KOI-94.02), 54.3 (KOI-94.03), and 3.7 (KOI-94.04) days from the Kepler photometry. We performed the radial velocity (RV) measurement of the system with the Subaru 8.2 m telescope on UT 2012 August 10, covering a complete transit of KOI-94.01 for {approx}6.7 hr. The resulting RV variation due to the RM effect spectroscopically confirms that KOI-94.01 is indeed the transiting planet and implies that its orbital axis is well aligned with the stellar spin axis; the projected spin-orbit angle {lambda} is estimated as -6{sup +13}{sub -11} deg. This is the first measurement of the RM effect for a multiple transiting system. Remarkably, the archived Kepler light curve around BJD = 2455211.5 (date in UT 2010 January 14/15) indicates a 'double-transit' event of KOI-94.01 and KOI-94.03, in which the two planets transit the stellar disk simultaneously. Moreover, the two planets partially overlap with each other, and exhibit a 'planet-planet eclipse' around the transit center. This provides a rare opportunity to put tight constraints on the configuration of the two transiting planets by joint analysis with our Subaru RM measurement. Indeed, we find that the projected mutual inclination of KOI-94.01 and KOI-94.03 is estimated to be {delta} = -1.{sup 0}15 {+-} 0.{sup 0}55. Implications for the migration model of multiple planet systems are also discussed.

  9. The APOGEE Spectroscopic Survey of Kepler Planet Hosts: Feasibility, Efficiency, and First Results

    NASA Astrophysics Data System (ADS)

    Fleming, Scott W.; Mahadevan, Suvrath; Deshpande, Rohit; Bender, Chad F.; Terrien, Ryan C.; Marchwinski, Robert C.; Wang, Ji; Roy, Arpita; Stassun, Keivan G.; Allende Prieto, Carlos; Cunha, Katia; Smith, Verne V.; Agol, Eric; Ak, Hasan; Bastien, Fabienne A.; Bizyaev, Dmitry; Crepp, Justin R.; Ford, Eric B.; Frinchaboy, Peter M.; García-Hernández, Domingo Aníbal; García Pérez, Ana Elia; Gaudi, B. Scott; Ge, Jian; Hearty, Fred; Ma, Bo; Majewski, Steve R.; Mészáros, Szabolcs; Nidever, David L.; Pan, Kaike; Pepper, Joshua; Pinsonneault, Marc H.; Schiavon, Ricardo P.; Schneider, Donald P.; Wilson, John C.; Zamora, Olga; Zasowski, Gail

    2015-04-01

    The Kepler mission has yielded a large number of planet candidates from among the Kepler Objects of Interest (KOIs), but spectroscopic follow-up of these relatively faint stars is a serious bottleneck in confirming and characterizing these systems. We present motivation and survey design for an ongoing project with the Sloan Digital Sky Survey III multiplexed Apache Point Observatory Galactic Evolution Experiment (APOGEE) near-infrared spectrograph to monitor hundreds of KOI host stars. We report some of our first results using representative targets from our sample, which include current planet candidates that we find to be false positives, as well as candidates listed as false positives that we do not find to be spectroscopic binaries. With this survey, KOI hosts are observed over ˜20 epochs at a radial velocity (RV) precision of 100-200 m s-1. These observations can easily identify a majority of false positives caused by physically associated stellar or substellar binaries, and in many cases, fully characterize their orbits. We demonstrate that APOGEE is capable of achieving RV precision at the 100-200 m s-1 level over long time baselines, and that APOGEE’s multiplexing capability makes it substantially more efficient at identifying false positives due to binaries than other single-object spectrographs working to confirm KOIs as planets. These APOGEE RVs enable ancillary science projects, such as studies of fundamental stellar astrophysics or intrinsically rare substellar companions. The coadded APOGEE spectra can be used to derive stellar properties (Teff, log g) and chemical abundances of over a dozen elements to probe correlations of planet properties with individual elemental abundances.

  10. Confirmation of an exoplanet using the transit color signature: Kepler-418b, a blended giant planet in a multiplanet system

    NASA Astrophysics Data System (ADS)

    Tingley, B.; Parviainen, H.; Gandolfi, D.; Deeg, H. J.; Palle, E.; Montañés Rodriguez, P.; Murgas, F.; Alonso, R.; Bruntt, H.; Fridlund, M.

    2014-07-01

    Aims: We announce confirmation of Kepler-418b, one of two proposed planets in this system. This is the first confirmation of an exoplanet based primarily on the transit color signature technique. Methods: We used the Kepler public data archive combined with multicolor photometry from the Gran Telescopio de Canarias and radial velocity follow-up using FIES at the Nordic Optical Telescope for confirmation. Results: We report a confident detection of a transit color signature that can only be explained by a compact occulting body, entirely ruling out a contaminating eclipsing binary, a hierarchical triple, or a grazing eclipsing binary. Those findings are corroborated by our radial velocity measurements, which put an upper limit of ~1 MJup on the mass of Kepler-418b. We also report that the host star is significantly blended, confirming the ~10% light contamination suspected from the crowding metric in the Kepler light curve measured by the Kepler team. We report detection of an unresolved light source that contributes an additional ~30% to the target star, which would not have been detected without multicolor photometric analysis. The resulting planet-star radius ratio is 0.110 ± 0.0025, more than 25% more than the 0.087 measured by Kepler leading to a radius of 1.20 ± 0.16 RJup instead of the 0.94 RJup measured by the Kepler team. Conclusions: This is the first confirmation of an exoplanet candidate based primarily on the transit color signature, demonstrating that this technique is viable from ground for giant planets. It is particularly useful for planets with long periods such as Kepler-418b, which tend to have long transit durations. While this technique is limited to candidates with deep transits from the ground, it may be possible to confirm earth-like exoplanet candidates with a few hours of observing time with an instrument like the James Webb Space Telescope. Additionally, multicolor photometric analysis of transits can reveal unknown stellar neighbors

  11. Changing Phases of Alien Worlds: Probing Atmospheres of Kepler Planets with High-precision Photometry

    NASA Astrophysics Data System (ADS)

    Esteves, Lisa J.; De Mooij, Ernst J. W.; Jayawardhana, Ray

    2015-05-01

    We present a comprehensive analysis of planetary phase variations, including possible planetary light offsets, using eighteen quarters of data from the Kepler space telescope. Our analysis found fourteen systems with significant detections in each of the phase curve components: planet’s phase function, secondary eclipse, Doppler boosting, and ellipsoidal variations. We model the full phase curve simultaneously, including primary and secondary transits, and derive albedos, day- and night-side temperatures and planet masses. Most planets manifest low optical geometric albedos (< 0.25), with the exception of Kepler-10b, Kepler-91b, and KOI-13b. We find that KOI-13b, with a small eccentricity of 0.0006 ± 0.0001, is the only planet for which an eccentric orbit is favored. We detect a third harmonic for HAT-P-7b for the first time, and confirm the third harmonic for KOI-13b reported in Esteves et al.: both could be due to their spin-orbit misalignments. For six planets, we report a planetary brightness peak offset from the substellar point: of those, the hottest two (Kepler-76b and HAT-P-7b) exhibit pre-eclipse shifts or on the evening-side, while the cooler four (Kepler-7b, Kepler-8b, Kepler-12b, and Kepler-41b) peak post-eclipse or on the morning-side. Our findings dramatically increase the number of Kepler planets with detected planetary light offsets, and provide the first evidence in the Kepler data for a correlation between the peak offset direction and the planet’s temperature. Such a correlation could arise if thermal emission dominates light from hotter planets that harbor hot spots shifted toward the evening-side, as theoretically predicted, while reflected light dominates cooler planets with clouds on the planet’s morning-side.

  12. The Rotational Behavior of Kepler Stars with Planets

    NASA Astrophysics Data System (ADS)

    Paz-Chinchón, F.; Leão, I. C.; Bravo, J. P.; de Freitas, D. B.; Ferreira Lopes, C. E.; Alves, S.; Catelan, M.; Canto Martins, B. L.; De Medeiros, J. R.

    2015-04-01

    We analyzed the host stars of the present sample of confirmed planets detected by Kepler and Kepler Objects of Interest to compute new photometric rotation periods and to study the behavior of their angular momentum. Lomb-Scargle periodograms and wavelet maps were computed for 3807 stars. For 540 of these stars, we were able to detect rotational modulation of the light curves at a significance level of greater than 99%. For 63 of these 540 stars, no rotation measurements were previously available in the literature. According to the published masses and evolutionary tracks of the stars in this sample, the sample is composed of M- to F-type stars (with masses of 0.48-1.53 M ) with rotation periods that span a range of 2-89 days. These periods exhibit an excellent agreement with those previously reported (for the stars for which such values are available), and the observed rotational period distribution strongly agrees with theoretical predictions. Furthermore, for the 540 sources considered here, the stellar angular momentum provides an important test of Kraft’s relation based on the photometric rotation periods. Finally, this study directly contributes in a direct approach to our understanding of how angular momentum is distributed between the host star and its (detected) planetary system; the role of angular momentum exchange in such systems is an unavoidable piece of the stellar rotation puzzle.

  13. DISCOVERY OF THE TRANSITING PLANET KEPLER-5b

    SciTech Connect

    Koch, David G.; Borucki, William J.; Rowe, Jason F.; Lissauer, Jack J.; Morrison, David; Batalha, Natalie M.; Brown, Timothy M.; Caldwell, Douglas A.; DeVore, Edna; Jenkins, Jon M.; Caldwell, John; Cochran, William D.; Dunham, Edward W.; Dupree, Andrea K.; Geary, John C.; Latham, David W.; Gautier, Thomas N.; Howell, Steve B.; Marcy, Geoff W.

    2010-04-20

    We present 44 days of high duty cycle, ultra precise photometry of the 13th magnitude star Kepler-5 (KIC 8191672, T {sub eff}= 6300 K, log g= 4.1), which exhibits periodic transits with a depth of 0.7%. Detailed modeling of the transit is consistent with a planetary companion with an orbital period of 3.548460 {+-} 0.000032 days and a radius of 1.431{sup +0.041} {sub -0.052} R {sub J}. Follow-up radial velocity measurements with the Keck HIRES spectrograph on nine separate nights demonstrate that the planet is more than twice as massive as Jupiter with a mass of 2.114{sup +0.056} {sub -0.059} M {sub J} and a mean density of 0.894 {+-} 0.079 g cm{sup -3}.

  14. A POPULATION OF VERY HOT SUPER-EARTHS IN MULTIPLE-PLANET SYSTEMS SHOULD BE UNCOVERED BY KEPLER

    SciTech Connect

    Schlaufman, Kevin C.; Lin, D. N. C.; Ida, S. E-mail: lin@ucolick.or

    2010-11-20

    We simulate a Kepler-like observation of a theoretical exoplanet population and show that the observed orbital period distribution of the Kepler giant planet candidates is best matched by an average stellar specific dissipation function Q'{sub *} in the interval 10{sup 6} {approx_lt} Q'{sub *} {approx_lt} 10{sup 7}. In that situation, the few super-Earths that are driven to orbital periods of P < 1 day by dynamical interactions in multiple-planet systems will survive tidal disruption for a significant fraction of the main-sequence lifetimes of their stellar hosts. Consequently, though these very hot super-Earths are not characteristic of the overall super-Earth population, their substantial transit probability implies that they should be significant contributors to the full super-Earth population uncovered by Kepler. As a result, the CoRoT-7 system may be the first representative of a population of very hot super-Earths that we suggest should be found in multiple-planet systems preferentially orbiting the least-dissipative stellar hosts in the Kepler sample.

  15. Had the Planet Mars Not Existed: Kepler's Equant Model and Its Physical Consequences

    ERIC Educational Resources Information Center

    Bracco, C.; Provost, J.P.

    2009-01-01

    We examine the equant model for the motion of planets, which was the starting point of Kepler's investigations before he modified it because of Mars observations. We show that, up to first order in eccentricity, this model implies for each orbit a velocity, which satisfies Kepler's second law and Hamilton's hodograph, and a centripetal…

  16. Revising the Transit Depth-Metallicity Correlation of Kepler's Giant Candidates

    NASA Astrophysics Data System (ADS)

    Sarkis, Paula; Nehmé, Cyrine

    2015-08-01

    The two favored mechanisms suggested for forming gas giants are disk instability and core accretion. The latter is the generally accepted mechanism on short orbits. According to this model, one would expect to observe a positive correlation between the transit depth of gas giants and the metallicity of the host star. However, a negative correlation was reported between Kepler’s Q1-Q12 gas giant candidates and the stellar metallicity. Even though this correlation is extremely weak, at the -1.17 sigma, it challenges the theory of planet formation. My work involves revising this correlation now that the number of Kepler's candidates/confirmed has increased. But large-scale surveys, such as Kepler, are subject to selection effects and biases. These biases should be quantified and accounted for in the statistical analysis in order to best understand the correlation. This work reflects the importance of statistical analysis in detecting and characterizing exoplanets, especially in the era of large-scale surveys. Such analysis will lead to a greater understanding of planet formation.

  17. FAME's Search for Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Johnston, K.

    FAME is a five year survey mission to observe the positions, proper motions, and parallaxes of 40,000,000 stars down to 15th magnitude with accuracies of 50 microarcseconds at 9th magnitude. In addition to producing an astrometric and photometric catalog unparalleled for its accuracy and size, the survey will provide significant astrophysics results and search for extrasolar planet candidates.

  18. TRIPLE-STAR CANDIDATES AMONG THE KEPLER BINARIES

    SciTech Connect

    Rappaport, S.; Deck, K.; Sanchis-Ojeda, R.; Levine, A.; Borkovits, T.; Carter, J.; El Mellah, I.; Kalomeni, B. E-mail: kdeck@mit.edu E-mail: aml@space.mit.edu E-mail: jacarter@cfa.harvard.edu

    2013-05-01

    We present the results of a search through the photometric database of Kepler eclipsing binaries looking for evidence of hierarchical triple-star systems. The presence of a third star orbiting the binary can be inferred from eclipse timing variations. We apply a simple algorithm in an automated determination of the eclipse times for all 2157 binaries. The ''calculated'' eclipse times, based on a constant period model, are subtracted from those observed. The resulting O - C (observed minus calculated times) curves are then visually inspected for periodicities in order to find triple-star candidates. After eliminating false positives due to the beat frequency between the {approx}1/2 hr Kepler cadence and the binary period, 39 candidate triple systems were identified. The periodic O - C curves for these candidates were then fit for contributions from both the classical Roemer delay and so-called physical delay, in an attempt to extract a number of the system parameters of the triple. We discuss the limitations of the information that can be inferred from these O - C curves without further supplemental input, e.g., ground-based spectroscopy. Based on the limited range of orbital periods for the triple-star systems to which this search is sensitive, we can extrapolate to estimate that at least 20% of all close binaries have tertiary companions.

  19. Triple-star Candidates among the Kepler Binaries

    NASA Astrophysics Data System (ADS)

    Rappaport, S.; Deck, K.; Levine, A.; Borkovits, T.; Carter, J.; El Mellah, I.; Sanchis-Ojeda, R.; Kalomeni, B.

    2013-05-01

    We present the results of a search through the photometric database of Kepler eclipsing binaries looking for evidence of hierarchical triple-star systems. The presence of a third star orbiting the binary can be inferred from eclipse timing variations. We apply a simple algorithm in an automated determination of the eclipse times for all 2157 binaries. The "calculated" eclipse times, based on a constant period model, are subtracted from those observed. The resulting O - C (observed minus calculated times) curves are then visually inspected for periodicities in order to find triple-star candidates. After eliminating false positives due to the beat frequency between the ~1/2 hr Kepler cadence and the binary period, 39 candidate triple systems were identified. The periodic O - C curves for these candidates were then fit for contributions from both the classical Roemer delay and so-called physical delay, in an attempt to extract a number of the system parameters of the triple. We discuss the limitations of the information that can be inferred from these O - C curves without further supplemental input, e.g., ground-based spectroscopy. Based on the limited range of orbital periods for the triple-star systems to which this search is sensitive, we can extrapolate to estimate that at least 20% of all close binaries have tertiary companions.

  20. Investigating the Orbital Period Valley of Giant Planets in Kepler Data

    NASA Astrophysics Data System (ADS)

    Thomas, Brianna P.; Birkby, Jayne L.

    2016-01-01

    Transit light curves contain a wealth of information about the basic properties of a planet, such as its radius, semi-major axis, and orbital period. For the latter property, there is a distinct lack of planets with periods between 10 to 100 days. This gap could be caused by something as simple as observational bias, or as prominent as planetary formation or migration. Here, we report an investigation into the atmosphere of planets within this orbital period valley, to search for differences that may indicate a different formation mechanism or migration path to those outside of it. We do this by searching for the secondary eclipse of planets in the valley in order to measure their albedos. We determined an optimal target for this: KOI-366 b (P ~ 75 days). However, we find that despite the exquisite precision of Kepler data, it cannot constrain the albedo for this long-orbit planet candidate. We measure a 1σ upper limit on the geometric albedo of Ag,1σ ≤ 2.0. We highlight that additional scatter in the light curve is likely caused by a ~ 2-day pulsation of the giant host star, and that further data is required to measure the secondary eclipse. KOI-366 is one of the best suited of all host stars with long period exoplanet candidates for follow-up due to its relatively bright magnitude (Kp = 11.7 mag), but the full investigation of the reflective properties of long period planets may require space-based observations from future instruments, such as WFIRST, that will be more sensitive to objects further away from their host stars. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

  1. Search for light curve modulations among Kepler candidates. Three very low-mass transiting companions

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Ribas, A.; Barrado, D.; Merín, B.; Bouy, H.

    2016-07-01

    Context. Light curve modulations in the sample of Kepler planet candidates allows the disentangling of the nature of the transiting object by photometrically measuring its mass. This is possible by detecting the effects of the gravitational pull of the companion (ellipsoidal modulations) and in some cases, the photometric imprints of the Doppler effect when observing in a broad band (Doppler beaming). Aims: We aim to photometrically unveil the nature of some transiting objects showing clear light curve modulations in the phase-folded Kepler light curve. Methods: We selected a subsample among the large crop of Kepler objects of interest (KOIs) based on their chances to show detectable light curve modulations, i.e., close (a< 12 R⋆) and large (in terms of radius, according to their transit signal) candidates. We modeled their phase-folded light curves with consistent equations for the three effects, namely, reflection, ellipsoidal and beaming (known as REB modulations). Results: We provide detailed general equations for the fit of the REB modulations for the case of eccentric orbits. These equations are accurate to the photometric precisions achievable by current and forthcoming instruments and space missions. By using this mathematical apparatus, we find three close-in very low-mass companions (two of them in the brown dwarf mass domain) orbiting main-sequence stars (KOI-554, KOI-1074, and KOI-3728), and reject the planetary nature of the transiting objects (thus classifying them as false positives). In contrast, the detection of the REB modulations and transit/eclipse signal allows the measurement of their mass and radius that can provide important constraints for modeling their interiors since just a few cases of low-mass eclipsing binaries are known. Additionally, these new systems can help to constrain the similarities in the formation process of the more massive and close-in planets (hot Jupiters), brown dwarfs, and very low-mass companions.

  2. The Kepler Dichotomy among the M Dwarfs: Half of Systems Contain Five or More Coplanar Planets

    NASA Astrophysics Data System (ADS)

    Ballard, Sarah; Johnson, John Asher

    2016-01-01

    We present a statistical analysis of the Kepler M dwarf planet hosts, with a particular focus on the fractional number of systems hosting multiple transiting planets. We manufacture synthetic planetary systems within a range of planet multiplicity and mutual inclination for comparison to the Kepler yield. Similarly to studies of Kepler exoplanetary systems around more massive stars, we report that the number of singly transiting planets found by Kepler is too high to be consistent with a single population of multi-planet systems, a finding that cannot be attributed to selection biases. To account for the excess singleton planetary systems we adopt a mixture model and find that 53 ± 10% of planetary systems are either single or contain multiple planets with large mutual inclinations. The other 47 ± 10% of systems contain {7.5}-1.5+0.5 planets with mutual inclinations of 2.°0 ± 1.°3. This mutual inclination range is consistent with studies of transit durations within multiply transiting systems. The mixture model is preferred 8:1 to a model with only one architecture. Thus, we find that the so-called “Kepler dichotomy” holds for planets orbiting M dwarfs as well as Sun-like stars.

  3. Validation of transting planet candidates: a Bayesian view

    NASA Astrophysics Data System (ADS)

    Díaz, Rodrigo Fernando; Almenara, Jose Manuel; Santerne, Alexandre

    2015-08-01

    Transiting candidate validation is essentially a Bayesian model comparison problem: different models, all explaining the observations comparably well, compete for the support of the available data. It has, however, two particularities that render it very complex and difficult to tackle: i) the relevant data sets are of diverse nature (transit light curves, broad band photometry, high angular resolution images, radial velocity observations, etc.), and ii) the models representing each hypothesis are highly non-linear and in some cases make the computation of the likelihood very time consuming.Despite its clear Bayesian nature, the planet validation problem has received in the past mainly a frequentist treatment (BLENDER). Other techniques exist, but they employ unrealistic models that increase speed but only partially exploit the available datasets (ValFast).The Planet Analysis and Small Transit Investigation Software (PASTIS) was developped keeping these issues and the characteristics of the problem in mind. It aims at computing the Bayesian evidence for a full set of false positive scenarios and the planet hypothesis, modelling in all cases the available data self-consistently, thus producing robust and rigorous Bayes factor for all models of interest. Its object-oriented architecture also permits constructing a vast set of false positive models easily.I will review some key results of the planet validation technique, showing the limitations and dangers of some approaches and of the validation technique in general. I will also describe the PASTIS tool and present out results on CoRoT-22 b, Kepler-22 b, and other transiting candidates.

  4. ROTATIONAL SYNCHRONIZATION MAY ENHANCE HABITABILITY FOR CIRCUMBINARY PLANETS: KEPLER BINARY CASE STUDIES

    SciTech Connect

    Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.; Clark, Joni M.

    2013-09-10

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  5. Rotational Synchronization May Enhance Habitability for Circumbinary Planets: Kepler Binary Case Studies

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Zuluaga, Jorge I.; Clark, Joni M.; Cuartas-Restrepo, Pablo A.

    2013-09-01

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  6. Oscillation frequencies for 35 Kepler solar-type planet-hosting stars using Bayesian techniques and machine learning

    NASA Astrophysics Data System (ADS)

    Davies, G. R.; Silva Aguirre, V.; Bedding, T. R.; Handberg, R.; Lund, M. N.; Chaplin, W. J.; Huber, D.; White, T. R.; Benomar, O.; Hekker, S.; Basu, S.; Campante, T. L.; Christensen-Dalsgaard, J.; Elsworth, Y.; Karoff, C.; Kjeldsen, H.; Lundkvist, M. S.; Metcalfe, T. S.; Stello, D.

    2016-02-01

    Kepler has revolutionized our understanding of both exoplanets and their host stars. Asteroseismology is a valuable tool in the characterization of stars and Kepler is an excellent observing facility to perform asteroseismology. Here we select a sample of 35 Kepler solar-type stars which host transiting exoplanets (or planet candidates) with detected solar-like oscillations. Using available Kepler short cadence data up to Quarter 16 we create power spectra optimized for asteroseismology of solar-type stars. We identify modes of oscillation and estimate mode frequencies by `peak bagging' using a Bayesian Markov Chain Monte Carlo framework. In addition, we expand the methodology of quality assurance using a Bayesian unsupervised machine learning approach. We report the measured frequencies of the modes of oscillation for all 35 stars and frequency ratios commonly used in detailed asteroseismic modelling. Due to the high correlations associated with frequency ratios we report the covariance matrix of all frequencies measured and frequency ratios calculated. These frequencies, frequency ratios, and covariance matrices can be used to obtain tight constraint on the fundamental parameters of these planet-hosting stars.

  7. Motions of Kepler circumbinary planets in restricted three-body problem under radiating primaries

    SciTech Connect

    Dermawan, B. Hidayat, T.; Huda, I. N. Mandey, D. Utama, J. A. Tampubolon, I.; Wibowo, R. W.

    2015-09-30

    By observing continuously a single field of view in the sky, Kepler mission reveals outstanding results on discoveries of exoplanets. One of its recent progress is the discoveries of circumbinary planets. A circumbinary planet is an exoplanet that moves around a binary system. In this study we investigate motions of Kepler circumbinary planets belong to six binary systems, namely Kepler-16, -34, -35, -38, -47, and -413. The motions are considered to follow the Restricted Three-Body Problem (RTBP). Because the primaries (central massive objects) are stars, they are both radiatives, while the planet is an infinitesimal object. The primaries move in nearly circular and elliptic orbits with respect to their center of masses. We describe, in general, motions of the circumbinary planets in RTBP under radiating primaries. With respect to the averaged zero velocity curves, we show that motions of the exoplanets are stable, in accordance with their Hill stabilities.

  8. Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks

    NASA Astrophysics Data System (ADS)

    Merín, Bruno; Ardila, David R.; Ribas, Álvaro; Bouy, Hervé; Bryden, Geoffrey; Stapelfeldt, Karl; Padgett, Deborah

    2014-09-01

    Dust in debris disks is produced by colliding or evaporating planetesimals, which are remnants of the planet formation process. Warm dust disks, known by their emission at ≤24 μm, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any one of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in β Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around η Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important

  9. Chandra Pilot Survey of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Tsuboi, Yohko

    2012-09-01

    We propose to detect planetary-mass companion around young nearby stars by X-ray direct imaging observations with Chandra. Our goals are to determine I. if the X-ray band can be a new probe to the exo-planet search, and II. if a planet emit detectable X-rays with a magnetic origin at a young age. This should be a challenging observation but a brand-new discovery space unique to Chandra. The abundant population of YSOs in the same field of view will enable us to obtain complete X-ray catalogues of YSOs with all categories of masses. We will also execute simultaneous deep NIR observations with IRSF/SIRIUS and Nishiharima 2m telescope to search for the other X-ray-emitting very low-mass objects near our aiming planet candidates.

  10. CIRCUMBINARY PLANET FORMATION IN THE KEPLER-16 SYSTEM. I. N-BODY SIMULATIONS

    SciTech Connect

    Meschiari, Stefano

    2012-06-10

    The recently discovered circumbinary planets (Kepler-16 b, Kepler 34-b, Kepler 35-b) represent the first direct evidence of the viability of planet formation in circumbinary orbits. We report on the results of N-body simulations investigating planetesimal accretion in the Kepler-16 b system, focusing on the range of impact velocities under the influence of both stars' gravitational perturbation and friction from a putative protoplanetary disk. Our results show that planet formation might be effectively inhibited for a large range in semimajor axis (1.75 {approx}< a{sub P} {approx}< 4 AU), suggesting that the planetary core must have either migrated from outside 4 AU or formed in situ very close to its current location.

  11. The mass of the super-Earth orbiting the brightest Kepler planet hosting star

    NASA Astrophysics Data System (ADS)

    Lopez-Morales, Mercedes; HARPS-N Team

    2016-01-01

    HD 179070, aka Kepler-21, is a V = 8.25 oscillating F6IV star and the brightest exoplanet host discovered by Kepler. An early analysis of the Q0 - Q5 Kepler light curves by Howell et al. (2012) revealed transits of a planetary companion, Kepler-21b, with a radius of 1.6 R_Earth and an orbital period of 2.7857 days. However, they could not determine the mass of the planet from the initial radial velocity observations with Keck-HIRES, and were only able to impose a 2s upper limit of about 10 M_Earth. Here we present 82 new radial velocity observations of this system obtained with the HARPS-N spectrograph. We detect the Doppler shift signal of Kepler-21b at the 3.6s level, and measure a planetary mass of 5.9 ± 1.6 M_Earth. We also update the radius of the planet to 1.65 ± 0.08 R_Earth, using the now available Kepler Q0 - Q17 photometry for this target. The mass of Kepler-21b appears to fall on the apparent dividing line between super-Earths that have lost all the material in their outer layers and those that have retained a significant amount of volatiles. Based on our results Kepler-21b belongs to the first group. Acknowledgement: This work was supported by funding from the NASA XRP Program and the John Templeton Foundation.

  12. VizieR Online Data Catalog: Transit metric for Q1-Q17 Kepler candidates (Thompson+, 2015)

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Mullally, F.; Coughlin, J.; Christiansen, J. L.; Henze, C. E.; Haas, M. R.; Burke, C. J.

    2016-02-01

    We describe a new metric that uses machine learning to determine if a periodic signal found in a photometric time series appears to be shaped like the signature of a transiting exoplanet. This metric uses dimensionality reduction and k-nearest neighbors to determine whether a given signal is sufficiently similar to known transits in the same data set. This metric is being used by the Kepler Robovetter to determine which signals should be part of the Q1-Q17 DR24 catalog of planetary candidates. The Kepler Mission reports roughly 20000 potential transiting signals with each run of its pipeline, yet only a few thousand appear to be sufficiently transit shaped to be part of the catalog. The other signals tend to be variable stars and instrumental noise. With this metric, we are able to remove more than 90% of the non-transiting signals while retaining more than 99% of the known planet candidates. When tested with injected transits, less than 1% are lost. This metric will enable the Kepler mission and future missions looking for transiting planets to rapidly and consistently find the best planetary candidates for follow-up and cataloging. (1 data file).

  13. Constraining the Radiation and Plasma Environment of the Kepler Circumbinary Habitable-zone Planets

    NASA Astrophysics Data System (ADS)

    Zuluaga, Jorge I.; Mason, Paul A.; Cuartas-Restrepo, Pablo A.

    2016-02-01

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.

  14. WATER-PLANETS IN THE HABITABLE ZONE: ATMOSPHERIC CHEMISTRY, OBSERVABLE FEATURES, AND THE CASE OF KEPLER-62e AND -62f

    SciTech Connect

    Kaltenegger, L.; Sasselov, D.; Rugheimer, S.

    2013-10-01

    Planets composed of large quantities of water that reside in the habitable zone are expected to have distinct geophysics and geochemistry of their surfaces and atmospheres. We explore these properties motivated by two key questions: whether such planets could provide habitable conditions and whether they exhibit discernable spectral features that distinguish a water-planet from a rocky Earth-like planet. We show that the recently discovered planets Kepler-62e and -62f are the first viable candidates for habitable zone water-planets. We use these planets as test cases for discussing those differences in detail. We generate atmospheric spectral models and find that potentially habitable water-planets show a distinctive spectral fingerprint in transit depending on their position in the habitable zone.

  15. Asymmetric orbital distribution near mean motion resonance: Application to planets observed by Kepler and radial velocities

    SciTech Connect

    Xie, Ji-Wei E-mail: jwxie@astro.utoronto.ca

    2014-05-10

    Many multiple-planet systems have been found by the Kepler transit survey and various radial velocity (RV) surveys. Kepler planets show an asymmetric feature, namely, there are small but significant deficits/excesses of planet pairs with orbital period spacing slightly narrow/wide of the exact resonance, particularly near the first order mean motion resonance (MMR), such as 2:1 and 3:2 MMR. Similarly, if not exactly the same, an asymmetric feature (pileup wide of 2:1 MMR) is also seen in RV planets, but only for massive ones. We analytically and numerically study planets' orbital evolutions near and in the MMR. We find that their orbital period ratios could be asymmetrically distributed around the MMR center regardless of dissipation. In the case of no dissipation, Kepler planets' asymmetric orbital distribution could be partly reproduced for 3:2 MMR but not for 2:1 MMR, implying that dissipation might be more important to the latter. The pileup of massive RV planets just wide of 2:1 MMR is found to be consistent with the scenario that planets formed separately then migrated toward the MMR. The location of the pileup infers a K value of 1-100 on the order of magnitude for massive planets, where K is the damping rate ratio between orbital eccentricity and semimajor axis during planet migration.

  16. Probable Spin-Orbit Aligned Super-Earth Planet Candidate KOI2138

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Ahlers, Johnathon P.; Seubert, Shayne A.; Relles, Howard M.

    2015-08-01

    We use rotational gravity darkening in the disk of Kepler star KOI-2138 to show that the orbit of 2.1-{R}\\oplus transiting planet candidate KOI-2138.01 has a low projected spin-orbit alignment of λ =1^\\circ +/- 13^\\circ . KOI-2138.01 is just the second super-Earth with a measured spin-orbit alignment after 55 Cancri e, and the first to be aligned. With a 23.55 days orbital period, KOI-2138.01 may represent the tip of a future iceberg of solar-system-like terrestrial planets having intermediate periods and low-inclination circular orbits.

  17. ADAPTIVE OPTICS IMAGES. II. 12 KEPLER OBJECTS OF INTEREST AND 15 CONFIRMED TRANSITING PLANETS

    SciTech Connect

    Adams, E. R.; Dupree, A. K.; Kulesa, C.; McCarthy, D.

    2013-07-01

    All transiting planet observations are at risk of contamination from nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or producing a false positive detection when the target star is blended with an eclipsing binary. High spatial resolution adaptive optics images are an effective way of resolving most blends. Here we present visual companions and detection limits for 12 Kepler planet candidate host stars, of which 4 have companions within 4''. One system (KOI 1537) consists of two similar-magnitude stars separated by 0.''1, while KOI 174 has a companion at 0.''5. In addition, observations were made of 15 transiting planets that were previously discovered by other surveys. The only companion found within 1'' of a known planet is the previously identified companion to WASP-2b. An additional four systems have companions between 1'' and 4'': HAT-P-30b (3.''7, {Delta}Ks = 2.9), HAT-P-32b (2.''9, {Delta}Ks = 3.4), TrES-1b (2.''3, {Delta}Ks = 7.7), and WASP-P-33b (1.''9, {Delta}Ks = 5.5), some of which have not been reported previously. Depending on the spatial resolution of the transit photometry for these systems, these companion stars may require a reassessment of the planetary parameters derived from transit light curves. For all systems observed, we report the limiting magnitudes beyond which additional fainter objects located 0.''1-4'' from the target may still exist.

  18. The detailed chemical composition of the terrestrial planet host Kepler-10

    NASA Astrophysics Data System (ADS)

    Liu, F.; Yong, D.; Asplund, M.; Ramírez, I.; Meléndez, J.; Gustafsson, B.; Howes, L. M.; Roederer, I. U.; Lambert, D. L.; Bensby, T.

    2016-03-01

    Chemical abundance studies of the Sun and solar twins have demonstrated that the solar composition of refractory elements is depleted when compared to volatile elements, which could be due to the formation of terrestrial planets. In order to further examine this scenario, we conducted a line-by-line differential chemical abundance analysis of the terrestrial planet host Kepler-10 and 14 of its stellar twins. Stellar parameters and elemental abundances of Kepler-10 and its stellar twins were obtained with very high precision using a strictly differential analysis of high quality Canada-France-Hawaii Telescope, Hobby-Eberly Telescope and Magellan spectra. When compared to the majority of thick disc twins, Kepler-10 shows a depletion in the refractory elements relative to the volatile elements, which could be due to the formation of terrestrial planets in the Kepler-10 system. The average abundance pattern corresponds to ˜13 Earth masses, while the two known planets in Kepler-10 system have a combined ˜20 Earth masses. For two of the eight thick disc twins, however, no depletion patterns are found. Although our results demonstrate that several factors [e.g. planet signature, stellar age, stellar birth location and Galactic chemical evolution (GCE)] could lead to or affect abundance trends with condensation temperature, we find that the trends give further support for the planetary signature hypothesis.

  19. Kepler Mission Overview

    NASA Astrophysics Data System (ADS)

    Borucki, William J.; Koch, D. G.; Gautier, T. N., III; Dunham, E. W.; Kepler Science Team

    2011-01-01

    Early Kepler observations show the presence of over 750 candidate planets, 1800 eclipsing binary stars, and variable stars of amazing variety. Many of the planetary candidates are smaller than Neptune. Discoveries of seven new exoplanets are shown including one of with two confirmed transiting planets. The candidate- and the announced-planets are compared with known exoplanets with respect to mass, size, density, and orbital period. Support by the NASA Astrophysics Division is gratefully acknowledged.

  20. DISK-PLANETS INTERACTIONS AND THE DIVERSITY OF PERIOD RATIOS IN KEPLER'S MULTI-PLANETARY SYSTEMS

    SciTech Connect

    Baruteau, Clement; Papaloizou, John C. B. E-mail: J.C.B.Papaloizou@damtp.cam.ac.uk

    2013-11-20

    The Kepler mission is dramatically increasing the number of planets known in multi-planetary systems. Many adjacent planets have orbital period ratios near resonant values, with a tendency to be larger than required for exact first-order mean-motion resonances. This feature has been shown to be a natural outcome of orbital circularization of resonant planetary pairs due to star-planet tidal interactions. However, this feature holds in multi-planetary systems with periods longer than 10 days, in which tidal circularization is unlikely to provide efficient divergent evolution of the planets' orbits to explain these orbital period ratios. Gravitational interactions between planets and their parent protoplanetary disk may instead provide efficient divergent evolution. For a planet pair embedded in a disk, we show that interactions between a planet and the wake of its companion can reverse convergent migration and significantly increase the period ratio from a near-resonant value. Divergent evolution due to wake-planet interactions is particularly efficient when at least one of the planets opens a partial gap around its orbit. This mechanism could help account for the diversity of period ratios in Kepler's multiple systems from super-Earth to sub-Jovian planets with periods greater than about 10 days. Diversity is also expected for pairs of planets massive enough to merge their gap. The efficiency of wake-planet interactions is then much reduced, but convergent migration may stall with a variety of period ratios depending on the density structure in the common gap. This is illustrated for the Kepler-46 system, for which we reproduce the period ratio of Kepler-46b and c.

  1. DISCOVERY AND ATMOSPHERIC CHARACTERIZATION OF GIANT PLANET KEPLER-12b: AN INFLATED RADIUS OUTLIER

    SciTech Connect

    Fortney, Jonathan J.; Nutzman, Philip; Demory, Brice-Olivier; Desert, Jean-Michel; Buchhave, Lars A.; Charbonneau, David; Fressin, Francois; Rowe, Jason; Caldwell, Douglas A.; Jenkins, Jon M.; Ciardi, David; Gautier, Thomas N.; Bryson, Stephen T.; Howell, Steve B.; Everett, Mark; and others

    2011-11-01

    We report the discovery of planet Kepler-12b (KOI-20), which at 1.695 {+-} 0.030 R{sub J} is among the handful of planets with super-inflated radii above 1.65 R{sub J}. Orbiting its slightly evolved G0 host with a 4.438 day period, this 0.431 {+-} 0.041 M{sub J} planet is the least irradiated within this largest-planet-radius group, which has important implications for planetary physics. The planet's inflated radius and low mass lead to a very low density of 0.111 {+-} 0.010 g cm{sup -3}. We detect the occultation of the planet at a significance of 3.7{sigma} in the Kepler bandpass. This yields a geometric albedo of 0.14 {+-} 0.04; the planetary flux is due to a combination of scattered light and emitted thermal flux. We use multiple observations with Warm Spitzer to detect the occultation at 7{sigma} and 4{sigma} in the 3.6 and 4.5 {mu}m bandpasses, respectively. The occultation photometry timing is consistent with a circular orbit at e < 0.01 (1{sigma}) and e < 0.09 (3{sigma}). The occultation detections across the three bands favor an atmospheric model with no dayside temperature inversion. The Kepler occultation detection provides significant leverage, but conclusions regarding temperature structure are preliminary, given our ignorance of opacity sources at optical wavelengths in hot Jupiter atmospheres. If Kepler-12b and HD 209458b, which intercept similar incident stellar fluxes, have the same heavy-element masses, the interior energy source needed to explain the large radius of Kepler-12b is three times larger than that of HD 209458b. This may suggest that more than one radius-inflation mechanism is at work for Kepler-12b or that it is less heavy-element rich than other transiting planets.

