Science.gov

Sample records for kepler space mission

  1. Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first step in discovering, the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is a 0.95 m aperture photometer scheduled to be launched in 2006. It is designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the relation to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler - velocity discoveries, over a thousand giant planets will be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare.

  2. Lessons Learned from the Kepler Mission and Space Telescope Management

    NASA Technical Reports Server (NTRS)

    Fanson, James

    2010-01-01

    This paper presents lessons learned over the course of several space telescope mission and instrument developments spanning two decades. These projects involved astronomical telescopes developed by the National Aeronautics and Space Administration (NASA) and were designed to further our understanding of the Universe. It is hoped that the lessons drawn from these experiences may be of use to future mission developers.

  3. Kepler's Third Law and NASA's "Kepler Mission"

    ERIC Educational Resources Information Center

    Gould, Alan; Komatsu, Toshi; DeVore, Edna; Harman, Pamela; Koch, David

    2015-01-01

    NASA's "Kepler Mission" has been wildly successful in discovering exoplanets. This paper summarizes the mission goals, briefly explains the transit method of finding exoplanets and design of the mission, provides some key findings, and describes useful education materials available at the "Kepler" website.

  4. Kepler's Third Law and NASA's Kepler Mission

    NASA Astrophysics Data System (ADS)

    Gould, Alan; Komatsu, Toshi; DeVore, Edna; Harman, Pamela; Koch, David

    2015-04-01

    NASA's Kepler Mission (Fig. 1) has been wildly successful in discovering exoplanets. This paper summarizes the mission goals, briefly explains the transit method of finding exoplanets and design of the mission, provides some key findings, and describes useful education materials available at the Kepler website.

  5. AUTOMATED CLASSIFICATION OF VARIABLE STARS IN THE ASTEROSEISMOLOGY PROGRAM OF THE KEPLER SPACE MISSION

    SciTech Connect

    Blomme, J.; Debosscher, J.; De Ridder, J.; Aerts, C.; Gilliland, R. L.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Brown, T. M.; Borucki, W. J.; Koch, D.; Jenkins, J. M.; Stello, D.; Derekas, A.; Stevens, I. R.; Suran, M. D.

    2010-04-20

    We present the first results of the application of supervised classification methods to the Kepler Q1 long-cadence light curves of a subsample of 2288 stars measured in the asteroseismology program of the mission. The methods, originally developed in the framework of the CoRoT and Gaia space missions, are capable of identifying the most common types of stellar variability in a reliable way. Many new variables have been discovered, among which a large fraction are eclipsing/ellipsoidal binaries unknown prior to launch. A comparison is made between our classification from the Kepler data and the pre-launch class based on data from the ground, showing that the latter needs significant improvement. The noise properties of the Kepler data are compared to those of the exoplanet program of the CoRoT satellite. We find that Kepler improves on CoRoT by a factor of 2-2.3 in point-to-point scatter.

  6. Kepler Mission Development Challenges and Early Results

    NASA Technical Reports Server (NTRS)

    Fanson, J.; Duren, R.; Frerking, M.

    2011-01-01

    Kepler is NASA s first mission capable of detecting Earth-size planets orbiting in the habitable zone of stars other than the Sun. Kepler comprises a space telescope designed to continuously monitor the brightnesses of more than 100,000 target stars, and a ground segment to analyze the measured stellar light curves and detect the signatures of orbiting planets. In order to detect Earth-size planets orbiting Sun-like stars Kepler was designed to provide unprecedented photometric sensitivity and stability. This paper addresses some of the technical challenges encountered during the development of the Kepler mission and the measures taken to overcome them. Early scientific results are summarized.

  7. Kepler Mission Development Challenges and Early Results

    NASA Technical Reports Server (NTRS)

    Fanson, J.

    2011-01-01

    Kepler is NASA`s first mission capable of detecting Earth-size planets orbiting in the habitable zone of stars other than the sun. Kepler comprises a space telescope designed to continuously monitor the brightnesses of more than 100,000 target stars, and a ground segment to analyze the measured stellar light curves and detect the signatures of orbiting planets. In order to detect Earth-size planets orbiting Sun-like stars Kepler was designed to provide unprecedented photometric sensitivity and stability. This paper addresses some of the technical challenges encountered during the development of the Kepler mission and the measures taken to overcome them. Early scientific results are summarized.

  8. Kepler Mission Design

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, J.; Mayer, David; Voss, Janice; Basri, Gibor; Gould, Alan; Brown, Timothy; Cockran, William; Caldwell, Douglas

    2005-01-01

    The Kepler Mission is in the development phase with launch planned for 2007. The mission goal first off is to reliably detect a significant number of Earth-size planets in the habitable zone of solar-like stars. The mission design allows for exploring the diversity of planetary sizes, orbital periods, stellar spectral types, etc. In this paper we describe the technical approach taken for the mission design; describing the flight and ground system, the detection methodology, the photometer design and capabilities, and the way the data are taken and processed. (For Stellar Classification program. Finally the detection capability in terms of planet size and orbit are presented as a function of mission duration and stellar type.

  9. KEPLER Mission: development and overview.

    PubMed

    Borucki, William J

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth. PMID:26863223

  10. KEPLER Mission: development and overview

    NASA Astrophysics Data System (ADS)

    Borucki, William J.

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170 000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many ‘blind alleys’ before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170 000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.

  11. Planet Detection: The Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    and another 1100 pixels containing virtual smear measurements used to remove artifacts caused by the lack of a shutter and a finite 0.51-s readout time; and 1070 trailing black measurements that monitor the bias voltage presented at the input of the analog-to-digital converter so that the zero point can be restored to the digitized data during processing [24]. There are a total of up to 6,092,680 pixels containing the stellar and collateral data collected for each LC, with 48 LCs/day. While only 512 SC targets are defined at any given time, there are 30 SC intervals for each LC interval, and an average of 85 pixels are allocated for each SC target star. Smear and black-level measurements are collected for each SC target, but only for the rows and columns occupied by SC stellar target pixels. Approximately 21% of the pixel data returned by Kepler are SC data. The total data rate for both LC and SC data is 1.3 GB/day when the data are expanded to 4 bytes/pixel from the compressed bit stream. Raw pixel data are downlinked at monthly intervals through National Aeronautics and Space Administration's (NASA's) Deep Space Network (DSN) and routed through the ground system to the Kepler Science Operations Center (SOC) at NASA Ames Research Center. The SOC performs a number of critical functions for the mission, including management of the target definitions which specify the pixels needed for each stellar target and the compression tables that allow a ˜5:1 compression of the science data onboard the SSR (from 23 bits/pixel to 4.6 bits/pixel), but its two major tasks are to: 1. Process raw pixel data to produce archival science data products, including calibrated pixels, measurements of the location or centroid of each star in each frame, flux time series representing the brightness of each star in each data frame, and systematic error-corrected flux time series that have instrumental artifacts removed. 2. Search each target-star light curve to identify transit-like features

  12. Kepler Mission Overview

    NASA Astrophysics Data System (ADS)

    Borucki, William J.; Koch, D. G.; Gautier, T. N., III; Dunham, E. W.; Kepler Science Team

    2011-01-01

    Early Kepler observations show the presence of over 750 candidate planets, 1800 eclipsing binary stars, and variable stars of amazing variety. Many of the planetary candidates are smaller than Neptune. Discoveries of seven new exoplanets are shown including one of with two confirmed transiting planets. The candidate- and the announced-planets are compared with known exoplanets with respect to mass, size, density, and orbital period. Support by the NASA Astrophysics Division is gratefully acknowledged.

  13. NASA's Kepler Mission Announces Latest Discoveries

    NASA Video Gallery

    Scientists from NASA's Kepler mission have been busy recently. The team has announced the discovery of Kepler-22b, its first confirmed planet in the habitable zone of its solar system, 600 light ye...

  14. Planet Detection: The Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    The search for exoplanets is one of the hottest topics in astronomy and astrophysics in the twenty-first century, capturing the public's attention as well as that of the astronomical community. This nascent field was conceived in 1989 with the discovery of a candidate planetary companion to HD114762 [35] and was born in 1995 with the discovery of the first extrasolar planet 51 Peg-b [37] orbiting a main sequence star. As of March, 2011, over 500 exoplanets have been discovered* and 106 are known to transit or cross their host star, as viewed from Earth. Of these transiting planets, 15 have been announced by the Kepler Mission, which was launched into an Earth-trailing, heliocentric orbit in March, 2009 [1,4,6,15,18,20,22,31,32,34,36,43]. In addition, over 1200 candidate transiting planets have already been detected by Kepler [5], and vigorous follow-up observations are being conducted to vet these candidates. As the false-positive rate for Kepler is expected to be quite low [39], Kepler has effectively tripled the number of known exoplanets. Moreover, Kepler will provide an unprecedented data set in terms of photometric precision, duration, contiguity, and number of stars. Kepler's primary science objective is to determine the frequency of Earth-size planets transiting their Sun-like host stars in the habitable zone, that range of orbital distances for which liquid water would pool on the surface of a terrestrial planet such as Earth, Mars, or Venus. This daunting task demands an instrument capable of measuring the light output from each of over 100,000 stars simultaneously with an unprecedented photometric precision of 20 parts per million (ppm) at 6.5-h intervals. The large number of stars is required because the probability of the geometrical alignment of planetary orbits that permit observation of transits is the ratio of the size of the star to the size of the planetary orbit. For Earth-like planets in 1-astronomical unit (AU) orbits† about sun-like stars

  15. The Kepler Project: Mission Update

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; Koch, David G.

    2009-01-01

    Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a 0.95 m aperture photometer designed to obtain high precision photometric measurement of > 100,000 stars to search for patterns of transits. The focal plane of the Schmidt-telescope contains 42 CCDs with at total of 95 mega pixels that cover 116 square degrees of sky. The photometer was launched into an Earth-trailing heliocentric orbit on March 6, 2009, finished its commissioning on May 12, and is now in the science operations mode. During the commissioning of the Kepler photometer, data were obtained at a 30 minute cadence for 53,000 stars for 9.7 days. Although the data have not yet been corrected for the presence of systematic errors and artifacts, the data show the presence of hundreds of eclipsing binary stars and variable stars of amazing variety. To provide some estimate of the capability of the photometer, a quick analysis of the photometric precision was made. Analysis of the commissioning data also show transits, occultations and light emitted from the known exoplanet HAT-P7b. The data show a smooth rise and fall of light: from the planet as it orbits its star, punctuated by a drop of 130 +/- 11 ppm in flux when the planet passes behind its star. We interpret this as the phase variation of the dayside thermal emission plus reflected light from the planet as it orbits its star and is occulted. The depth of the occultation is similar in amplitude to that expected from a transiting Earth-size planet and demonstrates that the Mission has the precision necessary to detect such planets.

  16. Kepler Mission Website: Portal to the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; DeVore, E.; Gould, A.; Koch, D.

    2008-05-01

    The 400th anniversary of Galileo's telescope is an opportunity to turn the public's eyes skyward and to the universe beyond the solar system. The Kepler Mission, launching in 2009, the International Year of Astronomy (IYA) will is specifically designed to survey our region of the Milky Way galaxy to detect and characterize hundreds of Earth-size and smaller planets in or near the habitable zone, using the transit method of detection. The habitable zone encompasses the distances from a star where liquid water can exist on a planet's surface. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. The Kepler Mission is a NASA Discovery Program Mission. The Kepler Mission website http://www.kepler.arc.nasa.gov/ offers classroom activity lesson plans Detecting Planet Transits, The Human Orrery, and Morning Star and Evening Star. The activities are suitable for the informal science education realm. The spacecraft paper model and LEGO model orrerey can be used in the classroom by teachers or at home by families. The mission simulation and animation, as well as lessons and models highlight the science concepts critical to employing the transit method of detection, Kepler's Laws. The Send Your Name to Space on Kepler Spacecraft provides a certificate of participation for all individuals that submit there name to be listed on a DVD placed on the spacecraft. This poster will provide details on each of the items described.

  17. Celebrating 400 Years of Astronomia Nova: Johannes Kepler, the Kepler Mission, and the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Devore, E. K.; Koch, D.; Gould, A.; Harman, P. K.

    2008-12-01

    The International Year of Astronomy 2009 is an occasion to celebrate astronomy around the world. In addition to honoring Galileo and the invention of the astronomical telescope, 2009 is the 400th anniversary year of Kepler's publication of the Astronomia Nova containing his first two laws of planetary motion. In recognition of Kepler's accomplishment, the first NASA mission capable of detecting Earth-size and smaller planets in the habitable zone of stars has been named after Johannes Kepler. The Kepler Mission launches in the spring of 2009 and will search for evidence of extrasolar planets as they transit--pass in front of--their parent stars. Using Kepler's Laws, scientists will interpret the Mission data to characterize the planets that are discovered. The Kepler Mission is conducting several Educational and Public Outreach (E/PO) activities leading up to and during IYA. Among these are the Name In Space project which offers participants the opportunity to send their name into space along with a statement about the importance of searching for extrasolar Earths. The Kepler Star Wheel (planisphere) shows both the Kepler field of view and naked eye stars with known planetary systems. A series of StarDate programs will be broadcast in English and Spanish. Inquiry-based classroom lessons suitable for middle and high school science classes are available for download at the website, and on the Kepler Mission poster. The Kepler Mission poster will be distributed to middle and high school science teachers through the National Science Teacher's Association and other science teacher organizations. Copies will be available at AGU. The Kepler EPO team is presenting pre-launch teacher workshops at several locations around the US. Details about the workshop, and event timeline will be presented. For further information on the Kepler Mission, its E/PO program, and online resources, please visit: http://Kepler.NASA.gov.

  18. Kepler Mission: A Technical Overview

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. A ground-based program to classify all 225,000 stars in the FOV and to do a detailed examination of a subset of the stars that show planetary companions is also planned.

  19. Celebrating 400 Years of Astronomia Nova: Johannes Kepler, the Kepler Mission, and the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    DeVore, Edna; Koch, D.; Gould, A.; Harman, P.

    2009-01-01

    The International Year of Astronomy 2009 is an occasion to celebrate astronomy around the world. In addition to honoring Galileo and the invention of the astronomical telescope, 2009 is the 400th anniversary year of Kepler's publication of the Astronomia Nova containing his first two laws of planetary motion. In recognition of Kepler's accomplishment, the first NASA mission capable of detecting Earth-size and smaller planets in the habitable zone of stars has been named after Johannes Kepler. The Kepler Mission launches in the spring of 2009 and will search for evidence of extrasolar planets as they transit--pass in front of--their parent stars. Using Kepler's Laws, scientists will interpret the Mission data to characterize the planets that are discovered. The Kepler Mission is conducting several Educational and Public Outreach (E/PO) activities leading up to and during IYA. Among these are the "Name In Space” project which offers participants the opportunity to send their name into space along with a statement about the importance of searching for extrasolar Earths. The "Kepler Star Wheel” (planisphere) shows both the Kepler field of view and naked eye stars with known planetary systems. A series of StarDate programs will be broadcast in English and Spanish. Inquiry-based classroom lessons suitable for middle and high school science classes are available for download at the website, and on the Kepler Mission poster. The Kepler Mission poster will be distributed to middle and high school science teachers through the National Science Teacher's Association and other science teacher organizations. Copies will be available at AAS. The Kepler EPO team is presenting pre-launch teacher workshops at several locations around the US. Details about the workshop, and event timeline will be presented. For further information on the Kepler Mission, its E/PO program, and online resources, please visit: http://kepler.nasa.gov. Funded by NASA's Science Mission Directorate.

  20. Exploring exoplanet populations with NASA's Kepler Mission.

    PubMed

    Batalha, Natalie M

    2014-09-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system. PMID:25049406

  1. Take off with NASA's Kepler Mission!: The Search for Other "Earths"

    ERIC Educational Resources Information Center

    Koch, David; DeVore, Edna K.; Gould, Alan; Harman, Pamela

    2009-01-01

    Humans have long wondered about life in the universe. Are we alone? Is Earth unique? What is it that makes our planet a habitable one, and are there others like Earth? NASA's Kepler Mission seeks the answers to these questions. Kepler is a space-based, specially designed 0.95 m aperture telescope. Launching in 2009, Kepler is NASA's first mission…

  2. Management and Systems Engineering of the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Fanson, James; Livesay, Leslie; Frerking, Margaret; Cooke, Brian

    2010-01-01

    Kepler is the National Aeronautics and Space Administration's (NASA's) first mission capable of detecting Earth-size planets orbiting in the habitable zones around stars other than the sun. Selected for implementation in 2001 and launched in 2009, Kepler seeks to determine whether Earth-like planets are common or rare in the galaxy. The investigation requires a large, space-based photometer capable of simultaneously measuring the brightnesses of 100,000 stars at part-per-million level of precision. This paper traces the development of the mission from the perspective of project management and systems engineering and describes various methodologies and tools that were found to be effective. The experience of the Kepler development is used to illuminate lessons that can be applied to future missions.

  3. Management and systems engineering of the Kepler mission

    NASA Astrophysics Data System (ADS)

    Fanson, James; Livesay, Leslie; Frerking, Margaret; Cooke, Brian

    2010-07-01

    Kepler is the National Aeronautics and Space Administration's (NASA's) first mission capable of detecting Earth-size planets orbiting in the habitable zones around stars other than the sun. Selected for implementation in 2001 and launched in 2009, Kepler seeks to determine whether Earth-like planets are common or rare in the galaxy. The investigation requires a large, space-based photometer capable of simultaneously measuring the brightnesses of 100,000 stars at partper- million level of precision. This paper traces the development of the mission from the perspective of project management and systems engineering and describes various methodologies and tools that were found to be effective. The experience of the Kepler development is used to illuminate lessons that can be applied to future missions.

  4. Kepler Mission Development Challenges and Early Results

    NASA Technical Reports Server (NTRS)

    Fanson, James; Frerking, Margaret; Duren, Riley

    2011-01-01

    Kepler is NASA s first mission capable of detecting Earthsize planets orbiting in Habitable Zone of Sun-like stars. Objective is to measure how frequently planets of various sizes and orbits form around stars in the Milky Way. Kepler detects planets by measuring drop in brightness of star due to "transit" of a planet Earth-size planet transiting Sunlike star causes drop in brightness of only 84 parts per million

  5. Kepler Mission IYA Teacher Professional Development Workshops

    NASA Astrophysics Data System (ADS)

    Devore, E. K.; Harman, P.; Gould, A. D.; Koch, D.

    2009-12-01

    NASA's Kepler Mission conducted six teacher professional development workshops on the search for Earth-size in the habitable zone of Sun-like stars. The Kepler Mission launched in March, 2009. As a part of International Year of Astronomy 2009, this series of one-day workshops were designed and presented for middle and high school teachers, and science center and planetarium educators prior to and after the launch. The professional development workshops were designed using the best practices and principals from the National Science Education Standards and similar documents. Sharing the outcome of our plans, strategies and formative evaluation results can be of use to other Education and Public Outreach practitioners who plan similar trainings. Each event was supported by a Kepler team scientist, two Education & Public Outreach staff and local hosts. The workshops combined a science content lecture and discussion, making models, kinesthetic activities, and interpretation of transit data. The emphasis was on inquiry-based instruction and supported science education standards in grades 7-12. Participants’ kit included an orrery, optical sensor and software to demonstrate transit detection. The workshop plan, teaching strategies, and lessons learned from evaluation will be discussed. Future events are planned. Kepler's Education and Public Outreach program is jointly conducted by the SETI Institute and Lawrence Hall of Science at UC Berkeley in close coordination with the Kepler Mission at NASA Ames Research Center. The IYA Kepler Teacher Professional Development workshops were supported by NASA Grants to the E. DeVore, SETI Institute NAG2-6066 Kepler Education and Public Outreach and NNX08BA74G, IYA Kepler Mission Pre-launch Workshops. Teachers participate in human orrery.

  6. Kepler Mission: A Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Koch, David; Fonda, Mark (Technical Monitor)

    2002-01-01

    The Kepler Mission was selected by NASA as one of the next two Discovery Missions. The mission design is based on the search for Earth-size planets in the habitable zone of solar-like stars, but does not preclude the discovery of larger or smaller planets in other orbits of non-solar-like stars. An overview of the mission, the scientific goals and the anticipated results will be presented.

  7. Eclipsing Binaries from the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, J.; Basri, Gibor; Brown, Timothy; Caldwell, Douglas; Cochran, William; Jenkins, Jon; Dunham, Edward; Gautier, Nick

    2005-01-01

    The Kepler Mission is a photometric space mission that will continuously observe a single 100 sq deg field of view (FOV) of greater than 100,000 stars in the Cygnus-Lyra region for 4 or more years with a precision of 14 ppm (R=12). The primary goal of the mission is to detect Earth-size planets in the habitable zone of solar-like stars. In the process, many eclipsing binaries (EB) will also be detected. Prior to launch, the stellar characteristics will have been detennined for all the stars in the FOV with R<16. As part of the verification process, stars with transits <5% will need to have follow-up radial velocity observations performed to determine the component masses and thereby separate transits caused by stellar companions from those caused by planets. The result will be a rich database on EBs. The community will have access to the archive for uses such as for EB modeling of the high-precision light curves. A guest observer program is also planned for objects not already on the target list.

  8. KEPLER MISSION STELLAR AND INSTRUMENT NOISE PROPERTIES

    SciTech Connect

    Gilliland, Ronald L.; Chaplin, William J.; Elsworth, Yvonne P.; Miglio, Andrea; Dunham, Edward W.; Argabright, Vic S.; Borucki, William J.; Bryson, Stephen T.; Koch, David G.; Walkowicz, Lucianne M.; Basri, Gibor; Buzasi, Derek L.; Caldwell, Douglas A.; Jenkins, Jon M.; Van Cleve, Jeffrey; Welsh, William F.

    2011-11-01

    Kepler mission results are rapidly contributing to fundamentally new discoveries in both the exoplanet and asteroseismology fields. The data returned from Kepler are unique in terms of the number of stars observed, precision of photometry for time series observations, and the temporal extent of high duty cycle observations. As the first mission to provide extensive time series measurements on thousands of stars over months to years at a level hitherto possible only for the Sun, the results from Kepler will vastly increase our knowledge of stellar variability for quiet solar-type stars. Here, we report on the stellar noise inferred on the timescale of a few hours of most interest for detection of exoplanets via transits. By design the data from moderately bright Kepler stars are expected to have roughly comparable levels of noise intrinsic to the stars and arising from a combination of fundamental limitations such as Poisson statistics and any instrument noise. The noise levels attained by Kepler on-orbit exceed by some 50% the target levels for solar-type, quiet stars. We provide a decomposition of observed noise for an ensemble of 12th magnitude stars arising from fundamental terms (Poisson and readout noise), added noise due to the instrument and that intrinsic to the stars. The largest factor in the modestly higher than anticipated noise follows from intrinsic stellar noise. We show that using stellar parameters from galactic stellar synthesis models, and projections to stellar rotation, activity, and hence noise levels reproduce the primary intrinsic stellar noise features.

  9. Kepler Mission Discovers Trove of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-02-01

    NASA's Kepler discovery mission is collecting more than just pennies from heaven. Results from the first 4 months of science operations of the Kepler space telescope, announced on 2 February, include the discovery of 1235 candidate planets orbiting 997 stars in a small portion of the Milky Way galaxy examined by the telescope. Follow-up observations likely could confirm about 80% of the candidates as actual planets rather than false positives, according to researchers. This new trove of possible exoplanets could greatly expand the number of known planets outside of our solar system.

  10. Overview and Status of the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Koch, D.; Borucki, W.; Dunham, E.; Geary, J.; Gilliland, R.; Jenkins, J.; Latham, D.; Mayer, D.; Sobeck, C.; Duren, R.

    2003-01-01

    The Kepler Mission is a search for terrestrial planets with the design optimized for detecting Earth-size planets in the habitable zone (HZ) of solar-like stars. In addition, the mission has a broad detection capability for a wide range of planetary sizes, planetary orbits and spectral types of stars. The mission is in the midst of the development phase with good progress leading to the preliminary design review later this year. Long lead procurements are well under way. An overview in all areas is presented including both the flight system (photometer and spacecraft) and the ground system. Launch is on target for 2007 on a Delta II.

  11. Kepler & K2: One spacecraft, Two Missions

    NASA Astrophysics Data System (ADS)

    Batalha, Natalie

    2015-12-01

    This year, we mark twenty years of exploring the diversity of planets and planetary systems orbiting main sequence stars. Exoplanet discoveries spill into the thousands, and the sensitivity boundaries continue to expand. NASA's Kepler Mission unveiled a galaxy replete with small planets and revealed populations that don't exist in our own solar system. The mission has yielded a sample sufficient for computing planet occurrence rates as a function of size, orbital period, and host star properties. We've learned that every late-type star has at least one planet on average, that terrestrial-sized planets are more common than larger planets within 1 AU, and that the nearest, potentially habitable earth-sized planet is likely within 5pc. After four years of continuous observations, the Kepler prime mission ended in May 2013 with the loss of a second reaction wheel. Thanks to innovative engineering, the spacecraft gained a second lease on life and emerged as the ecliptic surveyor, K2. In many regards, K2 is a distinctly new mission, not only by pointing at new areas of the sky but also by focusing on community-driven goals that diversify the science yield. For exoplanets, this means targeting bright and low mass stars -- the populations harboring planets amenable to dynamical and atmospheric characterization. To date, the mission has executed 7 observing campaigns lasting ~80 days each and has achieved a 6-hour photometric precision of 30 ppm. A couple dozen planets have been confirmed, including two nearby (< 50 pc) systems on the watch-list for future JWST campaigns. While Kepler prime is setting the stage for the direct imaging missions of the future, K2 is easing us into an era of atmospheric characterization -- one spacecraft, two missions, and a bright future for exoplanet science.

  12. The Kepler Mission and Eclipsing Binaries

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, J.; Basri, Gibor; Brown, Timothy; Caldwell, Douglas; Cochran, William; Jenkins, Jon; Dunham, Edward; Gautier, Nick

    2006-01-01

    The Kepler Mission is a photometric mission with a precision of 14 ppm (at R=12) that is designed to continuously observe a single field of view (FOV) of greater 100 sq deg in the Cygnus-Lyra region for four or more years. The primary goal of the mission is to monitor greater than 100,000 stars for transits of Earth-size and smaller planets in the habitable zone of solar-like stars. In the process, many eclipsing binaries (EB) will also be detected and light curves produced. To enhance and optimize the mission results, the stellar characteristics for all the stars in the FOV with R less than 16 will have been determined prior to launch. As part of the verification process, stars with transit candidates will have radial velocity follow-up observations performed to determine the component masses and thereby separate eclipses caused by stellar companions from transits caused by planets. The result will be a rich database on EBs. The community will have access to the archive for further analysis, such as, for EB modeling of the high-precision light curves. A guest observer program is also planned to allow for photometric observations of objects not on the target list but within the FOV, since only the pixels of interest from those stars monitored will be transmitted to the ground.