  2. ALL SIX PLANETS KNOWN TO ORBIT KEPLER-11 HAVE LOW DENSITIES

    SciTech Connect

    Lissauer, Jack J.; Jontof-Hutter, Daniel; Rowe, Jason F.; Howell, Steve B.; Jenkins, Jon M.; Fabrycky, Daniel C.; Lopez, Eric D.; Fortney, Jonathan J.; Agol, Eric; Marcy, Geoffrey W.; Isaacson, Howard; Kolbl, Rea; Deck, Katherine M.; Fischer, Debra A.; Sasselov, Dimitar; Short, Donald R.; Welsh, William F.

    2013-06-20

    The Kepler-11 planetary system contains six transiting planets ranging in size from 1.8 to 4.2 times the radius of Earth. Five of these planets orbit in a tightly packed configuration with periods between 10 and 47 days. We perform a dynamical analysis of the system based upon transit timing variations observed in more than three years of Kepler photometric data. Stellar parameters are derived using a combination of spectral classification and constraints on the star's density derived from transit profiles together with planetary eccentricity vectors provided by our dynamical study. Combining masses of the planets relative to the star from our dynamical study and radii of the planets relative to the star from transit depths together with deduced stellar properties yields measurements of the radii of all six planets, masses of the five inner planets, and an upper bound to the mass of the outermost planet, whose orbital period is 118 days. We find mass-radius combinations for all six planets that imply that substantial fractions of their volumes are occupied by constituents that are less dense than rock. Moreover, we examine the stability of these envelopes against photoevaporation and find that the compositions of at least the inner two planets have likely been significantly sculpted by mass loss. The Kepler-11 system contains the lowest mass exoplanets for which both mass and radius have been measured.

  3. The Kepler-454 System: A Small, Not-rocky Inner Planet, a Jovian World, and a Distant Companion

    NASA Astrophysics Data System (ADS)

    Gettel, Sara; Charbonneau, David; Dressing, Courtney D.; Buchhave, Lars A.; Dumusque, Xavier; Vanderburg, Andrew; Bonomo, Aldo S.; Malavolta, Luca; Pepe, Francesco; Collier Cameron, Andrew; Latham, David W.; Udry, Stéphane; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Davies, Guy R.; Silva Aguirre, Victor; Kjeldsen, Hans; Bedding, Timothy R.; Lopez, Eric; Affer, Laura; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Johnson, John Asher; Lopez-Morales, Mercedes; Lovis, Christophe; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Phillips, David F.; Piotto, Giampaolo; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Watson, Chris; Basu, Sarbani; Campante, Tiago L.; Christensen-Dalsgaard, Jørgen; Kawaler, Steven D.; Metcalfe, Travis S.; Handberg, Rasmus; Lund, Mikkel N.; Lundkvist, Mia S.; Huber, Daniel; Chaplin, William J.

    2016-01-01

    Kepler-454 (KOI-273) is a relatively bright (V = 11.69 mag), Sun-like star that hosts a transiting planet candidate in a 10.6 day orbit. From spectroscopy, we estimate the stellar temperature to be 5687 ± 50 K, its metallicity to be [m/H] = 0.32 ± 0.08, and the projected rotational velocity to be v sin i < 2.4 km s-1. We combine these values with a study of the asteroseismic frequencies from short cadence Kepler data to estimate the stellar mass to be {1.028}-0.03+0.04{M}⊙ , the radius to be 1.066 ± 0.012 R⊙, and the age to be {5.25}-1.39+1.41 Gyr. We estimate the radius of the 10.6 day planet as 2.37 ± 0.13 R⊕. Using 63 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 36 observations made with the HIRES spectrograph at the Keck Observatory, we measure the mass of this planet to be 6.8 ± 1.4 M⊕. We also detect two additional non-transiting companions, a planet with a minimum mass of 4.46 ± 0.12 MJ in a nearly circular 524 day orbit and a massive companion with a period >10 years and mass >12.1 MJ. The 12 exoplanets with radii <2.7 R⊕ and precise mass measurements appear to fall into two populations, with those <1.6 R⊕ following an Earth-like composition curve and larger planets requiring a significant fraction of volatiles. With a density of 2.76 ± 0.73 g cm-3, Kepler-454b lies near the mass transition between these two populations and requires the presence of volatiles and/or H/He gas.

  4. Kepler-432 b: a massive planet in a highly eccentric orbit transiting a red giant

    NASA Astrophysics Data System (ADS)

    Ciceri, S.; Lillo-Box, J.; Southworth, J.; Mancini, L.; Henning, Th.; Barrado, D.

    2015-01-01

    We report the first disclosure of the planetary nature of Kepler-432 b (aka Kepler object of interest KOI-1299.01). We accurately constrained its mass and eccentricity by high-precision radial velocity measurements obtained with the CAFE spectrograph at the CAHA 2.2-m telescope. By simultaneously fitting these new data and Kepler photometry, we found that Kepler-432 b is a dense transiting exoplanet with a mass of Mp = 4.87 ± 0.48MJup and radius of Rp = 1.120 ± 0.036RJup. The planet revolves every 52.5 d around a K giant star that ascends the red giant branch, and it moves on a highly eccentric orbit with e = 0.535 ± 0.030. By analysing two near-IR high-resolution images, we found that a star is located at 1.1'' from Kepler-432, but it is too faint to cause significant effects on the transit depth. Together with Kepler-56 and Kepler-91, Kepler-432 occupies an almost-desert region of parameter space, which is important for constraining the evolutionary processes of planetary systems. RV data (Table A.1) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/L5

  5. Stellar activity observed by the Kepler Space Telescope. The M dwarf of the Kepler-32 system with five orbiting planets

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.; Dmitrienko, E. S.

    2013-10-01

    The activity of the central star of the Kepler-32 planetary system is studied using continuous 1141-day observations with the Kepler Space Telescope. The Kepler-32 system includes a slowly rotating Mdwarf (rotational period of 37.8 d) with a mass of 0.54 M ⊙ and five planets. One of the unique properties of the system is its compactness: the orbits of all five planets are less than a third of the size of the orbit of Mercury; the planet closest to the star is separated from it by only 4.3 stellar radii. Surface-temperature inhomogeneities of the central star are studied using precise photometric observations of Kepler-32, and their evolution traced. In total, 42 624 individual brightness measurements in the 1141-day (3.1-year) observing interval were selected for the analysis. The calculated amplitude power spectra for the first and second halves of the interval of the Kepler-32 observations indicate appreciable variability of the photometric period, corresponding to the evolution of active regions at various latitudes on the stellar surface. Evidence for the existence of two active regions on the stellar surface separated in phase by 0.42 has been found. Time intervals in which the longitudes of the active regions changed ("flip-flops") with durations of the order of 200-300 days have been established. The spotted area of the star was, on average, about 1% of the total visible surface, and varied from 0.3 to 1.7%. The results for the dwarf Kepler-32 are compared with those from a spectropolarimetric survey of 23 M dwarfs, including both fully convective stars and stars with weakly radiative cores. For a more detailed comparison, temperature inhomogeneities on the surface of one of the survey stars, DS Leo, was reconstructed using the ground-based observations (316 individual measurements of the V-band brightness of the star during seven observing seasons in an all-sky automated survey). The general properties and evolution of the active regions on DS Leo and

  6. ASTEROSEISMIC INVESTIGATION OF KNOWN PLANET HOSTS IN THE KEPLER FIELD

    SciTech Connect

    Christensen-Dalsgaard, J.; Kjeldsen, H.; Arentoft, T.; Frandsen, S.; Quirion, P.-O.; Brown, T. M.; Gilliland, R. L.; Borucki, W. J.; Koch, D.; Jenkins, J. M.

    2010-04-20

    In addition to its great potential for characterizing extra-solar planetary systems, the Kepler Mission is providing unique data on stellar oscillations. A key aspect of Kepler asteroseismology is the application to solar-like oscillations of main-sequence stars. As an example, we here consider an initial analysis of data for three stars in the Kepler field for which planetary transits were known from ground-based observations. For one of these, HAT-P-7, we obtain a detailed frequency spectrum and hence strong constraints on the stellar properties. The remaining two stars show definite evidence for solar-like oscillations, yielding a preliminary estimate of their mean densities.

  7. Detecting Close-In Extrasolar Giant Planets with the Kepler Photometer via Scattered Light

    NASA Astrophysics Data System (ADS)

    Jenkins, J. M.; Doyle, L. R.; Kepler Discovery Mission Team

    2003-05-01

    NASA's Kepler Mission will be launched in 2007 primarily to search for transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler's ability to detect such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. LRD was supported by the Carl Sagan Chair at the Center for the Study of Life in the Universe, a division of the SETI Institute. JMJ received support from the Kepler Mission Photometer and Science Office at NASA Ames Research Center.

  8. SOPHIE velocimetry of Kepler transit candidates. XVII. The physical properties of giant exoplanets within 400 days of period

    NASA Astrophysics Data System (ADS)

    Santerne, A.; Moutou, C.; Tsantaki, M.; Bouchy, F.; Hébrard, G.; Adibekyan, V.; Almenara, J.-M.; Amard, L.; Barros, S. C. C.; Boisse, I.; Bonomo, A. S.; Bruno, G.; Courcol, B.; Deleuil, M.; Demangeon, O.; Díaz, R. F.; Guillot, T.; Havel, M.; Montagnier, G.; Rajpurohit, A. S.; Rey, J.; Santos, N. C.

    2016-03-01

    While giant extrasolar planets have been studied for more than two decades now, there are still some open questions as to their dominant formation and migration processes, as well as to their atmospheric evolution in different stellar environments. In this paper, we study a sample of giant transiting exoplanets detected by the Kepler telescope with orbital periods up to 400 days. We first defined a sample of 129 giant-planet candidates that we followed up with the SOPHIE spectrograph (OHP, France) in a 6-year radial velocity campaign. This allowed us to unveil the nature of these candidates and to measure a false-positive rate of 54.6 ± 6.5% for giant-planet candidates orbiting within 400 days of period. Based on a sample of confirmed or likely planets, we then derived the occurrence rates of giant planets in different ranges of orbital periods. The overall occurrence rate of giant planets within 400 days is 4.6 ± 0.6%. We recovered, for the first time in the Kepler data, the different populations of giant planets reported by radial velocity surveys. Comparing these rates with other yields, we find that the occurrence rate of giant planets is lower only for hot Jupiters but not for the longer-period planets. We also derive a first measurement of the occurrence rate of brown dwarfs in the brown-dwarf desert with a value of 0.29 ± 0.17%. Finally, we discuss the physical properties of the giant planets in our sample. We confirm that giant planets receiving moderate irradiation are not inflated, but we find that they are on average smaller than predicted by formation and evolution models. In this regime of low-irradiated giant planets, we find a possible correlation between their bulk density and the iron abundance of the host star, which needs more detections to be confirmed. Based on observations made with SOPHIE on the 1.93 m telescope at Observatoire de Haute-Provence (CNRS), France.RV data (Appendices C and D) are only available at the CDS via anonymous ftp to

  9. Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR

    SciTech Connect

    Borucki, William J.; Koch, David G.; Bryson, Stephen T.; Howell, Steve B.; Lissauer, Jack J.; Batalha, Natalie; Rowe, Jason; Caldwell, Douglas A.; DeVore, Edna; Jenkins, Jon M.; Fressin, Francois; Torres, Guillermo; Geary, John C.; Latham, David W.; Christensen-Dalsgaard, Jorgen; Cochran, William D.; Gautier, Thomas N.; Gilliland, Ronald; Gould, Alan; Marcy, Geoffrey W.; and others

    2012-02-01

    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 {+-} 0.060 M{sub Sun} and 0.979 {+-} 0.020 R{sub Sun }. The depth of 492 {+-} 10 ppm for the three observed transits yields a radius of 2.38 {+-} 0.13 Re for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities (RVs) obtained with the High Resolution Echelle Spectrometer on Keck I over a one-year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{sigma} upper limit of 124 M{sub Circled-Plus }, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262 K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the habitable zone of any star other than the Sun.

  10. Kepler: NASA's First Mission Capable of Finding Earth-Size Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William J.

    2009-01-01

    Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning

  11. A CORRELATION BETWEEN THE ECLIPSE DEPTHS OF KEPLER GAS GIANT CANDIDATES AND THE METALLICITIES OF THEIR PARENT STARS

    SciTech Connect

    Dodson-Robinson, Sarah E.

    2012-06-10

    Previous studies of the interior structure of transiting exoplanets have shown that the heavy-element content of gas giants increases with host star metallicity. Since metal-poor planets are less dense and have larger radii than metal-rich planets of the same mass, one might expect that metal-poor stars host a higher proportion of gas giants with large radii than metal-rich stars. Here I present evidence for a negative correlation at the 2.3{sigma} level between eclipse depth and stellar metallicity in the Kepler gas giant candidates. Based on Kendall's {tau} statistics, the probability that eclipse depth depends on star metallicity is 0.981. The correlation is consistent with planets orbiting low-metallicity stars being, on average, larger in comparison with their host stars than planets orbiting metal-rich stars. Furthermore, since metal-rich stars have smaller radii than metal-poor stars of the same mass and age, a uniform population of planets should show a rise in median eclipse depth with [M/H]. The fact that I find the opposite trend indicates that substantial changes in the gas giant interior structure must accompany increasing [M/H]. I investigate whether the known scarcity of giant planets orbiting low-mass stars could masquerade as an eclipse depth-metallicity correlation, given the degeneracy between metallicity and temperature for cool stars in the Kepler Input Catalog. While the eclipse depth-metallicity correlation is not yet on firm statistical footing and will require spectroscopic [Fe/H] measurements for validation, it is an intriguing window into how the interior structure of planets and even the planet formation mechanism may be changing with Galactic chemical evolution.

  12. Leveraging the power of a planet population: Mass-radius relation, host star multiplicity, and composition distribution of Kepler's sub-Neptunes

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie K.

    With the advent of large, dedicated planet hunting surveys, the search for extrasolar planets has evolved into an effort to understand the properties and formation of a planet population whose characteristics continue to surprise the provincial perspective we've derived from our own Solar System. The Kepler Mission in particular has enabled a large number of these studies, as it was designed to stare simultaneously at thousands of stars for several years and its automated transit search pipeline enables fairly uniform detection criteria and characterizable completeness and false positive rates. With the detection of nearly 5000 planet candidates, 80% of which are smaller than 4 REarth, Kepler has especially illuminated the unexpectedly vast sub-Neptune population. Such a rich dataset provides an unprecedented opportunity for rigorous statistical study of the physics of these planets that have no analogs in our Solar System. Contributing to this endeavor, I present the statistical characterization of several aspects of this population, including the comparison between Kepler's planet candidates and low-mass occurrence rates inferred from radial velocity detections, the relationship between a sub-Neptune's mass and its radius, the frequency of Kepler planet candidate host stars which have nearby visual companions as revealed by follow-up high resolution imaging, and the distribution of gaseous mass fractions that these sub-Neptunes could possess given a rock-plus-hydrogen composition. To do so, I have used sophisticated statistical analyses such as Monte Carlo simulations and hierarchical Bayesian modeling to tie theory more closely to observations and have acquired near infrared laser guide star adaptive optics imaging of 196 Kepler Objects of Interest. I find that even within this sub-Neptune population these planets are very diverse in nature: there is intrinsic scatter in masses at a given radius, the planet host stars have visual companions at a wide range of

  13. Evolution and magnitudes of candidate Planet Nine

    NASA Astrophysics Data System (ADS)

    Linder, Esther F.; Mordasini, Christoph

    2016-04-01

    Context. The recently renewed interest in a possible additional major body in the outer solar system prompted us to study the thermodynamic evolution of such an object. We assumed that it is a smaller version of Uranus and Neptune. Aims: We modeled the temporal evolution of the radius, temperature, intrinsic luminosity, and the blackbody spectrum of distant ice giant planets. The aim is also to provide estimates of the magnitudes in different bands to assess whether the object might be detectable. Methods: Simulations of the cooling and contraction were conducted for ice giants with masses of 5, 10, 20, and 50 M⊕ that are located at 280, 700, and 1120 AU from the Sun. The core composition, the fraction of H/He, the efficiency of energy transport, and the initial luminosity were varied. The atmospheric opacity was set to 1, 50, and 100 times solar metallicity. Results: We find for a nominal 10 M⊕ planet at 700 AU at the current age of the solar system an effective temperature of 47 K, much higher than the equilibrium temperature of about 10 K, a radius of 3.7 R⊕, and an intrinsic luminosity of 0.006 L♃. It has estimated apparent magnitudes of Johnson V, R, I, L, N, Q of 21.7, 21.4, 21.0, 20.1, 19.9, and 10.7, and WISE W1-W4 magnitudes of 20.1, 20.1, 18.6, and 10.2. The Q and W4 band and other observations longward of about 13 μm pick up the intrinsic flux. Conclusions: If candidate Planet 9 has a significant H/He layer and an efficient energy transport in the interior, then its luminosity is dominated by the intrinsic contribution, making it a self-luminous planet. At a likely position on its orbit near aphelion, we estimate for a mass of 5, 10, 20, and 50 M⊕ a V magnitude from the reflected light of 24.3, 23.7, 23.3, and 22.6 and a Q magnitude from the intrinsic radiation of 14.6, 11.7, 9.2, and 5.8. The latter would probably have been detected by past surveys.

  14. Evolution and magnitudes of candidate Planet Nine

    NASA Astrophysics Data System (ADS)

    Linder, Esther F.; Mordasini, Christoph

    2016-05-01

    Context. The recently renewed interest in a possible additional major body in the outer solar system prompted us to study the thermodynamic evolution of such an object. We assumed that it is a smaller version of Uranus and Neptune. Aims: We modeled the temporal evolution of the radius, temperature, intrinsic luminosity, and the blackbody spectrum of distant ice giant planets. The aim is also to provide estimates of the magnitudes in different bands to assess whether the object might be detectable. Methods: Simulations of the cooling and contraction were conducted for ice giants with masses of 5, 10, 20, and 50 M⊕ that are located at 280, 700, and 1120 AU from the Sun. The core composition, the fraction of H/He, the efficiency of energy transport, and the initial luminosity were varied. The atmospheric opacity was set to 1, 50, and 100 times solar metallicity. Results: We find for a nominal 10 M⊕ planet at 700 AU at the current age of the solar system an effective temperature of 47 K, much higher than the equilibrium temperature of about 10 K, a radius of 3.7 R⊕, and an intrinsic luminosity of 0.006 L♃. It has estimated apparent magnitudes of Johnson V, R, I, L, N, Q of 21.7, 21.4, 21.0, 20.1, 19.9, and 10.7, and WISE W1-W4 magnitudes of 20.1, 20.1, 18.6, and 10.2. The Q and W4 band and other observations longward of about 13 μm pick up the intrinsic flux. Conclusions: If candidate Planet 9 has a significant H/He layer and an efficient energy transport in the interior, then its luminosity is dominated by the intrinsic contribution, making it a self-luminous planet. At a likely position on its orbit near aphelion, we estimate for a mass of 5, 10, 20, and 50 M⊕ a V magnitude from the reflected light of 24.3, 23.7, 23.3, and 22.6 and a Q magnitude from the intrinsic radiation of 14.6, 11.7, 9.2, and 5.8. The latter would probably have been detected by past surveys.

  15. Planet Candidate Validation and Spin-Orbit Misalignments from Doppler Tomography

    NASA Astrophysics Data System (ADS)

    Johnson, Marshall C.

    2016-01-01

    Short-period planets around intermediate-mass (~1.5-2.5 M⊙ A-mid F type) stars are a largely unexplored region of parameter space. These stars' typically rapid rotation and rotationally broadened spectral lines preclude the use of the precise radial velocity measurements that are typically used to discover planets and confirm transiting planet candidates. Nonetheless, exploring this population is important for constraining models of planet formation and migration. I have been using Doppler tomography to investigate this population. As a planet transits a rotating star, it successively obscures regions of the stellar disk with different radial velocities, resulting in a perturbation to the rotationally broadened line profile; this is the Rossiter-McLaughlin effect. In Doppler tomography, I spectroscopically resolve this perturbation and its movement during the transit. This allows me to not only validate transiting planet candidates, as I can show that the transiting object orbits the target star and is not a blended background eclipsing binary, but also to measure the spin-orbit misalignments of these planets. This is the (sky-projected) angle between the stellar spin and planetary orbital angular momentum vectors, and is a statistical probe of planetary migration; different migration mechanisms predict different distributions of spin-orbit misalignments. In this dissertation talk I will discuss my work to validate Kepler planet candidates around rapidly rotating stars using Doppler tomography, and to measure the spin-orbit misalignments of hot Jupiters discovered by ground-based surveys. I will also discuss the use of Doppler tomography to provide additional characterization of planets and their host stars, such as the detection of planetary orbital precession and stellar differential rotation. Finally, I will highlight the potential of current and future missions such as K2 and TESS to expand our knowledge of planets around intermediate-mass stars.

  16. A REVISED ESTIMATE OF THE OCCURRENCE RATE OF TERRESTRIAL PLANETS IN THE HABITABLE ZONES AROUND KEPLER M-DWARFS

    SciTech Connect

    Kopparapu, Ravi Kumar

    2013-04-10

    Because of their large numbers, low-mass stars may be the most abundant planet hosts in our Galaxy. Furthermore, terrestrial planets in the habitable zones (HZs) around M-dwarfs can potentially be characterized in the near future and hence may be the first such planets to be studied. Recently, Dressing and Charbonneau used Kepler data and calculated the frequency of terrestrial planets in the HZ of cool stars to be 0.15{sup +0.13}{sub -0.06} per star for Earth-size planets (0.5-1.4 R{sub Circled-Plus }). However, this estimate was derived using the Kasting et al. HZ limits, which were not valid for stars with effective temperatures lower than 3700 K. Here we update their result using new HZ limits from Kopparapu et al. for stars with effective temperatures between 2600 K and 7200 K, which includes the cool M stars in the Kepler target list. The new HZ boundaries increase the number of planet candidates in the HZ. Assuming Earth-size planets as 0.5-1.4 R{sub Circled-Plus }, when we reanalyze their results, we obtain a terrestrial planet frequency of 0.48{sup +0.12}{sub -0.24} and 0.53{sup +0.08}{sub -0.17} planets per M-dwarf star for conservative and optimistic limits of the HZ boundaries, respectively. Assuming Earth-size planets as 0.5-2 R{sub Circled-Plus }, the frequency increases to 0.51{sup +0.10}{sub -0.20} per star for the conservative estimate and to 0.61{sup +0.07}{sub -0.15} per star for the optimistic estimate. Within uncertainties, our optimistic estimates are in agreement with a similar optimistic estimate from the radial velocity survey of M-dwarfs (0.41{sup +0.54}{sub -0.13}). So, the potential for finding Earth-like planets around M stars may be higher than previously reported.

  17. Kepler-223: A Resonant Chain of Four Transiting, Sub-Neptune Planets

    NASA Astrophysics Data System (ADS)

    Mills, Sean; Fabrycky, Daniel C.; Migaszewski, Cezary; Ford, Eric B.; Petigura, Erik; Isaacson, Howard T.

    2016-05-01

    Surveys have revealed an abundance of multi-planet systems containing super-Earths and Neptunes in few-day to few-month orbits. Orbital periods of pairs of planets in the same system occasionally lie near, but generally not exactly on, ratios of small integers (resonances), allowing for the detection of the planets perturbing each other. There is debate whether in situ assembly or significant inward migration is the dominant mechanism of their formation. Simulations suggest migration creates tightly-packed, resonant systems, often in chains of resonance. Of the hundreds of multi-planet systems of sub-Neptunes, there is weak statistical enhancement near resonances, but no individual system has been identified that requires migration. Here we describe dynamical modeling of the system Kepler-223, which has a series of resonances among its four planets. We observe transit timing variations (TTVs), model them as resonant angle librations, and compute long-term stability, combining these analyses to constrain dynamical parameters and planetary masses. The detailed architecture of Kepler-223 is too finely tuned for formation by scattering, whereas numerical simulations demonstrate its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by many mechanisms contributing to the observed period distribution. Planetesimal interactions in particular are thought to be responsible for establishing thecurrent orbits of the four giant planets in our own Solar System by disrupting a theoretical initial resonant chain like that actually observed in Kepler-223.

  18. A closely packed system of low-mass, low-density planets transiting Kepler-11.

    PubMed

    Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B; Borucki, William J; Fressin, Francois; Marcy, Geoffrey W; Orosz, Jerome A; Rowe, Jason F; Torres, Guillermo; Welsh, William F; Batalha, Natalie M; Bryson, Stephen T; Buchhave, Lars A; Caldwell, Douglas A; Carter, Joshua A; Charbonneau, David; Christiansen, Jessie L; Cochran, William D; Desert, Jean-Michel; Dunham, Edward W; Fanelli, Michael N; Fortney, Jonathan J; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer R; Holman, Matthew J; Koch, David G; Latham, David W; Lopez, Eric; McCauliff, Sean; Miller, Neil; Morehead, Robert C; Quintana, Elisa V; Ragozzine, Darin; Sasselov, Dimitar; Short, Donald R; Steffen, Jason H

    2011-02-01

    When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation. PMID:21293371

  19. ARE THE KEPLER NEAR-RESONANCE PLANET PAIRS DUE TO TIDAL DISSIPATION?

    SciTech Connect

    Lee, Man Hoi; Fabrycky, D.; Lin, D. N. C. E-mail: daniel.fabrycky@gmail.com

    2013-09-01

    The multiple-planet systems discovered by the Kepler mission show an excess of planet pairs with period ratios just wide of exact commensurability for first-order resonances like 2:1 and 3:2. In principle, these planet pairs could have both resonance angles associated with the resonance librating if the orbital eccentricities are sufficiently small, because the width of first-order resonances diverges in the limit of vanishingly small eccentricity. We consider a widely held scenario in which pairs of planets were captured into first-order resonances by migration due to planet-disk interactions, and subsequently became detached from the resonances, due to tidal dissipation in the planets. In the context of this scenario, we find a constraint on the ratio of the planet's tidal dissipation function and Love number that implies that some of the Kepler planets are likely solid. However, tides are not strong enough to move many of the planet pairs to the observed separations, suggesting that additional dissipative processes are at play.

  20. A New Method for Detecting Transiting Circumbinary Planets in Kepler Data

    NASA Astrophysics Data System (ADS)

    Welsh, William F.; Orosz, Jerome A.; Windmiller, Gur; Short, Donald R.

    2016-06-01

    The discovery of Kepler-16 started a new branch of exoplanet research: observations of transiting circumbinary planets. To date, eleven transiting circumbinary planets have been discovered. The detection of a circumbinary planet is much more difficult than the detection of a planet around a single star because the transit times are not strictly periodic, the transit widths and depths can change dramatically, and the deep binary star eclipses overwhelm the much smaller planetary transits. Because of these complications, most of the known circumbinary planets were discovered via visual inspection of the Kepler light curves. This requires that the transits be easily detectable by eye, which translates to large-radii planets. Here we present a new method for visual dectection of circumbinary planets, based on the idea of phase-folding the light curve into a "trailed eclipsogram" image. While this method works well for deep transits (and hence will work for new, large circumbinary planets to be found by TESS), in principle it can also be extended to much smaller planets below the threshold for visual detection using image pattern recognition tools.

  1. KEPLER-68: THREE PLANETS, ONE WITH A DENSITY BETWEEN THAT OF EARTH AND ICE GIANTS

    SciTech Connect

    Gilliland, Ronald L.; Marcy, Geoffrey W.; Isaacson, Howard; Rowe, Jason F.; Henze, Christopher E.; Lissauer, Jack J.; Rogers, Leslie; Torres, Guillermo; Fressin, Francois; Desert, Jean-Michel; Lopez, Eric D.; Buchhave, Lars A.; Christensen-Dalsgaard, Jorgen; Handberg, Rasmus; Jenkins, Jon M.; Basu, Sarbani; Metcalfe, Travis S.; Hekker, Saskia; and others

    2013-03-20

    NASA's Kepler Mission has revealed two transiting planets orbiting Kepler-68. Follow-up Doppler measurements have established the mass of the innermost planet and revealed a third Jovian-mass planet orbiting beyond the two transiting planets. Kepler-68b, in a 5.4 day orbit, has M{sub P}=8.3{sup +2.2}{sub -2.4} M{sub Circled-Plus }, R{sub P}=2.31{sup +0.06}{sub -0.09} R{sub Circled-Plus }, and {rho}{sub P}=3.32{sup +0.86}{sub -0.98} g cm{sup -3}, giving Kepler-68b a density intermediate between that of the ice giants and Earth. Kepler-68c is Earth-sized, with a radius R{sub P}=0.953{sup +0.037}{sub -0.042} R{sub Circled-Plus} and transits on a 9.6 day orbit; validation of Kepler-68c posed unique challenges. Kepler-68d has an orbital period of 580 {+-} 15 days and a minimum mass of M{sub P}sin i = 0.947 {+-} 0.035M{sub J} . Power spectra of the Kepler photometry at one minute cadence exhibit a rich and strong set of asteroseismic pulsation modes enabling detailed analysis of the stellar interior. Spectroscopy of the star coupled with asteroseismic modeling of the multiple pulsation modes yield precise measurements of stellar properties, notably T{sub eff} = 5793 {+-} 74 K, M{sub *} = 1.079 {+-} 0.051 M{sub Sun }, R{sub *} = 1.243 {+-} 0.019 R{sub Sun }, and {rho}{sub *} = 0.7903 {+-} 0.0054 g cm{sup -3}, all measured with fractional uncertainties of only a few percent. Models of Kepler-68b suggest that it is likely composed of rock and water, or has a H and He envelope to yield its density {approx}3 g cm{sup -3}.

  2. False Positive Probabilities for all Kepler Objects of Interest: 1284 Newly Validated Planets and 428 Likely False Positives

    NASA Astrophysics Data System (ADS)

    Morton, Timothy D.; Bryson, Stephen T.; Coughlin, Jeffrey L.; Rowe, Jason F.; Ravichandran, Ganesh; Petigura, Erik A.; Haas, Michael R.; Batalha, Natalie M.

    2016-05-01

    We present astrophysical false positive probability calculations for every Kepler Object of Interest (KOI)—the first large-scale demonstration of a fully automated transiting planet validation procedure. Out of 7056 KOIs, we determine that 1935 have probabilities <1% of being astrophysical false positives, and thus may be considered validated planets. Of these, 1284 have not yet been validated or confirmed by other methods. In addition, we identify 428 KOIs that are likely to be false positives, but have not yet been identified as such, though some of these may be a result of unidentified transit timing variations. A side product of these calculations is full stellar property posterior samplings for every host star, modeled as single, binary, and triple systems. These calculations use vespa, a publicly available Python package that is able to be easily applied to any transiting exoplanet candidate.

  3. A Probabilistic Mass-Radius Relationship for Sub-Neptune-Sized Planets: Implications for Missions Post-Kepler

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie; Rogers, Leslie A.; Ford, Eric B.; Laughlin, Gregory

    2015-12-01

    The Kepler Mission has discovered thousands of planets with radii between 1 and 4 R_Earth, paving the way for the first statistical studies of the dynamics, formation, and evolution of planets in a size range where there are no Solar System analogs. Masses are an important physical property for these theoretical studies, and yet the vast majority of Kepler planet candidates do not have theirs measured. Therefore, a key practical concern is how to most accurately map a measured sub-Neptune radius to a mass estimate given the existing observations. This issue is also highly relevant to devising the most efficient follow-up programs of future transiting exoplanet detection missions such as TESS. Here we present a probabilistic mass-radius relationship (M-R relation) evaluated within a hierarchical Bayesian framework, which both accounts for the anticipated intrinsic dispersion in these planets' compositions and quantifies the uncertainties on the M-R relation parameters. Assuming that the M-R relation can be described as a power law with a dispersion that is constant and normally distributed, we find that M/M_Earth = 2.7 (R/R_Earth)^1.3 and a scatter in mass of 1.9 M_Earth is the "best-fit" probabilistic M-R relation for the sample of RV-measured transiting sub-Neptunes (R_pl < 4 R_Earth; Wolfgang, Rogers, & Ford, in review). The probabilistic nature of this M-R relation has several advantages: not only does its use automatically account for a significant source of uncertainty in the comparison between planet formation theory and observation, but it can predict the yield of future transit missions' follow-up programs under the observed range of planet compositions at a given radius. We demonstrate the latter with TESS as a case study, building on Sullivan et al. 2015 to provide the RV semi-amplitude distribution predicted by this more general M-R relation and a more detailed treatment of the underlying planet population as derived from Kepler. The uncertainties in the

  4. A Probabilistic Mass-Radius Relationship for Sub-Neptune-Sized Planets: Implications for Missions Post-Kepler

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie; Rogers, Leslie; Ford, Eric B.; Laughlin, Gregory P.

    2016-01-01

    The Kepler Mission has discovered thousands of planets with radii between 1 and 4 R_Earth, paving the way for the first statistical studies of the dynamics, formation, and evolution of planets in a size range where there are no Solar System analogs. Masses are an important physical property for these theoretical studies, and yet the vast majority of Kepler planet candidates do not have theirs measured. Therefore, a key practical concern is how to most accurately map a measured sub-Neptune radius to a mass estimate given the existing observations. This issue is also highly relevant to devising the most efficient follow-up programs of future transiting exoplanet detection missions such as TESS. Here we present a probabilistic mass-radius relationship (M-R relation) evaluated within a hierarchical Bayesian framework, which both accounts for the anticipated intrinsic dispersion in these planets' compositions and quantifies the uncertainties on the M-R relation parameters. Assuming that the M-R relation can be described as a power law with a dispersion that is constant and normally distributed, we find that M/M_Earth = 2.7 (R/R_Earth)^1.3 and a scatter in mass of 1.9 M_Earth is the "best-fit" probabilistic M-R relation for the sample of RV-measured transiting sub-Neptunes (R_pl < 4 R_Earth; Wolfgang, Rogers, & Ford, in review). The probabilistic nature of this M-R relation has several advantages: not only does its use automatically account for a significant source of uncertainty in the comparison between planet formation theory and observation, but it can predict the yield of future transit missions' follow-up programs under the observed range of planet compositions at a given radius. We demonstrate the latter with TESS as a case study, building on Sullivan et al. 2015 to provide the RV semi-amplitude distribution predicted by this more general M-R relation and a more detailed treatment of the underlying planet population as derived from Kepler. The uncertainties in the

  5. Orbital Architectures of Planet-hosting Binaries. I. Forming Five Small Planets in the Truncated Disk of Kepler-444A

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.; Kratter, Kaitlin M.; Kraus, Adam L.; Isaacson, Howard; Mann, Andrew W.; Ireland, Michael J.; Howard, Andrew W.; Huber, Daniel

    2016-01-01

    We present the first results from our Keck program investigating the orbital architectures of planet-hosting multiple star systems. Kepler-444 is a metal-poor triple star system that hosts five sub-Earth-sized planets orbiting the primary star (Kepler-444A), as well as a spatially unresolved pair of M dwarfs (Kepler-444BC) at a projected distance of 1\\buildrel{\\prime\\prime}\\over{.} 8 (66 AU). We combine our Keck/NIRC2 adaptive optics astrometry with multi-epoch Keck/HIRES RVs of all three stars to determine a precise orbit for the BC pair around A, given their empirically constrained masses. We measure minimal astrometric motion (1.0 ± 0.6 mas yr-1, or 0.17 ± 0.10 km s-1), but our RVs reveal significant orbital velocity (1.7 ± 0.2 km s-1) and acceleration (7.8 ± 0.5 m s-1 yr-1). We determine a highly eccentric stellar orbit (e=0.864+/- 0.023) that brings the tight M dwarf pair within {5.0}-1.0+0.9 AU of the planetary system. We validate that the system is dynamically stable in its present configuration via n-body simulations. We find that the A-BC orbit and planetary orbits are likely aligned (98%) given that they both have edge-on orbits and misalignment induces precession of the planets out of transit. We conclude that the stars were likely on their current orbits during the epoch of planet formation, truncating the protoplanetary disk at ≈2 AU. This truncated disk would have been severely depleted of solid material from which to form the total ≈1.5 M⊕ of planets. We thereby strongly constrain the efficiency of the conversion of dust into planets and suggest that the Kepler-444 system is consistent with models that explain the formation of most close-in Kepler planets in more typical, not truncated, disks. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The

  6. INITIAL CHARACTERISTICS OF KEPLER LONG CADENCE DATA FOR DETECTING TRANSITING PLANETS

    SciTech Connect

    Jenkins, Jon M.; Caldwell, Douglas A.; Chandrasekaran, Hema; Twicken, Joseph D.; Quintana, Elisa V.; Clarke, Bruce D.; Li, Jie; Tenenbaum, Peter; Wu, Hayley; Klaus, Todd C.; Van Cleve, Jeffrey

    2010-04-20

    The Kepler Mission seeks to detect Earth-size planets transiting solar-like stars in its {approx}115 deg{sup 2} field of view over the course of its 3.5 year primary mission by monitoring the brightness of each of {approx}156,000 Long Cadence stellar targets with a time resolution of 29.4 minutes. We discuss the photometric precision achieved on timescales relevant to transit detection for data obtained in the 33.5 day long Quarter 1 (Q1) observations that ended 2009 June 15. The lower envelope of the photometric precision obtained at various timescales is consistent with expected random noise sources, indicating that Kepler has the capability to fulfill its mission. The Kepler light curves exhibit high precision over a large dynamic range, which will surely permit their use for a large variety of investigations in addition to finding and characterizing planets. We discuss the temporal characteristics of both the raw flux time series and the systematic error-corrected flux time series produced by the Kepler Science Pipeline, and give examples illustrating Kepler's large dynamic range and the variety of light curves obtained from the Q1 observations.

  7. The Five Planets in the Kepler-296 Binary System All Orbit the Primary: An Application of Importance Sampling

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Quintana, Elisa; Adams, Fred; Ciardi, David; Huber, Daniel; Foreman-Mackey, Daniel; Montet, Benjamin Tyler; Caldwell, Douglas

    2015-08-01

    Kepler-296 is a binary star system with two M-dwarf components separated by 0.2 arcsec. Five transiting planets have been confirmed to be associated with the Kepler-296 system; given the evidence to date, however, the planets could in principle orbit either star. This ambiguity has made it difficult to constrain both the orbital and physical properties of the planets. Using both statistical and analytical arguments, this paper shows that all five planets are highly likely to orbit the primary star in this system. We performed a Markov-Chain Monte Carlo simulation using a five transiting planet model, leaving the stellar density and dilution with uniform priors. Using importance sampling, we compared the model probabilities under the priors of the planets orbiting either the brighter or the fainter component of the binary. A model where the planets orbit the brighter component, Kepler-296A, is strongly preferred by the data. Combined with our assertion that all five planets orbit the same star, the two outer planets in the system, Kepler-296 Ae and Kepler-296 Af, have radii of 1.53 ± 0.26 and 1.80 ± 0.31 R⊕, respectively, and receive incident stellar fluxes of 1.40 ± 0.23 and 0.62 ± 0.10 times the incident flux the Earth receives from the Sun. This level of irradiation places both planets within or close to the circumstellar habitable zone of their parent star.