  13. NASA's Kepler Mission Discovers Multiple Planets Orbiting Twin Suns

    NASA Video Gallery

    NASA's Kepler mission has discovered the first transiting circumbinary system -- multiple planets orbiting two suns -- 4,900 light-years from Earth, in the constellation Cygnus, proving that more t...

  14. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2003-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  15. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2002-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  16. The search for ZZ Ceti stars in the original Kepler mission

    NASA Astrophysics Data System (ADS)

    Greiss, S.; Hermes, J. J.; Gänsicke, B. T.; Steeghs, D. T. H.; Bell, Keaton J.; Raddi, R.; Tremblay, P.-E.; Breedt, E.; Ramsay, G.; Koester, D.; Carter, P. J.; Vanderbosch, Z.; Winget, D. E.; Winget, K. I.

    2016-04-01

    We report the discovery of 42 white dwarfs in the original Kepler mission field, including nine new confirmed pulsating hydrogen-atmosphere white dwarfs (ZZ Ceti stars). Guided by the Kepler-Isaac Newton Telescope Survey, we selected white dwarf candidates on the basis of their U - g, g - r, and r - Hα photometric colours. We followed up these candidates with high-signal-to-noise optical spectroscopy from the 4.2-m William Herschel Telescope. Using ground-based, time series photometry, we put our sample of new spectroscopically characterized white dwarfs in the context of the empirical ZZ Ceti instability strip. Prior to our search, only two pulsating white dwarfs had been observed by Kepler. Ultimately, four of our new ZZ Cetis were observed from space. These rich data sets are helping initiate a rapid advancement in the asteroseismic investigation of pulsating white dwarfs, which continues with the extended Kepler mission, K2.

  17. Exoplanet Science from NASA’s Kepler Mission

    SciTech Connect

    Steffen, Jason

    2012-09-12

    NASA's exoplanet mission is the world's premier instrument for the discovery and study of planets orbiting distant stars. As the nominal mission comes to a close, Kepler has discovered nearly 2500 planet candidates, confirmed dozens of multi-planet systems, provided important insights into the orbital architectures of planetary systems, identified specific systems that challenge theories of planet formation and dynamical evolution, has revolutionized our understanding of stellar interiors, and is gearing to measure the frequency of Earth-like planets in the habitable zones of Sun-like stars in its extended mission phase. I present the most recent results from the Kepler mission.

  18. Exploring exoplanet populations with NASA’s Kepler Mission

    PubMed Central

    Batalha, Natalie M.

    2014-01-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration’s long-term goal of finding habitable environments beyond the solar system. PMID:25049406

  19. Kepler Planet Detection Mission: Introduction and First Results

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Lissauer, Jack J.; Morrison, David; Rowe, Jason; Bryson, Stephen T.; Dotson, Jessie; Haas,Michael; Gautier, Thomas N.

    2010-01-01

    The Kepler Mission is designed to determine the frequency of Earth-size and rocky planets in and near the habitable zone (HZ) of solar-like stars. The HZ is defined to be the region of space where a rocky planet could maintain liquid water on its surface. Kepler is the 10th competitively-selected Discovery Mission and was launched on March 6, 2009. Since completing its commissioning, Kepler has observed over 156,000 stars simultaneously and near continuously to search for planets that periodically pass in front of their host star (transit). The photometric precision is approximately 23 ppm for 50% of the 12th magnitude dwarf stars for an integration period of 6.5 hours. During the first 3 months of operation the photometer detected transit-like signatures from more than 200 stars. Careful examination shows that many of these events are false-positives such as small stars orbiting large stars or blends of target stars with eclipsing binary stars. Ground-based follow-up observations confirm the discovery of five new exoplanets with sizes between 0.37 andl.6 Jupiter radii (R(sub J)) and orbital periods ranging from 3.2 to 4.9 days. Ground-based observations with the Keck 1, Hobby-Ebberly, Hale, WIYN, MMT, Tillinghast, Shane, and Nordic Optical Telescopes are used to vet the planetary candidates and measure the masses of the putative planets. Observations of occultations and phase variations of hot, short-period planets such as HT-P-7b provide a probe of atmospheric properties. Asteroseismic analysis already shows the presence of p-mode oscillations in several stars. Such observations will be used to measure the mean stellar density and infer the stellar size and age. For stars too dim to permit asteroseismology, observations of the centroid motion of target stars will be used to measure the parallax and be combined with photometric measurements to estimate stellar sizes. Four open clusters are being observed to determine stellar rotation rates as a function of age and

  20. Kepler Planet-Detection Mission: Introduction and First Results

    NASA Astrophysics Data System (ADS)

    Borucki, William J.; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Caldwell, John; Christensen-Dalsgaard, Jørgen; Cochran, William D.; DeVore, Edna; Dunham, Edward W.; Dupree, Andrea K.; Gautier, Thomas N.; Geary, John C.; Gilliland, Ronald; Gould, Alan; Howell, Steve B.; Jenkins, Jon M.; Kondo, Yoji; Latham, David W.; Marcy, Geoffrey W.; Meibom, Søren; Kjeldsen, Hans; Lissauer, Jack J.; Monet, David G.; Morrison, David; Sasselov, Dimitar; Tarter, Jill; Boss, Alan; Brownlee, Don; Owen, Toby; Buzasi, Derek; Charbonneau, David; Doyle, Laurance; Fortney, Jonathan; Ford, Eric B.; Holman, Matthew J.; Seager, Sara; Steffen, Jason H.; Welsh, William F.; Rowe, Jason; Anderson, Howard; Buchhave, Lars; Ciardi, David; Walkowicz, Lucianne; Sherry, William; Horch, Elliott; Isaacson, Howard; Everett, Mark E.; Fischer, Debra; Torres, Guillermo; Johnson, John Asher; Endl, Michael; MacQueen, Phillip; Bryson, Stephen T.; Dotson, Jessie; Haas, Michael; Kolodziejczak, Jeffrey; Van Cleve, Jeffrey; Chandrasekaran, Hema; Twicken, Joseph D.; Quintana, Elisa V.; Clarke, Bruce D.; Allen, Christopher; Li, Jie; Wu, Haley; Tenenbaum, Peter; Verner, Ekaterina; Bruhweiler, Frederick; Barnes, Jason; Prsa, Andrej

    2010-02-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

  1. Kepler Planet-Detection Mission: Introduction and First Results

    SciTech Connect

    Borucki, William J.; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Caldwell, John; Christensen-Dalsgaard, Jorgen; Cochran, William D.; DeVore, Edna; Dunham, Edward W.; /Lowell Observ. /Harvard-Smithsonian Ctr. Astrophys.

    2010-01-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets ({approx}0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

  2. Kepler

    NASA Technical Reports Server (NTRS)

    Howell, Steve B.

    2011-01-01

    The NASA Kepler mission recently announced over 1200 exoplanet candidates. While some are common Hot Jupiters, a large number are Neptune size and smaller, transit depths suggest sizes down to the radius of Earth. The Kepler project has a fairly high confidence that most of these candidates are real exoplanets. Many analysis steps and lessons learned from Kepler light curves are used during the vetting process. This talk will cover some new results in the areas of stellar variability, solar systems with multiple planets, and how transit-like signatures are vetted for false positives, especially those indicative of small planets.

  3. Kepler mission exoplanet transit data analysis using fractal imaging

    NASA Astrophysics Data System (ADS)

    Dehipawala, S.; Tremberger, G.; Majid, Y.; Holden, T.; Lieberman, D.; Cheung, T.

    2012-10-01

    The Kepler mission is designed to survey a fist-sized patch of the sky within the Milky Way galaxy for the discovery of exoplanets, with emphasis on near Earth-size exoplanets in or near the habitable zone. The Kepler space telescope would detect the brightness fluctuation of a host star and extract periodic dimming in the lightcurve caused by exoplanets that cross in front of their host star. The photometric data of a host star could be interpreted as an image where fractal imaging would be applicable. Fractal analysis could elucidate the incomplete data limitation posed by the data integration window. The fractal dimension difference between the lower and upper halves of the image could be used to identify anomalies associated with transits and stellar activity as the buried signals are expected to be in the lower half of such an image. Using an image fractal dimension resolution of 0.04 and defining the whole image fractal dimension as the Chi-square expected value of the fractal dimension, a p-value can be computed and used to establish a numerical threshold for decision making that may be useful in further studies of lightcurves of stars with candidate exoplanets. Similar fractal dimension difference approaches would be applicable to the study of photometric time series data via the Higuchi method. The correlated randomness of the brightness data series could be used to support inferences based on image fractal dimension differences. Fractal compression techniques could be used to transform a lightcurve image, resulting in a new image with a new fractal dimension value, but this method has been found to be ineffective for images with high information capacity. The three studied criteria could be used together to further constrain the Kepler list of candidate lightcurves of stars with possible exoplanets that may be planned for ground-based telescope confirmation.

  4. Spacing of Kepler Planets: Sculpting by Dynamical Instability

    NASA Astrophysics Data System (ADS)

    Pu, Bonan; Wu, Yanqin

    2015-07-01

    We study the orbital architecture of multi-planet systems detected by the Kepler transit mission using N-body simulations, focusing on the orbital spacing between adjacent planets in systems showing four or more transiting planets. We find that the observed spacings are tightly clustered around 12 mutual Hill radii, when transit geometry and sensitivity limits are accounted for. In comparison, dynamical integrations reveal that the minimum spacing required for systems of similar masses to survive dynamical instability for as long as 1 billion yr is ∼10 if all orbits are circular and coplanar and ∼12 if planetary orbits have eccentricities of ∼0.02 (a value suggested by studies of planet transit-time variations). This apparent coincidence, between the observed spacing and the theoretical stability threshold, leads us to propose that typical planetary systems were formed with even tighter spacing, but most, except for the widest ones, have undergone dynamical instability, and are pared down to a more anemic version of their former selves, with fewer planets and larger spacings. So while the high-multiple systems (five or more transiting planets) are primordial systems that remain stable, the single or double planetary systems, abundantly discovered by the Kepler mission, may be the descendants of more closely packed high-multiple systems. If this hypothesis is correct, we infer that the formation environment of Kepler systems should be more dissipative than that of the terrestrial planets.

  5. The Kepler Mission and the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; DeVore, E.; Gould, A.; Koch, D.

    2008-05-01

    Johannes Kepler was one of Galileo's contemporaries, publishing New Astronomy defining his first two laws, nearly 400 years ago, in 1609. It is a fitting tribute that the Kepler Mission launches in 2009. Kepler continued his studies of motion and made observations of satellites of Jupiter, and published his third law. We now recognize Kepler's laws as 1. Planets move in elliptical; 2. The planets move such that the line between the Sun and the Planet sweeps out equal areas in equal time no matter where in the orbit; and 3. The square of the period of the orbit of a planet is proportional to the mean distance from the Sun cubed. Kepler's laws were deduced empirically from the motions of the planet Mars in the early 17th century, before Newton deduced the law of gravity and his laws of motion. The Kepler Mission, a NASA Discovery mission, is specifically designed to survey our region of the Milky Way galaxy to detect and characterize hundreds of Earth-size and smaller planets in or near the habitable zone. The habitable zone encompasses the distances from a star where liquid water can exist on a planet's surface. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. The Mission Education and Public Outreach (EPO) Program has developed a Night Sky Network (NSN) outreach kit, Shadows and Silhouettes. This NSN kit is used by amateur astronomers at school and public observing events to illustrate a transit, and explain eclipses.

  6. Eclipsing Binaries with the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Kepler Eclipsing Binary Working Group

    2012-05-01

    Kepler has revolutionized the eclipsing binary field by providing us essentially uninterrupted data of unprecedented quality. Out of 160,000 targets, we detected over 2500 eclipsing binaries. These range in orbital periods from as short as 0.3 days, all the way to several years, and encompass stellar types across the H-R diagram. In this talk I will present the collaborative effort of the Kepler Eclipsing Binary Working Group to study and characterize these systems on a statistical level: their distribution in periods, galactic latitude, spectral type, fundamental stellar properties and multiplicity as evidenced by eclipse timing variations. I will further show the gems that have sprung from this sample, which were modeled and interpreted to reveal intrinsically pulsating components, runaway encounters with massive tertiaries, stellar objects that populate the lowest end of the main sequence and circumbinary planets. I will critically review and discuss the causes of data systematics and detrending, and introduce a novel algorithm to classify light curves into morphological types using Locally Linear Embedding. Finally, I will touch on the dark side of eclipsing binaries as the primary cause of false positives in extrasolar planet detections with Kepler.

  7. The Kepler Mission: Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William; Likins, B.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    Detecting extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The difficulties encountered with direct imaging of Earth-size planets from space are expected to be resolved in the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). This method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. Its capabilities and strengths are presented.

  8. Finding Earth-size planets in the habitable zone: the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Borucki, William; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Christensen-Dalsgaard, Jørgen; Cochran, William; Dunham, Edward; Gautier, Thomas N.; Geary, John; Gilliland, Ronald; Jenkins, Jon; Kondo, Yoji; Latham, David; Lissauer, Jack J.; Monet, David

    2008-05-01

    The Kepler Mission is a space-based mission whose primary goal is to detect Earth-size and smaller planets in the habitable zone of solar-like stars. The mission will monitor more than 100,000 stars for transits with a differential photometric precision of 20 ppm at V=12 for a 6.5 hour transit. It will also provide asteroseismic results on several thousand dwarf stars. It is specifically designed to continuously observe a single field of view of greater than 100 square degrees for 3.5 or more years. This overview describes the mission design, its goals and capabilities, the measured performance for those photometer components that have now been tested, the Kepler Input Catalog, an overview of the analysis pipeline, the plans for the Follow-up Observing Program to validate the detections and characterize the parent stars, and finally, the plans for the Guest Observer and Astrophysical Data Program.

  9. DISCOVERY OF A ZZ CETI IN THE KEPLER MISSION FIELD

    SciTech Connect

    Hermes, J. J.; Winget, D. E.; Mullally, Fergal; Howell, Steve B.; Oestensen, R. H.; Bloemen, S.; Williams, Kurtis A.; Telting, John; Southworth, John; Everett, Mark

    2011-11-01

    We report the discovery of the first identified pulsating DA white dwarf, WD J1916+3938 (Kepler ID 4552982), in the field of the Kepler mission. This ZZ Ceti star was first identified through ground-based, time-series photometry, and follow-up spectroscopy confirms that it is a hydrogen-atmosphere white dwarf with T {sub eff} = 11,129 {+-} 115 K and log g = 8.34 {+-} 0.06, placing it within the empirical ZZ Ceti instability strip. The object shows up to 0.5% amplitude variability at several periods between 800 and 1450 s. Extended Kepler observations of WD J1916+3938 could yield the best light curve, to date, of any pulsating white dwarf, allowing us to directly study the interior of an evolved object representative of the fate of the majority of stars in our Galaxy.

  10. On the abundance of extraterrestrial life after the Kepler mission

    NASA Astrophysics Data System (ADS)

    Wandel, Amri

    2015-07-01

    The data recently accumulated by the Kepler mission have demonstrated that small planets are quite common and that a significant fraction of all stars may have an Earth-like planet within their habitable zone. These results are combined with a Drake-equation formalism to derive the space density of biotic planets as a function of the relatively modest uncertainty in the astronomical data and of the (yet unknown) probability for the evolution of biotic life, F b. I suggest that F b may be estimated by future spectral observations of exoplanet biomarkers. If F b is in the range 0.001-1, then a biotic planet may be expected within 10-100 light years from Earth. Extending the biotic results to advanced life I derive expressions for the distance to putative civilizations in terms of two additional Drake parameters - the probability for evolution of a civilization, F c, and its average longevity. For instance, assuming optimistic probability values (F b~F c~1) and a broadcasting longevity of a few thousand years, the likely distance to the nearest civilizations detectable by searching for intelligent electromagnetic signals is of the order of a few thousand light years. The probability of detecting intelligent signals with present and future radio telescopes is calculated as a function of the Drake parameters. Finally, I describe how the detection of intelligent signals would constrain the Drake parameters.

  11. The Kepler problem in the Snyder space

    NASA Astrophysics Data System (ADS)

    Leiva, Carlos; Saavedra, Joel; Villanueva, J. R.

    2013-06-01

    In this paper we study the Kepler problem in the non commutative Snyder scenario. We characterize the deformations in the Poisson bracket algebra under a mimic procedure from quantum standard formulations and taking into account a general recipe to build the noncommutative phase space coordinates (in the sense of Poisson brackets). We obtain an expression to the deformed potential, and then the consequences in the precession of the orbit of Mercury are calculated. This result allows us to find an estimated value for the non commutative deformation parameter introduced.

  12. Space physics missions handbook

    NASA Technical Reports Server (NTRS)

    Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)

    1991-01-01

    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

  13. Kepler Mission to Detect Earth-like Planes

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2005-01-01

    Kepler Mission has been approved and funded for launch into an Earth-trailing orbit in 2007. The satellite observatory is designed to detect Earth-like planets in the Cygnus region of the sky (one hundred square degrees). If all goes as planned, we expect to detect some 60 Earth-like planets, plus a greater number of larger planets. None of the planets that have been discovered so far are not Earth-like; they are mostly Jupiter-sized, large planets.

  14. Radius Determination of Solar-type Stars Using Asteroseismology: What to Expect from the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Stello, Dennis; Chaplin, William J.; Bruntt, Hans; Creevey, Orlagh L.; García-Hernández, Antonio; Monteiro, Mario J. P. F. G.; Moya, Andrés; Quirion, Pierre-Olivier; Sousa, Sergio G.; Suárez, Juan-Carlos; Appourchaux, Thierry; Arentoft, Torben; Ballot, Jerome; Bedding, Timothy R.; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne; Fletcher, Stephen T.; García, Rafael A.; Houdek, Günter; Jiménez-Reyes, Sebastian J.; Kjeldsen, Hans; New, Roger; Régulo, Clara; Salabert, David; Toutain, Thierry

    2009-08-01

    For distant stars, as observed by the NASA Kepler satellite, parallax information is currently of fairly low quality and is not complete. This limits the precision with which the absolute sizes of the stars and their potential transiting planets can be determined by traditional methods. Asteroseismology will be used to aid the radius determination of stars observed during NASA's Kepler mission. We report on the recent asteroFLAG hare-and-hounds Exercise#2, where a group of "hares" simulated data of F-K main-sequence stars that a group of "hounds" sought to analyze, aimed at determining the stellar radii. We investigated stars in the range 9 < V < 15, both with and without parallaxes. We further test different uncertainties in T eff, and compare results with and without using asteroseismic constraints. Based on the asteroseismic large frequency spacing, obtained from simulations of 4 yr time series data from the Kepler mission, we demonstrate that the stellar radii can be correctly and precisely determined, when combined with traditional stellar parameters from the Kepler Input Catalogue. The radii found by the various methods used by each independent hound generally agree with the true values of the artificial stars to within 3%, when the large frequency spacing is used. This is 5-10 times better than the results where seismology is not applied. These results give strong confidence that radius estimation can be performed to better than 3% for solar-like stars using automatic pipeline reduction. Even when the stellar distance and luminosity are unknown we can obtain the same level of agreement. Given the uncertainties used for this exercise we find that the input log g and parallax do not help to constrain the radius, and that T eff and metallicity are the only parameters we need in addition to the large frequency spacing. It is the uncertainty in the metallicity that dominates the uncertainty in the radius.

  15. RADIUS DETERMINATION OF SOLAR-TYPE STARS USING ASTEROSEISMOLOGY: WHAT TO EXPECT FROM THE KEPLER MISSION

    SciTech Connect

    Stello, Dennis; Bruntt, Hans; Bedding, Timothy R.; Chaplin, William J.; Elsworth, Yvonne; Creevey, Orlagh L.; Jimenez-Reyes, Sebastian J.; Garcia-Hernandez, Antonio; Moya, Andres; Suarez, Juan-Carlos; Monteiro, Mario J. P. F. G.; Sousa, Sergio G.; Quirion, Pierre-Olivier; Arentoft, Torben; Christensen-Dalsgaard, Joergen; Appourchaux, Thierry; Ballot, Jerome; Fletcher, Stephen T.; Garcia, Rafael A.

    2009-08-01

    For distant stars, as observed by the NASA Kepler satellite, parallax information is currently of fairly low quality and is not complete. This limits the precision with which the absolute sizes of the stars and their potential transiting planets can be determined by traditional methods. Asteroseismology will be used to aid the radius determination of stars observed during NASA's Kepler mission. We report on the recent asteroFLAG hare-and-hounds Exercise no. 2, where a group of 'hares' simulated data of F-K main-sequence stars that a group of 'hounds' sought to analyze, aimed at determining the stellar radii. We investigated stars in the range 9 < V < 15, both with and without parallaxes. We further test different uncertainties in T {sub eff}, and compare results with and without using asteroseismic constraints. Based on the asteroseismic large frequency spacing, obtained from simulations of 4 yr time series data from the Kepler mission, we demonstrate that the stellar radii can be correctly and precisely determined, when combined with traditional stellar parameters from the Kepler Input Catalogue. The radii found by the various methods used by each independent hound generally agree with the true values of the artificial stars to within 3%, when the large frequency spacing is used. This is 5-10 times better than the results where seismology is not applied. These results give strong confidence that radius estimation can be performed to better than 3% for solar-like stars using automatic pipeline reduction. Even when the stellar distance and luminosity are unknown we can obtain the same level of agreement. Given the uncertainties used for this exercise we find that the input log g and parallax do not help to constrain the radius, and that T {sub eff} and metallicity are the only parameters we need in addition to the large frequency spacing. It is the uncertainty in the metallicity that dominates the uncertainty in the radius.

  16. KEPLER MISSION DESIGN, REALIZED PHOTOMETRIC PERFORMANCE, AND EARLY SCIENCE

    SciTech Connect

    Koch, David G.; Borucki, William J.; Lissauer, Jack J.; Basri, Gibor; Marcy, Geoffrey; Batalha, Natalie M.; Brown, Timothy M.; Caldwell, Douglas; DeVore, Edna; Jenkins, Jon; Christensen-Dalsgaard, Joergen; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N.; Gilliland, Ronald L.; Gould, Alan; Kondo, Yoji; Monet, David

    2010-04-20

    The Kepler Mission, launched on 2009 March 6, was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method. Results from just 43 days of data along with ground-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods. Many aspects of stellar astrophysics also benefit from the unique, precise, extended, and nearly continuous data set for a large number and variety of stars. Early results for classical variables and eclipsing stars show great promise. To fully understand the methodology, processes, and eventually the results from the mission, we present the underlying rationale that ultimately led to the flight and ground system designs used to achieve the exquisite photometric performance. As an example of the initial photometric results, we present variability measurements that can be used to distinguish dwarf stars from red giants.

  17. Classical variables in the era of space photometric missions

    NASA Astrophysics Data System (ADS)

    Molnár, L.; Plachy, E.; Szabó, R.; Benkő, J. M.

    2015-09-01

    The space photometric missions like CoRoT and Kepler transformed our view of pulsating stars, including the well-known RR Lyrae and Cepheid classes. The K2, TESS and PLATO missions will expand these investigations to larger sample sizes and to specific stellar populations.

  18. SPECTROSCOPY OF FAINT KEPLER MISSION EXOPLANET CANDIDATE HOST STARS

    SciTech Connect

    Everett, Mark E.; Silva, David R.; Howell, Steve B.; Szkody, Paula

    2013-07-10

    Stellar properties are measured for a large set of Kepler mission exoplanet candidate host stars. Most of these stars are fainter than 14th magnitude, in contrast to other spectroscopic follow-up studies. This sample includes many high-priority Earth-sized candidate planets. A set of model spectra are fitted to R {approx} 3000 optical spectra of 268 stars to improve estimates of T{sub eff}, log (g), and [Fe/H] for the dwarfs in the range 4750 {<=} T{sub eff} {<=} 7200 K. These stellar properties are used to find new stellar radii and, in turn, new radius estimates for the candidate planets. The result of improved stellar characteristics is a more accurate representation of this Kepler exoplanet sample and identification of promising candidates for more detailed study. This stellar sample, particularly among stars with T{sub eff} {approx}> 5200 K, includes a greater number of relatively evolved stars with larger radii than assumed by the mission on the basis of multi-color broadband photometry. About 26% of the modeled stars require radii to be revised upward by a factor of 1.35 or greater, and modeling of 87% of the stars suggest some increase in radius. The sample presented here also exhibits a change in the incidence of planets larger than 3-4 R{sub Circled-Plus} as a function of metallicity. Once [Fe/H] increases to {>=} - 0.05, large planets suddenly appear in the sample while smaller planets are found orbiting stars with a wider range of metallicity. The modeled stellar spectra, as well as an additional 84 stars of mostly lower effective temperatures, are made available to the community.

  19. A Bewildering and Dynamic Picture of Exoplanetary Systems Identified by the Kepler Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Jenkins, J. M.

    2013-12-01

    notion of the habitable zone for single stars and static planetary system configurations. This talk will provide an overview of the science results from the Kepler Mission and the work ahead to derive the frequency of Earth-size planets in the habitable zone of solar-like stars from the treasure trove of Kepler data. NASA's quest for exoplanets continues with the Transiting Exoplanet Survey Satellite (TESS) mission, slated for launch in May 2017 by NASA's Explorer Program. TESS will conduct an all- sky transit survey to identify the 1000 best small exoplanets in the solar neighborhood for follow up observations and characterization. TESS's targets will include all F, G, K dwarfs from +4 to +12 magnitude and all M dwarfs known within ~200 light-years. 500,000 target stars will be observed over two years with ~500 square degrees observed continuously for a year in each hemisphere in the James Webb Space Telescopes continuously viewable zones. Since the typical TESS target star is 5 magnitudes brighter than that of Kepler and 10 times closer, TESS discoveries will afford significant opportunities to measure the masses of the exoplanets and to characterize their atmospheres with JWST, ELTs and other exoplanet explorers. TESS' discoveries will raise new questions regarding habitability that will be open to investigation through active efforts to characterize their atmospheres and search for biomarkers. Funding for this mission is provided by NASA's Science Mission Directorate.

  20. Space Mission Operations Concept

    NASA Technical Reports Server (NTRS)

    Squibb, Gael F.

    1996-01-01

    This paper will discuss the concept of developing a space mission operations concept; the benefits of starting this system engineering task early; the neccessary inputs to the process; and the products that are generated.

  1. VizieR Online Data Catalog: Kepler Mission. VII. Eclipsing binaries in DR3 (Kirk+, 2016)

    NASA Astrophysics Data System (ADS)

    Kirk, B.; Conroy, K.; Prsa, A.; Abdul-Masih, M.; Kochoska, A.; Matijevic, G.; Hambleton, K.; Barclay, T.; Bloemen, S.; Boyajian, T.; Doyle, L. R.; Fulton, B. J.; Hoekstra, A. J.; Jek, K.; Kane, S. R.; Kostov, V.; Latham, D.; Mazeh, T.; Orosz, J. A.; Pepper, J.; Quarles, B.; Ragozzine, D.; Shporer, A.; Southworth, J.; Stassun, K.; Thompson, S. E.; Welsh, W. F.; Agol, E.; Derekas, A.; Devor, J.; Fischer, D.; Green, G.; Gropp, J.; Jacobs, T.; Johnston, C.; Lacourse, D. M.; Saetre, K.; Schwengeler, H.; Toczyski, J.; Werner, G.; Garrett, M.; Gore, J.; Martinez, A. O.; Spitzer, I.; Stevick, J.; Thomadis, P. C.; Vrijmoet, E. H.; Yenawine, M.; Batalha, N.; Borucki, W.

    2016-07-01

    The Kepler Eclipsing Binary Catalog lists the stellar parameters from the Kepler Input Catalog (KIC) augmented by: primary and secondary eclipse depth, eclipse width, separation of eclipse, ephemeris, morphological classification parameter, and principal parameters determined by geometric analysis of the phased light curve. The previous release of the Catalog (Paper II; Slawson et al. 2011, cat. J/AJ/142/160) contained 2165 objects, through the second Kepler data release (Q0-Q2). In this release, 2878 objects are identified and analyzed from the entire data set of the primary Kepler mission (Q0-Q17). The online version of the Catalog is currently maintained at http://keplerEBs.villanova.edu/. A static version of the online Catalog associated with this paper is maintained at MAST https://archive.stsci.edu/kepler/eclipsing_binaries.html. (9 data files).

  2. VizieR Online Data Catalog: Kepler Mission. VII. Eclipsing binaries in DR3 (Kirk+, 2016)

    NASA Astrophysics Data System (ADS)

    Kirk, B.; Conroy, K.; Prsa, A.; Abdul-Masih, M.; Kochoska, A.; Matijevic, G.; Hambleton, K.; Barclay, T.; Bloemen, S.; Boyajian, T.; Doyle, L. R.; Fulton, B. J.; Hoekstra, A. J.; Jek, K.; Kane, S. R.; Kostov, V.; Latham, D.; Mazeh, T.; Orosz, J. A.; Pepper, J.; Quarles, B.; Ragozzine, D.; Shporer, A.; Southworth, J.; Stassun, K.; Thompson, S. E.; Welsh, W. F.; Agol, E.; Derekas, A.; Devor, J.; Fischer, D.; Green, G.; Gropp, J.; Jacobs, T.; Johnston, C.; Lacourse, D. M.; Saetre, K.; Schwengeler, H.; Toczyski, J.; Werner, G.; Garrett, M.; Gore, J.; Martinez, A. O.; Spitzer, I.; Stevick, J.; Thomadis, P. C.; Vrijmoet, E. H.; Yenawine, M.; Batalha, N.; Borucki, W.

    2016-07-01

    The Kepler Eclipsing Binary Catalog lists the stellar parameters from the Kepler Input Catalog (KIC) augmented by: primary and secondary eclipse depth, eclipse width, separation of eclipse, ephemeris, morphological classification parameter, and principal parameters determined by geometric analysis of the phased light curve. The previous release of the Catalog (Paper II; Slawson et al. 2011, cat. J/AJ/142/160) contained 2165 objects, through the second Kepler data release (Q0-Q2). In this release, 2878 objects are identified and analyzed from the entire data set of the primary Kepler mission (Q0-Q17). The online version of the Catalog is currently maintained at http://keplerEBs.villanova.edu/. A static version of the online Catalog associated with this paper is maintained at MAST https://archive.stsci.edu/kepler/eclipsing_binaries.html. (10 data files).

  3. Planetary and Stellar Data Products Expected From The Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Koch, David G.; Basri, Gibor; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas; Kondo, Yoji; Latham, David; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Kepler Mission is a Discovery-class mission scheduled to be launched in the 2006-2007 time frame. It is a wide field of view photometer with a 95 m aperture designed to attain a photometric precision of 2 parts in 10^5 for the 12th magnitude stars. It will continually observe 100,000 main-sequence stars from 9th to 14th magnitude for a period of four years with a cadence of 4/hour. This database should be unique in its photometric precision, cadence, and duration of observations. Several hundred terrestrial-size planets will be detected if they are common around solar-like stars. Based on the current results of Doppler-velocity searches, over a thousand giant planets will also be found. A guest investigator program is planned that would provide the opportunity to observe thousands of other objects in the 105 square degree FOV. Such objects could include stars with micro-variability, other intrinsic variables, cataclysmic variables, eclipsing binaries (including x-ray binaries), and possibly AGN. A ground-based program to classify all 225,000 stars in the FOV and to do a detailed examination of a subset of the stars that show planetary companions is planned. Doppler-velocity observations will be made to find the presence of giant planets not seen in transit. The data will be rapidly released to the community for follow up observations and for changes to the guest investigator program.

  4. Kepler: NASA's First Mission Capable of Finding Earth-Size Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William J.

    2009-01-01

    Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning

  5. Kepler

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Murdin, P.

    2000-11-01

    Johannes Kepler (1571-1630) was arguably the most innovative astronomical theorist in the millennium and a half from Claudius PTOLEMY's Almagest (c. AD 150) to Isaac NEWTON's Principia (1687). Before Kepler, planetary and lunar theory had consisted in combining circular motions, either strictly uniform or angularly uniform about an off-center `equant' point, so as to `save the appearances'. T...

  6. Low Cost Mission Operations Workshop. [Space Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

  7. Spitzer Observations of Exoplanets Discovered with the Kepler K2 Mission

    NASA Astrophysics Data System (ADS)

    Beichman, Charles; Livingston, John; Werner, Michael; Gorjian, Varoujan; Krick, Jessica; Deck, Katherine; Knutson, Heather; Wong, Ian; Petigura, Erik; Christiansen, Jessie; Ciardi, David; Greene, Thomas P.; Schlieder, Joshua E.; Line, Mike; Crossfield, Ian; Howard, Andrew; Sinukoff, Evan

    2016-05-01

    We have used the Spitzer Space Telescope to observe two transiting planetary systems orbiting low-mass stars discovered in the Kepler K2 mission. The system K2-3 (EPIC 201367065) hosts three planets, while K2-26 (EPIC 202083828) hosts a single planet. Observations of all four objects in these two systems confirm and refine the orbital and physical parameters of the planets. The refined orbital information and more precise planet radii possible with Spitzer will be critical for future observations of these and other K2 targets. For K2-3b we find marginally significant evidence for a transit timing variation between the K2 and Spitzer epochs.

  8. An Introduction to Exoplanets and the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2014-01-01

    A quarter century ago, the only planets known to humanity were the familiar objects that orbit our Sun. But improved observational techniques allowed astronomers to begin detecting planets around other stars in the 1990s. The first extrasolar planets (often referred to as exoplanets) to be discovered were quite exotic and unfamiliar objects. Most were giant objects that are hundreds of times as massive as the Earth and orbit so close to their star that they are hotter than pizza ovens. But as observational capabilities improved, smaller and cooler planets were found. The most capable planet-hunting tool developed to date is NASA's Kepler telescope, which was launched in 2009. Kepler has found that planets similar in size to our Earth are quite abundant within our galaxy. Results of Kepler's research will be summarized and placed into context within the new and growing discipline of exoplanet studies.

  9. The Kepler Mission: A Search for Terrestrial Planets - Development Status

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, W.; Mayer, D.; Caldwell, D.; Jenkens, J.; Dunham, E.; Geary, J.; Bachtell, E.; Deininger, W.; Philbrick, R.

    2003-01-01

    We have embarked on a mission to detect terrestrial planets. The space mission has been optimized to search for earth-size planets (0.5 to 10 earth masses) in the habitable zone (HZ) of solar-like stars. Given this design, the mission will necessarily be capable of not only detecting Earth analogs, but a wide range of planetary types and characteristics ranging from Mercury-size objects with orbital periods of days to gas-giants in decade long orbits that have undeniable signatures even with only one transit detected. The mission is designed to survey the full range of spectral-type dwarf stars. The approach is to detect the periodic signal of transiting planets. Three or more transits of a star exceeding a combined threshold of eight sigma with a statistically consistent period, brightness change and duration provide a rigorous method of detection. From the relative brightness change the planet size can be calculated. From the period the orbital size can be calculated and its location relative to the HZ determined. Presented here are: the mission goals, the top level system design requirements derived from these goals that drive the flight system design, a number of the trades that have lead to the mission concept, expected photometric performance dependence on stellar brightness and spectral type based on the system 'noise tree' analysis. Updated estimates are presented of the numbers of detectable planets versus size, orbit, stellar spectral type and distances based on a planet frequency hypothesis. The current project schedule and organization are given.

  10. Hubble space telescope high-resolution imaging of Kepler small and cool exoplanet host stars

    SciTech Connect

    Gilliland, Ronald L.; Cartier, Kimberly M. S.; Wright, Jason T.; Adams, Elisabeth R.; Ciardi, David R.

    2015-01-01

    High-resolution imaging is an important tool for follow-up study of exoplanet candidates found via transit detection with the Kepler mission. We discuss here Hubble Space Telescope imaging with the WFC3 of 23 stars that host particularly interesting Kepler planet candidates based on their small size and cool equilibrium temperature estimates. Results include detections, exclusion of background stars that could be a source of false positives for the transits, and detection of physically associated companions in a number of cases providing dilution measures necessary for planet parameter refinement. For six Kepler objects of interest, we find that there is ambiguity regarding which star hosts the transiting planet(s), with potentially strong implications for planetary characteristics. Our sample is evenly distributed in G, K, and M spectral types. Albeit with a small sample size, we find that physically associated binaries are more common than expected at each spectral type, reaching a factor of 10 frequency excess in M. We document the program detection sensitivities, detections, and deliverables to the Kepler follow-up program archive.

  11. Bayesian Methodology for the Space Interferometry Mission

    NASA Astrophysics Data System (ADS)

    Loredo, T. J.; Chernoff, D. F.

    2000-05-01

    We will describe work in progress on the development of Bayesian methodology for the analysis of data from the Space Interferometry Mission (SIM). There are two main thrusts to this work: development of new methods for the detection and analysis of Keplerian reflex motion in astrometric data; and adaptive experimental design for on-the-fly refinement of the SIM grid. For detection and measurement of reflex motions (e.g., from planetary companions), we use the algorithm developed by Bretthorst for the Bayesian analysis of superposed nonlinear models to develop an alternative to the commonly used Lomb-Scargle (LS) periodogram that we call the Kepler periodogram. The LS periodogram emerges as a special case of the Kepler periodogram when the data are 1-dimensional (e.g., radial velocity (RV) measurements) and the bodies in question are in a circular orbit. But the Kepler periodogram generalizes the LS periodogram to account for orbital eccentricity, higher dimensional data (e.g., astrometric data, or a combination of astrometric and RV data), and sources of systematic error such as uncertainty in inertial motion. We use the Bayesian theory of experimental design to develop adaptive strategies for SIM observing. This includes identifying the best sampling scheme for detecting and monitoring Keplerian reflex motions in science targets, and (perhaps more crucially) the adaptive refinement of the SIM astrometric grid from observations of candidate grid stars throughout the SIM mission. Included in this latter task are classification of candidate grid objects as inertial or noninertial and scheduling of observations to best update our knowledge of grid star motions.

  12. The Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    1998-01-01

    The Space Interferometry Mission (SIM) is the next major space mission in NASA's Origins program after SIRTF. The SIM architecture uses three Michelson interferometers in low-earth orbit to provide 4 microarcsecond precision absolute astrometric measurements on approx. 40,000 stars. SIM will also provide synthesis imaging in the visible waveband to a resolution of 10 milliarcsecond, and interferometric nulling to a depth of 10(exp -4). A near-IR (1-2 micron) capability is being considered. Many key technologies will be demonstrated by SIM that will be carried over directly or can be readily scaled to future Origins missions such as TPF. The SIM spacecraft will carry a triple Michelson interferometer with baselines in the 10 meter range. Two interferometers act as high precision trackers, providing attitude information at all time, while the third one conducts the science observations. Ultra-accurate laser metrology and active systems monitor the systematic errors and to control the instrument vibrations in order to reach the 4 microarcsecond level on wide-angle measurements. SIM will produce a wealth of new astronomical data. With an absolute positional precision of 4 microarcsecond, SIM will improve on the best currently available measures (the Hipparcos catalog) by 2 or 3 orders of magnitude, providing parallaxes accurate to 10% and transverse velocities to 0.2 km/s anywhere in the Galaxy, to stars as faint as 20th magnitude. With the addition of radial velocities, knowledge of the 6-dimension phase space for objects of interest will allow us to attack a wide array of previously inaccessible problems such as: search for planets down to few earth masses; calibration of stellar luminosities and by means of standard candles, calibration of the cosmic distance scale; detecting perturbations due to spiral arms, disk warps and central bar in our galaxy; probe of the gravitational potential of the Galaxy, several kiloparsecs out of the galactic plane; synthesis imaging

  13. SPECKLE CAMERA OBSERVATIONS FOR THE NASA KEPLER MISSION FOLLOW-UP PROGRAM

    SciTech Connect

    Howell, Steve B.; Everett, Mark E.; Sherry, William; Horch, Elliott; Ciardi, David R.

    2011-07-15

    We present the first results from a speckle imaging survey of stars classified as candidate exoplanet host stars discovered by the Kepler mission. We use speckle imaging to search for faint companions or closely aligned background stars that could contribute flux to the Kepler light curves of their brighter neighbors. Background stars are expected to contribute significantly to the pool of false positive candidate transiting exoplanets discovered by the Kepler mission, especially in the case that the faint neighbors are eclipsing binary stars. Here, we describe our Kepler follow-up observing program, the speckle imaging camera used, our data reduction, and astrometric and photometric performance. Kepler stars range from R = 8 to 16 and our observations attempt to provide background non-detection limits 5-6 mag fainter and binary separations of {approx}0.05-2.0 arcsec. We present data describing the relative brightness, separation, and position angles for secondary sources, as well as relative plate limits for non-detection of faint nearby stars around each of 156 target stars. Faint neighbors were found near 10 of the stars.

  14. Ensemble asteroseismology of solar-type stars with the NASA Kepler mission.

    PubMed

    Chaplin, W J; Kjeldsen, H; Christensen-Dalsgaard, J; Basu, S; Miglio, A; Appourchaux, T; Bedding, T R; Elsworth, Y; García, R A; Gilliland, R L; Girardi, L; Houdek, G; Karoff, C; Kawaler, S D; Metcalfe, T S; Molenda-Żakowicz, J; Monteiro, M J P F G; Thompson, M J; Verner, G A; Ballot, J; Bonanno, A; Brandão, I M; Broomhall, A-M; Bruntt, H; Campante, T L; Corsaro, E; Creevey, O L; Doğan, G; Esch, L; Gai, N; Gaulme, P; Hale, S J; Handberg, R; Hekker, S; Huber, D; Jiménez, A; Mathur, S; Mazumdar, A; Mosser, B; New, R; Pinsonneault, M H; Pricopi, D; Quirion, P-O; Régulo, C; Salabert, D; Serenelli, A M; Silva Aguirre, V; Sousa, S G; Stello, D; Stevens, I R; Suran, M D; Uytterhoeven, K; White, T R; Borucki, W J; Brown, T M; Jenkins, J M; Kinemuchi, K; Van Cleve, J; Klaus, T C

    2011-04-01

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy. PMID:21474754

  15. Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.

  16. Space missions to comets

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Yeomans, D. K. (Editor); Brandt, J. C. (Editor); Hobbs, R. W. (Editor)

    1979-01-01

    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

  17. Towards Automatic Classification of Exoplanet-Transit-Like Signals: A Case Study on Kepler Mission Data

    NASA Astrophysics Data System (ADS)

    Valizadegan, Hamed; Martin, Rodney; McCauliff, Sean D.; Jenkins, Jon Michael; Catanzarite, Joseph; Oza, Nikunj C.

    2015-08-01

    Building new catalogues of planetary candidates, astrophysical false alarms, and non-transiting phenomena is a challenging task that currently requires a reviewing team of astrophysicists and astronomers. These scientists need to examine more than 100 diagnostic metrics and associated graphics for each candidate exoplanet-transit-like signal to classify it into one of the three classes. Considering that the NASA Explorer Program's TESS mission and ESA's PLATO mission survey even a larger area of space, the classification of their transit-like signals is more time-consuming for human agents and a bottleneck to successfully construct the new catalogues in a timely manner. This encourages building automatic classification tools that can quickly and reliably classify the new signal data from these missions. The standard tool for building automatic classification systems is the supervised machine learning that requires a large set of highly accurate labeled examples in order to build an effective classifier. This requirement cannot be easily met for classifying transit-like signals because not only are existing labeled signals very limited, but also the current labels may not be reliable (because the labeling process is a subjective task). Our experiments with using different supervised classifiers to categorize transit-like signals verifies that the labeled signals are not rich enough to provide the classifier with enough power to generalize well beyond the observed cases (e.g. to unseen or test signals). That motivated us to utilize a new category of learning techniques, so-called semi-supervised learning, that combines the label information from the costly labeled signals, and distribution information from the cheaply available unlabeled signals in order to construct more effective classifiers. Our study on the Kepler Mission data shows that semi-supervised learning can significantly improve the result of multiple base classifiers (e.g. Support Vector Machines, Ada

  18. ATV Engineering Support Team Safety Console Preparation for the Johannes Kepler Mission

    NASA Astrophysics Data System (ADS)

    Chase, R.; Oliefka, L.

    2010-09-01

    This paper describes the improvements to be implemented in the Safety console position of the Engineering Support Team(EST) at the Automated Transfer Vehicle(ATV) Control Centre(ATV-CC) for the upcoming ATV Johannes Kepler mission. The ATV missions to the International Space Station are monitored and controlled from the ATV-CC in Toulouse, France. The commanding of ATV is performed by the Vehicle Engineering Team(VET) in the main control room under authority of the Flight Director. The EST performs a monitoring function in a room beside the main control room. One of the EST positions is the Safety console, which is staffed by safety engineers from ESA and the industrial prime contractor, Astrium. The function of the Safety console is to check whether the hazard controls are available throughout the mission as required by the Hazard Reports approved by the ISS Safety Review Panel. Safety console preparation activities were limited prior to the first ATV mission due to schedule constraints, and the safety engineers involved have been working to improve the readiness for ATV 2. The following steps have been taken or are in process, and will be described in this paper: • review of the implementation of Operations Control Agreement Documents(OCADs) that record the way operational hazard controls are performed to meet the needs of the Hazard Reports(typically in Flight Rules and Crew Procedures), • crosscheck of operational control needs and implementations with respect to ATV's first flight observations and post flight evaluations, with a view to identifying additional, obsolete or revised operational hazard controls, • participation in the Flight Rule review and update process carried out between missions, • participation in the assessment of anomalies observed during the first ATV mission, to ensure that any impacts are addressed in the ATV 2 safety documentation, • preparation of a Safety console handbook to provide lists of important safety aspects to be

  19. Validating the First Habitable-Zone Planet Candidates Identified by the NASA Kepler Mission

    NASA Astrophysics Data System (ADS)

    Charbonneau, David; Desert, Jean-Michel; Fressin, Francois; Ballard, Sarah; Borucki, William; Latham, David; Gilliland, Ronald; Seager, Sara; Knutson, Heather; Fortney, Jonathan; Brown, Timothy; Ford, Eric; Deming, Drake; Torres, Guillermo

    2011-05-01

    At the beginning of Cycle 8, the NASA Kepler Mission will have completed two years of science observations, the minimum baseline sufficient to identify candidate transiting exoplanets orbiting within the habitable-zones of Sun-like stars. The principal task that lies ahead is to reject from this sample the false positives (blends of eclipsing binaries that precisely mimic the signal of a transiting exoplanet), and to confirm the planetary nature of the remaining candidates. For planets more massive than Neptune, the direct confirmation of their planetary status can be accomplished by radial-velocity measurements. However, such planets possess primordial envelopes of hydrogen and helium that make them unsuitable to life as we know it. The most exciting candidates -- and the ones that Kepler is specifically tasked with finding -- are super-Earth and Earth-sized planets orbiting within their stellar habitable zones. Kepler has just begun to identify such planet candidates, and it will identify many more as its baseline increases throughout the coming year. While the Kepler team has developed powerful tools to weed out the impostors, Spitzer possesses the unique ability to provide the final validation of these candidates as planets, namely by measuring the depth of the transit at infrared wavelengths. By combining the infrared and optical measurements of the transit depth with models of hypothetical stellar blends, we can definitively test the stellar-blend hypothesis. We propose to observe the transits of 20 candidate habitable-zone super-Earths to be identified by the Kepler Mission. The results from this Exploration Science Program will be twofold: First, we will definitively validate the first potentially habitable planets ever identified. Second, we will determine the rate of occurrence of impostors. This rate of false positives can then be applied to the much larger sample of candidates identified by Kepler, to deduce the true rate of planetary companions.

  20. Results of CCD Transit Photometry Testing for the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Koch, D.; Witteborn, F.; Dunham, E.; Jenkins, J.; Borucki, W.; Webster, L.

    1999-12-01

    Transit signals produced by Earth-size planets in orbit around solar-like stars are of the order of 8e-5 and have durations from 4 to 16 hours for planets in or near the habitable zone. A mission to search for habitable planets has been proposed (Koch, et al., 1998). At the heart of the mission is an array of CCDs used to continuously measure the relative brightness variations of 100,000 dwarf stars for transits. A testbed facility has been constructed to determine the effects of various induced noise sources on the capability of a CCD photometer to maintain an instrument relative precision of better than 1e-5. The photometry facility includes: a simulated star field with an approximate solar spectrum, fast optics to simulate the space borne telescope, a thinned back-illuminated CCD similar to those to be used on the spacecraft operating at 1 Mpix/sec read rate, and shutterless operation. The test facility is thermally and mechanically isolated. Each source of noise is introduced in a controlled fashion and evaluated. Pointing noise or changing thermal conditions in the spacecraft can cause star-image motion at the milli-pixel level. These motions are imposed by piezo-electric devices that move the photometer relative to the star field. Transit signals as small as Earth-size transits of solar-like stars are generated and measured. This is accomplished by electrical self-heating and expansion of fine wires placed across many of the star apertures. The small decrease in stellar brightness is used to demonstrate that Earth-size planets can be detected under realistic noise conditions and at the shot-noise-limited level. The effects of imposing several noise sources are shown and the resulting detectability of planets is presented. This work is supported in part by the NASA Discovery program and NASA Ames. Koch, D., Borucki, W., Webster, L., Dunham, E., Jenkins, J., Marriott, J. and Reitsema, H. SPIE Conf. on Space Telescopes and Instruments V, 3356, 599-607 (1998)

  1. Engaging the Public in the Discovery of Other Worlds: The Kepler Discovery Mission Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    DeVore, E. K.; Gould, A. D.; Harman, P. K.; Koch, D. G.

    2005-12-01

    Are we alone? Are there other worlds like our own? Astronomers are discovering large planets, but can smaller planets - new Earths - be found? These are powerful and exciting questions that motivate student learning and public interest in NASA's Kepler Discovery Mission's search for planets. Continual discoveries of extrasolar planets have sparked broad public interest, and Kepler will expand this search to discover planets like our own. The Kepler Mission Education and Public Outreach (EPO) program focuses on the excitement of discovering Earth-size planets in the habitable zone to enhance student learning and public interest in astronomy and physics. Kepler will launch in 2008, to begin searching for extrasolar Earths. During the first year, we expect Kepler to rapidly detect large planets similar to 51 Peg and smaller Earth-size planets in Mercury-like orbits. By the fourth year, we anticipate the discovery Earth-size planets in habitable zones. The Kepler EPO program began October 2002 and will continue through at least 2012, and our goals and plans are presented in this poster. The EPO program is scoped to build public interest during development, and to engage students and the public throughout the initial four-year, on-orbit mission and beyond if an extended mission is conducted. The EPO goals are to increase public awareness and understanding of the Kepler Mission by embodying key principles of NASA's ``Partners in Education" and ``Implementing the OSS Education/ Public Outreach Strategy:" involve scientists and contractors in EPO efforts, establish collaborations with planetariums and science museums, and build on existing programs and networks that maximize the leverage of NASA EPO funding in this project. The Kepler EPO plan is designed to take advantage of existing collaborations, networks, experience, and relationships to optimize the impact of EPO. Kepler EPO is funded by NASA's Discovery Mission Program, Science Mission Directorate.

  2. Analysis of selected Kepler Mission planetary light curves

    NASA Astrophysics Data System (ADS)

    Rhodes, M. D.; Budding, E.

    2014-06-01

    We have modified the graphical user interfaced close binary system analysis program CurveFit to the form WinKepler and applied it to 16 representative planetary candidate light curves found in the NASA Exoplanet Archive (NEA) at the Caltech website http://exoplanetarchive.ipac.caltech.edu, with an aim to compare different analytical approaches. WinKepler has parameter options for a realistic physical model, including gravity-brightening and structural parameters derived from the relevant Radau equation. We tested our best-fitting parameter-sets for formal determinacy and adequacy. A primary aim is to compare our parameters with those listed in the NEA. Although there are trends of agreement, small differences in the main parameter values are found in some cases, and there may be some relative bias towards a 90∘ value for the NEA inclinations. These are assessed against realistic error estimates. Photometric variability from causes other than planetary transits affects at least 6 of the data-sets studied; with small pulsational behaviour found in 3 of those. For the false positive KOI 4.01, we found that the eclipses could be modelled by a faint background classical Algol as effectively as by a transiting exoplanet. Our empirical checks of limb-darkening, in the cases of KOI 1.01 and 12.01, revealed that the assigned stellar temperatures are probably incorrect. For KOI 13.01, our empirical mass-ratio differs by about 7 % from that of Mislis and Hodgkin (Mon. Not. R. Astron. Soc. 422:1512, 2012), who neglected structural effects and higher order terms in the tidal distortion. Such detailed parameter evaluation, additional to the usual main geometric ones, provides an additional objective for this work.