  8. The Five Planets in the Kepler-296 Binary System All Orbit the Primary: A Statistical and Analytical Analysis

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Quintana, Elisa V.; Adams, Fred C.; Ciardi, David R.; Huber, Daniel; Foreman-Mackey, Daniel; Montet, Benjamin T.; Caldwell, Douglas

    2015-08-01

    Kepler-296 is a binary star system with two M-dwarf components separated by 0.″2. Five transiting planets have been confirmed to be associated with the Kepler-296 system; given the evidence to date, however, the planets could in principle orbit either star. This ambiguity has made it difficult to constrain both the orbital and physical properties of the planets. Using both statistical and analytical arguments, this paper shows that all five planets are highly likely to orbit the primary star in this system. We performed a Markov-Chain Monte Carlo simulation using a five transiting planet model, leaving the stellar density and dilution with uniform priors. Using importance sampling, we compared the model probabilities under the priors of the planets orbiting either the brighter or the fainter component of the binary. A model where the planets orbit the brighter component, Kepler-296A, is strongly preferred by the data. Combined with our assertion that all five planets orbit the same star, the two outer planets in the system, Kepler-296 Ae and Kepler-296 Af, have radii of 1.53 ± 0.26 and 1.80 ± 0.31 {R}\\oplus , respectively, and receive incident stellar fluxes of 1.40 ± 0.23 and 0.62 ± 0.10 times the incident flux the Earth receives from the Sun. This level of irradiation places both planets within or close to the circumstellar habitable zone of their parent star.

  9. In Situ and Ex Situ Formation Models of Kepler 11 Planets

    NASA Astrophysics Data System (ADS)

    D’Angelo, Gennaro; Bodenheimer, Peter

    2016-09-01

    We present formation simulations of the six Kepler 11 planets. Models assume either in situ or ex situ assembly, the latter with migration, and are evolved to the estimated age of the system, ≈ 8 {{Gyr}}. Models combine detailed calculations of both the gaseous envelope and the condensed core structures, including accretion of gas and solids, of the disk’s viscous and thermal evolution, including photo-evaporation and disk-planet interactions, and of the planet’s evaporative mass loss after disk dispersal. Planet–planet interactions are neglected. Both sets of simulations successfully reproduce measured radii, masses, and orbital distances of the planets, except for the radius of Kepler 11b, which loses its entire gaseous envelope shortly after formation. Gaseous (H+He) envelopes account for ≲ 18% of the planet masses, and between ≈ 35 and ≈ 60% of the planet radii. In situ models predict a very massive inner disk, whose solid surface density ({σ }Z) varies from over 104 to ≈ {10}3 {{g}} {{cm}}-2 at stellocentric distances 0.1≲ r≲ 0.5 {{au}}. Initial gas densities would be in excess of {10}5 {{g}} {{cm}}-2 if solids formed locally. Given the high disk temperatures (≳ 1000 {{K}}), planetary interiors can only be composed of metals and highly refractory materials. Sequestration of hydrogen by the core and subsequent outgassing is required to account for the observed radius of Kepler 11b. Ex situ models predict a relatively low-mass disk, whose initial {σ }Z varies from ≈ 10 to ≈ 5 {{g}} {{cm}}-2 at 0.5≲ r≲ 7 {{au}} and whose initial gas density ranges from ≈ {10}3 to ≈ 100 {{g}} {{cm}}-2. All planetary interiors are expected to be rich in H2O, as core assembly mostly occurs exterior to the ice condensation front. Kepler 11b is expected to have a steam atmosphere, and H2O is likely mixed with H+He in the envelopes of the other planets. Results indicate that Kepler 11g may not be more massive than Kepler 11e.

  10. KEPLER-15b: A HOT JUPITER ENRICHED IN HEAVY ELEMENTS AND THE FIRST KEPLER MISSION PLANET CONFIRMED WITH THE HOBBY-EBERLY TELESCOPE

    SciTech Connect

    Endl, Michael; MacQueen, Phillip J.; Cochran, William D.; Brugamyer, Erik J.; Buchhave, Lars A.; Rowe, Jason; Lucas, Phillip; Isaacson, Howard; Bryson, Steve; Howell, Steve B.; Borucki, William J.; Caldwell, Douglas; Christiansen, Jessie L.; Haas, Michael R.; Fortney, Jonathan J.; Hansen, Terese; Ciardi, David R.; Everett, Mark; Ford, Eric B.; and others

    2011-11-01

    We report the discovery of Kepler-15b (KOI-128), a new transiting exoplanet detected by NASA's Kepler mission. The transit signal with a period of 4.94 days was detected in the quarter 1 (Q1) Kepler photometry. For the first time, we have used the High Resolution Spectrograph (HRS) at the Hobby-Eberly Telescope (HET) to determine the mass of a Kepler planet via precise radial velocity (RV) measurements. The 24 HET/HRS RVs and 6 additional measurements from the Fibre-fed Echelle Spectrograph spectrograph at the Nordic Optical Telescope reveal a Doppler signal with the same period and phase as the transit ephemeris. We used one HET/HRS spectrum of Kepler-15 taken without the iodine cell to determine accurate stellar parameters. The host star is a metal-rich ([Fe/H] = 0.36 {+-} 0.07) G-type main-sequence star with T{sub eff} = 5515 {+-} 124 K. The semi-amplitude K of the RV orbit is 78.7{sup +8.5}{sub -9.5} m s{sup -1}, which yields a planet mass of 0.66 {+-} 0.1 M{sub Jup}. The planet has a radius of 0.96 {+-} 0.06 R{sub Jup} and a mean bulk density of 0.9 {+-} 0.2 g cm{sup -3}. The radius of Kepler-15b is smaller than the majority of transiting planets with similar mass and irradiation level. This suggests that the planet is more enriched in heavy elements than most other transiting giant planets. For Kepler-15b we estimate a heavy element mass of 30-40 M{sub Circled-Plus }.

  11. KOI-2700b—A Planet Candidate with Dusty Effluents on a 22 hr Orbit

    NASA Astrophysics Data System (ADS)

    Rappaport, Saul; Barclay, Thomas; DeVore, John; Rowe, Jason; Sanchis-Ojeda, Roberto; Still, Martin

    2014-03-01

    Kepler planet candidate KOI-2700b (KIC 8639908b), with an orbital period of 21.84 hr, exhibits a distinctly asymmetric transit profile, likely indicative of the emission of dusty effluents, and reminiscent of KIC 1255b. The host star has T eff = 4435 K, M ~= 0.63 M ⊙, and R ~= 0.57 R ⊙, comparable to the parameters ascribed to KIC 12557548. The transit egress can be followed for ~25% of the orbital period and, if interpreted as extinction from a dusty comet-like tail, indicates a long lifetime for the dust grains of more than a day. We present a semiphysical model for the dust tail attenuation and fit for the physical parameters contained in that expression. The transit is not sufficiently deep to allow for a study of the transit-to-transit variations, as is the case for KIC 1255b however, it is clear that the transit depth is slowly monotonically decreasing by a factor of ~2 over the duration of the Kepler mission. We infer a mass-loss rate in dust from the planet of ~2 lunar masses per Gyr. The existence of a second star hosting a planet with a dusty comet-like tail would help to show that such objects may be more common and less exotic than originally thought. According to current models, only quite small planets with Mp <~ 0.03 M ⊕ are likely to release a detectable quantity of dust. Thus, any "normal-looking" transit that is inferred to arise from a rocky planet of radius greater than ~1/2 R ⊕ should not exhibit any hint of a dusty tail. Conversely, if one detects an asymmetric transit due to a dusty tail, then it will be very difficult to detect the hard body of the planet within the transit because, by necessity, the planet must be quite small (i.e., <~ 0.3 R ⊕).

  12. HABITABILITY OF EARTH-MASS PLANETS AND MOONS IN THE KEPLER-16 SYSTEM

    SciTech Connect

    Quarles, B.; Musielak, Z. E.; Cuntz, M. E-mail: zmusielak@uta.edu

    2012-05-01

    We demonstrate that habitable Earth-mass planets and moons can exist in the Kepler-16 system, known to host a Saturn-mass planet around a stellar binary, by investigating their orbital stability in the standard and extended habitable zone (HZ). We find that Earth-mass planets in satellite-like (S-type) orbits are possible within the standard HZ in direct vicinity of Kepler-16b, thus constituting habitable exomoons. However, Earth-mass planets cannot exist in planetary-like (P-type) orbits around the two stellar components within the standard HZ. Yet, P-type Earth-mass planets can exist superior to the Saturnian planet in the extended HZ pertaining to considerably enhanced back-warming in the planetary atmosphere if facilitated. We briefly discuss the potential detectability of such habitable Earth-mass moons and planets positioned in satellite and planetary orbits, respectively. The range of inferior and superior P-type orbits in the HZ is between 0.657-0.71 AU and 0.95-1.02 AU, respectively.

  13. Had the planet Mars not existed: Kepler's equant model and its physical consequences

    NASA Astrophysics Data System (ADS)

    Bracco, C.; Provost, J.-P.

    2009-09-01

    We examine the equant model for the motion of planets, which was the starting point of Kepler's investigations before he modified it because of Mars observations. We show that, up to first order in eccentricity, this model implies for each orbit a velocity, which satisfies Kepler's second law and Hamilton's hodograph, and a centripetal acceleration with an r-2 dependence on the distance to the Sun. If this dependence is assumed to be universal, Kepler's third law follows immediately. This elementary exercise in kinematics for undergraduates emphasizes the proximity of the equant model coming from ancient Greece with our present knowledge. It adds to its historical interest a didactical relevance concerning, in particular, the discussion of the Aristotelian or Newtonian conception of motion.

  14. Architectures of Kepler Planet Systems with Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Morehead, Robert C.; Ford, Eric B.

    2015-12-01

    The distribution of period normalized transit duration ratios among Kepler’s multiple transiting planet systems constrains the distributions of mutual orbital inclinations and orbital eccentricities. However, degeneracies in these parameters tied to the underlying number of planets in these systems complicate their interpretation. To untangle the true architecture of planet systems, the mutual inclination, eccentricity, and underlying planet number distributions must be considered simultaneously. The complexities of target selection, transit probability, detection biases, vetting, and follow-up observations make it impractical to write an explicit likelihood function. Approximate Bayesian computation (ABC) offers an intriguing path forward. In its simplest form, ABC generates a sample of trial population parameters from a prior distribution to produce synthetic datasets via a physically-motivated forward model. Samples are then accepted or rejected based on how close they come to reproducing the actual observed dataset to some tolerance. The accepted samples form a robust and useful approximation of the true posterior distribution of the underlying population parameters. We build on the considerable progress from the field of statistics to develop sequential algorithms for performing ABC in an efficient and flexible manner. We demonstrate the utility of ABC in exoplanet populations and present new constraints on the distributions of mutual orbital inclinations, eccentricities, and the relative number of short-period planets per star. We conclude with a discussion of the implications for other planet occurrence rate calculations, such as eta-Earth.

  15. Beyond Kepler: Direct Imaging of Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Belikov, Ruslan

    2012-01-01

    Is there another Earth out there? Is there life on it? People have been asking these questions for over two thousand years, and we finally stand on the verge of answering them. The Kepler space telescope is NASA's first mission designed to study Earthlike exoplanets (exo-Earths), and it will soon tell us how often exo-Earths occur in the habitable zones of their stars. The next natural step after Kepler is spectroscopic characterization of exo-Earths, which would tell us whether they possess an atmosphere, oxygen, liquid water, as well as other biomarkers. In order to do this, directly imaging an exo-Earth may be necessary (at least for Sun-like stars). Directly imaging an exo-Earth is challenging and likely requires a flagship-size optical space telescope with an unprecedented imaging system capable of achieving contrasts of 1(exp 10) very close to the diffraction limit. Several coronagraphs and external occulters have been proposed to meet this challenge and are in development. After first overviewing the history and current state of the field, my talk will focus on the work proceeding at the Ames Coronagraph Experiment (ACE) at the NASA Ames Research Center, where we are developing the Phase Induced Amplitude Apodization (PIAA) coronagraph in a collaboration with JPL. PIAA is a powerful technique with demonstrated aggressive performance that defines the state of the art at small inner working angles. At ACE, we have achieved contrasts of 2(exp -8) with an inner working angle of 2 lambda/D and 1(exp -6) at 1.4 lambda/D. On the path to exo-Earth imaging, we are also pursuing a smaller telescope concept called EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), which was recently selected for technology development (Category III) by NASA's Explorer program. EXCEDE will do fundamental science on debris disks as well as serve as a technological and scientific pathfinder for an exo-Earth imaging mission.

  16. The Kepler Mission: A Search for Terrestrial Planets - Development Status

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, W.; Mayer, D.; Caldwell, D.; Jenkens, J.; Dunham, E.; Geary, J.; Bachtell, E.; Deininger, W.; Philbrick, R.

    2003-01-01

    We have embarked on a mission to detect terrestrial planets. The space mission has been optimized to search for earth-size planets (0.5 to 10 earth masses) in the habitable zone (HZ) of solar-like stars. Given this design, the mission will necessarily be capable of not only detecting Earth analogs, but a wide range of planetary types and characteristics ranging from Mercury-size objects with orbital periods of days to gas-giants in decade long orbits that have undeniable signatures even with only one transit detected. The mission is designed to survey the full range of spectral-type dwarf stars. The approach is to detect the periodic signal of transiting planets. Three or more transits of a star exceeding a combined threshold of eight sigma with a statistically consistent period, brightness change and duration provide a rigorous method of detection. From the relative brightness change the planet size can be calculated. From the period the orbital size can be calculated and its location relative to the HZ determined. Presented here are: the mission goals, the top level system design requirements derived from these goals that drive the flight system design, a number of the trades that have lead to the mission concept, expected photometric performance dependence on stellar brightness and spectral type based on the system 'noise tree' analysis. Updated estimates are presented of the numbers of detectable planets versus size, orbit, stellar spectral type and distances based on a planet frequency hypothesis. The current project schedule and organization are given.

  17. Rotation periods and seismic ages of KOIs - comparison with stars without detected planets from Kepler observations

    NASA Astrophysics Data System (ADS)

    Ceillier, T.; van Saders, J.; García, R. A.; Metcalfe, T. S.; Creevey, O.; Mathis, S.; Mathur, S.; Pinsonneault, M. H.; Salabert, D.; Tayar, J.

    2016-02-01

    One of the most difficult properties to derive for stars is their age. For cool main-sequence stars, gyrochronology relations can be used to infer stellar ages from measured rotation periods and Hertzsprung Russell diagram positions. These relations have few calibrators with known ages for old, long rotation period stars. There is a significant sample of old Kepler objects of interest, or KOIs, which have both measurable surface rotation periods and precise asteroseismic measurements from which ages can be accurately derived. In this work, we determine the age and the rotation period of solar-like pulsating KOIs to both compare the rotation properties of stars with and without known planets and enlarge the gyrochronology calibration sample for old stars. We use Kepler photometric light curves to derive the stellar surface rotation periods while ages are obtained with asteroseismology using the Asteroseismic Modelling Portal in which individual mode frequencies are combined with high-resolution spectroscopic parameters. We thus determine surface rotation periods and ages for 11 planet-hosting stars, all over 2 Gyr old. We find that the planet-hosting stars exhibit a rotational behaviour that is consistent with the latest age-rotation models and similar to the rotational behaviour of stars without detected planets. We conclude that these old KOIs can be used to test and calibrate gyrochronology along with stars not known to host planets.

  18. A STATISTICAL RECONSTRUCTION OF THE PLANET POPULATION AROUND KEPLER SOLAR-TYPE STARS

    SciTech Connect

    Silburt, Ari; Wu, Yanqin; Gaidos, Eric

    2015-02-01

    Using the cumulative catalog of planets detected by the NASA Kepler mission, we reconstruct the intrinsic occurrence of Earth- to Neptune-size (1-4 R {sub ⊕}) planets and their distributions with radius and orbital period. We analyze 76,711 solar-type (0.8 < R {sub *}/R {sub ☉} < 1.2) stars with 430 planets on 20-200 day orbits, excluding close-in planets that may have been affected by the proximity to the host star. Our analysis considers errors in planet radii and includes an ''iterative simulation'' technique that does not bin the data. We find a radius distribution that peaks at 2-2.8 Earth radii, with lower numbers of smaller and larger planets. These planets are uniformly distributed with logarithmic period, and the mean number of such planets per star is 0.46 ± 0.03. The occurrence is ∼0.66 if planets interior to 20 days are included. We estimate the occurrence of Earth-size planets in the ''habitable zone'' (defined as 1-2 R {sub ⊕}, 0.99-1.7 AU for solar-twin stars) as 6.4{sub −1.1}{sup +3.4}%. Our results largely agree with those of Petigura et al., although we find a higher occurrence of 2.8-4 Earth-radii planets. The reasons for this excess are the inclusion of errors in planet radius, updated Huber et al. stellar parameters, and also the exclusion of planets that may have been affected by proximity to the host star.

  19. Comparing HARPS and Kepler surveys. The alignment of multiple-planet systems

    NASA Astrophysics Data System (ADS)

    Figueira, P.; Marmier, M.; Boué, G.; Lovis, C.; Santos, N. C.; Montalto, M.; Udry, S.; Pepe, F.; Mayor, M.

    2012-05-01

    Context. The recent results of the HARPS and Kepler surveys provided us with a bounty of extrasolar systems. While the two teams extensively analyzed each of their data-sets, little work has been done comparing the two. Aims: We study a subset of the planetary population whose characterization is simultaneously within reach of both instruments. We compare the statistical properties of planets in systems with msini > 5-10 M⊕ and R > 2 R⊕, as inferred from the HARPS and Kepler surveys, respectively. If we assume that the underlying population has the same characteristics, the different detection sensitivity to the orbital inclination relative to the line of sight allows us to probe the planets' mutual inclination. Methods: We considered the frequency of systems with one, two, and three planets as dictated by HARPS data. We used Kepler's planetary period and host mass and radius distributions (corrected from detection bias) to model planetary systems in a simple, yet physically plausible way. We then varied the mutual inclination between planets in a system according to different prescriptions (completely aligned, Rayleigh distributions, and isotropic) and compared the transit frequencies with one, two, or three planets with those measured by Kepler. Results: The results show that the two datasets are compatible, a remarkable result especially because there are no tunable knobs other than the assumed inclination distribution. For msini cutoffs of 7-10 M⊕, which are those expected to correspond to the radius cutoff of 2 R⊕, we conclude that the results are better described by a Rayleigh distribution with a mode of 1° or smaller. We show that the best-fit scenario only becomes a Rayleigh distribution with a mode of 5° if we assume a quite extreme mass-radius relationship for the planetary population. Conclusions: These results have important consequences for our understanding of the role of several proposed formation and evolution mechanisms. They confirm that

  20. Kepler

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Murdin, P.

    2000-11-01

    Johannes Kepler (1571-1630) was arguably the most innovative astronomical theorist in the millennium and a half from Claudius PTOLEMY's Almagest (c. AD 150) to Isaac NEWTON's Principia (1687). Before Kepler, planetary and lunar theory had consisted in combining circular motions, either strictly uniform or angularly uniform about an off-center `equant' point, so as to `save the appearances'. T...

  1. The dynamics of the multi-planet system orbiting Kepler-56

    SciTech Connect

    Li, Gongjie; Naoz, Smadar; Johnson, John Asher; Valsecchi, Francesca; Rasio, Frederic A. E-mail: snaoz@cfa.harvard.edu

    2014-10-20

    Kepler-56 is a multi-planet system containing two coplanar inner planets that are in orbits misaligned with respect to the spin axis of the host star, and an outer planet. Various mechanisms have been proposed to explain the broad distribution of spin-orbit angles among exoplanets, and these theories fall under two broad categories. The first is based on dynamical interactions in a multi-body system, while the other assumes that disk migration is the driving mechanism in planetary configuration and that the star (or disk) is titled with respect to the planetary plane. Here we show that the large observed obliquity of Kepler 56 system is consistent with a dynamical origin. In addition, we use observations by Huber et al. to derive the obliquity's probability distribution function, thus improving the constrained lower limit. The outer planet may be the cause of the inner planets' large obliquities, and we give the probability distribution function of its inclination, which depends on the initial orbital configuration of the planetary system. We show that even in the presence of precise measurement of the true obliquity, one cannot distinguish the initial configurations. Finally we consider the fate of the system as the star continues to evolve beyond the main sequence, and we find that the obliquity of the system will not undergo major variations as the star climbs the red giant branch. We follow the evolution of the system and find that the innermost planet will be engulfed in ∼129 Myr. Furthermore we put an upper limit of ∼155 Myr for the engulfment of the second planet. This corresponds to ∼3% of the current age of the star.

  2. Planetary Candidates Observed by Kepler. VII. The First Fully Uniform Catalog Based on the Entire 48-month Data Set (Q1–Q17 DR24)

    NASA Astrophysics Data System (ADS)

    Coughlin, Jeffrey L.; Mullally, F.; Thompson, Susan E.; Rowe, Jason F.; Burke, Christopher J.; Latham, David W.; Batalha, Natalie M.; Ofir, Aviv; Quarles, Billy L.; Henze, Christopher E.; Wolfgang, Angie; Caldwell, Douglas A.; Bryson, Stephen T.; Shporer, Avi; Catanzarite, Joseph; Akeson, Rachel; Barclay, Thomas; Borucki, William J.; Boyajian, Tabetha S.; Campbell, Jennifer R.; Christiansen, Jessie L.; Girouard, Forrest R.; Haas, Michael R.; Howell, Steve B.; Huber, Daniel; Jenkins, Jon M.; Li, Jie; Patil-Sabale, Anima; Quintana, Elisa V.; Ramirez, Solange; Seader, Shawn; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Zamudio, Khadeejah A.

    2016-05-01

    We present the seventh Kepler planet candidate (PC) catalog, which is the first catalog to be based on the entire, uniformly processed 48-month Kepler data set. This is the first fully automated catalog, employing robotic vetting procedures to uniformly evaluate every periodic signal detected by the Q1–Q17 Data Release 24 (DR24) Kepler pipeline. While we prioritize uniform vetting over the absolute correctness of individual objects, we find that our robotic vetting is overall comparable to, and in most cases superior to, the human vetting procedures employed by past catalogs. This catalog is the first to utilize artificial transit injection to evaluate the performance of our vetting procedures and to quantify potential biases, which are essential for accurate computation of planetary occurrence rates. With respect to the cumulative Kepler Object of Interest (KOI) catalog, we designate 1478 new KOIs, of which 402 are dispositioned as PCs. Also, 237 KOIs dispositioned as false positives (FPs) in previous Kepler catalogs have their disposition changed to PC and 118 PCs have their disposition changed to FPs. This brings the total number of known KOIs to 8826 and PCs to 4696. We compare the Q1–Q17 DR24 KOI catalog to previous KOI catalogs, as well as ancillary Kepler catalogs, finding good agreement between them. We highlight new PCs that are both potentially rocky and potentially in the habitable zone of their host stars, many of which orbit solar-type stars. This work represents significant progress in accurately determining the fraction of Earth-size planets in the habitable zone of Sun-like stars. The full catalog is publicly available at the NASA Exoplanet Archive.

  3. BUILDING TATOOINE: SUPPRESSION OF THE DIRECT SECULAR EXCITATION IN KEPLER CIRCUMBINARY PLANET FORMATION

    SciTech Connect

    Rafikov, Roman R.

    2013-02-10

    Circumbinary planetary systems recently discovered by Kepler represent an important testbed for planet formation theories. Planetesimal growth in disks around binaries has been expected to be inhibited interior to {approx}10 AU by secular excitation of high relative velocities between planetesimals, leading to their collisional destruction (rather than agglomeration). Here we show that gravity of an axisymmetric gaseous circumbinary disk in which planets form drives fast precession of both the planetesimal and binary orbits, resulting in strong suppression of planetesimal eccentricities beyond 2-3 AU and making possible the growth of 1-10{sup 2} km objects in this region. The precise location of the boundary of the accretion-friendly region depends on the size of the inner disk cavity cleared by the binary torques and on the disk mass (even 0.01 M{sub Sun} disk strongly suppresses planetesimal excitation), among other things, but this zone does not extend to present orbits of Kepler circumbinary planets. The precession of the orbit of the central binary, enhanced by the mass concentration that is naturally present at the inner edge of a circumbinary disk, plays a key role in this suppression, which is a feature specific to the circumbinary planet formation.

  4. Building Tatooine: Suppression of the Direct Secular Excitation in Kepler Circumbinary Planet Formation

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2013-02-01

    Circumbinary planetary systems recently discovered by Kepler represent an important testbed for planet formation theories. Planetesimal growth in disks around binaries has been expected to be inhibited interior to ~10 AU by secular excitation of high relative velocities between planetesimals, leading to their collisional destruction (rather than agglomeration). Here we show that gravity of an axisymmetric gaseous circumbinary disk in which planets form drives fast precession of both the planetesimal and binary orbits, resulting in strong suppression of planetesimal eccentricities beyond 2-3 AU and making possible the growth of 1-102 km objects in this region. The precise location of the boundary of the accretion-friendly region depends on the size of the inner disk cavity cleared by the binary torques and on the disk mass (even 0.01 M ⊙ disk strongly suppresses planetesimal excitation), among other things, but this zone does not extend to present orbits of Kepler circumbinary planets. The precession of the orbit of the central binary, enhanced by the mass concentration that is naturally present at the inner edge of a circumbinary disk, plays a key role in this suppression, which is a feature specific to the circumbinary planet formation.

  5. KIC-5473556: the largest and longest-period Kepler transiting circumbinary planet

    NASA Astrophysics Data System (ADS)

    Kostov, Veselin

    2015-12-01

    We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of short-period CBPs orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet in the KIC-5473556 system has a very long orbital period (~1100 days) and was at conjunction only twice during the Kepler mission -- making it the longest-period transiting CBP at the time of writing. With a radius of nearly 12 REarth, it is also the largest such planet to date. It produced three transits in the light curve of KIC 5473556, one of them during a syzygy. The planet revolves around an ~11-day Eclipsing Binary consisting of two Solar-mass stars on a slightly inclined to the line of sight, mildly eccentric (ebin = 0.16) orbit. The CBP measurably perturbs the times of the stellar eclipses, allowing us to constrain its mass well. Here we present our spectroscopic and photometric observations of the target, discuss our analysis of the system, and outline the theoretical implications of our discovery.

  6. THE HUNT FOR EXOMOONS WITH KEPLER (HEK). III. THE FIRST SEARCH FOR AN EXOMOON AROUND A HABITABLE-ZONE PLANET

    SciTech Connect

    Kipping, D. M.; Forgan, D.; Hartman, J.; Bakos, G. Á.; Nesvorný, D.; Schmitt, A.; Buchhave, L.

    2013-11-10

    Kepler-22b is the first transiting planet to have been detected in the habitable zone of its host star. At 2.4 R{sub ⊕}, Kepler-22b is too large to be considered an Earth analog, but should the planet host a moon large enough to maintain an atmosphere, then the Kepler-22 system may yet possess a telluric world. Aside from being within the habitable zone, the target is attractive due to the availability of previously measured precise radial velocities and low intrinsic photometric noise, which has also enabled asteroseismology studies of the star. For these reasons, Kepler-22b was selected as a target-of-opportunity by the 'Hunt for Exomoons with Kepler' (HEK) project. In this work, we conduct a photodynamical search for an exomoon around Kepler-22b leveraging the transits, radial velocities, and asteroseismology plus several new tools developed by the HEK project to improve exomoon searches. We find no evidence for an exomoon around the planet and exclude moons of mass M{sub S} > 0.5 M{sub ⊕} to 95% confidence. By signal injection and blind retrieval, we demonstrate that an Earth-like moon is easily detected for this planet even when the time-correlated noise of the data set is taken into account. We provide updated parameters for the planet Kepler-22b, including a revised mass of M{sub P} < 53 M{sub ⊕} to 95% confidence and an eccentricity of 0.13{sub -0.13}{sup +0.36} by exploiting Single-body Asterodensity Profiling. Finally, we show that Kepler-22b has a >95% probability of being within the empirical habitable zone but a <5% probability of being within the conservative habitable zone.

  7. Finding Earth-size planets in the habitable zone: the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Borucki, William; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Christensen-Dalsgaard, Jørgen; Cochran, William; Dunham, Edward; Gautier, Thomas N.; Geary, John; Gilliland, Ronald; Jenkins, Jon; Kondo, Yoji; Latham, David; Lissauer, Jack J.; Monet, David

    2008-05-01

    The Kepler Mission is a space-based mission whose primary goal is to detect Earth-size and smaller planets in the habitable zone of solar-like stars. The mission will monitor more than 100,000 stars for transits with a differential photometric precision of 20 ppm at V=12 for a 6.5 hour transit. It will also provide asteroseismic results on several thousand dwarf stars. It is specifically designed to continuously observe a single field of view of greater than 100 square degrees for 3.5 or more years. This overview describes the mission design, its goals and capabilities, the measured performance for those photometer components that have now been tested, the Kepler Input Catalog, an overview of the analysis pipeline, the plans for the Follow-up Observing Program to validate the detections and characterize the parent stars, and finally, the plans for the Guest Observer and Astrophysical Data Program.

  8. Systems engingeering for the Kepler Mission : a search for terrestrial planets

    NASA Technical Reports Server (NTRS)

    Duren, Riley M.; Dragon, Karen; Gunter, Steve Z.; Gautier, Nick; Koch, Dave; Harvey, Adam; Enos, Alan; Borucki, Bill; Sobeck, Charlie; Mayer, Dave; Jenkins, Jon; Thompson, Rick; Bachtell, Eric; Peters, Dan

    2004-01-01

    The Kepler mission will launch in 2007 and determine the distribution of earth-size planets (0.5 to 10 earth masses) in the habitable zones (HZs) of solar-like stars. The mission will monitor > 100,000 dwarf stars simultaneously for at least 4 years. Precision differential photometry will be used to detect the periodic signals of transiting planets. Kepler will also support asteroseismology by measuring the pressure-mode (p-mode) oscillations of selected stars. Key mission elements include a spacecraft bus and 0.95 meter, wide-field, CCD-based photometer injected into an earth-trailing heliocentric orbit by a 3-stage Delta II launch vehicle as well as a distributed Ground Segment and Follow-up Observing Program. The project is currently preparing for Preliminary Design Review (October 2004) and is proceeding with detailed design and procurement of long-lead components. In order to meet the unprecedented photometric precision requirement and to ensure a statistically significant result, the Kepler mission involves technical challenges in the areas of photometric noise and systematic error reduction, stability, and false-positive rejection. Programmatic and logistical challenges include the collaborative design, modeling, integration, test, and operation of a geographically and functionally distributed project. A very rigorous systems engineering program has evolved to address these challenges. This paper provides an overview of the Kepler systems engineering program, including some examples of our processes and techniques in areas such as requirements synthesis, validation & verification, system robustness design, and end-to-end performance modeling.

  9. Detailed Abundances of Stars with Small Planets Discovered by Kepler. I. The First Sample

    NASA Astrophysics Data System (ADS)

    Schuler, Simon C.; Vaz, Zachary A.; Katime Santrich, Orlando J.; Cunha, Katia; Smith, Verne V.; King, Jeremy R.; Teske, Johanna K.; Ghezzi, Luan; Howell, Steve B.; Isaacson, Howard

    2015-12-01

    We present newly derived stellar parameters and the detailed abundances of 19 elements of seven stars with small planets discovered by NASA's Kepler Mission. Each star, save one, has at least one planet with a radius ≤1.6 R⊕, suggesting a primarily rocky composition. The stellar parameters and abundances are derived from high signal-to-noise ratio, high-resolution echelle spectroscopy obtained with the 10 m Keck I telescope and High Resolution Echelle Spectrometer using standard spectroscopic techniques. The metallicities of the seven stars range from -0.32 to +0.13 dex, with an average metallicity that is subsolar, supporting previous suggestions that, unlike Jupiter-type giant planets, small planets do not form preferentially around metal-rich stars. The abundances of elements other than iron are in line with a population of Galactic disk stars, and despite our modest sample size, we find hints that the compositions of stars with small planets are similar to stars without known planets and with Neptune-size planets, but not to those of stars with giant planets. This suggests that the formation of small planets does not require exceptional host-star compositions and that small planets may be ubiquitous in the Galaxy. We compare our derived abundances (which have typical uncertainties of ≲0.04 dex) to the condensation temperature of the elements; a correlation between the two has been suggested as a possible signature of rocky planet formation. None of the stars demonstrate the putative rocky planet signature, despite at least three of the stars having rocky planets estimated to contain enough refractory material to produce the signature, if real. More detailed abundance analyses of stars known to host small planets are needed to verify our results and place ever more stringent constraints on planet formation models. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California

  10. Spectro-thermometry of M dwarfs and their candidate planets: Too hot, too cool, or just right?

    SciTech Connect

    Mann, Andrew W.; Ansdell, Megan; Gaidos, Eric

    2013-12-20

    We use moderate-resolution spectra of nearby late K and M dwarf stars with parallaxes and interferometrically determined radii to refine their effective temperatures, luminosities, and metallicities. We use these revised values to calibrate spectroscopic techniques to infer the fundamental parameters of more distant late-type dwarf stars. We demonstrate that, after masking out poorly modeled regions, the newest version of the PHOENIX atmosphere models accurately reproduce temperatures derived bolometrically. We apply methods to late-type hosts of transiting planet candidates in the Kepler field, and calculate effective temperature, radius, mass, and luminosity with typical errors of 57 K, 7%, 11%, and 13%, respectively. We find systematic offsets between our values and those from previous analyses of the same stars, which we attribute to differences in atmospheric models utilized for each study. We investigate which of the planets in this sample are likely to orbit in the circumstellar habitable zone. We determine that four candidate planets (KOI 854.01, 1298.02, 1686.01, and 2992.01) are inside of or within 1σ of a conservative definition of the habitable zone, but that several planets identified by previous analyses are not (e.g., KOI 1422.02 and KOI 2626.01). Only one of the four habitable-zone planets is Earth sized, suggesting a downward revision in the occurrence of such planets around M dwarfs. These findings highlight the importance of measuring accurate stellar parameters when deriving parameters of their orbiting planets.

  11. Spectro-thermometry of M Dwarfs and Their Candidate Planets: Too Hot, Too Cool, or Just Right?

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Gaidos, Eric; Ansdell, Megan

    2013-12-01

    We use moderate-resolution spectra of nearby late K and M dwarf stars with parallaxes and interferometrically determined radii to refine their effective temperatures, luminosities, and metallicities. We use these revised values to calibrate spectroscopic techniques to infer the fundamental parameters of more distant late-type dwarf stars. We demonstrate that, after masking out poorly modeled regions, the newest version of the PHOENIX atmosphere models accurately reproduce temperatures derived bolometrically. We apply methods to late-type hosts of transiting planet candidates in the Kepler field, and calculate effective temperature, radius, mass, and luminosity with typical errors of 57 K, 7%, 11%, and 13%, respectively. We find systematic offsets between our values and those from previous analyses of the same stars, which we attribute to differences in atmospheric models utilized for each study. We investigate which of the planets in this sample are likely to orbit in the circumstellar habitable zone. We determine that four candidate planets (KOI 854.01, 1298.02, 1686.01, and 2992.01) are inside of or within 1σ of a conservative definition of the habitable zone, but that several planets identified by previous analyses are not (e.g., KOI 1422.02 and KOI 2626.01). Only one of the four habitable-zone planets is Earth sized, suggesting a downward revision in the occurrence of such planets around M dwarfs. These findings highlight the importance of measuring accurate stellar parameters when deriving parameters of their orbiting planets.

  12. KOI-2700b—a planet candidate with dusty effluents on a 22 hr orbit

    SciTech Connect

    Rappaport, Saul; Sanchis-Ojeda, Roberto; Barclay, Thomas; Still, Martin; Rowe, Jason E-mail: rsanchis86@gmail.com E-mail: martin.d.still@nasa.gov E-mail: jasonfrowe@gmail.com

    2014-03-20

    Kepler planet candidate KOI-2700b (KIC 8639908b), with an orbital period of 21.84 hr, exhibits a distinctly asymmetric transit profile, likely indicative of the emission of dusty effluents, and reminiscent of KIC 1255b. The host star has T {sub eff} = 4435 K, M ≅ 0.63 M {sub ☉}, and R ≅ 0.57 R {sub ☉}, comparable to the parameters ascribed to KIC 12557548. The transit egress can be followed for ∼25% of the orbital period and, if interpreted as extinction from a dusty comet-like tail, indicates a long lifetime for the dust grains of more than a day. We present a semiphysical model for the dust tail attenuation and fit for the physical parameters contained in that expression. The transit is not sufficiently deep to allow for a study of the transit-to-transit variations, as is the case for KIC 1255b; however, it is clear that the transit depth is slowly monotonically decreasing by a factor of ∼2 over the duration of the Kepler mission. We infer a mass-loss rate in dust from the planet of ∼2 lunar masses per Gyr. The existence of a second star hosting a planet with a dusty comet-like tail would help to show that such objects may be more common and less exotic than originally thought. According to current models, only quite small planets with M{sub p} ≲ 0.03 M {sub ⊕} are likely to release a detectable quantity of dust. Thus, any 'normal-looking' transit that is inferred to arise from a rocky planet of radius greater than ∼1/2 R {sub ⊕} should not exhibit any hint of a dusty tail. Conversely, if one detects an asymmetric transit due to a dusty tail, then it will be very difficult to detect the hard body of the planet within the transit because, by necessity, the planet must be quite small (i.e., ≲ 0.3 R {sub ⊕}).

  13. Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.

  14. Densities and eccentricities of 139 Kepler planets from transit time variations

    SciTech Connect

    Hadden, Sam; Lithwick, Yoram

    2014-05-20

    We extract densities and eccentricities of 139 sub-Jovian planets by analyzing transit time variations (TTVs) obtained by the Kepler mission through Quarter 12. We partially circumvent the degeneracies that plague TTV inversion with the help of an analytical formula for the TTV. From the observed TTV phases, we find that most of these planets have eccentricities of the order of a few percent. More precisely, the rms eccentricity is 0.018{sub −0.004}{sup +0.005}, and planets smaller than 2.5 R {sub ⊕} are around twice as eccentric as those bigger than 2.5 R {sub ⊕}. We also find a best-fit density-radius relationship ρ ≈ 3 g cm{sup –3} × (R/3 R {sub ⊕}){sup –2.3} for the 56 planets that likely have small eccentricity and hence small statistical correction to their masses. Many planets larger than 2.5 R {sub ⊕} are less dense than water, implying that their radii are largely set by a massive hydrogen atmosphere.