  3. Science and Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy

    2011-01-01

    Have you ever wondered about the science goals of various deep space missions? Or why scientists want such seemingly complicated spacecraft and operations scenarios? With a focus on outer planets) this talk will cover the scientific goals and results of several recent and future missions) how scientists approach a requirements flow down) and how the disparate needs of mission engineers and scientists can come together for mission success. It will also touch on several up and coming technologies and how they will change mission architectures in the future.

  4. Systems engingeering for the Kepler Mission : a search for terrestrial planets

    NASA Technical Reports Server (NTRS)

    Duren, Riley M.; Dragon, Karen; Gunter, Steve Z.; Gautier, Nick; Koch, Dave; Harvey, Adam; Enos, Alan; Borucki, Bill; Sobeck, Charlie; Mayer, Dave; Jenkins, Jon; Thompson, Rick; Bachtell, Eric; Peters, Dan

    2004-01-01

    The Kepler mission will launch in 2007 and determine the distribution of earth-size planets (0.5 to 10 earth masses) in the habitable zones (HZs) of solar-like stars. The mission will monitor > 100,000 dwarf stars simultaneously for at least 4 years. Precision differential photometry will be used to detect the periodic signals of transiting planets. Kepler will also support asteroseismology by measuring the pressure-mode (p-mode) oscillations of selected stars. Key mission elements include a spacecraft bus and 0.95 meter, wide-field, CCD-based photometer injected into an earth-trailing heliocentric orbit by a 3-stage Delta II launch vehicle as well as a distributed Ground Segment and Follow-up Observing Program. The project is currently preparing for Preliminary Design Review (October 2004) and is proceeding with detailed design and procurement of long-lead components. In order to meet the unprecedented photometric precision requirement and to ensure a statistically significant result, the Kepler mission involves technical challenges in the areas of photometric noise and systematic error reduction, stability, and false-positive rejection. Programmatic and logistical challenges include the collaborative design, modeling, integration, test, and operation of a geographically and functionally distributed project. A very rigorous systems engineering program has evolved to address these challenges. This paper provides an overview of the Kepler systems engineering program, including some examples of our processes and techniques in areas such as requirements synthesis, validation & verification, system robustness design, and end-to-end performance modeling.

  5. Advanced automation for space missions

    NASA Technical Reports Server (NTRS)

    Freitas, R. A., Jr.; Healy, T. J.; Long, J. E.

    1982-01-01

    A NASA/ASEE Summer Study conducted at the University of Santa Clara in 1980 examined the feasibility of using advanced artificial intelligence and automation technologies in future NASA space missions. Four candidate applications missions were considered: (1) An intelligent earth-sensing information system, (2) an autonomous space exploration system, (3) an automated space manufacturing facility, and (4) a self-replicating, growing lunar factory. The study assessed the various artificial intelligence and machine technologies which must be developed if such sophisticated missions are to become feasible by century's end.

  6. Spitzer Space Telescope Spectroscopy of the Kepler Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Onaka, T.

    2004-01-01

    The Infrared Spectrograph on the Spitzer Space Telescope was used for observations of the Kepler supernova remnant, with all four instrument modules targeted on the bright infrared knot located at 17h30m35.80s,-21d28m54.0s (J2000). The low spectral resolution modules data show a dust continuum spectrum consistent with dust grains heated by high-energy electrons, while the high resolution modules data show atomic emission line ratios consistent with excitation by a high velocity shock of greater than 100 kilometers per second and electron densities of approximately 1,000 per centimeter. The abundance ratios for the six detected elements show signs of heavy-element enhancement. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology. Support for this work was provided by NASA's Office of Space Science.

  7. Space Shuttle Missions Summary

    NASA Technical Reports Server (NTRS)

    Bennett, Floyd V.; Legler, Robert D.

    2011-01-01

    This document has been produced and updated over a 21-year period. It is intended to be a handy reference document, basically one page per flight, and care has been exercised to make it as error-free as possible. This document is basically "as flown" data and has been compiled from many sources including flight logs, flight rules, flight anomaly logs, mod flight descent summary, post flight analysis of mps propellants, FDRD, FRD, SODB, and the MER shuttle flight data and inflight anomaly list. Orbit distance traveled is taken from the PAO mission statistics.

  8. DETECTION OF POTENTIAL TRANSIT SIGNALS IN THE FIRST 12 QUARTERS OF KEPLER MISSION DATA

    SciTech Connect

    Tenenbaum, Peter; Jenkins, Jon M.; Seader, Shawn; Burke, Christopher J.; Christiansen, Jessie L.; Rowe, Jason F.; Caldwell, Douglas A.; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Smith, Jeffrey C.; Thompson, Susan E.; Twicken, Joseph D.; Girouard, Forrest R. [Orbital Sciences Corporation and others

    2013-05-01

    We present the results of a search for potential transit signals in the first three years of photometry data acquired by the Kepler mission. The targets of the search include 112,321 targets that were observed over the full interval and an additional 79,992 targets that were observed for a subset of the full interval. From this set of targets we find a total of 11,087 targets that contain at least one signal that meets the Kepler detection criteria: periodicity of the signal, an acceptable signal-to-noise ratio, and three tests that reject false positives. Each target containing at least one detected signal is then searched repeatedly for additional signals, which represent multi-planet systems of transiting planets. When targets with multiple detections are considered, a total of 18,406 potential transiting planet signals are found in the Kepler mission data set. The detected signals are dominated by events with relatively low signal-to-noise ratios and by events with relatively short periods. The distribution of estimated transit depths appears to peak in the range between 20 and 30 parts per million, with a few detections down to fewer than 10 parts per million. The detections exhibit signal-to-noise ratios from 7.1{sigma}, which is the lower cutoff for detections, to over 10,000{sigma}, and periods ranging from 0.5 days, which is the shortest period searched, to 525 days, which is the upper limit of achievable periods given the length of the data set and the requirement that all detections include at least three transits. The detected signals are compared to a set of known transit events in the Kepler field of view, many of which were identified by alternative methods; the comparison shows that the current search recovery rate for targets with known transit events is 98.3%.

  9. KEPLER-15b: A HOT JUPITER ENRICHED IN HEAVY ELEMENTS AND THE FIRST KEPLER MISSION PLANET CONFIRMED WITH THE HOBBY-EBERLY TELESCOPE

    SciTech Connect

    Endl, Michael; MacQueen, Phillip J.; Cochran, William D.; Brugamyer, Erik J.; Buchhave, Lars A.; Rowe, Jason; Lucas, Phillip; Isaacson, Howard; Bryson, Steve; Howell, Steve B.; Borucki, William J.; Caldwell, Douglas; Christiansen, Jessie L.; Haas, Michael R.; Fortney, Jonathan J.; Hansen, Terese; Ciardi, David R.; Everett, Mark; Ford, Eric B.; and others

    2011-11-01

    We report the discovery of Kepler-15b (KOI-128), a new transiting exoplanet detected by NASA's Kepler mission. The transit signal with a period of 4.94 days was detected in the quarter 1 (Q1) Kepler photometry. For the first time, we have used the High Resolution Spectrograph (HRS) at the Hobby-Eberly Telescope (HET) to determine the mass of a Kepler planet via precise radial velocity (RV) measurements. The 24 HET/HRS RVs and 6 additional measurements from the Fibre-fed Echelle Spectrograph spectrograph at the Nordic Optical Telescope reveal a Doppler signal with the same period and phase as the transit ephemeris. We used one HET/HRS spectrum of Kepler-15 taken without the iodine cell to determine accurate stellar parameters. The host star is a metal-rich ([Fe/H] = 0.36 {+-} 0.07) G-type main-sequence star with T{sub eff} = 5515 {+-} 124 K. The semi-amplitude K of the RV orbit is 78.7{sup +8.5}{sub -9.5} m s{sup -1}, which yields a planet mass of 0.66 {+-} 0.1 M{sub Jup}. The planet has a radius of 0.96 {+-} 0.06 R{sub Jup} and a mean bulk density of 0.9 {+-} 0.2 g cm{sup -3}. The radius of Kepler-15b is smaller than the majority of transiting planets with similar mass and irradiation level. This suggests that the planet is more enriched in heavy elements than most other transiting giant planets. For Kepler-15b we estimate a heavy element mass of 30-40 M{sub Circled-Plus }.

  10. Target Characterization and Follow-Up Observations in Support of the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Latham, David W.

    2003-01-01

    A variety of experiments were carried out to investigate the number and characteristics of the stars to be included in the Kepler Input Catalog. One result of this work was the proposal that the 2MASS Catalog of astrometry and photometry in the infrared be used as the primary source for the initial selection of candidate target stars, because this would naturally decrease the number of unsuitable hot blue stars and would also increase the number of desirable solar-type dwarf stars. Another advantage of the 2MASS catalogue is that the stellar positions have more than adequate astrometric accuracy for the Kepler target selection. The original plan reported in the Concept Study Report was to use the parallaxes and multi-band photometry from the FAME mission to provide the information needed for reliable separation of giants and dwarfs. As a result of NASA's withdrawal of support for FAME an alternate approach was needed. In November 2002 we proposed to the Kepler Science Team that a ground-based multi-band photometric survey could help alleviate the loss of the FAME data. The Science Team supported this proposal strongly, and we undertook a survey of possible facilities for such a survey. We concluded that the SAO's 4Shooter CCD camera on the 1.2-m telescope at the Whipple Observatory on Mount Hopkins, Arizona, showed promise for this work.

  11. HIRES Follow-up of Planet Candidates for the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Borucki, William

    2010-08-01

    The Kepler Mission is measuring the brightnesses of 150,000 FGKM dwarfs to detect transits with a photometric precision of 20 micromags. This permits detection of transits by Earth-size and larger planets. Currently there are 163 viable planet candidates. The observations will accomplish two objectives; 1) weed out background and grazing-incidence binaries and, 2) measure planet masses, which when coupled with transit depth and stellar radii, will yield planet densities. The densities are used to distinguish rocky planets from ice giants and gas giants.

  12. Stellar activity observed by the Kepler Space Telescope. The M dwarf of the Kepler-32 system with five orbiting planets

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.; Dmitrienko, E. S.

    2013-10-01

    The activity of the central star of the Kepler-32 planetary system is studied using continuous 1141-day observations with the Kepler Space Telescope. The Kepler-32 system includes a slowly rotating Mdwarf (rotational period of 37.8 d) with a mass of 0.54 M ⊙ and five planets. One of the unique properties of the system is its compactness: the orbits of all five planets are less than a third of the size of the orbit of Mercury; the planet closest to the star is separated from it by only 4.3 stellar radii. Surface-temperature inhomogeneities of the central star are studied using precise photometric observations of Kepler-32, and their evolution traced. In total, 42 624 individual brightness measurements in the 1141-day (3.1-year) observing interval were selected for the analysis. The calculated amplitude power spectra for the first and second halves of the interval of the Kepler-32 observations indicate appreciable variability of the photometric period, corresponding to the evolution of active regions at various latitudes on the stellar surface. Evidence for the existence of two active regions on the stellar surface separated in phase by 0.42 has been found. Time intervals in which the longitudes of the active regions changed ("flip-flops") with durations of the order of 200-300 days have been established. The spotted area of the star was, on average, about 1% of the total visible surface, and varied from 0.3 to 1.7%. The results for the dwarf Kepler-32 are compared with those from a spectropolarimetric survey of 23 M dwarfs, including both fully convective stars and stars with weakly radiative cores. For a more detailed comparison, temperature inhomogeneities on the surface of one of the survey stars, DS Leo, was reconstructed using the ground-based observations (316 individual measurements of the V-band brightness of the star during seven observing seasons in an all-sky automated survey). The general properties and evolution of the active regions on DS Leo and

  13. A study of the performance of the transit detection tool DST in space-based surveys. Application of the CoRoT pipeline to Kepler data

    NASA Astrophysics Data System (ADS)

    Cabrera, J.; Csizmadia, Sz.; Erikson, A.; Rauer, H.; Kirste, S.

    2012-12-01

    Context. Transit detection algorithms are mathematical tools used for detecting planets in the photometric data of transit surveys. In this work we study their application to space-based surveys. Aims: Space missions are exploring the parameter space of the transit surveys where classical algorithms do not perform optimally, either because of the challenging signal-to-noise ratio of the signal or its non-periodic characteristics. We have developed an algorithm addressing these challenges for the mission CoRoT. Here we extend the application to the data from the space mission Kepler. We aim at understanding the performances of algorithms in different data sets. Methods: We built a simple analytical model of the transit signal and developed a strategy for the search that improves the detection performance for transiting planets. We analyzed Kepler data with a set of stellar activity filtering and transit detection tools from the CoRoT community that are designed for the search of transiting planets. Results: We present a new algorithm and its performances compared to one of the most widely used techniques in the literature using CoRoT data. Additionally, we analyzed Kepler data corresponding to quarter Q1 and compare our results with the most recent list of planetary candidates from the Kepler survey. We found candidates that went unnoticed by the Kepler team when analyzing longer data sets. We study the impact of instrumental features on the production of false alarms and false positives. These results show that the analysis of space mission data advocates the use of complementary detrending and transit detection tools also for future space-based transit surveys such as PLATO.

  14. DISCOVERY OF A NOVA-LIKE CATACLYSMIC VARIABLE IN THE KEPLER MISSION FIELD

    SciTech Connect

    Williams, Kurtis A.; De Martino, Domitilla; Silvotti, Roberto; Bruni, Ivan; Dufour, Patrick; Riecken, Thomas S.; Kronberg, Martin; Mukadam, Anjum; Handler, G.

    2010-06-15

    We announce the identification of a new cataclysmic variable (CV) star in the field of the Kepler Mission, KIC J192410.81+445934.9. This system was identified during a search for compact pulsators in the Kepler field. High-speed photometry reveals coherent large-amplitude variability with a period of 2.94 hr. Rapid, large-amplitude quasi-periodic variations are also detected on time scales of {approx}1200 s and {approx}650 s. Time-resolved spectroscopy covering one half photometric period shows shallow, broad Balmer and He I absorption lines with bright emission cores as well as strong He II and Bowen blend emission. Radial velocity variations are also observed in the Balmer and He I emission lines that are consistent with the photometric period. We therefore conclude that KIC J192410.81+445934.9 is a nova-like (NL) variable of the UX UMa class in or near the period gap, and it may belong to the rapidly growing subclass of SW Sex systems. Based on Two Micron All Sky Survey photometry and companion star models, we place a lower limit on the distance to the system of {approx}500 pc. Due to limitations of our discovery data, additional observations including spectroscopy and polarimetry are needed to confirm the nature of this object. Such data will enable further understanding of the behavior of NL variables in the critical period range of 3-4 hr, where standard CV evolutionary theory finds major problems. The presence of this system in the Kepler Mission field of view also presents a unique opportunity to obtain a continuous photometric data stream of unparalleled length and precision on a CV system.

  15. Space Mission : Y3K

    NASA Astrophysics Data System (ADS)

    2001-01-01

    ESA and the APME are hosting a contest for 10 - 15 year olds in nine European countries (Austria, Belgium, France, Germany, Italy, the Netherlands, Spain, Sweden and the United Kingdom). The contest is based on an interactive CD ROM, called Space Mission: Y3K, which explores space technology and shows some concrete uses of that technology in enhancing the quality of life on Earth. The CD ROM invites kids to join animated character Space Ranger Pete on an action-packed, colourful journey through space. Space Ranger Pete begins on Earth: the user navigates around a 'locker room' to learn about synthetic materials used in rocket boosters, heat shields, space suits and helmets, and how these materials have now become indispensable to everyday life. From Earth he flies into space and the user follows him from the control room in the spacecraft to a planet, satellites and finally to the International Space Station. Along the way, the user jots down clues that he or she discovers in this exploration, designing an imaginary space community and putting together a submission for the contest. The lucky winners will spend a weekend training as "junior astronauts" at the European Space Centre in Belgium (20-22 April 2001). They will be put through their astronaut paces, learning the art of space walking, running their own space mission, piloting a space capsule and re-entering the Earth's atmosphere. The competition features in various youth media channels across Europe. In the UK, popular BBC Saturday morning TV show, Live & Kicking, will be launching the competition and will invite viewers to submit their space community designs to win a weekend at ESC. In Germany, high circulation children's magazine Geolino will feature the competition in the January issue and on their internet site. And youth magazine ZoZitDat will feature the competition in the Netherlands throughout February. Space Mission: Y3K is part of an on-going partnership between the ESA's Technology Transfer

  16. VizieR Online Data Catalog: Minima of 41 binaries from entire Kepler mission (Gies+, 2015)

    NASA Astrophysics Data System (ADS)

    Gies, D. R.; Matson, R. A.; Guo, Z.; Lester, K. V.; Orosz, J. A.; Peters, G. J.

    2016-06-01

    We embarked on a search for eclipse timing variations among a subset of 41 eclipsing binaries that were identified prior to the start of Kepler observations (see our first paper, Gies et al. 2012, cat. J/AJ/143/137). Our first paper documented the eclipse times in observations made over quarters Q0-Q9 (2009.3-2011.5). Now with the Kepler mission complete with observations through Q17 (ending 2013.4), we present here the eclipse timings for our sample of 41 binaries over the entire duration of the mission. The associated times given in our first paper were based upon UTC (Coordinated Universal Time) while the current set uses TDB (Barycentric Dynamical Time), and here we report the times in reduced Barycentric Julian Date (BJD-2400000 days). We used the Simple Aperture Photometry (SAP) flux except in the case of KIC04678873. The list of targets appears in Table1. The eclipse timing measurements were made in almost the same way as described in our first paper. Our measurements appear in Table2. (2 data files).

  17. Space Shuttle mission: STS-67

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.

  18. Defining Space Mission Architects for the Smaller Missions

    NASA Technical Reports Server (NTRS)

    Anderson, C.

    1999-01-01

    The definition of the Space Mission Architect (SMA) must be clear in both technical and human terms if we expect to train and/or to find people needed to architect the numbers of smaller missions expected in the future.

  19. DETECTION OF POTENTIAL TRANSIT SIGNALS IN THE FIRST THREE QUARTERS OF Kepler MISSION DATA

    SciTech Connect

    Tenenbaum, Peter; Christiansen, Jessie L.; Jenkins, Jon M.; Rowe, Jason F.; Seader, Shawn; Caldwell, Douglas A.; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Smith, Jeffrey C.; Stumpe, Martin C.; Thompson, Susan E.; Twicken, Joseph D.; Van Cleve, Jeffrey; Girouard, Forrest R.; Klaus, Todd C. [Orbital Sciences Corporation and others

    2012-03-01

    We present the results of a search for potential transit signals in the first three quarters of photometry data acquired by the Kepler mission. The targets of the search include 151,722 stars which were observed over the full interval and an additional 19,132 stars which were observed for only one or two quarters. From this set of targets we find a total of 5392 detections which meet the Kepler detection criteria: those criteria are periodicity of signal, an acceptable signal-to-noise ratio, and a composition test which rejects spurious detections which contain non-physical combinations of events. The detected signals are dominated by events with relatively low signal-to-noise ratio and by events with relatively short periods. The distribution of estimated transit depths appears to peak in the range between 40 and 100 parts per million, with a few detections down to fewer than 10 parts per million. The detections exhibit signal-to-noise ratios from 7.1{sigma}, which is the lower cutoff for detections, to over 10,000{sigma}, and periods ranging from 0.5 days, which is the lower cutoff used in the procedure, to 109 days, which is the upper limit of achievable periods given the length of the data set and the criteria used for detections. The detected signals are compared to a set of known transit events in the Kepler field of view which were derived by a different method using a longer data interval; the comparison shows that the current search correctly identified 88.1% of the known events. A tabulation of the detected transit signals, examples which illustrate the analysis and detection process, a discussion of future plans and open, potentially fruitful, areas of further research are included.

  20. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  1. DETECTION OF POTENTIAL TRANSIT SIGNALS IN 16 QUARTERS OF KEPLER MISSION DATA

    SciTech Connect

    Tenenbaum, Peter; Jenkins, Jon M.; Seader, Shawn; Burke, Christopher J.; Christiansen, Jessie L.; Rowe, Jason F.; Caldwell, Douglas A.; Clarke, Bruce D.; Coughlin, Jeffrey L.; Li, Jie; Quintana, Elisa V.; Smith, Jeffrey C.; Thompson, Susan E.; Twicken, Joseph D.; Campbell, Jennifer R.; Girouard, Forrest R. [Orbital Sciences Corporation and others

    2014-03-01

    We present the results of a search for potential transit signals in 4 yr of photometry data acquired by the Kepler mission. The targets of the search include 111,800 stars which were observed for the entire interval and 85,522 stars which were observed for a subset of the interval. We found that 9743 targets contained at least one signal consistent with the signature of a transiting or eclipsing object where the criteria for detection are periodicity of the detected transits, adequate signal-to-noise ratio, and acceptance by a number of tests which reject false positive detections. When targets that had produced a signal were searched repeatedly, an additional 6542 signals were detected on 3223 target stars, for a total of 16,285 potential detections. Comparison of the set of detected signals with a set of known and vetted transit events in the Kepler field of view shows that the recovery rate for these signals is 96.9%. The ensemble properties of the detected signals are reviewed.

  2. Kepler Orrery

    NASA Video Gallery

    Animation showing all the multiple-planet systems discovered by Kepler as of 2/2/2011; orbits go through the entire mission (3.5 years). Hot colors to cool colors (Red to yellow to green to cyan to...

  3. Rotation Periods and Ages of Solar Analogs and Solar Twins Revealed by the Kepler Mission

    NASA Astrophysics Data System (ADS)

    do Nascimento, J.-D., Jr.; García, R. A.; Mathur, S.; Anthony, F.; Barnes, S. A.; Meibom, S.; da Costa, J. S.; Castro, M.; Salabert, D.; Ceillier, T.

    2014-08-01

    A new sample of solar analogs and twin candidates has been constructed and studied, paying particular attention to their light curves from NASA's Kepler mission. This Letter aims to assess their evolutionary status, derive their rotation and ages, and identify those which are solar analogs or solar twin candidates. We separate out the subgiants that compose a large fraction of the asteroseismic sample, and which show an increase in the average rotation period as the stars ascend the subgiant branch. The rotation periods of the dwarfs, ranging from 6 to 30 days and averaging 19 days, allow us to assess their individual evolutionary states on the main sequence and to derive their ages using gyrochronology. These ages are found to be in agreement with a correlation coefficient of r = 0.79 with independent asteroseismic ages, where available. As a result of this investigation, we are able to identify 34 stars as solar analogs and 22 of them as solar twin candidates.

  4. Challenges of Space Mission Interoperability

    NASA Technical Reports Server (NTRS)

    Martin, Warren L.; Hooke, Adrian J.

    2007-01-01

    This viewgraph presentation reviews some of the international challenges to space mission interoperability. Interoperability is the technical capability of two or more systems or components to exchange information and to use the information that has been exchanged. One of the challenges that is addressed is the problem of spectrum bandwidth, and interference. The key to interoperability is the standardization of space communications services and protocols. Various levels of international cross support are reviewed: harmony, cooperation cross support and confederation cross support. The various international bodies charged with implementing cross support are reviewed. The goal of the Interagency Operations Advisory Group (IOAG) is to achieve plug-and-play operations where all that is required is for each of the systems to use an agreed communications medium, after which the systems configure each other for the purpose of exchanging information and subsequently effect such exchange automatically.

  5. Deep space mission integration with the space transportation system. [Galileo mission using Space Transportation System

    NASA Technical Reports Server (NTRS)

    Gray, W. B.

    1979-01-01

    The Galileo mission is the first interplanetary mission scheduled to use the Space Transportation System (STS). Therefore, Galileo is the trailblazer for mission integration of a deep space mission with the STS. A short overview of the Galileo mission is presented as background for the discussion of the mission integration effort. The components of the STS and the mission integration system are defined, documentation requirements explained, the work of the Flight Design Working Group described, and several examples of the types of problems dealt with are given. The steps of mission integration are shown from introducing requirements into the system to resolving conflicts that arise between the payload project and the STS operator. Conclusions are drawn from the Galileo mission integration effort to aid future payload projects in working with the STS.

  6. Space shuttle. [a transportation system for low orbit space missions

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The space shuttle is discussed as a reusable space vehicle operated as a transportation system for space missions in low earth orbit. Space shuttle studies and operational capabilities are reported for potential missions indicating that about 38 percent are likely to be spacelab missions with the remainder being the replacement, revisit, or retrieval of automated spacecraft.

  7. SOPHIE velocimetry of Kepler transit candidates

    NASA Astrophysics Data System (ADS)

    Santerne, A.; Moutou, C.; Bouchy, F.; Hébrard, G.; Deleuil, M.; Díaz, R. F.; Bonomo, A. S.; Almenara, J.-M.

    2011-10-01

    As CoRoT, the Kepler space mission found a large amount of planetary transit candidates for which radial velocity follow-up is necessary in order to establish the planetary nature and then, to characterize the mass of the transiting companion. We are following up some interesting Kepler candidates with the SOPHIE spectrograph mounted at the 1.93-m telescope in Observatoire de Haute Provence (France). More than one year after the first Kepler release, we will present the strategy used to select the most promising Kepler candidates, within reach of a detection with SOPHIE, using the experience of more than 4 years of CoRoT, SWASP and HAT radial velocity follow-up. We will also highlight the results of the first year of observations that led to the discovery of several new transiting exoplanets and help the understanding of the false positive rate of the Kepler mission.

  8. Second Epoch Hubble Space Telescope Imaging of Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi; Blair, William P.; Borkowski, Kazimierz J.; Long, Knox S.; Patnaude, Daniel; Raymond, John C.; Reynolds, Stephen P.; Williams, Brian J.

    2015-01-01

    We have obtained new HST/WFC3 images of Kepler's supernova remnant in H-alpha (F656N) and [N II] (F658N) emission line filters. The bright radiative shocks in dense clumps are detected in both filters, while non-radiative shocks are seen as faint filaments only in the H-alpha image. Most of these Balmer filaments lie around the periphery of the remnant where the blast wave encounters partially neutral interstellar gas. We compare the new images with HST/ACS images taken nearly 10 years previously, and find that these filaments tracing the forward shock have moved 0.6"-0.9" between the two epochs. Assuming a distance of 4 kpc to the remnant, these proper motions correspond to shock velocities of 1160-1740 km/s, which are consistent with the published values, 1550-2000 km/s (e.g. Blair et al. 1991, ApJ 366, 484). We also find a few Balmer filaments with highly non-radial proper motions. In one particularly interesting case in the projected interior of the remnant, SE of the center, the shock appears to have wrapped around a sharp density enhancement and moved about 0.3" in the period between the observations.The images allow us to study the evolution of the shock around an ejecta knot, which is punching through the remnant boundary in the northwest. The forward shock, visible as an arcuate Balmer filament, has moved about 1". At the trailing edges, the system of radiative knots formed by Rayleigh-Taylor instabilities have undergone significant changes - some knots have disappeared, new ones have appeared, and many have changed in brightness. Elsewhere in the remnant we find changes in the relative intensities of many small, bright knots over the 10 year baseline, indicating the short radiative lifetimes of these features.This work has been supported in part by grant HST-GO-12885 to the Universities Space Research Association.

  9. Horizon Missions Technology Study. [for space exploration

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1992-01-01

    The purpose of the HMT Study was to develop and demonstrate a systematic methodology for identifying and evaluating innovative technology concepts offering revolutionary, breadkthrough-type capabilities for advanced space missions and for assessing their potential mission impact. The methodology is based on identifying the new functional, operational and technology capabilities needed by hypothetical 'Horizon' space missions that have performance requirements that cannot be met, even by extrapolating known space technologies. Nineteen Horizon Missions were selected to represent a collective vision of advanced space missions of the mid-21st century. The missions typically would occur beyond the lifetime of current or planned space assets. The HM methodology and supporting data base may be used for advanced technology planning, advanced mission planning and multidisciplinary studies and analyses.

  10. NASA Missions Enabled by Space Nuclear Systems

    NASA Technical Reports Server (NTRS)

    Scott, John H.; Schmidt, George R.

    2009-01-01

    This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.

  11. Space Station Live: Robotic Refueling Mission

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot speaks with Robert Pickle, Robotic Refueling Mission ROBO lead, about the International Space Station demonstration of the tools, technologies and techniques to...

  12. Space Mission Human Reliability Analysis (HRA) Project

    NASA Technical Reports Server (NTRS)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  13. STS-38 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1991-01-01

    The STS-38 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-seventh flight of the Space Shuttle and the seventh flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-40/LWT-33), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2022, 2027), and two Solid Rocket Boosters (SRB's), designated as BI-039. The STS-38 mission was a classified Department of Defense mission, and as much, the classified portions of the mission are not presented in this report. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystem during the mission are summarized and the official problem tracking list is presented. In addition, each Space Shuttle Orbiter problem is cited in the subsystem discussion.

  14. Spaceport operations for deep space missions

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1990-01-01

    Space Station Freedom is designed with the capability to cost-effectively evolve into a transportation node which can support manned lunar and Mars missions. To extend a permanent human presence to the outer planets (moon outposts) and to nearby star systems, additional orbiting space infrastructure and great advances in propulsion system and other technologies will be required. To identify primary operations and management requirements for these deep space missions, an interstellar design concept was developed and analyzed. The assembly, test, servicing, logistics resupply, and increment management techniques anticipated for lunar and Mars missions appear to provide a pattern which can be extended in an analogous manner to deep space missions. A long range, space infrastructure development plan (encompassing deep space missions) coupled with energetic, breakthrough level propulsion research should be initiated now to assist in making the best budget and schedule decisions.

  15. Target Charaterization and Follow-Up Observations in Support of the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Latham, David W.

    2004-01-01

    This report covers work carried out at the Smithsonian Astrophysical Observatory during the period 1 December 2003 to 30 November 2004 to support efforts to prepare the Kepler Input Catalog. The Catalog will be used to select the targets observed for planetary transits by Kepler.

  16. ROTATION PERIODS AND AGES OF SOLAR ANALOGS AND SOLAR TWINS REVEALED BY THE KEPLER MISSION

    SciTech Connect

    Do Nascimento Jr, J.-D.; Meibom, S.; García, R. A.; Salabert, D.; Ceillier, T.; Anthony, F.; Da Costa, J. S.; Castro, M.; Barnes, S. A.

    2014-08-01

    A new sample of solar analogs and twin candidates has been constructed and studied, paying particular attention to their light curves from NASA's Kepler mission. This Letter aims to assess their evolutionary status, derive their rotation and ages, and identify those which are solar analogs or solar twin candidates. We separate out the subgiants that compose a large fraction of the asteroseismic sample, and which show an increase in the average rotation period as the stars ascend the subgiant branch. The rotation periods of the dwarfs, ranging from 6 to 30 days and averaging 19 days, allow us to assess their individual evolutionary states on the main sequence and to derive their ages using gyrochronology. These ages are found to be in agreement with a correlation coefficient of r = 0.79 with independent asteroseismic ages, where available. As a result of this investigation, we are able to identify 34 stars as solar analogs and 22 of them as solar twin candidates.

  17. NASA mission planning for space nuclear power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Schnyer, A. D.

    1991-01-01

    An evaluation is conducted of those aspects of the Space Exploration Initiative which stand to gain from the use of nuclear powerplants. Low-power, less than 10 kW(e) missions in question encompass the Comet Rendezvous Asteroid Flyby, the Cassini mission to Saturn, the Mars Network mission, a solar probe, the Mars Rover Sample Return mission, the Rosetta comet nucleus sample return mission, and an outer planets orbiter/probe. Reactor power yielding 10-100 kW(e) can be used by advanced rovers and initial lunar and Martian outposts, as well as Jovian and Saturnian grand tours and sample-return missions.

  18. Revolutionary Materials for NASA's Space Missions

    NASA Astrophysics Data System (ADS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.; Nealy, J. E.; Clowdsley, M. S.; Kim, M.-H. Y.

    2002-03-01

    Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space missions. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Studies have been made for L2, Lunar, Mars and Mars/Venus swing-by reference missions. For all these missions, material trades have been studied. And, as an example, a crew age trade for Mars/Venus swing-by mission has been done. The career blood forming organ (BFO) constraints are more stringent and play a critical role in the optimization procedure. The short missions to L2 and the Moon mainly need to deal with the possibility of solar particle events. It is found that improved shield materials will be required to enable a Mars mission in which middle-aged astronauts can participate. If the age of the astronauts are allowed to be 55 and older then more options are available. Revolutionary materials need to be developed to have younger crewmembers on board to Mars and other long duration missions. The details of this new method and its impact on space missions and other technologies will be discussed.

  19. Asteroseismic Fundamental Properties of Solar-type Stars Observed by the NASA Kepler Mission

    NASA Astrophysics Data System (ADS)

    Chaplin, W. J.; Basu, S.; Huber, D.; Serenelli, A.; Casagrande, L.; Silva Aguirre, V.; Ball, W. H.; Creevey, O. L.; Gizon, L.; Handberg, R.; Karoff, C.; Lutz, R.; Marques, J. P.; Miglio, A.; Stello, D.; Suran, M. D.; Pricopi, D.; Metcalfe, T. S.; Monteiro, M. J. P. F. G.; Molenda-Żakowicz, J.; Appourchaux, T.; Christensen-Dalsgaard, J.; Elsworth, Y.; García, R. A.; Houdek, G.; Kjeldsen, H.; Bonanno, A.; Campante, T. L.; Corsaro, E.; Gaulme, P.; Hekker, S.; Mathur, S.; Mosser, B.; Régulo, C.; Salabert, D.

    2014-01-01

    We use asteroseismic data obtained by the NASA Kepler mission to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars. Data obtained during the first 10 months of Kepler science operations were used for this work, when these solar-type targets were observed for one month each in survey mode. Stellar properties have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic data. Homogeneous sets of effective temperatures, T eff, were available for the entire ensemble from complementary photometry; spectroscopic estimates of T eff and [Fe/H] were available from a homogeneous analysis of ground-based data on a subset of 87 stars. We adopt a grid-based analysis, coupling six pipeline codes to 11 stellar evolutionary grids. Through use of these different grid-pipeline combinations we allow implicitly for the impact on the results of stellar model dependencies from commonly used grids, and differences in adopted pipeline methodologies. By using just two global parameters as the seismic inputs we are able to perform a homogenous analysis of all solar-type stars in the asteroseismic cohort, including many targets for which it would not be possible to provide robust estimates of individual oscillation frequencies (due to a combination of low signal-to-noise ratio and short dataset lengths). The median final quoted uncertainties from consolidation of the grid-based analyses are for the full ensemble (spectroscopic subset) approximately 10.8% (5.4%) in mass, 4.4% (2.2%) in radius, 0.017 dex (0.010 dex) in log g, and 4.3% (2.8%) in mean density. Around 36% (57%) of the stars have final age uncertainties smaller than 1 Gyr. These ages will be useful for ensemble studies, but should be treated carefully on a star-by-star basis. Future analyses using individual oscillation frequencies will offer significant improvements on up to 150 stars, in particular for estimates of the ages, where having the

  20. Space missions in the Arab countries

    NASA Astrophysics Data System (ADS)

    Mosalam Shaltout, M. A.

    Since about twenty years ago, artificial satellites for the Arab countries, were manufactured and released by developed countries for TV and communication purposes such as Arabsat, Nilesat, and Soryia. But with the starting of the 21st century, there are few space missions developed by Arab Countries in Cooperation with International Partners, in Alger, Saudi Arabia, and Egypt. Where: 1. The National Administration of Space Science and Technology in Alger developed two Experimental Space Missions released at November 2002 (AlgerSat-1), and November 2003 (AlgerSat-2). The program is still continuous for developing more space missions with High Technology for different purposes. 2. Space Research Institute in King Abd-Alaziz city for science and Technology, Riyadh, Saudi Arabia developed three space missions in collaboration with international partners, where the three missions are released for different purposes. 3. The National Authority for Remote Sensing and Space Sciences (NARSS) in Cairo-Egypt developed in cooperation with Ukraine a mission Egyptsat-1, by total price 30 million US, for the purpose of studding the desert geology and Environment. It will be released at October 2004. The program will be continued for developing more space mission by high technology. This paper describe in detail Arabian three programs for the three Arabian countries (Alger, Saudi Arabia, and Egypt), and will discuss on what we can expect for the future, focussing on international cooperation in the field of space science and technology.

  1. STS-36 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Mechelay, Joseph E.; Germany, D. M.; Nicholson, Leonard S.

    1990-01-01

    The STS-36 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fourth flight of the Space Shuttle and the sixth flight of the OV-104 Orbiter vehicle, Atlantis. In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-33/LWT-26), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2030, and 2029), and two Solid Rocket Boosters (SRB's) (designated as BI-036). The STS-36 mission was a classified Department of Defense mission, and as such, the classified portions of the mission are not discussed. The unclassified sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each of the Orbiter problems is cited in the subsystem discussion.

  2. Generic mission planning concepts for space astronomy missions

    NASA Technical Reports Server (NTRS)

    Guffin, O. T.; Onken, J. F.

    1993-01-01

    The past two decades have seen the rapid development of space astronomy, both manned and unmanned, and the concurrent proliferation of the operational concepts and software that have been produced to support each individual project. Having been involved in four of these missions since the '70's and three yet to fly in the present decade, the authors believe it is time to step back and evaluate this body of experience from a macro-systems point of view to determine the potential for generic mission planning concepts that could be applied to future missions. This paper presents an organized evaluation of astronomy mission planning functions, functional flows, iteration cycles, replanning activities, and the requirements that drive individual concepts to specific solutions. The conclusions drawn from this exercise are then used to propose a generic concept that could support multiple missions.

  3. Low Cost Missions Operations on NASA Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Kusnierkiewicz, D. J.; Bowman, A.; Harvey, R.; Ossing, D.; Eichstedt, J.

    2014-12-01

    The ability to lower mission operations costs on any long duration mission depends on a number of factors; the opportunities for science, the flight trajectory, and the cruise phase environment, among others. Many deep space missions employ long cruises to their final destination with minimal science activities along the way; others may perform science observations on a near-continuous basis. This paper discusses approaches employed by two NASA missions implemented by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to minimize mission operations costs without compromising mission success: the New Horizons mission to Pluto, and the Solar Terrestrial Relations Observatories (STEREO). The New Horizons spacecraft launched in January 2006 for an encounter with the Pluto system.The spacecraft trajectory required no deterministic on-board delta-V, and so the mission ops team then settled in for the rest of its 9.5-year cruise. The spacecraft has spent much of its cruise phase in a "hibernation" mode, which has enabled the spacecraft to be maintained with a small operations team, and minimized the contact time required from the NASA Deep Space Network. The STEREO mission is comprised of two three-axis stabilized sun-staring spacecraft in heliocentric orbit at a distance of 1 AU from the sun. The spacecraft were launched in October 2006. The STEREO instruments operate in a "decoupled" mode from the spacecraft, and from each other. Since STEREO operations are largely routine, unattended ground station contact operations were implemented early in the mission. Commands flow from the MOC to be uplinked, and the data recorded on-board is downlinked and relayed back to the MOC. Tools run in the MOC to assess the health and performance of ground system components. Alerts are generated and personnel are notified of any problems. Spacecraft telemetry is similarly monitored and alarmed, thus ensuring safe, reliable, low cost operations.

  4. K2flix: Kepler pixel data visualizer

    NASA Astrophysics Data System (ADS)

    Barentsen, Geert

    2015-03-01

    K2flix makes it easy to inspect the CCD pixel data obtained by NASA's Kepler space telescope. The two-wheeled extended Kepler mission, K2, is affected by new sources of systematics, including pointing jitter and foreground asteroids, that are easier to spot by eye than by algorithm. The code takes Kepler's Target Pixel Files (TPF) as input and turns them into contrast-stretched animated gifs or MPEG-4 movies. K2flix can be used both as a command-line tool or using its Python API.

  5. Advanced automation for space missions: Technical summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.

  6. STS-81 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1997-01-01

    STS-81 was the fifth of nine planned missions to dock with the Russian Mir Space Station and the fourth crewmember transfer mission. The double Spacehab module was carried for the second time, and it housed experiments that were performed by the crew and logistics equipment that was transferred to the Mir.

  7. Eighteenth Space Simulation Conference: Space Mission Success Through Testing

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    1994-01-01

    The Institute of Environmental Sciences' Eighteenth Space Simulation Conference, 'Space Mission Success Through Testing' provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme 'Space Mission Success Through Testing.'

  8. Technology transfer and space science missions

    NASA Technical Reports Server (NTRS)

    Acuna, Mario

    1992-01-01

    Viewgraphs on technology transfer and space science missions are provided. Topics covered include: project scientist role within NASA; role of universities in technology transfer; role of government laboratories in research; and technology issues associated with science.

  9. Cloud Computing Techniques for Space Mission Design

    NASA Technical Reports Server (NTRS)

    Arrieta, Juan; Senent, Juan

    2014-01-01

    The overarching objective of space mission design is to tackle complex problems producing better results, and faster. In developing the methods and tools to fulfill this objective, the user interacts with the different layers of a computing system.

  10. The Deep Space Atomic Clock Mission

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill

    2012-01-01

    The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.

  11. The little photometer that could: technical challenges and science results from the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Dunnuck, Jeb

    2011-09-01

    The Kepler spacecraft launched on March 7, 2009, initiating NASA's first search for Earth-size planets orbiting Sun-like stars. Since launch, Kepler has announced the discovery of 17 exoplanets, including a system of six transiting a Sun-like star, Kepler-11, and the first confirmed rocky planet, Kepler-10b, with a radius of 1.4 that of Earth. Kepler is proving to be a cornucopia of discoveries: it has identified over 1200 candidate planets based on the first 120 days of observations, including 54 that are in or near the habitable zone of their stars, and 68 that are 1.2 Earth radii or smaller. An astounding 408 of these planetary candidates are found in 170 multiple systems, demonstrating the compactness and flatness of planetary systems composed of small planets. Never before has there been a photometer capable of reaching a precision near 20 ppm in 6.5 hours and capable of conducting nearly continuous and uninterrupted observations for months to years. In addition to exoplanets, Kepler is providing a wealth of astrophysics, and is revolutionizing the field of asteroseismology. Designing and building the Kepler photometer and the software systems that process and analyze the resulting data to make the discoveries presented a daunting set of challenges, including how to manage the large data volume. The challenges continue into flight operations, as the photometer is sensitive to its thermal environment, complicating the task of detecting 84 ppm drops in brightness corresponding to Earth-size planets transiting Sun-like stars.

  12. Space Launch System Mission Flexibility Assessment

    NASA Technical Reports Server (NTRS)

    Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan

    2012-01-01

    The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.

  13. Use of IPsec by Manned Space Missions

    NASA Technical Reports Server (NTRS)

    Pajevski, Michael J.

    2009-01-01

    NASA's Constellation Program is developing its next generation manned space systems for missions to the International Space Station (ISS) and the Moon. The Program is embarking on a path towards standards based Internet Protocol (IP) networking for space systems communication. The IP based communications will be paired with industry standard security mechanisms such as Internet Protocol Security (IPsec) to ensure the integrity of information exchanges and prevent unauthorized release of sensitive information in-transit. IPsec has been tested in simulations on the ground and on at least one Earth orbiting satellite, but the technology is still unproven in manned space mission situations and significant obstacles remain.

  14. A Second Space Gravitational Wave Observation Mission?

    NASA Astrophysics Data System (ADS)

    Bender, Peter L.

    2010-02-01

    The scientific case for early flight of a first space GW mission to observe the signals from massive black hole mergers throughout the universe and from inspirals of stellar mass black holes into galactic center black holes appears to be strong. But, the justification for a second space GW mission will depend strongly on what the first one finds. The Big Bang Observer and DECIGO missions have been proposed, with their objectives including looking for primordial GW signals and helping to determine the cosmological distance scale. However, these missions are extremely challenging, so whether they will be scientifically justified in the future is quite uncertain. Future progress toward achieving similar objectives appears likely from ground observations and from one of the several Cosmic Microwave Background Polarization missions that have been proposed. Two much more modest missions have been suggested for study, in addition to the Laser Interferometer Space Antenna (LISA) mission and the LISA and DECIGO pathfinder missions. One is called pre-DECIGO, which would combine looking for NS-NS inspirals out to 300 Mpc with technology demonstrations for DECIGO. The other is called the Advanced Laser Interferometer Antenna (ALIA), and would extend observations of stellar mass and intermediate mass black hole mergers out to considerably larger redshifts. The suggested baselines are 100 km and 500,000 km, and the required spurious acceleration limits are 1x10-17 and 3x10-16 m/s2/sqrt Hz, respectively.

  15. Benchmark Problems for Space Mission Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Leitner, Jesse A.; Folta, David C.; Burns, Richard

    2003-01-01

    To provide a high-level focus to distributed space system flight dynamics and control research, several benchmark problems are suggested for space mission formation flying. The problems cover formation flying in low altitude, near-circular Earth orbit, high altitude, highly elliptical Earth orbits, and large amplitude lissajous trajectories about co-linear libration points of the Sun-Earth/Moon system. These problems are not specific to any current or proposed mission, but instead are intended to capture high-level features that would be generic to many similar missions that are of interest to various agencies.

  16. The Trojans' Odyssey space mission

    NASA Astrophysics Data System (ADS)

    Lamy, P.; Vernazza, P.; Groussin, O.; Poncy, J.; Martinot, V.; Hinglais, E.; Bell, J.; Cruikshank, D.; Helbert, J.; Marzari, F.; Morbidelli, A.; Rosenblatt, P.

    2011-10-01

    In our present understanding of the Solar System, small bodies (asteroids, Jupiter Trojans, comets and TNOs) are the most direct remnants of the original building blocks that formed the planets. Jupiter Trojan and Hilda asteroids are small primitive bodies located beyond the "snow line", around respectively the L4 and L5 Lagrange points of Jupiter at 5.2 AU (Trojans) and in the 2:3 mean-motion resonance with Jupiter near 3.9 AU (Hildas). They are at the crux of several outstanding and still conflicting issues regarding the formation and evolution of the Solar System. They hold the potential to unlock the answers to fundamental questions about planetary migration, the late heavy bombardment, the formation of the Jovian system, the origin and evolution of trans-neptunian objects, and the delivery of water and organics to the inner planets. The proposed Trojans' Odyssey mission is envisioned as a reconnaissance, multiple flyby mission aimed at visiting several objects, typically five Trojans and one Hilda. It will attempt exploring both large and small objects and sampling those with any known differences in photometric properties. The orbital strategy consists in a direct trajectory to one of the Trojan swarms. By carefully choosing the aphelion of the orbit (typically 5.3 AU), the trajectory will offer a long arc in the swarm thus maximizing the number of flybys. Initial gravity assists from Venus and Earth will help reducing the cruise to 7 years as well as the ?V needed for injection thus offering enough capacity to navigate among Trojans. This solution further opens the unique possibility to flyby a Hilda asteroid when leaving the Trojan swarm. During the cruise phase, a Main Belt Asteroid could be targeted if requiring a modest ?V. The specific science objectives of the mission will be best achieved with a payload that will perform high-resolution panchromatic and multispectral imaging, thermal-infrared imaging/ radiometry, near- and mid-infrared spectroscopy

  17. MDP: Reliable File Transfer for Space Missions

    NASA Technical Reports Server (NTRS)

    Rash, James; Criscuolo, Ed; Hogie, Keith; Parise, Ron; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    This paper presents work being done at NASA/GSFC (Goddard Space Flight Center) by the Operating Missions as Nodes on the Internet (OMNI) project to demonstrate the application of the Multicast Dissemination Protocol (MDP) to space missions to reliably transfer files. This work builds on previous work by the OMNI project to apply Internet communication technologies to space communication. The goal of this effort is to provide an inexpensive, reliable, standard, and interoperable mechanism for transferring files in the space communication environment. Limited bandwidth, noise, delay, intermittent connectivity, link asymmetry, and one-way links are all possible issues for space missions. Although these are link-layer issues, they can have a profound effect on the performance of transport and application level protocols. MDP, a UDP (User Datagram Protocol)-based reliable file transfer protocol, was designed for multicast environments which have to address these same issues, and it has done so successfully. Developed by the Naval Research Lab in the mid 1990s, MDP is now in daily use by both the US Post Office and the DoD (Department of Defense). This paper describes the use of MDP to provide automated end-to-end data flow for space missions. It examines the results of a parametric study of MDP in a simulated space link environment and discusses the results in terms of their implications for space missions. Lessons learned are addressed, which suggest minor enhancements to the MDP user interface to add specific features for space mission requirements, such as dynamic control of data rate, and a checkpoint/resume capability. These are features that are provided for in the protocol, but are not implemented in the sample MDP application that was provided. A brief look is also taken at the status of standardization. A version of MDP known as NORM (Nack Oriented Reliable Multicast) is in the process of becoming an IETF (Internet Engineering Task Force) standard.

  18. Parametric cost estimation for space science missions

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Thompson, Bruce E.

    2008-07-01

    Cost estimation for space science missions is critically important in budgeting for successful missions. The process requires consideration of a number of parameters, where many of the values are only known to a limited accuracy. The results of cost estimation are not perfect, but must be calculated and compared with the estimates that the government uses for budgeting purposes. Uncertainties in the input parameters result from evolving requirements for missions that are typically the "first of a kind" with "state-of-the-art" instruments and new spacecraft and payload technologies that make it difficult to base estimates on the cost histories of previous missions. Even the cost of heritage avionics is uncertain due to parts obsolescence and the resulting redesign work. Through experience and use of industry best practices developed in participation with the Aerospace Industries Association (AIA), Northrop Grumman has developed a parametric modeling approach that can provide a reasonably accurate cost range and most probable cost for future space missions. During the initial mission phases, the approach uses mass- and powerbased cost estimating relationships (CER)'s developed with historical data from previous missions. In later mission phases, when the mission requirements are better defined, these estimates are updated with vendor's bids and "bottoms- up", "grass-roots" material and labor cost estimates based on detailed schedules and assigned tasks. In this paper we describe how we develop our CER's for parametric cost estimation and how they can be applied to estimate the costs for future space science missions like those presented to the Astronomy & Astrophysics Decadal Survey Study Committees.

  19. Optical communication for space missions

    NASA Technical Reports Server (NTRS)

    Firtmaurice, M.

    1991-01-01

    Activities performed at NASA/GSFC (Goddard Space Flight Center) related to direct detection optical communications for space applications are discussed. The following subject areas are covered: (1) requirements for optical communication systems (data rates and channel quality; spatial acquisition; fine tracking and pointing; and transmit point-ahead correction); (2) component testing and development (laser diodes performance characterization and life testing; and laser diode power combining); (3) system development and simulations (The GSFC pointing, acquisition and tracking system; hardware description; preliminary performance analysis; and high data rate transmitter/receiver systems); and (4) proposed flight demonstration of optical communications.

  20. The virtual mission approach: Empowering earth and space science missions

    NASA Astrophysics Data System (ADS)

    Hansen, Elaine

    1993-08-01

    Future Earth and Space Science missions will address increasingly broad and complex scientific issues. To accomplish this task, we will need to acquire and coordinate data sets from a number of different instrumetns, to make coordinated observations of a given phenomenon, and to coordinate the operation of the many individual instruments making these observations. These instruments will need to be used together as a single ``Virtual Mission.'' This coordinated approach is complicated in that these scientific instruments will generally be on different platforms, in different orbits, from different control centers, at different institutions, and report to different user groups. Before this Virtual Mission approach can be implemented, techniques need to be developed to enable separate instruments to work together harmoniously, to execute observing sequences in a synchronized manner, and to be managed by the Virtual Mission authority during times of these coordinated activities. Enabling technologies include object-oriented designed approaches, extended operations management concepts and distributed computing techniques. Once these technologies are developed and the Virtual Mission concept is available, we believe the concept will provide NASA's Science Program with a new, ``go-as-you-pay,'' flexible, and resilient way of accomplishing its science observing program. The concept will foster the use of smaller and lower cost satellites. It will enable the fleet of scientific satellites to evolve in directions that best meet prevailing science needs. It will empower scientists by enabling them to mix and match various combinations of in-space, ground, and suborbital instruments - combinations which can be called up quickly in response to new events or discoveries. And, it will enable small groups such as universities, Space Grant colleges, and small businesses to participate significantly in the program by developing small components of this evolving scientific fleet.