  15. Transit Timing Observations from Kepler: IV. Confirmation of 4 Multiple Planet Systems by Simple Physical Models

    SciTech Connect

    Fabrycky, Daniel C.; Ford, Eric B.; Steffen, Jason H.; Rowe, Jason F.; Carter, Joshua A.; Moorhead, Althea V.; Batalha, Natalie M.; Borucki, William J.; Bryson, Steve; Buchhave, Lars A.; Christiansen, Jessie L.; /SETI Inst., Mtn. View /NASA, Ames /Caltech

    2012-01-01

    Eighty planetary systems of two or more planets are known to orbit stars other than the Sun. For most, the data can be sufficiently explained by non-interacting Keplerian orbits, so the dynamical interactions of these systems have not been observed. Here we present 4 sets of lightcurves from the Kepler spacecraft, which each show multiple planets transiting the same star. Departure of the timing of these transits from strict periodicity indicates the planets are perturbing each other: the observed timing variations match the forcing frequency of the other planet. This confirms that these objects are in the same system. Next we limit their masses to the planetary regime by requiring the system remain stable for astronomical timescales. Finally, we report dynamical fits to the transit times, yielding possible values for the planets masses and eccentricities. As the timespan of timing data increases, dynamical fits may allow detailed constraints on the systems architectures, even in cases for which high-precision Doppler follow-up is impractical.

  16. Mass Determination Of Directly Imaged Planet Candidates

    NASA Astrophysics Data System (ADS)

    Schmidt, Tobias; Neuhauser, R.; Seifahrt, A.

    2011-09-01

    About 20 sub-stellar companions with large separations (> 50 AU) to their young primary stars and brown dwarfs are confirmed by both common proper motion and late-M / early-L type spectra. The origin and early evolution of these objects is still under debate. While often these sub-stellar companions are regarded as brown dwarfs, they could possibly also be massive planets, the mass estimates are very uncertain so far. They are companions to primary stars or brown dwarfs in young associations and star forming regions like Taurus, Upper Scorpius, the TW Hya association, Beta Pic moving group, TucHor association, Lupus, Ophiuchus, and Chamaeleon, hence their ages and distances are well known, in contrast to free-floating brown dwarfs. Here we present how mass estimates of such young directly imaged companions can be derived, using e.g. evolutionary models, which are however currently almost uncalibrated by direct mass measurements of young objects. An empirical classification by medium-resolution spectroscopy is currently not possible, because a spectral sequence that is taking the lower gravity into account, is not existing. This problem leads to an apparent mismatch between spectra of old field type objects and young low-mass companions at the same effective temperature, hampering a determination of temperature and surface gravity independent from models. We show that from spectra of the objects, using the advantages of light concentration by an AO-assisted integral field spectrograph, temperature, extinction, metallicity and surface gravity can be derived using non-equilibrium radiative transfer atmosphere models as comparison and that this procedure as well allows a mass determination in combination with the luminosities found by the direct observations, as has recently been done by us for several young sub-stellar companions, as e.g. GQ Lup, CT Cha or UScoCTIO 108.

  17. Stellar and Planetary Properties of K2 Campaign 1 Candidates and Validation of 17 Planets, Including a Planet Receiving Earth-like Insolation

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin T.; Morton, Timothy D.; Foreman-Mackey, Daniel; Johnson, John Asher; Hogg, David W.; Bowler, Brendan P.; Latham, David W.; Bieryla, Allyson; Mann, Andrew W.

    2015-08-01

    The extended Kepler mission, K2, is now providing photometry of new fields every three months in a search for transiting planets. In a recent study, Foreman-Mackey and collaborators presented a list of 36 planet candidates orbiting 31 stars in K2 Campaign 1. In this contribution, we present stellar and planetary properties for all systems. We combine ground-based seeing-limited survey data and adaptive optics imaging with an automated transit analysis scheme to validate 21 candidates as planets, 17 for the first time, and identify 6 candidates as likely false positives. Of particular interest is K2-18 (EPIC 201912552), a bright (K = 8.9) M2.8 dwarf hosting a 2.23 ± 0.25 {R}\\oplus planet with {T}{eq}=272+/- 15 K and an orbital period of 33 days. We also present two new open-source software packages which enable this analysis. The first, isochrones, is a flexible tool for fitting theoretical stellar models to observational data to determine stellar properties using a nested sampling scheme to capture the multimodal nature of the posterior distributions of the physical parameters of stars that may plausibly be evolved. The second is vespa, a new general-purpose procedure to calculate false positive probabilities and statistically validate transiting exoplanets.

  18. Transit Timing Observations from Kepler: VII. Potentially interesting candidate systems from Fourier-based statistical tests

    SciTech Connect

    Steffen, Jason H.; Ford, Eric B.; Rowe, Jason F.; Fabrycky, Daniel C.; Holman, Matthew J.; Welsh, William F.; Borucki, William J.; Batalha, Natalie M.; Bryson, Steve; Caldwell, Douglas A.; Ciardi, David R.; /Caltech /NASA, Ames /SETI Inst., Mtn. View

    2012-01-01

    We analyze the deviations of transit times from a linear ephemeris for the Kepler Objects of Interest (KOI) through Quarter six (Q6) of science data. We conduct two statistical tests for all KOIs and a related statistical test for all pairs of KOIs in multi-transiting systems. These tests identify several systems which show potentially interesting transit timing variations (TTVs). Strong TTV systems have been valuable for the confirmation of planets and their mass measurements. Many of the systems identified in this study should prove fruitful for detailed TTV studies.

  19. TRANSIT TIMING OBSERVATIONS FROM KEPLER. VI. POTENTIALLY INTERESTING CANDIDATE SYSTEMS FROM FOURIER-BASED STATISTICAL TESTS

    SciTech Connect

    Steffen, Jason H.; Ford, Eric B.; Rowe, Jason F.; Borucki, William J.; Bryson, Steve; Caldwell, Douglas A.; Jenkins, Jon M.; Koch, David G.; Sanderfer, Dwight T.; Seader, Shawn; Twicken, Joseph D.; Fabrycky, Daniel C.; Welsh, William F.; Batalha, Natalie M.; Ciardi, David R.; Prsa, Andrej

    2012-09-10

    We analyze the deviations of transit times from a linear ephemeris for the Kepler Objects of Interest (KOI) through quarter six of science data. We conduct two statistical tests for all KOIs and a related statistical test for all pairs of KOIs in multi-transiting systems. These tests identify several systems which show potentially interesting transit timing variations (TTVs). Strong TTV systems have been valuable for the confirmation of planets and their mass measurements. Many of the systems identified in this study should prove fruitful for detailed TTV studies.

  20. CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA

    SciTech Connect

    Borucki, William J.; Koch, David G.; Bryson, Stephen T.; Lissauer, Jack J.; Basri, Gibor; Marcy, Geoffrey W.; Batalha, Natalie; Brown, Timothy M.; Caldwell, Douglas; DeVore, Edna; Jenkins, Jon M.; Christensen-Dalsgaard, Joergen; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N.; Geary, John C.; Latham, David W.; Gilliland, Ronald; Gould, Alan; Howell, Steve B. E-mail: Martin.Still@nasa.gov

    2011-07-20

    On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R{sub p} < 1.25 R{sub +}), 288 super-Earth-size (1.25 R{sub +} {<=} R{sub p} < 2 R{sub +}), 662 Neptune-size (2 R{sub +} {<=} R{sub p} < 6 R{sub +}), 165 Jupiter-size (6 R{sub +} {<=} R{sub p} < 15 R{sub +}), and 19 up to twice the size of Jupiter (15 R{sub +} {<=} R{sub p} < 22 R{sub +}). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems.

  1. RCT photometry and HCT spectroscopy of blazar candidates in the Kepler field of view

    NASA Astrophysics Data System (ADS)

    Carini, Michael T.; Goyal, A.; Jose, J.

    2014-01-01

    The results of photometric and spectroscopic monitoring of 9 blazar candidates in the Kepler field of view are presented. These sources were identified as blazar candidates based on their position in the so-called WISE blazar strip. Finding charts and comparison sequences were created using the NOMAD database. R band photometric monitoring was begun in spring 2013 with the Robotically Controlled Telescope(RCT), and spectroscopic observations of 7 of the sources were obtained with the Himalayan Chandra Telescope (HCT) in September, 2013. Light curves for all 9 sources and preliminary spectroscopic classifications for the 7 sources with spectra will be presented.

  2. Stellar Properties of Pulsating B Star Candidates in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Waskie, Steven; McSwain, M. Virginia

    2016-01-01

    We measure physical properties of 31 candidate β Cephei, slowly pulsating B stars (SPB), and hybrid pulsating B stars in the Kepler field. We employ LTE Kurucz ATLAS9 model atmospheres and the TLUSTY BSTAR2006 non-LTE grid to measure the projected rotational velocity, v sin i, effective temperature, Teff, and surface gravity, log g, from blue optical spectra for our stars. Results are plotted against the evolutionary tracks of Ekström et al. for determination of stellar masses, radii, and ages. Accurate determination of these parameters is crucial for asteroseismic analysis as it has been shown by Balona et al. that the predicted parameters in the Kepler Input Catalog (KIC) for these hot stars are unreliable.We would like to thank Lehigh University for supporting this research. This work has been funded by NSF grants AST-1109247 and PHY-11359195.

  3. Kepler-539: A young extrasolar system with two giant planets on wide orbits and in gravitational interaction

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Lillo-Box, J.; Southworth, J.; Borsato, L.; Gandolfi, D.; Ciceri, S.; Barrado, D.; Brahm, R.; Henning, Th.

    2016-05-01

    We confirm the planetary nature of Kepler-539 b (aka Kepler object of interest K00372.01), a giant transiting exoplanet orbiting a solar-analogue G2 V star. The mass of Kepler-539 b was accurately derived thanks to a series of precise radial velocity measurements obtained with the CAFE spectrograph mounted on the CAHA 2.2-m telescope. A simultaneous fit of the radial-velocity data and Kepler photometry revealed that Kepler-539 b is a dense Jupiter-like planet with a mass of Mp = 0.97 ± 0.29 MJup and a radius of Rp = 0.747 ± 0.018 RJup, making a complete circular revolution around its parent star in 125.6 days. The semi-major axis of the orbit is roughly 0.5 au, implying that the planet is at ≈0.45 au from the habitable zone. By analysing the mid-transit times of the 12 transit events of Kepler-539 b recorded by the Kepler spacecraft, we found a clear modulated transit time variation (TTV), which is attributable to the presence of a planet c in a wider orbit. The few timings available do not allow us to precisely estimate the properties of Kepler-539 c and our analysis suggests that it has a mass between 1.2 and 3.6 MJup, revolving on a very eccentric orbit (0.4 planet c is the probable cause of the TTV modulation of planet b. The analysis of the CAFE spectra revealed a relatively high photospheric lithium content, A(Li) = 2.48 ± 0.12 dex, which, together with both a gyrochronological and isochronal analysis, suggests that the parent star is relatively young. RV/BVS measurements are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A112

  4. The Hunt for Exomoons with Kepler (HEK): V. A Survey of 41 Planetary Candidates for Exomoons

    NASA Astrophysics Data System (ADS)

    Kipping, D. M.; Schmitt, A. R.; Huang, X.; Torres, G.; Nesvorný, D.; Buchhave, L. A.; Hartman, J.; Bakos, G. Á.

    2015-11-01

    We present a survey of 41 Kepler Objects of Interest (KOIs) for exomoons using Bayesian photodynamics, more than tripling the number of KOIs surveyed with this technique. We find no compelling evidence for exomoons although 13 KOIs yield spurious detections driven by instrumental artifacts, stellar activity, and/or perturbations from unseen bodies. Regarding the latter, we find seven KOIs exhibiting >5 σ evidence of transit timing variations, including the “mega-Earth” Kepler-10c, likely indicating an additional planet in that system. We exploit the moderately large sample of 57 unique KOIs surveyed to date to infer several useful statistics. For example, although there is a diverse range in sensitivities, we find that we are sensitive to Pluto-Charon mass-ratio systems for ≃40% of KOIs studied and Earth-Moon mass-ratios for 1 in 8 cases. In terms of absolute mass, our limits probe down to 1.7 Ganymede masses, with a sensitivity to Earth-mass moons for 1 in 3 cases studied and to the smallest moons capable of sustaining an Earth-like atmosphere (0.3 M⨁) for 1 in 4. Despite the lack of positive detections to date, we caution against drawing conclusions yet, since our most interesting objects remain under analysis. Finally, we point out that had we searched for the photometric transit signals of exomoons alone, rather than using photodynamics, we estimate that 1 in 4 KOIs would have erroneously been concluded to harbor exomoons due to residual time correlated noise in the Kepler data, posing a serious problem for alternative methods. Based on archival data of the Kepler telescope.

  5. Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.

    PubMed

    Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N

    2013-05-01

    We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk. PMID:23599262

  6. Kepler-413B: A slightly misaligned, Neptune-size transiting circumbinary planet

    SciTech Connect

    Kostov, V. B.; McCullough, P. R.; Tsvetanov, Z. I.; Carter, J. A.; Deleuil, M.; Díaz, R. F.; Fabrycky, D. C.; Hébrard, G.; Hinse, T. C.; Mazeh, T.; Orosz, J. A.; Welsh, W. F.

    2014-03-20

    We report the discovery of a transiting, R{sub p} = 4.347 ± 0.099R {sub ⊕}, circumbinary planet (CBP) orbiting the Kepler K+M eclipsing binary (EB) system KIC 12351927 (Kepler-413) every ∼66 days on an eccentric orbit with a{sub p} = 0.355 ± 0.002 AU, e{sub p} = 0.118 ± 0.002. The two stars, with M{sub A} = 0.820 ± 0.015 M {sub ☉}, R{sub A} = 0.776 ± 0.009 R {sub ☉} and M{sub B} = 0.542 ± 0.008 M {sub ☉}, R{sub B} = 0.484 ± 0.024 R {sub ☉}, respectively, revolve around each other every 10.11615 ± 0.00001 days on a nearly circular (e {sub EB} = 0.037 ± 0.002) orbit. The orbital plane of the EB is slightly inclined to the line of sight (i {sub EB} = 87.°33 ± 0.°06), while that of the planet is inclined by ∼2.°5 to the binary plane at the reference epoch. Orbital precession with a period of ∼11 yr causes the inclination of the latter to the sky plane to continuously change. As a result, the planet often fails to transit the primary star at inferior conjunction, causing stretches of hundreds of days with no transits (corresponding to multiple planetary orbital periods). We predict that the next transit will not occur until 2020. The orbital configuration of the system places the planet slightly closer to its host stars than the inner edge of the extended habitable zone. Additionally, the orbital configuration of the system is such that the CBP may experience Cassini State dynamics under the influence of the EB, in which the planet's obliquity precesses with a rate comparable to its orbital precession. Depending on the angular precession frequency of the CBP, it could potentially undergo obliquity fluctuations of dozens of degrees (and complex seasonal cycles) on precession timescales.

  7. Reduced Activity and Large Particles from the Disintegrating Planet Candidate KIC 12557548b

    NASA Astrophysics Data System (ADS)

    Schlawin, E.; Herter, T.; Zhao, M.; Teske, J. K.; Chen, H.

    2016-08-01

    The intriguing exoplanet candidate KIC 12557548b is believed to have a comet-like tail of dusty debris trailing a small rocky planet. The tail of debris scatters up to 1.3% of the stellar light in the Kepler observatory’s bandpass (0.42–0.9 μm). Observing the tail’s transit depth at multiple wavelengths can reveal the composition and particle size of the debris, constraining the makeup and lifetime of the sub-Mercury planet. Early dust particle size predictions from the scattering of the comet-like tail pointed toward a dust size of ˜0.1 μm for silicate compositions. These small particles would produce a much deeper optical transit depth than near-infrared transit depth. We measure a transmission spectrum for KIC 12557548b using the SpeX spectrograph (covering 0.8–2.4 μm) simultaneously with the MORIS imager taking r‧ (0.63 μm) photometry on the Infrared Telescope Facility for eight nights and one night in H band (1.63 μm) using the Wide-field IR Camera at the Palomar 200 inch telescope. The infrared spectra are plagued by systematic errors, but we argue that sufficient precision is obtained when using differential spectroscopic calibration when combining multiple nights. The average differential transmission spectrum is flat, supporting findings that KIC 12557548b’s debris is likely composed of larger particles ≳0.5 μm for pyroxene and olivine and ≳0.2 μm for iron and corundum. The r‧ photometric transit depths are all below the average Kepler value, suggesting that the observations occurred during a weak period or that the mechanisms producing optical broadband transit depths are suppressed.

  8. Reduced Activity and Large Particles from the Disintegrating Planet Candidate KIC 12557548b

    NASA Astrophysics Data System (ADS)

    Schlawin, E.; Herter, T.; Zhao, M.; Teske, J. K.; Chen, H.

    2016-08-01

    The intriguing exoplanet candidate KIC 12557548b is believed to have a comet-like tail of dusty debris trailing a small rocky planet. The tail of debris scatters up to 1.3% of the stellar light in the Kepler observatory’s bandpass (0.42–0.9 μm). Observing the tail’s transit depth at multiple wavelengths can reveal the composition and particle size of the debris, constraining the makeup and lifetime of the sub-Mercury planet. Early dust particle size predictions from the scattering of the comet-like tail pointed toward a dust size of ∼0.1 μm for silicate compositions. These small particles would produce a much deeper optical transit depth than near-infrared transit depth. We measure a transmission spectrum for KIC 12557548b using the SpeX spectrograph (covering 0.8–2.4 μm) simultaneously with the MORIS imager taking r‧ (0.63 μm) photometry on the Infrared Telescope Facility for eight nights and one night in H band (1.63 μm) using the Wide-field IR Camera at the Palomar 200 inch telescope. The infrared spectra are plagued by systematic errors, but we argue that sufficient precision is obtained when using differential spectroscopic calibration when combining multiple nights. The average differential transmission spectrum is flat, supporting findings that KIC 12557548b’s debris is likely composed of larger particles ≳0.5 μm for pyroxene and olivine and ≳0.2 μm for iron and corundum. The r‧ photometric transit depths are all below the average Kepler value, suggesting that the observations occurred during a weak period or that the mechanisms producing optical broadband transit depths are suppressed.

  9. ATMOSPHERE AND SPECTRAL MODELS OF THE KEPLER-FIELD PLANETS HAT-P-7b AND TrES-2

    SciTech Connect

    Spiegel, David S.; Burrows, Adam E-mail: burrows@astro.princeton.ed

    2010-10-10

    We develop atmosphere models of two of the three Kepler-field planets that were known prior to the start of the Kepler mission (HAT-P-7b and TrES-2). We find that published Kepler and Spitzer data for HAT-P-7b appear to require an extremely hot upper atmosphere on the dayside, with a strong thermal inversion and little day-night redistribution. The Spitzer data for TrES-2 suggest a mild thermal inversion with moderate day-night redistribution. We examine the effect of nonequilibrium chemistry on TrES-2 model atmospheres and find that methane levels must be adjusted by extreme amounts in order to cause even mild changes in atmospheric structure and emergent spectra. Our best-fit models to the Spitzer data for TrES-2 lead us to predict a low secondary eclipse planet-star flux ratio ({approx}<2 x 10{sup -5}) in the Kepler bandpass, which is consistent with what very recent observations have found. Finally, we consider how the Kepler-band optical flux from a hot exoplanet depends on the strength of a possible extra optical absorber in the upper atmosphere. We find that the optical flux is not monotonic in optical opacity, and the non-monotonicity is greater for brighter, hotter stars.

  10. SPIN-ORBIT ALIGNMENT FOR THE CIRCUMBINARY PLANET HOST KEPLER-16 A

    SciTech Connect

    Winn, Joshua N.; Albrecht, Simon; Johnson, John Asher; Torres, Guillermo; Carter, Joshua A.; Ragozzine, Darin; Quinn, Samuel N.; Latham, David W.; Cochran, William D.; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard; Fischer, Debra; Doyle, Laurance; Welsh, William; Orosz, Jerome; Fabrycky, Daniel C.; Shporer, Avi; Howell, Steve B.; Prsa, Andrej

    2011-11-01

    Kepler-16 is an eccentric low-mass eclipsing binary with a circumbinary transiting planet. Here, we investigate the angular momentum of the primary star, based on Kepler photometry and Keck spectroscopy. The primary star's rotation period is 35.1 {+-} 1.0 days, and its projected obliquity with respect to the stellar binary orbit is 1.{sup 0}6 {+-} 2.{sup 0}4. Therefore, the three largest sources of angular momentum-the stellar orbit, the planetary orbit, and the primary's rotation-are all closely aligned. This finding supports a formation scenario involving accretion from a single disk. Alternatively, tides may have realigned the stars despite their relatively wide separation (0.2 AU), a hypothesis that is supported by the agreement between the measured rotation period and the 'pseudosynchronous' period of tidal evolution theory. The rotation period, chromospheric activity level, and fractional light variations suggest a main-sequence age of 2-4 Gyr. Evolutionary models of low-mass stars can match the observed masses and radii of the primary and secondary stars to within about 3%.

  11. STELLAR ROTATION PERIODS OF THE KEPLER OBJECTS OF INTEREST: A DEARTH OF CLOSE-IN PLANETS AROUND FAST ROTATORS

    SciTech Connect

    McQuillan, A.; Mazeh, T.; Aigrain, S.

    2013-09-20

    We present a large sample of stellar rotation periods for Kepler Objects of Interest, based on three years of public Kepler data. These were measured by detecting periodic photometric modulation caused by star spots, using an algorithm based on the autocorrelation function of the light curve, developed recently by McQuillan, Aigrain and Mazeh (2013). Of the 1919 main-sequence exoplanet hosts analyzed, robust rotation periods were detected for 737. Comparing the detected stellar periods to the orbital periods of the innermost planet in each system reveals a notable lack of close-in planets around rapid rotators. It appears that only slowly spinning stars with rotation periods longer than 5-10 days host planets on orbits shorter than 2 or 3 days, although the mechanism(s) that lead(s) to this is not clear.

  12. {chi}{sup 2} DISCRIMINATORS FOR TRANSITING PLANET DETECTION IN KEPLER DATA

    SciTech Connect

    Seader, Shawn; Tenenbaum, Peter; Jenkins, Jon M.; Burke, Christopher J. E-mail: peter.tenenbaum@nasa.gov E-mail: christopher.j.burke@nasa.gov

    2013-06-01

    The Kepler spacecraft observes a host of target stars to detect transiting planets. Requiring a 7.1{sigma} detection in three years of data yields over 100,000 detections, many of which are false alarms. After a second cut is made on a robust detection statistic, some 50,000 or more targets still remain. These false alarms waste resources as they propagate through the remainder of the software pipeline and so a method to discriminate against them is crucial in maintaining the desired sensitivity to true events. This paper describes a {chi}{sup 2} test which represents a novel application of an existing formalism developed for false alarm mitigation in searches for gravitational waves. Using this technique, the false alarm rate can be lowered to {approx}5%.

  13. A high false positive rate for Kepler planetary candidates of giant stars using asterodensity profiling

    SciTech Connect

    Sliski, David H.; Kipping, David M.

    2014-06-20

    Asterodensity profiling (AP) is a relatively new technique for studying transit light curves. By comparing the mean stellar density derived from the transit light curve to that found through an independent method, AP provides information on several useful properties such as orbital eccentricity and blended light. We present an AP survey of 41 Kepler Objects of Interest (KOIs), with a single transiting candidate, for which the target star's mean stellar density has been measured using asteroseismology. The ensemble distribution of the AP measurements for the 31 dwarf stars in our sample shows excellent agreement with the spread expected if the KOIs were genuine and have realistic eccentricities. In contrast, the same test for the 10 giants in our sample reveals significant incompatibility at >4σ confidence. While extreme eccentricities could be invoked, this hypothesis requires four of the KOIs to contact their host star at periastron passage, including the recently claimed confirmation of Kepler-91b. After carefully examining several hypotheses, we conclude that the most plausible explanation is that the transiting objects orbit a different star to that measured with asteroseismology—cases we define as false-positives. Based on the AP distribution, we estimate a false-positive rate (FPR) for Kepler's giant stars with a single transiting object of FPR ≅ 70% ± 30%.

  14. Investigation of the binary fraction among candidate A-F type hybrid stars detected by Kepler

    NASA Astrophysics Data System (ADS)

    Lampens, P.; Bognár, Zs.; Frémat, Y.; Sódor, Á.; Vermeylen, L.; De Nutte, R.; Lombaert, R.; De Cat, P.

    2015-09-01

    We are currently monitoring up to 40 Kepler candidate δ Scuti-γ Doradus (resp. γ Doradus-δ Scuti) hybrid stars in radial velocity in order to identify the physical cause behind the low frequencies observed in the periodograms based on the ultra-high accuracy Kepler space photometry. The presence of low frequency variability in unevolved or slightly evolved oscillating A/F-type stars can generally be explained in three ways: either 1) the star is an (un)detected binary or multiple system, or 2) the star is a g-mode pulsator (i.e. a genuine hybrid), or 3) the star's atmosphere displays an asymmetric intensity distribution (caused by spots, i.e. chemical anomalies, or by (very) high rotation), which is detected through rotational modulation. Our targets were selected from the globally characterized variable A/F-type stars of the Kepler mission [7]. We observe each star at least 4 times unevenly spread over a time lapse up to 2 months with the HERMES spectrograph [6]. In the case of composite, multiple-lined spectra, these observations also provide the atmospheric properties of each component. Our principal goal is to estimate the fraction of short-period, spectroscopic systems in the sample.

  15. KEPLER OBSERVATIONS OF THREE PRE-LAUNCH EXOPLANET CANDIDATES: DISCOVERY OF TWO ECLIPSING BINARIES AND A NEW EXOPLANET

    SciTech Connect

    Howell, Steve B.; Rowe, Jason F.; Bryson, Stephen T.; Sherry, William; Von Braun, Kaspar; Ciardi, David R.; Feldmeier, John J.; Horch, Elliott; Van Belle, Gerard T.

    2010-12-20

    Three transiting exoplanet candidate stars were discovered in a ground-based photometric survey prior to the launch of NASA's Kepler mission. Kepler observations of them were obtained during Quarter 1 of the Kepler mission. All three stars are faint by radial velocity follow-up standards, so we have examined these candidates with regard to eliminating false positives and providing high confidence exoplanet selection. We present a first attempt to exclude false positives for this set of faint stars without high-resolution radial velocity analysis. This method of exoplanet confirmation will form a large part of the Kepler mission follow-up for Jupiter-sized exoplanet candidates orbiting faint stars. Using the Kepler light curves and pixel data, as well as medium-resolution reconnaissance spectroscopy and speckle imaging, we find that two of our candidates are binary stars. One consists of a late-F star with an early M companion, while the other is a K0 star plus a late M-dwarf/brown dwarf in a 19 day elliptical orbit. The third candidate (BOKS-1) is an r = 15 G8V star hosting a newly discovered exoplanet with a radius of 1.12 R{sub Jupiter} in a 3.9 day orbit.

  16. Follow-up of Kepler candidates transiting hot-Jupiter with ground based photometry

    NASA Astrophysics Data System (ADS)

    Gaillard, Clement; Stephens, D.; Larson, J.; Ranquist, E.; Stoker, E.; Rawlins, J.

    2013-10-01

    We have selected a group of planetary candidates from the Kepler field with short transiting times and observed them at the West Mountain Observatory (WMO) with the objective to confirm or find their nature. The resulting light curves showed that KOI667 is a diluted eclipsing binary. Further observations at the Dominion Astrophysical Observatory (DAO) and the use of Point Spread Function (PSF) photometry resolved the eclipsing binary. We present the techniques used to obtain the light curves and the identification of the eclipsing binary.

  17. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    NASA Astrophysics Data System (ADS)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  18. Transiting planet candidates with ASTEP 400 at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Mékarnia, D.; Guillot, T.; Rivet, J.-P.; Schmider, F.-X.; Abe, L.; Gonçalves, I.; Agabi, A.; Crouzet, N.; Fruth, T.; Barbieri, M.; Bayliss, D. D. R.; Zhou, G.; Aristidi, E.; Szulagyi, J.; Daban, J.-B.; Fanteï-Caujolle, Y.; Gouvret, C.; Erikson, A.; Rauer, H.; Bouchy, F.; Gerakis, J.; Bouchez, G.

    2016-08-01

    ASTEP 400, the main instrument of the ASTEP (Antarctica Search for Transiting ExoPlanets) programme, is a 40-cm telescope, designed to withstand the harsh conditions in Antarctica, achieving a photometric accuracy of a fraction of milli-magnitude on hourly timescales for planet-hosting southern bright (R˜12 mag) stars. We review the performances of this instrument, describe its operating conditions, and present results from the analysis of observations obtained during its first three years (2010-2012) of operation, before its repatriation in 2014. During this time, we observed a total of 22 stellar fields (1° × 1° FoV). Each field, in which we measured stars up to magnitude R=18 mag, was observed continuously during ˜7 to ˜30 days. More than 200 000 frames were recorded and 310 000 stars processed, using an implementation of the optimal image subtraction (OIS) photometry algorithm. We found 43 planetary transit candidates. Twenty of these candidates were observed using spectroscopic follow-ups including four targets classified as good planet candidates. Our results demonstrate that accurate near-continuous photometric observations are achievable from the Concordia station at Dome C in Antarctica, even if we were not able to reach the nominal photometric precision of the instrument. We conducted a correlation analysis between the RMS noise and a large number of external parameters and found that source of the ˜1 mmag correlated noise is not obvious and does not depend on a single parameter. However, our analysis provided some hints and guidance to increase the photometric accuracy of the instrument. These improvements should equip any future telescope operating in Antarctica.

  19. Mercury-T: A new code to study tidally evolving multi-planet systems. Applications to Kepler-62

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Raymond, Sean N.; Leconte, Jeremy; Hersant, Franck; Correia, Alexandre C. M.

    2015-11-01

    A large proportion of observed planetary systems contain several planets in a compact orbital configuration, and often harbor at least one close-in object. These systems are then most likely tidally evolving. We investigate how the effects of planet-planet interactions influence the tidal evolution of planets. We introduce for that purpose a new open-source addition to the MercuryN-body code, Mercury-T, which takes into account tides, general relativity and the effect of rotation-induced flattening in order to simulate the dynamical and tidal evolution of multi-planet systems. It uses a standard equilibrium tidal model, the constant time lag model. Besides, the evolution of the radius of several host bodies has been implemented (brown dwarfs, M-dwarfs of mass 0.1 M⊙, Sun-like stars, Jupiter). We validate the new code by comparing its output for one-planet systems to the secular equations results. We find that this code does respect the conservation of total angular momentum. We applied this new tool to the planetary system Kepler-62. We find that tides influence the stability of the system in some cases. We also show that while the four inner planets of the systems are likely to have slow rotation rates and small obliquities, the fifth planet could have a fast rotation rate and a high obliquity. This means that the two habitable zone planets of this system, Kepler-62e ad f are likely to have very different climate features, and this of course would influence their potential at hosting surface liquid water. The code is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A116

  20. Kepler-91b: a planet at the end of its life. Planet and giant host star properties via light-curve variations

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Barrado, D.; Moya, A.; Montesinos, B.; Montalbán, J.; Bayo, A.; Barbieri, M.; Régulo, C.; Mancini, L.; Bouy, H.; Henning, T.

    2014-02-01

    Context. The evolution of planetary systems is intimately linked to the evolution of their host stars. Our understanding of the whole planetary evolution process is based on the wide planet diversity observed so far. Only a few tens of planets have been discovered orbiting stars ascending the red giant branch. Although several theories have been proposed, the question of how planets die remains open owing to the small number statistics, making it clear that the sample of planets around post-main sequence stars needs to be enlarged. Aims: In this work we study the giant star Kepler-91 (KOI-2133) in order to determine the nature of a transiting companion. This system was detected by the Kepler Space Telescope, which identified small dims in its light curve with a period of 6.246580 ± 0.000082 days. However, its planetary confirmation is needed due to the large pixel size of the Kepler camera, which can hide other stellar configurations able to mimic planet-like transit events. Methods: We analysed Kepler photometry to 1) re-calculate transit parameters; 2) study the light-curve modulations; and 3) to perform an asteroseismic analysis (accurate stellar parameter determination) by identifying solar-like oscillations on the periodogram. We also used a high-resolution and high signal-to-noise ratio spectrum obtained with the Calar Alto Fiber-fed Échelle spectrograph (CAFE) to measure stellar properties. Additionally, false-positive scenarios were rejected by obtaining high-resolution images with the AstraLux lucky imaging camera on the 2.2 m telescope at the Calar Alto Observatory. Results: We confirm the planetary nature of the object transiting the star Kepler-91 by deriving a mass of Mp=0.88+0.17-0.33 MJup and a planetary radius of Rp=1.384+0.011-0.054 RJup. Asteroseismic analysis produces a stellar radius of R⋆ = 6.30 ± 0.16 R⊙ and a mass of M⋆ = 1.31 ± 0.10 M⊙. We find that its eccentric orbit (e=0.066+0.013-0.017) is just 1.32+0.07-0.22 R⋆ away from

  1. KEPLER'S OPTICAL SECONDARY ECLIPSE OF HAT-P-7b AND PROBABLE DETECTION OF PLANET-INDUCED STELLAR GRAVITY DARKENING

    SciTech Connect

    Morris, Brett M.; Deming, Drake; Mandell, Avi M.

    2013-02-20

    We present observations spanning 355 orbital phases of HAT-P-7 observed by Kepler from 2009 May to 2011 March (Q1-9). We find a shallower secondary eclipse depth than initially announced, consistent with a low optical albedo and detection of nearly exclusively thermal emission, without a reflected light component. We find an approximately 10 ppm perturbation to the average transit light curve near phase -0.02 that we attribute to a temperature decrease on the surface of the star, phased to the orbit of the planet. This cooler spot is consistent with planet-induced gravity darkening, slightly lagging the sub-planet position due to the finite response time of the stellar atmosphere. The brightness temperature of HAT-P-7b in the Kepler bandpass is T{sub B} = 2733 {+-} 21 K and the amplitude of the deviation in stellar surface temperature due to gravity darkening is approximately -0.18 K. The detection of the spot is not statistically unequivocal due its small amplitude, though additional Kepler observations should be able to verify the astrophysical nature of the anomaly.

  2. ``Planetário e Teatro Digital Johannes Kepler'' and its Institutional Pedagogical Project

    NASA Astrophysics Data System (ADS)

    Faria, R. Z.; Calil, M. R.; Perez, E. R.; Kanashiro, M.; Silva, L. C. P.; Calipo, F.

    2014-10-01

    This work relates the reception of schools, started on August 2012, in the astronomic laboratory of the "Planetário e Teatro Digital Johannes Kepler", located in the "Sabina - Escola Parque do Conhecimento" in Santo André, São Paulo. The idealization of this project, authorship of Marcos Calil, PhD, consists in four apprenticeship environments disposed around the planetary dome. They make reference to the System Sun - Earth - Moon (Tellurium), Solar System, Astronautic and Stars. On Tuesdays and Wednesdays the astronomic laboratory is used by Santo André municipal schools for focused lessons, being possible on Thursdays scheduling for private and public schools. On weekends and holidays is opened for the visitors. Since the inauguration to the beginning of activities with students, the monitor team was guided and trained on contents of Astronomy and Aeronautic to execute the schools service. This is done in four stages, which are: reception, course trough the astronomic laboratory, dome session and activities closure. During the reception the acquaintance rules are passed on for a better visit. Before starting the course the monitors do a survey about the previous knowledge of the students. On the astronomic laboratory resources of the environment are used to explain the contents of Astronomy and Astronautic, always considering the age group and the curriculum developed in classroom. After the course the students watch a planetary session supporting the contents seen on the astronomic laboratory. At the end a feedback is done with the students about the subject discussed. During the visit the teachers fulfill an evaluation about the place and the service. From August 2012 to November 2012 were attended between municipal, public and private schools. From the 4932 students attended, 92% belonged to the municipal network, 5% to the private network and 3% to the public network. From the 189 evaluations done by the teachers, 97.8% were satisfied, 2.1% partially

  3. Kepler-423b: a half-Jupiter mass planet transiting a very old solar-like star

    NASA Astrophysics Data System (ADS)

    Gandolfi, D.; Parviainen, H.; Deeg, H. J.; Lanza, A. F.; Fridlund, M.; Prada Moroni, P. G.; Alonso, R.; Augusteijn, T.; Cabrera, J.; Evans, T.; Geier, S.; Hatzes, A. P.; Holczer, T.; Hoyer, S.; Kangas, T.; Mazeh, T.; Pagano, I.; Tal-Or, L.; Tingley, B.

    2015-04-01

    We report the spectroscopic confirmation of the Kepler object of interest KOI-183.01 (Kepler-423b), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1-17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned light curve of Kepler-423 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of ~4.3% and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star Kepler-423 is a G4 dwarf with M⋆ = 0.85 ± 0.04 M⊙, R⋆ = 0.95 ± 0.04 R⊙, Teff= 5560 ± 80 K, [M/H] = - 0.10 ± 0.05 dex, and with an age of 11 ± 2 Gyr. The planet Kepler-423b has a mass of Mp= 0.595 ± 0.081MJup and a radius of Rp= 1.192 ± 0.052RJup, yielding a planetary bulk density of ρp = 0.459 ± 0.083 g cm-3. The radius of Kepler-423b is consistent with both theoretical models for irradiated coreless giant planets and expectations based on empirical laws. The inclination of the stellar spin axis suggests that the system is aligned along the line of sight. We detected a tentative secondary eclipse of the planet at a 2σ confidence level (ΔFec = 14.2 ± 6.6 ppm) and found that the orbit might have asmall non-zero eccentricity of 0.019+0.028-0.014. With a Bond albedo of AB = 0.037 ± 0.019, Kepler-423b is one of the gas-giant planets with the lowest albedo known so far. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of

  4. KEPLER-20: A SUN-LIKE STAR WITH THREE SUB-NEPTUNE EXOPLANETS AND TWO EARTH-SIZE CANDIDATES

    SciTech Connect

    Gautier, Thomas N. III; Rowe, Jason F.; Bryson, Stephen T.; Marcy, Geoffrey W.; Isaacson, Howard; Rogers, Leslie A.; Buchhave, Lars A.; Ciardi, David R.; Ford, Eric B.; Gilliland, Ronald L.; Walkowicz, Lucianne M.; Cochran, William D.; Endl, Michael; and others

    2012-04-10

    We present the discovery of the Kepler-20 planetary system, which we initially identified through the detection of five distinct periodic transit signals in the Kepler light curve of the host star 2MASS J19104752+4220194. From high-resolution spectroscopy of the star, we find a stellar effective temperature T{sub eff} = 5455 {+-} 100 K, a metallicity of [Fe/H] = 0.01 {+-} 0.04, and a surface gravity of log g = 4.4 {+-} 0.1. We combine these estimates with an estimate of the stellar density derived from the transit light curves to deduce a stellar mass of M{sub *} = 0.912 {+-} 0.034 M{sub Sun} and a stellar radius of R{sub *} = 0.944{sup +0.060}{sub -0.095} R{sub Sun }. For three of the transit signals, we demonstrate that our results strongly disfavor the possibility that these result from astrophysical false positives. We accomplish this by first identifying the subset of stellar blends that reproduce the precise shape of the light curve and then using the constraints on the presence of additional stars from high angular resolution imaging, photometric colors, and the absence of a secondary component in our spectroscopic observations. We conclude that the planetary scenario is more likely than that of an astrophysical false positive by a factor of 2 Multiplication-Sign 10{sup 5} (Kepler-20b), 1 Multiplication-Sign 10{sup 5} (Kepler-20c), and 1.1 Multiplication-Sign 10{sup 3} (Kepler-20d), sufficient to validate these objects as planetary companions. For Kepler-20c and Kepler-20d, the blend scenario is independently disfavored by the achromaticity of the transit: from Spitzer data gathered at 4.5 {mu}m, we infer a ratio of the planetary to stellar radii of 0.075 {+-} 0.015 (Kepler-20c) and 0.065 {+-} 0.011 (Kepler-20d), consistent with each of the depths measured in the Kepler optical bandpass. We determine the orbital periods and physical radii of the three confirmed planets to be 3.70 days and 1.91{sup +0.12}{sub -0.21} R{sub Circled-Plus} for Kepler-20b, 10

  5. Exoplanet Science from NASA’s Kepler Mission

    SciTech Connect

    Steffen, Jason

    2012-09-12

    NASA's exoplanet mission is the world's premier instrument for the discovery and study of planets orbiting distant stars. As the nominal mission comes to a close, Kepler has discovered nearly 2500 planet candidates, confirmed dozens of multi-planet systems, provided important insights into the orbital architectures of planetary systems, identified specific systems that challenge theories of planet formation and dynamical evolution, has revolutionized our understanding of stellar interiors, and is gearing to measure the frequency of Earth-like planets in the habitable zones of Sun-like stars in its extended mission phase. I present the most recent results from the Kepler mission.