  1. MDP: Reliable File Transfer for Space Missions

    NASA Technical Reports Server (NTRS)

    Rash, James; Criscuolo, Ed; Hogie, Keith; Parise, Ron; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    This paper presents work being done at NASA/GSFC by the Operating Missions as Nodes on the Internet (OMNI) project to demonstrate the application of the Multicast Dissemination Protocol (MDP) to space missions to reliably transfer files. This work builds on previous work by the OMNI project to apply Internet communication technologies to space communication. The goal of this effort is to provide an inexpensive, reliable, standard, and interoperable mechanism for transferring files in the space communication environment. Limited bandwidth, noise, delay, intermittent connectivity, link asymmetry, and one-way links are all possible issues for space missions. Although these are link-layer issues, they can have a profound effect on the performance of transport and application level protocols. MDP, a UDP-based reliable file transfer protocol, was designed for multicast environments which have to address these same issues, and it has done so successfully. Developed by the Naval Research Lab in the mid 1990's, MDP is now in daily use by both the US Post Office and the DoD. This paper describes the use of MDP to provide automated end-to-end data flow for space missions. It examines the results of a parametric study of MDP in a simulated space link environment and discusses the results in terms of their implications for space missions. Lessons learned are addressed, which suggest minor enhancements to the MDP user interface to add specific features for space mission requirements, such as dynamic control of data rate, and a checkpoint/resume capability. These are features that are provided for in the protocol, but are not implemented in the sample MDP application that was provided. A brief look is also taken at the status of standardization. A version of MDP known as NORM (Neck Oriented Reliable Multicast) is in the process of becoming an IETF standard.

  2. Mission Success Driven Space System Sparing Analysis

    NASA Technical Reports Server (NTRS)

    Knezevic, J.

    1995-01-01

    Among the maintenance resources, the spare parts are the most difficult to predict. Items in the space systems are very different from the point of view of reliability, cost, weight, volume, etc. The different combinations of spares make different contribution to the: mission success, spare investment, volume occupied and weight. Hence, the selection of spares for a mission planned must take into account all of these features. This paper presents the generic mission success driven sparing model developed, for the complex space systems. The mathematical analysis used in the model enables the user to select the most suitable selection of the spare package for the mission planned. The illustrative examples presented clearly demonstrate the applicability and usefulness of the model introduced.

  3. STS-80 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1997-01-01

    The STS-80 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the eightieth flight of the Space Shuttle Program, the fifty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Columbia (OV-102).

  4. The limit passage of space curvature in problems of celestial mechanics with the generalized Kepler and Hooke potentials

    NASA Astrophysics Data System (ADS)

    Vozmishcheva, Tatiana

    2016-09-01

    The connection between the problems of celestial mechanics: the Kepler problem, the two-center problem and the two body problem in spaces of constant curvature with the generalized Kepler and Hooke potentials is investigated. The limit passage in the two-center and two body problems in the Lobachevsky space and on a sphere is carried out as λto0 (λ is the curvature of the corresponding space) for the two potentials. The potentials and metrics in spaces under study are written in the gnomonic coordinates. It is shown that as the curvature radius tends to infinity, the generalized gravitational and elastic potentials transform to the Kepler and Hooke forms in the Euclidean space.

  5. Sustainable and Autonomic Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Sterritt, Roy; Rouff, Christopher; Rash, James L.; Truszkowski, Walter

    2006-01-01

    Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies.

  6. Blast-Off on Mission: SPACE

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Part of NASA's mission is to inspire the next generation of explorers. NASA often reaches children - the inventors of tomorrow - through teachers, reporters, exhibit designers, and other third-party entities. Therefore, when Walt Disney Imagineering, the creative force behind the planning, design, and construction of Disney parks and resorts around the world, approached NASA with the desire to put realism into its Mission: SPACE project, the Agency was happy to offer its insight.

  7. Training Concept for Long Duration Space Mission

    NASA Technical Reports Server (NTRS)

    O'Keefe, William

    2008-01-01

    There has been papers about maintenance and psychological training for Long Duration Space Mission (LDSM). There are papers on the technology needed for LDSMs. Few are looking at how groundbased pre-mission training and on-board in-transit training must be melded into one training concept that leverages this technology. Even more importantly, fewer are looking at how we can certify crews pre-mission. This certification must ensure, before the crew launches, that they can handle any problem using on-board assets without a large ground support team.

  8. STS-31 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1990-01-01

    The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-34/LWT-27), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Booster (SRB) (designated as BI-037). The primary objective of the mission was to place the Hubble Space Telescope (HST) into a 330 nmi. circular orbit having an inclination of 28.45 degrees. The secondary objectives were to perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG), Investigations into Polymer Membrane Processing (IPMP), Radiation Monitoring Equipment (RME), Ascent Particle Monitor (APM), IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site Calibration Test (AMOS), IMAX Crew Compartment Camera, and Ion Arc payloads. In addition, 12 development test objectives (DTO's) and 10 detailed supplementary objectives (DSO's) were assigned to the flight. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystems during the mission are summarized, and the official problem tracking list is presented. In addition, each of the Space Shuttle Orbiter problems is cited in the subsystem discussion.

  9. Advanced power sources for space missions

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  10. Mars mission effects on Space Station evolution

    NASA Technical Reports Server (NTRS)

    Askins, Barbara S.; Cook, Stephen G.

    1989-01-01

    The permanently manned Space Station scheduled to be operational in low earth by the mid 1990's, will provide accommodations for science, applications, technology, and commercial users, and will develop enabling capabilities for future missions. A major aspect of the baseline Space Station design is that provisions for evolution to greater capabilities are included in the systems and subsystems designs. User requirements are the basis for conceptual evolution modes or infrastructure to support the paths. Four such modes are discussed in support of a Human to Mars mission, along with some of the near term actions protecting the future of supporting Mars missions on the Space Station. The evolution modes include crew and payload transfer, storage, checkout, assembly, maintenance, repair, and fueling.

  11. Life sciences space missions. Overview

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.

    1996-01-01

    It has been known for many years that weightlessness induces changes in numerous physiological systems: the cardiovascular system declines in both aerobic capacity and orthostatic tolerance; there is a reduction in fluid and electrolyte balance, hematocrit, and certain immune parameters; bone and muscle mass and strength are reduced; various neurological responses include space motion sickness and posture and gate alterations. These responses are caused by the hypokinesia of weightlessness, the cephalic fluid shift, the unloading of the vestibular system, stress, and the altered temporal environment.

  12. Recent Applications of Space Weather Research to NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Howard, James W., Jr.; Miller, J. Scott; Minow, Joseph I.; NeergardParker, L.; Suggs, Robert M.

    2013-01-01

    Marshall Space Flight Center s Space Environments Team is committed to applying the latest research in space weather to NASA programs. We analyze data from an extensive set of space weather satellites in order to define the space environments for some of NASA s highest profile programs. Our goal is to ensure that spacecraft are designed to be successful in all environments encountered during their missions. We also collaborate with universities, industry, and other federal agencies to provide analysis of anomalies and operational impacts to current missions. This presentation is a summary of some of our most recent applications of space weather data, including the definition of the space environments for the initial phases of the Space Launch System (SLS), acquisition of International Space Station (ISS) frame potential variations during geomagnetic storms, and Nascap-2K charging analyses.

  13. Hubble Space Telescope - First Servicing Mission

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Space Shuttle mission STS-61 was the first of several planned servicing missions for HST, intended to periodically replace failed components and upgrade scientific instruments with improved versions to keep the telescope viable and productive throughout its planned 15-year lifetime. This First Servicing Mission was also intended to correct several design flaws that were detected shortly after the launch of HST. There were three overall mission objectives for the STS-61 repair mission: 1) To Restore the Planned Scientific Capabilities: One complexity of the First Servicing Mission was the necessity for adding optical elements in the light path to correct the spherical aberration. These corrective optics were required to provide the quantitative science capability to enable key scientific programs to be carried out as originally planned. The addition of the COSTAR and the installation of WFPC2 both contributed to recovering these capabilities. 2) To Restore the Reliability of Vehicle Systems: Failed or degraded components had depleted some of the original subsystem redundancy, which had to be restored to allow continued science operations until the next servicing mission in 1997. Anomalous components that required servicing included the solar arrays, gyroscope sensing units, gyroscope electronics, magnetometers, solar array drive electronics, and electrical fuses. 3) To Validate the On-Orbit Servicing Concept for HST: Validation of the concept of on-orbit servicing as the way to achieve HST's full 15-year life was required to provide a foundation for future servicing missions.

  14. STS-61 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W., Jr.

    1994-02-01

    The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

  15. STS-61 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

  16. STS-41 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1990-01-01

    The STS-41 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-sixth flight of the Space Shuttle and the eleventh flight of the Orbiter vehicle, Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-39/LWT-32), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Boosters (SRB's), designated as BI-040. The primary objective of the STS-41 mission was to successfully deploy the Ulysses/inertial upper stage (IUS)/payload assist module (PAM-S) spacecraft. The secondary objectives were to perform all operations necessary to support the requirements of the Shuttle Backscatter Ultraviolet (SSBUV) Spectrometer, Solid Surface Combustion Experiment (SSCE), Space Life Sciences Training Program Chromosome and Plant Cell Division in Space (CHROMEX), Voice Command System (VCS), Physiological Systems Experiment (PSE), Radiation Monitoring Experiment - 3 (RME-3), Investigations into Polymer Membrane Processing (IPMP), Air Force Maui Optical Calibration Test (AMOS), and Intelsat Solar Array Coupon (ISAC) payloads. The sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter problem is cited in the subsystem discussion.

  17. Electronics for Low Temperature Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2007-01-01

    Exploration missions to outer planets and deep space require spacecraft, probes, and on-board data and communication systems to operate reliably and efficiently under severe harsh conditions. On-board electronics, in particular those in direct exposures to the space environment without any shielding or protection, will encounter extreme low temperature and thermal cycling in their service cycle in most of NASA s upcoming exploration missions. For example, Venus atmosphere, Jupiter atmosphere, Moon surface, Pluto orbiter, Mars, comets, Titan, Europa, and James Webb Space Telescope all involve low-temperature surroundings. Therefore, electronics for space exploration missions need to be designed for operation under such environmental conditions. There are ongoing efforts at the NASA Glenn Research Center (GRC) to establish a database on the operation and reliability of electronic devices and circuits under extreme temperature operation for space applications. This work is being performed under the Extreme Temperature Electronics Program with collaboration and support of the NASA Electronic Parts and Packaging (NEPP) Program. The results of these investigations will be used to establish safe operating areas and to identify degradation and failure modes, and the information will be disseminated to mission planners and system designers for use as tools for proper part selection and in risk mitigation. An overview of this program along with experimental data will be presented.

  18. The Astrobiology Space Infrared Explorer (ASPIRE) Mission

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Sandford, S. A.; Roellig, T. L.; ASPIRE Team

    2009-01-01

    The Astrobiology Space Infrared Explorer (ASPIRE) Mission is one of the Origins Probe Mission Concepts that is currently being studied in preparation for inputs to the upcoming Decadal Survey. The mission is a cooled 1-m class telescope optimized to efficiently obtain high quality infrared spectra in the 2.5-36 micron wavelength region. The principal goal of the mission is to detect, identify, and determine the abundance of molecular species, particularly organics, throughout the universe. This will be done by obtaining spectra for a comprehensive range of Solar System, galactic, and extra-galactic environments and the interfaces between them. ASPIRE will be capable of obtaining continuous moderate resolution spectra from 2.5-36 microns at spectral resolutions of about 2500 (2.5-20 microns) and 900 (20-36 microns). ASPIRE will also be able to obtain high resolution spectra (resolutions of 25,000) over selected windows in the 3.1-18 micron region. The ASPIRE suite of instruments provides the ability to study both gas-phase and solid-state materials in space. The PI for the mission is Scott Sandford and major mission partners include NASA-Ames, JPL, and Ball Aerospace.

  19. STS-43 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).

  20. A Probabilistic Mass-Radius Relationship for Sub-Neptune-Sized Planets: Implications for Missions Post-Kepler

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie; Rogers, Leslie A.; Ford, Eric B.; Laughlin, Gregory

    2015-12-01

    The Kepler Mission has discovered thousands of planets with radii between 1 and 4 R_Earth, paving the way for the first statistical studies of the dynamics, formation, and evolution of planets in a size range where there are no Solar System analogs. Masses are an important physical property for these theoretical studies, and yet the vast majority of Kepler planet candidates do not have theirs measured. Therefore, a key practical concern is how to most accurately map a measured sub-Neptune radius to a mass estimate given the existing observations. This issue is also highly relevant to devising the most efficient follow-up programs of future transiting exoplanet detection missions such as TESS. Here we present a probabilistic mass-radius relationship (M-R relation) evaluated within a hierarchical Bayesian framework, which both accounts for the anticipated intrinsic dispersion in these planets' compositions and quantifies the uncertainties on the M-R relation parameters. Assuming that the M-R relation can be described as a power law with a dispersion that is constant and normally distributed, we find that M/M_Earth = 2.7 (R/R_Earth)^1.3 and a scatter in mass of 1.9 M_Earth is the "best-fit" probabilistic M-R relation for the sample of RV-measured transiting sub-Neptunes (R_pl < 4 R_Earth; Wolfgang, Rogers, & Ford, in review). The probabilistic nature of this M-R relation has several advantages: not only does its use automatically account for a significant source of uncertainty in the comparison between planet formation theory and observation, but it can predict the yield of future transit missions' follow-up programs under the observed range of planet compositions at a given radius. We demonstrate the latter with TESS as a case study, building on Sullivan et al. 2015 to provide the RV semi-amplitude distribution predicted by this more general M-R relation and a more detailed treatment of the underlying planet population as derived from Kepler. The uncertainties in the

  1. A Probabilistic Mass-Radius Relationship for Sub-Neptune-Sized Planets: Implications for Missions Post-Kepler

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie; Rogers, Leslie; Ford, Eric B.; Laughlin, Gregory P.

    2016-01-01

    The Kepler Mission has discovered thousands of planets with radii between 1 and 4 R_Earth, paving the way for the first statistical studies of the dynamics, formation, and evolution of planets in a size range where there are no Solar System analogs. Masses are an important physical property for these theoretical studies, and yet the vast majority of Kepler planet candidates do not have theirs measured. Therefore, a key practical concern is how to most accurately map a measured sub-Neptune radius to a mass estimate given the existing observations. This issue is also highly relevant to devising the most efficient follow-up programs of future transiting exoplanet detection missions such as TESS. Here we present a probabilistic mass-radius relationship (M-R relation) evaluated within a hierarchical Bayesian framework, which both accounts for the anticipated intrinsic dispersion in these planets' compositions and quantifies the uncertainties on the M-R relation parameters. Assuming that the M-R relation can be described as a power law with a dispersion that is constant and normally distributed, we find that M/M_Earth = 2.7 (R/R_Earth)^1.3 and a scatter in mass of 1.9 M_Earth is the "best-fit" probabilistic M-R relation for the sample of RV-measured transiting sub-Neptunes (R_pl < 4 R_Earth; Wolfgang, Rogers, & Ford, in review). The probabilistic nature of this M-R relation has several advantages: not only does its use automatically account for a significant source of uncertainty in the comparison between planet formation theory and observation, but it can predict the yield of future transit missions' follow-up programs under the observed range of planet compositions at a given radius. We demonstrate the latter with TESS as a case study, building on Sullivan et al. 2015 to provide the RV semi-amplitude distribution predicted by this more general M-R relation and a more detailed treatment of the underlying planet population as derived from Kepler. The uncertainties in the

  2. New ideas for affordable space missions

    PubMed

    Eller, E; Roussel-Dupre, D; Weiss, R; Bruegman, O

    1996-04-01

    In September 1995, NASA-Goddard held a workshop on low-cost access to space for science missions. The workshop provided briefings on balloons, sounding rockets, Shuttle payloads, and low-cost free-flyer concepts, to provide options of getting experiments into space. This report is the result of a panel session organized with the aim of generating new ideas beyond those presented in the workshop. In addition to the authors, Orlando Figueroa and Paul Ondrus of NASA-Goddard and Richard Zwirnbaum of Computer Sciences Corp. participated in the discussions. The ideas presented do not necessarily reflect the current thinking of NASA managers. Although the panel discussion was focused on the kinds of science missions usually funded by NASA, most of the ideas that were generated are relevant to military and commercial missions as well. PMID:11538724

  3. STS-59 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W., Jr.

    1994-06-01

    The STS-59 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-second flight of the Space Shuttle Program and sixth flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-63; three SSME's which were designated as serial numbers 2028, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-065. The RSRM's that were installed in each SRB were designated as 360W037A (welterweight) for the left SRB, and 360H037B (heavyweight) for the right SRB. This STS-59 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-59 mission was to successfully perform the operations of the Space Radar Laboratory-1 (SRL-1). The secondary objectives of this flight were to perform the operations of the Space Tissue Loss-A (STL-A) and STL-B payloads, the Visual Function Tester-4 (VFT-4) payload, the Shuttle Amateur Radio Experiment-2 (SAREX-2) experiment, the Consortium for Materials Development in Space Complex Autonomous Payload-4 (CONCAP-4), and the three Get-Away Special (GAS) payloads.

  4. STS-59 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-59 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-second flight of the Space Shuttle Program and sixth flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-63; three SSME's which were designated as serial numbers 2028, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-065. The RSRM's that were installed in each SRB were designated as 360W037A (welterweight) for the left SRB, and 360H037B (heavyweight) for the right SRB. This STS-59 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-59 mission was to successfully perform the operations of the Space Radar Laboratory-1 (SRL-1). The secondary objectives of this flight were to perform the operations of the Space Tissue Loss-A (STL-A) and STL-B payloads, the Visual Function Tester-4 (VFT-4) payload, the Shuttle Amateur Radio Experiment-2 (SAREX-2) experiment, the Consortium for Materials Development in Space Complex Autonomous Payload-4 (CONCAP-4), and the three Get-Away Special (GAS) payloads.

  5. Helios mission support. [Deep Space Network

    NASA Technical Reports Server (NTRS)

    Goodwin, P. S.; Rockwell, G. M.

    1978-01-01

    Activities of the Deep Space Network Operations organization in support of the Helios Project from 15 October 1977 through 15 December 1977 are described. Topics covered include: (1) Mark 3 data subsystem testing at the conjoint Deep Space Stations (DSS) 42/43 (Canberra, Australia); (2) MDS implementation at DSS 61/63 (Madrid, Spain); (3) Radio Science update, and (4) other mission-related activities.

  6. STS-62 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

  7. STS-62 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W., Jr.

    1994-05-01

    The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

  8. Animation: Kepler-11 and Six Orbiting Planets

    NASA Video Gallery

    NASA's Kepler space telescope watches a star, Kepler-11. The star appears to blink in a pattern. It dims like clockwork as six "hands" of differing size orbit around it at different rates. Kepler-1...

  9. A Kepler Mission, A Search for Habitable Planets: Concept, Capabilities and Strengths

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, Jack; Dunham, Edward; Jenkins, Jon; DeVincenzi, D. (Technical Monitor)

    1998-01-01

    The detection of extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The technological challenges of direct imaging of Earth-size planets from space are expected to be resolved over the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). The method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. The concept, its capabilities and strengths are presented.

  10. OBSERVATIONS OF INTENSITY FLUCTUATIONS ATTRIBUTED TO GRANULATION AND FACULAE ON SUN-LIKE STARS FROM THE KEPLER MISSION

    SciTech Connect

    Karoff, C.; Campante, T. L.; Ballot, J.; Kallinger, T.; Gruberbauer, M.; Garcia, R. A.

    2013-04-10

    Sun-like stars show intensity fluctuations on a number of timescales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars-while the strongest signatures usually originate from spots, granulation, and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 s sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-mode oscillations. The temporal variability of the signatures attributed to granulation, faculae, and p-mode oscillations was analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures-comparable to what is seen in the Sun.

  11. STS-77 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-77 Space Shuttle Program Mission Report summarizes the Payload activities as well as the: Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME) systems performance during the seventy-seventh flight of the Space Shuttle Program, the fifty-second flight since the return-to-flight, and the eleventh flight of the Orbiter Endeavour (OV-105). STS-77 was also the last flight of OV-105 prior to the vehicle being placed in the Orbiter Maintenance Down Period (OMDP). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-78; three SSME's that were designated as serial numbers 2037, 2040, and 2038 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-080. The RSRM's, designated RSRM-47, were installed in each SRB and the individual RSRM's were designated as 360TO47A for the left SRB, and 360TO47B for the right SRB. The STS-77 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VII, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of this flight were to successfully perform the operations necessary to fulfill the requirements of Spacehab-4, the SPARTAN 207/inflatable Antenna Experiment (IAE), and the Technology Experiments Advancing Missions in Space (TEAMS) payload. Secondary objectives of this flight were to perform the experiments of the Aquatic Research Facility (ARF), Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), Biological Research in Canisters (BRIC), Get-Away-Special (GAS), and GAS Bridge Assembly (GBA). The STS-77 mission was planned as a 9-day flight plus 1 day, plus 2 contingency days, which were available for

  12. Anaerobic digestion of space mission wastes.

    PubMed

    Chynoweth, D P; Owens, J M; Teixeira, A A; Pullammanappallil, P; Luniya, S S

    2006-01-01

    The technical feasibility of applying leachbed high-solids anaerobic digestion for reduction and stabilization of the organic fraction of solid wastes generated during space missions was investigated. This process has the advantages of not requiring oxygen or high temperature and pressure while producing methane, carbon dioxide, nutrients, and compost as valuable products. Anaerobic biochemical methane potential assays run on several waste feedstocks expected during space missions resulted in ultimate methane yields ranging from 0.23 to 0.30 L g-1 VS added. Modifications for operation of a leachbed anaerobic digestion process in space environments were incorporated into a new design, which included; (1) flooded operation to force leachate through densified feedstock beds; and (2) separation of biogas from leachate in a gas collection reservoir. This mode of operation resulted in stable performance with 85% conversion of a typical space solid waste blend, and a methane yield of 0.3 Lg per g VS added after a retention time of 15 days. These results were reproduced in a full-scale prototype system. A detailed analysis of this process was conducted to design the system sized for a space mission with a six-person crew. Anaerobic digestion compared favorably with other technologies for solid waste stabilization. PMID:16784202

  13. STS-57 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1993-01-01

    The STS-57 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-sixth flight of the Space Shuttle Program and fourth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-58); three SSME's which were designated as serial numbers 2019, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-059. The lightweight RSRM's that were installed in each SRB were designated as 360L032A for the left SRB and 360W032B for the right SRB. The STS-57 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement, as documented in NSTS 07700, Volume 8, Appendix E. That document states that each major organizational element supporting the Program will report the results of their hardware evaluation and mission performance plus identify all related in-flight anomalies.

  14. Psychological considerations in future space missions

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.; Wilhelm, J. A.; Runge, T. E.

    1980-01-01

    Issues affecting human psychological adjustments to long space missions are discussed. Noting that the Shuttle flight crewmembers will not have extensive flight qualification requirements, the effects of a more heterogeneous crew mixture than in early space flights is considered to create possibilities of social conflicts. Routine space flight will decrease the novelty of a formerly unique experience, and the necessity of providing personal space or other mechanisms for coping with crowded, permanently occupied space habitats is stressed. Women are noted to display more permeable personal space requirements. The desirability of planning leisure activities is reviewed, and psychological test results for female and male characteristics are cited to show that individuals with high scores in both traditionally male and female attributes are most capable of effective goal-oriented behavior and interpersonal relationships. Finally, it is shown that competitiveness is negatively correlated with the success of collaborative work and the social climate of an environment.

  15. Decoder synchronization for deep space missions

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Cheung, K.-M.; Chauvin, T. H.; Rabkin, J.; Belongie, M. L.

    1994-01-01

    The Consultative Committee for Space Data Standards (CCSDS) recommends that space communication links employ a concatenated, error-correcting, channel-coding system in which the inner code is a convolutional (7,1/2) code and the outer code is a (255,223) Reed-Solomon code. The traditional implementation is to perform the node synchronization for the Viterbi decoder and the frame synchronization for the Reed-Solomon decoder as separate, sequential operations. This article discusses a unified synchronization technique that is required for deep space missions that have data rates and signal-to-noise ratios (SNR's) that are extremely low. This technique combines frame synchronization in the bit and symbol domains and traditional accumulated-metric growth techniques to establish a joint frame and node synchronization. A variation on this technique is used for the Galileo spacecraft on its Jupiter-bound mission.

  16. STS-58 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-58 Space Shuttle Program Mission Report provides a summary of the payload activities as well as the orbiter, external tank (ET), solid rocket booster (SRB) and redesigned solid rocket motor (RSRM), and the space shuttle main engine (SSME) subsystems performance during the fifty-eighth mission of the space shuttle program and fifteenth flight of the orbiter vehicle Columbia (OV-102). In addition to the orbiter, the flight vehicle consisted of an ET (ET-57); three SSME's, which were designated as serial numbers 2024, 2109, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-061. The lightweight RSRM's that were installed in each SRB were designated as 360L034A for the left SRB and 360W034B for the right SRB.

  17. Space interferometer mission (SIM) instrument design concepts.

    NASA Astrophysics Data System (ADS)

    Duncan, A. L.

    SIM is a 12 meter baseline interferometer to be built as part of the NASA Origins program, designed to fly in space and provide high precision astrometry measurements of astronomical objects. SIM will provide angular measurements three orders of magnitude more precise than current space or ground based sensors, allowing the indirect detection of Earth-like planets around neighboring stars. The SIM mission will also include the ability to synthesize images by varying the interferometer baseline lengths and will demonstrate a nulling beam combiner as a technology pathfinder for future missions. A team at Lockheed Martin Missiles and Space (LMMS) in Sunnyvale, CA has been chosen by JPL to enter a partnership to design and build the SIM instrument. This paper describes the overall LMMS SIM instrument concept and its unique features, including the full aperture laser metrology approach for high precision metrology.

  18. Decoder synchronization for deep space missions

    NASA Astrophysics Data System (ADS)

    Statman, J. I.; Cheung, K.-M.; Chauvin, T. H.; Rabkin, J.; Belongie, M. L.

    1994-02-01

    The Consultative Committee for Space Data Standards (CCSDS) recommends that space communication links employ a concatenated, error-correcting, channel-coding system in which the inner code is a convolutional (7,1/2) code and the outer code is a (255,223) Reed-Solomon code. The traditional implementation is to perform the node synchronization for the Viterbi decoder and the frame synchronization for the Reed-Solomon decoder as separate, sequential operations. This article discusses a unified synchronization technique that is required for deep space missions that have data rates and signal-to-noise ratios (SNR's) that are extremely low. This technique combines frame synchronization in the bit and symbol domains and traditional accumulated-metric growth techniques to establish a joint frame and node synchronization. A variation on this technique is used for the Galileo spacecraft on its Jupiter-bound mission.

  19. Decoder Synchronization for Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Statman, J. I.; Cheung, K.-M.; Chauvin, T. H.; Rabkin, J.; Belongie, M. L.

    1993-10-01

    The Consultative Committee for Space Data Standards (CCSDS) recommends that space communication links employ a concatenated, error-correcting, channel-coding system in which the inner code is a convolutional (7,1/2) code and the outer code is a (255,223) Reed-Solomon code. The traditional implementation is to perform the node synchronization for the Viterbi decoder and the frame synchronization for the Reed-Solomon decoder as separate, sequential operations. This article discusses a unified synchronization technique that is required for deep space missions that have data. rates and signal -to-noise ratios (SNRs) that are extremely low. This technique combines frame synchronization in the bit and symbol domains and traditional accumulated-metric growth techniques to establish a joint frame and node synchronization. A variation on this technique is used for the Galileo spacecraft on its Jupiter-bound mission.

  20. Mounting small optics for cryogenic space missions

    NASA Astrophysics Data System (ADS)

    Mammini, Paul V.; Holmes, Howard C.; Jacoby, Mike S.; Kvamme, E. Todd

    2011-09-01

    The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) includes numerous optical assemblies. The instrument will operate at 35K after experiencing launch loads at ~293K and the optic mounts must accommodate all associated thermal and mechanical stresses, plus maintain exceptional optical quality during operation. Lockheed Martin Space Systems Company (LMSSC) conceived, designed, analyzed, assembled, tested, and integrated the optical assemblies for the NIRCam instrument. With using examples from NIRCam, this paper covers techniques for mounting small mirrors and lenses for cryogenic space missions.

  1. Internet Data Delivery for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Rash, James; Hogie, Keith; Casasanta, Ralph; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    This paper presents work being done at NASA/GSFC (Goddard Space Flight Center) on applying standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols (IP) can provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, and constellations of spacecraft. A primary component of this work is to design and demonstrate automated end-to-end transport of files in a dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. These functions and capabilities will become increasingly significant in the years to come as both Earth and space science missions fly more sensors and the present labor-intensive, mission-specific techniques for processing and routing data become prohibitively expensive. This paper describes how an IP-based communication architecture can support existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end file transfers all the way from instruments to control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with data rates and downlink capabilities from 300 Kbps to 4 Mbps. Many examples are based on designs currently being investigated for the Global Precipitation Measurement (GPM) mission.

  2. ISS Update: Communication Delays During Deep Space Missions

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean talks with Jeremy Frank, Autonomous Mission Operations Test Principal Investigator, about how communication delays will affect future deep space missions and...

  3. Assured Mission Support Space Architecture (AMSSA) study

    NASA Technical Reports Server (NTRS)

    Hamon, Rob

    1993-01-01

    The assured mission support space architecture (AMSSA) study was conducted with the overall goal of developing a long-term requirements-driven integrated space architecture to provide responsive and sustained space support to the combatant commands. Although derivation of an architecture was the focus of the study, there are three significant products from the effort. The first is a philosophy that defines the necessary attributes for the development and operation of space systems to ensure an integrated, interoperable architecture that, by design, provides a high degree of combat utility. The second is the architecture itself; based on an interoperable system-of-systems strategy, it reflects a long-range goal for space that will evolve as user requirements adapt to a changing world environment. The third product is the framework of a process that, when fully developed, will provide essential information to key decision makers for space systems acquisition in order to achieve the AMSSA goal. It is a categorical imperative that military space planners develop space systems that will act as true force multipliers. AMSSA provides the philosophy, process, and architecture that, when integrated with the DOD requirements and acquisition procedures, can yield an assured mission support capability from space to the combatant commanders. An important feature of the AMSSA initiative is the participation by every organization that has a role or interest in space systems development and operation. With continued community involvement, the concept of the AMSSA will become a reality. In summary, AMSSA offers a better way to think about space (philosophy) that can lead to the effective utilization of limited resources (process) with an infrastructure designed to meet the future space needs (architecture) of our combat forces.

  4. STS-71, Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Frike, Robert W., Jr.

    1995-01-01

    The STS-71 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance. STS-71 is the 100th United States manned space flight, the sixty-ninth Space Shuttle flight, the forty-fourth flight since the return-to-flight, the fourteenth flight of the OV-104 Orbiter vehicle Atlantis, and the first joint United States (U.S.)-Russian docking mission since 1975. In addition to the OV-104 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-70; three SSMEs that were designated 2028, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRBs that were designated Bl-072. The RSRMs that were an integral part of the SRBs were designated 360L045A for the left SRB and 360W045B for the right SRB. The STS-71 mission was planned as a 1 0-day plus 1-day-extension mission plus 2 additional days for contingency operations and weather avoidance. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform on-orbit joint U.S.-Russian life sciences investigations, logistical resupply of the Mir Space Station, return of the United States astronaut flying on the Mir, the replacement of the Mir-18 crew with the two-cosmonaut Mir-19 crew, and the return of the Mir-18 crew to Earth. The secondary objectives were to perform the requirements of the IMAX Camera and the Shuttle Amateur Radio experiment-2 (SAREX-2).

  5. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  6. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The STS 41-C National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the eleventh Shuttle flight and fifth flight of the OV-099 vehicle, Challenger. Also summarized are the significant problems that occurred during STS 41-C, and a problem tracking list that is a complete list of all problems that occurred during the flight. The major objectives of flight STS 41-C were to successfully deploy the LDEF (long duration exposure facility) and retrieve, repair and redeploy the SMM (Solar Maximum Mission) spacecraft, and perform functions of IMAX and Cinema 360 cameras.

  7. STS-78 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment

  8. Internet Data Delivery for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Rash, James; Casasanta, Ralph; Hogie, Keith; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and as the need increases for more network-oriented mission operations. Another element of increasing significance will be the increased cost effectiveness of designing, building, integrating, and operating instruments and spacecraft that will come to the fore as more missions take up the approach of using commodity-level standard communications technologies. This paper describes how an IP (Internet Protocol)-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation

  9. Planetary mission applications for space storable propulsion

    NASA Technical Reports Server (NTRS)

    Chase, R. L.; Cork, M. J.; Young, D. L.

    1974-01-01

    This paper presents the results of a study to compare space-storable with earth-storable spacecraft propulsion systems, space-storable with solid kick stages, and several space-storable development options on the basis of benefits received for cost expenditures required. The results show that, for a launch vehicle with performance less than that of Shuttle/Centaur, space-storable spacecraft propulsion offers an incremental benefit/cost ratio between 1.0 and 5.5 when compared to earth-storable systems for three of the four missions considered. In the case of VOIR 83, positive benefits were apparent only for a specific launch vehicle-spacecraft propulsion combination. A space-storable propulsion system operating at thrust of 600 lbf, 355 units of specific impulse, and with blowdown pressurization, represents the best choice for the JO 81 mission on a Titan/Centaur if only spacecraft propulsion modifications are considered. For still higher performance, a new solid-propellant kick stage with space-storable spacecraft propulsion is preferred over a system which uses space-storable propellants for both the kick stage and the spacecraft system.

  10. Manned Mars missions using propellant from space

    SciTech Connect

    Zuppero, A.C.; Olson, T.S. ); Redd, L.R. )

    1993-01-10

    .A recent discovery (8/14/92) of a near-earth object containing materials potentially useful for space activities could perhaps change the entire way humans access and operate in space. A near-Earth object ([number sign]4015, 1979 VA, comet Wilson-Harrington) contains water ice that could be used for space propulsion. In addition, this type of object may contain structural and lifesustaining materials (complex hydrocarbons, ammonia and/or bound nitrogen compounds) for space structures, manned planetary bases, or planetary surface terraforming. The retrieval and utilization of rocket propellant from near-Earth objects, for manned Mars missions in particular, has been investigated and the benefits of this scenario to over performing a Mars mission with terrestrial propellants have been documented. The results show water extracted from these objects and retrieved to Earth orbit for use in going to Mars may actually enable manned Mars exploration by reducing the number of Heavy Lift Launch Vehicle (HLLV) flights or eliminating the need for HLLV's altogether. The mission can perhaps be supported with existing launch vehicles and not required heavy lift capability. Also, the development of a nuclear thermal rocket for this alternate approach may be simplified substantially by reducing the operating temperature required.

  11. STS-60 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-60 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixtieth flight of the Space Shuttle Program and eighteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET designated at ET-61 (Block 10); three SSME's which were designated as serial numbers 2012, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-062. The RSRM's that were installed in each SRB were designated as 360L035A (lightweight) for the left SRB, and 360Q035B (quarterweight) for the right SRB. This STS-60 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VIII, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-60 mission were to deploy and retrieve the Wake Shield Facility-1 (WSF-1), and to activate the Spacehab-2 payload and perform on-orbit experiments. Secondary objectives of this flight were to activate and command the Capillary Pumped Loop/Orbital Debris Radar Calibration Spheres/Breman Satellite Experiment/Getaway Special (GAS) Bridge Assembly (CAPL/ODERACS/BREMSAT/GBA) payload, the Auroral Photography Experiment-B (APE-B), and the Shuttle Amateur Radio Experiment-II (SAREX-II).

  12. Space mechanisms needs for future NASA long duration space missions

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1991-01-01

    Future NASA long duration missions will require high performance, reliable, long lived mechanical moving systems. In order to develop these systems, high technology components, such as bearings, gears, seals, lubricants, etc., will need to be utilized. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of long duration NASA mission such as Space Exploration Initiative (SEI). To resolve this concern, NASA-Lewis sent a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Mission needs and goals. In addition, a working group consisting of members from each NASA Center, DoD, and DOE was established to study the technology status. The results of the survey and conclusions of the working group are summarized.

  13. Systems Architecture for Fully Autonomous Space Missions

    NASA Technical Reports Server (NTRS)

    Esper, Jamie; Schnurr, R.; VanSteenberg, M.; Brumfield, Mark (Technical Monitor)

    2002-01-01

    The NASA Goddard Space Flight Center is working to develop a revolutionary new system architecture concept in support of fully autonomous missions. As part of GSFC's contribution to the New Millenium Program (NMP) Space Technology 7 Autonomy and on-Board Processing (ST7-A) Concept Definition Study, the system incorporates the latest commercial Internet and software development ideas and extends them into NASA ground and space segment architectures. The unique challenges facing the exploration of remote and inaccessible locales and the need to incorporate corresponding autonomy technologies within reasonable cost necessitate the re-thinking of traditional mission architectures. A measure of the resiliency of this architecture in its application to a broad range of future autonomy missions will depend on its effectiveness in leveraging from commercial tools developed for the personal computer and Internet markets. Specialized test stations and supporting software come to past as spacecraft take advantage of the extensive tools and research investments of billion-dollar commercial ventures. The projected improvements of the Internet and supporting infrastructure go hand-in-hand with market pressures that provide continuity in research. By taking advantage of consumer-oriented methods and processes, space-flight missions will continue to leverage on investments tailored to provide better services at reduced cost. The application of ground and space segment architectures each based on Local Area Networks (LAN), the use of personal computer-based operating systems, and the execution of activities and operations through a Wide Area Network (Internet) enable a revolution in spacecraft mission formulation, implementation, and flight operations. Hardware and software design, development, integration, test, and flight operations are all tied-in closely to a common thread that enables the smooth transitioning between program phases. The application of commercial software

  14. The Infrared Telescope in Space Mission

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The NASA/Japanese Space Agency Infrared Telescope in Space (IRTS) mission was one of seven experiments on the first Space Flyer Unit (SFU-1). This satellite was launched on a Japanese H-2 expendable launch vehicle from Tanegashima Space Center on March 18, 1995 and was retrieved by the NASA space shuttle the following January for refurbishment and reuse. The IRTS itself consisted of a super-fluid liquid helium-cooled telescope with four infrared focal plane science instruments that operated simultaneously. During its one-month lifetime before the liquid helium was exhausted the IRTS mapped 7% of the sky. These data are now being released to the general astronomical community through IPAC at the California Institute of Technology.

  15. Digital communication constraints in prior space missions

    NASA Technical Reports Server (NTRS)

    Yassine, Nathan K.

    2004-01-01

    Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this

  16. Control Architecture for the Deep Space Mission System (DSMS)

    NASA Technical Reports Server (NTRS)

    Tai, W.; Shames, P.; Schell, R.

    2000-01-01

    As NASA moves int an era of flying more missions at much lower cost and shorter development duration, the Deep Space Mission System (DSMS) has been redesigned to provide services to approximately 50 missions during the next 10 years.

  17. Combatting Managerial Complacency in Space Missions

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.

    2012-01-01

    Human factors techniques have made significant contributions to the safety of space missions. Physiological models help to monitor crew workload and performance. Empirical studies inform the design of operator interfaces to maximize finite cognitive and perceptual resources. Further progress has been made in supporting distributed situation awareness across multi-national teams and in promoting the resilience of complex, time critical missions. Most of this work has focused on operational performance. In contrast, most space-based mishaps stem from organizational problems and miss-management. In particular, this paper focuses on the dangers of complacency when previous successes are wrongly interpreted as guarantees of future safety. The argument is illustrated by the recent loss of NASA's Nuclear Compton Telescope Balloon; during a launch phase that 'no-one considered to be a potential hazard'. The closing sections argue that all senior executives should read at least one mishap report every year in order to better understand the hazards of complacency.

  18. Internet Technology for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Hennessy, Joseph F. (Technical Monitor); Rash, James; Casasanta, Ralph; Hogie, Keith

    2002-01-01

    Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and the present labor-intensive, mission-specific techniques for processing and routing data become prohibitively. This paper describes how an IP-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.

  19. High performance techniques for space mission scheduling

    NASA Technical Reports Server (NTRS)

    Smith, Stephen F.

    1994-01-01

    In this paper, we summarize current research at Carnegie Mellon University aimed at development of high performance techniques and tools for space mission scheduling. Similar to prior research in opportunistic scheduling, our approach assumes the use of dynamic analysis of problem constraints as a basis for heuristic focusing of problem solving search. This methodology, however, is grounded in representational assumptions more akin to those adopted in recent temporal planning research, and in a problem solving framework which similarly emphasizes constraint posting in an explicitly maintained solution constraint network. These more general representational assumptions are necessitated by the predominance of state-dependent constraints in space mission planning domains, and the consequent need to integrate resource allocation and plan synthesis processes. First, we review the space mission problems we have considered to date and indicate the results obtained in these application domains. Next, we summarize recent work in constraint posting scheduling procedures, which offer the promise of better future solutions to this class of problems.

  20. STS-35 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1991-01-01

    The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-35/LWT-28), three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-038. The primary objectives of this flight were to successfully perform the planned operations of the Ultraviolet Astronomy (Astro-1) payload and the Broad-Band X-Ray Telescope (BBXRT) payload in a 190-nmi. circular orbit which had an inclination of 28.45 degrees. The sequence of events for this mission is shown in tablular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter subsystem problem is cited in the applicable subsystem discussion.

  1. NASA's Spitzer Space Telescope's operational mission experience

    NASA Astrophysics Data System (ADS)

    Wilson, Robert K.; Scott, Charles P.

    2006-06-01

    Spitzer Space Telescope, the fourth and final of NASA's Great Observatories, and the cornerstone to NASA's Origins Program, launched on 25 August 2003 into an Earth-trailing solar orbit to acquire infrared observations from space. Spitzer has an 85cm diameter beryllium telescope, which operates near absolute zero utilizing a liquid helium cryostat for cooling the telescope. The helium cryostat though designed for a 2.5 year lifetime, through creative usage now has an expected lifetime of 5.5 years. Spitzer has completed its in-orbit checkout/science verification phases and the first two years of nominal operations becoming the first mission to execute astronomical observations from a solar orbit. Spitzer was designed to probe and explore the universe in the infrared utilizing three state of the art detector arrays providing imaging, photometry, and spectroscopy over the 3-160 micron wavelength range. Spitzer is achieving major advances in the study of astrophysical phenomena across the expanses of our universe. Many technology areas critical to future infrared missions have been successfully demonstrated by Spitzer. These demonstrated technologies include lightweight cryogenic optics, sensitive detector arrays, and a high performance thermal system, combining radiation both passive and active cryogenic cooling of the telescope in space following its warm launch. This paper provides an overview of the Spitzer mission, telescope, cryostat, instruments, spacecraft, its orbit, operations and project management approach and related lessons learned.

  2. Space station support of manned Mars missions

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1986-01-01

    The assembly of a manned Mars interplanetary spacecraft in low Earth orbit can be best accomplished with the support of the space station. Station payload requirements for microgravity environments of .001 g and pointing stability requirements of less than 1 arc second could mean that the spacecraft may have to be assembled at a station-keeping position about 100 meters or more away from the station. In addition to the assembly of large modules and connective structures, the manned Mars mission assembly tasks may include the connection of power, fluid, and data lines and the handling and activation of components for chemical or nuclear power and propulsion systems. These assembly tasks will require the use of advanced automation and robotics in addition to Orbital Maneuvering Vehicle and Extravehicular Activity (EVA) crew support. Advanced development programs for the space station, including on-orbit demonstrations, could also be used to support manned Mars mission technology objectives. Follow-on studies should be conducted to identify space station activities which could be enhanced or expanded in scope (without significant cost and schedule impact) to help resolve key technical and scientific questions relating to manned Mars missions.

  3. On the Astron UV space mission data

    NASA Astrophysics Data System (ADS)

    Kilpio, E. Yu.; Mironov, A. V.; Malkov, O. Yu.

    The Soviet UV space mission Astron, launched in 1983, had been operational for eight years as the largest ultraviolet space telescope during its lifetime. Astron provided a lot of observational material for various types of astrophysical objects, but unfortunately these data were not widely available and, as a result, unduly forgotten. Here we present some results of our comparison of the Astron data to the modern UV stellar data, such as the NGSL spectral library, discuss the precision and accuracy achieved with Astron, and make some conclusions on potential application areas of these data.

  4. Symbiotic structures to significantly enhance space missions

    NASA Astrophysics Data System (ADS)

    Williams, Andrew D.; Diaz-Aguado, Millan; Arritt, Brandon J.

    2007-04-01

    The Department of Defense is actively pursuing a Responsive Space capability that will dramatically reduce the cost and time associated with getting a payload into space. In order to enable that capability, our space systems must be modular and flexible to cover a wide range of missions, configurations, duty cycles, and orbits. This places requirements on the entire satellite infrastructure: payloads, avionics, electrical harnessing, structure, thermal management system, etc. The Integrated Structural Systems Team at the Air Force Research Laboratory, Space Vehicles Directorate, has been tasked with developing structural and thermal solutions that will enable a Responsive Space capability. This paper details a "symbiotic" solution where thermal management functionality is embedded within the structure of the satellite. This approach is based on the flight proven and structurally efficient isogrid architecture. In our rendition, the ribs serve as fluidic passages for thermal management, and passively activated valves are used to control flow to the individual components. As the paper will explain, our analysis has shown this design to be structurally efficient and thermally responsive to a wide range of potential satellite missions, payloads, configurations, and orbits.

  5. STS-79 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.

  6. STS-39 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

  7. The SPAce Readiness Coherent Lidar Experiment (SPARCLE) Space Shuttle Mission

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Emmitt, G. David

    1998-01-01

    For over 20 years researchers have been investigating the feasibility of profiling tropospheric vector wind velocity from space with a pulsed Doppler lidar. Efforts have included theoretical development, system and mission studies, technology development, and ground-based and airborne measurements. Now NASA plans to take the next logical step towards enabling operational global tropospheric wind profiles by demonstrating horizontal wind measurements from the Space Shuttle in early 2001 using a coherent Doppler wind lidar system.

  8. GRANULATION IN RED GIANTS: OBSERVATIONS BY THE KEPLER MISSION AND THREE-DIMENSIONAL CONVECTION SIMULATIONS

    SciTech Connect

    Mathur, S.; Hekker, S.; Trampedach, R.; Ballot, J.; Kallinger, T.; Buzasi, D.; Garcia, R. A.; Jimenez, A.; Regulo, C.; Mosser, B.; Elsworth, Y.; Chaplin, W. J.; Hale, S. J.; De Ridder, J.; Kinemuchi, K.; Mullally, F.

    2011-11-10

    The granulation pattern that we observe on the surface of the Sun is due to hot plasma rising to the photosphere where it cools down and descends back into the interior at the edges of granules. This is the visible manifestation of convection taking place in the outer part of the solar convection zone. Because red giants have deeper convection zones than the Sun, we cannot a priori assume that their granulation is a scaled version of solar granulation. Until now, neither observations nor one-dimensional analytical convection models could put constraints on granulation in red giants. With asteroseismology, this study can now be performed. We analyze {approx}1000 red giants that have been observed by Kepler during 13 months. We fit the power spectra with Harvey-like profiles to retrieve the characteristics of the granulation (timescale {tau}{sub gran} and power P{sub gran}). We search for a correlation between these parameters and the global acoustic-mode parameter (the position of maximum power, {nu}{sub max}) as well as with stellar parameters (mass, radius, surface gravity (log g), and effective temperature (T{sub eff})). We show that {tau}{sub eff}{proportional_to}{nu}{sup -0.89}{sub max} and P{sub gran}{proportional_to}{nu}{sup -1.90}{sub max}, which is consistent with the theoretical predictions. We find that the granulation timescales of stars that belong to the red clump have similar values while the timescales of stars in the red giant branch are spread in a wider range. Finally, we show that realistic three-dimensional simulations of the surface convection in stars, spanning the (T{sub eff}, log g) range of our sample of red giants, match the Kepler observations well in terms of trends.

  9. Space Missions Trade Space Generation and Assessment Using JPL Rapid Mission Architecture (RMA) Team Approach

    NASA Technical Reports Server (NTRS)

    Moeller, Robert C.; Borden, Chester; Spilker, Thomas; Smythe, William; Lock, Robert

    2011-01-01

    The JPL Rapid Mission Architecture (RMA) capability is a novel collaborative team-based approach to generate new mission architectures, explore broad trade space options, and conduct architecture-level analyses. RMA studies address feasibility and identify best candidates to proceed to further detailed design studies. Development of RMA first began at JPL in 2007 and has evolved to address the need for rapid, effective early mission architectural development and trade space exploration as a precursor to traditional point design evaluations. The RMA approach integrates a small team of architecture-level experts (typically 6-10 people) to generate and explore a wide-ranging trade space of mission architectures driven by the mission science (or technology) objectives. Group brainstorming and trade space analyses are conducted at a higher level of assessment across multiple mission architectures and systems to enable rapid assessment of a set of diverse, innovative concepts. This paper describes the overall JPL RMA team, process, and high-level approach. Some illustrative results from previous JPL RMA studies are discussed.

  10. The Deep Space 1 and Space Technology 4/Champollion Missions

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    2000-01-01

    NASA's New Millennium Program (NMP) is designed to develop, test, and flight validate new, advanced technologies for planetary and Earth exploration missions, using a series of low cost spacecraft. Two of NMP's current missions include encounters with comets and asteroids. The Deep Space 1 mission was launched on October 24, 1998 and will fly by asteroid 1992 KD on July 29, 1999, and possibly Comet Wilson-Harrington and/or Comet Borrelly in 2001. The Space Technology 4/Champollion mission will be launched in April, 2003 and will rendezvous with, orbit and land on periodic Comet Tempel 1 in 2006. ST-4/Champollion is a joint project with CNES, the French space agency. The DS-1 mission is going well since launch and has already validated several major technologies, including solar electric propulsion (SEP), solar concentrator arrays, a small deep space transponder, and autonomous navigation. The spacecraft carries two scientific instruments: MICAS, a combined visible camera and UV and IR spectrometers, and PEPE, an ion and electron spectrometer. Testing of the science instruments is ongoing. Following the asteroid encounter in July, 1999, DS-1 will go on to encounters with one or both comets if NASA approves funding for an extended mission. The ST-4/Champollion mission will use an advanced, multi-engine SEP system to effect a rendezvous with Comet P/Tempel 1 in February, 2006, after a flight time of 2.8 years. After orbiting the comet for several months in order to map its surface and determine its gravity field, ST-4/Champollion will descend to the comet's surface and will anchor itself with a 3-meter long harpoon. Scientific experiments include narrow and wide angle cameras for orbital mapping, panoramic and near-field cameras for landing site mapping, a gas chromatograph/mass spectrometer, a combined microscope and infrared spectrometer, and physical properties probes. Cometary samples will be obtained from depths up to 1.4 meters. The spacecraft is solar powered

  11. Training for long duration space missions

    NASA Technical Reports Server (NTRS)

    Goldberg, Joseph H.

    1987-01-01

    The successful completion of an extended duration manned mission to Mars will require renewed research effort in the areas of crew training and skill retention techniques. The current estimate of inflight transit time is about nine months each way, with a six month surface visit, an order of magnitude beyond previous U.S. space missions. Concerns arise when considering the level of skill retention required for highly critical, one time operations such as an emergency procedure or a Mars orbit injection. The factors responsible for the level of complex skill retention are reviewed, optimal ways of refreshing degraded skills are suggested, and a conceptual crew training design for a Mars mission is outlined. Currently proposed crew activities during a Mars mission were reviewed to identify the spectrum of skills which must be retained over a long time period. Skill retention literature was reviewed to identify those factors which must be considered in deciding when and which tasks need retraining. Task, training, and retention interval factors were identified. These factors were then interpreted in light of the current state of spaceflight and adaptive training systems.

  12. STS-44 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-44 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-fourth flight of the Space Shuttle Program and the tenth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-53 (LWT-46); three Space Shuttle main engines (SSME's) (serial numbers 2015, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-047. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L019A for the left SRB and 360W019B for the right SRB. The primary objective of the STS-44 mission was to successfully deploy the Department of Defense (DOD) Defense Support Program (DSP) satellite/inertial upper stage (IUS) into a 195 nmi. earth orbit at an inclination of 28.45 deg. Secondary objectives of this flight were to perform all operations necessary to support the requirements of the following: Terra Scout, Military Man in Space (M88-1), Air Force Maui Optical System Calibration Test (AMOS), Cosmic Radiation Effects and Activation Monitor (CREAM), Shuttle Activation Monitor (SAM), Radiation Monitoring Equipment-3 (RME-3), Visual Function Tester-1 (VFT-1), and the Interim Operational Contamination Monitor (IOCM) secondary payloads/experiments.

  13. Radiation Shielding for Manned Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2003-01-01

    The arrival of the Expedition 1 Crew at the International Space Station represents the beginning of the continuous presence of man in space. Already we are deploying astronauts and cosmonauts for missions of approx. 6 months onboard the ISS. In the future we can anticipate that more people will be in space and they will be there for longer periods. Even with 6-months deployments to the ISS, the radiation exposure that crew members receive is approaching the exposure limits imposed by the governments of the space- faring nations. In the future we can expect radiation protection to be a dominant consideration for long manned missions. Recognizing this, NASA has expanded their research program on radiation health. This program has three components, bioastronautics, fundamental biology and radiation shielding materials. Bioastronautics is concerned with the investigating the effects of radiation on humans. Fundamental biology investigates the basic mechanisms of radiation damage to tissue. Radiation shielding materials research focuses on developing accurate computational tools to predict the radiation shielding effectiveness of materials. It also investigates new materials that can be used for spacecraft. The radiation shielding materials program will be described and examples of results from the ongoing research will be shown.