  6. Transit, Secondary Eclipse, and Phase Curve Modeling to Characterize Kepler Exoplanet Candidates

    NASA Astrophysics Data System (ADS)

    Tarnas, Jesse; Redfield, Seth

    2016-01-01

    The high sensitivity and continuous coverage of Kepler allows for analysis of optical phase curves, which provide detailed exoplanet characterization by fitting photometric features caused by thermal emission, reflected light, Doppler boosting, and ellipsoidal variations. Combined with transit and secondary eclipse analysis to reduce model degeneracy, phase curves can resolve atmospheric characteristics, dayside-nightside temperatures, and even mass using single-band photometry. We will present an integrated phase curve, transit, and secondary eclipse analysis of Kepler exoplanet candidates, building on the phase curve model constructed by Serindag & Redfield (2015). Phase curves can also be present in non-transiting systems. We will explore the feasibility of detecting and characterizing these non-transiting exoplanets. We will also investigate the possibility of analyzing exoplanet phase curves in K2 data. We gratefully acknowledge support through a grant (14-K2GO1_2-0071) associated with the K2 Guest Observer — Cycle 1 program of Research Opportunities in Space and Earth Sciences (ROSES-2014; NNH14ZDA001N).

  7. Kepler Orrery

    NASA Video Gallery

    Animation showing all the multiple-planet systems discovered by Kepler as of 2/2/2011; orbits go through the entire mission (3.5 years). Hot colors to cool colors (Red to yellow to green to cyan to...

  8. THE SDSS-HET SURVEY OF KEPLER ECLIPSING BINARIES: SPECTROSCOPIC DYNAMICAL MASSES OF THE KEPLER-16 CIRCUMBINARY PLANET HOSTS

    SciTech Connect

    Bender, Chad F.; Mahadevan, Suvrath; Deshpande, Rohit; Wright, Jason T.; Roy, Arpita; Terrien, Ryan C.; Sigurdsson, Steinn; Ramsey, Lawrence W.; Schneider, Donald P.; Fleming, Scott W.

    2012-06-01

    We have used high-resolution spectroscopy to observe the Kepler-16 eclipsing binary as a double-lined system and measure precise radial velocities for both stellar components. These velocities yield a dynamical mass ratio of q = 0.2994 {+-} 0.0031. When combined with the inclination, i 90.{sup 0}3401{sup +0.0016}{sub -0.0019}, measured from the Kepler photometric data by Doyle et al. (D11), we derive dynamical masses for the Kepler-16 components of M{sub A} = 0.654 {+-} 0.017 M{sub Sun} and M{sub B} = 0.1959 {+-} 0.0031 M{sub Sun }, a precision of 2.5% and 1.5%, respectively. Our results confirm at the {approx}2% level the mass-ratio derived by D11 with their photometric-dynamical model (PDM), q = 0.2937 {+-} 0.0006. These are among the most precise spectroscopic dynamical masses ever measured for low-mass stars and provide an important direct test of the results from the PDM technique.

  9. KEPLER-18b, c, AND d: A SYSTEM OF THREE PLANETS CONFIRMED BY TRANSIT TIMING VARIATIONS, LIGHT CURVE VALIDATION, WARM-SPITZER PHOTOMETRY, AND RADIAL VELOCITY MEASUREMENTS

    SciTech Connect

    Cochran, William D.; Fabrycky, Daniel C.; Fortney, Jonathan J.

    2011-11-01

    We report the detection of three transiting planets around a Sun-like star, which we designate Kepler-18. The transit signals were detected in photometric data from the Kepler satellite, and were confirmed to arise from planets using a combination of large transit-timing variations (TTVs), radial velocity variations, Warm-Spitzer observations, and statistical analysis of false-positive probabilities. The Kepler-18 star has a mass of 0.97 M{sub sun}, a radius of 1.1 R{sub sun}, an effective temperature of 5345 K, and an iron abundance of [Fe/H] = +0.19. The planets have orbital periods of approximately 3.5, 7.6, and 14.9 days. The innermost planet 'b' is a 'super-Earth' with a mass of 6.9 {+-} 3.4 M{sub +}, a radius of 2.00 {+-} 0.10 R{sub +}, and a mean density of 4.9 {+-} 2.4 g cm{sup 3}. The two outer planets 'c' and 'd' are both low-density Neptune-mass planets. Kepler-18c has a mass of 17.3 {+-} 1.9 M{sub +}, a radius of 5.49 {+-} 0.26 R{sub +}, and a mean density of 0.59 {+-} 0.07 g cm{sup 3}, while Kepler-18d has a mass of 16.4 {+-} 1.4 M{sub +}, a radius of 6.98 {+-} 0.33 R{sub +} and a mean density of 0.27 {+-} 0.03 g cm{sup 3}. Kepler-18c and Kepler-18d have orbital periods near a 2:1 mean-motion resonance, leading to large and readily detected TTVs.

  10. THE ORBITAL PHASES AND SECONDARY TRANSITS OF KEPLER-10b. A PHYSICAL INTERPRETATION BASED ON THE LAVA-OCEAN PLANET MODEL

    SciTech Connect

    Rouan, D.; Deeg, H. J.; Demangeon, O.; Samuel, B.; Cavarroc, C.; Leger, A.; Fegley, B.

    2011-11-10

    The Kepler mission has made an important observation: the first detection of photons from a terrestrial planet by observing its phase curve (Kepler-10b). This opens a new field in exoplanet science: the possibility of obtaining information about the atmosphere and surface of rocky planets, objects of prime interest. In this Letter, we apply the Lava-ocean model to interpret the observed phase curve. The model, a planet without atmosphere and a surface partially made of molten rocks, has been proposed for planets of the class of CoRoT-7b, i.e., rocky planets very close to their star (at a few stellar radii). Kepler-10b is a typical member of this family. It predicts that the light from the planet has an important emission component in addition to the reflected one, even in the Kepler spectral band. Assuming an isotropical reflection of light by the planetary surface (Lambertian-like approximation), we find that a Bond albedo of {approx}50% can account for the observed amplitude of the phase curve, as opposed to a first attempt where an unusually high value was found. We propose a physical process to explain this still large value of the albedo. The overall interpretation can be tested in the future with instruments such as the James Webb Space Telescope or the Exoplanet Characterization Observatory. Our model predicts a spectral dependence that is clearly distinguishable from that of purely reflected light and from that of a planet at a uniform temperature.

  11. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    SciTech Connect

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Johnson, John Asher; Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C.; Campante, Tiago L.; Chaplin, William J.; Davies, Guy R.; Lund, Mikkel N.; Buchhave, Lars A.; Everett, Mark E.; Fischer, Debra A.; Gilliland, Ronald L.; Horch, Elliott P.; and others

    2013-09-20

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m{sub Kp} = 11.6, T{sub eff} = 5576 K, M{sub *} = 0.98 M{sub ☉}). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R{sub ⊕}, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M{sub ⊕} (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

  12. The Kepler-10 planetary system revisited by HARPS-N: A hot rocky world and a solid Neptune-mass planet

    SciTech Connect

    Dumusque, Xavier; Buchhave, Lars A.; Latham, David W.; Charbonneau, David; Dressing, Courtney D.; Gettel, Sara; Lopez-Morales, Mercedes; Bonomo, Aldo S.; Haywood, Raphaëlle D.; Cameron, Andrew Collier; Horne, Keith; Malavolta, Luca; Ségransan, Damien; Pepe, Francesco; Udry, Stéphane; Molinari, Emilio; Cosentino, Rosario; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Figueira, Pedro; and others

    2014-07-10

    Kepler-10b was the first rocky planet detected by the Kepler satellite and confirmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was statistically validated, but the radial velocities were only good enough to set an upper limit of 20 M{sub ⊕} for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph on the Telescopio Nazionale Galileo on La Palma. In total, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determination for Kepler-10b to 15%. With a mass of 3.33 ± 0.49 M{sub ⊕} and an updated radius of 1.47{sub −0.02}{sup +0.03} R{sub ⊕}, Kepler-10b has a density of 5.8 ± 0.8 g cm{sup –3}, very close to the value predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 ± 1.9 M{sub ⊕} and radius of 2.35{sub −0.04}{sup +0.09} R{sub ⊕}, Kepler-10c has a density of 7.1 ± 1.0 g cm{sup –3}. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods.

  13. Planet hunters. VII. Discovery of a new low-mass, low-density planet (PH3 C) orbiting Kepler-289 with mass measurements of two additional planets (PH3 B and D)

    SciTech Connect

    Schmitt, Joseph R.; Fischer, Debra A.; Wang, Ji; Margossian, Charles; Brewer, John M.; Giguere, Matthew J.; Agol, Eric; Deck, Katherine M.; Rogers, Leslie A.; Gazak, J. Zachary; Holman, Matthew J.; Jek, Kian J.; Omohundro, Mark R.; Winarski, Troy; Lintott, Chris; Simpson, Robert; Lynn, Stuart; Parrish, Michael; Schawinski, Kevin; Schwamb, Megan E.; and others

    2014-11-10

    We report the discovery of one newly confirmed planet (P = 66.06 days, R {sub P} = 2.68 ± 0.17 R {sub ⊕}) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P = 34.55 days, R {sub P} = 2.15 ± 0.10 R {sub ⊕}) and Kepler-289-c (P = 125.85 days, R {sub P} = 11.59 ± 0.10 R {sub ⊕}), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a 1:2:4 Laplace resonance. The outer planet has very deep (∼1.3%), high signal-to-noise transits, which puts extremely tight constraints on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young (∼1 Gyr as determined by isochrones and gyrochronology), Sun-like star with M {sub *} = 1.08 ± 0.02 M {sub ☉}, R {sub *} = 1.00 ± 0.02 R {sub ☉}, and T {sub eff} = 5990 ± 38 K. The middle planet's large TTV amplitude (∼5 hr) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allows us to break the mass-eccentricity degeneracy and uniquely determine the masses of the inner, middle, and outer planets to be M = 7.3 ± 6.8 M {sub ⊕}, 4.0 ± 0.9M {sub ⊕}, and M = 132 ± 17 M {sub ⊕}, which we designate PH3 b, c, and d, respectively. Furthermore, the middle planet, PH3 c, has a relatively low density, ρ = 1.2 ± 0.3 g cm{sup –3} for a planet of its mass, requiring a substantial H/He atmosphere of 2.1{sub −0.3}{sup +0.8}% by mass, and joins a growing population of low-mass, low-density planets.

  14. VizieR Online Data Catalog: Kepler planetary candidates. VII. 48-month (Coughlin+, 2016)

    NASA Astrophysics Data System (ADS)

    Coughlin, J. L.; Mullally, F.; Thompson, S. E.; Rowe, J. F.; Burke, C. J.; Latham, D. W.; Batalha, N. M.; Ofir, A.; Quarles, B. L.; Henze, C. E.; Wolfgang, A.; Caldwell, D. A.; Bryson, S. T.; Shporer, A.; Catanzarite, J.; Akeson, R.; Barclay, T.; Borucki, W. J.; Boyajian, T. S.; Campbell, J. R.; Christiansen, J. L.; Girouard, F. R.; Haas, M. R.; Howell, S. B.; Huber, D.; Jenkins, J. M.; Li, J.; Patil-Sabale, A.; Quintana, E. V.; Ramirez, S.; Seader, S.; Smith, J. C.; Tenenbaum, P.; Twicken, J. D.; Zamudio, K. A.

    2016-07-01

    This catalog is based on Kepler's 24th data release (DR24), which includes the processing of all data utilizing version 9.2 of the Kepler pipeline (Jenkins et al. 2010ApJ...724.1108J). This marks the first time that all of the Kepler mission data have been processed consistently with the same version of the Kepler pipeline. Over a period of 48 months (2009 May 13 to 2013 May 11), subdivided into 17 quarters (Q1-Q17), a total of 198646 targets were observed. (7 data files).

  15. Possibilities for identifying FK com candidates using observations with the Kepler Space Telescope

    NASA Astrophysics Data System (ADS)

    Puzin, V. B.; Savanov, I. S.; Dmitrienko, E. S.

    2014-07-01

    High-accuracy photometric observations obtained with the Kepler Space Telescope are used to identify candidate FK Com stars-a very rare group of single, rapidly rotating, chromospherically active G-K stars. Published data for more than 40 000 stars are used with available Kepler observations from the Q3 time interval to select four stars with temperature ranges, surface gravities, and rotation periods consistent with those of FK Com stars. These stars also display brightness variations with considerable amplitudes, possibly testifying to the presence of appreciably spotting on their surfaces. The rotation periods of these stars are determined, and the parameters of their differential rotation estimated. The locations (longitudes) of the dominant active regions on the stellar surfaces are identified. In all cases, the active longitude does not remain constant, andmoves across the stellar surface with time. In general, the character of this activeregion movement is the same as that found earlier for FK Com and HD 199178. These displacements are characterized by monotonic motions over hundreds of days, as well as changes in the positions by about 180° ("flip-flops") or phase shifts not exceeding 0.4 in phase. The number of active-longitude position changes during the studied time interval ranges from one for KIC 11862915 to seven for KIC 5785906 (five phase shifts are also detected for the latter star). The time scale for the position changes of the active longitudes is from 1500 days (about 4 years) to 200 days (0.54 years), comparable to the reported time intervals between flip-flops for FK Com (from 0.8 to 4.4 years). The duration of the stellar activity cycles are estimated by analyzing the amplitude spectrum for changes in the brightness-variation amplitudes for datasets covering a single rotation period. The photometric variations of the stars on various time scales (from the rotation period, which reveals the presence of surface temperature inhomogeneities, to

  16. TRANSIT TIMING OBSERVATIONS FROM KEPLER. I. STATISTICAL ANALYSIS OF THE FIRST FOUR MONTHS

    SciTech Connect

    Ford, Eric B.; Rowe, Jason F.; Caldwell, Douglas A.; Jenkins, Jon M.; Li Jie; Fabrycky, Daniel C.; Lissauer, Jack J.; Borucki, William J.; Bryson, Steve; Koch, David G.; Steffen, Jason H.; Batalha, Natalie M.; Dunham, Edward W.; Gautier, Thomas N.; Marcy, Geoffrey W.; McCauliff, Sean

    2011-11-01

    The architectures of multiple planet systems can provide valuable constraints on models of planet formation, including orbital migration, and excitation of orbital eccentricities and inclinations. NASA's Kepler mission has identified 1235 transiting planet candidates. The method of transit timing variations (TTVs) has already confirmed seven planets in two planetary systems. We perform a transit timing analysis of the Kepler planet candidates. We find that at least {approx}11% of planet candidates currently suitable for TTV analysis show evidence suggestive of TTVs, representing at least {approx}65 TTV candidates. In all cases, the time span of observations must increase for TTVs to provide strong constraints on planet masses and/or orbits, as expected based on N-body integrations of multiple transiting planet candidate systems (assuming circular and coplanar orbits). We find the fraction of planet candidates showing TTVs in this data set does not vary significantly with the number of transiting planet candidates per star, suggesting significant mutual inclinations and that many stars with a single transiting planet should host additional non-transiting planets. We anticipate that Kepler could confirm (or reject) at least {approx}12 systems with multiple transiting planet candidates via TTVs. Thus, TTVs will provide a powerful tool for confirming transiting planets and characterizing the orbital dynamics of low-mass planets. If Kepler observations were extended to at least seven years, then TTVs would provide much more precise constraints on the dynamics of systems with multiple transiting planets and would become sensitive to planets with orbital periods extending into the habitable zone of solar-type stars.

  17. EXOPLANET CHARACTERIZATION BY PROXY: A TRANSITING 2.15 R{sub Circled-Plus} PLANET NEAR THE HABITABLE ZONE OF THE LATE K DWARF KEPLER-61

    SciTech Connect

    Ballard, Sarah; Charbonneau, David; Fressin, Francois; Torres, Guillermo; Irwin, Jonathan; Newton, Elisabeth; Desert, Jean-Michel; Crepp, Justin R.; Shporer, Avi; Mann, Andrew W.; Ciardi, David R.; Horch, Elliott P.; Everett, Mark E.

    2013-08-20

    We present the validation and characterization of Kepler-61b: a 2.15 R{sub Circled-Plus} planet orbiting near the inner edge of the habitable zone of a low-mass star. Our characterization of the host star Kepler-61 is based upon a comparison with a set of spectroscopically similar stars with directly measured radii and temperatures. We apply a stellar prior drawn from the weighted mean of these properties, in tandem with the Kepler photometry, to infer a planetary radius for Kepler-61b of 2.15 {+-} 0.13 R{sub Circled-Plus} and an equilibrium temperature of 273 {+-} 13 K (given its period of 59.87756 {+-} 0.00020 days and assuming a planetary albedo of 0.3). The technique of leveraging the physical properties of nearby ''proxy'' stars allows for an independent check on stellar characterization via the traditional measurements with stellar spectra and evolutionary models. In this case, such a check had implications for the putative habitability of Kepler-61b: the planet is 10% warmer and larger than inferred from K-band spectral characterization. From the Kepler photometry, we estimate a stellar rotation period of 36 days, which implies a stellar age of >1 Gyr. We summarize the evidence for the planetary nature of the Kepler-61 transit signal, which we conclude is 30,000 times more likely to be due to a planet than a blend scenario. Finally, we discuss possible compositions for Kepler-61b with a comparison to theoretical models as well as to known exoplanets with similar radii and dynamically measured masses.

  18. TRANSIT TIMING OBSERVATIONS FROM KEPLER. IV. CONFIRMATION OF FOUR MULTIPLE-PLANET SYSTEMS BY SIMPLE PHYSICAL MODELS

    SciTech Connect

    Fabrycky, Daniel C.; Ford, Eric B.; Moorhead, Althea V.; Steffen, Jason H.; Rowe, Jason F.; Christiansen, Jessie L.; Carter, Joshua A.; Fressin, Francois; Geary, John; Batalha, Natalie M.; Borucki, William J.; Bryson, Steve; Haas, Michael R.; Buchhave, Lars A.; Ciardi, David R.; Fanelli, Michael N.; Hall, Jennifer R. [Orbital Sciences Corporation and others

    2012-05-10

    Eighty planetary systems of two or more planets are known to orbit stars other than the Sun. For most, the data can be sufficiently explained by non-interacting Keplerian orbits, so the dynamical interactions of these systems have not been observed. Here we present four sets of light curves from the Kepler spacecraft, each which of shows multiple planets transiting the same star. Departure of the timing of these transits from strict periodicity indicates that the planets are perturbing each other: the observed timing variations match the forcing frequency of the other planet. This confirms that these objects are in the same system. Next we limit their masses to the planetary regime by requiring the system remain stable for astronomical timescales. Finally, we report dynamical fits to the transit times, yielding possible values for the planets' masses and eccentricities. As the timespan of timing data increases, dynamical fits may allow detailed constraints on the systems' architectures, even in cases for which high-precision Doppler follow-up is impractical.

  19. OPTICAL PHASE CURVES OF KEPLER EXOPLANETS

    SciTech Connect

    Esteves, Lisa J.; De Mooij, Ernst J. W.; Jayawardhana, Ray E-mail: demooij@astro.utoronto.ca

    2013-07-20

    We conducted a comprehensive search for optical phase variations of all close-in (a/R{sub *} < 10) planet candidates in 15 quarters of Kepler space telescope data. After correcting for systematics, we found eight systems that show secondary eclipses as well as phase variations. Of these, five (Kepler-5, Kepler-6, Kepler-8, KOI-64, and KOI-2133) are new and three (TrES-2, HAT-P-7, and KOI-13) have published phase curves, albeit with many fewer observations. We model the full phase curve of each planet candidate, including the primary and secondary transits, and derive their albedos, dayside and nightside temperatures, ellipsoidal variations, and Doppler beaming. We find that KOI-64 and KOI-2133 have nightside temperatures well above their equilibrium values (while KOI-2133 also has an albedo, >1), so we conclude that they are likely to be self-luminous objects rather than planets. The other six candidates have characteristics consistent with their being planets with low geometric albedos (<0.3). For TrES-2 and KOI-13, the Kepler bandpass appears to probe atmospheric layers hotter than the planet's equilibrium temperature. For KOI-13, we detect a never-before-seen third cosine harmonic with an amplitude of 6.7 {+-} 0.3 ppm and a phase shift of -1.1 {+-} 0.1 rad in the phase curve residual, possibly due to its spin-orbit misalignment. We report derived planetary parameters for all six planets, including masses from ellipsoidal variations and Doppler beaming, and compare our results to published values when available. Our results nearly double the number of Kepler exoplanets with measured phase curve variations, thus providing valuable constraints on the properties of hot Jupiters.

  20. KEPLER-4b: A HOT NEPTUNE-LIKE PLANET OF A G0 STAR NEAR MAIN-SEQUENCE TURNOFF

    SciTech Connect

    Borucki, William J.; Koch, David G.; Caldwell, Douglas A.; Jenkins, Jon M.; Lissauer, Jack J.; Rowe, Jason F.; Basri, Gibor; Marcy, Geoffrey W.; Batalha, Natalie M.; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N.; Gilliland, Ronald L.; Howell, Steve B.; Monet, David

    2010-04-20

    Early time-series photometry from NASA's Kepler spacecraft has revealed a planet transiting the star we term Kepler-4, at R.A. = 19{sup h}02{sup m}27.{sup s}68, {delta} = +50{sup 0}08'08.''7. The planet has an orbital period of 3.213 days and shows transits with a relative depth of 0.87 x 10{sup -3} and a duration of about 3.95 hr. Radial velocity (RV) measurements from the Keck High Resolution Echelle Spectrometer show a reflex Doppler signal of 9.3{sup +1.1} {sub -1.9} m s{sup -1}, consistent with a low-eccentricity orbit with the phase expected from the transits. Various tests show no evidence for any companion star near enough to affect the light curve or the RVs for this system. From a transit-based estimate of the host star's mean density, combined with analysis of high-resolution spectra, we infer that the host star is near turnoff from the main sequence, with estimated mass and radius of 1.223{sup +0.053} {sub -0.091} M {sub sun} and 1.487{sup +0.071} {sub -0.084} R {sub sun}. We estimate the planet mass and radius to be {l_brace}M {sub P}, R {sub P}{r_brace} = {l_brace}24.5 {+-} 3.8 M {sub +}, 3.99 {+-} 0.21 R {sub +}{r_brace}. The planet's density is near 1.9 g cm{sup -3}; it is thus slightly denser and more massive than Neptune, but about the same size.

  1. THE KEPLER-19 SYSTEM: A TRANSITING 2.2 R{sub Circled-Plus} PLANET AND A SECOND PLANET DETECTED VIA TRANSIT TIMING VARIATIONS

    SciTech Connect

    Ballard, Sarah; Fressin, Francois; Charbonneau, David; Desert, Jean-Michel; Torres, Guillermo; Holman, Matthew J.; Fabrycky, Daniel; Marcy, Geoffrey; Isaacson, Howard; Burke, Christopher J.; Henze, Christopher; Howell, Steven B.; Bryson, Stephen T.; Rowe, Jason F.; Lissauer, Jack J.; Steffen, Jason H.; Ciardi, David R.; Jenkins, Jon M. [SETI Institute and others

    2011-12-20

    We present the discovery of the Kepler-19 planetary system, which we first identified from a 9.3 day periodic transit signal in the Kepler photometry. From high-resolution spectroscopy of the star, we find a stellar effective temperature T{sub eff} = 5541 {+-} 60 K, a metallicity [Fe/H] = -0.13 {+-} 0.06, and a surface gravity log(g) = 4.59 {+-} 0.10. We combine the estimate of T{sub eff} and [Fe/H] with an estimate of the stellar density derived from the photometric light curve to deduce a stellar mass of M{sub *} = 0.936 {+-} 0.040 M{sub Sun} and a stellar radius of R{sub *} = 0.850 {+-} 0.018 R{sub Sun} (these errors do not include uncertainties in the stellar models). We rule out the possibility that the transits result from an astrophysical false positive by first identifying the subset of stellar blends that reproduce the precise shape of the light curve. Using the additional constraints from the measured color of the system, the absence of a secondary source in the high-resolution spectrum, and the absence of a secondary source in the adaptive optics imaging, we conclude that the planetary scenario is more than three orders of magnitude more likely than a blend. The blend scenario is independently disfavored by the achromaticity of the transit: we measure a transit depth with Spitzer at 4.5 {mu}m of 547{sup +113}{sub -110} ppm, consistent with the depth measured in the Kepler optical bandpass of 567 {+-} 6 ppm (corrected for stellar limb darkening). We determine a physical radius of the planet Kepler-19b of R{sub p} = 2.209 {+-} 0.048 R{sub Circled-Plus }; the uncertainty is dominated by uncertainty in the stellar parameters. From radial velocity observations of the star, we find an upper limit on the planet mass of 20.3 M{sub Circled-Plus }, corresponding to a maximum density of 10.4 g cm{sup -3}. We report a significant sinusoidal deviation of the transit times from a predicted linear ephemeris, which we conclude is due to an additional perturbing body in

  2. Radial Velocity Observations and Light Curve Noise Modeling Confirm that Kepler-91b is a Giant Planet Orbiting a Giant Star

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Endl, Michael; Huber, Daniel; Foreman-Mackey, Daniel; Cochran, William D.; MacQueen, Phillip J.; Rowe, Jason F.; Quintana, Elisa V.

    2015-02-01

    Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73 ± 0.13 M Jup planet orbiting a red giant star. Based partly on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  3. RADIAL VELOCITY OBSERVATIONS AND LIGHT CURVE NOISE MODELING CONFIRM THAT KEPLER-91b IS A GIANT PLANET ORBITING A GIANT STAR

    SciTech Connect

    Barclay, Thomas; Huber, Daniel; Rowe, Jason F.; Quintana, Elisa V.; Foreman-Mackey, Daniel

    2015-02-10

    Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73 ± 0.13 M {sub Jup} planet orbiting a red giant star.

  4. KEPLER Mission: development and overview.

    PubMed

    Borucki, William J

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth. PMID:26863223

  5. KEPLER Mission: development and overview

    NASA Astrophysics Data System (ADS)

    Borucki, William J.

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170 000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many ‘blind alleys’ before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170 000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.

  6. CAN PLANETARY INSTABILITY EXPLAIN THE KEPLER DICHOTOMY?

    SciTech Connect

    Johansen, Anders; Davies, Melvyn B.; Church, Ross P.; Holmelin, Viktor

    2012-10-10

    The planet candidates discovered by the Kepler mission provide a rich sample to constrain the architectures and relative inclinations of planetary systems within approximately 0.5 AU of their host stars. We use the triple-transit systems from the Kepler 16 months data as templates for physical triple-planet systems and perform synthetic transit observations, varying the internal inclination variation of the orbits. We find that all the Kepler triple-transit and double-transit systems can be produced from the triple-planet templates, given a low mutual inclination of around 5 Degree-Sign . Our analysis shows that the Kepler data contain a population of planets larger than four Earth radii in single-transit systems that cannot arise from the triple-planet templates. We explore the hypothesis that high-mass counterparts of the triple-transit systems underwent dynamical instability to produce a population of massive double-planet systems of moderately high mutual inclination. We perform N-body simulations of mass-boosted triple-planet systems and observe how the systems heat up and lose planets by planet-planet collisions, and less frequently by ejections or collisions with the star, yielding transits in agreement with the large planets in the Kepler single-transit systems. The resulting population of massive double-planet systems nevertheless cannot explain the additional excess of low-mass planets among the observed single-transit systems and the lack of gas-giant planets in double-transit and triple-transit systems. Planetary instability of systems of triple gas-giant planets can be behind part of the dichotomy between systems hosting one or more small planets and those hosting a single giant planet. The main part of the dichotomy, however, is more likely to have arisen already during planet formation when the formation, migration, or scattering of a massive planet, triggered above a threshold metallicity, suppressed the formation of other planets in sub-AU orbits.

  7. BENEFITS OF GROUND-BASED PHOTOMETRIC FOLLOW-UP FOR TRANSITING EXTRASOLAR PLANETS DISCOVERED WITH KEPLER AND CoRoT

    SciTech Connect

    Colon, Knicole D.; Ford, Eric B.

    2009-09-20

    Currently, over 40 transiting planets have been discovered by ground-based photometric surveys, and space-based missions such as Kepler and CoRoT are expected to detect hundreds more. Follow-up photometric observations from the ground will play an important role in constraining both orbital and physical parameters for newly discovered planets, especially those with small radii (R{sub p} {approx}< 4R{sub +}) and/or intermediate-to-long orbital periods (P{approx}> 30 days). Here, we simulate transit light curves (LCs) from Kepler-like photometry and ground-based observations in the near-infrared (NIR) to determine how jointly modeling space-based and ground-based LCs can improve measurements of the transit duration and planet-star radius ratio. We find that adding observations of at least one ground-based transit to space-based observations can significantly improve the accuracy for measuring the transit duration and planet-star radius ratio of small planets (R{sub p} {approx}< 4R{sub +}) in long-period ({approx}1 year) orbits, largely thanks to the reduced effect of limb darkening in the NIR. We also demonstrate that multiple ground-based observations are needed to gain a substantial improvement in the measurement accuracy for small planets with short orbital periods ({approx}3 days). Finally, we consider the role that higher ground-based precisions will play in constraining parameter measurements for typical Kepler targets. Our results can help inform the priorities of transit follow-up programs (including both primary and secondary transit of planets discovered with Kepler and CoRoT), leading to improved constraints for transit durations, planet sizes, and orbital eccentricities.

  8. 197 Candidates and 104 Validated Planets in K2’s First Five Fields

    NASA Astrophysics Data System (ADS)

    Crossfield, Ian J. M.; Ciardi, David R.; Petigura, Erik A.; Sinukoff, Evan; Schlieder, Joshua E.; Howard, Andrew W.; Beichman, Charles A.; Isaacson, Howard; Dressing, Courtney D.; Christiansen, Jessie L.; Fulton, Benjamin J.; Lépine, Sébastien; Weiss, Lauren; Hirsch, Lea; Livingston, John; Baranec, Christoph; Law, Nicholas M.; Riddle, Reed; Ziegler, Carl; Howell, Steve B.; Horch, Elliott; Everett, Mark; Teske, Johanna; Martinez, Arturo O.; Obermeier, Christian; Benneke, Björn; Scott, Nic; Deacon, Niall; Aller, Kimberly M.; Hansen, Brad M. S.; Mancini, Luigi; Ciceri, Simona; Brahm, Rafael; Jordán, Andrés; Knutson, Heather A.; Henning, Thomas; Bonnefoy, Michaël; Liu, Michael C.; Crepp, Justin R.; Lothringer, Joshua; Hinz, Phil; Bailey, Vanessa; Skemer, Andrew; Defrere, Denis

    2016-09-01

    We present 197 planet candidates discovered using data from the first year of the NASA K2 mission (Campaigns 0–4), along with the results of an intensive program of photometric analyses, stellar spectroscopy, high-resolution imaging, and statistical validation. We distill these candidates into sets of 104 validated planets (57 in multi-planet systems), 30 false positives, and 63 remaining candidates. Our validated systems span a range of properties, with median values of R P = 2.3 {R}\\oplus , P = 8.6 days, {T}{eff} = 5300 K, and Kp = 12.7 mag. Stellar spectroscopy provides precise stellar and planetary parameters for most of these systems. We show that K2 has increased by 30% the number of small planets known to orbit moderately bright stars (1–4 R ⊕, Kp = 9–13 mag). Of particular interest are 76 planets smaller than 2 R ⊕, 15 orbiting stars brighter than Kp = 11.5 mag, 5 receiving Earth-like irradiation levels, and several multi-planet systems—including 4 planets orbiting the M dwarf K2–72 near mean-motion resonances. By quantifying the likelihood that each candidate is a planet we demonstrate that our candidate sample has an overall false positive rate of 15%–30%, with rates substantially lower for small candidates (\\lt 2{R}\\oplus ) and larger for candidates with radii \\gt 8{R}\\oplus and/or with P\\lt 3 {{days}}. Extrapolation of the current planetary yield suggests that K2 will discover between 500 and 1000 planets in its planned four-year mission, assuming sufficient follow-up resources are available. Efficient observing and analysis, together with an organized and coherent follow-up strategy, are essential for maximizing the efficacy of planet-validation efforts for K2, TESS, and future large-scale surveys.

  9. Circumbinary planet formation in the Kepler-16 system. II. A toy model for in situ planet formation within a debris belt

    SciTech Connect

    Meschiari, Stefano

    2014-07-20

    Recent simulations have shown that the formation of planets in circumbinary configurations (such as those recently discovered by Kepler) is dramatically hindered at the planetesimal accretion stage. The combined action of the binary and the protoplanetary disk acts to raise impact velocities between kilometer-sized planetesimals beyond their destruction threshold, halting planet formation within at least 10 AU from the binary. It has been proposed that a primordial population of 'large' planetesimals (100 km or more in size), as produced by turbulent concentration mechanisms, would be able to bypass this bottleneck; however, it is not clear whether these processes are viable in the highly perturbed circumbinary environments. We perform two-dimensional hydrodynamical and N-body simulations to show that kilometer-sized planetesimals and collisional debris can drift and be trapped in a belt close to the central binary. Within this belt, planetesimals could initially grow by accreting debris, ultimately becoming 'indestructible' seeds that can accrete other planetesimals in situ despite the large impact speeds. We find that large, indestructible planetesimals can be formed close to the central binary within 10{sup 5} yr, therefore showing that even a primordial population of 'small' planetesimals can feasibly form a planet.

  10. Kepler-36: a pair of planets with neighboring orbits and dissimilar densities.

    PubMed

    Carter, Joshua A; Agol, Eric; Chaplin, William J; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Christensen-Dalsgaard, Jørgen; Deck, Katherine M; Elsworth, Yvonne; Fabrycky, Daniel C; Ford, Eric B; Fortney, Jonathan J; Hale, Steven J; Handberg, Rasmus; Hekker, Saskia; Holman, Matthew J; Huber, Daniel; Karoff, Christopher; Kawaler, Steven D; Kjeldsen, Hans; Lissauer, Jack J; Lopez, Eric D; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Rogers, Leslie A; Stello, Dennis; Borucki, William J; Bryson, Steve; Christiansen, Jessie L; Cochran, William D; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer; Howard, Andrew W; Jenkins, Jon M; Klaus, Todd; Koch, David G; Latham, David W; MacQueen, Phillip J; Sasselov, Dimitar; Steffen, Jason H; Twicken, Joseph D; Winn, Joshua N

    2012-08-01

    In the solar system, the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets' orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky "super-Earth," whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system. PMID:22722249

  11. A new cold sub-Saturnian candidate planet orbiting GJ 221

    NASA Astrophysics Data System (ADS)

    Tuomi, Mikko

    2014-05-01

    We re-analyse the recently published High-Accuracy Radial velocity Planet Searcher (HARPS) and Planet Finder Spectrograph (PFS) velocities of the nearby K dwarf GJ 221 that have been reported to contain the signatures of two planets orbiting the star. Our goal is to see whether the earlier studies discussing the system fell victims of false negative detections. We perform the analyses by using an independent statistical method based on posterior samplings and model comparisons in the Bayesian framework that is known to be more sensitive to weak signals of low-mass planets. According to our analyses, we find strong evidence in favour of a third candidate planet in the system corresponding to a cold sub-Saturnian planet with an orbital period of 500 d and a minimum mass of 29 M⊕. Application of sub-optimal signal detection methods can leave low-amplitude signals undetected in radial velocity time series. Our results suggest that the estimated statistical properties of low-mass planets can thus be biased because several signals corresponding to low-mass candidate planets may have gone unnoticed. This also suggests that the occurrence rates of such planets based on radial velocity surveys might be underestimated. L31

  12. Statistical eclipses of close-in Kepler sub-Saturns

    SciTech Connect

    Sheets, Holly A.; Deming, Drake

    2014-10-20

    We present a method to detect small atmospheric signals in Kepler's planet candidate light curves by averaging light curves for multiple candidates with similar orbital and physical characteristics. Our statistical method allows us to measure unbiased physical properties of Kepler's planet candidates, even for candidates whose individual signal-to-noise precludes the detection of their secondary eclipse. We detect a secondary eclipse depth of 3.83{sub −1.11}{sup +1.10} ppm for a group of 31 sub-Saturn (R < 6 R {sub ⊕}) planet candidates with the greatest potential for a reflected light signature ((R{sub p} /a){sup 2} > 10 ppm). Including Kepler-10b in this group increases the depth to 5.08{sub −0.72}{sup +0.71} ppm. For a control group with (R{sub p} /a){sup 2} < 1 ppm, we find a depth of 0.36 ± 0.37 ppm, consistent with no detection. We also analyze the light curve of Kepler-10b and find an eclipse depth of 7.08 ± 1.06 ppm. If the eclipses are due solely to reflected light, this corresponds to a geometric albedo of 0.22 ± 0.06 for our group of close-in sub-Saturns, 0.37 ± 0.05 if including Kepler-10b in the group, and 0.60 ± 0.09 for Kepler-10b alone. Including a thermal emission model does not change the geometric albedo appreciably, assuming A{sub B} = (3/2)*A{sub g} . Our result for Kepler-10b is consistent with previous works. Our result for close-in sub-Saturns shows that Kepler-10b is unusually reflective, but our analysis is consistent with the results of Demory for super-Earths. Our results also indicate that hot Neptunes are typically more reflective than hot Jupiters.

  13. Kepler's Planetary Systems in Motion

    NASA Video Gallery

    The animation shows an overhead view of the orbital position of the planets in systems with multiple transiting planets discovered by NASA's Kepler mission as of Jan. 2012. All the colored planets ...