  14. Exo-C: A Space Mission for Direct Imaging and Spectroscopy of Extrasolar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Stapelfeldt, Karl; Belikov, Ruslan; Marley, Mark; Bryden, Geoff; Serabyn, Eugene; Trauger, John; Cahoy, Kerri; Chakrabarti, Supriya; McElwain, Michael; Meadows, Victoria; Dekens, Frank; Warfield, Keith; Brenner, Michael; Brugarolas, Paul; Effinger, Robert T.; Heeg, Casey; Birsch, Brian; Kissel, Andrew; Kirst, John E.; Lang, Jared; Nissen, Joel; Oseas, Jeffrey M.; Pong, Chris; Sunada, Eric

    2015-01-01

    Exo-C is NASAs first community study of a modest aperture space telescope designed for high contrast observations of exoplanetary systems. The mission will be capable of taking optical spectra of nearby exoplanets in reflected light, discovering previously undetected planets, and imaging structure in a large sample of circumstellar disks. It will obtain unique science results on planets down to super-Earth sizes and serve as a technology pathfinder toward an eventual flagship-class mission to find and characterize habitable Earth-like exoplanets. We present the mission/payload design and highlight steps to reduce mission cost/risk relative to previous mission concepts. Key elements are an unobscured telescope aperture, an internal coronagraph with deformable mirrors for precise wavefront control, and an orbit and observatory design chosen for high thermal stability. Exo-C has a similar telescope aperture, orbit, lifetime, and spacecraft bus requirements to the highly successful Kepler mission (which is our cost reference). The needed technology development is on-course for a possible mission start in 2017. This paper summarizes the study final report completed in January 2015. During 2015 NASA will make a decision on its potential development.

  15. Kepler Field of View

    NASA Video Gallery

    The Kepler mission will be looking continuously at over 100,000 stars in one region of the sky, in the Cygnus and Lyra constellations. The field of view is extremely large for an astronomical teles...

  16. Habitability in long-term space missions

    NASA Technical Reports Server (NTRS)

    Mount, Frances E.

    1987-01-01

    The research (both in progress and completed) conducted for the U.S. Space Station in relation to the crew habitability and crew productivity is discussed. Methods and tasks designed to increase the data base of the man/system information are described. The particular research areas discussed in this paper include human productivity, on-orbit maintenance, vewing requirements, fastener types, and crew quarters. This information (along with data obtained on human interaction with command/control work station, anthropometic factors, crew equipment, galley/wardroom, restraint systems, etc) will be integrated into the common data base for the purpose of assisting the design of the Space Station and other future manned space missions.

  17. STS-51 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1993-01-01

    The STS-51 Space Shuttle Program Mission Report summarizes the payloads as well as the orbiter, external tank (ET), solid rocket booster (SRB), redesigned solid rocket motor (RSRM), and the space shuttle main engine (SSME) systems performance during the fifty-seventh flight of the space shuttle program and seventeenth flight of the orbiter vehicle Discovery (OV-103). In addition to the orbiter, the flight vehicle consisted of an ET designated as ET-59; three SSME's, which were designated as serial numbers 2031, 2034, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-060. The lightweight RSRM's that were installed in each SRB were designated as 360W033A for the left SRB and 360L033B for the right SRB.

  18. STS-49: Space shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-49 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and Space Shuttle main engine (SSME) subsystem performance during the forty-seventh flight of the Space Shuttle Program and the first flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Endeavor vehicle, the flight vehicle consisted of an ET designated as ET-43 (LWT-36); three SSME's which were serial numbers 2030, 2015, and 2017 in positions 1, 2, and 3, respectively; and two SRB's designated as BI-050. The lightweight RSRM's installed in each SRB were designated as 360L022A for the left RSRM and 360L022B for the right RSRM.

  19. STS-48 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-48 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-third flight of the Space Shuttle Program and the thirteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-42 (LUT-35); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-046. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L018A for the left SRB and 360L018B for the right SRB. The primary objective of the flight was to successfully deploy the Upper Atmospheric Research Satellite (UARS) payload.

  20. STS-40 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.

  1. STS-56 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1993-01-01

    The STS-56 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-fourth flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-54); three SSME's, which were designated as serial numbers 2024, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-058. The lightweight RSRM's that were installed in each SRB were designated as 360L031A for the left SRB and 360L031B for the right SRB.

  2. A mission planning concept and mission planning system for future manned space missions

    NASA Technical Reports Server (NTRS)

    Wickler, Martin

    1994-01-01

    The international character of future manned space missions will compel the involvement of several international space agencies in mission planning tasks. Additionally, the community of users requires a higher degree of freedom for experiment planning. Both of these problems can be solved by a decentralized mission planning concept using the so-called 'envelope method,' by which resources are allocated to users by distributing resource profiles ('envelopes') which define resource availabilities at specified times. The users are essentially free to plan their activities independently of each other, provided that they stay within their envelopes. The new developments were aimed at refining the existing vague envelope concept into a practical method for decentralized planning. Selected critical functions were exercised by planning an example, founded on experience acquired by the MSCC during the Spacelab missions D-1 and D-2. The main activity regarding future mission planning tasks was to improve the existing MSCC mission planning system, using new techniques. An electronic interface was developed to collect all formalized user inputs more effectively, along with an 'envelope generator' for generation and manipulation of the resource envelopes. The existing scheduler and its data base were successfully replaced by an artificial intelligence scheduler. This scheduler is not only capable of handling resource envelopes, but also uses a new technology based on neuronal networks. Therefore, it is very well suited to solve the future scheduling problems more efficiently. This prototype mission planning system was used to gain new practical experience with decentralized mission planning, using the envelope method. In future steps, software tools will be optimized, and all data management planning activities will be embedded into the scheduler.

  3. Automation of Hubble Space Telescope Mission Operations

    NASA Technical Reports Server (NTRS)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  4. STS-72 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-72 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fourth flight of the Space Shuttle Program, the forty-ninth flight since the return-to-flight, and the tenth flight of the Orbiter Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-75; three Block I SSME's that were designated as serial numbers 2028, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-077. The RSRM's, designated RSRM-52, were installed in each SRB and the individual RSRM's were designated as 36OW052A for the left SRB, and 36OW052B for the right SRB. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. The primary objectives of this flight were to retrieve the Japanese Space Flyer Unit (JSFU) and deploy and retrieve the Office of Aeronautics and Space Technology-Flyer (OAST-Flyer). Secondary objectives were to perform the operations of the Shuttle Solar Backscatter Ultraviolet (SSBUV/A) experiment, Shuttle Laser Altimeter (SLA)/get-Away Special (GAS) payload, Physiological and Anatomical Rodent Experiment/National Institutes of Health-Cells (STL/NIH-C) experiment, Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES) experiment, Commercial Protein Crystal Growth (CPCG) payload and perform two extravehicular activities (EVA's) to demonstrate International Space Station Alpha (ISSA) assembly techniques). Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

  5. Indian Space Science and Exploration Missions

    NASA Astrophysics Data System (ADS)

    Chakravarty, S. C.

    mission life of ˜ 5 years. Based on an expert report, ISRO has announced its plan to launch the first moon mission (Chandrayaan-1), which could be realised with the existing ISRO capabilities of launch vehicle, satellite and related technologies. The mission has specific scientific goals to study the three-dimensional lunar surface geological features and distribution of elemental and mineralogical species to help understand the origin and evolution of lunar system. The mission goal is to place a lunar-craft, weighing about 525 kg and carrying ˜ 55 kg payload mass, at ˜ 100 km polar orbit of moon for high spatial resolution (5-20 km) mapping. The rationale for selecting these and other future space science missions along with the expected scientific results would be discussed.

  6. Secure Telemetry Demonstrator for Future Space Missions

    NASA Astrophysics Data System (ADS)

    Lombardi, P.; Fabry, P.; Akuatse, D.; Carrard, D.

    2007-08-01

    End-to-end security is an emerging need of future space missions for protecting satellite's data from unauthorized access. Trend towards this new necessity is sustained by the growing convenience in making use of open systems and Internet connectivity for the control of shared instruments and for data distribution causing on the other hand an increased vulnerability from the security point of view. In response to that need, Syderal SA in Swit- zerland is developing under an ESA contract a demonstrator of a fundamental building block for providing space mission security services on an end-to- end basis. Specifically, this demonstrator implements all necessary functions on the spacecraft side for pro- viding data link layer security over a space link on a point-to-point basis. At the same time, it provides end-to- end security when used in combination with network layer security between end-users (connected through public networks) and payloads. This development is carried out within the frame of ISO/IEC 15408 standard on Evaluation Criteria for IT security [6], [7] and [8] as well as in accordance to ESA ECSS telemetry and telecommand standards [3] and [4].

  7. STS-42 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-42 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-fifth flight of the Space Shuttle Program and the fourteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-52 (LWT-45); three Space Shuttle main engines (SSME's), which were serial numbers 2026, 2022, and 2027 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-048. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L020A for the left SRM and 360Q020B for the right SRM. The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). Secondary objectives were to perform all operations necessary to support the requirements of the following: Gelation of Sols: Applied Microgravity Research (GOSAMR); Student Experiment 81-09 (Convection in Zero Gravity); Student Experiment 83-02 (Capillary Rise of Liquid Through Granular Porous Media); the Investigation into Polymer Membrane Processing (IPMP); the Radiation Monitoring Equipment-3 (RME-3); and Get-Away Special (GAS) payloads carried on the GAS Beam Assembly.

  8. STS-75 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-75 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fifth flight of the Space Shuttle Program, the fiftieth flight since the return-to-flight, and the nineteenth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-76; three SSME's that were designated as serial numbers 2029, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-078. The RSRM's, designated RSRM-53, were installed in each SRB and the individual RSRMs were designated as 36OW53A for the left SRB, and 36OW053B for the right SRB. The primary objectives of this flight were to perform the operations necessary to fulfill the requirements of the Tethered Satellite System-1 R (TSS-1R), and the United States Microgravity Payload-3 (USMP-3). The secondary objectives were to complete the operations of the Orbital Acceleration Research Experiment (OARE), and to meet the requirements of the Middeck Glovebox (MGBX) facility and the Commercial Protein Crystal Growth (CPCG) experiment. Appendix A provides the definition of acronyms and abbreviations used thorughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

  9. Emergency Communications for NASA's Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Lee, Charles H.; Morabito, David D.; Cesarone, Robert J.; Abraham, Douglas S.

    2011-01-01

    The ability to communicate with spacecraft during emergencies is a vital service that NASA's Deep Space Network (DSN) provides to all deep space missions. Emergency communications is characterized by low data rates(typically is approximately10 bps) with the spacecraft using either a low-gain antenna (LGA, including omnidirectional antennas) or,in some cases, a medium-gain antenna (MGA). Because of the use of LGAs/MGAs for emergency communications, the transmitted power requirements both on the spacecraft andon the ground are substantially greater than those required for normal operations on the high-gain antenna (HGA) despite the lower data rates. In this paper, we look at currentand future emergency communications capabilities available to NASA's deep-space missions and discuss their limitations in the context of emergency mode operations requirements.These discussions include the use of the DSN 70-m diameter antennas, the use of the 34-m diameter antennas either alone or arrayed both for the uplink (Earth-to-spacecraft) and the downlink (spacecraft-to-Earth), upgrades to the ground transmitters, and spacecraft power requirements both with unitygain (0 dB) LGAs and with antennas with directivity (>0 dB gain, either LGA or MGA, depending on the gain). Also discussed are the requirements for forward-error-correctingcodes for both the uplink and the downlink. In additional, we introduce a methodology for proper selection of a directionalLGA/MGA for emergency communications.

  10. Irreducible Tests for Space Mission Sequencing Software

    NASA Technical Reports Server (NTRS)

    Ferguson, Lisa

    2012-01-01

    As missions extend further into space, the modeling and simulation of their every action and instruction becomes critical. The greater the distance between Earth and the spacecraft, the smaller the window for communication becomes. Therefore, through modeling and simulating the planned operations, the most efficient sequence of commands can be sent to the spacecraft. The Space Mission Sequencing Software is being developed as the next generation of sequencing software to ensure the most efficient communication to interplanetary and deep space mission spacecraft. Aside from efficiency, the software also checks to make sure that communication during a specified time is even possible, meaning that there is not a planet or moon preventing reception of a signal from Earth or that two opposing commands are being given simultaneously. In this way, the software not only models the proposed instructions to the spacecraft, but also validates the commands as well.To ensure that all spacecraft communications are sequenced properly, a timeline is used to structure the data. The created timelines are immutable and once data is as-signed to a timeline, it shall never be deleted nor renamed. This is to prevent the need for storing and filing the timelines for use by other programs. Several types of timelines can be created to accommodate different types of communications (activities, measurements, commands, states, events). Each of these timeline types requires specific parameters and all have options for additional parameters if needed. With so many combinations of parameters available, the robustness and stability of the software is a necessity. Therefore a baseline must be established to ensure the full functionality of the software and it is here where the irreducible tests come into use.

  11. STS-76 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-76 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-sixth flight of the Space Shuttle Program, the fifty-first flight since the return-to-flight, and the sixteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-77; three SSME's that were designated as serial numbers 2035, 2109, and 2019 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-079. The RSRM's, designated RSRM-46, were installed in each SRB and the individual RSRM's were designated as 360TO46A for the left SRB, and 360TO46B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and transfer one U.S. Astronaut to the Mir. A single Spacehab module carried science equipment and hardware, Risk Mitigation Experiments (RME's), and Russian Logistics in support of the Phase 1 Program requirements. In addition, the European Space Agency (ESA) Biorack operations were performed. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

  12. STS-46 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-46 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the forty-ninth flight of the Space Shuttle Program, and the twelfth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an ET, designated ET-48 (LWT-41); three SSME's, which were serial numbers 2032, 2033, and 2027 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-052. The lightweight/redesigned SRM's that were installed in each SRB were designated 360W025A for the left RSRM and 360L025B for the right RSRM. The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material 3/Thermal Energy Management Processes 2A-3 (EOIM-3/TEMP 2A-3). The secondary objectives of this flight were to perform the operations of the IMAX Cargo Bay Camera (ICBC), Consortium for Material Development in Space Complex Autonomous Payload-2 and 3 (CONCAP-2 and CONCAP-3), Limited Duration Space Environment Candidate Materials Exposure (LDCE), Pituitary Growth Hormone Cell Function (PHCF), and Ultraviolet Plume Instrumentation (UVPI). In addition to summarizing subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Also included in the discussion is a reference to the assigned tracking number as published on the Problem Tracking List. All times are given in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).

  13. Hubble Space Telescope First Servicing Mission Prelaunch Mission Operation Report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Hubble Space Telescope (HST) is a high-performance astronomical telescope system designed to operate in low-Earth orbit. It is approximately 43 feet long, with a diameter of 10 feet at the forward end and 14 feet at the aft end. Weight at launch was approximately 25,000 pounds. In principle, it is no different than the reflecting telescopes in ground-based astronomical observatories. Like ground-based telescopes, the HST was designed as a general-purpose instrument, capable of using a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic allows the HST to be used as a national facility, capable of supporting the astronomical needs of an international user community. The telescope s planned useful operational lifetime is 15 years, during which it will make observations in the ultraviolet, visible, and infrared portions of the spectrum. The extended operational life of the HST is possible by using the capabilities of the Space Transportation System to periodically visit the HST on-orbit to replace failed or degraded components, install instruments with improved capabilities, re-boost the HST to higher altitudes compensating for gravitational effects, and to bring the HST back to Earth when the mission is terminated. The largest ground-based observatories, such as the 200-inch aperture Hale telescope at Palomar Mountain, California, can recognize detail in individual galaxies several billion light years away. However, like all earthbound devices, the Hale telescope is limited because of the blurring effect of the Earth s atmosphere. Further, the wavelength region observable from the Earth s surface is limited by the atmosphere to the visible part of the spectrum. The very important ultraviolet portion of the spectrum is lost. The HST uses a 2.4-meter reflective optics system designed to capture data over a wavelength region that reaches far into the ultraviolet and infrared portions of the spectrum.

  14. LHS 6343 C: A TRANSITING FIELD BROWN DWARF DISCOVERED BY THE KEPLER MISSION

    SciTech Connect

    Johnson, John Asher; Crepp, Justin R.; Morton, Timothy D.; Apps, Kevin; Gazak, J. Zachary; Crossfield, Ian J.; Howard, Andrew W.; Marcy, Geoff W.; Chubak, Carly; Isaacson, Howard

    2011-04-01

    We report the discovery of a brown dwarf that transits one member of the M+M binary system LHS 6343 AB every 12.71 days. The transits were discovered using photometric data from the Kepler public data release. The LHS 6343 stellar system was previously identified as a single high proper motion M dwarf. We use adaptive optics imaging to resolve the system into two low-mass stars with masses 0.370 {+-} 0.009 M{sub sun} and 0.30 {+-} 0.01 M{sub sun}, respectively, and a projected separation of 0.''55. High-resolution spectroscopy shows that the more massive component undergoes Doppler variations consistent with Keplerian motion, with a period equal to the transit period and an amplitude consistent with a companion mass of M{sub C} = 62.7 {+-} 2.4 M{sub Jup}. Based on our analysis of the transit light curve, we estimate the radius of the companion to be R{sub C} = 0.833 {+-} 0.021 R{sub Jup}, which is consistent with theoretical predictions of the radius of a >1 Gyr brown dwarf.

  15. Autonomous Navigation for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam

    2012-01-01

    Navigation (determining where the spacecraft is at any given time, controlling its path to achieve desired targets), performed using ground-in- the-loop techniques: (1) Data includes 2-way radiometric (Doppler, range), interferometric (Delta- Differential One-way Range), and optical (images of natural bodies taken by onboard camera) (2) Data received on the ground, processed to determine orbit, commands sent to execute maneuvers to control orbit. A self-contained, onboard, autonomous navigation system can: (1) Eliminate delays due to round-trip light time (2) Eliminate the human factors in ground-based processing (3) Reduce turnaround time from navigation update to minutes, down to seconds (4) React to late-breaking data. At JPL, we have developed the framework and computational elements of an autonomous navigation system, called AutoNav. It was originally developed as one of the technologies for the Deep Space 1 mission, launched in 1998; subsequently used on three other spacecraft, for four different missions. The primary use has been on comet missions to track comets during flybys, and impact one comet.

  16. Space missions orbits around small worlds

    NASA Astrophysics Data System (ADS)

    Cardoso dos Santos, Josué; dos Santos Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho; Bertachini de Almeida Prado, Antônio Fernando

    2015-08-01

    Space missions under study to visit icy moons and small worlds in our solar system will requires orbits with low-altitude and high inclinations. These orbits provides a better coverage to map the surface and to analyse the gravitational and magnetic fields. In this context, obtain these orbits has become important in planning of these missions. Celestial bodies like Haumea, Europa, Ganymede, Callisto, Enceladus, Titan and Triton are among the objects under study study to receive missions in a near future. In order to obtain low-altitude and high inclined orbits for future exploration of these bodies, this work aims to present an analytical study to describe and evaluate gravitational disturbances over a spacecraft's orbit around a minor body. An analytical model for the third-body perturbation is presented. Perturbations due to the non-sphericity of the minor body are considered. The effects on spacecraft's orbital elements are analyzed to provide the the more useful and desired orbits. The dynamic of these orbits is explored by numerical simulations. The results present good accordance with the literature.

  17. Spreadsheets for Analyzing and Optimizing Space Missions

    NASA Technical Reports Server (NTRS)

    Some, Raphael R.; Agrawal, Anil K.; Czikmantory, Akos J.; Weisbin, Charles R.; Hua, Hook; Neff, Jon M.; Cowdin, Mark A.; Lewis, Brian S.; Iroz, Juana; Ross, Rick

    2009-01-01

    XCALIBR (XML Capability Analysis LIBRary) is a set of Extensible Markup Language (XML) database and spreadsheet- based analysis software tools designed to assist in technology-return-on-investment analysis and optimization of technology portfolios pertaining to outer-space missions. XCALIBR is also being examined for use in planning, tracking, and documentation of projects. An XCALIBR database contains information on mission requirements and technological capabilities, which are related by use of an XML taxonomy. XCALIBR incorporates a standardized interface for exporting data and analysis templates to an Excel spreadsheet. Unique features of XCALIBR include the following: It is inherently hierarchical by virtue of its XML basis. The XML taxonomy codifies a comprehensive data structure and data dictionary that includes performance metrics for spacecraft, sensors, and spacecraft systems other than sensors. The taxonomy contains >700 nodes representing all levels, from system through subsystem to individual parts. All entries are searchable and machine readable. There is an intuitive Web-based user interface. The software automatically matches technologies to mission requirements. The software automatically generates, and makes the required entries in, an Excel return-on-investment analysis software tool. The results of an analysis are presented in both tabular and graphical displays.

  18. STS-68 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-68 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fifth flight of the Space Shuttle Program and the seventh flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-65; three SSMEs that were designated as serial numbers 2028, 2033, and 2026 in positions 1, 2, and 3, respectively; and two SRBs that were designated BI-067. The RSRMs that were installed in each SRB were designated as 360W040A for the left SRB and 360W040B for the right SRB. The primary objective of this flight was to successfully perform the operations of the Space Radar Laboratory-2 (SRL-2). The secondary objectives of the flight were to perform the operations of the Chromosome and Plant Cell Division in Space (CHROMEX), the Commercial Protein Crystal Growth (CPCG), the Biological Research in Canisters (BRIC), the Cosmic Radiation Effects and Activation Monitor (CREAM), the Military Application of Ship Tracks (MAST), and five Get-Away Special (GAS) payloads.

  19. STS-47 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1992-01-01

    The STS-47 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fiftieth Space Shuttle Program flight and the second flight of the Orbiter Vehicle Endeavour (OV-105). In addition to the Endeavour vehicle, the flight vehicle consisted of the following: an ET which was designated ET-45 (LWT-38); three SSME's which were serial numbers 2026, 2022, and 2029 and were located in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-053. The lightweight/redesigned RSRM that was installed in the left SRB was designated 360L026A, and the RSRM that was installed in the right SRB was 360W026B. The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload (containing 43 experiments--of which 34 were provided by the Japanese National Space Development Agency (NASDA)). The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-2 (SAREX-2), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

  20. STS-45 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1992-05-01

    The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).

  1. STS-74 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-74 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-third flight of the Space Shuttle Program, the forty-eighth flight since the return-to-flight, and the fifteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-74; three Phase 11 SSME's that were designated as serial numbers 2012, 2026, and 2032 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-076. The RSRM's, designated RSRM-51, were installed in each SRB and the individual RSRM's were designated as 360TO51 A for the left SRB, and 360TO51 B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform life sciences investigations. The Russian Docking Module (DM) was berthed onto the Orbiter Docking System (ODS) using the Remote Manipulator System (RMS), and the Orbiter docked to the Mir with the DM. When separating from the Mir, the Orbiter undocked, leaving the DM attached to the Mir. The two solar arrays, mounted on the DM, were delivered for future Russian installation to the Mir. The secondary objectives of the flight were to perform the operations necessary to fulfill the requirements of the GLO experiment (GLO-4)/Photogrammetric Appendage Structural Dynamics Experiment Payload (PASDE) (GPP), the IMAX Cargo Bay Camera (ICBC), and the Shuttle Amateur Radio Experiment-2 (SAREX-2). Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT)) and mission elapsed time (MET).

  2. STS-54 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1993-01-01

    The STS-54 Space Shuttle Program Mission Report is a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during this fifty-third flight of the Space Shuttle Program, and the third flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated ET-51; three SSME's, which were serial numbers 2019, 2033, and 2018 in positions 1, 2, and 3, respectively; and two retrievable and reusable SRB's which were designated BI-056. The lightweight RSRM's that were installed in each SRB were designated 360L029A for the left SRB, and 360L029B for the right SRB. The primary objectives of this flight were to perform the operations to deploy the Tracking and Data Relay Satellite-F/Inertial Upper Stage payload and to fulfill the requirements of the Diffuse X-Ray Spectrometer (DXS) payload. The secondary objective was to fly the Chromosome and Plant Cell Division in Space (CHROMEX), Commercial Generic Bioprocessing Apparatus (CGBA), Physiological and Anatomical Rodent Experiment (PARE), and the Solid Surface Combustion Experiment (SSCE). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. The official tracking number for each in-flight anomaly, assigned by the cognizant project, is also shown. All times are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

  3. STS-45 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).

  4. STS-69 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-69 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-first flight of the Space Shuttle Program, the forty-sixth flight since the return-to-flight, and the ninth flight of the Orbiter Endeavour(OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-72; three SSME's that were designated as serial numbers 2035, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-074. The RSRMS, designated RSRM-44, were installed in each SRB and the individual RSRM's were designated as 36OL048A for the left SRB, and 36OW048B for the right SRB. The primary objectives of this flight were to perform the operations necessary to fulfill the requirments of Wake Shield Facility (WSF) and SPARTAN-201. The secondary objectives were to perform the operation of the International Extreme Ultraviolet Hitchhiker (IEH-1), the Capillary Pumped Loop-2/GAS Bridge Assembly (CAPL-2/GBA), Thermal Energy Storage (TES), Auroral Photography Experiment-B (APE-B) and the Extravehicular Activity (EVA) Development Flight Test 02 (EDFT-02), the Biological Research in Canister (BRIC) payload, the Commercial Generic Bioprocessing Apparatus (CGBA) payload, the Electrolysis Performance Improvement Concept Study (EPICS) payload, the Space Tissue Loss, National Institute of Health-Cells (STL/NIH-CS) payload, and the Commercial Middeck Instrumentation Technology Associates Experiment (CMIX). Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

  5. Kepler Mission: a Discovery-Class Mission Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  6. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Neat the Habitable Zone of a Wide Range of Stars

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.; Young, Richard E. (Technical Monitor)

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours, From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  7. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Near the Habitable Zone of a Wide Range of Stars

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change. in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours. From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg. field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  8. Radiation protection guidelines for space missions

    NASA Technical Reports Server (NTRS)

    Fry, R. J.; Nachtwey, D. S.

    1988-01-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

  9. Radiation protection guidelines for space missions.

    PubMed

    Fry, R J; Nachtwey, D S

    1988-08-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem). PMID:3410682

  10. Radiation protection guidelines for space missions

    SciTech Connect

    Fry, R.J.; Nachtwey, D.S.

    1988-08-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).