  14. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Neat the Habitable Zone of a Wide Range of Stars

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.; Young, Richard E. (Technical Monitor)

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours, From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  15. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Near the Habitable Zone of a Wide Range of Stars

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change. in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours. From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg. field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  16. A PSF-based approach to Kepler/K2 data. II. Exoplanet candidates in Praesepe (M 44)

    NASA Astrophysics Data System (ADS)

    Libralato, M.; Nardiello, D.; Bedin, L. R.; Borsato, L.; Granata, V.; Malavolta, L.; Piotto, G.; Ochner, P.; Cunial, A.; Nascimbeni, V.

    2016-08-01

    In this work we keep pushing K2 data to a high photometric precision, close to that of the Kepler main mission, using a PSF-based, neighbour-subtraction technique, which also overcome the dilution effects in crowded environments. We analyse the open cluster M 44 (NGC 2632), observed during the K2 Campaign 5, and extract light curves of stars imaged on module 14, where most of the cluster lies. We present two candidate exoplanets hosted by cluster members and five by field stars. As a by-product of our investigation, we find 1680 eclipsing binaries and variable stars, 1071 of which are new discoveries. Among them, we report the presence of a heartbeat binary star. Together with this work, we release to the community a catalogue with the variable stars and the candidate exoplanets found, as well as all our raw and detrended light curves.

  17. Most sub-arcsecond companions of Kepler exoplanet candidate host stars are gravitationally bound

    SciTech Connect

    Horch, Elliott P.; Howell, Steve B.; Everett, Mark E.; Ciardi, David R. E-mail: steve.b.howell@nasa.gov E-mail: ciardi@ipac.caltech.edu

    2014-11-01

    Using the known detection limits for high-resolution imaging observations and the statistical properties of true binary and line-of-sight companions, we estimate the binary fraction of Kepler exoplanet host stars. Our speckle imaging programs at the WIYN 3.5 m and Gemini North 8.1 m telescopes have observed over 600 Kepler objects of interest and detected 49 stellar companions within ∼1 arcsec. Assuming binary stars follow a log-normal period distribution for an effective temperature range of 3000-10,000 K, then the model predicts that the vast majority of detected sub-arcsecond companions are long period (P > 50 yr), gravitationally bound companions. In comparing the model predictions to the number of real detections in both observational programs, we conclude that the overall binary fraction of host stars is similar to the 40%-50% rate observed for field stars.

  18. Stability of habitable exomoons of circumbinary planets

    NASA Astrophysics Data System (ADS)

    Satyal, Suman; Haghighipour, Nader; Quarles, Billy

    2015-12-01

    Among the currently known Kepler circumbinary planets, three, namely Kepler-453b, Kepler-16b, and Kepler-47c are in the binary habitable zone (HZ). Given the large sizes of these planets, it is unlikely that they would be habitable. However, similar to the giant planets in our solar system, these planets may have large moons, which orbit their host planets while in the HZ. These exomoons, if exist, present viable candidates for habitability. As a condition for habitability, the planet-moon system has to maintain its orbital stability for long time. Usually, the empirical formula by Holeman & Wiegert (1999) is used as a measure of orbital stability in circumbinary systems. However, this formula was obtained by assuming planets to be test particles and therefore does not include possible perturbation of the planet on the binary. In this work, we present results of more realistic calculations of stability of circumbinary planets where the interactions between planets and their central binaries are taken into account. We map the region of stability, which in this case will be specific to each system, and determine the range of the orbital parameters of the moons for which their orbits will be long-term stable.

  19. A Kepler Mission, A Search for Habitable Planets: Concept, Capabilities and Strengths

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, Jack; Dunham, Edward; Jenkins, Jon; DeVincenzi, D. (Technical Monitor)

    1998-01-01

    The detection of extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The technological challenges of direct imaging of Earth-size planets from space are expected to be resolved over the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). The method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. The concept, its capabilities and strengths are presented.

  20. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    SciTech Connect

    Gaulme, P.; McKeever, J.; Rawls, M. L.; Jackiewicz, J.; Mosser, B.; Guzik, J. A.

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentially offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many

  1. A RESOLVED DEBRIS DISK AROUND THE CANDIDATE PLANET-HOSTING STAR HD 95086

    SciTech Connect

    Moór, A.; Ábrahám, P.; Szabó, Gy. M.; Kiss, Cs.; Kóspál, Á.; Apai, D.; Pascucci, I.; Balog, Z.; Henning, Th.; Csengeri, T.; Grady, C.; Juhász, A.; Szulágyi, J.; Vavrek, R.

    2013-10-01

    Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, β Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of ∼6.''0 × 5.''4 (540 × 490 AU) and disk inclination of ∼25°. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist.

  2. A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Kospal, A.; Szabo, Gy. M.; Apai, D.; Balog, Z.; Csengeri, T.; Grady, C.; Henning, Th.; Juhasz, J.; Kiss, Cs.; Pasucci, I.; Szulagyi, J.; Vavrek, R.

    2013-01-01

    Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 × 5.4 (540 × 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist.

  3. Kepler-454b: Rocky or Not?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    Small exoplanets tend to fall into two categories: the smallest ones are predominantly rocky, like Earth, and the larger ones have a lower-density, more gaseous composition, similar to Neptune. The planet Kepler-454b was initially estimated to fall between these two groups in radius. So what is its composition?Small-Planet DichotomyThough Kepler has detected thousands of planet candidates with radii between 1 and 2.7 Earth radii, we have only obtained precise mass measurements for 12 of these planets.Mass-radius diagram (click for a closer look!) for planets with radius 2.7 Earth radii and well-measured masses. The six smallest planets (and Venus and Earth) fall along a single mass-radius curve of Earth-like composition. The six larger planets (including Kepler-454b) have lower-density compositions. [Gettel et al. 2016]These measurements, however, show an interesting dichotomy: planets with radii less than 1.6 Earth radii have rocky, Earth-like compositions, following a single relation between their mass and radius. Planets between 2 and 2.7 Earth radii, however, have lower densities and dont follow a single mass-radius relation. Their low densities suggest they contain a significant fraction of volatiles, likely in the form of a thick gas envelope of water, hydrogen, and/or helium.The planet Kepler-454b, discovered transiting a Sun-like star, was initially estimated to have a radius of 1.86 Earth radii placing it in between these two categories. A team of astronomers led by Sara Gettel (Harvard-Smithsonian Center for Astrophysics) have since followed up on the initial Kepler detection, hoping to determine the planets composition.Low-Density OutcomeGettel and collaborators obtained 63 observations of the host stars radial velocity with the HARPS-N spectrograph on the Telescopio Nazionale Galileo, and another 36 observations with the HIRES spectrograph at Keck Observatory. These observations allowed them to do several things:Obtain a more accurate radius estimate

  4. Photometric follow-up observation of some SuperWASP transiting planet candidates

    NASA Astrophysics Data System (ADS)

    Gu, Sheng-hong; Collier Cameron, Andrew; Wang, Xiao-bin; Zhang, Li-yun; Fang, Xiang-song; Li, Xue-jing

    2008-05-01

    Three SuperWASP transiting planet candidates were observed through R or I filters using the 1-meter telescope and CCD camera of Yunnan Observatory from 2006 to 2007. The relative photometric data were corrected for the systematic errors by means of Tamuz et al. (2005) and Collier Cameron et al. (2006)'s algorithms. The resulting light curves demonstrate that one of three targets is a potential exoplanet candidate, which is worthy to perform further follow-up observation to clarify.

  5. HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD

    SciTech Connect

    Bakos, G. A.; Torres, G.; Pal, A.; Hartman, J.; Noyes, R. W.; Latham, D. W.; Sasselov, D. D.; Sipocz, B.; Esquerdo, G. A.; Kovacs, Gabor; Fernandez, J.; Kovacs, Geza; Moor, A.; Fischer, D. A.; Isaacson, H.; Johnson, J. A.; Marcy, G. W.; Howard, A.; Butler, R. P.; Vogt, S.

    2010-02-20

    We report on the discovery of HAT-P-11b, the smallest radius transiting extrasolar planet (TEP) discovered from the ground, and the first hot Neptune discovered to date by transit searches. HAT-P-11b orbits the bright (V = 9.587) and metal rich ([Fe/H] = +0.31 +- 0.05) K4 dwarf star GSC 03561-02092 with P = 4.8878162 +- 0.0000071 days and produces a transit signal with depth of 4.2 mmag, the shallowest found by transit searches that is due to a confirmed planet. We present a global analysis of the available photometric and radial velocity (RV) data that result in stellar and planetary parameters, with simultaneous treatment of systematic variations. The planet, like its near-twin GJ 436b, is somewhat larger than Neptune (17 M{sub +}, 3.8 R{sub +}) both in mass M{sub p} = 0.081 +- 0.009 M{sub J}(25.8 +- 2.9 M{sub +}) and radius R{sub p} = 0.422 +- 0.014 R{sub J}(4.73 +- 0.16 R{sub +}). HAT-P-11b orbits in an eccentric orbit with e = 0.198 +- 0.046 and omega = 355.{sup 0}2 +- 17.{sup 0}3, causing a reflex motion of its parent star with amplitude 11.6 +- 1.2 m s{sup -1}, a challenging detection due to the high level of chromospheric activity of the parent star. Our ephemeris for the transit events is T{sub c} = 2454605.89132 +- 0.00032 (BJD), with duration 0.0957 +- 0.0012 days, and secondary eclipse epoch of 2454608.96 +- 0.15 days (BJD). The basic stellar parameters of the host star are M{sub *} = 0.809{sup +0.020}{sub -0.027} M{sub sun}, R{sub *} = 0.752 +- 0.021 R{sub sun}, and T{sub eff*} = 4780 +- 50 K. Importantly, HAT-P-11 will lie on one of the detectors of the forthcoming Kepler mission; this should make possible fruitful investigations of the detailed physical characteristic of both the planet and its parent star at unprecedented precision. We discuss an interesting constraint on the eccentricity of the system by the transit light curve and stellar parameters. This will be particularly useful for eccentric TEPs with low-amplitude RV variations in Kepler

  6. Understanding the Effects of Stellar Multiplicity on the Derived Planet Radii from Transit Surveys: Implications for Kepler, K2, and TESS

    NASA Astrophysics Data System (ADS)

    Ciardi, David R.; Beichman, Charles A.; Horch, Elliott P.; Howell, Steve B.

    2015-05-01

    We present a study on the effect of undetected stellar companions on the derived planetary radii for Kepler Objects of Interest (KOIs). The current production of the KOI list assumes that each KOI is a single star. Not accounting for stellar multiplicity statistically biases the planets toward smaller radii. The bias toward smaller radii depends on the properties of the companion stars and whether the planets orbit the primary or the companion stars. Defining a planetary radius correction factor, XR, we find that if the KOIs are assumed to be single, then, on average, the planetary radii may be underestimated by a factor of < {{X}R}> ≈ 1.5. If typical radial velocity and high-resolution imaging observations are performed and no companions are detected, then this factor reduces to < {{X}R}> ≈ 1.2. The correction factor < {{X}R}> is dependent on the primary star properties and ranges from < {{X}R}> ≈ 1.6 for A and F stars to < {{X}R}> ≈ 1.2 for K and M stars. For missions like K2 and TESS where the stars may be closer than the stars in the Kepler target sample, observational vetting (primary imaging) reduces the radius correction factor to < {{X}R}> ≈ 1.1. Finally, we show that if the stellar multiplicity rates are not accounted for correctly, then occurrence rate calculations for Earth-sized planets may overestimate the frequency of small planets by as much as 15%–20%.

  7. Kepler Mission: a Discovery-Class Mission Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  8. Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first step in discovering, the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is a 0.95 m aperture photometer scheduled to be launched in 2006. It is designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the relation to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler - velocity discoveries, over a thousand giant planets will be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare.

  9. Data Validation in the Kepler Science Operations Center Pipeline

    NASA Technical Reports Server (NTRS)

    Wu, Hayley; Twicken, Joseph D.; Tenenbaum, Peter; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Allen, Christopher; Chandrasekaran, Hema; Jenkins, Jon M.; Caldwell, Douglas A.; Wohler, Bill; Girouard, Forrest; McCauliff, Sean; Cote, Miles T.; Klaus, Todd C.

    2010-01-01

    We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed. Keywords: photometry, data validation, Kepler, Earth-size planets

  10. A search for binary candidates among the fundamental mode RR Lyrae stars observed by Kepler

    NASA Astrophysics Data System (ADS)

    Guggenberger, Elisabeth; Steixner, Jakob

    2015-09-01

    Although roughly half of all stars are considered to be part of binary or multiple systems, there are only two confirmed cases of RR Lyrae pulsators with companions. One of them is TU Uma [1] - a classical RR Lyrae star in a very eccentric orbit - and the other is OGLE-BLG-RRLYR-02792 [2]. Considering the wealth of well-studied RR Lyrae stars, this number is astoundingly low. Having more RR Lyrae stars in binary systems at hand would be extremely valuable to get independent measurements of the masses. The data from the Kepler mission with their unprecedented precision and the long time span of about four years offer a unique possibility to systematically search for the signatures of binarity in RR Lyrae stars. Using the pulsation as a clock, we studied the variations in the timing of maximum light to hunt for possible binary systems in the sample.

  11. STARSPOTS-TRANSIT DEPTH RELATION OF THE EVAPORATING PLANET CANDIDATE KIC 12557548b

    SciTech Connect

    Kawahara, Hajime; Kurosaki, Kenji; Ito, Yuichi; Ikoma, Masahiro; Hirano, Teruyuki

    2013-10-10

    Violent variation of transit depths and an ingress-egress asymmetry of the transit light curve discovered in KIC 12557548 have been interpreted as evidence of a catastrophic evaporation of atmosphere with dust ( M-dot {sub p}∼>1 M{sub ⊕} Gyr{sup –1}) from a close-in small planet. To explore what drives the anomalous atmospheric escape, we perform time-series analysis of the transit depth variation of Kepler archival data for ∼3.5 yr. We find a ∼30% periodic variation of the transit depth with P {sub 1} = 22.83 ± 0.21 days, which is within the error of the rotation period of the host star estimated using the light curve modulation, P {sub rot} = 22.91 ± 0.24 days. We interpret the results as evidence that the atmospheric escape of KIC 12557548b correlates with stellar activity. We consider possible scenarios that account for both the mass loss rate and the correlation with stellar activity. X-ray and ultraviolet (XUV)-driven evaporation is possible if one accepts a relatively high XUV flux and a high efficiency for converting the input energy to the kinetic energy of the atmosphere. Star-planet magnetic interaction is another possible scenario, though huge uncertainty remains for the mass loss rate.

  12. Kepler Mission: A Wide-FOV Photometer Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-like stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 m aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  13. The possible false-detection of a transiting brown dwarf candidate in the overlapping fields of Kepler and MARVELS

    NASA Astrophysics Data System (ADS)

    Reyes, Alan; Ge, Jian; Thomas, Neil; Ma, Bo; Heslar, Michael Francis; SDSS-III MARVELS Team

    2016-01-01

    While searching for exoplanets via the transit method, it has been documented that the periodicity of an unresolved background eclipsing binary (BEB) can be misinterpreted as the orbital companion of a target star. We explore the possibility that this false-positive contamination method can also occur in Doppler surveys if the angular separation between a BEB and a selected primary is under a certain threshold, dependent on the fiber diameter of the spectrometer instrument. The case example of this investigation is a K2 giant in the constellation Cygnus, in the region of overlap of the Kepler and MARVELS surveys. This star was originally flagged for potentially having a 5.56d period companion as per the Kepler transit photometry. It was also imbricated with radial velocity (RV) observations performed by the SDSS-III MARVELS survey, in which Doppler information was extracted from along the dispersion direction of the fiducially-calibrated, post-pipeline-rendered spectra. The 5.56d period was corroborated after testing its probability against that of others via a Lomb-Scargle periodogram analysis. The pipeline mass determination yielded a ~17 MJupiter companion, within the characteristic mass-range of brown dwarfs. The MARVELS results seem to constitute an independent discovery, and hence confirmation, of the brown dwarf candidate. However, a later investigation conducted by EXPERT, intent upon refining the system's physical parameters, failed to identify the RV signal of any companion whatsoever. EXPERT, with its superior resolving power (R=30,000 vs R=11,000 in MARVELS), finer fiber width (1.2 vs 1.9 arcsec), and higher degree of precision (~10 m/s), was expected to finalize the confirmation, but now offers a major challenge to previous models of the system. Additionally, high-resolution adaptive optics imaging reveals the presence of a distinct, close-in object. The object may itself be an unbound BEB, and thus the source of the period signals reported by Kepler

  14. YETI observations of the young transiting planet candidate CVSO 30 b

    NASA Astrophysics Data System (ADS)

    Raetz, St.; Schmidt, T. O. B.; Czesla, S.; Klocová, T.; Holmes, L.; Errmann, R.; Kitze, M.; Fernández, M.; Sota, A.; Briceño, C.; Hernández, J.; Downes, J. J.; Dimitrov, D. P.; Kjurkchieva, D.; Radeva, V.; Wu, Z.-Y.; Zhou, X.; Takahashi, H.; Henych, T.; Seeliger, M.; Mugrauer, M.; Adam, Ch.; Marka, C.; Schmidt, J. G.; Hohle, M. M.; Ginski, Ch.; Pribulla, T.; Trepl, L.; Moualla, M.; Pawellek, N.; Gelszinnis, J.; Buder, S.; Masda, S.; Maciejewski, G.; Neuhäuser, R.

    2016-08-01

    CVSO 30 is a unique young low-mass system, because, for the first time, a close-in transiting and a wide directly imaged planet candidates are found around a common host star. The inner companion, CVSO 30 b, is the first possible young transiting planet orbiting a previously known weak-lined T-Tauri star. With five telescopes of the 'Young Exoplanet Transit Initiative' (YETI) located in Asia, Europe and South America we monitored CVSO 30 over three years in a total of 144 nights and detected 33 fading events. In two more seasons we carried out follow-up observations with three telescopes. We can confirm that there is a change in the shape of the fading event between different observations and that the fading event even disappears and reappears. A total of 38 fading event light curves were simultaneously modelled. We derived the planetary, stellar, and geometrical properties of the system and found them slightly smaller but in agreement with the values from the discovery paper. The period of the fading event was found to be 1.36 s shorter and 100 times more precise than the previous published value. If CVSO 30 b would be a giant planet on a precessing orbit, which we cannot confirm, yet, the precession period may be shorter than previously thought. But if confirmed as a planet it would be the youngest transiting planet ever detected and will provide important constraints on planet formation and migration time-scales.

  15. YETI observations of the young transiting planet candidate CVSO 30 b

    NASA Astrophysics Data System (ADS)

    Raetz, St.; Schmidt, T. O. B.; Czesla, S.; Klocová, T.; Holmes, L.; Errmann, R.; Kitze, M.; Fernández, M.; Sota, A.; Briceño, C.; Hernández, J.; Downes, J. J.; Dimitrov, D. P.; Kjurkchieva, D.; Radeva, V.; Wu, Z.-Y.; Zhou, X.; Takahashi, H.; Henych, T.; Seeliger, M.; Mugrauer, M.; Adam, Ch.; Marka, C.; Schmidt, J. G.; Hohle, M. M.; Ginski, Ch.; Pribulla, T.; Trepl, L.; Moualla, M.; Pawellek, N.; Gelszinnis, J.; Buder, S.; Masda, S.; Maciejewski, G.; Neuhäuser, R.

    2016-08-01

    CVSO 30 is a unique young low-mass system, because, for the first time, a close-in transiting and a wide directly imaged planet candidates are found around a common host star. The inner companion, CVSO 30 b, is the first possible young transiting planet orbiting a previously known weak-lined T Tauri star. With five telescopes of the `Young Exoplanet Transit Initiative' located in Asia, Europe and South America, we monitored CVSO 30 over three years in a total of 144 nights and detected 33 fading events. In two more seasons we carried out follow-up observations with three telescopes. We can confirm that there is a change in the shape of the fading event between different observations and that the fading event even disappears and reappears. A total of 38 fading event light curves were simultaneously modelled. We derived the planetary, stellar and geometrical properties of the system and found them slightly smaller but in agreement with the values from the discovery paper. The period of the fading event was found to be 1.36 s shorter and 100 times more precise than the previous published value. If CVSO 30 b would be a giant planet on a precessing orbit, which we cannot confirm, yet, the precession period may be shorter than previously thought. But if confirmed as a planet it would be the youngest transiting planet ever detected and will provide important constraints on planet formation and migration time-scales.

  16. A Misaligned Prograde Orbit for Kepler-13 Ab via Doppler Tomography

    NASA Astrophysics Data System (ADS)

    Johnson, Marshall C.; Cochran, William D.; Albrecht, Simon; Dodson-Robinson, Sarah E.; Winn, Joshua N.; Gullikson, Kevin

    2014-07-01

    Transiting planets around rapidly rotating stars are not amenable to precise radial velocity observations, such as are used for planet candidate validation, as they have wide, rotationally broadened stellar lines. Such planets can, however, be observed using Doppler tomography, wherein stellar absorption line profile distortions during transit are spectroscopically resolved. This allows the validation of transiting planet candidates and the measurement of the stellar spin-planetary orbit (mis)alignment, which is an important statistical probe of planetary migration processes. We present Doppler tomographic observations that provide direct confirmation of the hot Jupiter Kepler-13 Ab and also show that the planet has a prograde, misaligned orbit with λ = 58.°6 ± 2.°0. Our measured value of the spin-orbit misalignment is in significant disagreement with the value of λ = 23° ± 4° previously measured by Barnes et al. (2011) from the gravity-darkened Kepler light curve. We also place an upper limit of 0.75 M ⊙ (95% confidence) on the mass of Kepler-13 C, the spectroscopic companion to Kepler-13 B, which is the proper-motion companion of the planet host star Kepler-13 A. Based in part on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  17. A misaligned prograde orbit for Kepler-13 Ab via doppler tomography

    SciTech Connect

    Johnson, Marshall C.; Cochran, William D.; Gullikson, Kevin; Albrecht, Simon; Winn, Joshua N.; Dodson-Robinson, Sarah E.

    2014-07-20

    Transiting planets around rapidly rotating stars are not amenable to precise radial velocity observations, such as are used for planet candidate validation, as they have wide, rotationally broadened stellar lines. Such planets can, however, be observed using Doppler tomography, wherein stellar absorption line profile distortions during transit are spectroscopically resolved. This allows the validation of transiting planet candidates and the measurement of the stellar spin-planetary orbit (mis)alignment, which is an important statistical probe of planetary migration processes. We present Doppler tomographic observations that provide direct confirmation of the hot Jupiter Kepler-13 Ab and also show that the planet has a prograde, misaligned orbit with λ = 58.°6 ± 2.°0. Our measured value of the spin-orbit misalignment is in significant disagreement with the value of λ = 23° ± 4° previously measured by Barnes et al. (2011) from the gravity-darkened Kepler light curve. We also place an upper limit of 0.75 M{sub ☉} (95% confidence) on the mass of Kepler-13 C, the spectroscopic companion to Kepler-13 B, which is the proper-motion companion of the planet host star Kepler-13 A.

  18. Adaptive optics images. III. 87 Kepler objects of interest

    SciTech Connect

    Dressing, Courtney D.; Dupree, Andrea K.; Adams, Elisabeth R.; Kulesa, Craig; McCarthy, Don

    2014-11-01

    The Kepler mission has revolutionized our understanding of exoplanets, but some of the planet candidates identified by Kepler may actually be astrophysical false positives or planets whose transit depths are diluted by the presence of another star. Adaptive optics images made with ARIES at the MMT of 87 Kepler Objects of Interest place limits on the presence of fainter stars in or near the Kepler aperture. We detected visual companions within 1'' for 5 stars, between 1'' and 2'' for 7 stars, and between 2'' and 4'' for 15 stars. For those systems, we estimate the brightness of companion stars in the Kepler bandpass and provide approximate corrections to the radii of associated planet candidates due to the extra light in the aperture. For all stars observed, we report detection limits on the presence of nearby stars. ARIES is typically sensitive to stars approximately 5.3 Ks magnitudes fainter than the target star within 1'' and approximately 5.7 Ks magnitudes fainter within 2'', but can detect stars as faint as ΔKs = 7.5 under ideal conditions.

  19. Adaptive Optics Images. III. 87 Kepler Objects of Interest

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Adams, Elisabeth R.; Dupree, Andrea K.; Kulesa, Craig; McCarthy, Don

    2014-11-01

    The Kepler mission has revolutionized our understanding of exoplanets, but some of the planet candidates identified by Kepler may actually be astrophysical false positives or planets whose transit depths are diluted by the presence of another star. Adaptive optics images made with ARIES at the MMT of 87 Kepler Objects of Interest place limits on the presence of fainter stars in or near the Kepler aperture. We detected visual companions within 1'' for 5 stars, between 1'' and 2'' for 7 stars, and between 2'' and 4'' for 15 stars. For those systems, we estimate the brightness of companion stars in the Kepler bandpass and provide approximate corrections to the radii of associated planet candidates due to the extra light in the aperture. For all stars observed, we report detection limits on the presence of nearby stars. ARIES is typically sensitive to stars approximately 5.3\\, {{Ks}} magnitudes fainter than the target star within 1'' and approximately 5.7\\, {{Ks}} magnitudes fainter within 2'', but can detect stars as faint as ΔKs = 7.5 under ideal conditions. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  20. CHARACTERIZING THE COOL KOIs. IV. KEPLER-32 AS A PROTOTYPE FOR THE FORMATION OF COMPACT PLANETARY SYSTEMS THROUGHOUT THE GALAXY

    SciTech Connect

    Swift, Jonathan J.; Johnson, John Asher; Morton, Timothy D.; Montet, Benjamin T.; Muirhead, Philip S.; Crepp, Justin R.; Fabrycky, Daniel C.

    2013-02-10

    The Kepler space telescope has opened new vistas in exoplanet discovery space by revealing populations of Earth-sized planets that provide a new context for understanding planet formation. Approximately 70% of all stars in the Galaxy belong to the diminutive M dwarf class, several thousand of which lie within Kepler's field of view, and a large number of these targets show planet transit signals. The Kepler M dwarf sample has a characteristic mass of 0.5 M {sub Sun} representing a stellar population twice as common as Sun-like stars. Kepler-32 is a typical star in this sample that presents us with a rare opportunity: five planets transit this star, giving us an expansive view of its architecture. All five planets of this compact system orbit their host star within a distance one-third the size of Mercury's orbit, with the innermost planet positioned a mere 4.3 stellar radii from the stellar photosphere. New observations limit possible false positive scenarios, allowing us to validate the entire Kepler-32 system making it the richest known system of transiting planets around an M dwarf. Based on considerations of the stellar dust sublimation radius, a minimum mass protoplanetary nebula, and the near period commensurability of three adjacent planets, we propose that the Kepler-32 planets formed at larger orbital radii and migrated inward to their present locations. The volatile content inferred for the Kepler-32 planets and order of magnitude estimates for the disk migration rates suggest that these planets may have formed beyond the snow line and migrated in the presence of a gaseous disk. If true, then this would place an upper limit on their formation time of {approx}10 Myr. The Kepler-32 planets are representative of the full ensemble of planet candidates orbiting the Kepler M dwarfs for which we calculate an occurrence rate of 1.0 {+-} 0.1 planet per star. The formation of the Kepler-32 planets therefore offers a plausible blueprint for the formation of one of

  1. Characterizing the Cool KOIs. IV. Kepler-32 as a Prototype for the Formation of Compact Planetary Systems throughout the Galaxy

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan J.; Johnson, John Asher; Morton, Timothy D.; Crepp, Justin R.; Montet, Benjamin T.; Fabrycky, Daniel C.; Muirhead, Philip S.

    2013-02-01

    The Kepler space telescope has opened new vistas in exoplanet discovery space by revealing populations of Earth-sized planets that provide a new context for understanding planet formation. Approximately 70% of all stars in the Galaxy belong to the diminutive M dwarf class, several thousand of which lie within Kepler's field of view, and a large number of these targets show planet transit signals. The Kepler M dwarf sample has a characteristic mass of 0.5 M ⊙ representing a stellar population twice as common as Sun-like stars. Kepler-32 is a typical star in this sample that presents us with a rare opportunity: five planets transit this star, giving us an expansive view of its architecture. All five planets of this compact system orbit their host star within a distance one-third the size of Mercury's orbit, with the innermost planet positioned a mere 4.3 stellar radii from the stellar photosphere. New observations limit possible false positive scenarios, allowing us to validate the entire Kepler-32 system making it the richest known system of transiting planets around an M dwarf. Based on considerations of the stellar dust sublimation radius, a minimum mass protoplanetary nebula, and the near period commensurability of three adjacent planets, we propose that the Kepler-32 planets formed at larger orbital radii and migrated inward to their present locations. The volatile content inferred for the Kepler-32 planets and order of magnitude estimates for the disk migration rates suggest that these planets may have formed beyond the snow line and migrated in the presence of a gaseous disk. If true, then this would place an upper limit on their formation time of ~10 Myr. The Kepler-32 planets are representative of the full ensemble of planet candidates orbiting the Kepler M dwarfs for which we calculate an occurrence rate of 1.0 ± 0.1 planet per star. The formation of the Kepler-32 planets therefore offers a plausible blueprint for the formation of one of the largest

  2. Consequences of tidal interaction between disks and orbiting protoplanets for the evolution of multi-planet systems with architecture resembling that of Kepler 444

    NASA Astrophysics Data System (ADS)

    Papaloizou, J. C. B.

    2016-05-01

    We study orbital evolution of multi-planet systems with masses in the terrestrial planet regime induced through tidal interaction with a protoplanetary disk assuming that this is the dominant mechanism for producing orbital migration and circularization. We develop a simple analytic model for a system that maintains consecutive pairs in resonance while undergoing orbital circularization and migration. This model enables migration times for each planet to be estimated once planet masses, circularization times and the migration time for the innermost planet are specified. We applied it to a system with the current architecture of Kepler 444 adopting a simple protoplanetary disk model and planet masses that yield migration times inversely proportional to the planet mass, as expected if they result from torques due to tidal interaction with the protoplanetary disk. Furthermore the evolution time for the system as a whole is comparable to current protoplanetary disk lifetimes. In addition we have performed a number of numerical simulations with input data obtained from this model. These indicate that although the analytic model is inexact, relatively small corrections to the estimated migration rates yield systems for which period ratios vary by a minimal extent. Because of relatively large deviations from exact resonance in the observed system of up to 2 %, the migration times obtained in this way indicate only weak convergent migration such that a system for which the planets did not interact would contract by only {˜ }1 % although undergoing significant inward migration as a whole. We have also performed additional simulations to investigate conditions under which the system could undergo significant convergent migration before reaching its final state. These indicate that migration times have to be significantly shorter and resonances between planet pairs significantly closer during such an evolutionary phase. Relative migration rates would then have to decrease

  3. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. II. KOI-1474.01, A CANDIDATE ECCENTRIC PLANET PERTURBED BY AN UNSEEN COMPANION

    SciTech Connect

    Dawson, Rebekah I.; Murray-Clay, Ruth A.; Johnson, John Asher; Morton, Timothy D.; Crepp, Justin R.; Fabrycky, Daniel C.; Howard, Andrew W.

    2012-12-20

    The exoplanets known as hot Jupiters-Jupiter-sized planets with periods of less than 10 days-likely are relics of dynamical processes that shape all planetary system architectures. Socrates et al. argued that high eccentricity migration (HEM) mechanisms proposed for situating these close-in planets should produce an observable population of highly eccentric proto-hot Jupiters that have not yet tidally circularized. HEM should also create failed-hot Jupiters, with periapses just beyond the influence of fast circularization. Using the technique we previously presented for measuring eccentricities from photometry (the ''photoeccentric effect''), we are distilling a collection of eccentric proto- and failed-hot Jupiters from the Kepler Objects of Interest (KOI). Here, we present the first, KOI-1474.01, which has a long orbital period (69.7340 days) and a large eccentricity e 0.81{sup +0.10}{sub -0.07}, skirting the proto-hot Jupiter boundary. Combining Kepler photometry, ground-based spectroscopy, and stellar evolution models, we characterize host KOI-1474 as a rapidly rotating F star. Statistical arguments reveal that the transiting candidate has a low false-positive probability of 3.1%. KOI-1474.01 also exhibits transit-timing variations of the order of an hour. We explore characteristics of the third-body perturber, which is possibly the ''smoking-gun'' cause of KOI-1474.01's large eccentricity. We use the host star's period, radius, and projected rotational velocity to measure the inclination of the stellar spin. Comparing KOI 1474.01's inclination, we find that its orbit is marginally consistent with being aligned with the stellar spin axis, although a reanalysis is warranted with future additional data. Finally, we discuss how the number and existence of proto-hot Jupiters will not only demonstrate that hot Jupiters migrate via HEM, but also shed light on the typical timescale for the mechanism.

  4. The Photoeccentric Effect and Proto-hot Jupiters. II. KOI-1474.01, a Candidate Eccentric Planet Perturbed by an Unseen Companion

    NASA Astrophysics Data System (ADS)

    Dawson, Rebekah I.; Johnson, John Asher; Morton, Timothy D.; Crepp, Justin R.; Fabrycky, Daniel C.; Murray-Clay, Ruth A.; Howard, Andrew W.

    2012-12-01

    The exoplanets known as hot Jupiters—Jupiter-sized planets with periods of less than 10 days—likely are relics of dynamical processes that shape all planetary system architectures. Socrates et al. argued that high eccentricity migration (HEM) mechanisms proposed for situating these close-in planets should produce an observable population of highly eccentric proto-hot Jupiters that have not yet tidally circularized. HEM should also create failed-hot Jupiters, with periapses just beyond the influence of fast circularization. Using the technique we previously presented for measuring eccentricities from photometry (the "photoeccentric effect"), we are distilling a collection of eccentric proto- and failed-hot Jupiters from the Kepler Objects of Interest (KOI). Here, we present the first, KOI-1474.01, which has a long orbital period (69.7340 days) and a large eccentricity e = 0.81+0.10 -0.07, skirting the proto-hot Jupiter boundary. Combining Kepler photometry, ground-based spectroscopy, and stellar evolution models, we characterize host KOI-1474 as a rapidly rotating F star. Statistical arguments reveal that the transiting candidate has a low false-positive probability of 3.1%. KOI-1474.01 also exhibits transit-timing variations of the order of an hour. We explore characteristics of the third-body perturber, which is possibly the "smoking-gun" cause of KOI-1474.01's large eccentricity. We use the host star's period, radius, and projected rotational velocity to measure the inclination of the stellar spin. Comparing KOI 1474.01's inclination, we find that its orbit is marginally consistent with being aligned with the stellar spin axis, although a reanalysis is warranted with future additional data. Finally, we discuss how the number and existence of proto-hot Jupiters will not only demonstrate that hot Jupiters migrate via HEM, but also shed light on the typical timescale for the mechanism.

  5. Orbital Constraints on the (beta) Pic Inner Planet Candidate with Keck Adaptive Optics

    SciTech Connect

    Fitzgerald, M P; Kalas, P G; Graham, J R

    2009-09-23

    A point source observed 8AU in projection from {beta} Pictoris in L{prime} (3.8 {micro}m) imaging in 2003 has been recently presented as a planet candidate. Here we show the results of L{prime}-band adaptive optics imaging obtained at Keck Observatory in 2008. We do not detect {beta} Pic b beyond a limiting radius of 0.29-inch, or 5.5AU in projection, from the star. If {beta} Pic b is an orbiting planet, then it has moved {ge} 0.12-inch (2.4AU in projection) closer to the star in the five years separating the two epochs of observation. We examine the range of orbital parameters consistent with the observations, including likely bounds from the locations of previously inferred planetesimal belts. We find a family of low-eccentricity orbits with semimajor axes {approx} 8-9AU that are completely allowed, as well as a broad region of orbits with e {approx}< 0.2, a {approx}> 10AU that are allowed if the apparent motion of the planet was towards the star in 2003. We compare this allowed space with predictions of the planetary orbital elements from the literature. Additionally, we show how similar observations in the next several years can further constrain the space of allowed orbits. Non-detections of the source through 2013 will exclude the interpretation of the candidate as a planet orbiting between the 6.4 and 16AU planetesimal belts.

  6. ORBITAL CONSTRAINTS ON THE beta Pic INNER PLANET CANDIDATE WITH KECK ADAPTIVE OPTICS

    SciTech Connect

    Fitzgerald, Michael P.; Kalas, Paul G.; Graham, James R.

    2009-11-20

    A point source observed 8 AU in projection from beta Pictoris in L' (3.8 mum) imaging in 2003 has been recently presented as a planet candidate. Here we show the results of L'-band adaptive optics imaging obtained at Keck Observatory in 2008. We do not detect beta Pic b beyond a limiting radius of 0.''29, or 5.5 AU in projection, from the star. If beta Pic b is an orbiting planet, then it has moved >=0.''12 (2.4 AU in projection) closer to the star in the five years separating the two epochs of observation. We examine the range of orbital parameters consistent with the observations, including likely bounds from the locations of previously inferred planetesimal belts. We find a family of low-eccentricity orbits with semimajor axes approx8-9 AU that are completely allowed, as well as a broad region of orbits with e approx< 0.2, a approx> 10 AU that are allowed if the apparent motion of the planet was toward the star in 2003. We compare this allowed space with predictions of the planetary orbital elements from the literature. Additionally, we show how similar observations in the next several years can further constrain the space of allowed orbits. Non-detections of the source through 2013 will exclude the interpretation of the candidate as a planet orbiting between the 6.4 and 16 AU planetesimal belts.

  7. SOPHIE velocimetry of Kepler transit candidates. X. KOI-142 c: first radial velocity confirmation of a non-transiting exoplanet discovered by transit timing

    NASA Astrophysics Data System (ADS)

    Barros, S. C. C.; Díaz, R. F.; Santerne, A.; Bruno, G.; Deleuil, M.; Almenara, J.-M.; Bonomo, A. S.; Bouchy, F.; Damiani, C.; Hébrard, G.; Montagnier, G.; Moutou, C.

    2014-01-01

    The exoplanet KOI-142b (Kepler-88b) shows transit timing variations (TTVs) with a semi-amplitude of ~12 h, which earned it the nickname "king of transit variations". Only the transit of planet b was detected in the Kepler data with an orbital period of ~10.92 days and a radius of ~0.36 RJup. The TTVs together with the transit duration variations of KOI-142b were analysed recently, finding a unique solution for a companion-perturbing planet. An outer non-transiting companion was predicted, KOI-142c, with a mass of 0.626 ± 0.03 MJup and a period of 22.3397-0.0018+0.0021 days, which is close to the 2:1 mean-motion resonance with the inner transiting planet. We report an independent confirmation of KOI-142c using radial velocity observations with the SOPHIE spectrograph at the Observatoire de Haute-Provence. We derive an orbital period of 22.10 ± 0.25 days and a minimum planetary mass of 0.760.16+0.32 MJup, both in good agreement with the predictions by previous transit timing analysis. Therefore, this is the first radial velocity confirmation of a non-transiting planet discovered with TTVs, providing an independent validation of the TTVs technique. Based on observations collected with the NASA Kepler satellite and with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France.Tables 2 and 3 are available in electronic form at http://www.aanda.org

  8. Kepler-77b: a very low albedo, Saturn-mass transiting planet around a metal-rich solar-like star

    NASA Astrophysics Data System (ADS)

    Gandolfi, D.; Parviainen, H.; Fridlund, M.; Hatzes, A. P.; Deeg, H. J.; Frasca, A.; Lanza, A. F.; Prada Moroni, P. G.; Tognelli, E.; McQuillan, A.; Aigrain, S.; Alonso, R.; Antoci, V.; Cabrera, J.; Carone, L.; Csizmadia, Sz.; Djupvik, A. A.; Guenther, E. W.; Jessen-Hansen, J.; Ofir, A.; Telting, J.

    2013-09-01

    We report the discovery of Kepler-77b (alias KOI-127.01), a Saturn-mass transiting planet in a 3.6-day orbit around a metal-rich solar-like star. We combined the publicly available Kepler photometry (quarters 1-13) with high-resolution spectroscopy from the Sandiford at McDonald and FIES at NOT spectrographs. We derived the system parameters via a simultaneous joint fit to the photometric and radial velocity measurements. Our analysis is based on the Bayesian approach and is carried out by sampling the parameter posterior distributions using a Markov chain Monte Carlo simulation. Kepler-77b is a moderately inflated planet with a mass of Mp = 0.430 ± 0.032 MJup, a radius of Rp = 0.960 ± 0.016 RJup, and a bulk density of ρp = 0.603 ± 0.055 g cm-3. It orbits a slowly rotating (Prot = 36 ± 6 days) G5 V star with M⋆ = 0.95 ± 0.04 M⊙, R⋆ = 0.99 ± 0.02 R⊙, Teff = 5520 ± 60 K, [M/H] = 0.20 ± 0.05 dex, that has an age of 7.5 ± 2.0 Gyr. The lack of detectable planetary occultation with a depth higher than ~10 ppm implies a planet geometric and Bond albedo of Ag ≤ 0.087 ± 0.008 and AB ≤ 0.058 ± 0.006, respectively, placing Kepler-77b among the gas-giant planets with the lowest albedo known so far. We found neither additional planetary transit signals nor transit-timing variations at a level of ~0.5 min, in accordance with the trend that close-in gas giant planets seem to belong to single-planet systems. The 106 transitsobserved in short-cadence mode by Kepler for nearly 1.2 years show no detectable signatures of the planet's passage in front of starspots. We explored the implications of the absence of detectable spot-crossing events for the inclination of the stellar spin-axis, the sky-projected spin-orbit obliquity, and the latitude of magnetically active regions. Based on observations obtained with the 2.1-m Otto Struve telescope at McDonald Observatory, Texas, USA.Based on observations obtained with the Nordic Optical Telescope, operated on the

  9. What's the Kepler Spacecraft Been Up To?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    Remember back in May 2013 when the second of Keplers reaction wheels failed, rendering it unable to control its precision pointing? As a result of a clever backup plan by intrepid scientists, Kepler is still going strong! This January, a paper was published describing some of the results from the first year of the extended Kepler mission, known as K2.K2: A Second ChanceHistograms of the K2 planet candidate sample (solid yellow) compared with planet candidates from the first four months of Kepler observations (blue diagonal lines). The histograms compare planet radius, orbital period, and brightness. [Vanderburg et al. 2016]After an incredibly successful five years discovering transiting exoplanets, the failure of two of Keplers reaction wheels (which allow it to maintain its orientation) looked like it would shut down the mission. Luckily, the scientific community came up with the ingenious plan of stabilizing the telescope using the radiation pressure exerted by the Sun. Though this solution limits Kepler to observing within the ecliptic plane, it has provided a new life lease for the project.Despite the significantly worsened pointing precision in the K2 mission, new analysis techniques have been developed that decouple the motion of the spacecraft from its observations, resulting in an observational precision for K2 thats within 35% of the original precision achieved by Kepler.Using these techniques, a team of scientists led by Andrew Vanderburg (HarvardSmithsonian Center for Astrophysics) analyzed the publicly released data from the first year of the K2 mission. In a new study, they describe the results from the 59,174 targets that Kepler has observed in that time.Planetary CandidatesVanderburg and collaborators report that K2 has detected 234 planetary candidates around 208 stars in its first year. These candidates span a range of sizes from gas-giant to smaller than the Earth, and have orbital periods that range from hours to more than a month. The list

  10. NASA's Kepler Mission Announces Latest Discoveries

    NASA Video Gallery

    Scientists from NASA's Kepler mission have been busy recently. The team has announced the discovery of Kepler-22b, its first confirmed planet in the habitable zone of its solar system, 600 light ye...

  11. A GAS GIANT CIRCUMBINARY PLANET TRANSITING THE F STAR PRIMARY OF THE ECLIPSING BINARY STAR KIC 4862625 AND THE INDEPENDENT DISCOVERY AND CHARACTERIZATION OF THE TWO TRANSITING PLANETS IN THE KEPLER-47 SYSTEM

    SciTech Connect

    Kostov, V. B.; Tsvetanov, Z. I.; McCullough, P. R.; Valenti, J. A.; Hinse, T. C.; Hebrard, G.; Diaz, R. F.; Deleuil, M.

    2013-06-10

    We report the discovery of a transiting, gas giant circumbinary planet orbiting the eclipsing binary KIC 4862625 and describe our independent discovery of the two transiting planets orbiting Kepler-47. We describe a simple and semi-automated procedure for identifying individual transits in light curves and present our follow-up measurements of the two circumbinary systems. For the KIC 4862625 system, the 0.52 {+-} 0.018 R{sub Jupiter} radius planet revolves every {approx}138 days and occults the 1.47 {+-} 0.08 M{sub Sun }, 1.7 {+-} 0.06 R{sub Sun} F8 IV primary star producing aperiodic transits of variable durations commensurate with the configuration of the eclipsing binary star. Our best-fit model indicates the orbit has a semi-major axis of 0.64 AU and is slightly eccentric, e = 0.1. For the Kepler-47 system, we confirm the results of Orosz et al. Modulations in the radial velocity of KIC 4862625A are measured both spectroscopically and photometrically, i.e., via Doppler boosting, and produce similar results.

  12. Frequency of close companions among Kepler planets—a transit time variation study

    SciTech Connect

    Xie, Ji-Wei; Wu, Yanqin; Lithwick, Yoram E-mail: wu@astro.utoronto.ca

    2014-07-10

    A transiting planet exhibits sinusoidal transit time variations (TTVs) if perturbed by a companion near a mean-motion resonance. We search for sinusoidal TTVs in more than 2600 Kepler candidates, using the publicly available Kepler light curves (Q0-Q12). We find that the TTV fractions rise strikingly with the transit multiplicity. Systems where four or more planets transit enjoy a TTV fraction that is roughly five times higher than those where a single planet transits, and about twice as high as those for doubles and triples. In contrast, models in which all transiting planets arise from similar dynamical configurations predict comparable TTV fractions among these different systems. One simple explanation for our results is that there are at least two different classes of Kepler systems, one closely packed and one more sparsely populated.

  13. The Knowledge of Celestial Things: Using the Kepler Instrument and Data Analysis Handbooks to Plan Observations and Believe the Results

    NASA Astrophysics Data System (ADS)

    Van Cleve, Jeffrey E.; Caldwell, D. A.; Jenkins, J. M.; Bryson, S.; Kolodziejczak, J.; Gazis, P.; Borucki, W. J.; Koch, D. G.; Haas, M. R.

    2010-01-01

    "... the ways by which men arrive at knowledge of the celestial things are hardly less wonderful than the nature of these things themselves" - Johannes Kepler As an introduction to the understanding of Kepler data products, we have prepared the Kepler Instrument and Data Analysis Handbooks, and make them available through STScI's MAST and Kepler's GO web sites to all who are interested in planning, publishing, or reviewing Kepler observations. The Kepler Mission is designed to detect transits of Earth-size planets orbiting in the "habitable zone” of 9Kepler will monitor more than 100,000 stars in the constellations Cygnus and Lyra for 3 ½ years. The required photometric precision for Earth-transit detections is 20 ppm for a 6.5-hr integration on 12th magnitude G2V stars. To succeed, the Kepler flight system and data analysis methods must be so well understood that the only reasonable explanation for 100 ppm periodic phenomena in the data are astrophysical. The Kepler Follow-up Observation Program (FOP) will then work to rule out non-planet transit explanations for each such phenomenon. The Instrument Handbook describes the Kepler photometer characteristics pertinent to achieving and maintaining Kepler's photometric precision. The Data Analysis Handbook describes the processing steps -including calibration, photometry, systematic error correction, and transit detection- used in converting the raw data to planet candidates. Our poster presentation is meant to solicit feedback from the community, so the next versions of these documents can be improved accordingly. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  14. Automatic Classification of Kepler Threshold Crossing Events

    NASA Astrophysics Data System (ADS)

    McCauliff, Sean; Catanzarite, Joseph; Jenkins, Jon Michael

    2014-06-01

    Over the course of its 4-year primary mission the Kepler mission has discovered numerous planets. Part of the process of planet discovery has involved generating threshold crossing events (TCEs); a light curve with a repeating exoplanet transit-like feature. The large number of diagnostics 100) makes it difficult to examine all the information available for each TCE. The effort required for vetting all threshold-crossing events (TCEs) takes several months by many individuals associated with the Kepler Threshold Crossing Event Review Team (TCERT). The total number of objects with transit-like features identified in the light curves has increased to as many as 18,000, just examining the first three years of data. In order to accelerate the process by which new planet candidates are classified, we propose a machine learning approach to establish a preliminary list of planetary candidates ranked from most credible to least credible. The classifier must distinguish between three classes of detections: non-transiting phenomena, astrophysical false positives, and planet candidates. We use random forests, a supervised classification algorithm to this end. We report on the performance of the classifier and identify diagnostics that are important for discriminating between these classes of TCEs.Funding for this mission is provided by NASA’s Science Mission Directorate.

  15. The Prevalence of Earth-size Planets Orbiting Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew

    2015-01-01

    In less than two decades since the discovery of the first planet orbiting another Sun-like star, the study of extrasolar planets has matured beyond individual discoveries to detailed characterization of the planet population as a whole. No mission has played more of a role in this paradigm shift than NASA's Kepler mission. Kepler photometry has shown that planets like Earth are common throughout the Milky Way Galaxy. Our group performed an independent search of Kepler photometry using our custom transit-finding pipeline, TERRA, and produced our own catalog of planet candidates. We conducted spectroscopic follow-up of their host stars in order to rule out false positive scenarios and to better constrain host star properties. We measured TERRA's sensitivity to planets of different sizes and orbital periods by injecting synthetic planets into raw Kepler photometry and measuring the recovery rate. Correcting for orbital tilt and survey completeness, we found that ~80% of GK stars harbor one or more planets within 1 AU and that ~22% of Sun-like stars harbor an Earth-size planet that receives similar levels of stellar radiation as Earth. I will present the latest results from our efforts to characterize the demographics of small planets revealed by Kepler.

  16. What asteroseismology can do for exoplanets: Kepler-410A b is a small Neptune around a bright star, in an eccentric orbit consistent with low obliquity

    SciTech Connect

    Van Eylen, V.; Lund, M. N.; Aguirre, V. Silva; Arentoft, T.; Kjeldsen, H.; Pedersen, M. G.; Jessen-Hansen, J.; Tingley, B.; Christensen-Dalsgaard, J.; Albrecht, S.; Chaplin, W. J.; Campante, T. L.; Isaacson, H.; Aerts, C.; Bryson, S. T.

    2014-02-10

    We confirm the Kepler planet candidate Kepler-410A b (KOI-42b) as a Neptune-sized exoplanet on a 17.8 day, eccentric orbit around the bright (K {sub p} = 9.4) star Kepler-410A (KOI-42A). This is the third brightest confirmed planet host star in the Kepler field and one of the brightest hosts of all currently known transiting exoplanets. Kepler-410 consists of a blend between the fast rotating planet host star (Kepler-410A) and a fainter star (Kepler-410B), which has complicated the confirmation of the planetary candidate. Employing asteroseismology, using constraints from the transit light curve, adaptive optics and speckle images, and Spitzer transit observations, we demonstrate that the candidate can only be an exoplanet orbiting Kepler-410A. We determine via asteroseismology the following stellar and planetary parameters with high precision; M {sub *} = 1.214 ± 0.033 M {sub ☉}, R {sub *} = 1.352 ± 0.010 R {sub ☉}, age =2.76 ± 0.54 Gyr, planetary radius (2.838 ± 0.054 R {sub ⊕}), and orbital eccentricity (0.17{sub −0.06}{sup +0.07}). In addition, rotational splitting of the pulsation modes allows for a measurement of Kepler-410A's inclination and rotation rate. Our measurement of an inclination of 82.5{sub −2.5}{sup +7.5} [°] indicates a low obliquity in this system. Transit timing variations indicate the presence of at least one additional (non-transiting) planet (Kepler-410A c) in the system.

  17. THE OCCURRENCE RATE OF EARTH ANALOG PLANETS ORBITING SUN-LIKE STARS

    SciTech Connect

    Catanzarite, Joseph; Shao, Michael

    2011-09-10

    Kepler is a space telescope that searches Sun-like stars for planets. Its major goal is to determine {eta}{sub Earth}, the fraction of Sun-like stars that have planets like Earth. When a planet 'transits' or moves in front of a star, Kepler can measure the concomitant dimming of the starlight. From analysis of the first four months of those measurements for over 150,000 stars, Kepler's Science Team has determined sizes, surface temperatures, orbit sizes, and periods for over a thousand new planet candidates. In this paper, we characterize the period probability distribution function of the super-Earth and Neptune planet candidates with periods up to 132 days, and find three distinct period regimes. For candidates with periods below 3 days, the density increases sharply with increasing period; for periods between 3 and 30 days, the density rises more gradually with increasing period, and for periods longer than 30 days, the density drops gradually with increasing period. We estimate that 1%-3% of stars like the Sun are expected to have Earth analog planets, based on the Kepler data release of 2011 February. This estimate of {eta}{sub Earth} is based on extrapolation from a fiducial subsample of the Kepler planet candidates that we chose to be nominally 'complete' (i.e., no missed detections) to the realm of the Earth-like planets, by means of simple power-law models. The accuracy of the extrapolation will improve as more data from the Kepler mission are folded in. Accurate knowledge of {eta}{sub Earth} is essential for the planning of future missions that will image and take spectra of Earth-like planets. Our result that Earths are relatively scarce means that a substantial effort will be needed to identify suitable target stars prior to these future missions.

  18. Kepler Mission Development Challenges and Early Results

    NASA Technical Reports Server (NTRS)

    Fanson, James; Frerking, Margaret; Duren, Riley

    2011-01-01

    Kepler is NASA s first mission capable of detecting Earthsize planets orbiting in Habitable Zone of Sun-like stars. Objective is to measure how frequently planets of various sizes and orbits form around stars in the Milky Way. Kepler detects planets by measuring drop in brightness of star due to "transit" of a planet Earth-size planet transiting Sunlike star causes drop in brightness of only 84 parts per million

  19. The little photometer that could: technical challenges and science results from the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Dunnuck, Jeb

    2011-09-01

    The Kepler spacecraft launched on March 7, 2009, initiating NASA's first search for Earth-size planets orbiting Sun-like stars. Since launch, Kepler has announced the discovery of 17 exoplanets, including a system of six transiting a Sun-like star, Kepler-11, and the first confirmed rocky planet, Kepler-10b, with a radius of 1.4 that of Earth. Kepler is proving to be a cornucopia of discoveries: it has identified over 1200 candidate planets based on the first 120 days of observations, including 54 that are in or near the habitable zone of their stars, and 68 that are 1.2 Earth radii or smaller. An astounding 408 of these planetary candidates are found in 170 multiple systems, demonstrating the compactness and flatness of planetary systems composed of small planets. Never before has there been a photometer capable of reaching a precision near 20 ppm in 6.5 hours and capable of conducting nearly continuous and uninterrupted observations for months to years. In addition to exoplanets, Kepler is providing a wealth of astrophysics, and is revolutionizing the field of asteroseismology. Designing and building the Kepler photometer and the software systems that process and analyze the resulting data to make the discoveries presented a daunting set of challenges, including how to manage the large data volume. The challenges continue into flight operations, as the photometer is sensitive to its thermal environment, complicating the task of detecting 84 ppm drops in brightness corresponding to Earth-size planets transiting Sun-like stars.

  20. Inferring the Architectures of Planetary Systems from Kepler Results with SysSim

    NASA Astrophysics Data System (ADS)

    Ford, Eric

    NASA's Kepler Mission is designed to gather statistical information about planets around other stars (exoplanets). Due to its unprecedented precision, Kepler has revolutionized the exoplanet community providing by far the largest homogeneous exoplanet dataset, with over 2300 planet candidates already identified in the first 19 months of data (Batalha et al. 2012, hereafter B12). Even more exciting is Kepler's new discovery of "multi-transiting systems" or stars with more than one transiting planet. B12 identified over 350 multi-transiting systems containing nearly 900 high-probability candidate planets (Lissauer et al. 2012). These multi-transiting systems are the most information-rich planetary systems outside our own solar system because they offer both the detailed physical characterization uniquely available from transiting planets (Winn 2010) and the ability to apply the tools of multi- planetary orbital dynamics (Ragozzine & Holman 2010, Lissauer, Ragozzine et al. 2011, hereafter LR+11). Within the funding period, publicly-available Kepler observations will triple in duration, yielding hundreds of new planets in multi-transiting systems and providing first insights into the frequency of Earth-size planets and solar system analogs. As with all astronomical surveys, Kepler data must be debiased in order to understand the true properties of the underlying population. Several studies have addressed the geometrical and detection biases to perform statistical analyses of Kepler results on a planet-by-planet basis (e.g., Borucki et al. 2011, Howard et al. 2011, Youdin 2011, Catanzarite & Shao 2011, Traub 2011). Other authors have analyzed specific multi- transiting systems to measure physical and orbital properties that will inform planet formation theories (e.g., Lissauer et al. 2011a, Migaszewski et al. 2012). However, there is a critical gap between these two techniques: a method for debiasing the Kepler planet data while accounting for multi-planet systems

  1. Keeping Up With The Planets: Scaling Kepler's Data Analysis Pipeline To Handle An Increasingly Complex Volume Of Astronomical Data.

    NASA Astrophysics Data System (ADS)

    Klaus, Todd C.; Cote, M. T.; Girouard, F.; McCauliff, S. D.; Henze, C.; Twicken, J. D.; Li, J.; Tenenbaum, P.; Seader, S.; Clarke, B. D.; Quintana, E. V.; Jenkins, J. M.; Caldwell, D. A.

    2012-05-01

    NASA’s Kepler Space Telescope has collected data on over 190,000 targets (and counting) since launch on March 6th, 2009, resulting in a growing dataset that must be processed by the Kepler Science Pipeline. The algorithms that make up the pipeline are responsible for clearing the chaff of instrumental and astrophysical noise to detect and model the transit-like signals hidden underneath. We discuss how the Kepler pipeline infrastructure has evolved to meet the growing computational needs of these algorithms. The algorithms and other support software that make up the pipeline were largely developed before launch and tested with simulated data. When confronted with flight data from the Kepler instrument, the pipeline revealed that the higher than expected thermal sensitivity of the instrument, electronics noise and operational procedures all introduced artifacts to the data at levels comparable to, or higher than the sought after transit signals. In the months after launch the team of pipeline developers at the Kepler Science Operations Center (SOC) at NASA Ames Research Center toiled to update the pipeline software to identify and mitigate these artifacts where possible, work that continues today. The increase in complexity caused by these algorithm changes, along with a need for regular reprocessing of a growing dataset to support scientific data analysis and pipeline development created an increasing demand for computing resources. This need in turn drove the need for changes to the pipeline infrastructure software to extend pipeline algorithm execution to NASA’s Advanced Supercomputer (NAS). Use of the NAS as a computing resource allows the pipeline operator to spread the planetary transit search and data validation jobs across tens of thousands of processing cores. With a possible extended mission on the horizon, this need will only grow, and work to port the rest of the pipeline to the NAS has already begun.

  2. The host stars of Kepler's habitable exoplanets: superflares, rotation and activity

    NASA Astrophysics Data System (ADS)

    Armstrong, D. J.; Pugh, C. E.; Broomhall, A.-M.; Brown, D. J. A.; Lund, M. N.; Osborn, H. P.; Pollacco, D. L.

    2016-01-01

    We embark on a detailed study of the light curves of Kepler's most Earth-like exoplanet host stars using the full length of Kepler data. We derive rotation periods, photometric activity indices, flaring energies, mass-loss rates, gyrochronological ages, X-ray luminosities and consider implications for the planetary magnetospheres and habitability. Furthermore, we present the detection of superflares in the light curve of Kepler-438, the exoplanet with the highest Earth Similarity Index to date. Kepler-438b orbits at a distance of 0.166 au to its host star, and hence may be susceptible to atmospheric stripping. Our sample is taken from the Habitable Exoplanet Catalogue, and consists of the stars Kepler-22, Kepler-61, Kepler-62, Kepler-174, Kepler-186, Kepler-283, Kepler-296, Kepler-298, Kepler-438, Kepler-440, Kepler-442, Kepler-443 and KOI-4427, between them hosting 15 of the most habitable transiting planets known to date from Kepler.

  3. Light curve analysis for eclipsing systems with exoplanets. The systems Kepler-5b, Kepler-6b, and Kepler-7b

    NASA Astrophysics Data System (ADS)

    Gostev, N. Yu.

    2011-07-01

    High-accuracy light curves for the binaries with exoplanets Kepler-5b, Kepler-6b, and Kepler-7b have been analyzed. The radii of the stars and the planets and the orbital inclinations of the binaries are derived. Reliable estimates of the linear and quadratic limb-darkening coefficients and their confidence intervals (uncertainties) are presented.

  4. A SEARCH FOR EXOZODIACAL CLOUDS WITH KEPLER

    SciTech Connect

    Stark, Christopher C.; Boss, Alan P.; Weinberger, Alycia J.; Jackson, Brian K.; Endl, Michael; Cochran, William D.; Johnson, Marshall; Caldwell, Caroline; Agol, Eric; Ford, Eric B.; Hall, Jennifer R.; Ibrahim, Khadeejah A.

    2013-02-20

    Planets embedded within dust disks may drive the formation of large scale clumpy dust structures by trapping dust into resonant orbits. Detection and subsequent modeling of the dust structures would help constrain the mass and orbit of the planet and the disk architecture, give clues to the history of the planetary system, and provide a statistical estimate of disk asymmetry for future exoEarth-imaging missions. Here, we present the first search for these resonant structures in the inner regions of planetary systems by analyzing the light curves of hot Jupiter planetary candidates identified by the Kepler mission. We detect only one candidate disk structure associated with KOI 838.01 at the 3{sigma} confidence level, but subsequent radial velocity measurements reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk structure is a false positive. Using our null result, we place an upper limit on the frequency of dense exozodi structures created by hot Jupiters. We find that at the 90% confidence level, less than 21% of Kepler hot Jupiters create resonant dust clumps that lead and trail the planet by {approx}90 Degree-Sign with optical depths {approx}> 5 Multiplication-Sign 10{sup -6}, which corresponds to the resonant structure expected for a lone hot Jupiter perturbing a dynamically cold dust disk 50 times as dense as the zodiacal cloud.

  5. AN EFFICIENT AUTOMATED VALIDATION PROCEDURE FOR EXOPLANET TRANSIT CANDIDATES

    SciTech Connect

    Morton, Timothy D.

    2012-12-10

    Surveys searching for transiting exoplanets have found many more candidates than they have been able to confirm as true planets. This situation is especially acute with the Kepler survey, which has found over 2300 candidates but has to date confirmed only a small fraction of them as planets. I present here a general procedure that can quickly be applied to any planet candidate to calculate its false positive probability. This procedure takes into account the period, depth, duration, and shape of the signal; the colors of the target star; arbitrary spectroscopic or imaging follow-up observations; and informed assumptions about the populations and distributions of field stars and multiple-star properties. Applying these methods to a sample of known Kepler planets, I demonstrate that many signals can be validated with very limited follow-up observations: in most cases with only a spectrum and an adaptive optics image. Additionally, I demonstrate that this procedure can reliably identify false positive signals. Because of the computational efficiency of this analysis, it is feasible to apply it to all Kepler planet candidates in the near future, and it will streamline the follow-up efforts for Kepler and other current and future transit surveys.

  6. Urey Prize Lecture: Orbital Dynamics of Extrasolar Planets, Large and Small

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.

    2012-10-01

    For centuries, planet formation theories were fine tuned to explain the details of solar system. Since 1999, the Doppler technique has discovered dozens of multiple planet systems. The diversity of architectures of systems with giant planets challenged previous theories and led to insights into planet formation, orbital migration and the excitation of orbital eccentricities and inclinations. Recently, NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Precise measurements of the orbital period and phase constrain the significance of mutual gravitational interactions and potential orbital resonances. For systems that are tightly-packed or near an orbital resonance, measurements of transit timing variations provide a new means for confirming transiting planets and detecting non-transiting planets in multiple planet systems, even around faint target stars. Over the course of the extended mission, Kepler is poised to measure the gravitational effects of mutual planetary perturbations for 200 planets, providing precise (but complex) constraints on planetary masses, densities and orbits. I will survey the systems with multiple transiting planet candidates identified by Kepler and discuss early efforts to translate these observations into new constraints on the formation and orbital evolution of planetary systems with low-mass planets.

  7. A Test of Stellar Cohabitation in Multiple Transiting Planet Systems

    NASA Astrophysics Data System (ADS)

    Morehead, Robert C.; Ford, E. B.

    2013-01-01

    The Kepler mission has discovered over 2,300 exoplanet candidates, including more than 885 associated with target stars with multiple transiting planet candidates. While these putative multiple planet systems are predicted to have an extremely low false positive rate, it is important to test what fraction are indeed transiting a single star and what fraction are some sort of blend (e.g., one transiting planet and an eclipsing binary, or two planet-hosting stars blended within the photometric aperture). We perform such a test for stellar cohabitation using the observed distribution of ξ, the period-normalized transit duration ratio of pairs of transiting planet candidates. We developed a Bayesian framework to estimate the probability that two candidates orbit the target star based on the observed orbital periods and light curve properties with an emphasis on ξ. For priors distributions, we use empirical planet, binary star, and hierarchical triple star occurrence rates and galactic population synthesis models. Using Monte Carlo simulations, we calculate the implied distributions of ξ for all plausible blend scenarios; i.e., a planet around the target star and a background or physically associated eclipsing binary star, a planet around the the target star and a planet around a background or physically associated secondary star, as well as a single star with two planets and no blend. Finally, we compute the posterior probability that a given pair of transiting planet candidates are indeed a pair of planets in orbit around the target star given the observed values. We present the results of our test for a selection Kepler multiple planet candidates and for systems confirmed through other methods, such as transit timing variations. We demonstrate the utility of this technique for the confirmation and characterization of multiple transiting planet systems.

  8. THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS

    SciTech Connect

    Dressing, Courtney D.; Charbonneau, David

    2013-04-10

    We use the optical and near-infrared photometry from the Kepler Input Catalog to provide improved estimates of the stellar characteristics of the smallest stars in the Kepler target list. We find 3897 dwarfs with temperatures below 4000 K, including 64 planet candidate host stars orbited by 95 transiting planet candidates. We refit the transit events in the Kepler light curves for these planet candidates and combine the revised planet/star radius ratios with our improved stellar radii to revise the radii of the planet candidates orbiting the cool target stars. We then compare the number of observed planet candidates to the number of stars around which such planets could have been detected in order to estimate the planet occurrence rate around cool stars. We find that the occurrence rate of 0.5-4 R{sub Circled-Plus} planets with orbital periods shorter than 50 days is 0.90{sup +0.04}{sub -0.03} planets per star. The occurrence rate of Earth-size (0.5-1.4 R{sub Circled-Plus }) planets is constant across the temperature range of our sample at 0.51{sub -0.05}{sup +0.06} Earth-size planets per star, but the occurrence of 1.4-4 R{sub Circled-Plus} planets decreases significantly at cooler temperatures. Our sample includes two Earth-size planet candidates in the habitable zone, allowing us to estimate that the mean number of Earth-size planets in the habitable zone is 0.15{sup +0.13}{sub -0.06} planets per cool star. Our 95% confidence lower limit on the occurrence rate of Earth-size planets in the habitable zones of cool stars is 0.04 planets per star. With 95% confidence, the nearest transiting Earth-size planet in the habitable zone of a cool star is within 21 pc. Moreover, the nearest non-transiting planet in the habitable zone is within 5 pc with 95% confidence.

  9. The Exoplanet Census: A General Method Applied to Kepler

    NASA Astrophysics Data System (ADS)

    Youdin, Andrew N.

    2011-11-01

    We develop a general method to fit the underlying planetary distribution function (PLDF) to exoplanet survey data. This maximum likelihood method accommodates more than one planet per star and any number of planet or target star properties. We apply the method to announced Kepler planet candidates that transit solar-type stars. The Kepler team's estimates of the detection efficiency are used and are shown to agree with theoretical predictions for an ideal transit survey. The PLDF is fit to a joint power law in planet radius, down to 0.5 R ⊕, and orbital period, up to 50 days. The estimated number of planets per star in this sample is ~0.7-1.4, where the range covers systematic uncertainties in the detection efficiency. To analyze trends in the PLDF we consider four planet samples, divided between shorter and longer periods at 7 days and between large and small radii at 3 R ⊕. The size distribution changes appreciably between these four samples, revealing a relative deficit of ~3 R ⊕ planets at the shortest periods. This deficit is suggestive of preferential evaporation and sublimation of Neptune- and Saturn-like planets. If the trend and explanation hold, it would be spectacular observational support of the core accretion and migration hypotheses, and would allow refinement of these theories.

  10. Data validation in the Kepler Science Operations Center pipeline

    NASA Astrophysics Data System (ADS)

    Wu, Hayley; Twicken, Joseph D.; Tenenbaum, Peter; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Allen, Christopher; Chandrasekaran, Hema; Jenkins, Jon M.; Caldwell, Douglas A.; Wohler, Bill; Girouard, Forrest; McCauliff, Sean; Cote, Miles T.; Klaus, Todd C.

    2010-07-01

    We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed.

  11. THE EXOPLANET CENSUS: A GENERAL METHOD APPLIED TO KEPLER

    SciTech Connect

    Youdin, Andrew N.

    2011-11-20

    We develop a general method to fit the underlying planetary distribution function (PLDF) to exoplanet survey data. This maximum likelihood method accommodates more than one planet per star and any number of planet or target star properties. We apply the method to announced Kepler planet candidates that transit solar-type stars. The Kepler team's estimates of the detection efficiency are used and are shown to agree with theoretical predictions for an ideal transit survey. The PLDF is fit to a joint power law in planet radius, down to 0.5 R{sub Circled-Plus }, and orbital period, up to 50 days. The estimated number of planets per star in this sample is {approx}0.7-1.4, where the range covers systematic uncertainties in the detection efficiency. To analyze trends in the PLDF we consider four planet samples, divided between shorter and longer periods at 7 days and between large and small radii at 3 R{sub Circled-Plus }. The size distribution changes appreciably between these four samples, revealing a relative deficit of {approx}3 R{sub Circled-Plus} planets at the shortest periods. This deficit is suggestive of preferential evaporation and sublimation of Neptune- and Saturn-like planets. If the trend and explanation hold, it would be spectacular observational support of the core accretion and migration hypotheses, and would allow refinement of these theories.

  12. Advances in exoplanet science from Kepler.

    PubMed

    Lissauer, Jack J; Dawson, Rebekah I; Tremaine, Scott

    2014-09-18

    Numerous telescopes and techniques have been used to find and study extrasolar planets, but none has been more successful than NASA's Kepler space telescope. Kepler has discovered most of the known exoplanets, the smallest planets to orbit normal stars and the planets most likely to be similar to Earth. Most importantly, Kepler has provided us with our first look at the typical characteristics of planets and planetary systems for planets with sizes as small as, and orbits as large as, those of Earth. PMID:25230655

  13. From Pixels to Planets

    NASA Technical Reports Server (NTRS)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  14. Kepler Mission Development Challenges and Early Results

    NASA Technical Reports Server (NTRS)

    Fanson, J.; Duren, R.; Frerking, M.

    2011-01-01

    Kepler is NASA s first mission capable of detecting Earth-size planets orbiting in the habitable zone of stars other than the Sun. Kepler comprises a space telescope designed to continuously monitor the brightnesses of more than 100,000 target stars, and a ground segment to analyze the measured stellar light curves and detect the signatures of orbiting planets. In order to detect Earth-size planets orbiting Sun-like stars Kepler was designed to provide unprecedented photometric sensitivity and stability. This paper addresses some of the technical challenges encountered during the development of the Kepler mission and the measures taken to overcome them. Early scientific results are summarized.

  15. Kepler Mission Development Challenges and Early Results

    NASA Technical Reports Server (NTRS)

    Fanson, J.

    2011-01-01

    Kepler is NASA`s first mission capable of detecting Earth-size planets orbiting in the habitable zone of stars other than the sun. Kepler comprises a space telescope designed to continuously monitor the brightnesses of more than 100,000 target stars, and a ground segment to analyze the measured stellar light curves and detect the signatures of orbiting planets. In order to detect Earth-size planets orbiting Sun-like stars Kepler was designed to provide unprecedented photometric sensitivity and stability. This paper addresses some of the technical challenges encountered during the development of the Kepler mission and the measures taken to overcome them. Early scientific results are summarized.

  16. Transit Model Fitting in the Kepler Science Operations Center Pipeline

    NASA Astrophysics Data System (ADS)

    Li, Jie; Burke, C. J.; Jenkins, J. M.; Quintana, E. V.; Rowe, J. F.; Seader, S. E.; Tenenbaum, P.; Twicken, J. D.

    2012-05-01

    We describe the algorithm and performance of the transit model fitting of the Kepler Science Operations Center (SOC) Pipeline. Light curves of long cadence targets are subjected to the Transiting Planet Search (TPS) component of the Kepler SOC Pipeline. Those targets for which a Threshold Crossing Event (TCE) is generated in the transit search are subsequently processed in the Data Validation (DV) component. The light curves may span one or more Kepler observing quarters, and data may not be available for any given target in all quarters. Transit model parameters are fitted in DV to transit-like signatures in the light curves of target stars with TCEs. The fitted parameters are used to generate a predicted light curve based on the transit model. The residual flux time series of the target star, with the predicted light curve removed, is fed back to TPS to search for additional TCEs. The iterative process of transit model fitting and transiting planet search continues until no TCE is generated from the residual flux time series or a planet candidate limit is reached. The transit model includes five parameters to be fitted: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. The initial values of the fit parameters are determined from the TCE values provided by TPS. A limb darkening model is included in the transit model to generate the predicted light curve. The transit model fitting results are used in the diagnostic tests in DV, such as the centroid motion test, eclipsing binary discrimination tests, etc., which helps to validate planet candidates and identify false positive detections. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.

  17. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    SciTech Connect

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Fabrycky, Daniel C.

    2014-02-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levels in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.

  18. Extended study of the Surface Heterogeneity of candidate dwarf-planets (II)

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, Noemi; Emery, Joshua; Cruikshank, Dale P.

    2016-08-01

    We propose to continue with our investigation of the volatile activity and migration of volatiles on dwarf-planets (DP) and some candidates to dwarf-planets (CDP). We also extend this study to cover the list of targets for the Kuiper Extended Mission (KEM, second phase of New horizons mission submitted by the New Horizons Team to NASA for extension, and yet to be approved) and extend our continuous monitoring of Pluto's surface. Surface heterogeneity on these bodies can be indicative of the presence of an atmosphere, and active collisional history, or even cometary activity. In cycle 12 we were awarded with ~ 38hr to study three DPs and three CDPs. Five of these objects have been announced in 2016 as targets of the KEM. On cycle 13 we ask for 145.5 hours to study 11 CDP plus five targets of the KEM (one object belongs to both lists but will be observed only once) plus Pluto. By using the proven capability of Spitzer to detect and map the presence of volatile ices, complex organics and silicates on the surface of these distant bodies, we will 1) test the hypothesis that KBOs on the scale of >450 km in diameter could retain a higher content of volatiles than the smaller and more abundant KBOs; 2) characterize the distribution of silicates/organics/ices on the surface of these bodies. These points are key to understanding chemical and dynamical history of the outer Solar System, which acts as a model for the new systems discovered around other stars. Our study will be be of special interest in the eve of James Webb Telescope operation, in 2019 and will pave the road for a detailed characterization of the targets of the Kuiper Extended Mission (if approved).

  19. Hubble space telescope high-resolution imaging of Kepler small and cool exoplanet host stars

    SciTech Connect

    Gilliland, Ronald L.; Cartier, Kimberly M. S.; Wright, Jason T.; Adams, Elisabeth R.; Ciardi, David R.

    2015-01-01

    High-resolution imaging is an important tool for follow-up study of exoplanet candidates found via transit detection with the Kepler mission. We discuss here Hubble Space Telescope imaging with the WFC3 of 23 stars that host particularly interesting Kepler planet candidates based on their small size and cool equilibrium temperature estimates. Results include detections, exclusion of background stars that could be a source of false positives for the transits, and detection of physically associated companions in a number of cases providing dilution measures necessary for planet parameter refinement. For six Kepler objects of interest, we find that there is ambiguity regarding which star hosts the transiting planet(s), with potentially strong implications for planetary characteristics. Our sample is evenly distributed in G, K, and M spectral types. Albeit with a small sample size, we find that physically associated binaries are more common than expected at each spectral type, reaching a factor of 10 frequency excess in M. We document the program detection sensitivities, detections, and deliverables to the Kepler follow-up program archive.

  20. Eight planets in four multi-planet systems via transit timing variations in 1350 days

    SciTech Connect

    Yang, Ming; Liu, Hui-Gen; Zhang, Hui; Yang, Jia-Yi; Zhou, Ji-Lin E-mail: huigen@nju.edu.cn

    2013-12-01

    Analysis of the transit timing variations (TTVs) of candidate pairs near mean-motion resonances (MMRs) is an effective method to confirm planets. Hitherto, 68 planets in 34 multi-planet systems have been confirmed via TTVs. We analyze the TTVs of all candidates from the most recent Kepler data with a time span of upto about 1350 days (Q0-Q15). The anti-correlations of TTV signals and the mass upper limits of candidate pairs in the same system are calculated using an improved method suitable for long-period TTVs. If the false alarm probability of a candidate pair is less than 10{sup –3} and the mass upper limit for each candidate is less than 13 M {sub J}, we confirm them as planets in the same system. Finally, eight planets in four multi-planet systems are confirmed via analysis of their TTVs. All of the four planet pairs are near first-order MMRs, including KOI-2672 near 2:1 MMR and KOI-1236, KOI-1563, and KOI-2038 near 3:2 MMR. Four planets have relatively long orbital periods (>35 days). KOI-2672.01 has an orbital period of 88.51658 days and a fit mass of 17 M {sub ⊕}. To date, it is the longest-period planet confirmed near a first-order MMR via TTVs.

  1. Flicker, Jitter, Crackle: Lifting the Veil on Stellar Variability and Understanding its Impact on Planet Detection with Kepler

    NASA Astrophysics Data System (ADS)

    Bastien, Fabienne A.; Stassun, K.; Basri, G. S.; Pepper, J.

    2014-01-01

    The high-precision light curves obtained by NASA's Kepler mission unveiled a rich variety of photometric behavior in Sun-like stars. Using only long-cadence light curves and different ways of characterizing the stellar photometric variability, we examine how magnetic activity and radial velocity (RV) “jitter” both manifest photometrically. First, we present a unified picture of how the photometric behavior of Sun-like stars on time scales of hours to days evolves with time through an “evolutionary diagram” that involves only three simple measures of photometric variability. In this diagram, we observe clear evolutionary sequences: the light curves of the stars become "quieter" as the stellar spot coverage decreases with time, but they become suddenly and significantly more complex (they “crackle”) as the stars approach their evolution off the main-sequence and spots no longer dominate the brightness variations. Using an asteroseismically analyzed sample of stars, we demonstrate that the sequences in our diagram are a strong function of stellar surface gravity, yielding a simple tool - “flicker” - to accurately measure surface gravity to better than 0.1 dex with just the long-cadence light curve. We next use this diagram to gain insight into the RV jitter of magnetically inactive stars, stars that exhibit RV jitter ranging from less than 3 m/s to over 130 m/s despite their low levels of magnetic activity and low levels of photometric variability. We find that photometric complexity (“crackle”), linked to higher frequency photometric variations, drives the RV jitter of these stars. Finally, we close the loop on our study with Ca II H&K magnetic activity measurements of over 700 Kepler stars, and we relate magnetic activity to our photometric variability evolutionary sequences.

  2. Where Are All The Earth Twins Hiding? Measuring the Detection Efficiency of the Kepler Pipeline

    NASA Astrophysics Data System (ADS)

    Christiansen, Jessie; Clarke, Bruce; Burke, Christopher J.; Seader, Shawn; Jenkins, Jon Michael; Twicken, Joseph D.; Smith, Jeffrey C.; Batalha, Natalie M.; Haas, Michael R.; Thompson, Susan E.; Campbell, Jennifer; Catanzarite, Joseph

    2016-01-01

    We present the results of the first measurement of the Kepler pipeline detection efficiency that explores the full Kepler observation baseline, the full field of view, and uses the same code as that used to generate the planet candidate catalogue. The full table of nearly 160,000 injections, including their parameters and recovery status, is publicly available at the NASA Exoplanet Archive; we demonstrate a worked example starting from the table to illustrate use cases. We find that there are significant differences in detection efficiency across transit period (lower efficiency at longer periods than expected from pure signal-to-noise estimates) and across stellar type (lower efficiency for giant stars than expected). The former highlights the difficulty in detecting Earth-like planets in the Kepler data; the latter the importance of starting from a well-characterised stellar sample.

  3. News and Views: Keep it down! AU becomes au, and is defined in metres; Kepler survey announces two planets in a binary star system; Is there plate tectonics on Mars? Vaporizing Earth - for research!

    NASA Astrophysics Data System (ADS)

    2012-10-01

    Division 1 of the IAU recommended that the astronomical unit - originally the length of the semi-major axis of the Earth's orbit - be redefined as a fixed number of kilometres. A team of observers using data from NASA's Kepler space observatory announced at the IAU General Assembly that they had discovered two planets orbiting a pair of binary stars, and that such planets could exist in the habitable zone of their system. The Red Planet has long been considered something of a dead planet as far as tectonic movements of its crust, but careful analysis of thermal and topographic images of the surface suggest the existence of major faults with horizontal slip along the Valles Marineris. The question of what would happen if Earth were to approach the Sun and start vaporizing has been modelled in order to help to model the composition of super-Earths.

  4. The Kepler End-to-End Data Pipeline: From Photons to Far Away Worlds

    NASA Technical Reports Server (NTRS)

    Cooke, Brian; Thompson, Richard; Standley, Shaun

    2012-01-01

    Launched by NASA on 6 March 2009, the Kepler Mission has been observing more than 100,000 targets in a single patch of sky between the constellations Cygnus and Lyra almost continuously for the last two years looking for planetary systems using the transit method. As of October 2011, the Kepler spacecraft has collected and returned to Earth just over 290 GB of data, identifying 1235 planet candidates with 25 of these candidates confirmed as planets via ground observation. Extracting the telltale signature of a planetary system from stellar photometry where valid signal transients can be small as a 40 ppm is a difficult and exacting task. The end-to end processing of determining planetary candidates from noisy, raw photometric measurements is discussed.

  5. Brown dwarf candidates from the PennState-Toruń Planet Search with the Hobby-Eberly Telescope .

    NASA Astrophysics Data System (ADS)

    Niedzielski, A.; Wolszczan, A.; Adamów, M.; Nowak, G.; Deka, B.; Górecka, M.; Kowalik, K.

    We present preliminary results of a brown dwarf (BD) detection in a ˜1000 star sample monitored with the ongoing PennState-Toruń Centre for Astronomy Planet Search. Contrary to most other projects, our sample contains a substantial fraction of evolved stars ranging from sub-giants up to bright giants, allowing us to study companions to stars more massive than ˜1.5 M⊙. For Main Sequence stars, this limit is set by effective temperature and rotation velocity. Our relatively long list of about a dozen candidates suggests that the BD frequency may rise with stellar mass as it does in the case of planets \\citep{lm2007}.

  6. IN SITU ACCRETION OF HYDROGEN-RICH ATMOSPHERES ON SHORT-PERIOD SUPER-EARTHS: IMPLICATIONS FOR THE KEPLER-11 PLANETS

    SciTech Connect

    Ikoma, M.; Hori, Y. E-mail: yasunori.hori@nao.ac.jp

    2012-07-01

    Motivated by recent discoveries of low-density super-Earths with short orbital periods, we have investigated in situ accretion of H-He atmospheres on rocky bodies embedded in dissipating warm disks, by simulating quasi-static evolution of atmospheres that connect to the ambient disk. We have found that the atmospheric evolution has two distinctly different outcomes, depending on the rocky body's mass: while the atmospheres on massive rocky bodies undergo runaway disk-gas accretion, those on light rocky bodies undergo significant erosion during disk dispersal. In the atmospheric erosion, the heat content of the rocky body that was previously neglected plays an important role. We have also realized that the atmospheric mass is rather sensitive to disk temperature in the mass range of interest in this study. Our theory is applied to recently detected super-Earths orbiting Kepler-11 to examine the possibility that the planets are rock-dominated ones with relatively thick H-He atmospheres. The application suggests that the in situ formation of the relatively thick H-He atmospheres inferred by structure modeling is possible only under restricted conditions, namely, relatively slow disk dissipation and/or cool environments. This study demonstrates that low-density super-Earths provide important clues to understanding of planetary accretion and disk evolution.

  7. Evolutionary outcomes for pairs of planets undergoing orbital migration and circularization: second-order resonances and observed period ratios in Kepler's planetary systems

    NASA Astrophysics Data System (ADS)

    Xiang-Gruess, M.; Papaloizou, J. C. B.

    2015-05-01

    In order to study the origin of the architectures of low-mass planetary systems, we perform numerical surveys of the evolution of pairs of coplanar planets in the mass range (1-4) M⊕. These evolve for up to 2 × 107 yr under a range of orbital migration torques and circularization rates assumed to arise through interaction with a protoplanetary disc. Near the inner disc boundary, significant variations of viscosity, interaction with density waves or with the stellar magnetic field could occur and halt migration, but allow circularization to continue. This was modelled by modifying the migration and circularization rates. Runs terminated without an extended period of circularization in the absence of migration torques gave rise to either a collision, or a system close to a resonance. These were mostly first order with a few per cent terminating in second-order resonances. Both planetary eccentricities were small <0.1 and all resonant angles liberated. This type of survey produced only a limited range of period ratios and cannot reproduce Kepler observations. When circularization alone operates in the final stages, divergent migration occurs causing period ratios to increase. Depending on its strength the whole period ratio range between 1 and 2 can be obtained. A few systems close to second-order commensurabilities also occur. In contrast to when arising through convergent migration, resonant trapping does not occur and resonant angles circulate. Thus, the behaviour of the resonant angles may indicate the form of migration that led to near resonance.

  8. Visual Analysis and Comparison of Kepler Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Kane, Mackenzie; Ragozzine, Darin; Holczer, Tomer; Mazeh, Tsevi; Rowe, Jason

    2016-01-01

    NASA's Kepler Space Telescope is designed to find extrasolar planets by watching a section of the sky and observing if an object transits in front its parent star. By noticing the dimming and brightening of the star as a prospective transit occurs, Kepler records the times when the planet moves in front of its star. If other planets are gravitationally influencing the transiting planet, the planet might transit late or early; these deviations from a perfectly periodic set of transits are called "transit timing variations (TTVs). Therefore, Kepler TTVs are useful in determining exoplanet masses which are hard to measure in other ways.We decided to visually analyze the TTV data of all ~6000 Kepler objects of interest (KOIs) to determine whether interesting TTV signals would be missed by purely statistical analyses. Using data from Rowe et al. 2014 and Holczer et al. 2015, submitted, we created combined TTV plots, periodigrams, and folded quadratic+sinusoid fits. The raw TTV data and ancillary plots were visually inspected for each of the ~6000 KOIs. To find the most likely KOIs containing visible TTVs and to organize the over 6000 KOIs analyzed, a rating system was developed based on numerous visual factors. These rating factors include the amount of outliers, if there is a clear sinusoidal period within the folded plots, and if there is a clear peak in the periodigram. By sorting KOIs as such, we were able to compare our findings of the strongest candidates with the same KOIs statistically analyzed by Holczer et al. 2015 (submitted, see also Mazeh et al. 2013).It was found that the majority of our findings matched those of Holczer et al. 2015, with only small discrepancies that were understandable based on our different methodologies. Our visual inspection of the full list of KOIs contributed multiple systems that were not included in the initial list of KOIs with significant TTVs identified statistically.

  9. Measuring Doppler Beaming with Kepler and TESS

    NASA Astrophysics Data System (ADS)

    Mayorga, Laura; Jackiewicz, Jason

    2016-01-01

    The Kepler mission offered unparalleled insight into stellar systems. Due to Kepler's high precision photometry, we can study the reflected light from a planet, the ellipsoidal variations of a star, and the small Doppler beaming signal due to the gravitational interaction between a planet and host star. To predict how the beaming signal varies as a function of stellar system parameters, we numerically simulate the beaming signals both Kepler and the upcoming Transiting Exoplanet Survey Satellite (TESS) would detect. We predict what mass planets TESS will be capable of detecting given the solar neighborhood population of stars and known population of exoplanets. Doppler beaming is largest for massive, short-period planets around cool stars and is more easily detectable by Kepler than TESS. Kepler's advantage is its bluer bandpass, longer time baseline, and higher precision.

  10. A LACK OF SHORT-PERIOD MULTIPLANET SYSTEMS WITH CLOSE-PROXIMITY PAIRS AND THE CURIOUS CASE OF KEPLER-42

    SciTech Connect

    Steffen, Jason H.; Farr, Will M.

    2013-09-01

    Many Kepler multiplanet systems have planet pairs near low-order, mean-motion resonances. In addition, many Kepler multiplanet systems have planets with orbital periods less than a few days. With the exception of Kepler-42, however, there are no examples of systems with both short orbital periods and nearby companion planets while our statistical analysis predicts {approx}17 such pairs. For orbital periods of the inner planet that are less than three days, the minimum period ratio of adjacent planet pairs follows the rough constraint P{identical_to}P{sub 2}/P{sub 1}{approx}>2.3 (P{sub 1}/day){sup -2/3}. This absence is not due to a lack of planets with short orbital periods. We also show a statistically significant excess of small, single-candidate systems with orbital periods below three days over the number of multiple candidate systems with similar periods-perhaps a small-planet counterpart to the hot Jupiters.

  11. STRONG CONSTRAINTS TO THE PUTATIVE PLANET CANDIDATE AROUND VB 10 USING DOPPLER SPECTROSCOPY

    SciTech Connect

    Anglada-Escude, Guillem; Shkolnik, Evgenya L.; Weinberger, Alycia J.; Thompson, Ian B.; Osip, David J.; Debes, John H. E-mail: shkolnik@dtm.ciw.edu E-mail: ian@obs.carnegiescience.edu E-mail: john.H.debes@nasa.gov

    2010-03-01

    We present new radial velocity (RV) measurements of the ultra-cool dwarf VB 10, which was recently announced to host a giant planet detected with astrometry. The new observations were obtained using optical spectrographs (MIKE/Magellan and ESPaDOnS/CFHT) and cover 65% of the reported period of 270 days. The nominal precision of the new Doppler measurements is about 150 m s{sup -1} while their standard deviation is 250 m s{sup -1}. However, there are indications that such a larger variation is due to uncontrolled systematic errors. We apply least-squares periodograms to identify the most significant signals and evaluate their false alarm probabilities (FAPs). We show that this method is the proper generalization to astrometric data because (1) it mitigates the coupling of the orbital parameters with the parallax and proper motion, and (2) it permits a direct generalization to include nonlinear Keplerian parameters in a combined fit to astrometry and RV data. Our analysis of the astrometry alone uncovers the reported 270 day period and an even stronger signal at {approx}50 days. We estimate the uncertainties in the parameters using a Markov chain Monte Carlo approach. Although the new data alone cannot rule out the presence of a candidate, when combined with published RV measurements, the FAPs of the best solutions grow to unacceptable levels strongly suggesting that the observed astrometric wobble is not due to an unseen companion. The new measurements put an upper limit of m sin i {approx} 2.5 m {sub jup} for a companion with a period shorter than one year and moderate eccentricities.

  12. Magnitudes of selected stellar occultation candidates for Pluto and other planets, with new predictions for Mars and Jupiter

    NASA Technical Reports Server (NTRS)

    Sybert, C. B.; Bosh, A. S.; Sauter, L. M.; Elliot, J. L.; Wasserman, L. H.

    1992-01-01

    Occultation predictions for the planets Mars and Jupiter are presented along with BVRI magnitudes of 45 occultation candidates for Mars, Jupiter, Saturn, Uranus, and Pluto. Observers can use these magnitudes to plan observations of occultation events. The optical depth of the Jovian ring can be probed by a nearly central occultation on 1992 July 8. Mars occults an unusually red star in early 1993, and the occultations for Pluto involving the brightest candidates would possibly occur in the spring of 1992 and the fall of 1993.

  13. Kepler's Orbit

    NASA Video Gallery

    Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...

  14. On The Nature Of Small Planets Around K And M Stars

    NASA Astrophysics Data System (ADS)

    Gaidos, Eric; Fischer, D. A.; Lepine, S.; Mann, A. W.

    2011-09-01

    We compare 1406 Keck/HIRES radial velocity measurements of 172 late K and early M stars to a model based on Kepler candidate planet radii and a planetary mass-radius relation. The observed distribution of radial velocity variation can be closely reproduced by the model, but only if Kepler observations are 50% complete for these spectral types. Stellar noise on orbital timescales may partly explain this discrepancy. Alternatively, the distribution of stars hosting candidate Kepler planets with visible and near-infrared colors and log g suggests that many K-type Kepler targets are subgiants or giants, around which small planets are very difficult to detect. Our comparison of observed and predicted radial velocity variations constrains the mass-radius relation of planets much smaller than Neptune (<3 Earth radii). The index alpha of a power-law relation is highly correlated with systematic noise, but for a noise level of 3 m/s, alpha 4. Alternatively, a uniform density mass-radius relation requires a density beta (relative to Earth) 2. These findings indicate that rocky planets dominate the planet population on close orbits around late K and early M dwarfs. This work has been funded by the NSF Astronomy & Astrophysics program, the NASA Astrobiology program, and the NASA Origins of Solar Systems program.

  15. TRANSIT TIMING OBSERVATIONS FROM KEPLER. II. CONFIRMATION OF TWO MULTIPLANET SYSTEMS VIA A NON-PARAMETRIC CORRELATION ANALYSIS

    SciTech Connect

    Ford, Eric B.; Moorhead, Althea V.; Morehead, Robert C.; Fabrycky, Daniel C.; Carter, Joshua A.; Fressin, Francois; Holman, Matthew J.; Ragozzine, Darin; Charbonneau, David; Lissauer, Jack J.; Rowe, Jason F.; Borucki, William J.; Bryson, Stephen T.; Burke, Christopher J.; Caldwell, Douglas A.; Welsh, William F.; Allen, Christopher; Buchhave, Lars A.; Collaboration: Kepler Science Team; and others

    2012-05-10

    We present a new method for confirming transiting planets based on the combination of transit timing variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies is in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the TTVs of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple-planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets and planets around faint stars for which Doppler follow-up is not practical with existing facilities. Continued Kepler observations will dramatically improve the constraints on the planet masses and orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations were extended to eight years, then a similar analysis could likely confirm systems with multiple closely spaced, small transiting planets in or near the habitable zone of solar-type stars.

  16. Transit Timing Observations from Kepler: II. Confirmation of Two Multiplanet Systems via a Non-parametric Correlation Analysis

    SciTech Connect

    Ford, Eric B.; Fabrycky, Daniel C.; Steffen, Jason H.; Carter, Joshua A.; Fressin, Francois; Holman, Matthew J.; Lissauer, Jack J.; Moorhead, Althea V.; Morehead, Robert C.; Ragozzine, Darin; Rowe, Jason F.; /NASA, Ames /SETI Inst., Mtn. View /San Diego State U., Astron. Dept.

    2012-01-01

    We present a new method for confirming transiting planets based on the combination of transit timing variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies are in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the transit timing variations of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets and planets around faint stars for which Doppler follow-up is not practical with existing facilities. Continued Kepler observations will dramatically improve the constraints on the planet masses and orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations were extended to eight years, then a similar analysis could likely confirm systems with multiple closely spaced, small transiting planets in or near the habitable zone of solar-type stars.

  17. THE ALBEDOS OF KEPLER'S CLOSE-IN SUPER-EARTHS

    SciTech Connect

    Demory, Brice-Olivier

    2014-07-01

    Exoplanet research focusing on the characterization of super-Earths is currently limited to the handful of targets orbiting bright stars that are amenable to detailed study. This Letter proposes to look at alternative avenues to probe the surface and atmospheric properties of this category of planets, known to be ubiquitous in our galaxy. I conduct Markov Chain Monte Carlo light-curves analyses for 97 Kepler close-in R{sub P} ≲ 2.0 R {sub ⊕} super-Earth candidates with the aim of detecting their occultations at visible wavelengths. Brightness temperatures and geometric albedos in the Kepler bandpass are constrained for 27 super-Earth candidates. A hierarchical Bayesian modeling approach is then employed to characterize the population-level reflective properties of these close-in super-Earths. I find median geometric albedos A{sub g} in the Kepler bandpass ranging between 0.16 and 0.30, once decontaminated from thermal emission. These super-Earth geometric albedos are statistically larger than for hot Jupiters, which have medians A{sub g} ranging between 0.06 and 0.11. A subset of objects, including Kepler-10b, exhibit significantly larger albedos (A{sub g} ≳ 0.4). I argue that a better understanding of the incidence of stellar irradation on planetary surface and atmospheric processes is key to explain the diversity in albedos observed for close-in super-Earths.

  18. Using a generalized version of the Titius-Bode relation to extrapolate the patterns seen in Kepler multi-exoplanet systems, and estimate the average number of planets in circumstellar habitable zones

    NASA Astrophysics Data System (ADS)

    Lineweaver, Charles H.

    2015-08-01

    The Titius-Bode (TB) relation’s successful prediction of the period of Uranus was the main motivation that led to the search for another planet between Mars and Jupiter. This search led to the discovery of the asteroid Ceres and the rest of the asteroid belt. The TB relation can also provide useful hints about the periods of as-yet-undetected planets around other stars. In Bovaird & Lineweaver (2013) [1], we used a generalized TB relation to analyze 68 multi-planet systems with four or more detected exoplanets. We found that the majority of exoplanet systems in our sample adhered to the TB relation to a greater extent than the Solar System does. Thus, the TB relation can make useful predictions about the existence of as-yet-undetected planets in Kepler multi-planet systems. These predictions are one way to correct for the main obstacle preventing us from estimating the number of Earth-like planets in the universe. That obstacle is the incomplete sampling of planets of Earth-mass and smaller [2-5]. In [6], we use a generalized Titius-Bode relation to predict the periods of 228 additional planets in 151 of these Kepler multiples. These Titius-Bode-based predictions suggest that there are, on average, 2±1 planets in the habitable zone of each star. We also estimate the inclination of the invariable plane for each system and prioritize our planet predictions by their geometric probability to transit. We highlight a short list of 77 predicted planets in 40 systems with a high geometric probability to transit, resulting in an expected detection rate of ~15 per cent, ~3 times higher than the detection rate of our previous Titius-Bode-based predictions.References: [1] Bovaird, T. & Lineweaver, C.H (2013) MNRAS, 435, 1126-1138. [2] Dong S. & Zhu Z. (2013) ApJ, 778, 53 [3] Fressin F. et al. (2013) ApJ, 766, 81 [4] Petigura E. A. et al. (2013) PNAS, 110, 19273 [5] Silburt A. et al. (2014), ApJ (arXiv:1406.6048v2) [6] Bovaird, T., Lineweaver, C.H. & Jacobsen, S.K. (2015, in

  19. ARE PLANETARY SYSTEMS FILLED TO CAPACITY? A STUDY BASED ON KEPLER RESULTS

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2013-04-20

    We used a sample of Kepler candidate planets with orbital periods less than 200 days and radii between 1.5 and 30 Earth radii (R{sub Circled-Plus }) to determine the typical dynamical spacing of neighboring planets. To derive the intrinsic (i.e., free of observational bias) dynamical spacing of neighboring planets, we generated populations of planetary systems following various dynamical spacing distributions, subjected them to synthetic observations by the Kepler spacecraft, and compared the properties of observed planets in our simulations with actual Kepler detections. We found that, on average, neighboring planets are spaced 21.7 mutual Hill radii apart with a standard deviation of 9.5. This dynamical spacing distribution is consistent with that of adjacent planets in the solar system. To test the packed planetary systems hypothesis, the idea that all planetary systems are dynamically packed or filled to capacity, we determined the fraction of systems that are dynamically packed by performing long-term (10{sup 8} years) numerical simulations. In each simulation, we integrated a system with planets spaced according to our best-fit dynamical spacing distribution but containing an additional planet on an intermediate orbit. The fraction of simulations exhibiting signs of instability provides an approximate lower bound on the fraction of systems that are dynamically packed; we found that {>=}31%, {>=}35%, and {>=}45% of two-planet, three-planet, and four-planet systems are dynamically packed, respectively. Such sizeable fractions suggest that many planetary systems are indeed filled to capacity. This feature of planetary systems is another profound constraint that formation and evolution models must satisfy.

  20. K2's First Five-Planet System

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Whats the latest from the Kepler K2 mission? K2 has found its first planetary system containing more than three planets an exciting five-planet system located ~380 light-years from Earth!Opportunities From K2Raw K2 light curve (blue, top) and systematic corrected light curve (orange, bottom) for HIP 41378. The three deepest transits are single transits from the three outermost planet candidates. [Vanderburg et al. 2016]The original Kepler mission was enormously successful, discovering thousands of planet candidates. But one side effect of Keplers original observing technique, in which it studied the same field for four years, is that it was very good at detecting extremely faint systems systems that were often too faint to be followed up with other techniques.After Keplers mechanical failure in 2013, the K2 mission was launched, in which the spacecraft uses solar pressure to stabilize it long enough to perform an 80-day searches of each region it examines. Over the course of the K2 mission, Kepler could potentially survey up to 20 times the sky area of the original mission, providing ample opportunity to find planetary systems around bright stars. These stars may be bright enough to be followed up with other techniques.Multi-Planet SystemsTheres a catch to the 80-day observing program: the K2 mission is less likely to detect multiple planets orbiting the same star, due to the short time spent observing the system. While the original Kepler mission detected systems with up to seven planets, K2 had yet to detect systems with more than three candidates until now.Led by Andrew Vanderburg (NSF Graduate Research Fellow at the Harvard-Smithsonian Center for Astrophysics), a team of scientists recentlyanalyzed K2 observations ofthe bright star HIP 41378. Theteamfound that this F-type star hosts five potential planetary candidates!Phase-folded light curve for each of the five transiting planets in the HIP 41378 system. The outermost planet (bottom panel) may provide an

  1. The detection and characterization of a nontransiting planet by transit timing variations.

    PubMed

    Nesvorný, David; Kipping, David M; Buchhave, Lars A; Bakos, Gáspár Á; Hartman, Joel; Schmitt, Allan R

    2012-06-01

    The Kepler mission is monitoring the brightness of ~150,000 stars, searching for evidence of planetary transits. As part of the Hunt for Exomoons with Kepler (HEK) project, we report a planetary system with two confirmed planets and one candidate planet discovered with the publicly available data for KOI-872. Planet b transits the host star with a period P(b) = 33.6 days and exhibits large transit timing variations indicative of a perturber. Dynamical modeling uniquely detects an outer nontransiting planet c near the 5:3 resonance (P(c) = 57.0 days) with a mass 0.37 times that of Jupiter. Transits of a third planetary candidate are also found: a 1.7-Earth radius super-Earth with a 6.8-day period. Our analysis indicates a system with nearly coplanar and circular orbits, reminiscent of the orderly arrangement within the solar system. PMID:22582018

  2. Strong Constraints to the Putative Planet Candidate around VB 10 Using Doppler Spectroscopy

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, Guillem; Shkolnik, Evgenya L.; Weinberger, Alycia J.; Thompson, Ian B.; Osip, David J.; Debes, John H.

    2010-03-01

    We present new radial velocity (RV) measurements of the ultra-cool dwarf VB 10, which was recently announced to host a giant planet detected with astrometry. The new observations were obtained using optical spectrographs (MIKE/Magellan and ESPaDOnS/CFHT) and cover 65% of the reported period of 270 days. The nominal precision of the new Doppler measurements is about 150 m s-1 while their standard deviation is 250 m s-1. However, there are indications that such a larger variation is due to uncontrolled systematic errors. We apply least-squares periodograms to identify the most significant signals and evaluate their false alarm probabilities (FAPs). We show that this method is the proper generalization to astrometric data because (1) it mitigates the coupling of the orbital parameters with the parallax and proper motion, and (2) it permits a direct generalization to include nonlinear Keplerian parameters in a combined fit to astrometry and RV data. Our analysis of the astrometry alone uncovers the reported 270 day period and an even stronger signal at ~50 days. We estimate the uncertainties in the parameters using a Markov chain Monte Carlo approach. Although the new data alone cannot rule out the presence of a candidate, when combined with published RV measurements, the FAPs of the best solutions grow to unacceptable levels strongly suggesting that the observed astrometric wobble is not due to an unseen companion. The new measurements put an upper limit of m sin i ~ 2.5 m jup for a companion with a period shorter than one year and moderate eccentricities. Based on observations collected with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, at the W. M. Keck Observatory, and the Canada-France-Hawaii Telescope (CFHT). The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck

  3. THE HUNT FOR EXOMOONS WITH KEPLER (HEK). I. DESCRIPTION OF A NEW OBSERVATIONAL PROJECT

    SciTech Connect

    Kipping, D. M.; Bakos, G. A.; Buchhave, L.; Nesvorny, D.; Schmitt, A.

    2012-05-10

    Two decades ago, empirical evidence concerning the existence and frequency of planets around stars, other than our own, was absent. Since that time, the detection of extrasolar planets from Jupiter-sized to, most recently, Earth-sized worlds has blossomed and we are finally able to shed light on the plurality of Earth-like, habitable planets in the cosmos. Extrasolar moons may also be frequently habitable worlds, but their detection or even systematic pursuit remains lacking in the current literature. Here, we present a description of the first systematic search for extrasolar moons as part of a new observational project called 'The Hunt for Exomoons with Kepler' (HEK). The HEK project distills the entire list of known transiting planet candidates found by Kepler (2326 at the time of writing) down to the most promising candidates for hosting a moon. Selected targets are fitted using a multimodal nested sampling algorithm coupled with a planet-with-moon light curve modeling routine. By comparing the Bayesian evidence of a planet-only model to that of a planet-with-moon, the detection process is handled in a Bayesian framework. In the case of null detections, upper limits derived from posteriors marginalized over the entire prior volume will be provided to inform the frequency of large moons around viable planetary hosts, {eta} leftmoon. After discussing our methodologies for target selection, modeling, fitting, and vetting, we provide two example analyses.

  4. Characterizing K2 Planet Discoveries

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew; Montet, Benjamin; Johnson, John; Buchhave, Lars A.; Zeng, Li; Bieryla, Allyson; Latham, David W.; Charbonneau, David; Harps-N Collaboration, The Robo-Ao Team

    2015-01-01

    We present an effort to confirm the first planet discovered by the two-wheeled Kepler mission. We analyzed K2 photometry, correcting for nonuniform detector response as a function of the spacecraft's pointing, and detected a transiting planet candidate. We describe our multi-telescope followup observing campaign, consisting of photometric, spectroscopic, and high resolution imaging observations, including over 40 HARPS-N radial velocity measurements. The new planet is a super-Earth orbiting a bright star amenable to followup observations. HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh.

  5. A Bewildering and Dynamic Picture of Exoplanetary Systems Identified by the Kepler Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Jenkins, J. M.

    2013-12-01

    Kepler vaulted into the heavens on March 7, 2009, initiating NASA's search for Earth-size planets orbiting Sun-like stars in the habitable zone, where liquid water could exist on a rocky planetary surface. In the 4 years since, a flood of photometric data of unprecedented precision and continuity on more than 190,000 stars has provoked a watershed of 134+ confirmed or validated planets, 3200+ planetary candidates (most sub-Neptune in size and many comparable to or smaller than Earth), and a revolution in asteroseismology and astrophysics. Recent discoveries include Kepler-62 with 5 planets total, of which 2 are in the habitable zone with radii of 1.4 and 1.7 Re. Approximately 500 of the stars in the Kepler survey with planets host multiple transiting planets: 43% of planet candidates have transiting siblings. Many of these multiple transiting planet systems are dynamically packed and are unlikely, therefore, to have formed in situ. These systems experienced strong migration and evolution to arrive at the configurations we observe today, with important implications for the time-variable habitability of these planets over their histories. The half dozen circumbinary transiting planet systems discovered by Kepler to date highlight the dynamic nature of the habitable zone in systems with multiple host stars where the habitable zone may change significantly on timescales commensurate with the orbital period of the binary. While the catalog of circumbinary planets is small at this point, it already possesses at least one example of an exoplanet in the habitable zone. This implies that the majority of habitable zone planets may be circumbinary planets given the high frequency of multiple star systems and the early detection of Kepler-47b. KIC-12557548 is most likely a disintegrating sub-Mercury-sized planet. While it was probably never habitable, it represents a unique example of the dynamic nature of planetary systems. These amazing discoveries challenge our conventional

  6. Ellipsoidal Variation Analysis of Kepler Observations Using the EVIL-MC Model

    NASA Astrophysics Data System (ADS)

    Jackson, Brian; Carlberg, J. K.

    2012-10-01

    Follow-up and confirmation of the thousands of planetary candidates from the Kepler mission requires a sizable investment of astronomical resources. Thus, it is essential to identify signals already present in the data that can elucidate the nature of the transiting objects. Tidal distortion of a star by a close companion produces such a signal: as a short-period companion orbits, the tidal bulge raised on the primary rotates in and out of view, and the amplitude of these ``ellipsoidal variations'' (EVs) depends, among other things, on the mass ratio between the primary and companion. For example, a few Jupiter-mass planet orbiting 4 stellar radii from a solar mass star can induce brightness variations 30 parts per million, small but measurable for some Kepler targets. EVs induced by such low-mass companions have been observed for only a handful of Kepler (and CoRoT) targets. Here we report the discovery of EVs in another Kepler system with a candidate transiting companion. The Kepler Input Catalog suggests the host star is an evolved red giant, and the star shows signs of solar-like oscillations, similar to p-mode acoustic oscillations observed in the Sun. Such oscillations have been observed for thousand other red giants observed by Kepler, providing tight constraints on the stars' masses and radii, if the effective temperatures are known. In this presentation, we will discuss constraints on the transiting companion's mass and brightness temperature derived from analysis of the transits and EVs present in the publicly available Kepler data using the recently developed EVIL-MC model. Preliminary results suggest the candidate transiting object has a mass comparable to Jupiter's but a radius many times larger, while the apparent lack of a secondary eclipse suggests its brightness temperature is less than 2700 K. BKJ acknowledges support from Carnegie DTM.

  7. EMERGING TRENDS IN A PERIOD-RADIUS DISTRIBUTION OF CLOSE-IN PLANETS

    SciTech Connect

    Beauge, C.; Nesvorny, D.

    2013-01-20

    We analyze the distribution of extrasolar planets (both confirmed and Kepler candidates) according to their orbital periods P and planetary radii R. Among confirmed planets, we find compelling evidence for a paucity of bodies with 3 R {sub Circled-Plus} < R < 10 R {sub Circled-Plus }, where R {sub Circled-Plus} is Earth's radius and P < 2-3 days. We have christened this region a sub-Jovian Pampas. The same trend is detected in multiplanet Kepler candidates. Although approximately 16 Kepler single-planet candidates inhabit this Pampas, at least 7 are probable false positives (FPs). This last number could be significantly higher if the ratio of FPs is higher than 10%, as suggested by recent studies. In a second part of the paper we analyze the distribution of planets in the (P, R) plane according to stellar metallicities. We find two interesting trends: (1) a lack of small planets (R < 4 R {sub Circled-Plus }) with orbital periods P < 5 days in metal-poor stars and (2) a paucity of sub-Jovian planets (4 R {sub Circled-Plus} < R < 8 R {sub Circled-Plus }) with P < 100 days, also around metal-poor stars. Although all these trends are preliminary, they appear statistically significant and deserve further scrutiny. If confirmed, they could represent important constraints on theories of planetary formation and dynamical evolution.

  8. Johannes Kepler

    NASA Astrophysics Data System (ADS)

    Bialas, Volker

    Johannes Kepler (1571 - 1630) gilt zurecht als einer der bedeutendsten Mathematiker und Astronomen der frühen Neuzeit, doch wurde das Philosophische in seinem Werk bislang kaum in angemessener Weise gewürdigt. Volker Bialas legt eine fundierte und anregende Einführung in Leben, Werk und Weltanschauung Keplers vor und setzt dabei durch die Akzentuierung des philosophisch-ganzheitlichen Denkens bewußt einen Kontrapunkt zum herkömmlichen Kepler-Bild.

  9. Search for Close-in Planets around Evoloved Stars with Phase-curve variations and Radial Velocity Measurements

    NASA Astrophysics Data System (ADS)

    Hirano, Teruyuki; Sato, Bun'ei; Masuda, Kento; Benomar, Othman Michel; Takeda, Yoichi; Omiya, Masashi; Harakawa, Hiroki

    2015-08-01

    Tidal interactions are a key process to understand the evolution history of close-in exoplanets. But tidal interactions still have a large uncertainty in their prediction for the damping timescales of stellar obliquity and semi-major axis (e.g., Winn et al. 2010). In the past year, we have worked on a search for (transiting) giant planets around evolved stars, for which few close-in planets were discovered. It has been reported that evolved stars lack close-in planets, which is often attributed to the tidal evolution and/or engulfment of close-in planets by the hosts. Meanwhile, Kepler spacecraft has detected a significant fraction of transiting planet candidates around evolved stars. Confirming the planetary nature for these candidates is especially important in the sense that the comparion between the occurence rates of close-in planets around main sequence stars and evolved stars provides a unique opportunity to discuss the final stage of close-in planets, including tidal evolutions.In this presentation, we review our effort to search for close-in planets around evolved stars. With the aim of confirming KOI planet candidates around evolved stars, we measured precision radial velocities (RVs) for evoloved stars with transiting planet candidates using Subaru/HDS. We also developed a new code which simultaneously models and fits the observed RVs and phase-curve variations in the Kepler light curve data (e.g., transits, stellar ellipsoidal variations, and planet emission/reflected light). As a result of applying the global fit to KOI giants/subgiants, we confirmed a few giant planets around evolved stars (Kepler-91 and KOI-1894), as well as revealed that KOI-977 is more likely a false positive.

  10. Cloud-Kepler: Towards Efficient Identification and Characterization of Aperiodic and Infrequent Transit Events

    NASA Astrophysics Data System (ADS)

    Manideep Duvvuri, Girish; McCullough, Peter R.; Fleming, Scott W.

    2016-01-01

    The Kepler mission has revolutionized the study of exoplanets by dramatically increasing the available sample size. However, the catalog of planet candidates created by the mission team is constrained to stars that exhibit at least three transit-like events. Cloud-Kepler is an open-source software package designed to search archived Kepler data for planets that may have been missed by looking for either aperiodic or single- and double-transit events. It uses a variant of the Box-Least Squares (BLS) algorithm that we call "BLS-pulse" which identifies the single best-fitting transit-like event in a given segment of a light curve. While testing the program on a random sample of Kepler Objects of Interests (KOIs), we found a single transit-like event (probably a stellar eclipse) of KIC 1717717 centered at MJD = 56271.70. Using a Markov Chain Monte-Carlo (MCMC) analysis, we compared viable star-planet and star-star solutions to constrain physical parameters based on the available observables (e.g., depth, duration, host star colors, coverage of the photometry). We present our analysis on the KIC 1717717 system, along with plans to further adapt this MCMC method to use with missions like K2 and TESS that have even shorter observing baselines, and will therefore expect to find many more such single- and double-transit events.

  11. Planet Hunters 2 in the K2 Era

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Fischer, Debra; Boyajian, Tabetha S.; Giguere, Matthew J.; Ishikawa, Sascha; Lintott, Chris; Lynn, Stuart; Schmitt, Joseph; Snyder, Chris; Wang, Ji; Barclay, Thomas

    2015-01-01

    Planet Hunters (http://www.planethunters.org) is an online citizen science project enlisting hundreds of thousands of people to search for planet transits in the publicly released Kepler data. Volunteers mark the locations of visible transits in a web interface, with multiple independent classifiers reviewing a randomly selected ~30-day light curve segment. In September 2014, Planet Hunters entered a new phase. The project was relaunched with a brand new online classification interface and discussion tool built using the Zooniverse's (http://www.zooniverse.org) latest technology and web platform. The website has been optimized for the rapid discovery and identification of planet candidates in the light curves from K2, the two-wheeled ecliptic plane Kepler mission. We will give an overview of the new Planet Hunters classification interface and Round 2 review system in context of the K2 data. We will present the first results from the Planet Hunters 2 search of K2 Campaigns 0 and 1 including a summary of new planet candidates.

  12. Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based ON Q1-Q12 data

    SciTech Connect

    Coughlin, Jeffrey L.; Thompson, Susan E.; Burke, Christopher J.; Caldwell, Douglas A.; Jenkins, Jon M.; Mullally, Fergal R.; Rowe, Jason F.; Bryson, Stephen T.; Haas, Michael R.; Howell, Steve B.; Kolodziejczak, Jeffery J.

    2014-05-01

    The Kepler mission has to date found almost 6000 planetary transit-like signals, utilizing three years of data for over 170,000 stars at extremely high photometric precision. Due to its design, contamination from eclipsing binaries, variable stars, and other transiting planets results in a significant number of these signals being false positives (FPs). This directly affects the determination of the occurrence rate of Earth-like planets in our Galaxy, as well as other planet population statistics. In order to detect as many of these FPs as possible, we perform ephemeris matching among all transiting pla